WorldWideScience

Sample records for natural gas productive

  1. Natural gas production verification tests

    International Nuclear Information System (INIS)

    1992-02-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) in compliance with the requirements of the National Environmental Policy Act of 1969. The Department of Energy (DOE) proposes to fund, through a contract with Petroleum Consulting Services, Inc. of Canton, Ohio, the testing of the effectiveness of a non-water based hydraulic fracturing treatment to increase gas recovery from low-pressure, tight, fractured Devonian Shale formations. Although Devonian Shales are found in the Appalachian, Michigan, and Illinois Basins, testing will be done only in the dominant, historical five state area of established production. The objective of this proposed project is to assess the benefits of liquid carbon dioxide (CO 2 )/sand stimulations in the Devonian Shale. In addition, this project would evaluate the potential nondamaging (to the formation) properties of this unique fracturing treatment relative to the clogging or chocking of pores and fractures that act as gas flow paths to the wellbore in the target gas-producing zones of the formation. This liquid CO 2 /sand fracturing process is water-free and is expected to facilitate gas well cleanup, reduce the time required for post-stimulation cleanup, and result in improved production levels in a much shorter time than is currently experienced

  2. Natural gas and production of electricity

    International Nuclear Information System (INIS)

    Defago, E.

    2005-01-01

    The forthcoming power supply shortage in Switzerland due to increasing consumption is discussed, as are the possibilities for securing the future supply. Today, the main sources are hydroelectric (roughly 55 %) and nuclear (40 %) power. The share of electricity from natural gas amounts to only 1.4 %. The possibilities of further economic production of hydropower are practically exhausted. Therefore, further electric power has to be either imported or generated from other energy sources (renewable, nuclear, fossil) in the country itself. Due to the low acceptance of nuclear energy and the limited potential of renewable energy sources, natural gas is the most favoured candidate. The advantages of distributed production in cogeneration plants are compared with the centralized production in larger plants using combined cycles. Finally, a project currently under development is presented: an existing thermal power plant fueled with heavy fuel oil shall be refurbished and converted to natural gas as the new fuel

  3. Natural gas product and strategic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  4. Natural gas: reserves keep ahead of production

    Energy Technology Data Exchange (ETDEWEB)

    Hough, G V

    1983-08-01

    World production of natural gas in 1982 fell only 1.6% below 1981 levels, while proven recoverable reserves were up by 3.6% for a total of 3.279 quadrillion CF, which is 32.4% higher than had been estimated in 1978. Gas consumption, however, has experienced greater changes, with most of the industrialized countries (except for Japan) reporting declines in gas demand resulting from falling oil prices, reduced energy demand, and a slack world economy. Although gas seems to be holding its own in energy markets, further progress will not be easy to achieve.

  5. Radon gas in oil and natural gas production facilities

    International Nuclear Information System (INIS)

    Chandler, W.P.

    1994-01-01

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it's decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs

  6. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  7. Natural gas production from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-01

    A remote location in Rio Arriba County, NW. New Mexico, is being considered as the site for an experiment in the use of a nuclear explosive to increase production from a natural gas field. A feasibility study has been conducted by the El Paso Natural Gas Co., the U.S. Atomic Energy commission, and the U.S. Bureau of Mines. As presently conceived, a nuclear explosive would be set in an emplacement hole and detonated. The explosion would create a cylinder or ''chimney'' of collapsed rock, and a network of fractures extending beyond the chimney. The fractures are the key effect. These would consist of new fractures, enlargement of existing ones, and movement along planes where strata overlap. In addition, there are a number of intangible but important benefits that could accrue from the stimulating effect. Among these are the great increase in recoverable reserves and the deliverability of large volumes of gas during the periods of high demand. It is believed that this type of well stimulation may increase the total gas production of these low permeability natural gas fields by about 7 times the amounts now attainable.

  8. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  9. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  10. Deposition of naturally occurring radioactivity in oil and gas production

    International Nuclear Information System (INIS)

    Lysebo, I.; Strand, T.

    1997-01-01

    This booklet contains general information about naturally occurring radioactive materials, NORM, in production of oil and natural gas, occupational doses, radiation protection procedures and measures, and classification methods of contaminated equipment. 6 refs., 1 fig., 1 tab

  11. World statistics on natural gas reserves, production and utilization

    International Nuclear Information System (INIS)

    Raikaslehto, S.

    2001-01-01

    By reviewing the statistics of BP Amoco on natural gas reserves, production and usage, it is easy to see that Russia and USA, both being large natural gas producers, differ significantly from each other. The natural gas reserves of USA are 6th largest in the world, simultaneously the natural gas consumption and import are largest in the world. About one third of the known natural gas reserves of the world are in Russia. The known natural gas reserves of both USA and Canada have decreases, but they have potential gas reserves left. Known natural gas reserves of the USA have been calculated to be sufficient for 9 years consumption at present usage and those of Canada for 11 years. The reserves of Algeria correspond to the usage of 55 years, and the Russian reserves for are about 83 years. Annual production figures of both Russia and the USA are nearly the same. Russia is the largest exporter (125.5 billion m 3 ) of natural gas and the USA the largest importer (96 billion m 3 ). The natural gas reserves of the largest European producers, the Netherlands and Norway have been estimated to be sufficient for use of about 20 years, but those of Great Britain only for about 10 years. The annual production of Russia has varied in the 1990s between nearly 600 billion m 3 and present 550 billion m 3 , the minimum being in 1997 only about 532 billion m 3 . Ten largest natural gas consumers use 67% of the natural gas consumed annually in the world. USA consumes about 27% of the total natural gas produced in the world, the amount of Russia being 364 billion m 3 (16%). Other large natural gas consumers are Great Britain, Germany, Japan, Ukraine, Canada, Italy, Iran and Uzbekistan. The share of these countries of the total consumption varied in between 2-4%. Only Japan has no natural gas production of its own. The foreign trade between Japan and Indonesia is trade on LNG. On the other hand the natural gas consumption of the world's 10th largest producer Norway is nearly zero, so

  12. World natural gas supply and demand: Brief pause in production

    International Nuclear Information System (INIS)

    Coccia, G.

    1993-01-01

    With reference to the 1992 CEDIGAZ (Centre International sur le Gas Naturel et tous Hydrocarbures Gazeux) report on world natural gas supply and demand, this paper assesses current market and production trends in this industry. The slight drop in production in 1992, the first which has which has occurred after many consecutive years of steady increases, is ascribed to ownership disputes among the former-USSR republics and major changes in the organizational structure of the former-USSR's natural gas industry. Strong increases in demand are forecasted due to expected strong population growth and increased industrialization to take place in China and India. Price trends in natural gas should remain steady as a result of plentiful supplies of this fuel and coal, a major competitor. The use of relatively clean natural gas is suggested as a practical alternative to energy taxes now being proposed as a means for the reduction of greenhouse gas emissions

  13. European energy security: The future of Norwegian natural gas production

    International Nuclear Information System (INIS)

    Soederbergh, Bengt; Jakobsson, Kristofer; Aleklett, Kjell

    2009-01-01

    The European Union (EU) is expected to meet its future growing demand for natural gas by increased imports. In 2006, Norway had a 21% share of EU gas imports. The Norwegian government has communicated that Norwegian gas production will increase by 25-40% from today's level of about 99 billion cubic meters (bcm)/year. This article shows that only a 20-25% growth of Norwegian gas production is possible due to production from currently existing recoverable reserves and contingent resources. A high and a low production forecast for Norwegian gas production is presented. Norwegian gas production exported by pipeline peaks between 2015 and 2016, with minimum peak production in 2015 at 118 bcm/year and maximum peak production at 127 bcm/year in 2016. By 2030 the pipeline export levels are 94-78 bcm. Total Norwegian gas production peaks between 2015 and 2020, with peak production at 124-135 bcm/year. By 2030 the production is 96-115 bcm/year. The results show that there is a limited potential for increased gas exports from Norway to the EU and that Norwegian gas production is declining by 2030 in all scenarios. Annual Norwegian pipeline gas exports to the EU, by 2030, may even be 20 bcm lower than today's level.

  14. Planning of optimum production from a natural gas field

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, J

    1968-03-01

    The design of an optimum development plan for a natural gas field always depends on the typical characteristics of the producing field, as well as those of the market to be served by this field. Therefore, a good knowledge of the field parameters, such as the total natural gas reserves, the well productivity, and the dependence of production rates on pipeline pressure and depletion of natural gas reserves, is required prior to designing the development scheme of the field, which in fact depends on the gas-sales contract to be concluded in order to commit the natural gas reserves to the market. In this paper these various technical parameters are discussed in some detail, and on this basis a theoretical/economical analysis of natural gas production is given. For this purpose a simplified economical/mathematical model for the field is proposed, from which optimum production rates at various future dates can be calculated. The results of these calculations are represented in a dimensionless diagram which may serve as an aid in designing optimum development plans for a natural gas field. The use of these graphs is illustrated in a few examples.

  15. Liquefied natural gas production at Hammerfest: A transforming marine community

    NARCIS (Netherlands)

    Bets, van L.K.J.; Tatenhove, van J.P.M.; Mol, A.P.J.

    2016-01-01

    Global energy demand and scarce petroleum resources require communities to adapt to a rapidly changing Arctic environment, but as well to a transforming socio-economic environment instigated by oil and gas development. This is illustrated by liquefied natural gas production by Statoil at Hammerfest,

  16. Natural gas for power production in Western Europe

    International Nuclear Information System (INIS)

    1993-01-01

    The third and last part of the Sub-Committee's study on natural gas for power generation is reprinted in this issue. This part addresses gas consumption in electricity production until the year 2010. The first part of the study dealing with combined cycle power plants was published in September and the 2nd part on regulatory and environmental issues in October 1992

  17. Natural Gas Reserves, Development and Production in Qatar

    International Nuclear Information System (INIS)

    Naji, Abi-Aad.

    1998-01-01

    Qatar entered the club of natural gas exporters in early 1997 when the first shipment of liquefied natural gas left the state for Japan. Qatar was helped by the discovery in 1971 of supergiant North Field gas field, the country's suitable location between the established gas consuming markets in Europe and Southeast Asia, and its proximity to developing markets in the Indian subcontinent and in neighbouring countries. All that have combined to make gas export projects from Qatar economically viable and commercially attractive. In addition to export-oriented development, increased gas production from the North Field is planned for meeting a growing domestic demand for gas as fuel and feedstock for power generation and desalination plants, as well as value-added petrochemical and fertilizer industries

  18. Knowledge based decision making: perspective on natural gas production

    Energy Technology Data Exchange (ETDEWEB)

    Ydstie, B. Erik; Stuland, Kjetil M.

    2009-07-01

    Conclusions (drawn by the author): Decarbonization of energy sources - From coal to renewable. Natural Gas Abundantly available - Norway is no. 3 exporter. Natural gas important as - Hydrogen source for chemicals; - Electricity; - End consumer usage (heating etc). Large potential for application of model based decision making; - Where and when to install platforms and drill wells - How to operate platforms and pipeline systems; - How to operate and optimize chemical production; - Optimization of electricity generation systems. (author)

  19. Challenges and solutions in natural gas engine development and productions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mahdi; Izanloo, Hossein [Irankhodro Powertrain Co. (IPCO) (Iran)

    2008-07-01

    As an alternative fuel, natural gas is generally accepted for internal combustion engines and some developments have been conducted in order to adopt it for the road vehicles and stationary applications. Foresights shows natural gas vehicles will be a part of the future transportation technology regarding to their mid and long-term benefits. Therefore inherent problems of natural gas engine technology should be overcome to produce a competitive engine. In this paper major problems and their possible solutions in developing and producing natural gas engine for passenger cars are detailed and discussed. Challenging materials are sorted and presented in two categorizes: technical and econo-strategical problems. In the technical section major difficulties faced in components or systems of natural gas engine are analysed in different aspects of design, validation, and production. In addition problems arisen from the fuel characteristics which influence the function and durability of engine are argued. Subjects like freezing in gas regulator, cold start fuel injection, gas leakage, impurities within compressed natural gas, variation in fuel composition, thermo-mechanics of cylinder head and block, wear of valve seat inserts, spark plug erosion, back-fire phenomenon, engine oil quality requirement, low power density and mileage are described. In the econo-strategical discussion, challenges like limited gas distribution infrastructure, lack of specific manufacturing standards and codes, and non-dedicated emission standards are explained. In both part of the paper a comprehensive view is extended to clarify the effect, risk and solutions of each problem. Due to the fact that almost all information and analysis presented in this paper are based on the experience of developing a natural gas engine family, and an extensive literature review, discussions and conclusions could be useful as a guide line for future natural gas engine projects. (orig.)

  20. Expanding Canadian natural gas production will strengthen growth of LP-gas industry

    International Nuclear Information System (INIS)

    Hawkins, D.J.

    1994-01-01

    In 1992, over 86% of Canadian propane and 70% of Canadian butane production originated in gas plants. Propane and butane production not recovered at gas plants is recovered in other processing facilities, primarily refineries and heavy oil upgraders. As a result, supplies of both products are largely tied to natural gas production, and the outlook for natural gas therefore provides the basis for any discussion on the outlook for gas processing and NGL industry infrastructure. The paper discusses gas processing, economies of scale, NGL supply, expected declines, industry structure and infrastructure, the two major centers of the Canadian NGL industry, new shippers, and required pipeline expansion

  1. China's natural gas: Resources, production and its impacts

    International Nuclear Information System (INIS)

    Wang, Jianliang; Feng, Lianyong; Zhao, Lin; Snowden, Simon

    2013-01-01

    In order to achieve energy consumption targets, and subsequently reduce carbon emissions, China is working on energy strategies and policies aimed at actively increasing the consumption of natural gas—the lowest carbon energy of the fossil fuels, and to enhance the proportion of gas in total primary energy consumption. To do this, it is a necessary prerequisite that China must have access to adequate gas resources and production to meet demand. This paper shows that the availability of domestic gas resources are overestimated by China's authorities due to differences in classification and definitions of gas resources/reserves between China and those accepted internationally. Based on official gas resource figures, China's gas production remains low with respect to the projected demand, and will only be 164.6 bcm in 2020, far lower than the 375 bcm of forecast demand. The gap between gas production and demand will reach 210.4 bcm by 2020. Existing plans for the importation of gas and the development of unconventional gas will not close this gap in the next 10 years, and this situation will therefore present a severe challenge to China's gas security, achievement of targets in improving energy consumption structure and reducing carbon emissions. - Highlights: ► We show that available gas resources are overestimated by China's authorities. ► We forecast China's future gas production under different resource scenarios. ► This paper shows that China's gas production will not meet the soaring demand. ► The gap between supply and demand will continue to increase rapidly in future. ► China's gas security will meet a severe challenge because of this increasing gap

  2. Low Carbon Technology Options for the Natural Gas Electricity Production

    Science.gov (United States)

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the...

  3. Experience curve for natural gas production by hydraulic fracturing

    International Nuclear Information System (INIS)

    Fukui, Rokuhei; Greenfield, Carl; Pogue, Katie; Zwaan, Bob van der

    2017-01-01

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50%/yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or “fracking”, as well as new directional drilling techniques, played key roles in this shale gas revolution, by allowing for extraction of natural gas from previously unviable shale resources. Although hydraulic fracturing technology had been around for decades, it only recently became commercially attractive for large-scale implementation. As the production of shale gas rapidly increased in the US over the past decade, the wellhead price of natural gas dropped substantially. In this paper we express the relationship between wellhead price and cumulative natural gas output in terms of an experience curve, and obtain a learning rate of 13% for the industry using hydraulic fracturing technology. This learning rate represents a measure for the know-how and skills accumulated thus far by the US shale gas industry. The use of experience curves for renewable energy options such as solar and wind power has allowed analysts, practitioners, and policy makers to assess potential price reductions, and underlying cost decreases, for these technologies in the future. The reasons for price reductions of hydraulic fracturing are fundamentally different from those behind renewable energy technologies – hence they cannot be directly compared – and hydraulic fracturing may soon reach, or maybe has already attained, a lower bound for further price reductions, for instance as a result of its water requirements or environmental footprint. Yet, understanding learning-by-doing phenomena as expressed by an industry-wide experience curve for shale gas production can be useful for strategic planning in the gas sector, as well as assist environmental policy design, and serve more broadly as input for projections of energy system developments. - Highlights: • Hydraulic

  4. US production of natural gas from tight reservoirs

    International Nuclear Information System (INIS)

    1993-01-01

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission's (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ''legally tight'' reservoirs. Additional production from ''geologically tight'' reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA's tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government's regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs

  5. Liquefied natural gas (LNG) : production, storage and handling. 7. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, S; Jaron, K; Adragna, M; Coyle, S; Foley, C; Hawryn, S; Martin, A; McConnell, J [eds.

    2003-07-01

    This Canadian Standard on the production, storage and handling of liquefied natural gas (LNG) was prepared by the Technical Committee on Liquefied Natural Gas under the jurisdiction of the Steering Committee on Oil and Gas Industry Systems and Materials. It establishes the necessary requirements for the design, installation and safe operation of LNG facilities. The Standard applies to the design, location, construction, operation and maintenance of facilities at any location of the liquefaction of natural gas and for the storage, vaporization, transfer, handling and truck transport of LNG. The training of personnel involved is also included as well as containers for LNG storage, including insulated vacuum systems. It includes non-mandatory guidelines for small LNG facilities but does not apply to the transportation of refrigerants, LNG by rail, marine vessel or pipeline. This latest edition contains changes in working of seismic design requirements and minor editorial changes to several clauses to bring the Standard closer to the US National Fire Protection Association's Committee on Liquefied Natural Gas Standard while maintaining Canadian regulatory requirements. The document is divided into 12 sections including: general requirements; plant site provisions; process equipment; stationary LNG storage containers; vaporization facilities; piping system and components; instrumentation and electrical services; transfer of LNG and refrigerants; fire protection, safety and security; and, operating, maintenance and personnel training. This Standard, like all Canadian Standards, was subject to periodic review and was most recently reaffirmed in 2003. 6 tabs., 6 figs., 3 apps.

  6. Production of bio-synthetic natural gas in Canada.

    Science.gov (United States)

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system.

  7. Environmental review of natural gas production in Lake Erie

    International Nuclear Information System (INIS)

    O'Shea, K.

    2002-01-01

    The water of Lake Erie is used as a source of drinking water for Ontario, New York, Pennsylvania, Ohio and Michigan. An environmental review has been conducted to determine the impact of drilling operations on the overall ecology of the lake. Since 1913, 2000 natural gas wells have been drilled in Lake Erie, of which 550 currently produce gas and account for 75 per cent of Ontario's total gas production. 180 wells are shut-in or suspended and the remaining wells have been abandoned. The gas wells are connected to onshore production facilities by approximately 1,600 km of small diameter pipelines that lie buried near shore or on top of the lake bed. Nearly 90 per cent of the in-lake infrastructure is in water depths of more than 20 metres. Talisman Energy is actively involved with the Canadian Coast Guard, the Department of Fisheries and Oceans, and the Ministry of Natural Resources to ensure cooperation between regulators and off-shore personnel. The environmental assessment of natural gas production in Lake Erie included a review of regulatory and best management practices, a biophysical overview of the lake, and a review of drilling practices, well completions, handling of waste streams, materials management, operations inspections, wastewater discharge, air emissions, and oil spills. It was revealed that for most drilling programs, cuttings are washed and discharged to the Lake. Ongoing testing will determine the impact that this practice has on benthic populations. The drill muds used for drilling operations are water based, environmentally friendly, and re-used between well locations. For completion programs, all well activities are closed circuit operations. Wells are abandoned through plugging with cement, removing wellheads and casing below the lake bottom. There has been a reported volume of about 23,000 litres of spilled product from 1990 to 2001, of which 68 per cent has come from 3 industrial companies that operate near Lake Erie. The offshore gas

  8. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  9. Natural gas trends

    International Nuclear Information System (INIS)

    Anderson, A.

    1991-01-01

    This book provides data on many facets of the natural gas industry. Topics include: Canadian, Mexican; US natural gas reserves and production; Mexican and US natural gas consumption; market conditions for natural gas in the US; and Canadian natural gas exports

  10. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  11. Combined production og energy by vapor-gas unit on natural gas in Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1998-01-01

    The steam and gas turbine power plant for combine heat (for district heating of Skopje - the capital of Macedonia) and power (connected to the grid) production is analyzed and determined. Two variants of power plants are analyzed: power plant with gas turbine, heat recovery steam generator and a back pressure steam turbine; and power plant with two gas turbines, two heat recovery steam generators (HRSG) and one back pressure steam turbine. The power plant would operate on natural gas as the main fuel source. It will be burnt in the gas turbine as well in the HRSG as an auxiliary fuel.The backup fuel for the gas turbine would be light oil. In normal operation, the HRSG uses the waste heat of the exhaust gases from the gas turbine. During gas turbine shutdowns, the HRSG can continue to generate the maximum steam capacity. The heat for district heating would be produce in HRSG by flue gases from the gas turbine and in the heat exchanger by condensed steam from back pressure turbine. The main parameters of the combined power plant, as: overall energy efficiency, natural gas consumption, natural gas saving are analyzed and determined in comparison with separated production of heat (for district heating) and power (for electrical grid). (Author)

  12. Lightweight Approaches to Natural Gas Hydrate Exploration & Production

    Science.gov (United States)

    Max, M. D.; Johnson, A. H.

    2017-12-01

    Lower-cost approaches to drilling and reservoir utilization are made possible by adapting both emerging and new technology to the unique, low risk NGH natural gas resource. We have focused on drilling, wellbore lining technology, and reservoir management with an emphasis on long-term sand control and adaptive mechanical stability during NGH conversion to its constituent gas and water. In addition, we suggest that there are opportunities for management of both the gas and water with respect to maintaining desired thermal conditions. Some of the unique aspects of NGH deposits allow for new, more efficient technology to be applied to development, particularly in drilling. While NGH-bearing sands are in deepwater, they are confined to depths beneath the seafloor of 1.2 kilometers or less. As a result, they will not be significantly above hydrostatic pressure, and temperatures will be less than 30 oC. Drilling will be through semi-consolidated sediment without liquid hydrocarbons. These characteristics mean that high capability drillships are not needed. What is needed is a new perspective about drilling and producing NGH. Drilling from the seafloor will resolve the high-pressure differential between a wellhead on the sea surface in a vessel and reservoir to about the hydrostatic pressure difference between the seafloor and, at most, the base of the GHSZ. Although NGH production will begin using "off-the-shelf" technology, innovation will lead to new technology that will bring down costs and increase efficiency in the same way that led to the shale breakthrough. Commercial success is possible if consideration is given to what is actually needed to produce NGH in a safe and environmentally manner. Max, M.D. 2017. Wellbore Lining for Natural Gas Hydrate. U.S. Patent Application US15644947 Max, M.D. & Johnson, A.H. 2017. E&P Cost Reduction Opportunities for Natural Gas Hydrate. OilPro. . Max, M.D. & Johnson, A.H. 2016. Exploration and Production of Oceanic Natural Gas

  13. Preliminary report on the commercial viability of gas production from natural gas hydrates

    Science.gov (United States)

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  14. Preliminary report on the economics of gas production from natural gas hydrates

    International Nuclear Information System (INIS)

    Walsh, M.; Wilson, S.; Patil, S.; Moridis, G.; Boswell, R.; Koh, C.; Sloan, D.

    2008-01-01

    Gas hydrates are solid crystalline compounds in which gas molecules reside inside cages that are formed by hydrogen-bonded water molecules in a crystal lattice. At particularly low temperatures and high pressures, a guest molecule will combine with water to form gas hydrates. Gas hydrates are found in two different settings in which the temperature and pressure conditions are suitable for their existence, notably in Arctic permafrost regions and below the seafloor. Because of the size of this possible future resource, if any of the gas in hydrates can be proven to be economically recoverable, then production from gas hydrates could become an important portion of the world's energy portfolio as demand for natural gas increases along with the technology to compress and distribute natural gas to distant markets. This paper presented a compilation of economic research that was conducted on the resource potential of gas hydrates. The paper reported a preliminary estimate of the price of natural gas that may lead to economically-viable production from North American Arctic region hydrates. The paper also discussed the implications of a recent study on the production of class 3 marine hydrate deposits from the Gulf of Mexico. The state of the art technologies and methods in hydrate reservoir modeling and hydrate reservoir production and petrophysical testing were also discussed. It was concluded that the somewhat optimistic results presented in this report should be interpreted with caution, however, the economically-viable gas production from hydrates was not an unreasonable scenario. 23 refs., 2 tabs., 10 figs

  15. Deposits of naturally occurring radioactivity in production of oil and natural gas

    International Nuclear Information System (INIS)

    Strand, T.; Lysebo, I.; Kristensen, D.; Birovljev, A.

    1997-01-01

    Deposits of naturally occurring radioactive materials is an increasing problem in Norwegian oil and gas production. Activity concentration in solid-state samples and production water, and doses to workers involved in different operations off-shore, have been measured. The report also includes a discussion of different methods of monitoring and alternatives for final disposal of wastes. 154 refs

  16. Natural gas marketing II

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing

  17. Contact heating of water products of combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, I Z

    1978-01-01

    The USSR's NIIST examined the processes and equipment for heating water by submerged combustion using natural gas. Written for engineers involved with the design and application of thermal engineering equipment operating with natural gas, the book emphasizes equipment, test results, and methods of calculating heat transfer for contact gas economizers developed by Scientific Research Institute of Sanitary Engineering and other Soviet organizations. The economic effectiveness of submerged-combustion heating depends on several factors, including equipment design. Recommendations cover cost-effective designs and applications of contact economizers and boilers.

  18. Analysis of Specific Features of the Ukrainian Market of Natural Gas Production and Consumption

    Directory of Open Access Journals (Sweden)

    Lelyuk Oleksiy V.

    2013-11-01

    Full Text Available The article provides results of the study of specific features of the Ukrainian market of natural gas production and consumption. It analyses dynamics of the specific weight of Ukraine in general volumes of natural gas consumption in the world, dynamics of natural gas consumption in Ukraine during 1990 – 2012 and dependence of natural gas consumption on GDP volumes by the purchasing power parity. It studies the structure of natural gas consumption by regions in 2012 and sectors of economy, resource base of natural gas in Ukraine and also dynamics of established resources of natural gas in Ukraine and dynamics of natural gas production. It analyses base rates of growth of natural gas resources and production in Ukraine. It considers dynamics of import of natural gas into Ukraine and its import prices and also the structure of natural gas import. It identifies the balance of the natural gas market in Ukraine. On the basis of the conducted analysis the article proves that Ukraine is a gas-deficit country of the world, which depends on natural gas import supplies.

  19. Natural gas monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  20. Experience curve for natural gas production by hydraulic fracturing

    NARCIS (Netherlands)

    Fukui, R.; Greenfield, C.; Pogue, K.; van der Zwaan, B.

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or ``fracking'', as well as new directional drilling techniques, played key roles in

  1. Forecasting natural gas supply in China: Production peak and import trends

    International Nuclear Information System (INIS)

    Lin Boqiang; Wang Ting

    2012-01-01

    China's natural gas consumption has increased rapidly in recent years making China a net gas importer. As a nonrenewable energy, the gas resource is exhaustible. Based on the forecast of this article, China's gas production peak is likely to approach in 2022. However, China is currently in the industrialization and urbanization stage, and its natural gas consumption will persistently increase. With China's gas production peak, China will have to face a massive expansion in gas imports. As the largest developing country, China's massive imports of gas will have an effect on the international gas market. In addition, as China's natural gas price is still controlled by the government and has remained at a low level, the massive imports of higher priced gas will exert great pressure on China's gas price reform. - Highlights: ► We figured out the natural gas production peak of China. ► We predict the import trends of natural gas of China. ► We study the international and national impacts of China's increasing import of gas. ► It is important for China to accelerate price reformation of natural gas.

  2. Exploring the production of natural gas through the lenses of the ACEGES model

    International Nuclear Information System (INIS)

    Voudouris, Vlasios; Matsumoto, Ken'ichi; Sedgwick, John; Rigby, Robert; Stasinopoulos, Dimitrios; Jefferson, Michael

    2014-01-01

    Due to the increasing importance of natural gas for modern economic activity, and gas's non-renewable nature, it is extremely important to try to estimate possible trajectories of future natural gas production while considering uncertainties in resource estimates, demand growth, production growth and other factors that might limit production. In this study, we develop future scenarios for natural gas supply using the ACEGES computational laboratory. Conditionally on the currently estimated ultimate recoverable resources, the ‘Collective View’ and ‘Golden Age’ Scenarios suggest that the supply of natural gas is likely to meet the increasing demand for natural gas until at least 2035. The ‘Golden Age’ Scenario suggests significant ‘jumps’ of natural gas production – important for testing the resilience of long-term strategies. - Highlights: • We present the ‘Collective View’ and ‘Golden Age’ Scenarios for natural gas production. • We do not observe any significant supply demand pressure of natural gas until 2035. • We do observe ‘jumps’ in natural gas supply until 2035. • The ACEGES-based scenarios can assess the resilience of longterm strategies

  3. Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included

  4. Natural gas annual 1995

    International Nuclear Information System (INIS)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level

  5. Natural gas annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1993 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition from 1989 to 1993 are given for each Census Division and each State. Annual historical data are shown at the national level

  6. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1991 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition form 1987 to 1991 are given for each Census Division and each State. Annual historical data are shown at the national level

  7. Regional air quality impacts of increased natural gas production and use in Texas.

    Science.gov (United States)

    Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T

    2013-04-02

    Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 μg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.

  8. Hydrogen Production by Steam Reforming of Natural Gas Over Vanadium-Nickel-Alumina Catalysts.

    Science.gov (United States)

    Yoo, Jaekyeong; Park, Seungwon; Song, Ji Hwan; Song, In Kyu

    2018-09-01

    A series of vanadium-nickel-alumina (xVNA) catalysts were prepared by a single-step sol-gel method with a variation of vanadium content (x, wt%) for use in the hydrogen production by steam reforming of natural gas. The effect of vanadium content on the physicochemical properties and catalytic activities of xVNA catalysts in the steam reforming of natural gas was investigated. It was found that natural gas conversion and hydrogen yield showed volcano-shaped trends with respect to vanadium content. It was also revealed that natural gas conversion and hydrogen yield increased with decreasing nickel crystallite size.

  9. European natural gas

    International Nuclear Information System (INIS)

    Thackeray, Fred

    1999-11-01

    Contains Executive Summary and Chapters on: Main issues; Natural gas consumption and supply: statistics and key features of individual countries; Sectoral natural gas consumption; Indigenous production; Imports; Prices and taxes; The spot market: The interconnector; Forecasts of production and consumption and contracted imports; Progress of markets liberalisation; Effects of environmentalist developments; Transmission networks and storage; Some principal players. (Author)

  10. Microbial production of natural gas from coal and organic-rich shale

    Science.gov (United States)

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  11. Natural gas productive capacity for the lower 48 states, 1982--1993

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity and project this capacity for 1992 and 1993, based upon historical production data through 1991. Productive capacity is the volume of gas that can be produced from a well, reservoir, or field during a given period of time against a certain wellhead back-pressure under actual reservoir conditions excluding restrictions imposed by pipeline capacity, contracts, or regulatory bodies. For decades, natural gas supplies and productive capacity have been adequate, although in the 1970's the capacity surplus was small because of market structure (both interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980's, lower demand together with increased drilling led to a large surplus of natural gas capacity. After 1986, this large surplus began to decline as demand for gas increased, gas prices dropped, and gas well completions dropped sharply. In late December 1989, this surplus decline, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. This study indicates that monthly productive capacity will drop sharply during the 1992-1993 period. In the low gas price, low drilling case, gas productive capacity and estimated production demand will be roughly equal in December 1993. In base and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1993 in the lower 48 States. Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations. Beyond 1993, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply

  12. The encounter and analysis of naturally occurring radionuclides in gas and oil production and processing

    International Nuclear Information System (INIS)

    Hartog, F.A.; Jonkers, G.; Knaepen, W.A.I.

    1996-01-01

    As a result of oil and gas production, radioactive daughter elements from the uranium and thorium decay series can be mobilized and transported away from the reservoir. Due to changes in flow regime, temperature, pressure or chemical environment NORs (Naturally Occurring Radionuclides) may build up in products, by-products or waste streams from gas and oil production and processing facilities. Products containing NORs are commonly denoted by the acronym NORM (Naturally Occurring Radioactive Materials). Main topics of this paper are: E and P (Exploration and Production) NORM characteristics; incentives for NORM analysis; NORM analysis; interlaboratory test programme; analysis techniques; results and conclusions of the test programme. 4 figs., 2 tabs

  13. Natural gas in Mexico

    International Nuclear Information System (INIS)

    Ramirez, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which focused on various aspects of the natural gas industry in Mexico. Some of the viewgraphs depicted statistics from 1998 regarding natural gas throughput from various companies in North America, natural gas reserves around the world, and natural gas reserves in Mexico. Other viewgraphs depicted associated and non-associated natural gas production from 1988 to 1998 in million cubic feet per day. The Burgos Basin and the Cantarell Basin gas production from 1997 to 2004 was also depicted. Other viewgraphs were entitled: (1) gas processing infrastructure for 1999, (2) cryogenic plant at Cd. PEMEX, (3) average annual growth of dry natural gas production for 1997-2004 is estimated at 5.2 per cent, (4) gas flows for December 1998, (5) PGPB- interconnect points, (6) U.S. Mexico gas trade for 1994-1998, (7) PGPB's interconnect projects with U.S., and (8) natural gas storage areas. Technological innovations in the industry include more efficient gas turbines which allow for cogeneration, heat recovery steam generators which reduce pollutant emissions by 21 per cent, cold boxes which increase heat transfer efficiency, and lateral reboilers which reduce energy consumption and total costs. A pie chart depicting natural gas demand by sector shows that natural gas for power generation will increase from 16 per cent in 1997 to 31 per cent in 2004. The opportunities for cogeneration projects were also reviewed. The Comision Federal de Electricidad and independent power producers represent the largest opportunity. The 1997-2001 investment program proposes an 85 per cent sulphur dioxide emission reduction compared to 1997 levels. This presentation also noted that during the 1998-2001 period, total ethane production will grow by 58 tbd. 31 figs

  14. Production of "Green Natural Gas" Using Solid Oxide Electrolysis Cells (SOEC): Status of Technology and Costs

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Jensen, Søren Højgaard; Ebbesen, Sune Dalgaard

    2012-01-01

    energy sources only. Also dimethyl ether (DME = (CH3)2O), which might be called Liquefied Green Gas, LGG, in analogy to Liquefied Petroleum Gas, LPG, because DME has properties similar to LPG. It further gives a short review of the state of the art of electrolysis in general and SOEC in particular......This paper gives arguments in favour of using green natural gas (GNG) as storage media for the intermittent renewable energy sources. GNG is here defined as being CH4, i.e. methane, often called synthetic natural gas or substitute natural gas (SNG), produced using renewable or at least CO2 neutral....... Production of synthesis gas (H2 + CO) from CO2 and H2O using SOEC technology is evaluated. GNG and LGG can be produced from synthesis gas (or short: syngas) by means of well established commercially available catalysis technology. Finally, estimations of costs and efficiencies are presented and the relative...

  15. Natural gas annual 1997

    International Nuclear Information System (INIS)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs

  16. Natural gas annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  17. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    OpenAIRE

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid biomass because of their logistic advantages, better mineral balance, and better processability. Especially the ease of pressurization, which is required for large scale synthesis gas production, is...

  18. EFFECTS OF OIL AND NATURAL GAS PRICES ON INDUSTRIAL PRODUCTION IN THE EUROZONE MEMBER COUNTRIES

    Directory of Open Access Journals (Sweden)

    Yılmaz BAYAR

    2014-04-01

    Full Text Available Industrial production is one of the leading indicators of gross domestic product which reflects the overall economic performance of a country. In other words decreases or increases in industrial production point out a contracting or expanding economy. Therefore, changes in prices of oil and natural gas which are the crucial inputs to the industrial production are also important for the overall economy. This study examines the effects of changes in oil and natural gas prices on the industrial production in the 18 Eurozone member countries during the period January 2001-September 2013 by using panel regression. We found that oil prices and natural gas prices had negative effect on industrial production in the Eurozone member countries.

  19. Natural gas productive capacity for the lower 48 States, 1980 through 1995

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970's the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980's, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system's performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply

  20. More natural gas

    International Nuclear Information System (INIS)

    Leprince, P.; Valais, M.

    1993-01-01

    This paper reports that large resources and growing markets are the salient prospects of natural gas for the coming decades. The greater impact of natural gas on the worldwide energy market can become a reality if several scientific disciplines can be mobilized in order to succeed in cutting production costs. Modeling, mechanics of complex fluids, and physical chemistry of interfaces are basic disciplines for understanding and mastering the gas processing technologies

  1. Natural gas outlook

    International Nuclear Information System (INIS)

    Molyneaux, M.P.

    1998-01-01

    An overview of natural gas markets in Canada and in the United States was provided. The major factors that determine the direction of natural gas prices were depicted graphically. Price volatility has decreased in recent months. As expected, April through November total energy consumption reached historically high levels. Demand for natural gas during the summer of 1997 was not as strong as anticipated. Nuclear energy appears to be on the slippery slope, with natural gas-driven electricity projects to fill the void. Hydroelectricity had a strong showing in 1997. Prospects are less bright for 1998 due to above average temperatures. Canadian natural gas export capacity has increased 5.5 times between 1986 and estimated 1999 levels. Despite this, in 1997, deliveries to the United States were marginally behind expectations. Natural gas consumption, comparative fuel prices, natural gas drilling activity, natural gas storage capacity, actual storage by region, and average weekly spot natural gas prices, for both the U. S. and Canada, were also provided. With regard to Canada, it was suggested that Canadian producers are well positioned for a significant increase in their price realization mostly because of the increase in Canada's export capacity in 1997 (+175 Mmcf/d), 1998 (1,060 Mmcf/d) and potentially in 1999 or 2000, via the Alliance Pipeline project. Nevertheless, with current production projections it appears next to impossible to fill the 10.9 Bcf/d of export capacity that will be potentially in place by the end of 1999. tabs., figs

  2. Deposits of naturally occurring radioactivity in production of oil and natural gas; Radioaktive avleiringer i olje- og gassproduksjon

    Energy Technology Data Exchange (ETDEWEB)

    Strand, T; Lysebo, I; Kristensen, D; Birovljev, A

    1997-01-01

    Deposits of naturally occurring radioactive materials is an increasing problem in Norwegian oil and gas production. Activity concentration in solid-state samples and production water, and doses to workers involved in different operations off-shore, have been measured. The report also includes a discussion of different methods of monitoring and alternatives for final disposal of wastes. 154 refs.

  3. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  4. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  5. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid

  6. Production of natural gas from methane hydrate by a constant downhole pressure well

    International Nuclear Information System (INIS)

    Ahmadi, Goodarz; Ji, Chuang; Smith, Duane H.

    2007-01-01

    Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied

  7. Impacts of Marcellus Shale Natural Gas Production on Regional Air Quality

    Science.gov (United States)

    Swarthout, R.; Russo, R. S.; Zhou, Y.; Mitchell, B.; Miller, B.; Lipsky, E. M.; Sive, B. C.

    2012-12-01

    Natural gas is a clean burning alternative to other fossil fuels, producing lower carbon dioxide (CO2) emissions during combustion. Gas deposits located within shale rock or tight sand formations are difficult to access using conventional drilling techniques. However, horizontal drilling coupled with hydraulic fracturing is now widely used to enhance natural gas extraction. Potential environmental impacts of these practices are currently being assessed because of the rapid expansion of natural gas production in the U.S. Natural gas production has contributed to the deterioration of air quality in several regions, such as in Wyoming and Utah, that were near or downwind of natural gas basins. We conducted a field campaign in southwestern Pennsylvania on 16-18 June 2012 to investigate the impact of gas production operations in the Marcellus Shale on regional air quality. A total of 235 whole air samples were collected in 2-liter electropolished stainless- steel canisters throughout southwestern Pennsylvania in a regular grid pattern that covered an area of approximately 8500 square km. Day and night samples were collected at each grid point and additional samples were collected near active wells, flaring wells, fluid retention reservoirs, transmission pipelines, and a processing plant to assess the influence of different stages of the gas production operation on emissions. The samples were analyzed at Appalachian State University for methane (CH4), CO2, C2-C10 nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates and selected reduced sulfur compounds. In-situ measurements of ozone (O3), CH4, CO2, nitric oxide (NO), total reactive nitrogen (NOy), formaldehyde (HCHO), and a range of volatile organic compounds (VOCs) were carried out at an upwind site and a site near active gas wells using a mobile lab. Emissions associated with gas production were observed throughout the study region. Elevated mixing ratios of CH4 and CO2 were observed in the

  8. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Directory of Open Access Journals (Sweden)

    Z. R. Barkley

    2017-11-01

    Full Text Available Natural gas infrastructure releases methane (CH4, a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem, and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are

  9. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Science.gov (United States)

    Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.

    2017-11-01

    Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any

  10. Constant rate natural gas production from a well in a hydrate reservoir

    International Nuclear Information System (INIS)

    Ji Chuang; Ahmadi, Goodarz; Smith, Duane H.

    2003-01-01

    Using a computational model, production of natural gas at a constant rate from a well that is drilled into a confined methane hydrate reservoir is studied. It is assumed that the pores in the reservoir are partially saturated with hydrate. A linearized model for an axisymmetric condition with a fixed well output is used in the analysis. For different reservoir temperatures and various well outputs, time evolutions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas region, are evaluated. The distance of the decomposition front from the well as a function of time is also computed. It is shown that to maintain a constant natural gas production rate, the well pressure must be decreased with time. A constant low production rate can be sustained for a long duration of time, but a high production rate demands unrealistically low pressure at the well after a relatively short production time. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability

  11. Utilizing natural gas huff and puff to enhance production in heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wenlong, G.; Shuhong, W.; Jian, Z.; Xialin, Z. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[PetroChina Co. Ltd., Beijing (China); Jinzhong, L.; Xiao, M. [China Univ. of Petroleum, Beijing (China)

    2008-10-15

    The L Block in the north structural belt of China's Tuha Basin is a super deep heavy oil reservoir. The gas to oil ratio (GOR) is 12 m{sup 3}/m{sup 3} and the initial bubble point pressure is only 4 MPa. The low production can be attributed to high oil viscosity and low flowability. Although steam injection is the most widely method for heavy oil production in China, it is not suitable for the L Block because of its depth. This paper reviewed pilot tests in which the natural gas huff and puff process was used to enhance production in the L Block. Laboratory experiments that included both conventional and unconventional PVT were conducted to determine the physical property of heavy oil saturated by natural gas. The experiments revealed that the heavy oil can entrap the gas for more than several hours because of its high viscosity. A pseudo bubble point pressure exists much lower than the bubble point pressure in manmade foamy oils, which is relative to the depressurization rate. Elastic energy could be maintained in a wider pressure scope than natural depletion without gas injection. A special experimental apparatus that can stimulate the process of gas huff and puff in the reservoir was also introduced. The foamy oil could be seen during the huff and puff experiment. Most of the oil flowed to the producer in a pseudo single phase, which is among the most important mechanisms for enhancing production. A pilot test of a single well demonstrated that the oil production increased from 1 to 2 cubic metres per day to 5 to 6 cubic metres per day via the natural gas huff and puff process. The stable production period which was 5 to 10 days prior to huff and puff, was prolonged to 91 days in the first cycle and 245 days in the second cycle. 10 refs., 1 tab., 12 figs.

  12. European energy security: An analysis of future Russian natural gas production and exports

    Energy Technology Data Exchange (ETDEWEB)

    Soederbergh, Bengt, E-mail: bengt.soderbergh@fysast.uu.s [Global Energy Systems, Department of Physics and Astronomy, Uppsala University, Laegerhyddsvaegen 1, Box 535, SE-751 21, Uppsala (Sweden); Jakobsson, Kristofer; Aleklett, Kjell [Global Energy Systems, Department of Physics and Astronomy, Uppsala University, Laegerhyddsvaegen 1, Box 535, SE-751 21, Uppsala (Sweden)

    2010-12-15

    The widening gap between EU gas production and consumption may require an 87% increase of import volumes between 2006 and 2030, and there are great uncertainties regarding the amounts of gas that can be expected from new suppliers. The potential of increased production from Norway and Algeria is limited; hence, Russia is likely to play a crucial part of meeting the anticipated growing gas demand of the EU. A field-by-field study of 83 giant gas fields shows that the major producing Russian gas fields are in decline, and by 2013 much larger supplies from the Yamal Peninsula and the Shtokman field will be needed in order to avoid a decline in production. Gas from fields in Eastern Siberia and the Far East will mainly be directed to the Asian and Pacific Rim markets, thereby limiting its relevance to the European and CIS markets. As a result, the maximum export increase to the European and CIS markets amounts only to about 45% for the period 2015-2030. The discourse surrounding the EU's dependence on Russian gas should thus not only be concerned with geopolitics, but also with the issue of resource limitations. - Research highlights: {yields}Natural gas production in the Nadym Pur Taz region (Western Siberia) will start to decline within a few years. {yields}New production from the Yamal peninsula is critical to ensure gas exports to Europe. {yields}Additional production in East Siberia and the Far East will not be available for the European market. {yields}Rapid gas demand growth in China might also lead to competition for gas from Western Siberia.

  13. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  14. Natural gas purchasing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    In recent years, natural gas has gained new momentum because of changes in marketing and regulations. The gas industry has always received an inordinate amount of regulatory control starting at the well head where the gas is produced to the consuming burner tip. Regulations have drastically impacted the availability of gas. Changes in the marketing and regulations have made the natural gas market sensitive at the point of production, the well head. Now, with plentiful supply and ease of transportation to bring the gas from the producing fields to the consumer, natural gas markets are taking advantage of the changed conditions. At the same time, new markets are developing to take advantage of the changes. This section shows consumers, especially the energy planners for large buyers of fuel, the advantages, sources and new methods of securing natural gas supplies. Background on how natural gas is produced and marketed are given. This section lists marketing sources, regulatory agencies and information groups available to help buyers and consumers of this important fuel for US industries and residences. 7 figs., 8 tabs

  15. How does increased corn-ethanol production affect US natural gas prices?

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt

    2010-01-01

    In recent years, there has been a push to increase biofuel production in the United States. The biofuel of choice, so far, has been ethanol produced from corn. The effects of increased corn-ethanol production on the consumer prices of food and energy continue to be studied and debated. This study examines, in particular, the effects of increased corn-ethanol production on US natural gas prices. A structural model of the natural gas market is developed and estimated using two stage least squares. A baseline projection for the period 2007-2018 is determined, and two scenarios are simulated. In the first scenario, current biofuel policies including EISA mandates, tariffs, and tax credits are removed. In the second scenario, we hold ethanol production to the level required only for largely obligatory additive use. The results indicate that the increased level of corn-ethanol production occurring as a result of the current US biofuel policies may lead to natural gas prices that are as much as 0.25% higher, on average, than if no biofuel policies were in place. A similar comparison between the baseline and second scenario indicates natural gas prices could be as much as 0.5% higher, on average, for the same period.

  16. Canadian natural gas

    International Nuclear Information System (INIS)

    Lucas, D.A.

    1991-01-01

    Canada's natural gas industry enjoys a quiet confidence as it looks ahead to the 1990s. In this paper, the author explains why, despite some critical uncertainties, the optimism endures. Reviewing the current conditions of supply, production, consumption, pipelines, and pipeline expansion plans, the author contends that the New World of the 1990s will belong to natural gas. The author's assessment of natural gas markets proceeds far beyond the borders of Canada. The author examines the determinants of gas prices throughout North America and he identifies the one force that promises to seize almost complete control of gas prices throughout the continent. While the analysis points out the attributes of this new pricing regime, it also names the obstacles that could prevent this emerging mechanism from assuming its anticipated position

  17. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming; TOPICAL

    International Nuclear Information System (INIS)

    Spath, P. L.; Mann, M. K.

    2000-01-01

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes

  18. Developing electricity production with natural gas in the southern mediterranean countries: an example of north-south cooperation in the electricity and natural gas sector

    International Nuclear Information System (INIS)

    Grenon, M.; Nogaret, E.

    1995-01-01

    Southern Mediterranean countries are facing an important increase of electricity demand; in order to increase the production capacity at a minimum cost while preserving the environment, most of these countries are planning gas fired power stations due to important natural gas resources. The development of both the power plants and the infrastructures to produce and transport the natural gas is more and more performed through cooperation between companies of the northern and southern sides of the Mediterranean sea: technical assistance programs, joint financing and management of the infrastructures. 3 figs

  19. Exploration and production of crude oil and natural gas in Germany in 2012

    International Nuclear Information System (INIS)

    Pasternak, Michael

    2013-01-01

    This article presents an overview of oil and gas exploration and production in Germany in 2012. The report is based on data gathered on a regular basis by the State Authority for Mining, Energy and Geology (LBEG) from the oil and gas companies and the other state mining offices. Due to the granting of new licences in the last years, a significant increase of geophysical prospecting of the subsurface for oil and gas deposits was observed. Six 3D seismic surveys were conducted. Five surveys were located in the Upper Rhine Valley and one in the lowlands of Northwest Germany. 2D seismic data were acquired in Lusatia (Brandenburg) and at the coast of the Baltic Sea. The number of exploration wells decreased once again. In 2012 nine exploration wells were drilled, compared to ten in the previous year. In addition to that number, another seven exploration wells were drilled to total depth already before 2012, but not completed by final well results in 2012. None of the ten new field wildcats were completed by result. Three exploration wells (appraisal wells) were completed successfully. Two of these wells confirmed the presence of gas and one the presence of oil. The number of development wells decreased significantly. In 2012 31 wells were drilled, compared to 46 in the prominent year 2011. Another 13 wells were drilled to total depth already before 2012, but not completed by final well results in 2012. 31 wells were completed successfully. 30 of these wells encountered oil or gas pay zones. In 2011 drilling meterage has reached its highest value since 1998. In contrast the total drilling meterage decreased slightly by less than 2000 m to 71,424 min 2012. The natural gas production continued its downward trend. Due to the depletion of gas fields, the annual natural gas production dropped by 9.1% compared to the previous year and amounted to 11.7 billion m 3 (field quality). After the increase in 2011, the annual crude oil production decreased by 2.1% to 2.6 million t

  20. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Tissot-Favre, V.; Sudour, D.; Binutti, M.; Zanetta, P.; Rieussec, J.L.

    2005-01-01

    As a true alternative to oil products, and environment friendly fuel, Natural Gas for Vehicles complies with requirements for sustainable development. In addition, it is part of the European Union policy which underlines the importance of energy diversification through alternative fuels. This workshop will look into the current offer to the public transport segment, waste collection vehicles, and commercial vehicle fleets. Actions taken to spread the use of natural gas to all types of cars will also be covered. This article gathers 5 presentations about this topic given at the gas conference

  1. Technical review of coal gasifiers for production of synthetic natural gas

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Shin, Yong Seung

    2012-01-01

    Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed bed slagging gasifier, wet type entrained gasifier, and dry type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors

  2. Economic growth to raise U.S. oil products, natural gas demand

    International Nuclear Information System (INIS)

    Beck, R.J.

    1994-01-01

    An accelerating economy will raise consumption of oil products and natural gas in the US this year. Contributing to demand growth will be the slump that began late last year in prices for crude oil and petroleum products. Some price recovery is likely in 1994, but there's little reason to expect a major increase. With oil production falling and demand rising, imports will have to climb again this year. OGJ projects a 2.6% increase this year following a 6.6% increase last year. Imports are expected to fill a record high 49.3% of US oil demand this year. The paper discusses energy and the economy, overall energy use, energy by source, the electrification trend, energy supplies, imports, refining operations, the growth of margins, and the energy demand of motor gasoline, jet fuel, distillate fuels, residual fuel oils, other petroleum products, and natural gas

  3. Profit, productivity, and price differential: an international performance comparison of the natural gas transportation industry

    International Nuclear Information System (INIS)

    Jeong-Dong Lee; Sung-Bae Park; Tai-Yoo Kim

    1999-01-01

    The objective of this paper is to evaluate the performance of natural gas transportation utilities, focusing on the three-key strategic performance measures of profit, productivity, and price differential. We propose a methodology that expresses the three performance measures in a unified single equation using the Edgeworth index. The proposed methodology is applied to an international comparison of the performance of 28 natural gas transportation utilities operating in eight countries in which the business environments differ greatly. The empirical results show the possible causes of performance differences and may shed some light on the direction of regulatory policy, especially for developing countries that have relatively short histories in the natural gas industry, such as Korea. (author)

  4. Natural gas in India

    International Nuclear Information System (INIS)

    Lefevre, Thierry; Todoc, Jessie L.

    1999-11-01

    Contains Executive Summary and Chapters on: Country background; Overview of the energy sector; Natural gas supply; Natural gas infrastructure; Natural gas infrastructure; Natural gas demand; Outlook-government policy reform and industry development, and Appendices on Global and regional energy and gas trends; Overview of India's investment policy, incentives and regulation; The ENRON Dabhol power project. (Author)

  5. Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis

    International Nuclear Information System (INIS)

    Baccanelli, Margaret; Langé, Stefano; Rocco, Matteo V.; Pellegrini, Laura A.; Colombo, Emanuela

    2016-01-01

    Highlights: • Low-temperature processes for of high CO_2 content natural gas have been modelled. • Energy and exergy analyses have been performed. • The Dual Pressure distillation scheme has the best thermodynamic performances. • There is a synergy between cryogenic natural gas purification and LNG production. - Abstract: Due to the rapid increase of the World’s primary energy demand of the last decades, low-temperature processes for the purification of natural gas streams with high carbon dioxide content has gained interest, since they allow to make profitable exploitation of low-quality gas reserves. Low temperature purification processes allow the direct production of a methane stream at high purity and at low-temperature, suitable conditions for the direct synergistic integration with natural gas cryogenic liquefaction processes, while CO_2 is obtained in liquid phase and under pressure. In this way, it can be pumped for transportation, avoiding significant compression costs as for classical CO_2 capture units (where carbon dioxide is discharged in gas phase and at atmospheric pressure), and further uses such as Enhanced Oil Recovery (EOR) or underground storage. In this paper, the three most common natural gas low-temperature purification techniques have been modelled and their performances have been evaluated through energy and exergy analyses. Specifically, the dual pressure low-temperature distillation process, the anti-sublimation process and a hybrid configuration have been considered. It is found that the dual pressure low-temperature distillation scheme reach the highest thermodynamic performances, resulting in the best values of exergy efficiency and equivalent methane requirements with respect to the other configurations. This is mainly due to the distributed temperature profile along a distillation column, resulting in a less irreversible heat exchanging process.

  6. International comparisons of productivity and its determinants in the natural gas industry

    International Nuclear Information System (INIS)

    Kim, Tai-Yoo; Lee, Jeong-Dong; Park, Yearn H.; Kim, Boyoung

    1999-01-01

    The objective of this paper was to evaluate the performance of the natural gas industry using an inter-country comparison of productivity level and its determinants. Three methodologies: multilateral Toernqvist productivity analysis; managerial index system analysis; and non-parametric efficiency analysis, are employed to make a methodological cross-checking and to perform diversified analysis. From the empirical results, we identified the level and growth rate of productivity of individual firms. The results also indicated that the Korean gas industry has shown a relatively low level of productivity. From the results of managerial performance index analysis, we found that during the recent years of regulatory changes, the final price of gas has decreased dramatically while the productivity growth has not been enough to offset the effect of decreased output price, which has resulted in decreased profit. We also examine the extent of the allocative, scale, and managerial efficiency as source components of the overall efficiency based on the performance of best-practiced. With the results of this study, an effective policy measure could be established to improve the productivity and the overall managerial performance in the natural gas industry

  7. Natural gas monthly, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  8. Estimation of Power Production Potential from Natural Gas Pressure Reduction Stations in Pakistan Using ASPEN HYSYS

    Directory of Open Access Journals (Sweden)

    Imran Nazir Unar

    2015-07-01

    Full Text Available Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure range of 600-1000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited and SSGCL (Sui Southern Gas Company Limited. The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station. As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in throttle valves where isenthalpic expansion takes place without producing any energy. Pressure potential of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS®7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3.

  9. Estimation of power production potential from natural gas pressure reduction stations in pakistan using aspen hysys

    International Nuclear Information System (INIS)

    Unar, I.N.; Aftab, A.

    2015-01-01

    Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure-range of 600-1 000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited) and SSGCL (Sui Southern Gas Company Limited). The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station). As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS) may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS at the rate 7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW) can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3. (author)

  10. Exergy and thermoeconomic evaluation of hydrogen production from natural gas; Avaliacao exergetica e termo-economica da producao de hidrogenio a partir do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Flavio Eduardo da [PROMON Engenharia Ltda., Sao Paulo, SP (Brazil); Oliveira Junior, Silvio de [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

    2008-07-01

    Some specific processes are required to obtain pure hydrogen and the most usual one is the natural gas reforming, where natural gas reacts with superheated steam producing H{sub 2}, CO, CO{sub 2} and H{sub 2}O. This paper presents exergy and thermoeconomic analysis of a complete hydrogen production unit of a petroleum refinery. The hydrogen production unit analysed in this paper has to supply 550,000 Nm{sup 3} of hydrogen per day to purify diesel oil. Based on a synthesis plant of the hydrogen production unit, the exergy efficiency of each component and of the overall plant are calculated. The hydrogen production cost is determined by means of a thermoeconomic analysis in which the equality cost partition method is employed, including capital and operational costs, in order to determine the production cost of hydrogen and other products of the plant.(author)

  11. Oil and natural gas

    International Nuclear Information System (INIS)

    Riddell, C.H.

    1993-01-01

    The natural gas industry and market prospects in Canada are reviewed from a producer's point of view. In the first eight months of 1993, $2.3 billion in new equity was raised for natural gas exploration and production, compared to $900 million in 1991 and $1.2 billion in 1992. The number of wells drilled in the western Canada basin is expected to reach 8,000-9,000 in 1993, up from 5,600 in 1992, and Canadian producers' share of the North American natural gas market will probably reach 20% in 1993, up from 13% in 1986. Potential and proved gas supply in North America is ca 750 trillion ft 3 , of which ca 30% is in Canada. Factors affecting gas producers in Canada are the deregulated nature of the market, low costs for finding gas (finding costs in the western Canada basin are the lowest of any basin in North America), and the coming into balance of gas supply and demand. The former gas surplus has been reduced by expanding markets and by low prices which reduced the incentive to find new reserves. This surplus is largely gone, and prices have started rising although they are still lower than the pre-deregulation prices. Progress is continuing toward an integrated North American gas market in which a number of market hubs allow easy gas trading between producers and consumers. Commodity exchanges for hedging gas prices are beginning operation and electronic trading of gas contracts and pipeline capacity will also become a reality. 4 figs

  12. Natural gas production and anomalous geothermal gradients of the deep Tuscaloosa Formation

    Science.gov (United States)

    Burke, Lauri

    2011-01-01

    For the largest producing natural gas fields in the onshore Gulf of Mexico Basin, the relation between temperature versus depth was investigated. Prolific natural gas reservoirs with the highest temperatures were found in the Upper Cretaceous downdip Tuscaloosa trend in Louisiana. Temperature and production trends from the deepest field, Judge Digby field, in Pointe Coupe Parish, Louisiana, were investigated to characterize the environment of natural gas in the downdip Tuscaloosa trend. The average production depth in the Judge Digby field is approximately 22,000 ft. Temperatures as high as 400 degrees F are typically found at depth in Judge Digby field and are anomalously low when compared to temperature trends extrapolated to similar depths regionally. At 22,000 ft, the minimum and maximum temperatures for all reservoirs in Gulf Coast producing gas fields are 330 and 550 degrees F, respectively; the average temperature is 430 degrees F. The relatively depressed geothermal gradients in the Judge Digby field may be due to high rates of sediment preservation, which may have delayed the thermal equilibration of the sediment package with respect to the surrounding rock. Analyzing burial history and thermal maturation indicates that the deep Tuscaloosa trend in the Judge Digby field is currently in the gas generation window. Using temperature trends as an exploration tool may have important implications for undiscovered hydrocarbons at greater depths in currently producing reservoirs, and for settings that are geologically analogous to the Judge Digby fiel

  13. Natural gas monthly, October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  14. Natural gas monthly, May 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  15. Natural gas monthly, June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  16. Natural gas monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  17. Natural gas monthly, November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information

  18. OPEC and natural gas

    International Nuclear Information System (INIS)

    Samsam Bakhtiari, A.M.; Shahbudaghlou, F.

    1998-01-01

    This paper reviews the involvement of OPEC Member Countries in the natural gas industry in the past, present and future. It notes a tenfold increase in marketed production and a fourfold rise in re-injection since 1970. Collectively, Members now hold 41 per cent of the world's proven gas reserves and account for 20 per cent of exports. Individually, four of these countries hold position 2-5 in the world gas reserve rankings. Within OPEC, however, there remains an emphasis of oil over gas, not least because of oil's favourable position with regard to revenue-generation and profitability. As global demand continues on its upward growth curve in a more environmentally aware world, OPEC's gas horizons will widen. OPEC's strong reserve base will give its Members an undeniable role to play on the future global gas stage. However, these countries will give priority to domestic usage, particularly re-injection schemes

  19. An evaluation of Substitute natural gas production from different coal gasification processes based on modeling

    International Nuclear Information System (INIS)

    Karellas, S.; Panopoulos, K.D.; Panousis, G.; Rigas, A.; Karl, J.; Kakaras, E.

    2012-01-01

    Coal and lignite will play a significant role in the future energy production. However, the technical options for the reduction of CO 2 emissions will define the extent of their share in the future energy mix. The production of synthetic or substitute natural gas (SNG) from solid fossil fuels seems to be a very attractive process: coal and lignite can be upgraded into a methane rich gas which can be transported and further used in high efficient power systems coupled with CO 2 sequestration technologies. The aim of this paper is to present a modeling analysis comparison between substitute natural gas production from coal by means of allothermal steam gasification and autothermal oxygen gasification. In order to produce SNG from syngas several unit operations are required such as syngas cooling, cleaning, potential compression and, of course, methanation reactors. Finally the gas which is produced has to be conditioned i.e. removal of unwanted species, such as CO 2 etc. The heat recovered from the overall process is utilized by a steam cycle, producing power. These processes were modeled with the computer software IPSEpro™. An energetic and exergetic analysis of the coal to SNG processes have been realized and compared. -- Highlights: ► The production of SNG from coal is examined. ► The components of the process were simulated for integrated autothermal or allothermal coal gasification to SNG. ► The energetic and exergetic evaluation of the two processes is presented.

  20. Natural gas monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  1. Variation in excess oxidant factor in combustion products of MHD generator. [Natural gas fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pinkhasik, M S; Mironov, V D; Zakharko, Yu A; Plavinskii, A I

    1977-12-01

    Methods and difficulties associated with determining the excess oxidant factor for natural gas-fired MHD generators are discussed. The measurement of this factor is noted to be essential for the optimization of the combustion chamber and operation of MHD generators. A gas analyzer of electrochemical type is considered as a quick - response sensor capable of analyzing the composition of the combustion products and thus determining accurately the excess oxidant factor. The principle of operation of this sensor is discussed and the dependence of the electrochemical sensor emf on excess oxidant factor is shown. Three types of sensors are illustrated and tables of test results are provided.

  2. Constraining Methane Emissions from Natural Gas Production in Northeastern Pennsylvania Using Aircraft Observations and Mesoscale Modeling

    Science.gov (United States)

    Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.

    2015-12-01

    Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability

  3. Prospects for Strengthening the Security of Ukraine’s Energy Supply through Development of Unconventional Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Kyzym Mykola O.

    2016-05-01

    Full Text Available The article presents an analysis of the American experience in development of natural shale gas in the US, identifies the causes that led to the shale revolution. Its current state is characterized by achieving the peak production simultaneously with shift in the emphasis from natural shale gas to shale oil. The potential technically extracted gas reserves as well as trends in terms of the growth of conventional natural gas reserves and the development of trade in liquefied natural gas are regarded as global preconditions for enlargement of the shale natural gas output. Natural shale gas can be considered as an alternative project only for liquefied natural gas while, compared to pipeline gas, its production is uncompetitive. The national preconditions for development of the industry of nonconventional natural gas production are determined on the basis of the current trends in Ukraine’s gas market. The main obstacles to the realization of this direction are reduction of the gas needs and liberalization of natural gas trade on the basis of European principles. Economic evaluation of the feasibility of natural shale gas production made it possible to forecast its production cost at the wellhead at different depths and estimate its investment attractiveness in different aggregate states. On the basis of the approbation of the presented methodological approach carried out for the Dnieper-Donets and Carpathian shale basins, it was concluded that the investment attractiveness of the first one is higher, given its reservoir properties and the presence of deposits of nonconventional hydrocarbons in different states of aggregation.

  4. Thermoecological cost of electricity production in the natural gas pressure reduction process

    International Nuclear Information System (INIS)

    Kostowski, Wojciech J.; Usón, Sergio; Stanek, Wojciech; Bargiel, Paweł

    2014-01-01

    The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. - Highlights: • The chain of NG transmission with an exergy recovery expansion plant was analyzed. • New methodology coupling the TEC (thermoecological cost) and thermoeconomics. • Decomposition of the TEC formation process. • Case-study transmission system yields TEC of natural gas = 1.0222. • Expansion plant yields TEC of electricity 2.42 (expanders) and 1.77 (CHP module)

  5. Vision on natural gas production in the Netherlands in the 21st century

    International Nuclear Information System (INIS)

    Peeters, C.; Webers, H.; Thijssens, T.; De Meyer, B.

    2002-01-01

    Attention is paid to the great ecological, economical and strategic importance of natural gas for the Netherlands and the European Union. A detailed insight is given of natural gas benefits, CO2 reduction, and security of supply. Such insight is required to make thoroughly based and sound decisions in order to formulate a vision on the Dutch natural gas policy for the future [nl

  6. Natural gas deregulation

    International Nuclear Information System (INIS)

    Ronchi, M.

    1993-01-01

    With the aim of establishing realistic options for deregulation in the natural gas industry, this paper first considers the structural evolution of this industry and evidences how it differs from the petroleum industry with which it exhibits some essential characteristics in common. This comparison is made in order to stress that, contrary to popular belief, that which is without doubt good for the petroleum industry is not necessarily so also for the natural gas industry. The paper concludes with separate analyses of the natural gas markets in the principal industrialized countries. Arguments are provided to show that the 'soft' deregulation option for the natural gas industry is not feasible, and that 'total' deregulation instead, backed by the passing of a suitable package of anti-trust laws 'unbundling' the industry's four major activities, i.e., production, storage, primary and secondary distribution, is the preferable option. The old concept of guaranteed supplies for minor users of natural gas should give way to the laws of supply and demand governing inter-fuel competition ensured through the strict supervision of vigilance committees

  7. Natural gas monthly, August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  8. Natural gas monthly, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  9. Natural gas monthly, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  10. Techno-economic evaluation of hybrid systems for hydrogen production from biomass and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, N. [Royal Institute of Technology, Stockholm (Sweden). Dept. of Energy Processes

    2001-07-01

    Hydrogen (H{sub 2}) is an alternative energy carrier, which is expected to significantly contribute to globally sustainable energy systems. It is environmentally friendly with high-energy density that makes it an excellent integrating fuel in transportation and power generation systems. This paper presents an assessment of the techno-economic viability of H{sub 2} production technologies based on hybrid systems using gasified biomass and natural gas combined with high temperature electrochemical shift. Assessment of the well-established thermal processes, high-temperature steam electrolysis (HTEL), and the plasma catalytic reforming (PCR) of light hydrocarbons developed at MIT are included for comparison. The results show that the PCR and HTEL processes are as cost-effective as the thermal steam reforming for H{sub 2} production when deployed on a commercial scale. The natural gas steam reforming (NGSR) is still the most favorable choice in energy and financial terms, while gasified biomass (GB) provides the highest production costs due to the intensive capital cost investments. The cost of H{sub 2} storage in the form of compressed gas or liquefied H{sub 2} also contributes significantly to total cost per kg produced H{sub 2}. 9 refs., 7 figs., 2 tabs.

  11. Helium production technology based on natural gas combustion and beneficial use of thermal energy

    Directory of Open Access Journals (Sweden)

    Nakoryakov Vladimir E.

    2016-01-01

    Full Text Available Helium is widely used in all industries, including power plant engineering. In recent years, helium is used in plants operating by the Brayton cycle, for example, in the nuclear industry. Using helium-xenon mixture in nuclear reactors has a number of advantages, and this area is rapidly developing. The hydrodynamics and mass transfer processes in single tubes with various cross-sections as well as in inter-channel space of heating tube bundle were studied at the Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences. Currently, there is a strongest shortage in helium production. The main helium production method consists in the liquefaction of the natural gas and subsequent separation of helium from remaining gas with its further purification using membranes.

  12. Membrane reforming in converting natural gas to hydrogen: Production costs, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Iaquaniello, G; Cosenza, S [Technip-KTI S.p.A., via Castello della Magliana 75, Rome (Italy); Giacobbe, F; Morico, B; Farace, A [Processi Innovativi s.r.l., L' Aquila (Italy)

    2008-11-15

    This paper evaluates the production costs of a hybrid system based on a new membrane reforming MRR concept to convert natural gas to hydrogen and electricity. Membrane reforming with hydrogen-selective, palladium-silver membranes pushes the chemical equilibrium and allows higher methane conversions at lower temperature such as 650 C. The new MRR concept formed of a series of modules is put forward herein. Each module is made up of a reforming step and an external membrane separation unit. The estimates, based on utilities costs of a typical Italian refinery (end of 2006), show that the production costs for the hybrid system are 30% less than conventional tubular steam reforming technology, and 13% less than a gas-fired cogeneration plant coupled with a conventional H{sub 2} plant. (author)

  13. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    Djati Hoesen Salimy

    2010-01-01

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  14. Developing electricity production with natural gas in the southern mediterranean countries. An example of north-south cooperation in the electricity and natural gas sectors

    International Nuclear Information System (INIS)

    Grenon, M.; Nogaret, E.

    1996-01-01

    The countries of the Southern Mediterranean region are facing an important increase of electricity demand due to their socio-economic development. In order to increase the production capacity at a minimum cost while preserving the environment, most countries of the region are planning gas fired power stations due to the important natural gas resources in the area. Overall investments in new power plants could reach the total of 100 billion dollars, up to the horizon 2010. The development of both the power plants and the infrastructure to produce and transport the natural gas needed is more and more performed through cooperation between companies of the two shores of the Mediterranean and represent an example of North- South cooperation in the energy field. This cooperation is taking place through technical assistance programs and also joint financing and management of the infrastructure required. A special importance is given to the development of highly efficient combined cycle power plants in the Southern Mediterranean countries and to the increase of the activities related to the exploration and production of natural gas. (author)

  15. Life Cycle Assessment Of Hydrogen Production From Natural Gas Reforming Process

    International Nuclear Information System (INIS)

    Ozturk, M.

    2010-01-01

    Society has become concerned about the issues of natural resource depletion and environmental degradation. The environmental performance of products or processes has become a key issue, which is why ways to minimize the effects on the environment are investigated. The most effective tool for this purpose is called life cycle assessment (LCA). This concept considers the entire life cycle of product or process. The life cycle of a product begins with the extraction of raw materials from the earth to create the product and ends at the point when all materials are returned to the earth. LCA makes it possible to estimate the cumulative environmental impacts resulting from all stages in the product life cycle, often including impacts not considered in more traditional analyses. Therefore, LCA provides a comprehensive view of the environmental aspects of the product or process and a more accurate picture of the true environmental trade-offs in product selection. In the case of this study, life cycle assessments of hydrogen production via natural gas reforming process are investigated for environmental affect.

  16. Natural gas technology

    International Nuclear Information System (INIS)

    Todaro, J.M.; Herbert, J.H.

    1997-01-01

    This presentation is devoted to a discussion regarding current and planned US fossil energy research and development for fiscal years 1996, 1997 and 1998. The principal focus of research in the immediate future will be: clean coal fuels, natural gas and oil exploration and production, especially reservoir life extension, advanced drilling completion and stimulation systems, advanced diagnostics and imaging systems, environmental compliance in technology development, regulatory streamlining and risk assessment. Program goals to 2010 were summarized as: increasing domestic oil and gas recovery; increasing recoverable reserves; decreasing cumulative industry environmental compliance costs; increasing revenues to the federal government; saving jobs in the U.S

  17. Natural gas usage as a heat source for integrated SMR and thermochemical hydrogen production technologies

    International Nuclear Information System (INIS)

    Jaber, O.; Naterer, G.F.; Dincer, I.

    2010-01-01

    This paper investigates various usages of natural gas (NG) as an energy source for different hydrogen production technologies. A comparison is made between the different methods of hydrogen production, based on the total amount of natural gas needed to produce a specific quantity of hydrogen, carbon dioxide emissions per mole of hydrogen produced, water requirements per mole of hydrogen produced, and a cost sensitivity analysis that takes into account the fuel cost, carbon dioxide capture cost and a carbon tax. The methods examined are the copper-chlorine (Cu-Cl) thermochemical cycle, steam methane reforming (SMR) and a modified sulfur-iodine (S-I) thermochemical cycle. Also, an integrated Cu-Cl/SMR plant is examined to show the unique advantages of modifying existing SMR plants with new hydrogen production technology. The analysis shows that the thermochemical Cu-Cl cycle out-performs the other conventional methods with respect to fuel requirements, carbon dioxide emissions and total cost of production. (author)

  18. The future of U.S. natural gas production, use, and trade

    International Nuclear Information System (INIS)

    Paltsev, Sergey; Jacoby, Henry D.; Reilly, John M.; Ejaz, Qudsia J.; Morris, Jennifer; O'Sullivan, Francis; Rausch, Sebastian; Winchester, Niven; Kragha, Oghenerume

    2011-01-01

    Two computable general equilibrium models, one global and the other providing U.S. regional detail, are applied to analysis of the future of U.S. natural gas. The focus is on uncertainties including the scale and cost of gas resources, the costs of competing technologies, the pattern of greenhouse gas mitigation, and the evolution of global natural gas markets. Results show that the outlook for gas over the next several decades is very favorable. In electric generation, given the unproven and relatively high cost of other low-carbon generation alternatives, gas is likely the preferred alternative to coal. A broad GHG pricing policy would increase gas use in generation but reduce use in other sectors, on balance increasing its role from present levels. The shale gas resource is a major contributor to this optimistic view of the future of gas. Gas can be an effective bridge to a lower emissions future, but investment in the development of still lower CO 2 technologies remains an important priority. International gas resources may well prove to be less costly than those in the U.S., except for the lowest-cost domestic shale resources, and the emergence of an integrated global gas market could result in significant U.S. gas imports. - Highlights: → The shale gas resource is a major contributor to an optimistic view of the future of natural gas. → A broad carbon policy would increase natural gas use in power generation. → Natural gas can be an effective bridge to a lower emissions future. → In the next decade there is a potential for small U.S. gas exports. → An integrated global gas market could result in significant U.S. gas imports by 2030-2050.

  19. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  20. Comparison of thermodynamic and environmental indexes of natural gas, syngas and hydrogen production processes

    International Nuclear Information System (INIS)

    Bargigli, Silvia; Raugei, Marco; Ulgiati, Sergio

    2004-01-01

    The thermodynamic efficiency and the environmental sustainability of selected processes that deliver gaseous energy carriers (natural gas, syngas from coal gasification, and hydrogen from steam reforming of natural gas and alkaline electrolysis) is explored by means of a multi-criteria, multi-scale approach based on four methods: material flow accounting, energy analysis, exergy analysis, and energy synthesis. The average energy and exergy conversion efficiencies of syngas (76% and 75%, respectively) are found to be higher than those for hydrogen (64% and 55%). However, coal-to-syngas conversion generates a significant amount of solid waste, which should be dealt with carefully. In addition, the material intensity is much higher for syngas (e.g. abiotic MI=768 g/g) than for natural gas and hydrogen (21 and 39 g/g, respectively), indicating a higher load on the environment. On the other hand, the energy intensity (transformity) for syngas (5.25x10 4 seJ/J) is shown to be lower than for hydrogen (9.66x10 4 seJ/J), indicating a lower demand for global environmental support. Therefore, material intensities and transformities offer two complementary pieces of information: transformities account for the 'memory' of the environmental resources that were used up in the past for the production of the inputs, whereas MIs are strictly calculated within the time frame of the life cycle of the investigated process. The higher transformity values calculated for pure hydrogen suggest careful and appropriate use of such an energy vector

  1. Venezuela natural gas outlook

    International Nuclear Information System (INIS)

    Silva, P.

    1991-01-01

    This paper reports on the natural gas outlook for Venezuela. First of all, it is very important to remember that in the last few years we have had frequent and unforeseen changes in the energy, ecological, geopolitical and economical fields which explain why all the projections of demand and prices for hydrocarbons and their products have failed to predict what later would happen in the market. Natural gas, with its recognized advantages over other traditional competitors such as oil, coal and nuclear energy, is identified as the component that is acquiring more weight in the energy equation, with a strengthening projection, not only as a resource that covers demand but as a key element in the international energy business. In fact, natural gas satisfies 21% of overall worldwide energy consumption, with an annual increase of 2.7% over the last few years, which is higher than the global energy growth of other fossil fuels. This tendency, which dates from the beginning of the 1980's, will continue with a possibility of increasing over the coming years. Under a foreseeable scenario, it is estimated that worldwide use of natural gas will increase 40% over the next 10 years and 75% on a longer term. Specifically for liquid methane (LNG), use should increase 60% during this last decade. The LPG increase should be moderate due to the limited demand until 1995 and to the stable trends that will continue its use until the end of this century

  2. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities

  3. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Annual 1991 provides information on the supply and disposition of natural gas to a wide audience including industry, consumers Federal and State agencies, and education institutions. This report, the Natural Gas Annual 1991 Supplement: Company Profiles, presents a detailed profile of selected companies

  4. NATURAL GAS TRANSPORTATION

    OpenAIRE

    Stanis³aw Brzeziñski

    2007-01-01

    In the paper, Author presents chosen aspects of natural gas transportation within global market. Natural gas transportation is a technicaly complicated and economicly expensive process; in infrastructure construction and activities costs. The paper also considers last and proposed initiatives in natural gas transportation.

  5. Repowering with natural gas

    International Nuclear Information System (INIS)

    Wilkinson, P.L.

    1992-01-01

    This chapter examines the concept of combined-cycle repowering with natural gas as one possible solution to the impending dilemma facing electric utilities - tight capacity margins in the 1990s and the inordinate expense of traditional powerplants. Combined-cycle repowering refers to the production of electricity through the integration of new and used equipment at an existing site, with the final equipment configuration resembling a new gas-fired combined-cycle unit (i.e., gas turbine, waste heat recovery unit and steam turbine/generator). Through the utilization of improved waste heat recovery and gas-fired equipment, repowering provides both additional capacity and increased generating efficiency. Three modes of repowering are considered: (1) peak turbine repowering refers to the addition of a steam turbine and heat recovery unit to an existing gas turbine, with the efficiency improvement allowing the unit to convert from peaking to baseload operation; (2) heat recovery repowering is the replacement of an old coal boiler with a gas turbine and heat recovery unit, leaving the existing steam turbine in place; and (3) boiler repowering, in which the exhaust from a new gas turbine is fed into an existing coal boiler, replacing existing forced-draft fans and air heaters. These three options are compared with the option of adding new coal-fired boilers on the basis of economics, energy efficiency and environmental impacts

  6. Deep learning and data assimilation for real-time production prediction in natural gas wells

    NARCIS (Netherlands)

    Loh, K.K.L.; Shoeibi Omrani, P.S.; Linden, R.J.P. van der

    2018-01-01

    The prediction of the gas production from mature gas wells, due to their complex end-of-life behavior, is challenging and crucial for operational decision making. In this paper, we apply a modified deep LSTM model for prediction of the gas flow rates in mature gas wells, including the uncertainties

  7. Natural gas monthly, February 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  8. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    Science.gov (United States)

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  9. Analysis of rationality of coal-based synthetic natural gas (SNG) production in China

    International Nuclear Information System (INIS)

    Li, Hengchong; Yang, Siyu; Zhang, Jun; Kraslawski, Andrzej; Qian, Yu

    2014-01-01

    To alleviate the problem of the insufficient reserves of natural gas in China, coal-based synthetic natural gas (SNG) is considered to be a promising option as a source of clean energy, especially for urban use. However, recent study showed that SNG will not accomplish the task of simultaneous energy conservation and CO 2 reduction. In this paper, life cycle costing is made for SNG use in three main applications in residential sector: heating, household use, and public transport. Comparisons are conducted between SNG and coal, natural gas, liquefied petroleum gas (LPG), diesel, and methanol. The results show that SNG is a competitive option only for household use. The use of SNG for heating boilers or city buses is not as cost-effective as expected. The biggest shortcoming of SNG is the large amount of pollutants generated in the production stage. At the moment, the use of SNG is promoted by the government. However, as shown in this paper, one can expect a transfer of pollution from the urban areas to the regions where SNG is produced. Therefore, it is suggested that well-balanced set of environmental damage-compensating policies should be introduced to compensate the environmental losses in the SNG-producing regions. - Highlights: • Life cycle costing was applied on the coal-based SNG. • The SNG was compared with conventional fuels of three residential applications. • The SNG is not so cost-effective except of household use. • Ecological compensation policy is useful to deal with the transfer of pollutions

  10. Economics of natural gas upgrading

    International Nuclear Information System (INIS)

    Hackworth, J.H.; Koch, R.W.

    1995-01-01

    Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels

  11. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    Science.gov (United States)

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  12. Natural gas monthly, July 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  13. Natural Gas Energy Educational Kit.

    Science.gov (United States)

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  14. Natural gas monthly, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  15. Emissions of CH4 from natural gas production in the United States using aircraft-based observations (Invited)

    Science.gov (United States)

    Sweeney, C.; Ryerson, T. B.; Karion, A.; Peischl, J.; Petron, G.; Schnell, R. C.; Tsai, T.; Crosson, E.; Rella, C.; Trainer, M.; Frost, G. J.; Hardesty, R. M.; Montzka, S. A.; Dlugokencky, E. J.; Tans, P. P.

    2013-12-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  16. Emissions of CH4 from natural gas production in the United States using aircraft-based observations

    Science.gov (United States)

    Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Ryerson, Thomas; Peischl, Jeff; Trainer, Michael; Rella, Chris; Hardesty, Michael; Crosson, Eric; Montzka, Stephen; Tans, Pieter; Shepson, Paul; Kort, Eric

    2014-05-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches in combination with isotopes and light alkanes to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  17. Oil and natural gas

    International Nuclear Information System (INIS)

    Hamm, Keith

    1992-01-01

    The two major political events of 1991 produced a much less dramatic reaction in the global oil industry than might have been expected. The economic dislocation in the former USSR caused oil production to fall sharply but this was largely offset by a concurrent fall in demand. Within twelve months of the invasion of Kuwait, crude oil prices had returned to their pre-invasion level; there was no shortage of supply due to the ability of some producers to boost their output rapidly. Details are given of world oil production and developments in oil demand. Demand stagnated in 1991 due to mainly to the economic chaos in the former USSR and a slowdown in sales in the USA; this has produced problems for the future of the refining industry. By contrast, the outlook for the natural gas industry is much more buoyant. Most clean air or carbon emissions legislation is designed to promote the use of gas rather than other hydrocarbons. World gas production rose by 1.5% in 1991; details by production on a country by country basis are given. (UK)

  18. Natural Gas STAR Program

    Science.gov (United States)

    EPA’s Voluntary Methane Programs encourage oil and natural gas companies to adopt cost-effective technologies and practices that improve operational efficiency and reduce emissions of methane, a potent greenhouse gas.

  19. Petroleum and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    060,

    1965-02-01

    Substantial increases in demand for Canadian petroleum and natural gas in both domestic and export markets resulted in another good year throughout the main sectors of the industry. In February, production averaged 850,000 bpd, or about 8% more than 1963 output of crude oil and natural gas liquids. Construction began on the first full scale plant for the extraction of oil from the Athabasca bituminous sands. In 1964, exploratory and development drilling in western Canada increased 10% from the previous year. A total of 15.5 million ft was drilled, the largest since the record drilling year of 1956. The main oil field development areas in Alberta were the House Mountain, Deer Mountain and Goose River Fields, and the Bantry-Taber heavy oil region in southeastern Alberta. Oil reserves were increased substantially by waterflood pressure maintenance projects in many of the older oil fields. The largest oil accumulation discovered in 1964 was the Syvia-Honda Field in the Devonian Gilwood sandstone in N.-central Alberta. Two graphs illustrate the crude petroleum in Canada in millions of barrels from 1940 to 1964, and natural gas in Canada in billions of cu ft from 1950 to 1964. The outlook for the industry in 1965 is good.

  20. When does decentralized production of biogas and centralized upgrading and injection into the natural gas grid make sense?

    NARCIS (Netherlands)

    Hengeveld, Evert Jan; van Gemert, Wim; Bekkering, Jan; Broekhuis, A.A.

    The production of biogas through anaerobic digestion is one of the technological solutions to convert biomass into a readily usable fuel. Biogas can replace natural gas, if the biogas is upgraded to green gas. To contribute to the EU-target to reduce Green House Gases emissions, the installed biogas

  1. Subsidence due to gas production in the Wadden Sea: How to ensure no harm will be done to nature

    NARCIS (Netherlands)

    Thienen-Visser, K. van; Breunese, J.N.; Muntendam-Bos, A.G.

    2015-01-01

    The Wadden Sea is a shallow tidal sea in the north of the Netherlands where gas production is ongoing since 1986. Due to the sensitive nature of this area, gas extraction induced subsidence must remain within the "effective subsidence capacity" for the two tidal basins (Pinkegat and Zoutkamperlaag)

  2. An experimental approach aiming the production of a gas mixture composed of hydrogen and methane from biomass as natural gas substitute in industrial applications.

    Science.gov (United States)

    Kraussler, Michael; Schindler, Philipp; Hofbauer, Hermann

    2017-08-01

    This work presents an experimental approach aiming the production of a gas mixture composed of H 2 and CH 4 , which should serve as natural gas substitute in industrial applications. Therefore, a lab-scale process chain employing a water gas shift unit, scrubbing units, and a pressure swing adsorption unit was operated with tar-rich product gas extracted from a commercial dual fluidized bed biomass steam gasification plant. A gas mixture with a volumetric fraction of about 80% H 2 and 19% CH 4 and with minor fractions of CO and CO 2 was produced by employing carbon molecular sieve as adsorbent. Moreover, the produced gas mixture had a lower heating value of about 15.5MJ·m -3 and a lower Wobbe index of about 43.4MJ·m -3 , which is similar to the typical Wobbe index of natural gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Constructing a Spatially Resolved Methane Emission Inventory of Natural Gas Production and Distribution over Contiguous United States

    Science.gov (United States)

    Li, X.; Omara, M.; Adams, P. J.; Presto, A. A.

    2017-12-01

    Methane is the second most powerful greenhouse gas after Carbon Dioxide. The natural gas production and distribution accounts for 23% of the total anthropogenic methane emissions in the United States. The boost of natural gas production in U.S. in recent years poses a potential concern of increased methane emissions from natural gas production and distribution. The Emission Database for Global Atmospheric Research (Edgar) v4.2 and the EPA Greenhouse Gas Inventory (GHGI) are currently the most commonly used methane emission inventories. However, recent studies suggested that both Edgar v4.2 and the EPA GHGI largely underestimated the methane emission from natural gas production and distribution in U.S. constrained by both ground and satellite measurements. In this work, we built a gridded (0.1° Latitude ×0.1° Longitude) methane emission inventory of natural gas production and distribution over the contiguous U.S. using emission factors measured by our mobile lab in the Marcellus Shale, the Denver-Julesburg Basin, and the Uintah Basin, and emission factors reported from other recent field studies for other natural gas production regions. The activity data (well location and count) are mostly obtained from the Drillinginfo, the EPA Greenhouse Gas Reporting Program (GHGRP) and the U.S. Energy Information Administration (EIA). Results show that the methane emission from natural gas production and distribution estimated by our inventory is about 20% higher than the EPA GHGI, and in some major natural gas production regions, methane emissions estimated by the EPA GHGI are significantly lower than our inventory. For example, in the Marcellus Shale, our estimated annual methane emission in 2015 is 600 Gg higher than the EPA GHGI. We also ran the GEOS-Chem methane simulation to estimate the methane concentration in the atmosphere with our built inventory, the EPA GHGI and the Edgar v4.2 over the nested North American Domain. These simulation results showed differences in

  4. Remote and Onsite Direct Measurements of Emissions from Oil and Natural Gas Production

    Science.gov (United States)

    Environmentally responsible oil and gas production requires accurate knowledge of emissions from long-term production operations1, which can include methane, volatile organic compounds, and hazardous air pollutants. Well pad emissions vary based on the geologically-determined com...

  5. Natural gas storage in microporous carbon obtained from waste of the olive oil production

    Directory of Open Access Journals (Sweden)

    Cecilia Solar

    2008-12-01

    Full Text Available A series of activated carbons (AC were prepared from waste of the olive oil production in the Cuyo Region, Argentine by two standard methods: a physical activation by steam and b chemical activation with ZnCl2. The AC samples were characterized by nitrogen adsorption at 77 K and evaluated for natural gas storage purposes through the adsorption of methane at high pressures. The activated carbons showed micropore volumes up to 0.50 cm³.g-1 and total pore volumes as high as 0.9 cm³.g-1. The BET surface areas reached, in some cases, more than 1000 m².g-1. The methane adsorption -measured in the range of 1-35 bar- attained values up to 59 V CH4/V AC and total uptakes of more than 120 cm³.g-1 (STP. These preliminary results suggest that Cuyo's olive oil waste is appropriate for obtaining activated carbons for the storage of natural gas.

  6. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  7. Natural gas reserve/production ratio in Russia, Iran, Qatar and Turkmenistan: A political and economic perspective

    International Nuclear Information System (INIS)

    Esen, Vedat; Oral, Bulent

    2016-01-01

    In this study, changes in natural gas reserve/production ratio (R/P) of the four countries having the highest natural gas reserves (Russia, Iran, Qatar, Turkmenistan), the importance of which increases in the world market each day due to developing technology and the demand for clean energy, has been analyzed depending on the economic and political developments in national and international fields. Change of R/P ratio depending on years has been displayed on graphics from different sources and these alterations have been tried to be associated with such issues as natural gas agreements in history, handover of political authority, economic crises etc. Therefore; it has been put forward whether or not political and economic changes of the countries are factors on the amount of natural gas production and the discovery of new reserve fields with the addition aim of providing a general overview on natural gas market. - Highlights: •Russia, Iran, Qatar and Turkmenistan are the top four countries with the highest natural gas reserves. •R/P ratios of Russia, Iran, Qatar and Turkmenistan are presented in this study. •Change of R/P ratio has been associated with the political and economic events of the countries are being analyzed. •The effect of political and economic changes on the ratio of natural gas R/P has been proposed.

  8. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  9. Liquid Natural Gas

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    After a brief introduction on the origins of the Liquid Natural Gas (LNG) industry the production and transportation of LNG are discussed. Special attention is paid to the importance of the safety aspect during every activity or handling of LNG. Next the most important trade flows for LNG are dealt with. Two zones can be distinguished: the western part of the Pacific and the Atlantic basin. Subsequently the main aspects of a LNG-project are mentioned, as well as the success factors. Finally the prospects for the LNG-industry are reviewed. 11 figs

  10. A comparative economic assessment of hydrogen production from coke oven gas, water electrolysis and steam reforming of natural gas

    International Nuclear Information System (INIS)

    Nguyen, Y.V.; Ngo, Y.A.; Tinkler, M.J.; Cowan, N.

    2003-01-01

    This paper presents the comparative economics of producing hydrogen for the hydrogen economy by recovering it from waste gases from the steel industry, by water electrolysis and by conventional steam reforming of natural gas. Steel makers produce coke for their blast furnace operation by baking coal at high temperature in a reduced environment in their coke ovens. These ovens produce a coke oven gas from the volatiles in the coal. The gas, containing up to 60% hydrogen, is commonly used for its heating value with some of it being flared. The feasibility of recovering this hydrogen from the gas will be presented. A comparison of this opportunity with that of hydrogen from water electrolysis using low cost off-peak electricity from nuclear energy will be made. The impact of higher daily average electricity rate in Ontario will be discussed. The benefits of these opportunities compared with those from conventional steam reforming of natural gas will be highlighted. (author)

  11. Monitoring Volatile Organic Compounds (VOCs) in real-time on oil and natural gas production sites

    Science.gov (United States)

    Lupardus, R.; Franklin, S. B.

    2017-12-01

    Oil and Natural Gas (O&NG) development, production, infrastructure, and associated processing activities can be a substantial source of air pollution, yet relevant data and real-time quantification methods are lacking. In the current study, O&NG fugitive emissions of Volatile Organic Compounds (VOCs) were quantified in real-time and used to determine the spatial and temporal windows of exposure for proximate flora and fauna. Eleven O&NG sites on the Pawnee National Grassland in Northeastern Colorado were randomly selected and grouped according to production along with 13 control sites from three geographical locations. At each site, samples were collected 25 m from the wellhead in NE, SE, and W directions. In each direction, two samples were collected with a Gasmet DX4040 gas analyzer every hour from 8:00 am to 2:00 pm (6 hours total), July to October, 2016 (N=864). VOC concentrations generally increased during the 6 hr. day with the exception of N2O and were predominately the result of O&NG production and not vehicle exhaust. Thirteen of 24 VOCs had significantly different levels between production groups, frequently above reference standards and at biologically relevant levels for flora and fauna. The most biologically relevant VOCs, found at concentrations exceeding time weighted average permissible exposure limits (TWA PELs), were benzene and acrolein. Generalized Estimating Equations (GEEs) measured the relative quality of statistical models predicting benzene concentrations on sites. The data not only confirms that O&NG emissions are impacting the region, but also that this influence is present at all sites, including controls. Increased real-time VOC monitoring on O&NG sites is required to identify and contain fugitive emissions and to protect human and environmental health.

  12. Artificial intelligence system for the monitoring of natural gas production systems; Intelligente Ueberwachung von Erdgasfoerderanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Tschaetsch, H.U.

    2001-02-01

    The article explains a novel, artificial intelligence-based system called HISS (Human Interface Supervision System) which has been installed as a prototype for the monitoring of a natural gas production site at Thoense near Hannover/Germany. The system is capable to perform audio-visual and smelling functions, analogous to the human sensory perception. (orig./CB) [German] Die Aufrechterhaltung eines einwandfreien Betriebszustandes von technischen Anlagen durch staendige Kontrollen und regelmaessige Wartungsarbeiten ist haeufig eine aufwendige und kostspielige Angelegenheit. Gleichwohl ist sie - sowohl was die Frage der Sicherheit als auch des Umweltschutzes anbelangt - unentbehrlich. Die Erdgasfoerderanlage Thoense bei Hannover wird von einem intelligenten Ueberwachungssystem, HISS - Human Interface Supervision System, kontrolliert, das die menschlichen Eigenschaften sehen, hoeren und riechen beherrscht. (orig.)

  13. Natural gas production by fracking in Germany; Erdgasgewinnung durch Fracking in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Muehlendahl, Karl Ernst v; Otto, Matthias [Kinderumwelt gGmbH der Deutschen Akademie fuer Kinder- und Jugendmedizin, Osnabrueck (Germany)

    2012-11-01

    ExxonMobil is performing exploration tests in Lower Saxony concerning unconventional sources for natural gas production using hydraulic fracturing. The contribution is dealing with environmental policy related questions that affect public health and should be part of the information of physicians. The contribution covers information on the issues hydraulic fracturing, water consumption and application of chemicals, drilling accidents - blow-out, energy balance, legal questions, summarizing recommendations of neutral expert team, higher-ranking points of view with respect to environmental protection and compatibility. [German] Bei umweltpolitischen Fragen, die auch die Gesundheit der Bevoelkerung tangieren, sollten aerzte informiert sein, um ggf. sachkundig mitsprechen zu koennen. Der Bereitstellung einer notwendigen Basisinformation zu dem Thema Fracking, das in betroffenen Gebieten in Niedersachsen und im Muensterland viel diskutiert wird, dienen die nachfolgenden Ausfuehrungen.

  14. Thermodynamic analyses of hydrogen production from sub-quality natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922-5403 (United States)

    2007-01-01

    Part I of this paper analyzed sub-quality natural gas (SQNG) pyrolysis and autothermal pyrolysis. Production of hydrogen via direct thermolysis of SQNGs produces only 2mol of hydrogen and 1mol of carbon per mole of methane (CH{sub 4}). Steam reforming of SQNG (SRSQNG) could become a more effective approach because the processes produce two more moles of hydrogen via water splitting. A Gibbs reactor unit operation in the AspenPlus(TM) chemical process simulator was employed to accomplish equilibrium calculations for the SQNG+H{sub 2}O and SQNG+H{sub 2}O+O{sub 2} systems. The results indicate that water and oxygen inlet flow rates do not significantly affect the decomposition of hydrogen sulfide (H{sub 2}S) at temperatures lower than 1000{sup o}C. The major co-product of the processes is carbonyl sulfide (COS) while sulfur dimer (S{sub 2}) and carbon disulfide (CS{sub 2}) are minor by-products within this temperature range. At higher temperatures (>1300{sup o}C), CS{sub 2} and S{sub 2} become major co-products. No sulfur dioxide (SO{sub 2}) or sulfur trioxide (SO{sub 3}) is formed during either SRSQNG or autothermal SRSQNG processes, indicating that no environmentally harmful acidic gases are generated. (author)

  15. Production of gasoline from coal or natural gas by the methanol-to-gasoline process

    Energy Technology Data Exchange (ETDEWEB)

    Heinritz-Adrian, M.; Brandl, A.; Zhoa, Xinjin; Tabak, S. [Uhde GmbH, Dortmund (Germany)

    2007-07-01

    After discussing the basis of the methanol-to-gas (MTG) process, the fixed bed and fluid bed versions are described. The Motunui and MTG complex near Montunui, New Zealand that methanol uses natural gas is briefly described. Shanxi Jincheng, Anthracite Coal Mining Co. is currently building its first coal-based MTG plant. 7 refs., 2 tabs.

  16. Almacenamiento de gas natural

    Directory of Open Access Journals (Sweden)

    Tomás Correa

    2008-12-01

    Full Text Available The largest reserves of natural gas worldwide are found in regions far of main cities, being necessary different alternatives to transport the fluid to the consumption cities, such as pipelines, CNG or ships, LNG, depending on distances between producing regions and demanding regions and the producing volumes. Consumption regions have three different markets to naturalgas; residential and commercial, industrial and power generation sector. The residential and commercial is highly seasonal and power generation sector is quite variable depending on increases of temperature during summer time. There are also external issuesthat affect the normal gas flow such as fails on the national system or unexpected interruptions on it, what imply that companies which distribute natural gas should design plans that allow supplying the requirements above mentioned. One plan is using underground natural gas storage with capacities and deliverability rates enough to supply demands. In Colombia there are no laws in this sense but it could be an exploration to discuss different ways to store gas either way as underground natural gas storage or above superficies. Existing basically three different types of underground natural gas storage; depleted reservoirs, salt caverns and aquifers. All ofthem are adequate according to geological characteristics and the needs of the distributors companies of natural gas. This paper is anexploration of technical and economical characteristics of different kind of storages used to store natural gas worldwide.

  17. Natural gas pricing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    Natural gas pricing is the heart and soul of the gas business. Price specifically affects every phase of the industry. Too low a price will result in short supplies as seen in the mid-1970s when natural gas was scarce and in tight supply. To fully understand the pricing of this energy commodity, it is important to understand the total energy picture. In addition, the effect and impact of world and US economies, and economics in general are crucial to understanding natural gas pricing. The purpose of this presentation will be to show the parameters going into US natural gas pricing including the influence of the many outside industry factors like crude oil and coal pricing, market drivers pushing the gas industry, supply/demand parameters, risk management for buyers and sellers, and other elements involved in pricing analysis

  18. Growing natural gas usage

    International Nuclear Information System (INIS)

    Saarni, T.

    1996-01-01

    Finnish natural gas usage topped the 3.3 billion cubic metre mark last year, up 3.6 % on the 1994 figure. Growth has increased now for 12 years in a row. Thanks to offtake by large individual users, the pipeline network has been expanded from South-East Finland to the Greater Helsinki area and central southern Finland. Natural gas plays a much larger role in this region than the 10 % accounted for by natural gas nationally would indicate. The growth in the share of Finland's energy use accounted for by natural gas has served to broaden the country's energy supply base. Natural gas has replaced coal and oil, which has considerably reduced the level of emissions resulting form energy generation

  19. Alaska gas pipeline and the global natural gas market

    International Nuclear Information System (INIS)

    Slutz, J.

    2006-01-01

    The global natural gas market was discussed in relation to the Alaska natural gas pipeline project. Natural gas supply forecasts to the year 2025 were presented. Details of the global liquefied natural gas (LNG) market were discussed. Charts were included for United States natural gas production, consumption, and net imports up to the year 2030. The impact of high natural gas prices on the manufacturing sector and the chemicals industry, agricultural, and ethanol industries were discussed. Natural gas costs around the world were also reviewed. The LNG global market was discussed. A chart of world gas reserves was presented, and global LNG facilities were outlined. Issues related to the globalization of the natural gas trade were discussed. Natural gas imports and exports in the global natural gas market were reviewed. A chart of historical annual United States annual LNG imports was presented. tabs., figs

  20. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  1. Study of radiolysis products of natural organic materials by means of gas chromatography

    International Nuclear Information System (INIS)

    Pogocki, D.

    1994-01-01

    Analytical methods based on gas chromatography for identification determination of products arising during food irradiation have been presented. Behind the classics version of the methods one has shown also combined methods being the on-line connection of gas chromatography with mass spectroscopy as well as gas chromatography with liquid chromatography and mass spectroscopy. The applicability as well as weakness and advantages of each version have been discussed on the context of food irradiation. 11 refs, 7 figs

  2. Quantifying Fugitive Methane Emissions from Natural Gas Production with Mobile Technology

    Science.gov (United States)

    Tsai, T.; Rella, C.; Crosson, E.

    2013-12-01

    Quantification of fugitive methane (CH4) emissions to determine the environmental impact of natural gas production is challenging with current methods. We present a new mobile method known as the Plume Scanner that can quickly quantify CH4 emissions of point sources. The Plume Scanner is a direct measurement technique which utilizes a mobile Picarro cavity ring-down spectrometer and a gas sampling system based on AirCore technology [1]. As the Plume Scanner vehicle drives through the plume, the air is simultaneously sampled at four different heights, and therefore, the spatial CH4 distribution can be captured (Fig. 1). The flux of the plume is then determined by multiplying the spatial CH4 distribution data with the anemometer measurements. In this way, fugitive emission rates of highly localized sources such as natural gas production pads can be made quickly (~7 min). Verification with controlled CH4 releases demonstrate that under stable atmospheric conditions (Pasquill stability class is C or greater), the Plume Scanner measurements have an error of 2% and a repeatability of 15% [2]. Under unstable atmospheric conditions (Class A or B), the error is 6%, and the repeatability increases to 70% due to the variability of wind conditions. Over two weeks, 275 facilities in the Barnett Shale were surveyed from public roads by sampling the air for elevations in CH4 concentration, and 77% were found leaking. Emissions from 52 sites have been quantified with the Plume Scanner (Fig. 2), and the total emission is 4,900 liters per min (lpm) or 39,000 metric tons/yr CO2e. 1. Karion, A., C. Sweeney, P. Tans, and T. Newberger (2010), AirCore: An innovative atmospheric sampling system, J. Atmos. Oceanic Tech, 27, 1839-1853. 2. F. Pasquill (1961), The estimation of the dispersion of wind borne material, Meterol. Mag., 90(1063), 33-49 Figure 1. Plume Scanner Cartoon Figure 2. Distribution of methane fugitive emissions with error bars associated with the Pasquill stability classes

  3. Forecasting world natural gas supply

    International Nuclear Information System (INIS)

    Al-Fattah, S. M.; Startzman, R. A.

    2000-01-01

    Using the multi-cyclic Hubert approach, a 53 country-specific gas supply model was developed which enables production forecasts for virtually all of the world's gas. Supply models for some organizations such as OPEC, non-OPEC and OECD were also developed and analyzed. Results of the modeling study indicate that the world's supply of natural gas will peak in 2014, followed by an annual decline at the rate of one per cent per year. North American gas production is reported to be currently at its peak with 29 Tcf/yr; Western Europe will reach its peak supply in 2002 with 12 Tcf. According to this forecast the main sources of natural gas supply in the future will be the countries of the former Soviet Union and the Middle East. Between them, they possess about 62 per cent of the world's ultimate recoverable natural gas (4,880 Tcf). It should be noted that these estimates do not include unconventional gas resulting from tight gas reservoirs, coalbed methane, gas shales and gas hydrates. These unconventional sources will undoubtedly play an important role in the gas supply in countries such as the United States and Canada. 18 refs., 2 tabs., 18 figs

  4. The natural gas market

    International Nuclear Information System (INIS)

    Lagrasta, F.; Kaminski, V.; Prevatt, R.

    1999-01-01

    This chapter presents a brief history of the natural gas market highlighting the changes in the gas market and examining risk management in practice detailing the types of price risks, and the use of hedging using forwards and swaps. Options to manage risk are identified, and the role of risk management in financing, the role of the intermediary, and the market outlook are discussed. Panels describing the market structure, storage and natural gas risk management, the art of risk management, the winter 1995-96 basis blowout, spark spreads, the UK gas market and Europe, and weather derivatives are presented

  5. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cai, Hao [Argonne National Laboratory

    2017-11-01

    Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates the relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.

  6. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  7. Method and system for offshore production of liquefied natural gas; Fremgangsmaate og system for fremstilling av flytendegjort naturgass til havs

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.G.; Fredheim, A.O.; Paurola, P.

    1997-01-13

    The invention concerns an method and system for offshore production of liquefied natural gas (LNG), wherein natural gas is supplied from an underground source to a subsea production plant. The gas is transferred under a high pressure directly from the production plant to an LNG tanker through a pipeline underwater causing the temperature of the high pressure gas to be lowered to a desired low temperature. This gas is supplied to a conversion plant provided on the LNG tanker and arranged for converting at least a part of the gas to liquid form, and the liquefied gas is transferred to storage tanks on board the same. When the storage tanks are filled up, the pipeline is disconnected from the LNG tanker and connected to another similar tanker. The pipeline is permanently connected to a submerged buoy which is arranged for introduction and releasable securement in a submerged downwardly open receiving space in the tanker, and which is provided with a swivel unit for transfer of gas under a high pressure. 3 figs.

  8. Turkey and natural gas

    International Nuclear Information System (INIS)

    Yardim, G.

    1992-01-01

    Turkey is a developing country with a population of 56 millions and approximately $ 2604 per capita income. Geographically she is located among the energy rich countries whereas almost half of her energy requirement is met by imports. Turkey is relatively well endowed with hydro-power and lignite resources, some limited amount of oil, gas and coal resources exist and there is significant geothermal potential in the country. Environmental issues are increasingly important consideration in energy policy decisions in the world. Energy production, transportation and use are contributing to environmental degradation to a certain extent. Protection of the environment and public health from pollution arising from energy production and consumption activities is one of the principles of Turkish national energy policy. In conjunction with this policy the 'Environment Law' was promulgated in 1983 and 'The Regulation on Protection of the Air Quality' in order to control all kinds of emissions in the form of soot, smoke, fines and particulate and to prevent the adverse impacts of the air pollution, was issued in October 1986. Policy of diversification of energy sources and the environmental issues which were explained above brought the natural gas usage into the energy scene in Turkey. 6 figs., 4 tabs

  9. The emergent natural gas markets

    International Nuclear Information System (INIS)

    Dewert, F.; Meeder, J.

    1998-01-01

    A 30% increase of natural gas consumption worldwide is expected to occur since the year 2010. This development will concern countries located outside the traditional markets, in particular in central and eastern Europe, Asia, Africa and south America. This paper summarizes the talks given by the different representatives of these regions who explain the expected evolutions of the natural gas market in these areas: reserves, production, consumption, demand, competition with other energy sources, financial aspects.. (J.S.)

  10. European energy security. An analysis of future Russian natural gas production and exports

    Energy Technology Data Exchange (ETDEWEB)

    Soederbergh, Bengt; Jakobsson, Kristofer; Aleklett, Kjell [Global Energy Systems, Department of Physics and Astronomy, Uppsala University, Laegerhyddsvaegen 1, Box 535, SE-751 21, Uppsala (Sweden)

    2010-12-15

    The widening gap between EU gas production and consumption may require an 87% increase of import volumes between 2006 and 2030, and there are great uncertainties regarding the amounts of gas that can be expected from new suppliers. The potential of increased production from Norway and Algeria is limited; hence, Russia is likely to play a crucial part of meeting the anticipated growing gas demand of the EU. A field-by-field study of 83 giant gas fields shows that the major producing Russian gas fields are in decline, and by 2013 much larger supplies from the Yamal Peninsula and the Shtokman field will be needed in order to avoid a decline in production. Gas from fields in Eastern Siberia and the Far East will mainly be directed to the Asian and Pacific Rim markets, thereby limiting its relevance to the European and CIS markets. As a result, the maximum export increase to the European and CIS markets amounts only to about 45% for the period 2015-2030. The discourse surrounding the EU's dependence on Russian gas should thus not only be concerned with geopolitics, but also with the issue of resource limitations. (author)

  11. Production of liquid nitrogen using liquefied natural gas as sole refrigerant

    International Nuclear Information System (INIS)

    Agrawal, R.; Ayres, C.L.

    1992-01-01

    This patent describes a process for the liquefaction of a nitrogen stream produced by a cryogenic air separation unit having at least one distillation column. It comprises compressing the nitrogen stream to a pressure of at least 350 psi in a multi-stage compressor wherein interstage cooling is provided by heat exchange against vaporizing liquefied natural gas; condensing the compressed nitrogen stream by heat exchange against vaporizing liquefied natural gas; reducing the pressure of the condensed, compressed nitrogen stream thereby producing a two phase nitrogen stream; phase separating the two phase nitrogen stream into a liquid nitrogen stream and a nitrogen vapor stream; and warming the nitrogen vapor stream to recover refrigeration

  12. Greenhouse effects of the peat production and use as compared to coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.; Wihersaari, M.

    1993-01-01

    This report examines the greenhouse effects of greenhouse gas emissions (carbon dioxide, methane and nitrous oxide) arising from certain production and utilization chains of peat and compares them with the corresponding effects associated with the production and utilization chains of coal, oil, natural gas and wood. In order to estimate the greenhouse effects of the peat production and utilization chains, the initial state of the peat bog together with the instantaneous and cumulative greenhouse effects associated with the production and burning of peat as well as subsequent use of the production area were taken into account. The initial state of the peat bog was taken to be either a bog in its natural sale, a forest-drained bog or a cultivated peatland. As regards alternatives for subsequent use of the peat production area, afforestation, paludification and lake formation were all examined

  13. Natural Gas Acquisition Program

    Data.gov (United States)

    General Services Administration — The "NGAP" system is a web based application which serves NGAP GSA users for tracking information details for various natural gas supply chain elements like Agency,...

  14. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  15. Natural gas benefits

    International Nuclear Information System (INIS)

    1999-01-01

    The General Auditor in the Netherlands studied the natural gas policy in the Netherlands, as has been executed in the past decades, in the period 1997-1999. The purpose of the study is to inform the Dutch parliament on the planning and the backgrounds of the natural gas policy and on the policy risks with respect to the benefits for the Dutch State, taking into account the developments in the policy environment. The final conclusion is that the proposed liberalization of the national natural gas market will result in a considerable deprivation of income for the State in case the benefit policy is not adjusted. This report includes a reaction of the Dutch Minister of Economic Affairs and an afterword of the General Auditor. In the appendix an outline is given of the natural gas policy

  16. Natural Gas Market Hubs

    Data.gov (United States)

    Department of Homeland Security — A hub is a physical transfer point for natural gas where several pipelines are connected. A market center is a hub where the operator offers services that facilitate...

  17. French natural gas industry statistics

    International Nuclear Information System (INIS)

    2004-01-01

    The opening of the French natural gas market is effective since August 2000. In this context, some information, which were published in the past, have become confidential and strategic and can no longer be revealed. The data published in this 2004 edition concern only the years 2001 and 2002 for which data are available. The year 2000 inquiry could not be exploited. A first part presents the natural gas industry in France (consumption, supplies, production, storage, distribution, definition of gases, information sources, energy equivalence, map of transportation networks, storage, compression and production facilities). The statistical data are summarized in the second part in the form of tables: resources and uses in 1999, 2001 and 2002; sectoral use of the network distributed gas since 1972; regional distribution of gas production; domestic production and imports since 1972; sectoral distribution of network gas supplies; pipelines and distribution systems; personnel in the gas industry; gas supplies in 2002; supplies to the residential-tertiary sector in 2002; supplies to the industry in 2002; regional supplies in 2002; share of gas supplies per use in each region; regional distribution of gas supplies for each use. A comparison between the 2002 inquiry results and the provisional status is given in appendix. The 2002 energy status and the 2002 questionnaire are also given in appendixes. (J.S.)

  18. Natural gas industry regulations

    International Nuclear Information System (INIS)

    Clo, A.

    1999-01-01

    In the reception of the EU Directive on the internal gas market, it is quite necessary to avoid the mistakes already made in the case of electricity. A possible cause is there suggested which may help rearrange the natural gas industry and market in Italy. It's four points are: general interests, national peculiarities, public policies, regulatory framework [it

  19. Hydrogen and Carbon Black Production from Thermal Decomposition of Sub-Quality Natural Gas

    Directory of Open Access Journals (Sweden)

    M. Javadi

    2010-03-01

    Full Text Available The objective of this paper is computational investigation of the hydrogen and carbon black production through thermal decomposition of waste gases containing CH4 and H2S, without requiring a H2S separation process. The chemical reaction model, which involves solid carbon, sulfur compounds and precursor species for the formation of carbon black, is based on an assumed Probability Density Function (PDF parameterized by the mean and variance of mixture fraction and β-PDF shape. The effects of feedstock mass flow rate and reactor temperature on hydrogen, carbon black, S2, SO2, COS and CS2 formation are investigated. The results show that the major factor influencing CH4 and H2S conversions is reactor temperature. For temperatures higher than 1100° K, the reactor CH4 conversion reaches 100%, whilst H2S conversion increases in temperatures higher than 1300° K. The results reveal that at any temperature, H2S conversion is less than that of CH4. The results also show that in the production of carbon black from sub-quality natural gas, the formation of carbon monoxide, which is occurring in parallel, play a very significant role. For lower values of feedstock flow rate, CH4 mostly burns to CO and consequently, the production of carbon black is low. The results show that the yield of hydrogen increases with increasing feedstock mass flow rate until the yield reaches a maximum value, and then drops with further increase in the feedstock mass flow rate.

  20. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    Science.gov (United States)

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.

  1. Nature, origin, and production characteristics of the Lower Silurian regional oil and gas accumulation, central Appalachian basin, United States

    Science.gov (United States)

    Ryder, R.; Zagorski, W.A.

    2003-01-01

    uplift and erosion, causing gas leakage and a marked reduction in fluid pressure. Most future natural-gas production in the Clinton/Medina sandstones is anticipated to come from the basin-center accumulation. The Tuscarora Sandstone has additional gas resources but typically low reservoir porosity and permeability, and the likelihood of low-energy (in British thermal units) gas reduce the incentive to explore for it.

  2. Problems of ecological and technical safety by exploration and production of natural gas hydrates

    Directory of Open Access Journals (Sweden)

    Chen-Chen

    2006-10-01

    Full Text Available Gas hydrates - the firm crystal connections form water (liquid water, ice, water vapor and low-molecular waterproof natural gases (mainly methane whose crystal structure effectively compresses gas e.s.: each cubic meter of hydrate can yield over 160 m3 of methane.In present time, the exploitation of the Messoyahsk (Russia and Mallik (Canada deposits of gas hydrates is conducted actively. The further perfection of prospecting methods in the field of studying gas hydrates containing sediments depends on the improvement of geophysical and the well test research, among which native-state core drilling is one of the major. Sampling a native-state core from gas hydrates sediments keeps not only the original composition but structural - textural features of their construction.Despite of the appeal to use gas hydrates as a perspective and ecologically pure fuel possessing huge resources, the investigation and development of their deposits can lead to a number of negative consequences connected with hazards arising from the maintenance of their technical and ecological safety of carrying out. Scales of the arising problems can change from local to regional and even global.

  3. Natural gas prices

    International Nuclear Information System (INIS)

    Johnson, W.A.

    1990-01-01

    Since the 1970s, many electric utilities and industrial boiler fuel users have invested in dual fuel use capability which has allowed them to choose between natural gas, residual fuel oil, and in some instances, coal as boiler fuels. The immediate reason for this investment was the need for security of supply. Wellhead regulation of natural gas prices had resulted in shortages during the 1970s. Because many industrial users were given lowest priority in pipeline curtailments, these shortages affected most severely boiler fuel consumption of natural gas. In addition, foreign supply disruptions during the 1970s called into question the ready availability of oil. Many boiler fuel users of oil responded by increasing their ability to diversify to other sources of energy. Even though widespread investment in dual fuel use capability by boiler fuel users was initially motivated by a need for security of supply, perhaps the most important consequence of this investment was greater substitutability between natural gas and resid and a more competitive boiler fuel market. By the early 1980s, most boiler fuel users were able to switch from one fuel to another and often did for savings measured in pennies per MMBtu. Boiler fuel consumption became the marginal use of both natural gas and resid, with coal a looming threat on the horizon to both fuels

  4. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-07-21

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... abandonment of facilities by Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... resources, fisheries, and wetlands; Cultural resources; Vegetation and wildlife; Endangered and threatened...

  5. From prototype to product. The development of low emission natural gas- and biogas buses

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, M. [Strateco Development AB, Haninge (Sweden)

    1998-01-01

    The objective of this report is to show the development of natural gas and bio gas buses and trucks since the termination of the `Co-Nordic GasBus Project`, to which KFB was a major contributor and one of the initiators. Sweden have some 325 heavy duty methane vehicles of which almost 100 are bio gas operated. Scania and Volvo have produced, or have orders for, 500 gas buses to 6 different countries since 1990. The Project objectives were obtained and the significantly reduced emission levels aimed for, were shown. The international bus manufacturing industry followed, and have since shown the same low levels of emissions from gas bus engines. Sweden has taken the lead in the use of bio gas, by operating nearly 100 buses and trucks. Bio gas is still an underestimated fuel when it comes to supply, as it can provide fuel for 50% of the domestic use of diesel oil. Future development need to include control systems for more stable emissions, lower weight cylinders, less costly compressors, cleaning equipment and storage cylinders as well as more fuel efficient engines that can reduce mainly the discharge of CO2, NOx and CH4 further. Societal costs, regardless of who pays, for methane operated buses is still somewhat higher compared with best use of diesel + CRT technology. As commercialization develops, it is expected that the price of the vehicle will be reduced and emissions improved. It is therefore expected that the stake holders costs will be lower then that of diesel technology in the future

  6. Method and system for offshore production of liquefied natural gas; Fremgangsmaate og system for fremstilling av flytendegjort naturgass til havs

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, K.G.; Fredheim, A.O.; Paurola, P.

    1996-10-14

    The invention relates to an method and a system for offshore production of liquefied natural gas, wherein natural gas is supplied from an underground source to a field installation for gas treatment. The gas is transferred in compressed form from the field installation to an LNG tanker, the transfer taking place via a pipeline surrounded by sea water, and the compressed gas being supplied to a conversion plant which is provided on the LNG tanker and is arranged to convert at least a part of the gas to liquefied form, and the liquefied gas being transferred to storage tanks on board the tanker. When the storage tanks on the LNG tanker are filled up, the pipeline is disconnected from the LNG tanker and connected to another, similar tanker, the pipeline being permanently connected to a submerged buoy which is arranged for introduction and releasable securement in a submerged downwardly open receiving space in the tanker, and which is provided with a swivel unit for transfer of gas under a high pressure. 3 figs.

  7. Natural Gas Hydrate as a Storage Mechanism for Safe, Sustainable and Economical Production from Offshore Petroleum Reserves

    Directory of Open Access Journals (Sweden)

    Michael T. Kezirian

    2017-06-01

    Full Text Available Century Fathom presents an innovative process to utilize clathrate hydrates for the production, storage and transportation of natural gas from off-shore energy reserves in deep ocean environments. The production scheme was developed by considering the preferred state of natural gas in the deep ocean and addressing the hazards associated with conventional techniques to transport natural gas. It also is designed to mitigate the significant shipping cost inherent with all methods. The resulting proposed scheme restrains transport in the hydrate form to the ocean and does not attempt to supply energy to the residential consumer. Instead; the target recipients are industrial operations. The resulting operational concept is intrinsically safer by design; environmentally sustainable and significantly cost-effective compared with currently proposed schemes for the use of natural gas hydrates and has the potential to be the optimal solution for new production of reserves; depending on the distance to shore and capacity of the petroleum reserve. A potential additional benefit is the byproduct of desalinated water.

  8. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  9. Natural Gas Regulation

    International Nuclear Information System (INIS)

    1995-01-01

    The regulation of Natural Gas. Natural gas Regulation clarifies and consolidates the legal and institutional framework for development of the industry through six principal elements: 1) Establishment of a vision of the industry. 2) Development of regulatory objectives. 3) Determination of relationships among industry participants. 4) Clear specification of the role of PEMEX in the industry. 5) Definition of the functions of the Regulatory authority. 6) Creation of a transition regime. In parallel with the development of the substantive legal framework, the law of the Comision Reguladora de Energia (CRE) was also enacted by Congress in October 1995 to strength the institutional framework and implement the legal changes. This law defines the CRE as an agency of the Energy Ministry with technical, operational, and budgetary autonomy, and responsibility for implementing natural gas industry regulation. (Author)

  10. Natural gas's hottest spot

    International Nuclear Information System (INIS)

    Peterson, T.

    1993-01-01

    This paper reviews the growing power and economic strength of Enron Corp., a natural gas distributor and exploration company. The paper reviews the policy of the company to exploit deregulation at home and privatization of all sorts of energy companies abroad. Enron is actively building its own power plants in the US and has successfully boosted their profits by 20 percent in what was considered a flat natural gas market. The paper goes on to discuss the company's view of the new energy tax and how it should benefit natural gas companies as a whole. Finally the paper reviews the contracting procedures of the company to secure long-term fixed price contracts in a volatile market which precludes most companies from taking the risk

  11. Natural gas 1995: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  12. Natural gas; Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Frank [DVGW-Forschungsstelle am KIT, Karlsruhe (Germany); Groeschl, Frank; Wetzel, Uwe [DVGW, Bonn (Germany); Heikrodt, Klaus [Hochschule Ostwestfalen-Lippe, Lemgo (Germany); Krause, Hartmut [DBI Gastechnologisches Institut, An-Institut der TU Bergakademie, Freiberg (Germany); Beestermoeller, Christina; Witschen, Bernhard [Team Consult G.P.E. GmbH, Berlin (Germany); Albus, Rolf; Burmeister, Frank [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2015-07-01

    The reform of the EEG in Germany, a positive global development in natural gas, the decline in oil prices, questions about the security of supply in Europe, and not least the effect of the decision by E.on at the end of 2014 have moved the gas industry. Gas has the lowest CO{sub 2} emissions of fossil fuels. Flexibility, storability, useful for networks and the diversity in the application make it an ideal partner for renewable energy. However, these complementary properties are valued at wind and photovoltaics internationally and nationally different. The situation in the gas power plants remains tense. LNG - liquefied natural gas - is on the rise. [German] Die Reform des EEG in Deutschland, eine positive Entwicklung beim Gas weltweit, der Verfall der Oelpreises, Fragen zur Versorgungssicherheit in Europa und nicht zuletzt die Auswirkung der Entscheidung von E.on Ende 2014 haben die Gaswirtschaft bewegt. Gas weist die geringsten CO{sub 2}-Emissioen der fossilen Energietraeger auf. Flexibilitaet, Speicherbarkeit, Netzdienlichkeit sowie die Vielfalt in der Anwendung machen es zum idealen Partner der erneuerbaren Energien. Allerdings werden diese komplementaeren Eigenschaften zu Wind und Photovoltaik international und national unterschiedlich bewertet. Die Lage bei den Gaskraftwerken bleibt weiter angespannt. LNG - verfluessigtes Erdgas - ist auf dem Vormarsch.

  13. Natural gas in France: main results in 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This document briefly presents and comments the main data about natural gas in France: gas consumption, natural gas-based electricity production, refineries, energetic final consumption of natural gas, non-energetic final consumption of natural gas, gas imports and suppliers (countries), national production, and stocks

  14. Natural gas : nirvana

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2001-01-01

    Despite completing 8,900 gas wells in year 2000, the deliverability of natural gas out of the Western Canadian Sedimentary Basin (WCSB) was stagnant which has left many analysts wondering whether the basin has reached its limit. It also leaves many wondering if gas producers will be able to meet the strong demand for natural gas in the future. Nearly all new electrical generation being built in the U.S. is gas-based due to strict new environmental standards limiting the growth in hydro and coal-powered generation. Any future coal plants will use gasification technology and combined cycle turbines. Combined cycle turbines developed by Boeing and Lockheed are more efficient than combustion turbines, making gas more competitive with fuel alternatives. The lack of growth in natural gas supply has left storage levels near record lows. Demand is expected to increase in 2001 by 3.2 per cent to 23 trillion cubic feet in the U.S. Longer term, major new reserves must be brought on stream to meet this demand. It was noted that the easy discoveries within the WCSB have been made. The new plays are smaller, more technically complex and expensive which suggests that more investment is needed in training geologists, geophysicists and petroleum engineers to find new reserves. The Canadian Energy Research Institute agrees that there is enough gas in Alberta and British Columbia to meet current demands but efforts must shift towards drilling in the foothills front and northwest regions of Alberta to increase deliverability. Brief notes on several gas finds by various oil and gas companies in the area were presented. The article also discussed the huge untapped potential of northern reserves. Analysts have noted 44 Tcf of proven reserve, with a potential of 165 Tcf. In addition, new pipelines from the Alaskan North Slope and the Mackenzie Delta could transport nearly 2 Tcf annually to market. Wells drilled by Chevron and Paramount at Fort Liard in 1999 initially flowed at rates up to

  15. Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania's Allegheny National Forest.

    Science.gov (United States)

    Pekney, Natalie J; Veloski, Garret; Reeder, Matthew; Tamilia, Joseph; Rupp, Erik; Wetzel, Alan

    2014-09-01

    Oil and natural gas exploration and production (E&P) activities generate emissions from diesel engines, compressor stations, condensate tanks, leaks and venting of natural gas, construction of well pads, and well access roads that can negatively impact air quality on both local and regional scales. A mobile, autonomous air quality monitoring laboratory was constructed to collect measurements of ambient concentrations of pollutants associated with oil and natural gas E&P activities. This air-monitoring laboratory was deployed to the Allegheny National Forest (ANF) in northwestern Pennsylvania for a campaign that resulted in the collection of approximately 7 months of data split between three monitoring locations between July 2010 and June 2011. The three monitoring locations were the Kane Experimental Forest (KEF) area in Elk County, which is downwind of the Sackett oilfield; the Bradford Ranger Station (BRS) in McKean County, which is downwind of a large area of historic oil and gas productivity; and the U.S. Forest Service Hearts Content campground (HC) in Warren County, which is in an area relatively unimpacted by oil and gas development and which therefore yielded background pollutant concentrations in the ANF. Concentrations of criteria pollutants ozone and NO2 did not vary significantly from site to site; averages were below National Ambient Air Quality Standards. Concentrations of volatile organic compounds (VOCs) associated with oil and natural gas (ethane, propane, butane, pentane) were highly correlated. Applying the conditional probability function (CPF) to the ethane data yielded most probable directions of the sources that were coincident with known location of existing wells and activity. Differences between the two impacted and one background site were difficult to discern, suggesting the that the monitoring laboratory was a great enough distance downwind of active areas to allow for sufficient dispersion with background air such that the localized

  16. Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis

    International Nuclear Information System (INIS)

    Kathe, Mandar V.; Empfield, Abbey; Na, Jing; Blair, Elena; Fan, Liang-Shih

    2016-01-01

    Highlights: • Design of iron-based chemical looping process using moving bed for H_2 from CH_4. • Auto-thermal operation design using thermodynamic rationale for 90% carbon capture. • Cold gas efficiency: 5% points higher than Steam Methane Reforming baseline case. • Net thermal efficiency: 6% points higher than Steam Methane Reforming baseline case. • Sensitivity analysis: Energy recovery scheme, operating pressure, no carbon capture. - Abstract: Hydrogen (H_2) is a secondary fuel derived from natural gas. Currently, H_2 serves as an important component in refining operations, fertilizer production, and is experiencing increased utilization in the transportation industry as a clean combustion fuel. In recent years, industry and academia have focused on developing technology that reduces carbon emissions. As a result, there has been an increase in the technological developments for producing H_2 from natural gas. These technologies aim to minimize the cost increment associated with clean energy production. The natural gas processing chemical looping technology, developed at The Ohio State University (OSU), employs an iron-based oxygen carrier and a novel gas–solid counter-current moving bed reactor for H_2 production. Specifically, this study examines the theoretical thermodynamic limits for full conversion of natural gas through iron-based oxygen carrier reactions with methane (CH_4), by utilizing simulations generated with ASPEN modeling software. This study initially investigates the reducer and the oxidizer thermodynamic phase diagrams then derives an optimal auto-thermal operating condition for the complete loop simulation. This complete loop simulation is initially normalized for analysis on the basis of one mole of carbon input from natural gas. The H_2 production rate is then scaled to match that of the baseline study, using a full-scale ASPEN simulation for computing cooling loads, water requirements and net parasitic energy consumption. The

  17. Thermodynamic analyses of hydrogen production from sub-quality natural gas. Part I: Pyrolysis and autothermal pyrolysis

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Sub-quality natural gas (SQNG) is defined as natural gas whose composition exceeds pipeline specifications of nitrogen, carbon dioxide (CO 2) and/or hydrogen sulfide (H 2S). Approximately one-third of the U.S. natural gas resource is sub-quality gas [1]. Due to the high cost of removing H 2S from hydrocarbons using current processing technologies, SQNG wells are often capped and the gas remains in the ground. We propose and analyze a two-step hydrogen production scheme using SQNG as feedstock. The first step of the process involves hydrocarbon processing (via steam-methane reformation, autothermal steam-methane reformation, pyrolysis and autothermal pyrolysis) in the presence of H 2S. Our analyses reveal that H 2S existing in SQNG is stable and can be considered as an inert gas. No sulfur dioxide (SO 2) and/or sulfur trioxide (SO 3) is formed from the introduction of oxygen to SQNG. In the second step, after the separation of hydrogen from the main stream, un-reacted H 2S is used to reform the remaining methane, generating more hydrogen and carbon disulfide (CS 2). Thermodynamic analyses on SQNG feedstock containing up to 10% (v/v) H 2S have shown that no H 2S separation is required in this process. The Part I of this paper includes only thermodynamic analyses for SQNG pyrolysis and autothermal pyrolysis.

  18. Conditions of prospecting, development, production, and supply of oil and natural gas in Cameroun, Congo, and Ivory Coast

    Energy Technology Data Exchange (ETDEWEB)

    Shirakami, Yoshimasa; Norisugi, Yoichi; Miyake, Keiji

    1988-08-01

    This paper reports the conditions of national affairs, oil industry, and prospecting, development, production of oil and natural gas in Ivory Coast in western Africa. All of oil and natural gas are produced in Cretaceous and Tertiary sedimentary basins on the continental margin off the coast of Ivory Coast and Ghana. In 1970 the first oil field (Belier) was discovered by the test boring drilled under the sea, and in 1980 Espoir Oil Field was discovered. No further new oil field, however, has been discovered since then. The total production until 1987, amounts to 45.55 million bbl and the minable reserve is estimated about 84 million bbl. The production reached the maximum 1984, and thereafter has gone down. Few plans of prospecting are carried out recently. (10 figs, 2 tabs)

  19. Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas.

    Science.gov (United States)

    Marrero, Josette E; Townsend-Small, Amy; Lyon, David R; Tsai, Tracy R; Meinardi, Simone; Blake, Donald R

    2016-10-04

    Oil and natural gas operations have continued to expand and move closer to densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples collected downwind of oil and gas sites revealed enhancements in several potentially toxic volatile organic compounds (VOCs) when compared to background values. Molar emissions ratios relative to methane were determined for hexane, benzene, toluene, ethylbenzene, and xylene (BTEX compounds). Using methane leak rates measured from the Picarro mobile flux plane (MFP) system and a Barnett Shale regional methane emissions inventory, the rates of emission of these toxic gases were calculated. Benzene emissions ranged between 51 ± 4 and 60 ± 4 kg h -1 . Hexane, the most abundantly emitted pollutant, ranged from 642 ± 45 to 1070 ± 340 kg h -1 . While observed hydrocarbon enhancements fall below federal workplace standards, results may indicate a link between emissions from oil and natural gas operations and concerns about exposure to hazardous air pollutants. The larger public health risks associated with the production and distribution of natural gas are of particular importance and warrant further investigation, particularly as the use of natural gas increases in the United States and internationally.

  20. Natural gas potential in Canada

    International Nuclear Information System (INIS)

    1997-01-01

    An independent assessment of the undiscovered gas potential in Canada was conducted by a group of volunteer geoscientists. This report is the first of a series of assessments that are planned to be issued every three to four years. Separate assessments were made of conventional gas resources, unconventional gas resources and frontier gas resources. The assessment for conventional gas resources was organized into three categories: (1) gas producing areas where new discoveries can be integrated into existing producing and transportation infrastructure, (2) frontier basins where gas discoveries have been made, but no production is currently underway, and (3) frontier areas where gas-containing sedimentary rocks are known to exist, but where no gas discoveries have been made to date. The committee used year-end 1993 reserves data from discovered pools in each exploration play to predict the undiscovered potential. Information about discovered pools, geological setting, geographic limits and pool sizes of undiscovered pools in each exploration play was provided. Results of the investigation led to the conclusion that the natural gas potential in Canada is in fact larger than hitherto expected. It was estimated that in the Western Canada Sedimentary Basin 47 per cent of the total volume of conventional gas is yet to be discovered. 152 figs

  1. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  2. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  3. Natural gas annual 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data for the Nation from 1930 to 1992, and by State from 1967 to 1992. The Supplement of this report presents profiles of selected companies

  4. THE CHARACTERISTICS OF THE PRODUCTION AND PROCESSING OF OIL AND NATURAL GAS IN CROATIA FROM 2000 TO 2014

    Directory of Open Access Journals (Sweden)

    Josipa Velić

    2016-06-01

    Full Text Available This research analyzes the characteristics of the production and processing of oil, condensates and natural gas in the Republic of Croatia starting from 2000, until the end of 2014. Amounts of balance sheet (exploitable reserves of oil and condensates ranges from 9330,92 × 103 m3 in 2005, to 13 471,08 × 103 m3 in 2013, while extracted amounts are gradually declining from 1332,61 × 103 m3 to 639,96 × 103 m3. The ratio of extracted amounts and reserves is gradually declining, meaning that a slight increase in reserves does not affect the extracted amounts. Exploitable reserves of natural gas during the observed period fluctuate greatly. Being peaked in 2007, at 40,919.70 × 106 m3, they reached a low in 2014, at 17,932.98 × 106 m3. Unlike liquid hydrocarbons, the ratio of extracted and exploitable amounts is growing and peaked in 2014. Overall energy demands for oil in Croatia (shown as total consumption of crude oil amounted to 3032,8 × 103 m3 in 2013, while demands for natural gas amounted to 2809,90 × 106 m3. It is interesting to note that the consumption of oil is rapidly declining, which is a favorable trend from the standpoint of reducing emissions of greenhouse gases. While needs are partly covered by domestic exploitation, the dependence on imports of oil and natural gas is still evident and ranges from 75% to 84% for oil and 28% to 46% for natural gas, without major changes to the trend. The amounts of processed hydrocarbons are declining gradually, especially motor gasoline and fuel oil, while diesel fuel amounts remain mostly the same. Further research as well as development of the exploitation of oil and natural gas is of paramount importance, especially by investing in cadre education and new technologies.

  5. Natural gas resources in Canada

    International Nuclear Information System (INIS)

    Meneley, R.A.

    2001-01-01

    Natural gas is an important component in many of the technologies aimed at reducing greenhouse gas emissions. In order to understand the role that natural gas can play, it is important to know how much may be present, where it is, when can it be accessed and at what cost. The Canadian Gas Potential Committee has completed its second report 'Natural Gas Potential in Canada - 2001' (CGPC, 2001). This comprehensive study of exploration plays in Canada addresses the two issues of 'how much may be present' and 'where is it'. The Report deals with both conventional gas and non-conventional gas. One hundred and seven Established Conventional Exploration Plays, where discoveries of gas exist, have been assessed in all of the sedimentary basins in Canada. In addition, where sufficient information was available, twelve Conceptual Exploration Plays, where no discoveries have been made, were assessed. Sixty-five other Conceptual Plays were described and qualitatively ranked. An experienced volunteer team of exploration professionals conducted assessments of undiscovered gas potential over a four-year period. The team used technical judgment, statistical techniques and a unique peer review process to make a comprehensive assessment of undiscovered gas potential and estimates of the size of individual undiscovered gas accumulations. The Committee assessed all gas in place in individual exploration plays. For Established Plays, estimates of Undiscovered Nominal Marketable Gas are based on the percentage of the gas in place that is marketable gas in the discovered pools in a play. Not all of the Nominal Marketable Gas will be available. Some underlies areas where exploration is not possible, such as parks, cities and other closed areas. Some will be held in gas pools that are too small to be economic and some of the pools will never be found. In some areas no production infrastructure will be available. Detailed studies of individual exploration plays and basins will be required

  6. The economics of natural gas

    International Nuclear Information System (INIS)

    Julius, D.; Mashayekhi, A.

    1990-01-01

    Natural gas resembles oil in fulfilling a wide variety of uses as both a source of energy and a feedstock, but the proportion of world production that is traded internationally is very much lower, and insufficient for a world price of gas to be established. Written specifically for economists interested in energy, development and industrial economics; oil and gas industry personnel; officials of developing countries; and intergovernmental organizations concerned with development. This book addresses the issues of how the economic price of gas is determined within individual countries with different characteristics and which factors should be taken into account by governments in the formulation of pricing policies that are appropriate for gas. These are illustrated with estimates of the costs of exploration and production of gas, and of the benefits to be derived from its use in various economic sectors for a number of Third World countries. The book also presents a detailed case study of the development of gas pricing in Bangladesh, and an analytical framework for the development of a formal gas planning model that could be applied to the cases of actual countries contemplating the development of gas use in the future

  7. Naturally occurring radioactive materials (NORM) in the oil and gas processing and production facilities

    International Nuclear Information System (INIS)

    Najera F, J.

    1994-01-01

    NORM contamination is produced by concentration in petroleum facilities of naturally occurring radioactive materials. The presence of NORM in petroleum reservoirs and in the oil and gas industry has been widely recognized. It's not a critical technical problem if you proceed timely to solve it. NORM is a great but controllable hazard to the human health and the environment, and represents a severe waste management problem. We suggest to the latino american oil companies to conduct studies to detect NORM contamination in their facilities an use to them to plan the appropriate actions to control the situation. (author). 15 refs

  8. The local content approach in activities of exploration and production of oil and gas; Conteudo local nas atividades de exploracao e producao de petroleo e gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Frederice, Jose Carlos [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis, Rio de Janeiro, RJ (Brazil). Coordenadoria de Conteudo Local; Macedo, Marcelo Mafra Borges de [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis, Rio de Janeiro, RJ (Brazil). Regulacao de Petroleo e Derivados

    2008-07-01

    Breaking the monopoly of PETROBRAS for the activities of exploration and production of oil and natural gas has occurred in Brazil in 1995 by the Constitutional Amendment No 9 followed by the promulgation of the Law 9.478 of 1997, the 'Law of Oil' and the creation of the Agencia Nacional do Petroleo - ANP, with powers to regulate, recruit and monitor the oil and natural gas industry. The new regulatory framework has established the award granted by the State, through bids organized by the ANP, of the oil and gas exploration and production activities. This new model has established that the offers to purchase blocks must be composed by the Signature Bonus, Minimum Exploration Program and percentages of Local Content for the stages of exploration and development of production. As a result of market opening and the completion of bids over these 10 years, there has been a significant expansion of investment in the industry, revealing that the demands of Local Content rightly acted as a strong mechanism inducing the participation of local industry supplier of goods and services. In practical terms, in 1997 the participation of the sector of oil and gas in the Brazilian GDP was approximately 2.5% and now comes to 10.5%, or each R$ 100.00 generated in the country, R$ 10.50 come from the sector of oil and gas. (author)

  9. Western Australian natural gas

    International Nuclear Information System (INIS)

    Harman, Frank

    1994-01-01

    Western Australia has 80% of Australia's natural gas resources. These are currently exploited to supply the Western Australian market and LNG to Japan. Growth in the market is dependent on limited prospects for power generation and mineral resource processing. Future exploitation of gas resources will require new export LNG markets and/or the installations of a transcontinental pipeline to eastern Australia. The transcontinental option should only be considered after other options for energy supply in eastern Australia are eliminated. Competition to meet market growth in North-east Asia will be considerable and Australia lacks the policies to underpin future LNG capacity. (author)

  10. Catalytic hydrothermal gasification of biomass for the production of synthetic natural gas[Dissertation 17100

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M H

    2007-07-01

    Energy from biomass is a CO{sub 2} neutral, sustainable form of energy. Anaerobic digestion is an established technology for converting biomass to biogas, which contains around 60% methane, besides CO{sub 2} and various contaminants. Most types of biomass contain material that cannot be digested; in woody biomass, this portion is particularly high. Therefore, conventional anaerobic digestion is not suited for the production of biogas from woody biomass. While wood is already being converted to energy by conventional thermal methods (gasification with subsequent methanation), dung, manure, and sewage sludge represent types of biomass whose energy potential remains largely untapped (present energetic use of manure in Switzerland: 0.4%). Conventional gas phase processes suffer from a low efficiency due to the high water content of the feed (enthalpy of vaporization). An alternative technology is the hydrothermal gasification: the water contained within the biomass serves as reaction medium, which at high pressures of around 30 MPa turns into a supercritical fluid that exhibits apolar properties. Under these conditions, tar precursors, which cause significant problems in conventional gasification, can be solubilized and gasified. The need to dry the biomass prior to gasification is obsolete, and as a consequence high thermal process efficiencies (65 - 70%) are possible. Due to their low solubility in supercritical water, the inorganics that are present in the biomass (up to 20 wt % of the dry matter of manure) can be separated and further used as fertilizer. The biomass is thus not only converted into an energy carrier, but it allows valuable substances contained in the biomass to be extracted and re-used. Furthermore, the process can be used for aqueous waste stream destruction. The aim of this project at the Paul Scherrer Institute was to develop a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously

  11. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Science.gov (United States)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  12. European key issues concerning natural gas: Dependence and vulnerability

    International Nuclear Information System (INIS)

    Reymond, Mathias

    2007-01-01

    Due to the high demand for natural gas from emerging countries and because natural gas has become an increasingly valuable resource is electricity production, natural gas demand should increase. This paper re-examines the geopolitical key issues related to natural gas as well as the uneven distribution of natural gas resources on a worldwide scale. This paper proposes to define the significance of liquefied natural gas in gas exchanges and it analyses the problem of European gas vulnerability using several indicators

  13. Natural gas industry competitiveness study

    International Nuclear Information System (INIS)

    1999-09-01

    A national study on the competitiveness of the natural gas industry was undertaken by the BC Oil and Gas Commission in cooperation with, and with the encouragement of the Canadian Association of Petroleum Producers (CAPP). The objective of the study was to compare the cost competitiveness of natural gas exploration , production, gathering and processing in British Columbia to the costs of the same processes in Alberta. The study was carried out by building an 'expected case' for each gas producing area in British Columbia and Alberta by averaging past events in such specific areas as pool sizes, production profiles, loads, drilling success rates, gas compositions, land, drilling, exploration and production/gathering costs, third party production/gathering and processing fees and abandonment costs; by constructing a cash flow model for each case, calculating unit cost, and ranking cases. The report provides the details of the methodology, displays the results of the investigation in graphical form, comments on the results factoring in also labour costs and cost differences due to resource characteristics, identifies some trends such as an increase in the proportion of connections to smaller plants, and provides suggestions for improvements

  14. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • A novel coal and coke-oven gas to SNG (CGtSNG) process is proposed. • Energy efficiency of CGtSNG increases 8% compared to coal-to-SNG process. • CGtSNG reduces 60% CO_2 emission and 72% effluent discharge. • CGtSNG proposes an idea of using redundant coke-oven gas for producing SNG production. - Abstract: There was a rapid development of coal to synthetic natural gas (SNG) projects in the last few years in China. The research from our previous work and some other researchers have found coal based SNG production process has the problems of environmental pollution and emission transfer, including CO_2 emission, effluent discharge, and high energy consumption. This paper proposes a novel co-feed process of coal and coke-oven gas to SNG process by using a dry methane reforming unit to reduce CO_2 emissions, more hydrogen elements are introduced to improve resource efficiency. It is shown that the energy efficiency of the co-feed process increases by 4%, CO_2 emission and effluent discharge is reduced by 60% and 72%, whereas the production cost decreases by 16.7%, in comparison to the conventional coal to SNG process. As coke-oven gas is a waste gas in most of the coking plant, this process also allows to optimize the allocation of resources.

  15. The utilization of natural gas in the electricity production through fuel cell; A utilizacao do gas natural na geracao distribuida atraves de celulas combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi Junior, Paulo

    2004-07-01

    In function of the necessity of electric energy as input of vital importance for the development of the country, this work aims at to offer plus an energy alternative for Brazil. The exploitation of the natural gas reserves recently discovered can be made through modern methods that give as priority the distributed generation and the low ambient impact. All these aspects can be gotten with the use of fuel cell, working with the remodelled natural gas. Increased to the factor of a low ambient impact in the proper generation, the project suggests that the generating source can be located next the consumer, diminishing still more the problems generated for transmission lines, fuel transport, etc. The fuel cell has received a great attention in the international community and some models, some already in commercial period of training, they have shown excellent possibilities of capsize to be one of the future technologies in the generation of electric energy with low ambient impact. (author)

  16. Making sure natural gas gets to market

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    The role of natural gas in power generation was discussed with reference to price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. 13 figs

  17. Impacts of seasonality on hydrogen production using natural gas pressure letdown stations. Paper no. IGEC-1-083

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, D.

    2005-01-01

    One of the difficulties associated with the development of a hydrogen economy is the creation of a supply infrastructure. A means for distributed hydrogen generation through a process using the exergy in high pressure natural gas streams has been proposed. The system recovers energy via expansion of natural gas through a turbo-expander at existing pressure reduction systems. Generated electric power is then used to drive an electrolyzer and create hydrogen. A model of the process is used to determine production rates for electricity and hydrogen given flow data for a number of pressure letdown sites in BC. Like many traditional renewable energy sources, most letdown stations have strong annual variations in flow conditions. Annual variations in stream flow rate, inlet pressure and inlet temperature can greatly affect hydrogen production rates. In the model, component efficiencies are scaled for operation at part-load, or away from optimum design conditions. Results indicate a significant reduction in predicted hydrogen production rates as compared to installed component name-plate capacity. Operating the system with a 'grid-tie' can increase the capacity factor, but economic viability will depend on local electricity and natural gas prices. (author)

  18. Assessment of natural hydrocarbon bioremediation at two gas condensate production sites

    International Nuclear Information System (INIS)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M.; Trent, G.L.; Brown, D.R.; Sublette, K.L.

    1995-01-01

    Condensate liquids are present in soil and groundwater at two gas production sites in the Denver-Julesburg Basin operated by Amoco. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores strongly suggest that intrinsic bioremediation is occurring at these sites by multiple pathways, including aerobic oxidation, Fe(III) reduction, and sulfate reduction

  19. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Maria Cecilia Bravo

    2006-06-30

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  20. Business cycles and natural gas prices

    International Nuclear Information System (INIS)

    Apostolos, S.; Asghar, S.

    2005-01-01

    This paper investigates the basic stylised facts of natural gas price movements using data for the period that natural gas has been traded on an organised exchange and the methodology suggested by Kydland and Prescott (1990). Our results indicate that natural gas prices are procyclical and lag the cycle of industrial production. Moreover, natural gas prices are positively contemporaneously correlated with United States consumer prices and lead the cycle of consumer prices, raising the possibility that natural gas prices might be a useful guide for US monetary policy, like crude oil prices are, possibly serving as an important indicator variable. (author)

  1. Annual survey 2013 - Natural gas in the World 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The 2013 Edition of 'Natural Gas in the World' by CEDIGAZ is built on CEDIGAZ's unique natural gas statistical database. This 170-page study, published since 1983, provides an in-depth analysis of the latest developments in the gas markets along with the most complete set of statistical data on the whole gas chain covering close to 130 countries. Topics covered by Natural Gas in the World 2013 include: proved natural gas reserves; unconventional gas status in the world; gross and marketed natural gas production; the international gas trade; existing and planned underground gas storage facilities in the world; natural gas consumption; natural gas prices

  2. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    Science.gov (United States)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production

  3. Western Pacific liquefied natural gas

    International Nuclear Information System (INIS)

    Woronuk, R.

    2004-01-01

    WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, liquefied natural gas (LNG) and economic optimization. This presentation addressed issues facing their proposed construction of an LNG terminal and associated facilities on the west coast of Canada. It presented pie charts comparing world gas reserves with production. NPC gas price projects and WestPac gas cost estimates were also presented. It was noted that an unprecedented growth in LNG imports to North America is essential and that LNG will be the lowest price major source of natural gas supply. Maps illustrating LNG sources and receiving terminals were also presented along with solutions to the not-in-my-back-yard (NIMBY) syndrome. Solutions include selecting locations where communities are pro-development, where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG to Prince Rupert were discussed in terms of serving energy markets, direct provincial benefits, and LNG/power generation synergies. figs

  4. Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH)

    International Nuclear Information System (INIS)

    Nogami, T.; Oya, N.; Ishida, H.; Matsumoto, H.

    2008-01-01

    Recent studies in Japan have suggested that natural gas hydrate (NGH) transportation of natural gas is more economical than liquefied natural gas (LNG) transportation systems for small, medium and remote gas fields. Researchers in Japan have built a 600 kg per day NGH production and pelletizing plant and regasification facility. This paper discussed feasibility studies conducted in southeast Asia to determine the unit's commercialization potential with large natural gas-related businesses including shipping companies and electric power utilities. The total supply chain was compared with the corresponding liquefied natural gas (LNG) and compressed natural gas (CNG) supply chains. The study also examined natural gas reserves, energy policies, the positioning of natural gas supplies, and future forecasts of natural gas demand. A conceptual design for an NGH supply chain in Indonesia was presented. Results of the study have demonstrated that the NGH chain is an appropriate and economically feasible transportation method for many areas in southeast Asia. 8 refs., 10 figs

  5. The golden age of natural gas

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The experts of energy policy agree to predict a brilliant future for natural gas. Among fossil energies, natural gas produces the least quantity of CO 2 . Geological reserves are estimated to 65 years for gas and 43 years for petroleum. Throughout the world, industrial infrastructures of gas production, transport and distribution are being developed, for instance 430000 km of gas pipeline are planned. In western Europe half the increase of gas demand by 2010 will be due to electricity production. Innovative techniques using natural gas are studied in various fields: cogeneration, transport, urban heating and fuel cells. The gas-fed fuel cell is based on a reversed electrolysis: hydrogen produced by the decomposition of natural gas interacts with oxygen and yields electricity. (A.C.)

  6. Natural gas in Latin America

    International Nuclear Information System (INIS)

    1997-01-01

    Despite having proven reserves equal to that of North America, natural gas has traditionally played a minor role in the energy policies of Latin American countries, being considered secondary to oil. There has, therefore, been a neglect of the sector with a resultant lack of an adequate infrastructure throughout the region, perhaps with the exception of Argentina. However, with a massive increase in energy demand, growing concerns with environmental matters and a need to reduce the massive pollution levels in major cities in the region, natural gas is forecast to play a much greater role in Latin America's energy profile, with final consumption forecast to rise at 5.4% per annum for the next 15 years. This book assesses both the development of the use of natural gas in the power industrial sector and proposals for its growth into the residential, commercial and transport sectors. It analyses the significant investment required and the governments' need to turn to the private sector for investment and innovation. Natural Gas in Latin America analyses the possibilities and pitfalls of investing in the sector and describes the key trends and issues. It analyses all aspects of the gas industry from exploration and production to transportation and distribution to end users. (Author)

  7. Conceptual design and system analysis of a poly-generation system for power and olefin production from natural gas

    International Nuclear Information System (INIS)

    Qian Yu; Liu Jingyao; Huang Zhixian; Kraslawski, Andrzej; Cui Jian; Huang Yinlun

    2009-01-01

    In this paper, a novel poly-generation system for olefin and power production from natural gas is proposed, which integrates hydrocarbon production and the combined cycle power generation. Economic and technological evaluation based on the internal rate of return (IRR) and exergy efficiency is performed. The energy integration results in the proposed poly-generation system for simultaneous production of chemical products (ethylene and propylene) and electricity being more thermodynamically efficient and economically viable than single purpose power generation and chemical products production plants. IRR and exergy efficiency of the proposed poly-generation system are higher than that of natural gas methanol to olefin (NGMTO) system, 18.9% and 49.9%, respectively. The biggest exergy destruction segments, their causes, and possible measures for improvement are investigated simulation and thermodynamic analysis. To analyze the effect of unreacted syngas recycle on the exergy efficiency and economic gains from the proposed poly-generation system, its thermoeconomic optimization model is built by combining economic with thermodynamic analysis. Optimization analysis shows that when 78% of the unreacted syngas is recycled back to the reactor in the methanol synthesization process, the thermoeconomic performance of the poly-generation system is at its optimum.

  8. Characterization of VOCs Emissions from Industrial Facilities and Natural Gas Production Sites: A Mobile Sensing Approach

    Science.gov (United States)

    Zhou, X.; Gu, J.; Trask, B.; Lyon, D. R.; Albertson, J. D.

    2017-12-01

    With the recent expansion of U.S. oil and gas (O&G) production, many studies have focused on the quantification of fugitive methane emissions. However, only a few studies have explored the emissions of volatile organic compounds (VOCs) from O&G production sites that affect human health in adjacent communities, both directly through exposure to toxic chemical compounds and indirectly via formation of ground-level ozone. In this study, we seek to quantify emissions of VOCs from O&G production sites and petrochemical facilities using a mobile sensing approach, with both high-end analyzers and relatively low-cost sensors. A probabilistic source characterization approach is used to estimate emission rates of VOCs, directly taking into account quantitative measure of sensor accuracy. This work will provide data with proper spatiotemporal resolution and coverage, so as to improve the understanding of VOCs emission from O&G production sites, VOCs-exposure of local communities, and explore the feasibility of low-cost sensors for VOCs monitoring. The project will provide an important foundational step to enable large scale studies.

  9. Natural gas in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The Indian gas market is expected to be one of the fastest growing in the world over the next two decades. This paper analyses this market, highlighting the current challenges. It first looks at the industry structure, presents the main players from industry as well as government, and gives an overview of the regulatory framework. The issue of pricing remaining crucial for both upstream and downstream development, the paper looks at both supply -- domestic production and LNG imports -- and demand.

  10. Effect of Colombian coal rank and its feeding technology on substitute natural gas production by entrained gasification

    Directory of Open Access Journals (Sweden)

    Juan Fernando Pérez-Bayer

    2016-01-01

    Full Text Available The effect of coal rank (from sub-bituminous to semi-anthracite and type of fuel feeding technology (slurry and dry on the production of substitute natural gas (SNG in entrained flow gasifiers is studied. Ten coals from important Colombian mines were selected. The process is modeled under thermochemical equilibrium using Aspen Plus, and its performance is evaluated in function of output parameters that include SNG heating value, Wobbe index, coal conversion efficiency, cold gas efficiency, process efficiency, global efficiency, and SNG production rate, among others. In descending order, the coal-to-SNG process improves energetically with the use of coals with: higher volatile-matter to fixed-carbon ratio, lower ash content, higher C+H/O ratio, and higher coal heating value. The overall energy efficiency of the slurry-feed technology (S-FT to produce SNG by gasification is 17% higher than the dry-feed technology (D-FT, possibly as a consequence of the higher CH4 concentration in the syngas (around 7 vol. % when the coal is fed as aqueous slurry. As the simulated SNG meets the natural gas (NG quality standards in Colombia, the substitute gaseous fuel could be directly transported through pipelines. Therefore, the coal-to-SNG process is a technically feasible and unconventional alternative for NG production.

  11. Natural gas powered bus

    International Nuclear Information System (INIS)

    Ambuehl, D.; Fernandez, J.

    2003-01-01

    This report for the Swiss Federal Office of Energy presents the results of a project carried out by the Swiss Federal Institute of Technology in Zurich to evaluate the performance of a natural-gas-powered bus in comparison with two diesel buses. The report provides details on the vehicles, their routes and the results of interviews made with both passengers and drivers. Details of measurements made on fuel consumption and pollutant emissions are presented in tabular and graphical form, as are those made on noise emissions inside and outside the vehicles. The conclusions of the project are presented including economic aspects of using gas as a motor fuel. Also, the views of passengers, who were more concerned with comfort aspects, and drivers, who were more interested in technical aspects, are quoted

  12. Natural gas: redistributing the economic surplus

    International Nuclear Information System (INIS)

    Oliveira, A. de; Pinto Junior, H.Q.

    1990-01-01

    The natural gas has a limited role in the Brazilian energy balance. This role in industrial countries and some developing countries is much more important. Historically this contrasting situation can be explained by the limited natural gas reserves Brazil used to have. Since the oil crisis however the Brazilian natural gas reserves increased substantially without a similar increase in the role of natural gas in the energy balance. The existing institutional arrangement generates a struggle for the economic rent generated by natural gas production and consumption that seems to be at the core of this question. Our paper estimates the economic rent generated by natural gas in Brazil and its distribution among producers and consumers: it points toward a new institutional arrangement that could arguably, generate a new role for the natural gas in the Brazilian energy balance. (author)

  13. Who's afraid of natural gas?

    International Nuclear Information System (INIS)

    Patterson, W.

    1999-01-01

    Changes in our electricity systems provoked by natural gas power generation technology are paving the way for large-scale renewables use in the future. Natural gas and gas turbines are now such a cheap and easy option for electricity generation that they appear to cast a pall over renewables. The market share of gas-fired generation continues expanding inexorably. Its cost continues to fall, setting renewables an ever more demanding competitive target. Nevertheless, paradoxical though this may sound, natural gas is actually the natural ally of renewables. Despite the fierce competitive challenge it represents, natural gas may even be the most important single factor shaping a bright future for renewables. (author)

  14. Natural gas and electricity convergence

    International Nuclear Information System (INIS)

    Calger, C.

    1998-01-01

    Convergence between the gas and electricity industries was described as a means for creating an increasingly more efficient energy market where prices and fundamental relationships exist between gas and electricity. Convergence creates new opportunities for producers and consumers. Convergence will likely lead to the disaggregation of the electricity and gas industry into segments such as: (1) power generation and production, (2) transmission wires and pipelines, (3) wholesale merchants, (4) distribution wires and pipelines, and (5) retail marketing, services and administration. The de-integration of integrated utilities has already begun in the U.S. energy markets and retail open access is accelerating. This retail competition will create very demanding customers and the changing risk profile will create new issues for stakeholders. The pace of reform for the telecommunications, airlines, natural gas and electricity industries was graphically illustrated to serve as an example of what to expect. The different paths that the industry might take to deregulation (aggressively embrace reform, or defensively blocking it), and the likely consequences of each reaction were also described. A map indicating where U.S. electric and natural gas utility merger and acquisition activities have taken place between 1994-1997, was included. Another map showing the physical asset positions of the Enron grid, one of the largest independent oil and gas companies in the U.S., with increasing international operations, including an electric power transmission and distribution arm, was also provided as an illustration of a fully integrated energy market company of the future. 9 figs

  15. Natural gas liquids: market outlook

    International Nuclear Information System (INIS)

    Heath, M.

    1996-01-01

    Future market outlook for natural gas liquids was discussed. It was shown that Canadian natural gas and natural gas liquid (NGL) production levels have experienced extraordinary growth over the past few years due to an increased U.S. demand for Canadian natural gas. Recent supply and demand studies have indicated that there will be growing surpluses of NGLs in Canada. By 1996, the majority of NGL surplus that is forecast to be available is ethane (64%), followed by propane (22%), butane (12%) and pentane plus (2%). Throughout the forecast period, the ratio of incremental ethane to the total NGL surplus, over and above forecast demand, was expected to continue to rise. The viability of producing and processing that ethane and transporting it to market, will be crucial. Development of a large ex-Alberta C2+ pipeline from Empress to Mont Belvieu under the reference case supply projection is a possibility, but only if total tariff and fractionation charge on the line is less than or equal to 10 US cents/USG (currently 16-22 US cents/USG). 11 figs

  16. Natural gas for vehicles (NGV)

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities. (author)

  17. Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission

    Science.gov (United States)

    Steinberg, M.; Dong, Yuanji

    1993-10-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

  18. Production of unconventional natural gas. Risks and opportunities of fracking; Foerderung von unkonventionellem Erdgas. Risiken und Chancen des Fracking

    Energy Technology Data Exchange (ETDEWEB)

    Toepfer, Frank-Rainer; Kreutz, Giannina [Baker und McKenzie, Berlin (Germany)

    2013-07-15

    Through its legislation for the promotion of electricity production from renewable resources and the nuclear phase-out the German Federal Republic has taken decisive steps in orienting its energy policy towards the envisioned energy turnaround. Production of natural gas from unconventional natural gas sources could assist in implementing this policy while at the same time improving Germany's energy self-sufficiency. After intensive discussions in the public arena as well as in expert rounds the Federal Ministers of the Environment and of Economic Affairs have agreed on a draft for an ordinance on the exploitation of unconventional gas resources by means of hydraulic fracturing (fracking). On sober analysis of the risks and opportunities involved in this technology one obtains an overall picture which, taking into account the differentiated view it affords on the various aspects involved, ultimately reveals that, on condition of strict compliance with the necessary requirements, for all the risks associated with it fracking is a viable option for Germany.

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  20. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  1. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  2. Natural gas pricing: concepts and international overview

    Energy Technology Data Exchange (ETDEWEB)

    Gorodicht, Daniel Monnerat [Gas Energy, Rio de Janeiro, RJ (Brazil); Veloso, Luciano de Gusmao; Fidelis, Marco Antonio Barbosa; Mathias, Melissa Cristina Pinto Pires [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The core of this article is a critical analysis of different forms of pricing of natural gas existing in the world today. This paper is to describe the various scenarios of natural gas price formation models. Along the paper, the context is emphasized by considering their cases of applications and their results. Today, basically, there are three main groups of models for natural gas pricing: i) competition gas-on-gas, i.e., a liberalized natural gas market, II) gas indexed to oil prices or its products and III) bilateral monopolies and regulated prices. All the three groups of models have relevant application worldwide. Moreover, those are under dynamic influence of economic, technological and sociopolitical factors which bring complexity to the many existing scenarios. However, at first this paper builds a critical analysis of the international current situation of natural gas today and its economic relevance. (author)

  3. Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle

    International Nuclear Information System (INIS)

    Dong, Hui; Zhao, Liang; Zhang, Songyuan; Wang, Aihua; Cai, Jiuju

    2013-01-01

    Cryogenic generation is one of the most important ways to utilize cold energy during LNG (liquefied natural gas) regasification. This paper fundamentally investigates LNG cryogenic generation with the Stirling cycle method based on previous studies. A basic process of LNG cryogenic generation with the Stirling cycle was presented initially with seawater and LNG as heat source and heat sink. And its thermodynamic analysis was performed to verify the theoretical feasibility of the Stirling cycle method. The generating capacity, the exergy efficiency and the cold energy utilization efficiency of the basic process were also calculated. Subsequently, the influences of evaporation pressure on net work, equipment performance and comprehensive efficiency of cold energy utilization were discussed and the effect of LNG mass flow as well as the ambient temperature was also studied. Finally an improved process of LNG cryogenic generation with Stirling cycle method combined with an air liquefaction process is proposed as feasibility in improvements of the basic process. - Highlights: • We propose a basic process of LNG cryogenic generation with the Stirling cycle. • Seawater and LNG were applied as heat source and heat sink of the basic process. • The max generating capacity of the basic process is 51 kWh/tLNG. • The max cold energy utilization efficiency of the basic process is 0.56. • We also discussed some feasibilities of optimization of the basic cycle

  4. Determination of N-containing halogenated natural products using gas chromatography in combination of a nitrogen-phosphorus-detector

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, J.; Vetter, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmittelchemie

    2004-09-15

    In the last few years several nonpolar halogenated natural products (HNPs) such as Q1, MHC-1, BC-2, BC-3, BC-10 were detected at elevated concentrations in marine biota samples. In addition, there are still some abundant peaks of halogenated compounds frequently found in the gas chromatograms of many marine samples which have not yet been identified. Some of the known halogenated natural products (Q1, HDBPs including BC-10, bromoindoles) contain N-heterocyclic backbones. Since nitrogen is scarcely found in anthropogenic halogenated compounds, the detection of N-containing halogenated substances may be used as a first indicator for the presence of HNPs in a sample extract. In the presented method we studied the suitability of a nitrogen phosphorous detector (NPD) for quantification of Q1 and the detection of Ncontaining compounds in marine biota. Analyses were accompanied with GC/ECD analyses.

  5. North American natural gas price outlook

    International Nuclear Information System (INIS)

    Denhardt, R.

    1998-01-01

    Issues regarding future natural gas prices for North America were discussed. Various aspects of the issue including the relationship between storage, weather and prices, received attention. It was noted that strong demand-growth will be needed to support near-term Canadian export increases without price declines. The issue of Gulf Coast production was also discussed. Power generation using natural gas as fuel is expected to support strong growth in the demand for natural gas. tabs., figs

  6. Wood and natural gas as fuels for tunnel kilns in the clay-product industry; Serragem e gas natural como fontes energeticas em fornos tuneis na industria ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gabriel M. dos; Bazzo, Edson; Nicolau, Vicente de P.; Oliveira, Amir A.M. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica]. E-mails: mann@emc.ufsc.br; ebazzo@emc.ufsc.br; vicente@lmpt.ufsc.br; amirol@emc.ufsc.br

    2000-07-01

    The clay-product industry is responsible to large part of the thermal energy consumption, especially on drying and burning process. In spite of the success obtained with the burning of wood like principal fuel for tunnel kilns, the clay-product industries of Santa Catarina have looked for alternatives to substitute it. The interest appears especially due to imminent shortage of the wood on the market and due to possibility of use natural gas as a good and environmentally favorable alternative to reduce the energy specific consumption of the kilns, to increase the production and to improve the quality of the ceramic products. Nowadays, the natural gas is more expensive when compared with the wood. However, we believe that additional studies can place this fuel as a viable alternative to the clay-product industries. (author)

  7. Natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, A I; Vasiliev, Y N; Jankiewicz, A [VPO ' Soyuzgastekhnologiya' All-Union Scientific Research Inst. of Natural gases (VNIIGAS) (SU)

    1990-02-01

    The review presented covers mass production of gas-petrol and gas-diesel automobiles in the USSR, second generation auto gas filling compressor stations, principal exhaust toxicants, and tests indicating natural gas fired autos emit >5 times less NO{sub x} and 10 times less hydrocarbons excluding methane. The switch over to gas as auto fuel and ensuing release of petrol and diesel for other uses are discussed. (UK).

  8. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  9. Natural gas in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Grabarczyk, Ewa; McCallum, Robert; Wergeland, Tor H

    1994-12-31

    The paper is based on Ewa Grabarczyk`s thesis ``The European Gas Market and the Former East Block Countries`` in the Master of International Business Programme at the Norwegian School of Economics and Business Administration. The material of Grabarczyk`s work has been split into two parts; SNF Working Papers Nos. 97/93 and 98/93. Working Paper 97/93 ``The European Gas Markets`` contains an equilibrium model of the European Gas Market employed to investigate some scenarios to the consequences of an integration of the former Soviet Union. Working Paper 98/93 ``Natural Gas in Eastern Europe`` contains descriptions of the energy sectors of former Eastern European countries and an evaluation of the potential future demand for natural gas in these nations. The paper has chapters on each country and sections on reserves, production, exports and markets, transport possibilities and technology, demand and development as well as evaluation of the present situation. 11 figs., 37 tabs., 33 refs

  10. How to add value to a generic product on the natural gas market

    International Nuclear Information System (INIS)

    Thorborg, L.

    1999-01-01

    The subject of the deregulated gas market continues to stir the blood. It's the 'leitmotif' of lecturers, discussions and professional journals. And of the Circle Day for members of the Royal Dutch Gas Association (KVGN). A representative of a supermarket chain discussed with the participants of the meeting the possibility of selling gas at the supermarket. The Head of Corporate marketing of British Gas warned the Dutch gas distributors against switching customer. The general manager of EnTrade strongly advocated a really deregulated gas market. During the morning session featuring 'Millennium and marketing' a marketing consultant already pointed at the new attitude that is necessary in the free market: 'Use the turn of the millennium to practice cuddling your customers. Take away your customer's fears that they will be without heating on 1 January 2000'

  11. Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Vidic, Radisav [Univ. of Pittsburgh, PA (United States)

    2015-01-24

    This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desired water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²⁺ and Sr²⁺ in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be

  12. Environmental guidance documents for exploration, development, Production, and transportation of crude oil and natural gas in texas: Quarterly technical report, January 1, 1997-March 31, 1997

    International Nuclear Information System (INIS)

    Savage, L.

    1997-01-01

    The following technical report provides a detailed status report of the DOE grant project entitled ''Environmental Guidance Documents for Exploration, Development, Production, and Transportation of Crude Oil and Natural Gas in Texas.'' The grant funding allocated is for the purpose of provided the Railroad Commission of Texas (Commission) with resources and capabilities to draft, publish and distribute documents that provide guidance to oil and gas operators on issues concerning oil and gas naturally occurring radioactive material (NORM) waste, oil and gas hazardous waste, remediation of crude oil spills, management of non-hazardous oil and gas wastes, and mechanical integrity testing of Class II injection and disposal wells

  13. Economic missions. Synthetic file: the petroleum sector in Brazil (exploration and production); the refining activity in Brazil; natural gas in Brazil: a fragile market, inferior to forecasts

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    This dossier prepared by the economic mission of the French embassy in Brazil makes a synthesis of the exploration-production and refining activities of the petroleum industry, and of the natural gas distribution market in Brazil: oil reserves and production, Petrobras company, partnership agreements with Petrobras, legal aspects, concessions, projects financing, refining capacity, refinery projects in progress or under study, para-petroleum market perspectives and opportunities, natural gas market development, pipelines network, gas utilities, privatization and foreign participation, lack of expertise and of gas infrastructures and equipments. (J.S.)

  14. Methane Occurrence in a Drinking Water Aquifer Before and During Natural Gas Production from the Marcellus Shale

    Science.gov (United States)

    Saiers, J. E.; Barth-Naftilan, E.

    2017-12-01

    More than 4,000 thousand wells have punctured aquifers of Pennsylvania's northern tier to siphon natural gas from the underlying Marcellus Shale. As drilling and hydraulic fracturing ramped up a decade ago, homeowner reports of well water contamination by methane and other contaminants began to emerge. Although made infrequently compared to the number of gas wells drilled, these reports were troubling and motivated our two-year, prospective study of groundwater quality within the Marcellus Shale Play. We installed multi-level sampling wells within a bedrock aquifer of a 25 km2 area that was targeted for shale gas development. These wells were sampled on a monthly basis before, during, and after seven shale gas wells were drilled, hydraulically fractured, and placed into production. The groundwater samples, together with surface water samples collected from nearby streams, were analyzed for hydrocarbons, trace metals, major ions, and the isotopic compositions of methane, ethane, water, strontium, and dissolved inorganic carbon. With regard to methane in particular, concentrations ranged from under 0.1 to over 60 mg/L, generally increased with aquifer depth, and, at some sites, exhibited considerable temporal variability. The isotopic composition of methane and hydrocarbon ratios also spanned a large range, suggesting that methane origins are diverse and, notably, shift on the time scale of this study. We will present inferences on factors governing methane occurrence across our study area by interpreting time-series data on methane concentrations and isotopic composition in context of local hydrologic variation, companion measurements of groundwater chemistry, and the known timing of key stages of natural gas extraction.

  15. Combined utilization of biogas and natural gas

    International Nuclear Information System (INIS)

    Jensen, J.; Tafdrup, S.; Christensen, J.

    1997-01-01

    The Danish natural gas network has been established during the past 10 years. Running parallel with this a small but growing production of biogas from centralized biogas plants and landfills has been developed. The annual biogas production is expected to keep growing and increase tenfold in the next 25 year period with a reduction of green house gas emissions as one of the important incentives. The last years' development and expansion of the Danish biogas sector has shown a need for combined utilization of biogas and natural gas. If larger volumes of biogas are present, upgrading and distribution by the natural gas network may be an alternative to combined utilization. (au) 12 refs

  16. Technical economical study of plaster production in a continuous rotate kiln using natural gas; Estudo tecnico-economico do processo de producao de gesso em forno rotativo continuo com uso de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Benachour, M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Santos, Valdemir A. dos [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil); Peres, Luciano dos S. [Instituto de Tecnologia de Pernambuco (ITEP), Recife, PE (Brazil); Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zimmerle, Sergio R.T.S. [Companhia Pernambucana de Gas - COPERGAS, Recife, PE (Brazil)

    2004-07-01

    At Araripe Gypsum Site, Pernambuco State, gypsum is dehydrated to produce plaster using wood and BPF oil as major fuels, which generate serious environmental impacts. Natural gas provides important advantages over conventional fuels. Using this gas improves the thermal efficiency of direct contact process, producing no contamination in final product, also reducing considerably environmental pollution levels. In this scope, a rotate kiln was designed in pilot scale, where was carried out gypsum dehydration tests to produce beta plaster using natural gas. In this work are presented mathematical models to simulate the axial profiles of the gypsum conversion and the gas and solid temperatures on the axial length of the kiln. The mathematical models are used as restrictions to obtention of the operational optimized conditions to a minimum gypsum conversion of the 85%. The simulation results were compared to experimental ones and were obtained a good agreement between both the values. (author)

  17. Liquefied Natural Gas Transfer

    Science.gov (United States)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  18. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  19. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  20. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  1. Natural gas 1998: Issues and trends

    International Nuclear Information System (INIS)

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today's natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs

  2. Natural gas 1998: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  3. The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Peteves, Stathis D.

    2005-01-01

    Carbon sequestration is a distinct technological option with a potential for controlling carbon emissions; it complements other measures, such as improvements in energy efficiency and utilization of renewable energy sources. The deployment of carbon sequestration technologies in electricity generation and hydrogen production will increase the production costs of these energy carriers. Our economic assessment has shown that the introduction of carbon sequestration technologies in Europe in 2020, will result in an increase in the production cost of electricity by coal and natural gas technologies of 30-55% depending on the electricity-generation technology used; gas turbines will remain the most competitive option for generating electricity; and integrated gasification combined cycle technology will become competitive. When carbon sequestration is coupled with natural-gas steam reforming or coal gasification for hydrogen production, the production cost of hydrogen will increase by 14-16%. Furthermore, natural-gas steam reforming with carbon sequestration is far more economically competitive than coal gasification

  4. Natural gas situation between 1970 and 1984

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, H; Trillhose, A

    1986-03-01

    Trends in production, consumption, reserves, international trade, and transport of natural gas are described and illustrated by tables. Natural gas today contributes about 20% to the total primary energy supply worldwide. The construction of two new pipelines is being planned, from Jamburg and Jakutsk to Japan via Sachalin.

  5. Liberalising the European natural gas market

    International Nuclear Information System (INIS)

    Mulder, M.

    2002-01-01

    Europe's natural gas market is changing radically. The several national markets dominated by monopolistic suppliers are integrating into one European market in which production and trade are subject to competition, while transport through the networks will be unbundled and placed under regulatory influence. What will be the consequences of these changes on natural gas prices, supply security and the environment?

  6. Green gas in the natural gas network

    International Nuclear Information System (INIS)

    Bruinsma, B.

    2007-09-01

    The aim of this study is to map the technical, economic and organizational options and limitations of feeding biogas back into the natural gas grid by means of regional co-digestion. Emphasis is put on feeding back into the natural gas grid, analogous to a comparable situation in a number of landfill gas projects. This report first provides insight into the energetic potential of co-digestion. Next several landfill gas projects are examined that feed back into the natural gas grid. After that the political and policy-related issues and preconditions for feeding back biogas from co-digestion are discussed, including the technical and economic aspects. Finally, a picture is painted of the future potential of green gas. [mk] [nl

  7. Africa’s Booming Oil and Natural Gas Exploration and Production: National Security Implications for the United States and China

    Science.gov (United States)

    2013-12-01

    natural gas have also increased, on net, the environmental component of energy security. While hydraulic fracking , for example, car- ries risks of...tion, or “ fracking .” South Africa had awarded Shell a technical cooperation permit in 2009 to determine the Karoo’s natural gas potential, and the

  8. Origin of natural gas; Tennen gas no kigen

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Y. [The Institute of Applied Energy, Tokyo (Japan)

    1996-03-20

    Natural gas, which is a general term of flammable hydrocarbon gases such as methane, is classified by origin into the following categories : (1) oil field gas (oil gas), (2) aquifers (bacteria-fermented methane), (3) coal gas (coal field gas), and (4) abiogenetic gas. The natural gas which has (1-4) origins and is now used as resource in a large quantity is (1) oil field gas. This gas is a hydrocarbon gas recovered in the production process of petroleum and contains components such as ethane, propane and butane. To the contrary, (2) aquifers and (3) coal gas have methane as main component. As (4) abiogenetic methane, there are gas formed in inorganic reaction in activities of submarine volcanos and deep gas (earth origin gas). Oil field gas has kerogen origin. Aquifers were formed by fermentation of organic matters. Coal gas was formed by coalification of vitrinite. As abiogenetic methane, there are inorganic reaction formation gas and deep gas, the latter of which exists little as resource. 7 refs., 11 figs., 1 tab.

  9. Natural gas and Brazilian energetic matrix; Gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Ricardo Luchese de [White Martins S.A., Rio de Janeiro, RJ (Brazil)

    1997-07-01

    Recent projection of the market in global scale shows a tendency in natural gas using replacing mostly the fuel oil. Its market share well increase from 21.1% in 1994 to 24.0% in 2010. The annual energetic use will reach 29.23 x 10{sup 9} Gcal in 2010 (8990 million Nm{sup 3} natural gas/day) versus 18.90 x 10{sup 9} Gcal in 1994 (5810 million Nm{sup 3} natural gas/day). For Brazil, its consumption will increase from 8.7 million Nm{sup 3} natural gas/day in 1994 to 35.9 million Nm{sup 3} natural gas/day in 2010. Projects like Brazil-Bolivia natural gas pipeline, will supply 18 million Nm{sup 3} natural gas/day, which expected to start-up before the year 2000. This projects will supply the Brazilian southern regions, that do not consume natural gas at the current moment. Although there are many different kind of natural gas consumption in the industry this paper presents the technical and economical estimate of the injection in the blast furnace operating with coke or charcoal. The process simulation is done assisted by math modeling developed by White Martins/Praxair Inc. (author)

  10. Natural gas consumption and economic growth: Are we ready to natural gas price liberalization in Iran?

    International Nuclear Information System (INIS)

    Heidari, Hassan; Katircioglu, Salih Turan; Saeidpour, Lesyan

    2013-01-01

    This paper examines the relationship between natural gas consumption and economic growth in Iran within a multivariate production model. We also investigate the effects of natural gas price on its consumption and economic growth using a demand side model. The paper employs bounds test approach to level relationship over the period of 1972–007. We find evidence of bidirectional positive relationship between natural gas consumption and economic growth in short-run and long-run, based on the production model. The findings also suggest that real GDP growth and natural gas have positive and negative impacts on gross fixed capital formation, respectively. Employment, however, was found to have negative but insignificant impact on gross fixed capital formation. Moreover, the estimation results of demand side model suggest that natural gas price has negative and significant impact on natural gas consumption only in the long-run, though there is insignificant impact on economic growth. These results imply that the Iranian government's decision for natural gas price liberalization has the adverse effects on economic growth and policy makers should be cautious in doing this policy. - Highlights: • Iran has been considered as a major natural gas producer in the world. • This paper examines the relationship between gas consumption and growth in Iran. • Positive impact of gas consumption on growth has been obtained. • The paper finds that gas consumption and income reinforce each other in Iran. • Natural gas price has also negative and significant impact on natural gas consumption in Iran

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  16. Finland's leading natural gas company

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The ownership structure of Finland's leading natural gas company, Gasum, changed fundamentally in 1999, and the company is now no longer a subsidiary of Fortum Corporation. 'Our new strong and broad ownership base will enable us to develop the natural gas business and pipeline network in Finland in response to the requirements of our Finnish customers', says Antero Jaennes, Gasum's Chairman and CEO, who stresses that Gasum is committed to remaining the leading developer of the Finnish natural gas market and the number-one gas supplier. Natural gas usage in Finland in 1999 totalled 3.9 billion m 3 (38.7 TWh), unchanged from 1998. Natural gas accounted for 11% of Finland's total primary energy need, as it did in 1998. The proportion of natural gas used in district heating rose by 2% to 36%, and moved down 2% in power generation to 10%. Industry's use of natural gas fell 1% to 17%. 75% of natural gas was used in combined heat and power (CHP) generation in industry and district heating. In 2000, Gasum expects to sell 4 billion m 3 of natural gas (40 TWh)

  17. Canadian natural gas price forecast

    International Nuclear Information System (INIS)

    Jones, D.

    1998-01-01

    The basic factors that influenced NYMEX gas prices during the winter of 1997/1998 - warm temperatures, low fuel prices, new production in the Gulf of Mexico, and the fact that forecasters had predicted a mild spring due to El Nino - were reviewed. However, it was noted that for the last 18 months the basic factors had less of an impact on market direction because of an increase in Fund and technical trader participation. Overall, gas prices were strong through most of the year. For the winter of 1998-1999 the prediction was that NYMEX gas prices will remain below $2.00 through to the end of October 1998 because of high U.S. storage levels and moderate temperatures. NYMEX gas prices are expected to peak in January 1999 at $3.25. AECO natural gas prices were predicted to decrease in the short term because of increasing levels of Canadian storage, and because of delays in Northern Border pipeline expansions. It was also predicted that AECO prices will peak in January 1999 and will remain relatively strong through the summer of 1999. tabs., figs

  18. Life cycle assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid

    International Nuclear Information System (INIS)

    Jury, Colin; Benetto, Enrico; Koster, Daniel; Schmitt, Bianca; Welfring, Joelle

    2010-01-01

    The use of renewable energy is a possible solution to reduce the contribution to climate change of human activities. Nevertheless, there is much controversy about the non-climate related environmental impacts of renewable energy as compared to fossil energy. The aim of this study is to assess a new technology of biomethane production by monofermentation of cultivated crops. Based on the results of an attributional Life Cycle Assessment (LCA), the contribution to climate change of biomethane production and injection into the grid is 30-40% (500a time horizon) or 10-20% (100a) lower than the contribution of natural gas importation. The reduction depends mainly on the biogas yield, the amount of readily available nitrogen in the digestate and the type of agricultural practices. Nevertheless, the natural gas definitively generates far lower ecosystem quality and human health damages than the biomethane production. Farming activities have the most important contribution to the damages mainly because of land occupation and the use of fertilizer. The main improvement opportunities highlighted are: the increase of biogas yield, the choice of good agricultural practices and the cultivation of winter or summer crops exclusively. Future research should include the emission and sequestration of CO 2 from soil. The ripple effects related to the total increase of farming area and the consequences of farming activities on the food production chain should be addressed as well. To this aim, the switch to consequential LCA is a critical challenge, from both the methodological and application point of view, to support decision-making. (author)

  19. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-03-22

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... notice that on March 5, 2010, Northern Natural Gas Company (Northern Natural), 1111 South 103rd Street, Omaha, Nebraska 68124- 1000, filed on behalf of itself and other owners, Southern Natural Gas Company...

  20. Essentials of natural gas microturbines

    CERN Document Server

    Boicea, Valentin A

    2013-01-01

    Addressing a field which, until now, has not been sufficiently investigated, Essentials of Natural Gas Microturbines thoroughly examines several natural gas microturbine technologies suitable not only for distributed generation but also for the automotive industry. An invaluable resource for power systems, electrical, and computer science engineers as well as operations researchers, microturbine operators, policy makers, and other industry professionals, the book: Explains the importance of natural gas microturbines and their use in distributed energy resource (DER) systemsDiscusses the histor

  1. Natural gas annual 1993 supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  2. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-10-29

    shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  3. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-07-28

    Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2004-04-01

    /ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2004-01-01

    shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  6. Controlling Air Pollution from the Oil and Natural Gas Industry

    Science.gov (United States)

    EPA regulations for the oil and natural gas industry help combat climate change and reduce air pollution that harms public health. EPA’s regulations apply to oil production, and the production, process, transmission and storage of natural gas.

  7. Natural gas leak mapper

    Science.gov (United States)

    Reichardt, Thomas A [Livermore, CA; Luong, Amy Khai [Dublin, CA; Kulp, Thomas J [Livermore, CA; Devdas, Sanjay [Albany, CA

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  8. Natural gas 1996 - issues and trends

    International Nuclear Information System (INIS)

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry

  9. Natural gas 1996 - issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry.

  10. Natural gas : a highly lucrative commodity

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Exploration and production of natural gas has become highly profitable as natural gas is becoming a leading future commodity. With new technology, high demand and environmental benefits, natural gas is the preferred choice over petroleum as the leading source of energy to heat home and businesses. Canada is the world's third largest producer of natural gas with its Sable Offshore Energy Project being the fourth largest producing natural gas basin in North America. The basin will produce high quality sweet natural gas from 28 production wells over the course of the next 20 to 25 years. The gas will be transported to markets through Nova Scotia, New Brunswick and into the Northeastern United States via the Maritimes and Northeast Pipeline. The 1051 kilometer underground gas pipeline is currently running laterals to Halifax, Nova Scotia and Saint John, New Brunswick. Market studies are being conducted to determine if additional lines are needed to serve Cape Breton, Prince Edward Island and northern New Brunswick. A recent survey identified the following 5 reasons to convert to natural gas: (1) it is safe, (2) it is reliable, (3) it is easy to use, (4) it is cleaner burning and environmentally friendly compared to other energy sources, and (5) it saves the consumer money

  11. Natural gas in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ask, T Oe; Einang, P M; Stenersen, D [MARINTEK (Norway)

    1996-12-01

    The transportation sector is responsible for more than 50% of all oil products consumed, and it is the fastest growing oil demand sector and the fastest growing source of emissions. During the last 10 years there have been a considerable and growing effort in developing internal combustion gas engines. This effort has resulted in gas engines with efficiencies comparable to the diesel engines and with emissions considerably lower than engines burning conventional fuels. This development offers us opportunities to use natural gas very efficiently also in the transportation sector, resulting in reduced emissions. However, to utilize all the built in abilities natural gas has as engine fuel, the natural gas composition must be kept within relatively narrow limits. This is the case with both diesel and gasoline today. A further development require therefore specified natural gas compositions, and the direct use of pipeline natural gas as today would only in limited areas be acceptable. An interesting possibility for producing a specified natural gas composition is by LNG (Liquid Natural Gas) production. (EG)

  12. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  13. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  14. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  15. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaolei [Arizona Public Service Company, Pheonix, AZ (United States); Rink, Nancy [Arizona Public Service Company, Pheonix, AZ (United States)

    2011-04-30

    This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit (°F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625°F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO2) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m2) and a total culture volume between 10,000 to 15,000 liters (L); a CO2 on-demand feeding system; an on-line data collection system for temperature, p

  16. Annual survey on the natural gas market: 2008 main results

    International Nuclear Information System (INIS)

    2009-09-01

    This document presents and briefly comments the main data of the natural gas market in France in 2008: gas production, gas transit (entry points receiving gas from various origins and export points to Spain and Switzerland), gas storage, gas distribution, gas sales in the different French regions and to different kinds of customers or industries

  17. Thermodynamic analyses of hydrogen production from sub-quality natural gas. Part II: Steam reforming and autothermal steam reforming

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Part I of this paper analyzed sub-quality natural gas (SQNG) pyrolysis and autothermal pyrolysis. Production of hydrogen via direct thermolysis of SQNGs produces only 2 mol of hydrogen and 1 mol of carbon per mole of methane (CH 4). Steam reforming of SQNG (SRSQNG) could become a more effective approach because the processes produce two more moles of hydrogen via water splitting. A Gibbs reactor unit operation in the AspenPlus™ chemical process simulator was employed to accomplish equilibrium calculations for the SQNG + H 2O and SQNG + H 2O + O 2 systems. The results indicate that water and oxygen inlet flow rates do not significantly affect the decomposition of hydrogen sulfide (H 2S) at temperatures lower than 1000 °C. The major co-product of the processes is carbonyl sulfide (COS) while sulfur dimer (S 2) and carbon disulfide (CS 2) are minor by-products within this temperature range. At higher temperatures (>1300 °C), CS 2 and S 2 become major co-products. No sulfur dioxide (SO 2) or sulfur trioxide (SO 3) is formed during either SRSQNG or autothermal SRSQNG processes, indicating that no environmentally harmful acidic gases are generated.

  18. FSU's natural gas liquids business needs investment

    International Nuclear Information System (INIS)

    Plotnikov, V.S.; Berman, M.; Angerinos, G.F.

    1995-01-01

    Production of natural gas liquids has fallen seriously behind its potential in the former Soviet Union (FSU). Restoration of the gas liquids business thus represents a rich investment opportunity. Capital, however, must come from international sources, which remain uncertain about the FSU's legal, commercial, and political systems. If these hurdles can be overcome, FSU output of liquid petroleum gas alone might double between 1990 and 2010. In the FSU, LPG is produced from associated and nonassociated natural gas, condensate, and refinery streams. It also comes from what is known in the FSU as ShFLU--a mixture of propane, butane, pentane, and hexane produced at gas processing plants in Western Siberia and fractionated elsewhere. The paper reviews FSU production of gas liquids focusing on West Siberia, gives a production outlook, and describes LPG use and business development

  19. North American Natural Gas Vision

    Science.gov (United States)

    2005-01-01

    hand sales of natural gas and LPG. 17 Decreto Legal, Diario Oficial , Noviembre 25, 1993. 37 Review Section 38 Figure 2. Mexican Natural Gas...California 500 Mexicali Baja California 29 Naco - Hermosillo Sonora 130 Nacozari de Garcia Sonora 85 Agua Prieta Sonora 173

  20. Bring money and natural gas

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    The budding natural gas markets in East Europe attract a great deal of interest from natural gas industries in the Western countries. Dutch companies, institutions and the government, too, are active in this market. So far the results have not been spectacular. An analysis is made of the present situation and the Dutch approach

  1. Australian natural gas market outlook

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    A new study of the Australian natural gas industry by leading Australian economics and policy consultancy ACIL Tasman highlights the significant supply and demand side uncertainties currently facing the industry. The ACIL Tasman 'Australian Gas Market Review and Outlook 2004' study presents modelling results for three supply/demand scenarios in Eastern Australia and two in Western Australia. The results show that, even under moderate assumptions about future levels of gas demand growth, major supply-side investment is likely to be needed over the next ten to fifteen years. The base supply/demand scenario for Eastern Australia and Northern Territory, illustrated in Figure 1, shows that even allowing for substantial new discoveries in existing production basins and major expansion of coal seam methane production, in the absence of a northern gas connection to the eastern states (Timor Sea or PNG Highlands) a significant supply gap will begin to emerge from around 2013. The study identifies several supply-side options for Eastern Australia - new discoveries in the established production provinces in Bass Strait and Central Australia; greenfield developments such as the Otway Basin offshore from Victoria and South Australia; continuing expansion of coal seam methane production in Queensland and New South Wales; and gas from Papua New Guinea, Timor Sea or from the North West Shelf region delivered via a trans-continental pipeline. The study concludes that it is unlikely that any single option will suffice to meet future demand. Almost inevitably, a combination of these sources will be needed if anticipated growth opportunities are to be met. With regard to prices, the study shows that in the short to medium term the outlook is for some real reductions in wholesale prices in most regional markets. This reflects increasing levels of upstream competition and declining real costs of pipeline transportation. However in the longer term, supply-side constraints will tend to

  2. Radiation risk from natural radioactivity in oil and gas production industry. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Eid, M A [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    This paper throws light on the natural radioactive materials as well as the radiation background level in Egypt and other global areas. It also describes the deposition of naturally occurring radioactivity as well as the gamma-ray exposure rate primarily due to {sub 226} Ra and daughters which concentrate as scale or sludge in oil field piping and equipment. The potential hazards arising during normal operation, maintenance, and cleaning are considered. Occupational annual personnel doses are estimated and examined relative to work function. The measures to reduce occupational radiation exposure and radioactive contamination were investigated. The data indicated that relatively higher exposure rates are associated with areas around water discharge system, separator and descaling operations where the dose rates varying between 0.02-6 m R/h. The annual collective effective dose equivalent was estimated about 4.58 man-Rem, and the mean annual dose equivalent of about 120 mrem were measured. 3 tabs.

  3. Natural gas monthly, September 1991. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  4. Natural gas industry in Bulgaria

    International Nuclear Information System (INIS)

    Mashkin, L.

    1994-01-01

    An overview of the Bulgarian natural gas industry is presented. The starting point was the discovery of the indigenous Chiren gas-field in 1967. The first agreement with the ex-USSR for supply of natural gas and construction of main pipelines was signed in 1968. The state gas company BULGARGAZ is responsible for transportation, storage, distribution, processing and marketing of the gas to over 150 industrial companies in the country, as well as for the transportation services to gas importers in neighboring Turkey. The GAZSTROJMONTAZH company accomplish the construction of the local and transit pipelines to Turkey and Greece, as well as of some objects in Iran, Syria, Ukraine and Germany. In the past 20 years, 87890 million m 3 natural gas from Russia are supplied and 846 million m 3 - from domestic sources. The share of natural gas in the overall energy balance is 13.6% for 1992. The restructuring and further development of gas industry require to take into account some factors as: security in supply; investments for technical assurance; pricing policy for natural gas; development of private business. Some administrative problems are also mentioned. 2 tabs., 1 fig

  5. Simulating and Optimizing Hydrogen Production by Low-pressure Autothermal Reforming of Natural Gas using Non-dominated Sorting Genetic Algorithm-II

    OpenAIRE

    Azarhoosh, M. J.; Ale Ebrahim, H.; Pourtarah, S. H.

    2016-01-01

    Conventional hydrogen production plants consist of natural gas steam reforming to CO+3H2 on Ni catalysts in a furnace, water-gas shift reaction for converting CO into CO2 and CO2 absorption. A new alternative method for highly endothermic steam reforming is autothermal reforming (steam reforming with air input to the reactor) without the need for external heating. In this study, hydrogen production by autothermal reforming for fuel cells (base case) was simulated based on a heterogeneous and ...

  6. Natural gas, the new deal?

    International Nuclear Information System (INIS)

    Encel, Frederic; Boroumand, Raphael H.; Charlez, Philippe; Goutte, Stephane; Lafargue, Francois; Lombardi, Roland; Porcher, Thomas; Rebiere, Noemie; Schalck, Christophe; Sebban, Anne-Sophie; Sylvestre, Stephan

    2016-01-01

    As natural gas is about to become the first energy source in the world, is abundant and easy to transport, this collective publication addresses issues related to shale gas and to natural gas. The first part addresses shale gas. Four articles propose a global overview, comment the situation in the USA which, in eight years of time, reduced their oil dependency by half and became almost self-sufficient as far as gas is concerned, discuss technical and legal issues related to shale gas exploitation, discuss the perspective of evolution of the world gas markets, and notice that shale gas will not be a game changer in Europe. The second part addresses the natural gas. The articles discuss the possible influence of natural gas exploitation by Israel on the Middle-East geopolitical situation, the influence of the emergence of new producers in Africa (Tanzania and Mozambique), the contribution of gas-fuelled power station to the coverage of market risks, and the issue of European energy safety with a focus on the role of Turkey

  7. Mercury Removal from Natural Gas in Egypt

    International Nuclear Information System (INIS)

    Korkor, H.; AI-Alf, A.; EI-Behairy, S.

    2004-01-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems

  8. Mercury Removal from Natural Gas in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Korkor, H; AI-Alf, A; EI-Behairy, S [EGAS, Cairo (Egypt)

    2004-07-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems.

  9. Natural gas conversion. Part VI

    International Nuclear Information System (INIS)

    Iglesia, E.; Spivey, J.J.; Fleisch, T.H.

    2001-01-01

    This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Symposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings. The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volume. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings. The titles of the contributions are: Impact of syngas generation technology selection on a GTL FPSO; Methane conversion via microwave plasma initiated by a metal initiator; Mechanism of carbon deposit/removal in methane dry reforming on supported metal catalysts; Catalyst-assisted oxidative dehydrogenation of light paraffins in short contact time reactors; Catalytic dehydrogenation of propane over a PtSn/SiO 2 catalyst with oxygen addition: selective oxidation of H2 in the presence of hydrocarbons; Hydroconversion of a mixture of long chain n-paraffins to middle distillate: effect of the operating parameters and products properties; Decomposition/reformation processes and CH4 combustion activity of PdO over Al2O3 supported catalysts for gas turbine applications; Lurgi's mega-methanol technology opens the door for a new era in down-stream applications;Expanding markets for GTL fuels and specialty products; Some critical issues in the analysis of partial oxidation reactions in monolith reactors

  10. Natural gas, energy with a future

    International Nuclear Information System (INIS)

    Dauger, Jean-Marie

    2010-01-01

    Similar to the trend observed over the last thirty years, the production of electricity will likely account for much of the growth in natural gas consumption worldwide, regardless of the region. However transportation, storage and distribution make up, on the average, 70% of the total costs of producing gas

  11. Liquid natural gas. Japan

    International Nuclear Information System (INIS)

    Van Kooij, E.

    1998-01-01

    An overview is given of the technical know-how and expertise in Japan with respect to the supply, transport, storage and use of LNG. First the overall energy supply in Japan is outlined. Next, the reasons for the use of LNG as an energy source in Japan are discussed. As an example of a typical LNG-installation in Japan the construction of the Himeji Terminal of Osaka Gas Company is described. Finally, attention is paid to the world's largest and modern below-surface LNG-tanks (capacity of 200,000 m 3 ), installed at the Negishi Terminal of Tokyo Gas Company

  12. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  13. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  14. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  15. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  16. Natural gas market review 2006 - towards a global gas market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market.

  17. Natural gas market review 2006 - towards a global gas market

    International Nuclear Information System (INIS)

    2006-01-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market

  18. Natural gas annual 1992: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  19. The European natural gas market

    International Nuclear Information System (INIS)

    Hagland, Jan

    2001-01-01

    An increasing amount of natural gas is flowing into continental Europe, one of the largest gas markets in the world. There are three main sources of gas: Africa, Russia and Norway. Norway is an important supplier of gas, but may be vulnerable to competition. The demand for gas is increasing on a global basis and the largest increase is expected in Asia, followed by America and Europe. It is expected that Norwegian gas deliveries will be a principle source of natural gas for North Europe in the next years and that they will take an increasing part of the British market as the gas deliveries from the British shelf is going down. The European gas market is likely to become liberalized according to the EU's competition- and gas directives. This will not necessarily be a problem, and Norway may be able to increase the export of gas to Great Britain considerably from the year 2010, perhaps up to 40 billion standard m3 per year. Russia is expected to take an increased share of the European gas market, especially in East- and Central Europe, Germany and North Italy. But large investments in existing fields, new developments and new strategic pipelines are necessary

  20. Liquefied Natural Gas for Trucks and Buses

    International Nuclear Information System (INIS)

    James Wegrzyn; Michael Gurevich

    2000-01-01

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems

  1. Natural Gas : Physical Properties and Combustion Features

    OpenAIRE

    Corre, Olivier Le; Loubar, Khaled

    2010-01-01

    The actual composition of natural gas depends primarily on the production field from which it is extracted and limited variations in composition must therefore be accepted. Moreover, at a local distribution level, seasonal adjustments by the local gas distributor may cause significant variations in the gas composition. Consequently, physical properties and energy content are subject to variations and their calculation / estimation is of great importance for technical and economical aspects. I...

  2. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  3. Natural gas and crude oil

    International Nuclear Information System (INIS)

    Valais, M.R.

    1991-01-01

    Two main development could gradually modify these traditional features of natural gas markets and prices. First, environmental pressures and the tightening of emission standards and of the quality specifications for fuels should work in favor of natural gas. Second the increasing distance of resources in relation to the major consuming zones should bring about a considerable development of international natural gas trade. International expansion should mark the development of the gas industry in the coming decades. This evolution will give natural gas an importance and a role appreciably closer to those of oil on the world energy scene. But it is obvious that such a development can come about only at the cost of considerable investments for which the economic viability is and will remain dependent on the level of the prices of natural gas as the inlet to its consuming markets. This paper attempts to answer the questions: Will these markets accept a new scale of value for gas in relation to other fossil fuels, including oil, which will take into account new environmental constraints and which will be able to fulfill the formidable financial needs of the gas industry in the coming decades?

  4. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  5. Hydrogen production by steam reforming of liquefied natural gas over a nickel catalyst supported on mesoporous alumina xerogel

    Science.gov (United States)

    Seo, Jeong Gil; Youn, Min Hye; Cho, Kyung Min; Park, Sunyoung; Song, In Kyu

    Mesoporous alumina xerogel (A-SG) is prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/A-SG catalyst is then prepared by an impregnation method, and is applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of the mesoporous alumina xerogel support on the catalytic performance of Ni/A-SG catalyst is investigated. For the purpose of comparison, a nickel catalyst supported on commercial alumina (A-C) is also prepared by an impregnation method (Ni/A-C). Both the hydroxyl-rich surface and the electron-deficient sites of the A-SG support enhance the dispersion of the nickel species on the support during the calcination step. The formation of the surface nickel aluminate phase in the Ni/A-SG catalyst remarkably increases the reducibility and stability of the catalyst. Furthermore, the high-surface area and the well-developed mesoporosity of the Ni/A-SG catalyst enhance the gasification of surface hydrocarbons that are adsorbed in the reaction. In the steam reforming of LNG, the Ni/A-SG catalyst exhibits a better catalytic performance than the Ni/A-C catalyst in terms of LNG conversion and hydrogen production. Moreover, the Ni/A-SG catalyst shows strong resistance toward catalyst deactivation.

  6. Natural Gas Extraction, Earthquakes and House Prices

    OpenAIRE

    Hans R.A. Koster; Jos N. van Ommeren

    2015-01-01

    The production of natural gas is strongly increasing around the world. Long-run negative external effects of extraction are understudied and often ignored in social) cost-benefit analyses. One important example is that natural gas extraction leads to soil subsidence and subsequent induced earthquakes that may occur only after a couple of decades. We show that induced earthquakes that are noticeable to residents generate substantial non-monetary economic effects, as measured by their effects o...

  7. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  8. The duty to negotiate in good faith and the enforceability of short-term natural gas clauses in production sharing agreements

    International Nuclear Information System (INIS)

    Bishop, R.D.

    1997-01-01

    The exploitation of natural gas resources not associated with oil production, poses legal and ethical problems for some countries. This document examines various international oil contracts, especially Production Sharing Agreements (PSA), to establish how short-term gas provisions can be exploited. In particular the issue of breaching a PSA by failing to negotiate in good faith on such a project is debated, showing how clearly this duty falls on the government party. International oil companies are urged to create contracts which allow them to enforce short-term PSA gas clauses. (UK)

  9. 10 CFR 221.11 - Natural gas and ethane.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural gas...

  10. Insight conference proceedings : natural gas

    International Nuclear Information System (INIS)

    2005-01-01

    The state of Quebec's energy industry was discussed at this conference. Quebec's energy market is distinct by the diversity of its clients, the resource exploitation sector and its types of industries. As such, the energy needs are specific and the strategies for developing natural gas should be adapted to meet these needs. This conference focused on recent energy policy developments at Quebec's Office of Energy and other regulatory bodies. Topics of discussion included the risks and opportunities of the natural gas export market; volatile gas prices; public consultation processes; perspectives of large energy consumers; hydrocarbon potential and exploration in Quebec; natural gas exploration and development in Quebec; energy security and strategies to address carbon dioxide emissions. Other topics of discussion included the investment climate in Quebec; the profitability of Canada's oil and gas sector and refining capacity in Quebec. The conference featured 17 presentations, of which 6 have been indexed separately for inclusion in this database. refs., tabs., figs

  11. Natural gas for baking

    Energy Technology Data Exchange (ETDEWEB)

    Steub, G.

    1983-11-01

    German bakers account for about 11% of the total supply of energy required in the small-shop industry, consuming 13.3 billion kWH. The trade thus represents an attractive group of consumers for the energy supply industry. It is shown at what time of the day the peak requirement for energy occurs in bakeries and what baking ovens and firing systems have been developed for use in bakeries relying on gas as a source of heat.

  12. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  13. Thermodynamic and transport properties of air and its products of combustion with ASTMA-A-1 fuel and natural gas at 20, 30, and 40 atmospheres

    Science.gov (United States)

    Poferl, D. J.; Svehla, R. A.

    1973-01-01

    The isentropic exponent, molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, Prandtl number, and enthalpy were calculated for air, the combustion products of ASTM-A-1 jet fuel and air, and the combustion products of natural gas and air. The properties were calculated over a temperature range from 300 to 2800 K in 100 K increments and for pressures of 20, 30 and 40 atmospheres. The data for natural gas and ASTM-A-1 were calculated for fuel-air ratios from zero to stoichiometric in 0.01 increments.

  14. Determination of suitability of natural Polish resources for production of ceramic proppants applied in gas exploration from European shale formations

    Science.gov (United States)

    Szymanska, Joanna; Mizera, Jaroslaw

    2017-04-01

    Poland is one of few European countries undertaking innovative research towards effective exploration of hydrocarbons form shale deposits. With regard for strict geological conditions, which occur during hydraulic fracturing, it is required to apply ceramic proppants enhancing extraction of shale gas. Ceramic proppants are granules (16/30 - 70/120 Mesh) classified as propping agents. These granules located in the newly created fissures (due to injected high pressure fluid) in the shale rock, act as a prop, what enables gas flow up the well. It occurs if the proppants can resist high stress of the closing fractures. Commonly applied proppants are quartz sands used only for shallow reservoirs and fissile shales (in the USA). Whereas, the ceramic granules are proper for extraction of gas on the high depths at hard geomechanical conditions (in Europe) to increase output even by 30 - 50%. In comparison to other propping materials, this kind of proppants predominate with mechanical strength, smoother surface, lower solubility in acids and also high stability in water. Such parameters can be available through proper raw materials selection to further proppants production. The Polish ceramic proppants are produced from natural resources as kaolin, bauxite and white clay mixed with water and binders. Afterwards, the slurries are subjected to granulation in a mechanical granulator and sintered at high temperatures (1200 - 1550°C). Taking into consideration presence of geomechanical barriers, that prevent fracture propagation beyond shale formations, it is crucial to determine quality of applied natural deposits. Next step is to optimize the proppants production and select the best kind of granules, what was the aim of this research. Utility of the raw materials was estimated on basis of their particle size distribution, bulk density, specific surface area (BET) and thermal analysis (thermogravimetry). Morphology and shape were determined by Scanning Electron Microscopy (SEM

  15. Oil and Natural Gas Pipelines, North America, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Oil and Natural Gas Pipeline geospatial data layer contains gathering, interstate, and intrastate natural gas pipelines, crude and product oil pipelines, and...

  16. Canadian natural gas price debate

    International Nuclear Information System (INIS)

    Wight, G.

    1998-01-01

    Sunoco Inc. is a subsidiary of Suncor Energy, one of Canada's largest integrated energy companies having total assets of $2.8 billion. As one of the major energy suppliers in the country, Sunoco Inc has a substantial stake in the emerging trends in the natural gas industry, including the Canadian natural gas price debate. Traditionally, natural gas prices have been determined by the number of pipeline expansions, weather, energy supply and demand, and storage levels. In addition to all these traditional factors which still apply today, the present day natural gas industry also has to deal with deregulation, open competition and the global energy situation, all of which also have an impact on prices. How to face up to these challenges is the subject of this discourse. tabs., figs

  17. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  18. Natural gas and the environment

    International Nuclear Information System (INIS)

    DeCarufel, A.

    1991-01-01

    The role of various atmospheric pollutants in environmental changes and the global water cycle, carbon cycle, and energy balance is explained. The role of sulfur dioxide and nitrogen oxides in acid deposition is also outlined. The pollutants that contribute to environmental problems include nitrogen oxides and volatile organic compounds, carbon dioxide, and other greenhouse gases. The potential for natural gas utilization to mitigate some of these pollution problems is explored. Natural gas combustion emits less carbon dioxide and nitrogen oxides than combustion of other fossil fuel, and also does not produce sulfur dioxide, particulates, or volatile organics. Other pollution controlling opportunities offered by natural gas include the use of low-polluting burners, natural gas vehicles, and cogeneration systems. 18 figs., 4 tabs

  19. Liquefied natural gas (LNG) market and Australia

    Science.gov (United States)

    Alam, Firoz; Alam, Quamrul; Reza, Suman; Khurshid-ul-Alam, S. M.; Saleque, Khondkar; Ahsan, Saifuddin

    2017-06-01

    As low carbon-emitting fossil fuel, the natural gas is mainly used for power generation and industrial applications. It is also used for heating and cooling in commercial and residential buildings as well as in transport industry. Although the natural gas reaches the end-user mainly through pipelines (if gas is available locally), the liquefied form is the most viable alternative to transport natural gas from far away location to the end user. The economic progress in Asia and other parts of the world creates huge demand for energy (oil, gas and coal). As low carbon-emitting fuel, the demand for gas especially in liquefied form is progressively rising. Having 7th largest shale gas reserve (437 trillion cubic feet recoverable), Australia has become one of the world's major natural gas producers and exporters and is expected to continue a dominating role in the world gas market in foreseeable future. This paper reviews Australia's current gas reserve, industries, markets and LNG production capabilities.

  20. Natural gas industry in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Omidvar, Hedayat

    2010-09-15

    Iran holds the second largest gas reserves in the word with over 27.5 trillion cubic meters (TCM) of natural gas. Due to lack of geological surveys in certain geographical regions in Iran, it is likely to explore further reserves in the future.

  1. Natural gas and energy security

    International Nuclear Information System (INIS)

    Saga, B.P.

    1996-01-01

    This paper relates to energy security by natural gas supply seen in an International Energy Agency perspective. Topics are: Security of supply, what is it; the role gas on the European energy scene; short term security of supply; long term security of supply; future structural and regulatory developments and possible implications for security of supply. 6 figs

  2. Continuity and productivity analysis of three geopressured geothermal aquifer-natural gas fields: Duson, Hollywood and Church Point, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.A.; Boardman, C.R.; Bebout, D.G.; Bachman, A.L. (eds.)

    1981-01-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas fields to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. Studies such as these are needed for the Department of Energy program to identify geopressured brine reservoirs that are not connected to commercial productions. The analysis showed that over the depth intervals at the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was apparently not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made for this sand and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  3. The Pricing of natural gas

    International Nuclear Information System (INIS)

    Nese, Gjermund

    2004-11-01

    The report focuses on the pricing of natural gas. The motivation has been the wish of the Norwegian authorities to increase the use of natural gas and that this should follow market conditions. The pricing of gas occurs at present in various ways in the different markets. The report identifies to main factors behind the pricing. 1) The type of market i.e. how far the liberalization of the gas markets has gone in the various countries. 2) The development within the regulation, climate and tax policies. The gas markets are undergoing as the energy markets in general, a liberalization process where the traditional monopoly based market structures are replaced by markets based on competition. There are great differences in the liberalization development of the various countries, which is reflected in the various pricing principles applied for the trade of gas in the countries. The analysis shows that the net-back-pricing is predominant in some countries i.e. that the price is in various ways indexed towards and follow the development of the price of alternative energy carriers so that the gas may be able to compete. The development towards trade places for gas where the pricing is based on offer and demand is already underway. As the liberalization of the European gas markets progresses it is expected that the gas price will be determined increasingly at spot markets instead of through bilateral agreements between monopolistic corporations. The development within the regulation, climate and tax policies and to what extent this may influence the gas prices in the future, are also studied. There seem to be effects that may pull in both directions but it is evident that these political variables will influence the gas pricing in the international market to a large extent and thereby also the future internal natural gas market

  4. Natural Gas Versus Nuclear New Build Versus Life Extension

    International Nuclear Information System (INIS)

    Barron, B.

    2013-01-01

    Proven natural gas reserves and production in the USA have continued to increase in recent years. This is due to the exploration of shale formations and the expanded use of hydraulic fracking technology. Looking forward, we can expect that high crude oil prices will sustain natural gas production at current levels (approximately 25% of natural gas production in the USA is a by-product of crude oil drilling), and the natural gas liquid cuts are priced with crude oil. Continued drilling in the near term for natural gas is required by lease obligations and by commitments to investors

  5. Alternative Fuels Data Center: Natural Gas

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on

  6. Natural gas in Norway - Possibilities and limitations

    International Nuclear Information System (INIS)

    Bjoerstad, H.; Eldegard, T.; Reve, T.; Sunnevaag, K.; Aarrestad, J.

    1995-06-01

    Norway is rich in gas resources. In recent years, gas sales from the Norwegian continental shelf have been in the order of 25 to 30 billion Sm 3 /yr and are expected to increase strongly the next 10 to 15 years. However, a scattered population, a difficult topography, long distances between large potential consumers and where the gas is brought ashore, make it difficult to utilize the gas commercially in this country. Moreover, the gas will have to compete with a highly developed hydro-electric network. This report evaluates possibilities and hindrances in the establishment of a home market for natural gas in Norway. The low population density implies that using gas for preheating of water, heating of rooms etc will not become important except, perhaps, locally, where gas may be available for other reasons. As a source of energy and raw material in many industrial processes, natural gas can become important in some coastal areas and in central parts of eastern Norway. Discussions are in progress on gas power stations for electricity production. This has aroused some controversy because of environmental problems, and for political acceptance gas power will have to replace coal power. As a fuel, gas may be of interest for domestic ferries and for busses. A lack of capital under financial risk and gas prices limit the market development. Although tax policy is presently favourable to gas power, the risk taken by private investors in converting to natural gas is increased by their not knowing for how long the gas will be exempt from environmental tax. 74 refs., 8 figs., 27 tabs

  7. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    Directory of Open Access Journals (Sweden)

    Nathan eBasiliko

    2013-07-01

    Full Text Available Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide and methane production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between mined and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and methane or carbon dioxide production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  8. Canadian natural gas winter 2005-06 outlook

    International Nuclear Information System (INIS)

    2005-11-01

    An outline of the Canadian natural gas commodity market was presented along with an outlook for Canadian natural gas supply and prices for the winter heating season of 2005-2006. In Canada, the level of natural gas production is much higher than domestic consumption. In 2004, Canadian natural gas production was 16.9 billion cubic feet per day (Bcf/d), while domestic consumption was much lower at 8.2 Bcf/d. The United States, whose natural gas consumption is higher than production, imported about 16 per cent of its natural gas supply from Canada and 3 per cent from other countries via liquefied natural gas imports. Canadian natural gas exports to the United States in 2004 was 8.7 Bcf/d, representing 51 per cent of Canada's production. In Canada, the most important natural gas commodity markets that determine natural gas commodity prices include the intra-Alberta market and the market at the Dawn, Ontario natural gas hub. A well connected pipeline infrastructure connects the natural gas commodity markets in Canada and the United States, allowing supply and demand fundamentals to be transferred across all markets. As such, the integrated natural gas markets in both countries influence the demand, supply and price of natural gas. Canadian natural gas production doubled from 7 to 16.6 Bcf/d between 1986 and 2001. However, in the past 3 years, production from western Canada has leveled out despite record high drilling activity. This can be attributed to declining conventional reserves and the need to find new natural gas in smaller and lower-quality reservoirs. The combination of steady demand growth with slow supply growth has resulted in high natural gas prices since the beginning of 2004. In particular, hurricane damage in August 2005 disrupted natural gas production in the Gulf of Mexico's offshore producing region, shutting-in nearly 9 Bcf/d at the height of damage. This paper summarized some of the key factors that influence natural gas market and prices, with

  9. Role of natural gas in meeting an electric sector emissions ...

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  10. 78 FR 17835 - Approval and Promulgation of Federal Implementation Plan for Oil and Natural Gas Well Production...

    Science.gov (United States)

    2013-03-22

    ...: One commenter stated that the EPA needs to control air quality because hydraulic fracturing (``fracking'') is under-regulated. Response: The majority of oil and natural gas wells drilled today are hydraulically fractured. Hydraulic fracturing occurs when wells are being completed and recompleted. NSPS OOOO...

  11. Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity

    International Nuclear Information System (INIS)

    Szczygieł, Ireneusz; Stanek, Wojciech; Szargut, Jan

    2016-01-01

    LNG (liquefied natural gas) delivered by means of sea-ships is pressurized and then regasified before its introduction to the system of pipelines. The utilization of cryogenic exergy of LNG for electricity production without combustion of any its portion is analyzed. For the conversion of LNG cryogenic exergy into electricity, the Stirling engine is proposed to be applied. The theoretical thermodynamic model of Stirling engine has been applied. This model is used to investigate the influence of pinch temperature in heat exchangers, engine compression ratio and dead volumes ratios on the thermodynamic parameters of the Stirling engine. The results of simulation represent the input data for investigations of thermodynamic performance of the proposed system. In order to evaluate the thermodynamic performance of the proposed process, an exergy analysis has been applied. The exergy efficiency and influence of design and operational parameters on exergy losses are determined for each of the proposed system configurations. The obtained results represent the background for advanced exergy-based analyses, including thermo-ecological cost. - Highlights: • Application of Stirling engine in LNG regasification. • Thermodynamic model of Stirling engine for cryogenic exergy recovery is applied. • Sensitivity analysis of operational parameters on system behaviour is applied. • Exergy analysis is conducted.

  12. Hazard Ranking Methodology for Assessing Health Impacts of Unconventional Natural Gas Development and Production: The Maryland Case Study.

    Directory of Open Access Journals (Sweden)

    Meleah D Boyle

    Full Text Available The recent growth of unconventional natural gas development and production (UNGDP has outpaced research on the potential health impacts associated with the process. The Maryland Marcellus Shale Public Health Study was conducted to inform the Maryland Marcellus Shale Safe Drilling Initiative Advisory Commission, State legislators and the Governor about potential public health impacts associated with UNGDP so they could make an informed decision that considers the health and well-being of Marylanders. In this paper, we describe an impact assessment and hazard ranking methodology we used to assess the potential public health impacts for eight hazards associated with the UNGDP process. The hazard ranking included seven metrics: 1 presence of vulnerable populations (e.g. children under the age of 5, individuals over the age of 65, surface owners, 2 duration of exposure, 3 frequency of exposure, 4 likelihood of health effects, 5 magnitude/severity of health effects, 6 geographic extent, and 7 effectiveness of setbacks. Overall public health concern was determined by a color-coded ranking system (low, moderately high, and high that was generated based on the overall sum of the scores for each hazard. We provide three illustrative examples of applying our methodology for air quality and health care infrastructure which were ranked as high concern and for water quality which was ranked moderately high concern. The hazard ranking was a valuable tool that allowed us to systematically evaluate each of the hazards and provide recommendations to minimize the hazards.

  13. Natural gas 1992: Issues and trends

    International Nuclear Information System (INIS)

    1993-03-01

    This report provides an overview of the natural gas industry in 1991 and 1992, focusing on trends in production, consumption, and pricing of natural gas and how they reflect the regulatory and legislative changes of the past decade (Chapter 1). Also presented are details of FERC Order 636 and the Energy Policy Act of 1992, as well as pertinent provisions of the Clean Air Act Amendments of 1990 (Chapter 2). In addition, the report highlights a range of issues affecting the industry, including: Trends in wellhead prices and natural gas supply activities (Chapter 3); Recent rate design changes for interstate pipeline companies (Chapter 4); Benefits to consumers from the more competitive marketplace (Chapter 5); Pipeline capacity expansions during the past 2 years (Chapter 6); Increasing role of the natural gas futures market (Chapter 7)

  14. More natural gas from Russia, but when?

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    The fourth article in a series about changes in the European natural gas market focuses on Russia, a country with gigantic potential reserves (216,000 billion m 3 ) and a production unequalled in the world (780.4 billion m 3 in 1992 in the Russian Federation), but also with enormous economic and technical problems. The question is what role Russia is able to play in the European natural gas supply. Attention is paid to the organizational structure in former Soviet Union regarding the natural gas industry, the environmental effects of exploration and exploitation, the need for foreign capital, and the disappointing progress of the 1991 Energy Charter. On a short term the infrastructure must be improved. Also the conflicts on the price of natural gas transport between the transfer countries Ukraine, Slovenia and Czechoslovakia and the West-European clients must be solved. 1 fig., 7 ills., 2 tabs

  15. Caspian Oil and Gas: Production and Prospects

    National Research Council Canada - National Science Library

    Gelb, Bernard A

    2005-01-01

    .... The Caspian Sea region historically has been an oil and natural gas producer, but many believe that the region contains large reserves of oil and gas capable of much greater production than at present...

  16. 1991 worldwide natural gas industry directory

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book provides information for the natural gas industry, just as other PennWell directories have for the petroleum industry. Comprehensive in scope, each company listing includes address, phone, fax telex and cable numbers, key personnel, subsidiaries, branches and brief descriptions. The directory is organized in major areas of operation and includes sections on: Distribution, Drilling/Exploration/Production, Gas Utilities, Gathering/Transmission, Industry Associations/Organizations, LNG, LPG, Marketing, Processing, Regulatory Agencies, and Service, Supply and Manufacturers. An invaluable reference source for the natural gas professional

  17. Natural radioactivity at Podravina gas fields

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    2006-01-01

    In Croatia, natural gas is an important source of energy, where its use exceeds other sources by one third. Composed primarily of the methane, natural gas from Croatian Podravina gas fields, beside other impurities, contains small amounts of radioactive elements. At Gas Treatment Plant (GTP) Molve, technological procedures for purification of natural gas and its distribution are performed. With yearly natural gas production of 3.5 109 m3 GTP Molve is major Croatian energy resource. Its safety and environment impact is matter of concern. Using different radioactivity measuring techniques the exposure of population to ionizing radiation were calculated at Central Natural Gas Station Molve and the underground wells. The measurement techniques included in-situ gamma spectrometric measurements, from which contribution to absorbed dose of the natural radionuclide in soil were calculated. Exposure dose measurements were performed using T.L.-dosimeters, and L.A.R.A. electronic dosimeters as well as field dose rate meter. Comparing used different radioactivity measuring methods, the correlations have been calculated. (authors)

  18. Natural gas and deregulation

    International Nuclear Information System (INIS)

    Maisonnier, G.

    2001-01-01

    The gas market is progressively moving towards new organizations under the effect of the deregulation initiated in the United States, the United Kingdom and transposed to other countries, particularly in Europe, at least for the member countries of the European union. Within the framework provided by this overall trend, Cedigaz proposes this study in order to describe the main developments affecting these markets on account of deregulation. This report is structured on the basis of three main topics (market organization, marketing modes, pricing) which appear to be the most cogent in terms of deregulation. This grouping by major topics accordingly offers a relatively synthetic view of the main trends which could be observed on the European market, for example. Our analysis is largely based on the example of the American market and, to a lesser extent, on the British situation. Whenever possible, concrete examples are provided for a closer understanding of this complex subject. On the whole, deregulation is not a frozen process, but has to adapt permanently to developments in a market stage-managed by politics, the regulator and the industrial players. This obviously means a dynamic and constantly evolving process, making it a highly complex process. This report aims to shed some light on the subject. (author)

  19. Liquefied natural gas

    International Nuclear Information System (INIS)

    2006-01-01

    Total has interests in five of the world's largest liquefaction plants, which together account for roughly 40% of global LNG production capacity. This presentation illustrates the activities of the Group in the LNG sector. It discusses the advantages of the LNG as a clean energy, the LNG market, the liquefaction process and plants, the LNG trading marketing and shipping, the re-gasification and TOTAL promoting innovation. (A.L.B.)

  20. The potential effects of sodium bicarbonate, a major constituent from coalbed natural gas production, on aquatic life

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2012-01-01

    The production water from coalbed natural gas (CBNG) extraction contains many constituents. The U.S. Environmental Protection Agency has established aquatic life criteria for some of these constituents, and it is therefore possible to evaluate their risk to aquatic life. However, of the major ions associated with produced waters, chloride is the only one with an established aquatic life criterion (U.S. Environmental Protection Agency, 1988). The focus of this research was NaHCO3, a compound that is a major constituent of coalbed natural gas produced waters in the Tongue and Powder River Basins. This project included laboratory experiments, field in situ experiments, a field mixing zone study, and a fishery presence/absence assessment. Though this investigation focuses on the Tongue and Powder River Basins, the information is applicable to other watersheds where sodium bicarbonate is a principle component of product water either from CBNG or from traditional or unconventional oil and gas development. These data can also be used to separate effects of saline discharges from those potentially posed by other constituents. Finally, this research effort and the additional collaboration with USGS Water Resources and Mapping, Bureau of Land Management, US Environmental Protection Agency, State of Montana, State of Wyoming, Montana State University, University of Wyoming, and others as part of a Powder River Aquatic Task Group, can be used as a model for successful approaches to studying landscapes with energy development. The laboratory acute toxicity experiments were completed with a suite of organisms, including 7 species of fish, 5 species of invertebrates, and 1 amphibian species. Experiments performed on these multiple species resulted in LC50s that ranged from 1,120 to greater than (>) 8,000 milligrams sodium bicarbonate per liter (mg NaHCO3/L) (also defined as 769 to >8,000 milligrams bicarbonate per liter (mg HCO3-/L) or total alkalinity expressed as 608 to >4

  1. Annual survey of the natural gas market: 2010 results

    International Nuclear Information System (INIS)

    Welter-Nicol, Cecile

    2011-12-01

    This document presents and briefly comments the main data of the natural gas market in France in 2010: gas production (only 2 pc of supplies), gas transit evolutions since 2007 (entry points receiving gas from various origins and export points to Spain and Switzerland), outlines the increase of imports from Norway, comments gas storage capacities, the evolution of gas distribution in France, the evolution of gas consumption, and gas sales in the different French regions and to different kinds of customers or industries

  2. The price of natural gas

    International Nuclear Information System (INIS)

    Bakhtiari, A.M.S.

    2001-01-01

    Natural gas used to be a relatively cheap primary energy source, always at a discount to crude oil (on a comparative British thermal unit basis). It gradually evolved into a major resource during the 20th century - reaching a 24 per cent share of global primary energy in 1999. In the year 2000, natural gas prices in the USA rose to unheard-of highs of 10/million US dollars Btu, ushering in a new era, with natural gas at a 120 per cent premium to crude oil. This clearly was a watershed for gas, somehow similar to the 1973-74 watershed for oil prices. And similarly, any return to the status quo-ante looks rather improbable, although a number of experts (alongside the International Energy Agency) still believe the 2000 price 'spike' to have been ''only transitory''. The consequences of higher gas prices (at a level equal to crude oil prices on a Btu basis) will be multifaceted and momentous, altering habits and uses in downstream industries and economic sectors, as well as providing added income for major gas-exporters, such as Russia, Canada and Algeria. Another potential consequence of the 2000 watershed might be to propel US standard prices (such as the 'Henry Hub' spot) to international status and gas price-setter, as the 'WTI spot' became an 'international benchmark' for crude oils in the post-1993 era. For the time being, the equality of gas and oil prices has become the new norm; but, in the longer term, a discount of crude oil relative to natural gas might be envisaged, as the latter is a cleaner fuel and emits less carbon dioxide when used. (author)

  3. Norwegian Natural Gas. Liberalization of the European Gas Market

    International Nuclear Information System (INIS)

    Austvik, Ole Gunnar

    2003-01-01

    Leading abstract. This book focuses on issues that are important for Norway as a major gas exporter and to the development of a liberalized European market. Chapter 2 explains main features of the European gas market. Natural gas is sold in regional markets with independent pricing structure and particularities. In Europe, this has led to large investments for the producers and long-term contracts. The strong market growth and EU's actions to liberalize the market may change this. The organization of the Norwegian gas production and sale is discussed, as well as the reorganization taking place in 2001. Pricing mechanisms are discussed in Chapter 3, both in the ''old'' / existing structure and how a liberalization of the market may change price formation. The increased importance of energy taxation in EU countries is covered in Chapter 4. Even though natural gas is the most environmentally friendly of the fossil fuels, the use of natural gas may be taxed far harder in the future. The report discusses price effects of such a development. Chapter 5 discusses whether or not a gas producer, like Norway, necessarily must earn a resource rent. With the use of economic theory for exhaustible resources it is shown how prices to consumers may increase at the same time as prices to producers drop, where the difference is made up by higher gas taxes to the consuming countries. Transportation of natural gas involves considerable scale advantages and there are often scope advantages from production, storage and sale, as well. Chapter 6 discusses how competition and regulation may influence the functioning and social efficiency of the market, and the concentration of market power. When companies become large, they may exploit market power, supported by the authorities of their respective countries. Chapter 7 focuses on regulatory challenges for the EU, and how the transporters may change between conflicting and cooperation with the EU. Chapter 8 focuses on schedules for

  4. Natural gas pricing policies in Southeast Asia

    International Nuclear Information System (INIS)

    Pacudan, R.B.

    1998-01-01

    The very dynamic economies of Southeast Asia have recently been experiencing a rapid increase in energy demand. Parallel to this development, there has been an increase in the utilization of indigenous natural gas resources. This article reviews gas-pricing policies in the region, which partly explain the rise in gas utilization. Although diverse, energy pricing policies in Southeast Asia address the common objective of enhancing domestic gas production and utilization. The article concludes that a more rational gas-pricing policy framework is emerging in the region. In global terms, gas pricing in the region tends to converge in a market-related framework, despite the many different pricing objectives of individual countries, and the predominance of non-economic pricing objectives in certain countries (especially gas-rich nations). Specifically, governments have been flexible enough to follow global trends and initiate changes in contractual agreements (pricing and profit-sharing), giving oil companies more favourable terms, and encouraging continued private investment in gas development. At the same time, promotional pricing has also been used to increase utilization of gas, through set prices and adjusted taxes achieving a lower price level compared to substitute fuels. For an efficient gas-pricing mechanism, refinements in the pricing framework should be undertaken, as demand for gas approaches existing and/or forecast production capacities. (author)

  5. 2013 - The Natural Gas Year in Review

    International Nuclear Information System (INIS)

    Lecarpentier, Armelle

    2014-01-01

    Natural gas consumption only rose by 1.3%, down from an average growth of 2.8% per year in the previous decade. Natural gas still suffers in particular from severe competition with coal in the power generation sector. Inside the EU-28, actual consumption was estimated down 1.9% to 460 Billion cubic metres (Bcm). This poor performance brought European consumption to levels not seen in more than 15 years. In the US, rising gas prices compared to 2012 has often made coal more competitive and penalized gas consumption in the power generation sector, causing it to fall by 10.5%. Global growth in natural gas has been increasingly constrained by supply. In 2013, the growth in gas production slowed substantially to 0.8%, bringing the total volume to 3377 Bcm. As before, the gas supply shortfall was due to the decline of mature and conventional fields, and an insufficient renewal of reserves. The lack of upstream investment is especially acute in emerging markets, due to a lack of a favourable regulatory and fiscal climate. The moderation of natural gas supply and investment has also been increasingly driven by geopolitical challenges. Deterioration of security, internal conflicts and resulting damage to infrastructures have caused some production outages and supply disruptions in some countries. In 2013, marketed production fell especially heavily in Africa (Algeria, Nigeria, Libya and Egypt). With the exception of Europe, other regions posted positive production gains. The largest of them were recorded in the CIS (+ 2.7%) and the Middle East (+ 3.4%). International gas trade increased significantly by 2.1% to 1048 Bcm, due to the growing dependence of consumer markets on increasingly distant production sources, sometimes located in economically and politically unstable areas. The rise in the international gas trade was only driven by inter-regional pipeline gas exports from the CIS to Europe (+ 15%) and China (+ 36%). Geopolitical risks are having an ever

  6. Natural gas: A bridge to the future?

    International Nuclear Information System (INIS)

    Andriesse, C.D.

    1991-01-01

    Natural gas is the cleanest fossil fuel, but never got the chance to develop its use. The reason for that is the notion that the natural gas supplies would last for only some decennia. That is only right for the conventional gas supplies. In ice crystals, some hundreds of meters deep in the oceans, enormous methane reserves, many times larger than the conventional supplies, are enclosed in so-called clathrates. From the literature it appears that other sources of natural gas or methane and new options to use these energy sources are considered or to be developed. Attention is paid to the methane reserves in geologic formations, methane produced by microbes, and methane in clathrates. It is estimated that the methane reserve is 8 x 10 2 3 Joule. By using natural gas as a fuel CO 2 emission will be reduced considerably. Methane emission however must be limited, because of the reducing effect of methane on the oxygen production in the troposphere. The large reserves of methane also offer good prospects for the production of hydrogen, large-scale applications to generate electric power or the use of CH 4 as a fuel in the transportation sector. New techniques and economic, social and institutional factors determine how fast the use of natural gas will increase. It is expected that 0.54 Tm 3 of natural gas will be needed for the twelve countries of the European Community. Main users in the year 2030 will be the electric power industry (39%), industry (26%), households and trade (18%), and transportation sector and supply (15%). In 2030 63% of natural gas has to be imported. 3 refs

  7. Green gas. Gas of natural gas quality from biomass. Update of the 2004 study

    International Nuclear Information System (INIS)

    Welink, Jan-Henk; Dumont, M.; Kwant, K.

    2007-01-01

    In 2004 a study was published on green gas. Green gas is defined as a gaseous energy carrier from renewable biomass with a similar quality as natural gas. As a result of new developments in the field of co-digestion/fermentation the Dutch Ministry of Economic Affairs asked it's agency SenterNovem to update the 2004 study. The aim of the update is (1) to gain insight into operational aspects of green gas projects, e.g. reliability, efficiency and maintenance aspects; (2) stimulate the production of green gas, taking into account the economics of green gas projects, calculation of the financial gap of green gas production, efficient use of biogas (conversion to electricity or directly input into the natural gas distribution systems, and aspects with regard to commercialization and the market; and (3) the potential of green gas [nl

  8. North American natural gas pipeline and supply update

    International Nuclear Information System (INIS)

    Molyneaux, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which presented an update of North American natural gas supply. Some of the graphs depicted the following: (1) natural gas consumption in the United States, (2) U.S. imports of Canadian natural gas, (3) natural gas prices differential: Henry Hub versus Empress, (4) natural gas production in the U.S., and (5) Baker Hughes active rig count, U.S. gas rigs. First Energy's view of U.S. natural gas supply is that the estimate of 50.0 Bcf/d for U.S. domestic production is looking too high. The first quarter 1999 exit production rates are behind expectations. U.S. domestic natural gas expenditure budgets are still down by more than 40 per cent compared to 1998 levels. The impact that this will have on prices was discussed. 21 figs

  9. Natural gas for utility generation

    International Nuclear Information System (INIS)

    Moore, T.

    1992-01-01

    Forecasters predict that natural gas will be the dominant fuel choice for utility capacity additions in the coming decade and that power generation will be by far the largest growth market for gas sales. While gas's low emissions, high efficiency potential, and present low cost argue persuasively for a surge in gas-fired generation, many utilities have been slow to commit to a gas future, citing reasoned concern about long-term price trends and the ability of gas suppliers to deliver the fuel where and when it will be needed. Meanwhile, the relatively low cost of gas-fired units is providing an opportunity for independent power producers to compete strongly with utilities for generation contracts. EPRI studies suggest that a sound, competitive strategy will be based not on how much gas a utility burns, but rather on how this capacity fits into its overall generating mix at various fuel price levels. Gas suppliers will need to pay special attention to the operating needs of power generators if they are to solidify this important market

  10. A comparison of ground-based and aircraft-based methane emission flux estimates in a western oil and natural gas production basin

    Science.gov (United States)

    Snare, Dustin A.

    Recent increases in oil and gas production from unconventional reservoirs has brought with it an increase of methane emissions. Estimating methane emissions from oil and gas production is complex due to differences in equipment designs, maintenance, and variable product composition. Site access to oil and gas production equipment can be difficult and time consuming, making remote assessment of emissions vital to understanding local point source emissions. This work presents measurements of methane leakage made from a new ground-based mobile laboratory and a research aircraft around oil and gas fields in the Upper Green River Basin (UGRB) of Wyoming in 2014. It was recently shown that the application of the Point Source Gaussian (PSG) method, utilizing atmospheric dispersion tables developed by US EPA (Appendix B), is an effective way to accurately measure methane flux from a ground-based location downwind of a source without the use of a tracer (Brantley et al., 2014). Aircraft measurements of methane enhancement regions downwind of oil and natural gas production and Planetary Boundary Layer observations are utilized to obtain a flux for the entire UGRB. Methane emissions are compared to volumes of natural gas produced to derive a leakage rate from production operations for individual production sites and basin-wide production. Ground-based flux estimates derive a leakage rate of 0.14 - 0.78 % (95 % confidence interval) per site with a mass-weighted average (MWA) of 0.20 % for all sites. Aircraft-based flux estimates derive a MWA leakage rate of 0.54 - 0.91 % for the UGRB.

  11. Green future of natural gas

    International Nuclear Information System (INIS)

    Mallardi, P.

    1991-01-01

    A sectoral analysis of current trends in the use of natural gas in Italy shows that this energy source, now estimated to be covering 23.7% of total Italian national energy requirements, is fulfilling its role as an environmentally compatible, low cost and readily available energy alternative well suited to alleviate Italy's worrisome over-dependence on foreign supplied oil and reduce the severity of the urban air pollution problem (it being a low nitrogen oxide and carbon dioxide emitting, non-sulfur containing fuel). This paper expands this theme by giving a complete panorama of the natural gas market in Italy, sector by sector, and by coupling projections on the expected increased use of this energy source (as mandated by the National Energy Plan) with estimates of consequent reductions in air pollution based on a comparative analysis of fuel oil versus natural gas combustion

  12. Progress in industrial utilization of natural gas

    International Nuclear Information System (INIS)

    Boschetto, F.

    1991-01-01

    For many years, due to its intrinsic qualities, flexibility, cleanness, etc., natural gas has been one of the major energy sources used in industry. This paper examines gas appliances of a new conception which use ceramic products in order to reach temperatures of about 1400 degrees C: jet gas burners, counter-rotation burners, integrated preheating burners, high speed burners, double recuperation burners and regenerative ones. Furthermore, the paper deals with these burners applied to industrial furnaces, radiant panels, liquid heating systems and to thermal treatment and crucible furnaces. Particular reference to made to the steam pump, which permits reaching the highest efficiency, and to the gas combustion regulator. With the increased marketing of these new appliances, natural gas ill certainly consolidate its leading position in the industrial and energy fields

  13. Trading in LNG and natural gas

    International Nuclear Information System (INIS)

    1992-01-01

    We have examined the market for natural gas from a number of viewpoints, starting with the role of natural gas in the global energy market where its 20% share of primary energy demand has been captured in the space of almost as many years. In discussion regional energy markets we cover the disparities between supply and demand which give rise to trade by pipeline, and by sea in the form of liquefied natural gas (LNG). Both have in fact increased steadily in recent years, yet even in 1991, only 12-15% of total gas production was traded across international boundaries, whereas for oil it was closer to 40%. For the moment pipeline trade remains heavily concentrated in Europe and North America, and it is in the LNG sector where the spread of projects, both existing and planned, is more global in nature. We examine the development of LNG trades and the implications for shipping. Finally, we look at transportation costs, which are likely to be an important component in the viability of many of the natural gas export schemes now under review. There is good reason to be ''bullish'' about parts of the natural gas industry but this Report suggests that there are areas of concern which could impinge on the development of the market in the 1990s. (author)

  14. Natural gas prices and the end of gradual change

    International Nuclear Information System (INIS)

    Osten, J.A.

    1998-01-01

    Natural gas price predictions for the years 1998, 1999-2001, 2000-2005 are provided. In general, prices are predicted to decrease with increase in storage. Some other factors that will influence the price of natural gas and, therefore, should receive consideration in price predictions, include growth in demand, natural gas production, deliverability, new pipelines, and the Alberta price basis. tabs., figs

  15. The prospects of natural gas vehicles in France and Europe

    International Nuclear Information System (INIS)

    Nicolle, J.M.

    2009-01-01

    Given the availability and environmental advantages of natural gas, several countries soon felt that natural gas vehicles (NGVs) were a logical way to respond to transportation needs while meeting up to the standards of sustainable development. Natural gas is now a genuine alternative to petroleum products, and NGVs are capable of using the current engine technology. (author)

  16. Natural gas market in Europe

    International Nuclear Information System (INIS)

    Mons, L.

    2001-07-01

    The natural gas market is opened to competition since August 2000. The economical impact of this new situation remains moderate in 2001 because the conditions of competition are not fulfilled everywhere. In France, for instance, the European directive on markets deregulation has not been transposed yet and the conditions of access of third parties to the national gas network have not been clearly defined. In this context of uncertainties, several questions remain unanswered. This study draws out a precise status of the situation of the 7 main European gas markets. It comprises also an analysis of the behaviour and strategy of the 18 main actors of this sector. (J.S.)

  17. Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing

    International Nuclear Information System (INIS)

    1990-10-01

    In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R ampersand D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining

  18. Eastern Canada natural gas developments

    International Nuclear Information System (INIS)

    Wall, A.

    2001-01-01

    This power point presentation addressed the following topics regarding development of natural gas in eastern Canada: (1) the 18 Tcf of proven natural gas reserves at Sable Island, (2) Canadian markets benefiting from the Maritimes and Northeast Pipeline (M and NP), (3) a 20 year franchise agreement between Enbridge Gas and the government of New Brunswick, (4) the 25 year provincial franchise agreement by Sempra Atlantic Gas, and (5) Sable Island's influence on central Canada. The Sable Offshore Energy Project (SOEP) is now producing about 540,000 MMBtu/day from 6 fields. Plans for Tier 2 expansion are underway. Firm contracts for the M and NP are scheduled to transport gas from the SOEP to markets in Nova Scotia, New Brunswick, Maine and New Hampshire. Sable gas is also a potential supply for the Quebec market. Gaz Metropolitain and Enbridge have proposed to build the Cartier Pipeline from the Quebec/New Brunswick border to Quebec City. It is unlikely that Sable Island supply will directly serve the Ontario market. Canadian customers for Sable gas and M and NP service include pulp and paper companies, oil refineries, power generators and local distribution companies (LDC), with the majority of demand coming form the electric power industry. tabs., figs

  19. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  20. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  1. Increased bioclogging and corrosion risk by sulfate addition during iodine recovery at a natural gas production plant.

    Science.gov (United States)

    Lim, Choon-Ping; Zhao, Dan; Takase, Yuta; Miyanaga, Kazuhiko; Watanabe, Tomoko; Tomoe, Yasuyoshi; Tanji, Yasunori

    2011-02-01

    Iodine recovery at a natural gas production plant in Japan involved the addition of sulfuric acid for pH adjustment, resulting in an additional about 200 mg/L of sulfate in the waste brine after iodine recovery. Bioclogging occurred at the waste brine injection well, causing a decrease in well injectivity. To examine the factors that contribute to bioclogging, an on-site experiment was conducted by amending 10 L of brine with different conditions and then incubating the brine for 5 months under open air. The control case was exposed to open air but did not receive additional chemicals. When sulfate addition was coupled with low iodine, there was a drastic increase in the total amount of accumulated biomass (and subsequently the risk of bioclogging) that was nearly six times higher than the control. The bioclogging-associated corrosion rate of carbon steel was 84.5 μm/year, which is four times higher than that observed under other conditions. Analysis of the microbial communities by denaturing gradient gel electrophoresis revealed that the additional sulfate established a sulfur cycle and induced the growth of phototrophic bacteria, including cyanobacteria and purple bacteria. In the presence of sulfate and low iodine levels, cyanobacteria and purple bacteria bloomed, and the accumulation of abundant biomass may have created a more conducive environment for anaerobic sulfate-reducing bacteria. It is believed that the higher corrosion rate was caused by a differential aeration cell that was established by the heterogeneous distribution of the biomass that covered the surface of the test coupons.

  2. Challenges for the future of natural gas

    International Nuclear Information System (INIS)

    Gadonneix, P.

    1997-01-01

    This paper reports on the closure talk from P. Gadonneix, president of Gaz de France (GdF) company, who draws out the perspectives of development of the French national company in the context of an increasing natural gas demand with new competition and with an evolution of the European regulations: perspectives of demand and production, the dependency of Europe, the competition with other energy sources, the European deregulation of natural gas market, the strategy of Gaz de France, the relation with consumers, the development of distribution systems, the promotion of new products, the environmental qualities of natural gas and the development of clean technologies, the construction of new pipelines within the national territory, the partnerships of GdF with other national companies, the socio-economical actions of GdF (employment etc..). (J.S.)

  3. Natural-gas supply-and-demand problems

    International Nuclear Information System (INIS)

    Hatamian, H.

    1998-01-01

    World natural-gas consumption quadrupled in the 30 years from 1966 to 1996, and natural gas now provides 22% of the total world energy demand. The security of natural-gas supply is paramount and rests with the suppliers and the consumers. This paper gives an overview of world natural-gas supply and demand and examines the main supply problems. The most important nonpredictable variables in natural-gas supply are worldwide gas price and political stability, particularly in regions with high reserves. Other important considerations are the cost of development/processing and the transport of natural gas to market, which can be difficult to maintain if pipelines pass through areas of political instability. Another problem is that many countries lack the infrastructure and capital for effective development of their natural-gas industry. Unlike oil, the cost of transportation of natural gas is very high, and, surprisingly, only approximately 16% of the total world production currently is traded internationally

  4. Nephrotoxicity of Natural Products.

    Science.gov (United States)

    Nauffal, Mary; Gabardi, Steven

    2016-01-01

    The manufacture and sale of natural products constitute a multi-billion dollar industry. Nearly a third of the American population admit to using some form of complementary or alternative medicine, with many using them in addition to prescription medications. Most patients fail to inform their healthcare providers of their natural product use and physicians rarely inquire. Annually, thousands of natural product-induced adverse events are reported to Poison Control Centers nationwide. Natural product manufacturers are not responsible for proving safety and efficacy, as the FDA does not regulate them. However, concerns exist surrounding the safety of natural products. This review provides details on natural products that have been associated with renal dysfunction. We have focused on products that have been associated with direct renal injury, immune-mediated nephrotoxicity, nephrolithiasis, rhabdomyolysis with acute renal injury, hepatorenal syndrome, and common adulterants or contaminants that are associated with renal dysfunction. The potential for natural products to cause renal dysfunction is justifiable. It is imperative that natural product use be monitored closely in all patients. Healthcare practitioners must play an active role in identifying patients using natural products and provide appropriate patient education. © 2016 S. Karger AG, Basel.

  5. Study on the natural gas utilization in the ceramic industry; Estudo sobre a utilizacao do gas natural na industria ceramica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The production, principal applications, characteristics and properties, advantages of the gas natural is showed. A sectorial overview of the ceramic industry and the utilization of the natural gas in the ceramic industry is presented. The expectations are systematized and the impact of the natural gas utilization in the ceramic industry is evaluated. Some conclusions are withdrawn and recommendations suggested.

  6. Dauphin Island natural gas project

    International Nuclear Information System (INIS)

    Layfield, R.P.; Elser, K.L.; Ostler, R.H.

    1994-01-01

    Arco Oil and Gas Co. installed the Dauphin Island production facility in a fragile Alabama marine environment supporting important fisheries and tourist facilities. The authors used proactive communication with governmental agencies, area industry, and the public; innovative construction technologies; and unique platform design to minimize the environmental and aesthetic impacts and to develop an economically successful gas field. The innovative equipment used in the offshore pipeline installation is a model approach for solving certain turbidity problems. The project has received numerous environmental awards

  7. Dauphin Island natural gas project

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, R.P. (Arco International Oil and Gas Co., Plano, TX (United States)); Elser, K.L.; Ostler, R.H. (Arco Oil and Gas Co., Houston, TX (United States))

    1994-01-01

    Arco Oil and Gas Co. installed the Dauphin Island production facility in a fragile Alabama marine environment supporting important fisheries and tourist facilities. The authors used proactive communication with governmental agencies, area industry, and the public; innovative construction technologies; and unique platform design to minimize the environmental and aesthetic impacts and to develop an economically successful gas field. The innovative equipment used in the offshore pipeline installation is a model approach for solving certain turbidity problems. The project has received numerous environmental awards.

  8. Natural gas in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    de Voogd, J G

    1965-08-01

    In 1948, the first natural gas was found in Netherlands. Since 1951 it has been supplied by gas undertakings. Originally reserves were limited (c. 350 milliard ftU3D of dry gas in the NE. and c. 175 milliard ftU3D, mostly wet gas, in the SW). These finds have been completely overshadowed by the huge deposits discovered in 1960 in the province of Groningen near the village of Slochteren, these reserves being estimated now at 38.5 billion ftU3D at least. This gas is not of high cal val (894 Btu/ftU3D), but contains only traces of sulfur. The concession is being developed for a partnership formed by Shell (30%), Standard Oil Company of new Jersey (Esso, 30%), and ''Staatsmijnen,'' the Government owned Netherlands State Mining Industry (40%). The natural gas is destined, first, for domestic use, especially, for space heating, and secondly, for industrial purpose, after which important quantities will be available for export.

  9. Natural gas massification plan in Colombia with the National Oil Framework

    International Nuclear Information System (INIS)

    Arenas, I.

    1993-01-01

    The Colombian natural gas industry is described. The Colombian natural gas plan is discussed under the following topics: background of natural gas in Colombia, natural gas reserves, gas plan objectives, methodology, marketing studies, transportation and investment strategy, and economic evaluation. The present natural gas institutional framework is described. The production system structure, transportation, and distribution are also discussed

  10. Natural gas news; Gaz actualites

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-12-01

    This brochure is a compilation of practical information concerning the Gaz de France group: organization chart, daughter companies, services, economical activity, natural gas market, trade, regulations etc. A list of partners, directions, centres, groups, associations and other various organisms in relation with Gaz de France company is given. (J.S.)

  11. The European Natural Gas Market

    NARCIS (Netherlands)

    Correlje, A.F.

    The European Union started the introduction of competition in the European market for natural gas. Today, mid-2016, the process of restructuring is still going on. In parallel, important changes in geopolitical, environmental and technological determinants can be observed in the European and global

  12. Natural gas in developing countries

    International Nuclear Information System (INIS)

    Holwerda, B.

    1998-01-01

    Everywhere in the world plans are being made to stimulate the natural gas industry in developing countries. High investment costs are the biggest problem almost everywhere. Even countries with a closed economy realize that they do not get far without foreign capital. Cases are presented for Africa, Pakistan, and Indonesia

  13. The natural gas for vehicles

    International Nuclear Information System (INIS)

    2006-11-01

    This document aims to present the trumps of the natural gas for vehicle (NGV). It discusses the particularities, the actions of the government in favor of the NGV by the creation of financial and legal incentives and the challenges. A detail description of the financial and fiscal assistances and the regulation references are given. (A.L.B.)

  14. Alternative Fuels Data Center: Natural Gas Vehicles

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative

  15. Alternative Fuels Data Center: Natural Gas Benefits

    Science.gov (United States)

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas

  16. Scenarios for remote gas production

    International Nuclear Information System (INIS)

    Tangen, Grethe; Molnvik, Mona J.

    2009-01-01

    The amount of natural gas resources accessible via proven production technology and existing infrastructure is declining. Therefore, smaller and less accessible gas fields are considered for commercial exploitation. The research project Enabling production of remote gas builds knowledge and technology aiming at developing competitive remote gas production based on floating LNG and chemical gas conversion. In this project, scenarios are used as basis for directing research related to topics that affect the overall design and operation of such plants. Selected research areas are safety, environment, power supply, operability and control. The paper summarises the scenario building process as a common effort among research institutes and industry. Further, it documents four scenarios for production of remote gas and outlines how the scenarios are applied to establish research strategies and adequate plans in a multidisciplinary project. To ensure relevance of the scenarios, it is important to adapt the building process to the current problem and the scenarios should be developed with extensive participation of key personnel.

  17. Future perspective for CNG (Compressed Natural Gas)

    International Nuclear Information System (INIS)

    Veen, D.

    1999-01-01

    Driving on natural gas (CNG, Compressed Natural Gas) has been the talk of the industry for many years now. Although the benefits of natural gas as an engine fuel have become well-known, this phenomenon does not seem to gain momentum in the Netherlands. Over the last few months, however, the attitude towards CNG seems to be changing. Energy companies are increasingly engaged in commercial activities, e.g. selling natural gas at petrol stations, an increasing number of car manufacturers are delivering natural gas vehicles ex-works, and recently the NGV (Natural Gas Vehicles) Holland platform was set up for the unequivocal marketing of natural gas as an engine fuel

  18. Natural gas participation on brazilian demand supply of liquefied petroleum gas

    International Nuclear Information System (INIS)

    Freitas Rachid, L.B. de

    1991-01-01

    Natural Gas Liquids Production, Liquefied Petroleum Gas (LPG) among them, has undergone a continuous growth and technological development until the first half of the eighties. This paper presents the natural gas processing activity development in Brazil, in the last 20 years, and the increasing share of LPG produced from natural gas in the supply of LPG domestic market. Possibilities of achieving greater shares are discussed, based on economics of natural gas processing projects. Worldwide gas processing installed capacity and LPG pricing tendencies, and their influence in the construction of new Natural Gas Processing Units in Brazil, are also discussed. (author)

  19. Non-catalytic plasma-arc reforming of natural gas with carbon dioxide as the oxidizing agent for the production of synthesis gas or hydrogen

    OpenAIRE

    Blom, P.W.E.; Basson, G.W.

    2013-01-01

    The world’s energy consumption is increasing constantly due to the growing population of the world. The increasing energy consumption has a negative effect on the fossil fuel reserves of the world. Hydrogen has the potential to provide energy for all our needs by making use of fossil fuel such as natural gas and nuclear-based electricity. Hydrogen can be produced by reforming methane with carbon dioxide as the oxidizing agent. Hydrogen can be produced in a Plasma-arc reforming ...

  20. General Motors natural gas vehicle initiatives

    International Nuclear Information System (INIS)

    Weber, J.; Koplow, M.D.

    1992-01-01

    General Motors (GM) has a number of natural gas vehicle (NGV) programs in progress that address various marketing, technical, and production planning issues that lean on the introduction of NGVs from GM. The initial target is light and medium duty trucks sold in non-attainment air quality regions. GM has also embarked on a longer term program that encompasses vehicle and systems development, gas supply and infrastructure development, and customer and market development. The major long-term issues are gas quality, supplier participation, and infrastructure

  1. Natural Gas Multi-Year Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  2. Canadian natural gas : market review and outlook

    International Nuclear Information System (INIS)

    2001-01-01

    This annual working paper provides summaries of trends within the North American natural gas industry and also reviews Canadian gas exports. It is designed to promote dialogue between industry and the government and to obtain feedback on natural gas issues. The main section of the report consists of graphs, with limited text comments on the side. It provides a structured look at supply and demand for the year 2000 as well as for the near term (2001) and long-term (2010). The sources of information included private consultants, industry associations and federal agencies in Canada and the United States. It was shown that gas demand had grown steadily in North America since 1997, at about 2.5 per cent annually, and then fell 3.4 per cent in 1998 and remained low in 1999, below 1997 demand. This was due mainly to mild winters. In 2000, the demand for natural gas increased again to 5 per cent as a result of a colder winter and increased gas use for power generation. The report also stated that the combination of various factors including low storage balances due to previously low drilling years and high oil prices, were responsible for natural gas price increases in 2000. The tight supply/demand balance was exacerbated by restraints in pipeline capacity. Producers and pipeline groups are now looking seriously at developing the large gas deposits in Alaska and the Mackenzie Delta which were previously considered to be uneconomic. It was noted that in the near term, storage must be rebuilt to normal levels. Storage balances will be a good indicator of the relative strengths of gas production and demand growth. It was forecasted that Canada to U.S. gas exports should continue to increase in 2001 as a large new export pipeline was completed in 2000, but there is considerable uncertainty for the medium to longer-term. refs., tabs., figs

  3. Toxicity of Sodium Bicarbonate to Fish from Coal-Bed Natural Gas Production in the Tongue and Powder River Drainages, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.

  4. Diagnosis of solid waste of oil and natural gas exploration and production activities in Brazil offshore sedimentary basins; Diagnostico dos residuos solidos das atividades de exploracao e producao de petroleo e gas natural em bacias sedimentares maritimas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Pedro Henrique Wisniewski; Mendonca; Gilberto Moraes de

    2012-07-01

    The objective of this study is to analyze the generation and disposal of solid waste from the exploration and production activities of oil and natural gas in Brazilian waters. We used data from the implementation reports of pollution control project of the activities licensed by IBAMA. During 2009 the activities related to exploration and production of offshore oil and gas produced a total of 44,437 tons of solid waste, with the main waste generated corresponding to: oily waste (16,002 t); Metal uncontaminated (11,085 t); contaminated waste (5630 t), non recycling waste (4935 t); Wood uncontaminated (1,861 t), chemicals (1,146 t). Considering the total waste generated by activities during the period analyzed, it was observed that 54.3% are made up of waste Class I (hazardous waste), 27.9% of Class II wastes (waste non-hazardous non-inert); and 17.8% of waste Class IIB (non-hazardous and inert waste). The results obtained in this work enabled the scenario of waste generation by the E and P offshore activities. As a result, the survey serves as a starting point for monitoring the progress in implementing the projects sought Pollution Control of licensed projects, as well as support the monitoring of reflexes arising from the intensification of activities in certain regions. (author)

  5. Natural gas - an alternative. Swedish electric power from Norwegian natural gas

    International Nuclear Information System (INIS)

    1986-10-01

    The report describes the possible substitution of electric power by natural gas on the heat source market and how gas can be used for power production. The cost of distribution and means of supply are presented. 1/3 of the electric power produced by nuclear power plants can be replaced by the middle of the nineties. Transport techniques for gas and its total volume as well as transport cost from Norwegian North Sea are discussed

  6. On modelling the market for natural gas

    International Nuclear Information System (INIS)

    Mathiesen, Lars

    2001-12-01

    Several features may separately or in combination influence conduct and performance of an industry, e.g. the numbers of sellers or buyers, the degree of economies of scale in production and distribution, the temporal and spatial dimensions, etc. Our main focus is on how to model market power. In particular, we demonstrate the rather different solutions obtained from the price-taking behavior versus the oligopolistic Coumot behavior. We also consider two approaches to model the transportation of natural gas. Finally, there is a brief review of previous modeling efforts of the European natural gas industry. (author)

  7. Revolution in the natural gas industry?

    International Nuclear Information System (INIS)

    Thomas, V.

    1999-01-01

    The demand for cleaner automotive fuels has created an opening for converting natural gas to liquid transport fuels and blending agents using Fischer-Tropsch technology. While the technology is well established, it is not yet clear whether the conversion can compete with crude oil refining or with pipelines and liquefied natural gas. Although all the oil giants are interested in the technology, the only commercial-sized plant in the world was the Shell plant in Malaya which had capacity of 12,000 bpd, but the profitability of the plant came from the wax by-products. The plant has been closed since a fire and explosion in 1997. The process chain is described. The gas-to-liquid activities and achievements of Saol, Exxon and Texaco are reported. It was concluded that although there are still some problems to be ironed-out, there is a promising future for gas-to-liquid conversion. (UK)

  8. Short-term outlook for natural gas and natural gas liquids to 2006 : an energy market assessment

    International Nuclear Information System (INIS)

    2005-10-01

    In recent years, natural gas markets in North America have seen a close balance between supply and demand, resulting in high and volatile natural gas prices. The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This is the NEB's first energy market assessment report that presents a combined short-term analysis and outlook of natural gas and natural gas liquids (NGLs), such as ethane, propane and butane. It provides comprehensive information on the complexity of natural gas and NGL industries and highlights recent developments and topical issues. As a major producer of natural gas, western Canada has a correspondingly large natural gas processing capability that was developed specifically to extract NGLs. A world-scale petrochemical industry was developed in Alberta to convert NGLs into even higher valued products such as ethylene. Since NGLs in Canada are sourced mostly from natural gas, changes to the supply and demand for natural gas would impact NGL supply. This report addressed the issue of commodity prices with reference to crude oil, natural gas and NGL prices. Natural gas supply in terms of North American production and natural gas from coal (NGC) was also reviewed along with natural gas demand for residential and commercial heating, industrial use, power generation, and enhanced recovery for oil sand operations. There are about 692 gas plants in Canada that process raw natural gas into marketable gas and NGLs. Most are small field plants that process raw natural gas production to remove impurities such as sulphur, water and other contaminants. This report also discussed this infrastructure, with reference to field plants, straddle plants, pipelines, distribution and storage, including underground NGL storage. 3 tabs., 27 figs., 5 appendices

  9. Natural gas markets in the Pacific Rim

    International Nuclear Information System (INIS)

    Hertzmark, D.I.

    1991-01-01

    In the 1980s, Asian energy markets expanded at a rapid rate to meet the surge in demand from Japan, South Korea, and Taiwan. This demand boom coincided with an increase in non-OPEC oil production in the region. As oil production stabilizes, demand appears to be surging again, but this time in the Southeast Asian countries. Natural gas will play a key role in this expansion of energy use and could start to lead rather than follow the oil market. This will be especially true as compressed natural gas and oxygenates start to take significant shares of the transportation fuel markets, while the role of residual fuel oil is increasingly usurped by gas for environmental reasons. Many new gas sources such as Papua New Guinea, Siberia, China, and Canada will fight for market share while domestic demand in Indonesia and Malaysia takes up increasing proportions of those countries' gas production. Extensive regional transportation schemes are likely to direct more of the gas output of Southeast Asia to intra-ASEAN uses. 2 tabs

  10. Electricity/natural gas competition in Quebec

    International Nuclear Information System (INIS)

    Bernard, J.-T.

    1992-01-01

    The evolution of energy market shares (electricity, natural gas and oil products) in Quebec's residential and commercial sectors in the 1980s shows that energy source relative prices have influenced consumer behavior as expected. A set of comparisons from space and water heating markets in these sectors with regard to prices paid by consumers and costs incurred by society in general is presented. For the residential sector, it is seen that consumers pay only a fraction of the cost for electric space and water heating; the same service could be provided at smaller cost by natural gas. For the commercial sector, the electricity and natural gas tariffs convey the appropriate message with respect to the cost incurred in providing the service. 6 refs., 7 tabs

  11. C.I.S. natural gas-1

    International Nuclear Information System (INIS)

    Carson, M.; Stram, B.

    1993-01-01

    This paper reports that in the countries that make up the Commonwealth of Independent States (C.I.S.), with their vast resources and a considerable existing production base, prospects are good for further growth of the region's exportable gas surplus. Investment fundamentals are stronger for gas than for any other energy resources in the area. But the pipeline infrastructure to move large amounts of gas will need extensive refurbishment to ensure export reliability and growth. Given the potential in terms of production and markets, significant amounts of outside investment in oil, natural gas, and NGL infrastructure will likely increase dramatically in these countries in the near future. These are some of the major conclusions of Enron Corp.'s recent investigations in the C.I.S. and other former Soviet republics

  12. Eastern Canada natural gas market development

    Energy Technology Data Exchange (ETDEWEB)

    Laird, N. [PanCanadian Petroleum Ltd., Calgary, AB (Canada)

    2001-07-01

    An overview an update of PanCanadian's exploration operations in Atlantic Canada was presented along with market delivery options. PanCanadian is one of Canada's largest natural gas producers and the most active Canadian driller with 2,479 wells. With its' 94 per cent success rate, the company is emerging as an international exploration success and is marketing energy throughout North America. In terms of marketing natural gas, PanCanadian is ranked twelfth of 68 suppliers in customer satisfaction. The company also markets about 10 per cent of western crude production and is the second largest Canadian marketer for natural gas liquids. Also, with the deregulation of electricity in Alberta, PanCanadian is constructing two 106 megawatt power plants in Alberta to provide electricity to Southern Alberta and to take advantage of the economics of energy conversion. PanCanadian also has a dominant, 20 per cent position in the Scotia Shelf and has plans for offshore processing. Graphs depicting its Deep Panuke operations and pipeline routes to market the natural gas were included. Forecast charts for natural gas demand show a steady increase in demand from 2000 to 2010. tabs., figs.

  13. Eastern Canada natural gas market development

    International Nuclear Information System (INIS)

    Laird, N.

    2001-01-01

    An overview an update of PanCanadian's exploration operations in Atlantic Canada was presented along with market delivery options. PanCanadian is one of Canada's largest natural gas producers and the most active Canadian driller with 2,479 wells. With its' 94 per cent success rate, the company is emerging as an international exploration success and is marketing energy throughout North America. In terms of marketing natural gas, PanCanadian is ranked twelfth of 68 suppliers in customer satisfaction. The company also markets about 10 per cent of western crude production and is the second largest Canadian marketer for natural gas liquids. Also, with the deregulation of electricity in Alberta, PanCanadian is constructing two 106 megawatt power plants in Alberta to provide electricity to Southern Alberta and to take advantage of the economics of energy conversion. PanCanadian also has a dominant, 20 per cent position in the Scotia Shelf and has plans for offshore processing. Graphs depicting its Deep Panuke operations and pipeline routes to market the natural gas were included. Forecast charts for natural gas demand show a steady increase in demand from 2000 to 2010. tabs., figs

  14. The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Mohamed Magdeldin

    2016-10-01

    Full Text Available This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis, modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG and hydrogen from supercritical water refining of a lipid extracted algae feedstock integrated with onsite heat and power generation. The developed reactor models for product gas composition, yield and thermal demand were validated and showed conformity with reported experimental results, and the balance of plant units were designed based on established technologies or state-of-the-art pilot operations. The poly-generative cases illustrated the thermo-chemical constraints and design trade-offs presented by key process parameters such as plant organic throughput, supercritical water refining temperature, nature of desirable coproducts, downstream indirect production and heat recovery scenarios. The evaluated cases favoring hydrogen production at 5 wt. % solid content and 600 °C conversion temperature allowed higher gross syngas and CHP production. However, mainly due to the higher utility demands the net syngas production remained lower compared to the cases favoring BioSNG production. The latter case, at 450 °C reactor temperature, 18 wt. % solid content and presence of downstream indirect production recorded 66.5%, 66.2% and 57.2% energetic, fuel-equivalent and exergetic efficiencies respectively.

  15. Economics of natural gas conversion processes

    International Nuclear Information System (INIS)

    Gradassi, M.J.; Green, N.W.

    1995-01-01

    This paper examines the potential profitability of a selected group of possible natural gas conversion processes from the perspective of a manufacturing entity that has access to substantial low cost natural gas reserves, capital to invest, and no allegiance to any particular product. The analysis uses the revenues and costs of conventional methanol technology as a framework to evaluate the economics of the alternative technologies. Capital requirements and the potential to enhance cash margins are the primary focus of the analysis. The basis of the analysis is a world-scale conventional methanol plant that converts 3.2 Mm 3 per day (120 MMSCFD) of natural gas into 3510 metric tonnes (3869 shorts tons) per day of methanol. Capital and operating costs are for an arbitrary remote location where natural gas is available at 0.47 US dollars per GJ (0.50 US dollars per MMBtu). Other costs include ocean freight to deliver the product to market at a US Gulf Coast location. Payout time, which is the ratio of the total capital investment to cash margin (revenue less total operating expenses), is the economic indicator for the analysis. Under these conditions, the payout time for the methanol plant is seven years. The payout time for the alternative natural gas conversion technologies is generally much higher, which indicates that they currently are not candidates for commercialization without consideration of special incentives. The analysis also includes an evaluation of the effects of process yields on the economics of two potential technologies, oxidative coupling to ethylene and direct conversion to methanol. This analysis suggests areas for research focus that might improve the profitability of natural gas conversion. 29 refs., 14 figs., 5 tabs

  16. Natural gas : a critical component of Ontario's electricity future

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    This PowerPoint presentation identified natural gas as part of the electricity solution. It reviewed price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. tabs., figs

  17. Decision support models for natural gas dispatch

    International Nuclear Information System (INIS)

    Chin, L.; Vollmann, T.E.

    1992-01-01

    A decision support model is presented which will give utilities the support tools to manage the purchasing of natural gas supplies in the most cost effective manner without reducing winter safety stocks to below minimum levels. In Business As Usual (BAU) purchasing quantities vary with the daily forecasts. With Material Requirements Planning (MRP) and Linear Programming (LP), two types of factors are used: seasonal weather and decision rule. Under current practices, BAU simulation uses the least expensive gas source first, then adding successively more expensive sources. Material Requirements Planning is a production planning technique which uses a parent item master production schedule to determine time phased requirements for component points. Where the MPS is the aggregate gas demand forecasts for the contract year. This satisfies daily demand with least expensive gas and uses more expensive when necessary with automatic computation of available-to-promise (ATP) gas a dispacher knows daily when extra gas supplies may be ATP. Linear Programming is a mathematical algorithm used to determine optimal allocations of scarce resources to achieve a desired result. The LP model determines optimal daily gas purchase decisions with respect to supply cost minimization. Using these models, it appears possible to raise gross income margins 6 to 10% with minimal additions of customers and no new gas supply

  18. Decision support models for natural gas dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Chin, L. (Bentley College, Waltham, MA (United States)); Vollmann, T.E. (International Inst. for Management Development, Lausanne (Switzerland))

    A decision support model is presented which will give utilities the support tools to manage the purchasing of natural gas supplies in the most cost effective manner without reducing winter safety stocks to below minimum levels. In Business As Usual (BAU) purchasing quantities vary with the daily forecasts. With Material Requirements Planning (MRP) and Linear Programming (LP), two types of factors are used: seasonal weather and decision rule. Under current practices, BAU simulation uses the least expensive gas source first, then adding successively more expensive sources. Material Requirements Planning is a production planning technique which uses a parent item master production schedule to determine time phased requirements for component points. Where the MPS is the aggregate gas demand forecasts for the contract year. This satisfies daily demand with least expensive gas and uses more expensive when necessary with automatic computation of available-to-promise (ATP) gas a dispacher knows daily when extra gas supplies may be ATP. Linear Programming is a mathematical algorithm used to determine optimal allocations of scarce resources to achieve a desired result. The LP model determines optimal daily gas purchase decisions with respect to supply cost minimization. Using these models, it appears possible to raise gross income margins 6 to 10% with minimal additions of customers and no new gas supply.

  19. Natural gas supply - a producer's perspective

    International Nuclear Information System (INIS)

    Papa, M.G.

    1994-01-01

    The supply of natural gas from the producers standpoint is discussed. The following factors in the marketing demand for natural gas are considered to be important: gas demand is growing, U.S. gas resource base is large, chronic gas bubble has shrunk, and North American supply is more resilient than expected

  20. Brine chemistry and control of adverse chemical reactions with natural gas production. Annual report, July 1990-June 1991

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, J.E.; Kan, A.T.; Cao, X.; Hunter, M.; Tomson, M.B.

    1991-08-01

    A significant quantity of brine is produced along with nearly all gas production. In addition to disposal, three specific chemistry problems occur: (1) scale formation; (2) carbon dioxide corrosion; (3) solids or turbidity production. Additionally, there are numerous specific analytical chemistry issues which require attention. Several research oriented small test squeezes were performed in the Delee Well. Results of these test squeezes were used to better design a full-sized squeeze at the O'Daniels No. 2 Well in the Alta Loma East field, near Galveston, Texas. Sulfate scale formation is common in offshore gas production, because of the high sulfate content in sea water. Preliminary work has been completed on sulfate scale prediction for the common scales of calcium, strontium and barium. These predictive algorithms have been developed for field use and are based upon readily measured brine parameters. Corresponding laboratory work on sulfate inhibition has been started using a newly developed high temperature and pressure flow through apparatus. Flow through core tests have been conducted to determine the important mechanisms of inhibition retention and release in the field. These results are summarized along with their major implications to squeeze design. Also, a new method has been developed and a patent application filed for low level phosphonate inhibition analysis in produced brines.

  1. The French natural gas industry

    International Nuclear Information System (INIS)

    1999-01-01

    This little folder summarizes in few pages the main economical data of the French natural gas industry: supplies according to the country of origin, length of transport and distribution networks, LNG tanker ship fleet, underground storage capacity, population of LNG-fueled vehicles, cogeneration installations, consumption by sectors and by industrial activities, LPG consumption, supplies, distribution and sales, LPG-fuel for vehicles, CO 2 and NO x releases, equipment of households. (J.S.)

  2. Does Increased Extraction of Natural Gas Reduce Carbon Emissions?

    International Nuclear Information System (INIS)

    Aune, F.R.; Golombek, R.; Kittelsen, S.A. C.

    2004-01-01

    Without an international climate agreement, extraction of more natural gas could reduce emissions of CO2 as more 'clean' natural gas may drive out ''dirty'' coal and oil. Using a computable equilibrium model for the Western European electricity and natural gas markets, we examine whether increased extraction of natural gas in Norway reduces global emissions of CO2. We find that both in the short run and in the long run total emissions are reduced if the additional quantity of natural gas is used in gas power production in Norway. If instead the additional quantity is exported directly, total emissions increase both in the short run and in the long run. However, if modest CO2-taxes are imposed, increased extraction of natural gas will reduce CO2 emissions also when the additional natural gas is exported directed

  3. The Impact of Wind Power on European Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    Due to its clean burning properties, low investment costs and flexibility in production, natural gas is often put forward as the ideal partner fuel for wind power and other renewable sources of electricity generation with strongly variable output. This working paper examines three vital questions associated with this premise: 1) Is natural gas indeed the best partner fuel for wind power? 2) If so, to what extent will an increasing market share of wind power in European electricity generation affect demand for natural gas in the power sector? and 3) Considering the existing European natural gas markets, is natural gas capable of fulfilling this role of partner for renewable sources of electricity?.

  4. Western Pacific liquefied natural gas

    International Nuclear Information System (INIS)

    Woronuk, R.

    2005-01-01

    This presentation addressed issues facing WestPac Terminals' proposed construction of a liquefied natural gas (LNG) terminal and associated facilities on the Ridley Island on the coast of British Columbia. WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, LNG and economic optimization. Although a review of proposals for receiving terminals in North America has demonstrated the urgency and attractiveness of LNG imports, west coast terminals are not proceeding, largely due to lack of support by local communities. WestPac's proposal includes a deep enough port to accommodate the largest LNG tankers; a port en route to west coast terminal locations to serve as a transshipment hub; sufficient space for LNG storage tanks and natural gas liquids extraction; sea, rail, air and highway access. Other solutions include selecting locations where communities are pro-development where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG at the proposed site were discussed in terms of serving energy markets and provincial benefits. LNG source and cost issues were reviewed along with existing markets and required infrastructure for LNG market development. tabs., figs

  5. Western Pacific liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Woronuk, R. [WestPac Terminals Inc., Calgary, AB (Canada)

    2005-07-01

    This presentation addressed issues facing WestPac Terminals' proposed construction of a liquefied natural gas (LNG) terminal and associated facilities on the Ridley Island on the coast of British Columbia. WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, LNG and economic optimization. Although a review of proposals for receiving terminals in North America has demonstrated the urgency and attractiveness of LNG imports, west coast terminals are not proceeding, largely due to lack of support by local communities. WestPac's proposal includes a deep enough port to accommodate the largest LNG tankers; a port en route to west coast terminal locations to serve as a transshipment hub; sufficient space for LNG storage tanks and natural gas liquids extraction; sea, rail, air and highway access. Other solutions include selecting locations where communities are pro-development where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG at the proposed site were discussed in terms of serving energy markets and provincial benefits. LNG source and cost issues were reviewed along with existing markets and required infrastructure for LNG market development. tabs., figs.

  6. Natural gas: modern application - the environmental question

    International Nuclear Information System (INIS)

    Suarez, Miriam Liliana Hinostroza; Guerra, Sinclair Mallet-Guy

    1999-01-01

    Natural gas has been proposed as a transition fuel. The combustion of natural gas emits less CO 2 per unit of energy than the combustion of other fossil fuels. Increased reliance upon natural gas in preference to other fossil fuels would be encouraged to mitigate greenhouse gas releases while more comprehensive responses are devised to provide more time for adaptation to the inevitable climate change. In this context, the article overviews of natural gas and its relation with the environment

  7. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier, and an onshore integrated receiving terminal. Due to utilization of the cold exergy both in the offshore and onshore processes, and combined use of the gas carrier, the transport chain is both energy and cost effective. In this paper, the liquefied energy chain (LEC) is explained, including novel processes for both the offshore field site and onshore market site. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. The LNG is transported in a combined gas carrier to the receiving terminal where it is used as a cooling agent to liquefy CO 2 and nitrogen. The LCO 2 and LIN are transported offshore using the same combined carrier. Pinch and Exergy Analyses are used to determine the optimal offshore and onshore processes and the best transport conditions. The exergy efficiency for a thermodynamically optimized process is 87% and 71% for the offshore and onshore processes, respectively, yielding a total efficiency of 52%. The offshore process is self-supported with power and can operate with few units of rotating equipment and without flammable refrigerants. The loss of natural gas due to power generation for the energy requirements in the LEC processes is roughly one third of the loss in a conventional transport chain for stranded natural gas with CO 2 sequestration. The LEC has several configurations and can be used for small scale ( 5 MTPA LNG) transport. In the example in this paper, the total costs for the simple LEC including transport of natural gas to a 400 MW net power plant and return of 85% of the corresponding carbon as CO 2 for a total sailing distance of 24 h are 58.1 EUR/tonne LNG excluding or including the cost of power. The total power requirements are 319 k

  8. Report of working committee 1 ''exploration, production, treatment and underground storage of natural gas''; Rapport du comite de travail 1 ''exploration, production, traitement et stockage souterrain du gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Rekdal, Ottar

    2000-07-01

    This report describes the activities of Working Committee 1 during the triennium 1997 - 2000. The first part of the report gives an overview of the current situation world-wide within the basic activities of the committee, i.e. exploration, production, treatment and underground storage of natural gas. In the second part of the report analyses of three prioritized topics important to the industry are described: - Improving the performance of existing gas storages; - Use of 3-D seismic data in exploration, production and underground storage. - Development of small-scale offshore gas fields. The report will be presented during the WOC 1 sessions at the World Gas Conference 2000, together with papers selected by the committee. Other relevant papers will be presented during the poster session. Furthermore, the committee will organize a round table session addressing reductions of greenhouse gas emissions along the gas chain. Representatives from industry, environmental organisations and politicians will take part in this round table discussion. (author)

  9. Natural gas as public service; Gas natural como servico publico

    Energy Technology Data Exchange (ETDEWEB)

    Gois, Breno Vincius de; Franca, Vladimir da Rocha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The Natural Gas passes through an outbreak of enormous growth in Brazil. Important in several economies in the world and is one of the main components of the energy matrix of various countries, including neighbouring Southern Cone, such as Argentina and Bolivia, he begins to own as a major viable alternatives to replace oil, along with alcohol and biodiesel. When the distribution of the gas flowing, this should be governed by a system of public law, according to the principles governing the administration, is emphasizing the principle of continuity, efficiency, and generally modest, because this is public service, and how to see this be seen on a strong regulation of the Member States of the Federation, which has the power to provide them directly or by concession. (author)

  10. Natural gas utilization study : offshore Newfoundland

    International Nuclear Information System (INIS)

    1998-10-01

    A study was conducted to quantify the natural gas resources of Newfoundland and to identify production and transportation options. The objective was to create a development strategy for natural gas which is growing in global importance as an energy source and as a feedstock for the downstream industry. The growth is driven by general economic expansion and the fact that natural gas is far less polluting than its main fossil fuel alternatives of oil and coal. New use is dominated by the power generation sector. The natural gas industry is also evolving rapidly as new reserves are established and pipelines are being constructed. Proven world reserves of natural gas now stand in excess of 5000 Tcf, 70 per cent of which is in the Russian Federation (CIS) and Middle East regions. Production and consumption, however, is dominated by the industrialized countries of North America and western Europe. This difference between markets and reserves has major implications including the need to develop cost effective long-distance transportation technologies and delivery systems or to relocate downstream industries closer to the reserves. In Newfoundland, the estimated reserves total 61.9 Tcf, including 8.2 Tcf of discovered reserves and 53.7 Tcf of undiscovered reserves. Of the discovered reserves, 4.2 Tcf is on the Labrador Shelf and 4.0 Tcf is in the the Jeanne d'Arc Basin on the Grand Banks. The Hibernia development could play a major role in the development of the natural gas resources of fields within a radius of 50 km around the platform. The general conclusion from the first phase of this study is that Newfoundland's natural gas resources are valuable and potentially capable of supporting significant industrial activities. The undiscovered potential holds significant promise for both the Newfoundland offshore and onshore areas. Phase Two of the study will deal with the development and implementation of a Strategic Plan for Newfoundland's natural gas resources. A series of

  11. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  12. Natural gas in 1946: Petroleum in 1946. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1949-12-31

    Part III of the annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution, changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  13. Natural gas in 1934: Petroleum in 1934. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1937-12-31

    Part V of this annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  14. Natural gas in 1949: Petroleum in 1949. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1952-12-31

    Part III of the annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution, changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  15. Natural gas in 1937: Petroleum in 1937. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1940-12-31

    Part V of this annual report consists of two separate reports, natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  16. Natural gas in 1939: Petroleum in 1939. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1942-12-31

    Part V of this annual report consists of two separate reports, natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  17. Natural gas in 1948: Petroleum in 1948. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1951-12-31

    Part III of the annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution, changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  18. Natural gas in 1943: Petroleum in 1943. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1946-12-31

    Part V of this annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  19. Natural gas in 1940: Petroleum in 1940. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, A R

    1944-12-31

    Part V of this annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  20. Natural gas in 1941: Petroleum in 1941. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, A R

    1945-12-31

    Part V of this annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  1. Syngas and hydrogen production from the natural gas reforming with carbon dioxide; Producao de gas de sintese e hidrogenio a partir da reforma do gas natural com dioxido de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Pacifico, Jose Adair; Silva, Hollyson William da; Moura, Diego de Lima; Soares, Cicero Henrique Macedo; Abreu, Cesar Augusto Moraes de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)]. E-mail: adairpacifico@hotmail.com

    2008-07-01

    In order to establish operational previews for the catalytic reforming of methane with carbon dioxide process a unidimensional Kunii-Levenspiel heterogeneous model was elaborated for the fluidized bed reaction system. Simulations showing the reactants (CH{sub 4} + CO{sub 2}) and products (CO + H{sub 2}) concentration outlines are accomplished, showing the effect of temperature. The operational system composed by the fluidized bed reactor has the following dimensions: (Ht 1,180 mm, Dint = 56 mm) and a 4.98 wt.% Ni/{gamma}-Al{sub 2}O{sub 3} catalysts (mcat 224.74g), operating at 1,023.15K, 1,073.15K, and 1,123.15K and atmospheric pressure. Under the conditions above and adopting a Langmuir-Hinshelwood kinetic law for catalysts decomposition of methane and not catalytic heterogeneous kinetic law for gas shift and Boudouard reverse reaction. The adopted mathematic model it allowed the establishing of profile concentration for the reactants and products showing. Conversion at 97.89% and 85.45% for the CH{sub 4} and CO{sub 2}, at 1,123.15K. (author)

  2. Asian natural gas--For a brighter '90s

    International Nuclear Information System (INIS)

    Klass, D.L.; Ohashi, Tadahiko

    1991-01-01

    The seminar was designed to focus on the business aspects of developing Asian natural gas resources by inclusion of papers on natural gas markets, the role of banks, and financial case histories of existing projects, and papers on commercial and industrial natural gas utilization. The utilization of natural gas was addressed by papers that targeted small-scale, industrial and utility usage of natural gas in electric power production, and by papers on air conditioning and other applications. Each of these topics is important to the development of the Asian natural gas industry. Together, they formed a balanced program when combined with the opening keynote addresses from Tokyo Gas Company, Ltd., and PETRONAS and a panel discussion on gas pricing. All papers have been processed separately for inclusion on the data base

  3. Opportunities and Challenges for the Extraction of Natural Gas in ...

    African Journals Online (AJOL)

    The discovery and production of natural gas on a commercial scale in ... that revenues from resource extraction are intrinsically time limited; natural gas reserves will be .... Secondly, natural resource wealth has specific features which distinguish it ..... demands strengthening with a view to enable them to effectively audit the ...

  4. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  5. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  6. BASF and acetylene. 70 years of reppe chemistry - long-standing reliability and promising future - and now, the only natural gas based clean technology for acetylene production

    Energy Technology Data Exchange (ETDEWEB)

    Vicari, M. [BASF SE, Ludwigshafen (Germany)

    2013-11-01

    Acetylene is still an attractive intermediate synthesis component because carbon in methane from natural gas comes at a lower price than carbon in naphtha from crude oil or coal. Acetylene can be understood as a product of C-C coupling and functionalization. Beginning in the 1950s, BASF developed the partial oxidation (Pox) process, in addition to the electric arc process dating from the 1930s and the submerged flame process. The originally developed Pox process came along with severe emissions of hydrocarbons to the environment. Nowadays it is extremely important to have a clean, environmentally friendly technology. So in the 1990s a closed water-quench process was developed and built in the United States. The presentation focuses on the ways of making acetylene, the use of acetylene and BASF's closed water-quench process based on natural gas. This process will be presented including some important safety aspects. The process is available for licensing. (orig.)

  7. Natural gas in the European Community

    International Nuclear Information System (INIS)

    Kalim, Z.

    1991-01-01

    A report is presented on 'Natural Gas in the European Community'. Aspects discussed include the challenges facing the gas industry in the EC, the development of the European gas industry, the structure and role of European gas companies, the sources of European supply, gas contracts and the influences that operate on sales into end markets, electricity generation from natural gas, evolving markets for natural gas in the EC, life in the private sector using British Gas as a role model and country profiles for eleven European countries. (UK)

  8. Globalization of the Natural Gas Industry

    International Nuclear Information System (INIS)

    Burns, RJ.

    1996-01-01

    This document deals with the foreseeable evolution of natural gas demand in the next 15 years. Natural gas consumption is growing faster than any other fossil fuel and, according to ENRON, the natural consumption growth will continue. The environmental aspect of natural gas use for power generation is presented, showing that gas use reduces pollution emissions (when compared with coal). On top of that, it appears that the conversion efficiency of gas is much higher than the conversion efficiency of coal steam. Eventually, natural gas resources should meet energy demand for decades. (TEC)

  9. Mitchell firmly retrenched in natural gas services

    International Nuclear Information System (INIS)

    Share, J.

    1997-01-01

    The past three years, Mitchell Energy and Development Corp. has undergone a massive restructuring that has changed the face of one of the nation's largest and best-known natural gas/natural gas liquids companies. Facing a rapidly changing industry that frequently has been stung by volatile swings in energy markets, management of the independent company, founded by George Mitchell in 1946, sold off $300 million in non-core assets; reduced its long-term debt by $400 million; instituted a hiring freeze and reduced its workforce by a third, from 2,900 to 1,950, over the last three years. Mitchell negotiated a buyout of its hugely profitable North Texas gas sales contract with Natural Gas Pipeline Company of America as a means of easing its transition to a market-sensitive price environment and reducing its debt. Mitchell also took operational control. Finally, Mitchell has left the real estate business, culminating July 31 with the sale of its real estate subsidiary, The Woodlands Corporation, for $543 million ($460 million net after-tax), further reducing its workforce to 1,100. On Aug. 18, the company said it will use the proceeds to repurchase common stock, retire another $200 million of public debt, make asset niche energy acquisitions and increase capital spending for existing programs. The result is a renewed focus on its exploration and production and gas gathering, processing and marketing businesses

  10. Natural Gas Storage Facilities, US, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Platts Natural Gas Storage Facilities geospatial data layer contains points that represent locations of facilities used for natural gas storage in the United...

  11. Distribution forms for biogas and natural gas in Sweden

    International Nuclear Information System (INIS)

    Benjaminsson, Johan; Nilsson, Ronny

    2009-11-01

    Since biogas and natural gas basically have the same characteristics, they can be distributed in the same system. In the parts of the country where there is an extensive natural gas distribution network, the infrastructure for natural gas can be used for distribution of biogas. In order to increase the use of renewable energy, it is a political ambition to increase the share of biogas in the natural gas network, and, in the long run, entirely replace natural gas with biogas. Much of biogas production in the country is, however, not reached by the existing natural gas network, and this is also the case for a large part of the potential for future biogas production. In these areas the gas is transported in more or less extensive local gas distribution networks and by truck in compressed or liquid form. Transport of compressed and liquefied gas is efficient in some cases and development of these systems is an ongoing process. A number of facilities are planned for production of large quantities of biogas, several hundred GWh/year, through digestion and gasification processes. These plants will be located either in conjunction with major gas consumers or in the vicinity of the existing natural gas grid. The potential for biogas production is, however, present throughout the country and in order to meet market demand biogas requires efficient distribution systems

  12. Natural gas projects, strategies and economics

    International Nuclear Information System (INIS)

    Hamaide, G.

    2000-01-01

    This article summarizes the content of some of the posters presented during the WOC 9 working committee of the CMG 2000 worldwide gas congress: natural gas in the new worldwide energy balance; eastern Russia: the last gas projects; the new underwater technologies and the availability of natural gas. (J.S.)

  13. Mexican demand for US natural gas

    International Nuclear Information System (INIS)

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000

  14. Mexican demand for US natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000.

  15. Natural gas in the World 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This document summarizes the key findings of the 160-page 2014 edition of CEDIGAZ's flagship survey 'Natural Gas in the World': Worldwide proved natural gas reserves grew by 0.5% (981 bcm) in 2013. On January 1, 2014, reserves were estimated by Cedigaz to stand at 200,576 bcm, compared to 199,595 bcm for the previous year. Out of the seven regions in our regional breakdown, only North America and the C.I.S. have seen an increase in their reserves base in 2013. The strongest gain, both in absolute terms (+739 bcm) and as a percentage (+6.8%), was recorded in North America, reflecting the growth of unconventional gas reserves, both in the U.S. and Canada. The C.I.S. also posted a solid 669 bcm increase, representing a 1% rise. OPEC countries control about half of the world's gas reserves (47%) whereas C.I.S. countries account for almost one-third (33%). Proved unconventional gas reserves are concentrated in North America, especially in the U.S., which held in particular 3.7 tcm of proven shale gas reserves. Outside North America, large coal bed methane (CBM) reserves also exist in Australia and China. Marketed production was up by only 1% from 2012, reaching 3394 bcm, compared to the average growth rate for the last ten years (2.5%/year). This slowdown is partly explained by growing coal-togas competition on the demand side and a gas supply shortfall on the supply side, especially in emerging markets, where the lack of upstream investment is acute. The highest production increases were recorded in the Middle East (+3.1%) and the C.I.S. (+2.6%), which compensated for output losses in Europe (-2.3%) and Africa (-6.6%). In 2013, the two leading regional producing markets, North America and the C.I.S., accounted for 26% and 24% of global production respectively, followed by the Middle East (17%) and Asia Oceania (15%). In 2013, growth in unconventional gas production was driven by North America, China and Australia. North America no longer accounts

  16. Nigeria: petroleum; natural gas and economic crisis

    International Nuclear Information System (INIS)

    Gugliotta, A.

    2008-01-01

    Conflicts in Nigeria have recently deepened and they show a continuous escalation. The endless attacks against all infrastructures led to a reduction of oil production, thus effecting international oil market as well. This article provides a Nigeria's economy and energy framework. First, we will focus on troubles characterizing oil companies activities in Nigeria. Then, we will analyze how a higher exploitation of natural gas could affect Nigeria's economy, politics and society. [it

  17. Buying natural gas in the spot market: risks related to the natural gas industry globalization; Aquisicao de gas natural em bases 'spot': riscos associados a globalizacao da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, Melissa Cristina [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Szklo, Alexandre Salem [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2008-07-01

    The growth of the international natural gas trade during the last decade resulted in the expectation that this product would be traded as a commodity. This expectation created a boom in the investments related to the commercialization of natural gas between borders, especially in the distinct segments of the chain of liquefied natural gas (LNG). Different agents launched themselves into liquefaction and regasification enterprises, and the ordering of ships also showed significant growth. Despite that, the natural gas market still cannot be considered global, and international gas transactions are primarily done within regional markets. This article investigates the challenges posed to the constitution of a global natural gas market. These challenges represent risks to the commercialization of this product in spot bases, for the agents that launch themselves into projects to export or import LNG to be commercialized through short term contracts in the international market for this product. (author)

  18. Dedicated natural gas vehicle with low emission

    NARCIS (Netherlands)

    Voogd, A. de; Weide, J. van der; Konig, A.; Wegener, R.

    1995-01-01

    In the introduction an overview is given of international activities in the field of natural gas vehicles. The main incentives for the use of natural gas in vehicles are: emission reduction in urban areas, fuel diversification, and long term availability. Heavy duty natural gas engines are mainly

  19. 40 CFR 1065.715 - Natural gas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet the...

  20. New opportunities for natural gas

    International Nuclear Information System (INIS)

    Newcomb, J.

    1991-01-01

    This paper reports that the prospect of extremely low gas prices - approaching $1.00 per million Btu (MMBtu) on a seasonal basis - is frightening many producers. The presence of large gas inventories only serves to intensify these fears. Threats of declining market conditions stir the question: How should producers react to these prices? On the score, the experts advise: One of the first rules of playing the power game is that all bad news must be accepted calmly as if one already knew and didn't much care. Although stated jokingly, there is a kernel of truth to the suggestion. Having thought through the adversities involved in the worst case scenario - and for natural gas producers and other industry participants, those adversities are formidable - companies may be better prepared to adapt to the worst case, should it happen to materialize. Here, the bad news is that CERA foresees serious near-term perils that could route the industry toward that worst case. The good news is that long-term prospects provide a cause for optimism

  1. The crude petroleum and natural gas industry, 1995

    International Nuclear Information System (INIS)

    1996-01-01

    A compilation of data regarding the crude petroleum and natural gas industry was presented. This industry includes establishments engaged in exploration for, or production of petroleum or natural gas from wells or tar sands. Data presented in this publication include: the supply and disposition of crude oil and natural gas, operating and capital expenditures of approximately 500 companies of the oil and natural gas industry, drilling completions, and crude oil and natural gas reserves. Data about the oil sands industry is reported in another volume. Much of the data was obtained from the Canadian Association of Petroleum Producers. Overall, in 1995 Canadian natural gas production rose 6.7%; exports of crude oil rose 7.7%. 8 tabs., 2 figs

  2. Prediction of natural gas consumption

    International Nuclear Information System (INIS)

    Zhang, R.L.; Walton, D.J.; Hoskins, W.D.

    1993-01-01

    Distributors of natural gas need to predict future consumption in order to purchase a sufficient supply on contract. Distributors that offer their customers equal payment plans need to predict the consumption of each customer 12 months in advance. Estimates of previous consumption are often used for months when meters are inaccessible, or bimonthly-read meters. Existing methods of predicting natural gas consumption, and a proposed new method for each local region are discussed. The proposed model distinguishes the consumption load factors from summer to other seasons by attempting to adjust them by introducing two parameters. The problem is then reduced to a quadratic programming problem. However, since it is not necessary to use both parameters simultaneously, the problem can be solved with a simple iterative procedure. Results show that the new model can improve the two-equation model to a certain scale. The adjustment to heat load factor can reduce the error of prediction markedly while that to base load factor influences the error marginally. 3 refs., 11 figs., 2 tabs

  3. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but unce...

  4. Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage

    International Nuclear Information System (INIS)

    Seo, Young-ju; Park, Seongmin; Kang, Hyery; Ahn, Yun-Ho; Lim, Dongwook; Kim, Se-Joon; Lee, Jaehyoung; Lee, Joo Yong; Ahn, Taewoong; Seo, Yongwon; Lee, Huen

    2016-01-01

    structural sustainability and cage-specific replacement observed in the C 3 H 8 + CH 4 hydrate with external CO 2 /N 2 gas will have significant implications for suggesting target gas hydrate reservoirs and understanding the precise nature of guest exchange in gas hydrates for both safe natural gas production and long-term CO 2 sequestration.

  5. Antiplasmodial Natural Products

    Directory of Open Access Journals (Sweden)

    Cláudio R. Nogueira

    2011-03-01

    Full Text Available Malaria is a human infectious disease that is caused by four species of Plasmodium. It is responsible for more than 1 million deaths per year. Natural products contain a great variety of chemical structures and have been screened for antiplasmodial activity as potential sources of new antimalarial drugs. This review highlights studies on natural products with antimalarial and antiplasmodial activity reported in the literature from January 2009 to November 2010. A total of 360 antiplasmodial natural products comprised of terpenes, including iridoids, sesquiterpenes, diterpenes, terpenoid benzoquinones, steroids, quassinoids, limonoids, curcubitacins, and lanostanes; flavonoids; alkaloids; peptides; phenylalkanoids; xanthones; naphthopyrones; polyketides, including halenaquinones, peroxides, polyacetylenes, and resorcylic acids; depsidones; benzophenones; macrolides; and miscellaneous compounds, including halogenated compounds and chromenes are listed in this review.

  6. Methane emissions from the natural gas industry

    International Nuclear Information System (INIS)

    Harrison, M.R.; Cowgill, R.M.; Campbell, L.M.; Lott, R.A.

    1993-01-01

    The U.S. EPA and the United Nation's Intergovernmental Panel on Climate Change (IPCC) have suggested that global warming could be reduced if more energy was generated using natural gas rather than fuels such as coal. An increased use of natural gas instead of coal would decrease global warming since methane emits less carbon dioxide (CO 2 ) than any fossil fuel. However, methane is a more potent as a greenhouse gas than CO 2 , and leakage from the gas system could reduce or eliminate the inherent advantage of natural gas. For this reason, methane emissions must be quantified before a national policy on preferred fuels is developed. Therefore, GRI and EPA have developed this confunded program to quantify methane emissions from the U.S. gas industry. This paper presents, for general industry review, the approach and methodology that the project is using to determine the emissions. The study will measure or calculate all gas industry methane emissions - from production at the wellhead, through the system, to the customer's meter. When these data are combined with data from other studies, a definitive comparison of the relative environmental impact of using methane versus other fuels will be possible. The study will also provide data that can be used by the industry to identify cost-effective mitigation techniques to reduce losses. The methane emissions project is being conducted in three phases: the first two phases have identified and ranked all known potential methane-emitting sources and established methods for measuring, calculating, and extrapolating emissions from those sources. The third phase, which is currently in progress, will gather sufficient data to achieve the accuracy goal. This paper briefly summarizes the methodology being used for the completion of the third phase

  7. The crude petroleum and natural gas industry : 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Statistics regarding Canada's crude oil and natural gas industry for 1996 were presented. Data presentation was in tabular form, the topics being exploration and development, synthetic crude oil reserves, crude oil production and movements by source, natural gas production, drilling completions, net cash expenditures of the petroleum industry, and total sales of natural gas by province. Some of the noteworthy highlights for 1996 were: (1) 14,600 new wells were drilled, the highest number ever recorded, (2) capital investment was over $13 billion, (3) 148 companies were involved in mergers and acquisitions, (4) value of marketable production of oil, natural gas and natural gas by-products topped $30 billion, (5) Empress pipelines began operations of the first new major oil pipeline from Western Canada in 45 years, (6) the Hibernia offshore crude oil facility was completed, (7) Sable Island offshore energy projects applications were filed, and (8) the development of the Terra Nova, Whitehorse and Hebron fields was announced. 8 tabs

  8. Statistics 2005 of the natural gas industry in France

    International Nuclear Information System (INIS)

    2006-11-01

    This document provides and analyses statistical data of the natural gas industry for the year 2005. After a presentation of the consumption and the supplying, it deals with the gas market organization (production, transport, storage, supply and distribution), the information sources and the methods of the analysis and the main data (transport, production, storage, employment, uses). The last part takes stock of the energy in 2005 and the main transport axis of the natural gas in Europe. (A.L.B.)

  9. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  10. Natural gas industry R and D

    International Nuclear Information System (INIS)

    Pavan, S.

    1992-01-01

    The last three decades have witnessed significant developments in engineering relative to the distribution and use of natural gas. This paper reviews these developments which, in natural gas distribution, include - polyethylene conduits, the use of radar to trace buried conduits, telemetering, innovative pressure reducing techniques and equipment, optimized retrofitting of buried pipelines, leak detection techniques, and energy recovery systems applied to pressure reducing operations. Relative to the efficient combustion and new uses of natural gas, the paper reviews the state-of-the-art in the design of compact wall mounted gas fired boilers for building space heating, gas fuelled space heating ventilation and air conditioning systems, and natural gas fed fuel cells

  11. Annual survey on the natural gas market: results for 2013

    International Nuclear Information System (INIS)

    Cadin, Didier; Moreau, Sylvain

    2015-02-01

    Illustrated by graphs and tables, this publication presents and discusses data regarding the French natural gas market in 2013: origin of the consumed gas and share of the national production, evolution of the inlet-outlet ratio for gas-pipe and gas harbour terminals in France, adjustment of resources to demand in terms of jobs, production, imports and storage, evolution of stored quantities, evolution of consumption, evolution of consumption per sector since 2007, regional supplies in 2012 and 2013

  12. Modelling the production of hydrogen (H{sub 2}) using natural gas in Venezuela. An approach involving the sustainability of productive processes; Modelizacion de la produccion de hidrogeno (H{sub 2}) usando gas natural en Venezuela. Una aproximacion a la sostenibilidad del proceso productivo

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Zerpa, Juan [Centro Politecnico Superior, Universidad de Zaragoza (Espana)] email: juancarlosrojas4@yahoo.com

    2009-09-15

    The purpose of the present work is to formulate and evaluate a mathematical model inherent to the process to produce H{sub 2} in Venezuela through reforming natural gas and removing carbon dioxide (CO{sub 2}). The aim of this work is to identify opportunities to recover gas released through the air and from burning natural gas which, in turn, makes it possible to mitigate the effects of global warming. The development of the mathematical model is linear, and includes the production of H{sub 2} the efficiency of the energy conversion process, the cost of the main inputs and resources (natural gas, water and electricity), the cost of reforming and the CO{sub 2} capture system, transport and storage. Three scenarios were considered for the sustainable production of H{sub 2} conventional hydrogen production, H{sub 2} production with direct CO{sub 2} removal, and the production of H{sub 2} with CO{sub 2} removal and increased natural gas from depleted wells (EGR). The results indicate that in Venezuela, more than 1 million tons of hydrogen per year can be produced at a low cost of 1 $/K, with a CO{sub 2} removal effectiveness over 61% and an EGR factor of roughly 8%. In addition, a significant reduction in gas released into the atmosphere would prevent the yearly injection of more than 23 million tons of CO{sub 2} (11,7% of total national CO{sub 2}). The total production cost obtained is significantly lower than that mentioned in the literature, including the target cost by 2017 expected by the U.S. Department of Energy (DOE). [Spanish] El proposito del presente trabajo consiste en la formulacion y evaluacion de un modelo matematico inherente al proceso de produccion de H{sub 2} en Venezuela, mediante el reformado del gas natural y la remocion del dioxido de carbono (CO{sub 2}); con la finalidad de identificar oportunidades para la recuperacion de gas arrojado (venteo y quemado de gas natural) que a su vez permitan mitigar los efectos de calentamiento global. La

  13. Natural gas demand prospects in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Jin [Korea Electric Power Corp. (KEPCO), Seoul (Korea, Republic of)

    1997-06-01

    Korea s natural gas demand has increase enormously since 1986. Natural gas demand in Korea will approach to 29 million tonnes by the year 2010, from little over 9 million tonnes in 1996. This rapid expansion of natural gas demand is largely due to regulations for environmental protection by the government as well as consumers preference to natural gas over other sources of energy. Especially industrial use of gas will expand faster than other use of gas, although it will not be as high as that in European and North America countries. To meet the enormous increase in demand, Korean government and Korea Gas Corporation (KOGAS) are undertaking expansion of capacities of natural gas supply facilities, and are seeking diversification of import sources, including participation in major gas projects, to secure the import sources on more reliable grounds. (Author). 5 tabs.

  14. Natural gas demand prospects in Korea

    International Nuclear Information System (INIS)

    Young-Jin Kwon

    1997-01-01

    Korea s natural gas demand has increase enormously since 1986. Natural gas demand in Korea will approach to 29 million tonnes by the year 2010, from little over 9 million tonnes in 1996. This rapid expansion of natural gas demand is largely due to regulations for environmental protection by the government as well as consumers preference to natural gas over other sources of energy. Especially industrial use of gas will expand faster than other use of gas, although it will not be as high as that in European and North America countries. To meet the enormous increase in demand, Korean government and Korea Gas Corporation (KOGAS) are undertaking expansion of capacities of natural gas supply facilities, and are seeking diversification of import sources, including participation in major gas projects, to secure the import sources on more reliable grounds. (Author). 5 tabs

  15. Natural gas supply and demand outlook

    International Nuclear Information System (INIS)

    McGill, C.B.

    1998-01-01

    The outlook for U.S. natural gas supply and demand in the residential, commercial, industrial/cogeneration, electricity and transportation sectors for 1995, 2000, 2005, 2010, and 2015 was presented. A summary of gas well completions from 1990 to 1997 was also provided. The Canadian natural gas resource was estimated at 184 trillion cubic feet. In 1996, Canada produced 5.6 trillion cubic feet of natural gas, half of which was exported to the U.S. New pipeline projects have been proposed to transport natural gas from eastern offshore areas and the Western Canadian Sedimentary Basin. A table representing U.S. and Canada gas trade from 1990 to 1997 and a map of proposed Canadian and U.S. natural gas pipeline routes were also included. Looking into the future, this speaker predicted continued volatility in natural gas prices. 9 tabs., 9 figs

  16. Pricing of natural gas in Kazakhstan

    International Nuclear Information System (INIS)

    Zhapargaliev, I.K.

    1996-01-01

    Two state companies are in charge of natural gas supply in Kazakhstan. They buy, transport and sell natural gas and have monopolized the industry and provoked increase of gas prices. Ministry of Oil and gas Industry proposed demonopolization. The restructuring that took place caused new distribution of tasks in the gas industry. A more competitive environment was created leading to normalization of the natural gas prices. All economic subjects were granted the right to acquire gas regardless the type of ownership. Measures implemented for reorganization of gas companies contributed to the reduction of gas transport costs and prices by 50% and to decrease of gas prices in the southern regions by 50%. Despite these measures gas prices for household sector are still unchanged and are below the import prices, the main reason being the low average household income

  17. Natural gas supply in Denmark - A model of natural gas transmission and the liberalized gas market

    International Nuclear Information System (INIS)

    Bregnbaek, L.

    2005-01-01

    In the wake of the liberalization of European energy markets a large area of research has spawned. This area includes the development of mathematical models to analyze the impact of liberalization with respect to efficiency, supply security and environment, to name but a few subjects. This project describes the development of such a model. In Denmark the parallel liberalization of the markets of natural gas and electricity and the existence of an abundance of de-centralized combined heat and power generators of which most are natural gas fired, leads to the natural assumption that the future holds a greater deal of interdependency for these markets. A model is developed describing network flows in the natural gas transmission system, the main arteries of natural gas supply, from a technical viewpoint. This yields a technical bounding on the supply available in different parts of the country. Additionally the economic structure of the Danish natural gas market is formulated mathematically giving a description of the transmission, distribution and storage options available to the market. The supply and demand of natural gas is put into a partial equilibrium context by integrating the developed model with the Balmorel model, which describes the markets for electricity and district heat. Specifically on the demand side the consumption of natural gas for heat and power generation is emphasized. General results and three demonstration cases are presented to illustrate how the developed model can be used to analyze various energy policy issues, and to disclose the strengths and weaknesses in the formulation. (au)

  18. Natural gas market assessment. Canadian natural gas market mechanisms: Recent experiences and developments

    International Nuclear Information System (INIS)

    1993-11-01

    The increase in natural gas demand and the associated expansions of most of the pipeline systems serving western Canada have reduced the excess deliverability or excess productive capacity that existed at the time of deregulation of the natural gas industry in 1985. Based on an industry survey, the responses of natural gas buyers and sellers to recent supply difficulties are described. Specific production, transportation, and contractual difficulties were encountered in winter 1992/93 as production was stretched to meet record levels of demand during periods of very cold temperatures and as short-term spot prices reached very high levels. Problems at this time included wellhead freezeups, pipeline outages, and inadequate contract terms and conditions. Methods used to maintain gas flows to end users are reviewed, including a discussion of force majeure, spot gas purchases, storage, supply curtailment, and special loan arrangements. In 1992/93, in most instances where the responsibility fell on the end-user to solve the supply problem, the difficulty was shifted to local distribution companies who have traditionally had more experience with such situations. No cases were identified where either a firm or interruptible end-user was forced to curtail gas consumption because of inadequate supply. New market mechanisms are emerging that will enable buyers and sellers of western Canadian gas to avoid many of the problems encountered in 1992/93. These include prearranged backstopping arrangements, short-term spot markets, access to other gas basins, standardized gas contracts, electronic trading, and price risk management tools. 11 figs

  19. A miniaturized optical gas sensor for natural gas analysis

    NARCIS (Netherlands)

    Ayerden, N.P.

    2016-01-01

    The depletion of domestic reserves and the growing use of sustainable resources forces a transition from the locally produced natural gas with a well-known composition toward the ‘new’ gas with a more flexible composition in the Netherlands. For safe combustion and proper billing, the natural gas

  20. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Science.gov (United States)

    2013-06-26

    ... Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and...

  1. Experimental and modeling study of hydrogen/syngas production and particulate emissions from a natural gas-fueled partial oxidation engine

    International Nuclear Information System (INIS)

    McMillian, Michael H.; Lawson, Seth A.

    2006-01-01

    In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust composition from partial oxidation (POX) of natural gas in reciprocating engines. The model was experimentally validated over a range of equivalence ratios from 1.3 to 1.6 with a spark-ignited single cylinder engine fueled by natural gas. The modeling results matched well with engine gaseous emission data over the experimental range. The model was also extended to higher equivalence ratios to predict H 2 and CO production at engine conditions and stoichiometries representative of homogeneous charge compression ignition (HCCI) engine operation. Secondly, over the same experimental range of equivalence ratios, particulate samples were taken to determine both total particulate mass production (g/hph) via gravimetric measurement as well as particle size distribution and loading via a scanning mobility particle sizer (SMPS). While experiments indicate hydrogen yields up to 11% using spark ignition (SI), modeling results indicate that greater than 20% H 2 yield may be possible in HCCI operation. Over the experimental range, rich-burn particulate matter (PM) production is no greater than that from typical lean-burn operation. Finally, an energy balance was performed over the range of engine experimental operation. (author)

  2. Natural gas as raw material for industrial development

    International Nuclear Information System (INIS)

    Kvisle, Steinar

    2006-01-01

    Industrial development based on natural gas has broad, industrial implications. Norway has a vital industry based on natural gas as raw material, here under Ormen Lange, Snoehvit LNG, Tjeldbergodden and Petrochemical Grenland. The petrochemical industry has challenges, e.g. the cost of raw materials and energy, localization related to the markets, and recruitment, but considerable investments are made in the sector. The Northern areas in Norway may have special challenges related to bringing the product to the market. Solutions to this challenge are in LNG (liquid natural gas), GTL (gas to liquids), and GTO (gas to olefins)

  3. Trends in natural gas distribution and measurements

    International Nuclear Information System (INIS)

    Crone, C.F.A.

    1993-01-01

    On the occasion of the GAS EXPO 93, to be held from 13-15 October 1993 in Amsterdam, Netherlands, an overview is given of trends in the distribution of natural gas and the measuring of natural gas, as noted by experts from the energy utilities, GASTEC and Gasunie in the Netherlands. With regard to the natural gas distribution trends attention is paid to synthetic materials, the environmental effects, maintenance, underground natural gas pressure control, horizontal drilling (no-dig techniques), and other trends. With regard to natural gas metering trends brief discussions are given of the direct energy meter, the search for a new gas meter in households, telemetering, improving the accuracy of the gas meters by means of electronics, on the spot calibration of large gas meters, the use of an online chromatograph to determine the calorific value, the development of a calibration instrument, the so-called piston prover, to measure large quantities of natural gas, the recalibration of natural gas stations, the ultrasonic gas meter, and finally the quality of the natural gas supply. 1 fig., 11 ills

  4. Impact of hydrogen insertion on vehicular natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Strangueto, Karina Maretti; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. of Mechanical Engineering. Energy Dept.], Email: karinakms@fem.unicamp.br

    2010-07-01

    This article aims to analyze the possibility of insertion of hydrogen in the vehicular natural gas or even the insertion of the hydrogen in the compressed natural gas used in Brazil. For the production of this hydrogen, the spilled turbinable energy from Itaipu would be harnessed. The calculation of production can be extended to other power plants which are close to the natural gas pipelines, where the hydrogen would be introduced. Then, it was analyzed the consumption of natural gas in vehicles in Brazil, the regulation of transportation, the sales of compressed natural gas to fuelling station, the specifications that the piped gas should follow to be sold, and how much hydrogen could be accepted in the mix. (author)

  5. Natural gas vehicles. An option for Europe

    International Nuclear Information System (INIS)

    Engerer, Hella; Horn, Manfred

    2010-01-01

    In Europe natural gas vehicles play a minor role. A decisive reason for this is the dependence of most European countries from gas imports. Except for Italy, there is no tradition to use natural gas as fuel. In addition, there is a lack of infrastructure (e.g. fuelling stations). In contrast to Europe, in Latin American and Asian countries natural gas vehicles are widespread. Some countries foster natural gas vehicles because they have own gas resources. Many countries must reduce the high air pollution in big cities. Environmental reasons are the main motive for the use of natural gas vehicles in Europe. In last years, high oil prices stimulated the use of natural gas as fuel. European governments have developed incentives (e.g. tax reductions) to foster natural gas vehicles. However, the focus is on hybrid technology and the electric car, which, however, need further technical improvement. In contrast, the use of natural gas in conventional engines is technically mature. Additional gas imports can be avoided by further improvements of energy efficiency and the use of renewable energy. In sum, the market penetration of natural gas as fuel should be promoted in Europe. (author)

  6. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R.M. [Radian Corporation, Austin, TX (United States)

    1995-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  7. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R M [Radian Corporation, Austin, TX (United States)

    1996-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  8. Opportunities to reduce methane emissions in the natural gas industry

    International Nuclear Information System (INIS)

    Cowgill, R.M.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH 4 ) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH 4 . Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  9. Dutch natural gas strategy : Historic perspective and challenges ahead

    NARCIS (Netherlands)

    Weijermars, R.; Luthi, S.M.

    2011-01-01

    We highlight a watershed in the natural gas legacy of the Netherlands: after 50 years of successful gas development, production output of conventional fields will decline from 2010 onwards. The projected decline in Dutch gas output will lead to a loss of future income for the State. In the past, E&P

  10. Future considerations: Imperial finds new promise in natural gas

    International Nuclear Information System (INIS)

    Martin, J.

    1988-01-01

    After decades of having natural gas a minor part of its operations, Imperial Oil has reevaluated the importance of that resource within the company's strategy. A comprehensive business review of the industry was conducted in 1987 and prompted Imperial's subsidiary, Esso Resources Canada, to adopt the goal of becoming an industry leader in natural gas reserves, production, and marketing. Imperial's natural gas business started in 1921, when it assumed control of the company whose Turner Valley gas find sparked an oil rush in 1914. By the early 1940s, when Turner Valley was still Canada's only major oil field, Imperial was considering the manufacture of synthetic oil from natural gas, but then it discovered the first well of the Leduc oil boom in 1947. Imperial built the first gas conservation plant in Canada in 1950, but largely left other companies to develop gas fields. The deregulated gas market of the mid-1980s saw Imperial buying its first major acquisition in over 20 years, Sulpetro Ltd.; this boosted Imperial's annual gas production and its reserves by a third. A further purchase of Ocelot Industries increased overall gas production by another 20%. Imperial also made substantial gas finds in the Mackenzie Delta, and the company's holdings at Obed (Alberta) will add 8% to gas production

  11. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-30

    In March, work continued on characterizing probabilities for determining natural fracturing associated with the GGRB for the Upper Cretaceous tight gas plays. Structural complexity, based on potential field data and remote sensing data was completed. A resource estimate for the Frontier and Mesa Verde play was also completed. Further, work was also conducted to determine threshold economics for the play based on limited current production in the plays in the Wamsutter Ridge area. These analyses culminated in a presentation at FETC on 24 March 1999 where quantified natural fracture domains, mapped on a partition basis, which establish ''sweet spot'' probability for natural fracturing, were reviewed. That presentation is reproduced here as Appendix 1. The work plan for the quarter of January 1, 1999--March 31, 1999 comprised five tasks: (1) Evaluation of the GGRB partitions for structural complexity that can be associated with natural fractures, (2) Continued resource analysis of the balance of the partitions to determine areas with higher relative gas richness, (3) Gas field studies, (4) Threshold resource economics to determine which partitions would be the most prospective, and (5) Examination of the area around the Table Rock 4H well.

  12. Paludiculture as a chance for peatland and climate: the greenhouse gas balance of biomass production on two rewetted peatlands does not differ from the natural state

    Science.gov (United States)

    Günther, Anke; Huth, Vytas; Jurasinski, Gerald; Albrecht, Kerstin; Glatzel, Stephan

    2015-04-01

    In Europe, rising prices for farm land make it increasingly difficult for government administrations to compete with external investors during the acquisition of land for wetland conservation. Thus, adding economic value to these, otherwise "lost", areas by combining extensive land use with nature conservation efforts could increase the amount of ground available for wetland restoration. Against this background, the concept of paludiculture aims to provide biomass for multiple purposes from peatlands with water tables high enough to conserve the peat body. However, as plants have been shown to contribute to greenhouse gas exchange in peatlands, manipulating the vegetation (by harvesting, sowing etc.) might alter the effect of the restored peatlands on climate. Here, we present greenhouse gas data from two experimental paludiculture systems on formerly drained intensive grasslands in northern Germany. In a fen that has been rewetted more than 15 years ago three species of reed plants were harvested to simulate biomass production for bioenergy and as construction material. And in a peat bog that has been converted from drained grassland to a field with a controlled water table around ground surface Sphagnum mosses were cultivated to provide an alternative growing substrate for horticulture. In both systems, we determined carbon dioxide, methane, and nitrous oxide exchange using closed chambers over two years. Additionally, water and peat chemistry and environmental parameters as recorded by a weather station were analyzed. Both restored peatlands show greenhouse gas balances comparable to those of natural ecosystems. Nitrous oxide was not emitted in either system. Fluctuations of the emissions reflect changes in weather conditions across the study years. In the fen, relative emission patterns between plant species were not constant over time. We did not find a negative short-term effect of biomass harvest or Sphagnum cultivation on net greenhouse gas balances

  13. International trade of liquefied natural gas: potential prospects and realities

    International Nuclear Information System (INIS)

    Valais, M.; Cornot-Gandolphe, S.

    1993-01-01

    This paper describes the markets of liquefied natural gas (LNG) in the world and makes a regional analysis in USA, Western Europe, Japan and another asian markets. Statistical data are given on growth of LNG trade, supply and demand, new projects, costs and prices. The end of this paper analyses the competition between LNG and natural gas or petroleum refined products. 6 figs

  14. A Shaky Business: Natural Gas Extraction, Earthquakes and House Prices

    NARCIS (Netherlands)

    Koster, H.R.A.; van Ommeren, J.N.

    2015-01-01

    The production of natural gas is strongly increasing around the world. Long-run negative external effects of extraction are understudied and often ignored in (social) cost-benefit analyses. One important example is that natural gas extraction leads to soil subsidence and subsequent induced

  15. Energy market for energy. Natural gas and electricity

    International Nuclear Information System (INIS)

    Van Scherpenzeel, H.; De Boer, I.

    2000-10-01

    The aim of the title market study is to provide insight into the energy market in Argentina for the Dutch industry and business sector, focusing on the structure of the natural gas and electricity sector and the market for equipment for the production and processing of natural gas and equipment for electricity generation

  16. The greenhouse advantage of natural gas appliances

    International Nuclear Information System (INIS)

    Coombe, N.

    2000-01-01

    The life cycle report prepared recently by Energetics for the AGA, Assessment of Greenhouse Gas Emissions from Natural Gas, demonstrates clearly the greenhouse advantage natural gas has over coal in generating electricity. This study also goes one step further in applying this life cycle approach to the use of space and water heating within the home. The study shows the significant green-house advantage that natural gas appliances have over electric appliances. Findings from other studies also support this claim. The natural gas suppliers are encouraged to take advantage of the marketing opportunity that these studies provide, offering the householders the fuel that will significantly reduce their contribution to greenhouse emission

  17. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 2: The offshore and the onshore processes

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel energy and cost effective transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier, and an integrated receiving terminal. In the offshore process, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. The offshore process is self-supported with power, hot and cold utilities and can operate with little rotating equipment and without flammable refrigerants. In the onshore process, the cryogenic exergy in LNG is used to cool and liquefy the cold carriers, which reduces the power requirement to 319 kWh/tonne LNG. Pinch and exergy analyses are used to determine thermodynamically optimized offshore and onshore processes with exergy efficiencies of 87% and 71%, respectively. There are very low emissions from the processes. The estimated specific costs for the offshore and onshore process are 8.0 and 14.6 EUR per tonne LNG, respectively, excluding energy costs. With an electricity price of 100 EUR per MWh, the specific cost of energy in the onshore process is 31.9 EUR per tonne LNG

  18. Guidelines For Evaluation Of Natural Gas Projects

    International Nuclear Information System (INIS)

    Farag, H.; El Messirie, A.

    2004-01-01

    This paper is objected to give guidelines for natural gas projects appraisal These guidelines are summarized in modeling of natural gas demand forecast and energy pricing policies for different gas consumers mainly in the manufacturing, mining, transport, trade and agriculture sectors. Analysis of the results is made through sensitivity analysis and decision support system ( DSS )

  19. Natural gas applications in waste management

    International Nuclear Information System (INIS)

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs

  20. Sequential chemical treatment of radium species in TENORM waste sludge produced from oil and natural gas production

    International Nuclear Information System (INIS)

    El Afifi, E.M.; Awwad, N.S.; Hilal, M.A.

    2009-01-01

    This paper is dedicated to the treatment of sludge occurring in frame of the Egyptian produced from oil and gas production. The activity levels of three radium isotopes: Ra-226 (of U-series), Ra-228 and Ra-224 (of Th-series) in the solid TENORM waste (sludge) were first evaluated and followed by a sequential treatment for all radium species (fractions) presented in TENORM. The sequential treatment was carried out based on two approaches 'A' and 'B' using different chemical solutions. The results obtained indicate that the activity levels of all radium isotopes (Ra-226, Ra-228 and Ra-224) of the environmental interest in the TENORM waste sludge were elevated with regard to exemption levels established by IAEA [International Atomic Energy Agency (IAEA), International basic safety standards for the protection against ionizing radiation and for the safety of radiation sources. GOV/2715/Vienna, 1994]. Each approach of the sequential treatment was performed through four steps using different chemical solutions to reduce the activity concentration of radium in a large extent. Most of the leached radium was found as an oxidizable Ra species. The actual removal % leached using approach B was relatively efficient compared to A. It is observed that the actual removal percentages (%) of Ra-226, Ra-228 and Ra-224 using approach A are 78 ± 2.8, 64.8 ± 4.1 and 76.4 ± 5.2%, respectively. Whereas in approach A, the overall removal % of Ra-226, Ra-228 and Ra-228 was increased to ∼91 ± 3.5, 87 ± 4.1 and 90 ± 6.2%, respectively