WorldWideScience

Sample records for natural gas hydrate deposits

  1. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  2. Basics of development of gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Makogon, Yuri F.; Holditch, Stephen A.; Makogon, Taras Y.

    2005-07-01

    Natural gas hydrate deposits could possibly be an important energy resource during this century. However, many problems associated with producing these deposits must first be solved. The industry must develop new technologies to produce the gas, to forecast possible tectonic cataclysms in regions of gas hydrate accumulations, and to prevent damage to the environment. These global issues must be addressed by every company or country who wants to produce gas hydrate deposits. Cooperative research between industry and universities can lead to technology breakthroughs in coming years. This paper reviews the Messoyakha field and the Blake Ridge and Nankai areas to explain a methodology for estimating how much gas might be producible from gas hydrate deposits (GHDs) under various conditions. The Messoyakha field is located on land, while the Blake Ridge and Nankai areas are offshore. Messoyakha is the first and the only GHD where gas production from hydrates has reached commercial flow rates. The Blake Ridge GHD has been studied for 20 years and 11 wells have been drilled to collect gas-hydrate samples. The potential resources of gas (gas in place) from Blake Ridge is estimated at 37.7Oe10{sup 12} m{sup 3} (1.330 Tcf) in hydrate form and 19.3Oe10{sup 12}m{sup 3} (681 Bcf) [5] in free gas. To estimate how much of the potential resource can be produced we need a thorough understanding of both the geologic and the thermodynamic characteristics of the formations. (Author)

  3. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  4. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  5. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  6. A prediction method of natural gas hydrate formation in deepwater gas well and its application

    Directory of Open Access Journals (Sweden)

    Yanli Guo

    2016-09-01

    Full Text Available To prevent the deposition of natural gas hydrate in deepwater gas well, the hydrate formation area in wellbore must be predicted. Herein, by comparing four prediction methods of temperature in pipe with field data and comparing five prediction methods of hydrate formation with experiment data, a method based on OLGA & PVTsim for predicting the hydrate formation area in wellbore was proposed. Meanwhile, The hydrate formation under the conditions of steady production, throttling and shut-in was predicted by using this method based on a well data in the South China Sea. The results indicate that the hydrate formation area decreases with the increase of gas production, inhibitor concentrations and the thickness of insulation materials and increases with the increase of thermal conductivity of insulation materials and shutdown time. Throttling effect causes a plunge in temperature and pressure in wellbore, thus leading to an increase of hydrate formation area.

  7. Preliminary report on the commercial viability of gas production from natural gas hydrates

    Science.gov (United States)

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  8. Preliminary report on the economics of gas production from natural gas hydrates

    International Nuclear Information System (INIS)

    Walsh, M.; Wilson, S.; Patil, S.; Moridis, G.; Boswell, R.; Koh, C.; Sloan, D.

    2008-01-01

    Gas hydrates are solid crystalline compounds in which gas molecules reside inside cages that are formed by hydrogen-bonded water molecules in a crystal lattice. At particularly low temperatures and high pressures, a guest molecule will combine with water to form gas hydrates. Gas hydrates are found in two different settings in which the temperature and pressure conditions are suitable for their existence, notably in Arctic permafrost regions and below the seafloor. Because of the size of this possible future resource, if any of the gas in hydrates can be proven to be economically recoverable, then production from gas hydrates could become an important portion of the world's energy portfolio as demand for natural gas increases along with the technology to compress and distribute natural gas to distant markets. This paper presented a compilation of economic research that was conducted on the resource potential of gas hydrates. The paper reported a preliminary estimate of the price of natural gas that may lead to economically-viable production from North American Arctic region hydrates. The paper also discussed the implications of a recent study on the production of class 3 marine hydrate deposits from the Gulf of Mexico. The state of the art technologies and methods in hydrate reservoir modeling and hydrate reservoir production and petrophysical testing were also discussed. It was concluded that the somewhat optimistic results presented in this report should be interpreted with caution, however, the economically-viable gas production from hydrates was not an unreasonable scenario. 23 refs., 2 tabs., 10 figs

  9. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    Science.gov (United States)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  10. Natural gas hydrates. Experimental techniques and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yuguang; Liu, Changling (eds.) [Qingdao Institute of Marine Geology (China). Gas Hydrate Laboratory

    2013-07-01

    Focuses on gas hydrate experiment in laboratory. Intends to provide practical significant parameters for gas hydrate exploration and exploitation in the oceanic and permafrost environments. Consists of different themes that present up-to-date information on hydrate experiments. ''Natural Gas Hydrates: Experimental Techniques and Their Applications'' attempts to broadly integrate the most recent knowledge in the fields of hydrate experimental techniques in the laboratory. The book examines various experimental techniques in order to provide useful parameters for gas hydrate exploration and exploitation. It provides experimental techniques for gas hydrates, including the detection techniques, the thermo-physical properties, permeability and mechanical properties, geochemical abnormalities, stability and dissociation kinetics, exploitation conditions, as well as modern measurement technologies etc.

  11. Natural gas storage in hydrates with the presence of promoters

    International Nuclear Information System (INIS)

    Sun Zhigao; Wang Ruzhu; Ma Rongsheng; Guo Kaihua; Fan Shuanshi

    2003-01-01

    Hydrate technology is being developed for the storage and transport of natural gas. Micellar surfectant solutions were found to increase the gas hydrate formation rate and storage capacity. An anionic surfactant, a nonionic surfactant, their mixtures and cyclopentane were used to improve the hydrate formation of a synthetic natural gas (methane=92.05 mol%, ethane=4.96 mol%, propane=2.99 mol%) in a quiescent system in this work. The effect of an anionic surfactant (sodium dodecyl sulfate) on natural gas storage in hydrates is more pronounced compared to the effect of a nonionic surfactant (dodecyl polysaccharide glycoside). Cyclopentane could reduce hydrate formation induction time but could not improve the hydrate formation rate and storage capacity

  12. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  13. Methane hydrates and the future of natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2011-01-01

    For decades, gas hydrates have been discussed as a potential resource, particularly for countries with limited access to conventional hydrocarbons or a strategic interest in establishing alternative, unconventional gas reserves. Methane has never been produced from gas hydrates at a commercial scale and, barring major changes in the economics of natural gas supply and demand, commercial production at a large scale is considered unlikely to commence within the next 15 years. Given the overall uncertainty still associated with gas hydrates as a potential resource, they have not been included in the EPPA model in MITEI’s Future of Natural Gas report. Still, gas hydrates remain a potentially large methane resource and must necessarily be included in any consideration of the natural gas supply beyond two decades from now.

  14. Well log characterization of natural gas-hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  15. Cage occupancies of natural gas hydrates encaging methane and ethane

    Energy Technology Data Exchange (ETDEWEB)

    Kida, M.; Hachikubo, A.; Sakagami, H.; Minami, H.; Krylov, A.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Kida, M. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan); Khlystov, O. [Limnological Inst., Irkutsk (Russian Federation). Siberian Branch of the Russian Academy of Sciences; Poort, J. [Ghent Univ., Ghent (Belgium). Renard Centre of Marine Geology; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan)

    2008-07-01

    Natural gas hydrates are crystalline compounds that contain large amounts of natural gas in its structure and are expected to provide natural gas resources in the future. The gas species are trapped in different types of polyhedral cages which consist of hydrogen bonded water molecules. Three main types of crystallographic structures exist, notably structure 1, structure 2 and structure H (sH). The crystallographic structure of natural gas hydrates depends on the encaged gas components. The cage occupancy is the ratio of the number of cages occupied by guest molecules to the number of total cages. It is also important to estimate the amount of natural gas, since it depends on the condition of the hydrate formation such as gas composition. The cages of natural gas hydrates mainly contain methane. However, other heavier hydrocarbons such as ethane (C{sub 2}H{sub 6}), propane (C{sub 3}H{sub 8}), and isobutane (i-C{sub 4}H{sub 1}0) may be encaged together with CH{sub 4}. Little is known about cage occupancies of natural gas hydrates including CH{sub 4} and heavier hydrocarbons. This paper discussed a study that developed cage occupancy estimations of natural gas hydrates encaging heavier hydrocarbons. 13C nuclear magnetic resonance (NMR) measurements were conducted. The assignments of resonance lines were based on 13C chemical shifts obtained by artificial sample measurements. The paper presented the experimental data and discussed the results of the study. The large cages were almost fully occupied with CH{sub 4} and C{sub 2}H{sub 6} molecules, whereas the small cage occupancies of CH{sub 4} were below 0.8. The distribution of CH{sub 4} and C{sub 2}H{sub 6} in each cage were similar to that of synthetic CH{sub 4} + C{sub 2}H{sub 6} hydrate. It was concluded that these results should be useful for optimal estimation of the amount of natural gas in gas hydrates. 18 refs., 1 tab., 3 figs.

  16. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  17. Lightweight Approaches to Natural Gas Hydrate Exploration & Production

    Science.gov (United States)

    Max, M. D.; Johnson, A. H.

    2017-12-01

    Lower-cost approaches to drilling and reservoir utilization are made possible by adapting both emerging and new technology to the unique, low risk NGH natural gas resource. We have focused on drilling, wellbore lining technology, and reservoir management with an emphasis on long-term sand control and adaptive mechanical stability during NGH conversion to its constituent gas and water. In addition, we suggest that there are opportunities for management of both the gas and water with respect to maintaining desired thermal conditions. Some of the unique aspects of NGH deposits allow for new, more efficient technology to be applied to development, particularly in drilling. While NGH-bearing sands are in deepwater, they are confined to depths beneath the seafloor of 1.2 kilometers or less. As a result, they will not be significantly above hydrostatic pressure, and temperatures will be less than 30 oC. Drilling will be through semi-consolidated sediment without liquid hydrocarbons. These characteristics mean that high capability drillships are not needed. What is needed is a new perspective about drilling and producing NGH. Drilling from the seafloor will resolve the high-pressure differential between a wellhead on the sea surface in a vessel and reservoir to about the hydrostatic pressure difference between the seafloor and, at most, the base of the GHSZ. Although NGH production will begin using "off-the-shelf" technology, innovation will lead to new technology that will bring down costs and increase efficiency in the same way that led to the shale breakthrough. Commercial success is possible if consideration is given to what is actually needed to produce NGH in a safe and environmentally manner. Max, M.D. 2017. Wellbore Lining for Natural Gas Hydrate. U.S. Patent Application US15644947 Max, M.D. & Johnson, A.H. 2017. E&P Cost Reduction Opportunities for Natural Gas Hydrate. OilPro. . Max, M.D. & Johnson, A.H. 2016. Exploration and Production of Oceanic Natural Gas

  18. Hydrates on tap: scientists say natural gas hydrates may be tough nut to crack

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-12-01

    Gas hydrates are methane molecules trapped in cages of water molecules, yielding a substance with a slushy, sherbet-like consistency. Drilling for hydrates is similar to conventional oil and gas drilling, however, the secret to economic production still remains hidden. Hydrates exist in abundance in such places as deep ocean floor and below ground in some polar regions. The real challenge lies in producing gas from this resource, inasmuch as there is no existing technology for production of gas specifically from methane hydrates. This paper describes an international research program, involving a five-country partnership to spud the first of three wells into the permafrost of the Mackenzie River Delta in the Northwest Territories. The project, worth about $15 million, has brought together public funding and expertise from Japan, Germany, India as well as the Canadian and US Geological Surveys and the US Dept. of Energy in an effort to gain information on the production response of gas hydrates. The operator of the project is Japan Petroleum Exploration Company of Canada, a subsidiary of Japan National Oil Corporation. Since Japan is poor in domestic hydrocarbon resources, but is surrounded by deep water that contains potential for gas hydrates, Japan has a great deal riding on the success of this project. Germany and the United States are also very much interested. Current thinking is that gas is in contact with the hydrates and that it should be possible to develop a free gas reservoir as if it were a conventional deposit. As the free gas is drawn off, the pressure is reduced on the hydrates in contact with it , the hydrates dissociate from the gas and replenish the conventional reservoir. So far this is still only a theory, but it appears to be a sensible approach to hydrate production. 1 photo.

  19. Assessment of marine gas hydrate deposits: A comparative study of seismic, electromagnetic and seafloor compliance methods

    Energy Technology Data Exchange (ETDEWEB)

    Willoughby, E. C.; Schwalenberg, K.; Edwards, R.N.; Spence, G.D.; Hyndman, R.D.

    2005-07-01

    The existence, distribution and concentration of marine natural gas hydrate are mostly diagnosed using seismic data. The base of the hydrate stability zone marks an acoustic impedance contrast, which generally mimics seafloor topography and is associated with a bright, negative-polarity reflector, known as the Bottom Simulating Reflector (BSR). However, limitations of seismic methods include uncertainty in the origin of the BSR, which does not distinguish between low velocity gas and high velocity hydrate, blanking, and lack of clear upper boundary reflections. Sufficiently accurate hydrate layer velocities have been obtained at few sites, and these could better evaluate hydrate content with reference to velocities in similar sediments without hydrate- a situation very difficult to find. Therefore, estimation of the total mass of a deposit is difficult using seismic data alone. We have developed two supplementary geophysical imaging techniques for the evaluation of marine hydrate: A deep-towed controlled-source electromagnetic (CSEM) and a seafloor compliance experiment. These methods are sensitive to physical properties of the sedimentary section, which are modified by the presence of gas hydrate, namely the resistivity and the bulk shear modulus depth profile, respectively. CSEM data are gathered by inline receivers towed behind an AC transmitter; high precision timing allows measurement of the EM field propagation time through marine sediments which is proportional to resistivity, which is increased by the presence of insulating hydrate. Seafloor compliance is the transfer function between pressure induced on the seafloor by surface gravity waves and the associated deformation of the seafloor. It is mostly sensitive to shear modulus anomalies. Shear modulus is increased by hydrates, which can cement grains together. Here we present field data at a gas hydrate site, south of ODP Hole 889B in northern Cascadia, over a proposed new IODP transect, where these three

  20. Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH)

    International Nuclear Information System (INIS)

    Nogami, T.; Oya, N.; Ishida, H.; Matsumoto, H.

    2008-01-01

    Recent studies in Japan have suggested that natural gas hydrate (NGH) transportation of natural gas is more economical than liquefied natural gas (LNG) transportation systems for small, medium and remote gas fields. Researchers in Japan have built a 600 kg per day NGH production and pelletizing plant and regasification facility. This paper discussed feasibility studies conducted in southeast Asia to determine the unit's commercialization potential with large natural gas-related businesses including shipping companies and electric power utilities. The total supply chain was compared with the corresponding liquefied natural gas (LNG) and compressed natural gas (CNG) supply chains. The study also examined natural gas reserves, energy policies, the positioning of natural gas supplies, and future forecasts of natural gas demand. A conceptual design for an NGH supply chain in Indonesia was presented. Results of the study have demonstrated that the NGH chain is an appropriate and economically feasible transportation method for many areas in southeast Asia. 8 refs., 10 figs

  1. Synergistic kinetic inhibition of natural gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas

    2013-01-01

    Rocking cells were used to investigate the natural gas hydrate formation and decomposition in the presence of kinetic inhibitor, Luvicap. In addition, the influence of poly ethylene oxide (PEO) and NaCl on the performance of Luvicap was investigated using temperature ramping and isothermal...

  2. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    Gas hydrate formation in multi phase mixtures containing an aqueous phase (with dissolved salts), reservoir fluid (crude oil) and natural gas phase was investigated by using a standard rocking cell (RC-5) apparatus. The hydrate formation temperature was reduced in the presence of crude oils...... can contribute to the safe operation of sub sea pipelines in the oil and gas industry....

  3. Sedimentological Properties of Natural Gas Hydrates-Bearing Sands in the Nankai Trough and Mallik Areas

    Science.gov (United States)

    Uchida, T.; Tsuji, T.; Waseda, A.

    2009-12-01

    The Nankai Trough parallels the Japanese Island, where extensive BSRs have been interpreted from seismic reflection records. High resolution seismic surveys have definitely indicated gas hydrate distributions, and drilling the MITI Nankai Trough wells in 2000 and the METI Tokai-oki to Kumano-nada wells in 2004 have revealed subsurface gas hydrate in the eastern part of Nankai Trough. In 1998 and 2002 Mallik wells were drilled at Mackenzie Delta in the Canadian Arctic that also clarified the characteristics of gas hydrate-dominant sandy layers at depths from 890 to 1110 m beneath the permafrost zone. During the field operations, the LWD and wire-line well log data were continuously obtained and plenty of gas hydrate-bearing sand cores were recovered. Subsequence sedimentological and geochemical analyses performed on those core samples revealed the crucial geologic controls on the formation and preservation of natural gas hydrate in sediments. Pore-space gas hydrates reside in sandy sediments mostly filling intergranular porosity. Pore waters chloride anomalies, core temperature depression and core observations on visible gas hydrates confirm the presence of pore-space gas hydrates within moderate to thick sandy layers, typically 10 cm to a meter thick. Sediment porosities and pore-size distributions were obtained by mercury porosimetry, which indicate that porosities of gas hydrate-bearing sandy strata are approximately 45 %. According to grain size distribution curves, gas hydrate is dominant in fine- to very fine-grained sandy strata. Gas hydrate saturations are typically up to 80 % in pore volume throughout most of the hydrate-dominant sandy layers, which are estimated by well log analyses as well as pore water chloride anomalies. It is necessary for investigating subsurface fluid flow behaviors to evaluate both porosity and permeability of gas hydrate-bearing sandy sediments, and the measurements of water permeability for them indicated that highly saturated

  4. Problems of ecological and technical safety by exploration and production of natural gas hydrates

    Directory of Open Access Journals (Sweden)

    Chen-Chen

    2006-10-01

    Full Text Available Gas hydrates - the firm crystal connections form water (liquid water, ice, water vapor and low-molecular waterproof natural gases (mainly methane whose crystal structure effectively compresses gas e.s.: each cubic meter of hydrate can yield over 160 m3 of methane.In present time, the exploitation of the Messoyahsk (Russia and Mallik (Canada deposits of gas hydrates is conducted actively. The further perfection of prospecting methods in the field of studying gas hydrates containing sediments depends on the improvement of geophysical and the well test research, among which native-state core drilling is one of the major. Sampling a native-state core from gas hydrates sediments keeps not only the original composition but structural - textural features of their construction.Despite of the appeal to use gas hydrates as a perspective and ecologically pure fuel possessing huge resources, the investigation and development of their deposits can lead to a number of negative consequences connected with hazards arising from the maintenance of their technical and ecological safety of carrying out. Scales of the arising problems can change from local to regional and even global.

  5. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate

    Science.gov (United States)

    Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H.

    2004-01-01

    This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences, in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.

  6. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  7. Preliminary Experimental Examination Of Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems

    Science.gov (United States)

    Kneafsey, T. J.; Flemings, P. B.; Bryant, S. L.; You, K.; Polito, P. J.

    2013-12-01

    Global climate change will cause warming of the oceans and land. This will affect the occurrence, behavior, and location of subseafloor and subterranean methane hydrate deposits. We suggest that in many natural systems local salinity, elevated by hydrate formation or freshened by hydrate dissociation, may control gas transport through the hydrate stability zone. We are performing experiments and modeling the experiments to explore this behavior for different warming scenarios. Initially, we are exploring hydrate association/dissociation in saline systems with constant water mass. We compare experiments run with saline (3.5 wt. %) water vs. distilled water in a sand mixture at an initial water saturation of ~0.5. We increase the pore fluid (methane) pressure to 1050 psig. We then stepwise cool the sample into the hydrate stability field (~3 degrees C), allowing methane gas to enter as hydrate forms. We measure resistivity and the mass of methane consumed. We are currently running these experiments and we predict our results from equilibrium thermodynamics. In the fresh water case, the modeled final hydrate saturation is 63% and all water is consumed. In the saline case, the modeled final hydrate saturation is 47%, the salinity is 12.4 wt. %, and final water saturation is 13%. The fresh water system is water-limited: all the water is converted to hydrate. In the saline system, pore water salinity is elevated and salt is excluded from the hydrate structure during hydrate formation until the salinity drives the system to three phase equilibrium (liquid, gas, hydrate) and no further hydrate forms. In our laboratory we can impose temperature gradients within the column, and we will use this to investigate equilibrium conditions in large samples subjected to temperature gradients and changing temperature. In these tests, we will quantify the hydrate saturation and salinity over our meter-long sample using spatially distributed temperature sensors, spatially distributed

  8. Major factors influencing the generation of natural gas hydrate in porous media

    Directory of Open Access Journals (Sweden)

    V.N. Khlebnikov

    2017-11-01

    Full Text Available Current researches related to natural gas hydrate mainly focus on its physical and chemical properties, as well as the approaches to the production (decomposition of hydrate. Physical modeling of the flow process in hydrate deposits is critical to the study on the exploitation or decomposition of hydrate. However, investigation of the dynamic hydrate process by virtue of porous media like sand-packed tubes which are widely used in petroleum production research is rarely reported in literature. In this paper, physical simulation of methane hydrate generation process was conducted using river sand-packed tubes in the core displacement apparatus. During the simulation, the influences of parameters such as reservoir temperature, methane pressure and reservoir model properties on the process of hydrate generation were investigated. The following results are revealed. First, the use of ice-melted water as the immobile water in the reservoir model can significantly enhance the rate of methane hydrate generation. Second, the process driving force in porous media (i.e., extents to which the experimental pressure or temperature deviating those corresponding to the hydrate phase equilibrium plays a key role in the generation of methane hydrate. Third, the induction period of methane hydrate generation almost does not change with temperature or pressure when the methane pressure is above 1.4 folds of the hydrate phase equilibrium pressure or the laboratory temperature is lower than the phase equilibrium temperature by 3 °C or more. Fourth, the parameters such as permeability, water saturation and wettability don't have much influence on the generation of methane hydrate.

  9. Potential natural gas hydrates resources in Indian Offshore areas

    Digital Repository Service at National Institute of Oceanography (India)

    Sethi, A.K.; Sathe, A.V.; Ramana, M.V.

    (geophysical proxies of gas hydrates). A qualitative map prepared based on the inferred BSRs brought out a deepwater area of about 80,000 sq.km unto 3000 m isobath as favourable for gas hydrate occurrence. Methodology for reprocessing of seismic data...

  10. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  11. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.

    2011-01-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.

  12. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    , not all of them are white like snow. Some hydrates from the deep Gulf of Mexico are richly colored in shades of yellow, orange, or even red. The ice-like masses are beautiful, and contrast with the dull gray of deep sea muds. Hydrates from the Blake... volcanoes and associated gas hydrates: Marine Geology, v. 167, p. 29-42. Milkov, A.V. and R. Sassen, 2001a, Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope: Marine Geology, v. 179, pp. 71-83. Milkov, A.V., Sassen, R...

  13. Proposal of experimental device for the continuous accumulation of primary energy in natural gas hydrates

    Directory of Open Access Journals (Sweden)

    Siažik Ján

    2017-01-01

    Full Text Available Hydrates of the natural gas in the lithosphere are a very important potential source of energy that will be probably used in the coming decades. It seems as promising accumulation of the standard gas to form hydrates synthetically, stored, and disengage him when is peak demand. Storage of natural gas or biomethane in hydrates is advantageous not only in terms of storage capacity, but also from the aspect of safety storage hydrates. The gas stored in such form may occurs at relatively high temperatures and low pressures in comparison to other Technologies of gas- storage. In one cubic meter of hydrate can be stored up to 150 m3 of natural gas, depending on the conditions of thermobaric hydrate generation. This article discusses the design of the facility for the continuous generation of hydrates of natural gas measurement methodology and optimal conditions for their generation.

  14. Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Matthias Haeckel

    2012-06-01

    Full Text Available The recovery of natural gas from CH4-hydrate deposits in sub-marine and sub-permafrost environments through injection of CO2 is considered a suitable strategy towards emission-neutral energy production. This study shows that the injection of hot, supercritical CO2 is particularly promising. The addition of heat triggers the dissociation of CH4-hydrate while the CO2, once thermally equilibrated, reacts with the pore water and is retained in the reservoir as immobile CO2-hydrate. Furthermore, optimal reservoir conditions of pressure and temperature are constrained. Experiments were conducted in a high-pressure flow-through reactor at different sediment temperatures (2 °C, 8 °C, 10 °C and hydrostatic pressures (8 MPa, 13 MPa. The efficiency of both, CH4 production and CO2 retention is best at 8 °C, 13 MPa. Here, both CO2- and CH4-hydrate as well as mixed hydrates can form. At 2 °C, the production process was less effective due to congestion of transport pathways through the sediment by rapidly forming CO2-hydrate. In contrast, at 10 °C CH4 production suffered from local increases in permeability and fast breakthrough of the injection fluid, thereby confining the accessibility to the CH4 pool to only the most prominent fluid channels. Mass and volume balancing of the collected gas and fluid stream identified gas mobilization as equally important process parameter in addition to the rates of methane hydrate dissociation and hydrate conversion. Thus, the combination of heat supply and CO2 injection in one supercritical phase helps to overcome the mass transfer limitations usually observed in experiments with cold liquid or gaseous CO2.

  15. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope

    Science.gov (United States)

    Collett, T.S.; Lee, M.W.; Agena, W.F.; Miller, J.J.; Lewis, K.A.; Zyrianova, M.V.; Boswell, R.; Inks, T.L.

    2011-01-01

    In the 1960s Russian scientists made what was then a bold assertion that gas hydrates should occur in abundance in nature. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. In 1995, the U.S. Geological Survey made the first systematic assessment of the in-place natural gas hydrate resources of the United States. That study suggested that the amount of gas in the gas hydrate accumulations of northern Alaska probably exceeds the volume of known conventional gas resources on the North Slope. Researchers have long speculated that gas hydrates could eventually become a producible energy resource, yet technical and economic hurdles have historically made gas hydrate development a distant goal. This view began to change in recent years with the realization that this unconventional resource could be developed with existing conventional oil and gas production technology. One of the most significant developments was the completion of the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope, which along with the Mallik project in Canada, have for the first time allowed the rational assessment of gas hydrate production technology and concepts. Almost 40 years of gas hydrate research in northern Alaska has confirmed the occurrence of at least two large gas hydrate accumulations on the North Slope. We have also seen in Alaska the first ever assessment of how much gas could be technically recovered from gas hydrates. However, significant technical concerns need to be further resolved in order to assess the ultimate impact of gas hydrate energy resource development in northern Alaska. ?? 2009 Elsevier Ltd.

  16. Creation of technological bases of struggle with generation of natural gas hydrates

    International Nuclear Information System (INIS)

    Asadov, M.M.; Alieva, S.A.

    2005-01-01

    Chemical technological access, permitting directed of intensify processes prevention of gas hydrates during motion of the gas-liquid current of natural gas in the borehole cavity of natural gas-borehole cavity have been engineered. Determined technological regimes of gas current conditioning, permitting create nonequilibrium state providing condition for reversible process

  17. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI)

    Science.gov (United States)

    Winters, W.J.

    1999-01-01

    As part of an ongoing laboratory study, preliminary acoustic, strength, and hydraulic conductivity results are presented from a suite of tests conducted on four natural-gas-hydrate-containing samples from the Mackenzie Delta JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The gas hydrate samples were preserved in pressure vessels during transport from the Northwest Territories to Woods Hole, Massachusetts, where multistep tests were performed using GHASTLI (Gas Hydrate And Sediment Test Laboratory Instrument), which recreates pressure and temperature conditions that are stable for gas hydrate. Properties and changes in sediment behaviour were measured before, during, and after controlled gas hydrate dissociation. Significant amounts of gas hydrate occupied the sample pores and substantially increased acoustic velocity and shear strength.

  18. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  19. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  20. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  1. Low temperature X-ray diffraction studies of natural gas hydrate samples from the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rawn, C.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Materials Science and Technology Div.; Sassen, R. [Texas A and M Univ., College Station, TX (United States). Geochemical and Environmental Research Group; Ulrich, S.M.; Phelps, T.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Biosciences Div.; Chakoumakos, B.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Neutron Scattering Science Div.; Payzant, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Center for Nanophase Materials Science

    2008-07-01

    Quantitative studies of natural clathrate hydrates are hampered by the difficulties associated with obtaining pristine samples for the sea floor without comprising their integrity. This paper discussed X-ray power diffraction studies conducted to measure natural gas hydrate samples obtained from the Green Canyon in the Gulf of Mexico. Data on the hydrate deposits were initially collected in 2002. The X-ray diffraction data were collected in order to examine the structure 2 (s2) gas hydrates as functions of temperature and time. A diffractometer with a theta-theta goniometer modified with a helium closed cycle refrigerator and temperature controller was used. Aragonite, quartz and halite phases were determined in the decomposed sample. Refined phase fractions for both the ice and the s2 hydrate were obtained as a function of temperature. Results of the study demonstrated that the amount of hydrates decreased with increasing temperatures and amounts of time. Large pieces of the hydrate showed heterogenous ice content. Dissociation rates were higher at lower temperatures. It was concluded that unusual trends observed for the smaller lattice parameter of the hydrates resulted from the formation of ice layers that acted as barriers to the released gases and caused increased isostatic pressures around the hydrate core. 9 refs., 6 figs.

  2. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Rogers

    1999-09-27

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  3. Formation of Sclerotic Hydrate Deposits in a Pipe for Extraction of a Gas from a Dome Separator

    Science.gov (United States)

    Urazov, R. R.; Chiglinstev, I. A.; Nasyrov, A. A.

    2017-09-01

    The theory of formation of hydrate deposits on the walls of a pipe for extraction of a gas from a dome separator designed for the accident-related collection of hydrocarbons on the ocean floor is considered. A mathematical model has been constructed for definition of a steady movement of a gas in such a pipe with gas-hydrate deposition under the conditions of changes in the velocity, temperature, pressure, and moisture content of the gas flow.

  4. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    Science.gov (United States)

    Frederick, Jennifer Mary

    Methane hydrate is an ice-like solid which sequesters large quantities of methane gas within its crystal structure. The source of methane is typically derived from organic matter broken down by thermogenic or biogenic activity. Methane hydrate (or more simply, hydrate) is found around the globe within marine sediments along most continental margins where thermodynamic conditions and methane gas (in excess of local solubility) permit its formation. Hydrate deposits are quite possibly the largest reservoir of fossil fuel on Earth, however, their formation and evolution in response to changing thermodynamic conditions, such as global warming, are poorly understood. Upward fluid flow (relative to the seafloor) is thought to be important for the formation of methane hydrate deposits, which are typically found beneath topographic features on the seafloor. However, one-dimensional models predict downward flow relative to the seafloor in compacting marine sediments. The presence of upward flow in a passive margin setting can be explained by fluid focusing beneath topography when sediments have anisotropic permeability due to sediment bedding layers. Even small slopes (10 degrees) in bedding planes produce upward fluid velocity, with focusing becoming more effective as slopes increase. Additionally, focusing causes high excess pore pressure to develop below topographic highs, promoting high-angle fracturing at the ridge axis. Magnitudes of upward pore fluid velocity are much larger in fractured zones, particularly when the surrounding sediment matrix is anisotropic in permeability. Enhanced flow of methane-bearing fluids from depth provides a simple explanation for preferential accumulation of hydrate under topographic highs. Models of fluid flow at large hydrate provinces can be constrained by measurements of naturally-occurring radioactive tracers. Concentrations of cosmogenic iodine, 129-I, in the pore fluid of marine sediments often indicate that the pore fluid is much

  5. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production

    Science.gov (United States)

    Rutqvist, J.; Moridis, G.J.; Grover, T.; Collett, T.

    2009-01-01

    In this simulation study, we analyzed the geomechanical response during depressurization production from two known hydrate-bearing permafrost deposits: the Mallik (Northwest Territories, Canada) deposit and Mount Elbert (Alaska, USA) deposit. Gas was produced from these deposits at constant pressure using horizontal wells placed at the top of a hydrate layer (HL), located at a depth of about 900??m at the Mallik site and 600??m at the Mount Elbert site. The simulation results show that general thermodynamic and geomechanical responses are similar for the two sites, but with substantially higher production and more intensive geomechanical responses at the deeper Mallik deposit. The depressurization-induced dissociation begins at the well bore and then spreads laterally, mainly along the top of the HL. The depressurization results in an increased shear stress within the body of the receding hydrate and causes a vertical compaction of the reservoir. However, its effects are partially mitigated by the relatively stiff permafrost overburden, and compaction of the HL is limited to less than 0.4%. The increased shear stress may lead to shear failure in the hydrate-free zone bounded by the HL overburden and the downward-receding upper dissociation interface. This zone undergoes complete hydrate dissociation, and the cohesive strength of the sediment is low. We determined that the likelihood of shear failure depends on the initial stress state as well as on the geomechanical properties of the reservoir. The Poisson's ratio of the hydrate-bearing formation is a particularly important parameter that determines whether the evolution of the reservoir stresses will increase or decrease the likelihood of shear failure.

  6. Thick massive gas hydrate deposits were revealed by LWD in Off-Joetsu area, eastern margin of Japan Sea.

    Science.gov (United States)

    Tanahashi, M.; Morita, S.; Matsumoto, R.

    2016-12-01

    GR14 and HR15 survey cruises, which were dedicated to the LWD (Logging While Drilling), were carried out in summers of 2014 and 2015, respectively, by Meiji University and Geological Survey of Japan, AIST to explore the "gas chimney" structures in eastern margin of Japan Sea. Shallow (33 to 172m-bsf, average 136m-bsf) 33 LWD drilling were performed in Oki Trough, Off-Joetsu, and Mogami Trough areas along eastern margin of Japan Sea during two cruises. Schlumberger LWD tools, GeoVISION (resistivity), TeleScope, ProVISION (NMR) and SonicVISION were used during GR14. NeoScope (neutron) was added and SonicScope was replaced for SonicVISION during HR14. The data quality was generally good. "Gas chimney" structures with acoustic blanking columns on the high frequency seismic sections with mound and pockmark morphologic features on the sea bottom, are well developed within survey areas. Every LWD records taken from gas chimney structures during the cruises show high resistivity and acoustic velocity anomalies which suggest the development of gas hydrate. Characteristic development of massive gas hydrate was interpreted at the Umitaka CW mound structure, Off-Joetsu. The mound lies at 890-910m in water depth and has very rough bottom surface, regional high resistivity, regional high heat flow, several natural seep sites, 200m x 300m area, and 10-20m height. 8 LWD holes, J18L to J21L and J23L to J26L, were drilled on and around the mound. There are highly anomalous intervals which suggest the development of massive gas hydrate at J24L, with high resistivity, high Vp and Vs, high neutron porosity, low natural gamma ray intensity, low neutron gamma density, low NMR porosity, low NMR permeability, low formation sigma, from 10 to 110m-bsf with intercalating some thin less hydrate layers. It is interpreted that there is several tens of meter thick massive gas hydrate in the gas chimney mound. It is partly confirmed by the later nearby coring result which showed the repetition of

  7. Oil & Natural Gas Technology A new approach to understanding the occurrence and volume of natural gas hydrate in the northern Gulf of Mexico using petroleum industry well logs

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Ann [The Ohio State Univ., Columbus, OH (United States); Majumdar, Urmi [The Ohio State Univ., Columbus, OH (United States)

    2016-03-31

    The northern Gulf of Mexico has been the target for the petroleum industry for exploration of conventional energy resource for decades. We have used the rich existing petroleum industry well logs to find the occurrences of natural gas hydrate in the northern Gulf of Mexico. We have identified 798 wells with well log data within the gas hydrate stability zone. Out of those 798 wells, we have found evidence of gas hydrate in well logs in 124 wells (15% of wells). We have built a dataset of gas hydrate providing information such as location, interval of hydrate occurrence (if any) and the overall quality of probable gas hydrate. Our dataset provides a wide, new perspective on the overall distribution of gas hydrate in the northern Gulf of Mexico and will be the key to future gas hydrate research and prospecting in the area.

  8. Observed gas hydrate morphologies in marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)

    2008-07-01

    The morphology of gas hydrate in marine sediments determines the basic physical properties of the sediment-hydrate matrix and provides information regarding the formation of gas hydrate deposits, and the nature of the disruption that will occur on dissociation. Small-scale morphology is useful in estimating the concentrations of gas hydrate from geophysical data. It is also important for predicting their response to climate change or commercial production. Many remote techniques for gas hydrate detection and quantification depend on hydrate morphology. In this study, morphology of gas hydrate was examined in HYACINTH pressure cores from recent seagoing expeditions. Visual and infrared observations from non-pressurized cores were also used. The expeditions and pressure core analysis were described in detail. This paper described the difference between two types of gas hydrate morphologies, notably pore-filling and grain-displacing. Last, the paper addressed the impact of hydrate morphology. It was concluded that a detailed morphology of gas hydrate is an essential component for a full understanding of the past, present, and future of any gas hydrate environment. 14 refs., 4 figs.

  9. Modeling of Hydrate Formation Mode in Raw Natural Gas Air Coolers

    Science.gov (United States)

    Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.

    2018-05-01

    Air cooling units (ACU) are used at all the gas fields for cooling natural gas after compressing. When using ACUs on raw (wet) gas in a low temperature condition, there is a danger of hydrate plug formation in the heat exchanging tubes of the ACU. To predict possible hydrate formation, a mathematical model of the air cooler thermal behavior used in the control system shall adequately calculate not only gas temperature at the cooler's outlet, but also a dew point value, a temperature at which condensation, as well as the gas hydrate formation point, onsets. This paper proposes a mathematical model allowing one to determine the pressure in the air cooler which makes hydrate formation for a given gas composition possible.

  10. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  11. Calculation of the eroei coefficient for natural gas hydrates in laboratory conditions

    Science.gov (United States)

    Siažik, Ján; Malcho, Milan; Čaja, Alexander

    2017-09-01

    In the 1960s, scientists discovered that methane hydrate existed in the gas field in Siberia. Gas hydrates are known to be stable under conditions of high pressure and low temperature that have been recognized in polar regions and in the uppermost part of deep -water sediments below the sea floor. The article deals with the determination of the EROEI coefficient to generate the natural gas hydrate in the device under specific temperature and pressure conditions. Energy returned on energy invested expresses ratio of the amount of usable energy delivered from a particular energy resource to the amount of exergy used to obtain that energy resource. Gas hydrates have been also discussed before decades like potential source mainly for regions with restricted access to conventional hydrocarbons also tactic interest in establishing alternative gas reserves.

  12. Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    The kinetics of natural gas hydrate formation in the presence of dissolved salts (NaCl) and crude oil ( a middle east crude with density 851.5 kg/m3 were investigated by using a standard rocking cell (RC-5) apparatus. The hydrate nucleation temperature was reduced in the presence of NaCl and oil...... management in oil and gas facilities. (C) 2014 Elsevier Ltd. All rights reserved....

  13. Archie's Saturation Exponent for Natural Gas Hydrate in Coarse-Grained Reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-03-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice-bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate-bearing sands. In this work, we calibrate n for hydrate-bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L-38, by establishing an independent downhole Sh profile based on compressional-wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L-38 well, we also apply this method to two marine, coarse-grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313-H and Green Canyon 955-H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse-grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  14. Evaluation and analysis method for natural gas hydrate storage and transportation processes

    International Nuclear Information System (INIS)

    Hao Wenfeng; Wang Jinqu; Fan Shuanshi; Hao Wenbin

    2008-01-01

    An evaluation and analysis method is presented to investigate an approach to scale-up a hydration reactor and to solve some economic problems by looking at the natural gas hydrate storage and transportation process as a whole. Experiments with the methane hydration process are used to evaluate the whole natural gas hydrate storage and transportation process. The specific contents and conclusions are as follows: first, batch stirring effects and load coefficients are studied in a semi-continuous stirred-tank reactor. Results indicate that batch stirring and appropriate load coefficients are effective in improving hydrate storage capacity. In the experiments, appropriate values for stirring velocity, stirring time and load coefficient were found to be 320 rpm, 30 min and 0.289, respectively. Second, throughput and energy consumption of the reactor for producing methane hydrates are calculated by mass and energy balance. Results show that throughput of this is 1.06 kg/d, with a product containing 12.4% methane gas. Energy consumption is 0.19 kJ, while methane hydrates containing 1 kJ heat are produced. Third, an energy consumption evaluation parameter is introduced to provide a single energy consumption evaluation rule for different hydration reactors. Parameter analyses indicate that process simplicity or process integration can decrease energy consumption. If experimental gas comes from a small-scale natural gas field and the energy consumption is 0.02 kJ when methane hydrates containing 1 kJ heat are produced, then the decrease is 87.9%. Moreover, the energy consumption evaluation parameter used as an economic criterion is converted into a process evaluation parameter. Analyses indicate that the process evaluation parameter is relevant to technology level and resource consumption for a system, which can make it applicable to economic analysis and venture forecasting for optimal capital utilization

  15. Controls on methane expulsion during melting of natural gas hydrate systems. Topic area 2

    Energy Technology Data Exchange (ETDEWEB)

    Flemings, Peter [Univ. of Texas, Austin, TX (United States)

    2016-01-14

    zone and vent at the seafloor. Gas venting through the regional hydrate stability zone is accomplished by alteration of the regional equilibrium conditions (creation of three phase conditions) by increased salinity and heat due to hydrate formation, due to gas fracturing, or a combination of both. This research will explore the controls on whether methane reaches the seafloor (or atmosphere) as the original hydrate deposit dissociates and what the magnitude of these fluxes are. This hypothesis has significant implications for the forcings and feedbacks associated with climate change. It is described below the observations and models that have led to formulating this hypothesis.

  16. Gas hydrates and clathrates. Flow assurance, environmental and economic perspectives and the Nigerian liquefied natural gas project

    International Nuclear Information System (INIS)

    Gbaruko, B.C.; Igwe, J.C.; Nwokeoma, R.C.; Gbaruko, P.N.

    2007-01-01

    Gas hydrates are nonstoichiometric crystalline compounds that belong to the inclusion group known as clathrates. They occur when water molecules attach themselves together through hydrogen bonding and form cavities which can be occupied by a single gas or volatile liquid molecule. Gas hydrates, asphaltenes and waxes are three major threats to flow assurance that must be well assessed by design team uptime. Gas hydrates are also looked upon as a future energy source and as a potential climate hazard. The purpose of this review is to show the chemistry and mechanism of gas hydrate formation, the problems they pose, especially to flow assurance, their system implications, their environmental and economic perspectives with respect to their prospects as storage and transport alternative to the liquefied natural gas technology. (author)

  17. Constant rate natural gas production from a well in a hydrate reservoir

    International Nuclear Information System (INIS)

    Ji Chuang; Ahmadi, Goodarz; Smith, Duane H.

    2003-01-01

    Using a computational model, production of natural gas at a constant rate from a well that is drilled into a confined methane hydrate reservoir is studied. It is assumed that the pores in the reservoir are partially saturated with hydrate. A linearized model for an axisymmetric condition with a fixed well output is used in the analysis. For different reservoir temperatures and various well outputs, time evolutions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas region, are evaluated. The distance of the decomposition front from the well as a function of time is also computed. It is shown that to maintain a constant natural gas production rate, the well pressure must be decreased with time. A constant low production rate can be sustained for a long duration of time, but a high production rate demands unrealistically low pressure at the well after a relatively short production time. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability

  18. Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-01-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  19. Effects of Geomechanical Mechanism on the Gas Production Behavior: A Simulation Study of Class-3 Type Four-Way-Closure Ridge Hydrate Deposit Offshore Southwestern Taiwan

    Science.gov (United States)

    Wu, Cheng-Yueh; Chiu, Yung-Cheng; Huang, Yi-Jyun; Hsieh, Bieng-Zih

    2017-04-01

    The future energy police of Taiwan will heavily rely on the clean energy, including renewable energy and low-carbon energy, to meet the target of mitigating CO2 emission. In addition to developing the renewable energies like solar and wind resources, Taiwan will increase the natural gas consumption to obtain enough electrical power with low-carbon emission. The vast resources of gas hydrates recognized in southwestern offshore Taiwan makes a great opportunity for Taiwan to have own energy resources in the future. Therefore, Taiwan put significant efforts on the evaluation of gas hydrate reserves recently. Production behavior of natural gas dissociated from gas hydrate deposits is an important issue to the hydrate reserves evaluation. The depressurization method is a useful engineering recovery method for gas production from a class-3 type hydrate deposit. The dissociation efficiency will be affected by the pressure drawdown disturbance. However, when the pore pressure of hydrate deposits is depressurized for gas production, the rock matrix will surfer more stresses and the formation deformation might be occurred. The purpose of this study was to investigate the effects of geomechanical mechanism on the gas production from a class-3 hydrate deposit using depressurization method. The case of a class-3 type hydrate deposit of Four-Way-Closure Ridge was studied. In this study a reservoir simulator, STARS, was used. STARS is a multiphase flow, heat transfer, geo-chemical and geo-mechanical mechanisms coupling simulator which is capable to simulate the dissociation/reformation of gas hydrate and the deformation of hydrate reservoirs and overburdens. The simulating ability of STARTS simulator was validated by duplicating the hydrate comparison projects of National Energy Technology Lab. The study target, Four-Way-Closure (FWC) Ridge hydrate deposit, was discovered by the bottom simulating reflectors (BSRs). The geological parameters were collected from the geological and

  20. Comparison of Physical Properties of Marine and Arctic Gas-Hydrate-Bearing Deposits

    Science.gov (United States)

    Winters, W. J.; Walker, M.; Collett, T. S.; Bryant, S. L.; Novosel, I.; Wilcox-Cline, R.; Bing, J.; Gomes, M. L.

    2009-12-01

    Gas hydrate (GH) occurs in both marine settings and in arctic environments within a wide variety of sediment types. Grain-size analyses from both environments indicate that intrinsic host-sediment properties have a strong influence on gas-hydrate distribution and morphologic characteristics. Depending on the amount formed or dissociated, gas hydrate can significantly change in situ sediment acoustic, mechanical, and hydraulic properties. The U.S. Geological Survey, in cooperation with the U.S. Dept. of Energy, BP Expl.-Alaska, Nat. GH Prog. of India, Canadian Geological Survey, Int. Ocean Drilling Program, Japan Oil Gas and Metals Nat. Corp., Japan Pet. Expl. Co., Int. Marine Past Global Changes Study (IMAGES) program, and Paleoceanography of the Atlantic and Geochemistry (PAGE) program, determined physical properties from marine and arctic sediments and their relation to the presence of GH. At two arctic sites, the Mount Elbert well on the Alaskan North Slope and the Mallik wells on the Mackenzie Delta, NWT, >10-m thick gas-hydrate-bearing (GHB) sandy deposits are capped by finer-grained sediments that may reduce gas migration. In the Mount Elbert well, average median grain sizes (MGS) for the two thickest GHB deposits are 65 and 60 µm. Finer-grained (average MGS of 9 and 28 µm) sediments have plug permeabilities that are 300 and 14 times smaller than underlying GHB sediment. Average MGS of GHB sediment from the Mallik 2L well is ~ 111 µm, compared to overlying sediment with an average MGS of ~ 32 µm. Gas hydrate morphology in the Gulf of Mexico (GOM) and offshore India is substantially more complex than in the arctic, and is related to pervasive, although not exclusive, finer-grained deposits. Massive, several-cm thick, GH layers were recovered in piston cores in the northern GOM, in sediment with little visible lithologic variability (average MGS ~ 0.8 µm). In wells off the east coast of India, GH was present in sand-rich, fractured clay, and reservoirs

  1. HyFlux - Part I: Regional Modeling of Methane Flux From Near-Seafloor Gas Hydrate Deposits on Continental Margins

    Science.gov (United States)

    MacDonald, I. R.; Asper, V.; Garcia, O. P.; Kastner, M.; Leifer, I.; Naehr, T.; Solomon, E.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    HyFlux - Part I: Regional modeling of methane flux from near-seafloor gas hydrate deposits on continental margins MacDonald, I.R., Asper, V., Garcia, O., Kastner, M., Leifer, I., Naehr, T.H., Solomon, E., Yvon-Lewis, S., and Zimmer, B. The Dept. of Energy National Energy Technology Laboratory (DOE/NETL) has recently awarded a project entitled HyFlux: "Remote sensing and sea-truth measurements of methane flux to the atmosphere." The project will address this problem with a combined effort of satellite remote sensing and data collection at proven sites in the Gulf of Mexico where gas hydrate releases gas to the water column. Submarine gas hydrate is a large pool of greenhouse gas that may interact with the atmosphere over geologic time to affect climate cycles. In the near term, the magnitude of methane reaching the atmosphere from gas hydrate on continental margins is poorly known because 1) gas hydrate is exposed to metastable oceanic conditions in shallow, dispersed deposits that are poorly imaged by standard geophysical techniques and 2) the consumption of methane in marine sediments and in the water column is subject to uncertainty. The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults generated by salt tectonics. Focused expulsion of hydrocarbons is manifested at the seafloor by gas vents, gas hydrates, oil seeps, chemosynthetic biological communities, and mud volcanoes. Where hydrocarbon seeps occur in depths below the hydrate stability zone (~500m), rapid flux of gas will feed shallow deposits of gas hydrate that potentially interact with water column temperature changes; oil released from seeps forms sea-surface features that can be detected in remote-sensing images. The regional phase of the project will quantify verifiable sources of methane (and oil) the Gulf of Mexico continental margin and selected margins (e.g. Pakistan Margin, South China Sea

  2. Standardization and software infrastructure for gas hydrate data communications

    Energy Technology Data Exchange (ETDEWEB)

    Kroenlein, K.; Chirico, R.D.; Kazakov, A.; Frenkel, M. [National Inst. of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Div.; Lowner, R. [GeoForschungsZentrum Potsdam (Germany); Wang, W. [Chinese Academy of Science, Beijing (China). Computer Network Information Center; Smith, T. [MIT Systems, Flushing, NY (United States); Sloan, E.D. [Colorado School of Mines, Golden, CO (United States). Centre for Hydrate Research

    2008-07-01

    The perceived value of gas hydrates as an energy resource for the future has led to extensive hydrate research studies and experiments. The hydrate deposits are widely dispersed throughout the world, and many countries are now investigating methods of extracting gas hydrate resources. This paper described a gas hydrates markup language (GHML) developed as an international standard for data transfer and storage within the gas hydrates community. The language is related to a hydrates database developed to facilitate a greater understanding of naturally occurring hydrate interactions with geophysical processes, and aid in the development of hydrate technologies for resource recovery and storage. Recent updates to the GHML included the addition of ThermoML, a communication standard for thermodynamic data into the GHML schema. The standard will be used to represent all gas hydrates thermodynamic data. A new element for the description of crystal structures has also been developed, as well as a guided data capture tool. The tool is available free of charge and is publicly licensed for use by gas hydrate data producers. A web service has also been provided to ensure that access to GHML files for gas hydrates and data files are available for users. It was concluded that the tool will help to ensure data quality assurance for the conversion of data and meta-data within the database. 28 refs., 9 figs.

  3. Production of natural gas from methane hydrate by a constant downhole pressure well

    International Nuclear Information System (INIS)

    Ahmadi, Goodarz; Ji, Chuang; Smith, Duane H.

    2007-01-01

    Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied

  4. 3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties

    Science.gov (United States)

    Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao

    2018-02-01

    Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.

  5. Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit

    Digital Repository Service at National Institute of Oceanography (India)

    Sriram, G.; Dewangan, P.; Ramprasad, T.; RamaRao, P.

    . Anisotropic AVA analysis of the BSR from the inline seismic profile shows 5-30 percent gas hydrate concentration (equivalent to fracture density) and the azimuth of fracture system (fracture orientation) with respect to the seismic profile is close to 45...

  6. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K

    1996-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  7. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  8. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter

    International Nuclear Information System (INIS)

    Lee, Yohan; Kim, Yunju; Lee, Jaehyoung; Lee, Huen; Seo, Yongwon

    2015-01-01

    Highlights: • The extent of the replacement was improved due to the enclathration of N 2 in small cages. • The dissociation enthalpies of the replaced gas hydrates were measured. • There was no noticeable heat flow change during the CH 4 –flue gas replacement. • The replacement could occur without significant destruction of gas hydrates. - Abstract: The CH 4 –flue gas replacement in naturally occurring gas hydrates has attracted significant attention due to its potential as a method of exploitation of clean energy and sequestration of CO 2 . In the replacement process, the thermodynamic and structural properties of the mixed gas hydrates are critical factors to predict the heat flow in the hydrate-bearing sediments and the heat required for hydrate dissociation, and to evaluate the CO 2 storage capacity of hydrate reservoirs. In this study, the 13 C NMR and gas composition analyses confirmed that the preferential enclathration of N 2 molecules in small 5 12 cages of structure I hydrates improved the extent of the CH 4 recovery. A high pressure micro-differential scanning calorimeter (HP μ-DSC) provided reliable hydrate stability conditions and heat of dissociation values in the porous silica gels after the replacement, which confirmed that CH 4 in the hydrates was successfully replaced with flue gas. A heat flow change associated with the dissociation and formation of hydrates was not noticeable during the CH 4 –flue gas replacement. Therefore, this study reveals that CH 4 –flue gas swapping occurs without structural transitions and significant hydrate dissociations

  9. Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni

    2007-11-16

    Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

  10. India National Gas Hydrate Program Expedition 02 Technical Contributions

    Science.gov (United States)

    Collett, T. S.; Kumar, P.; Shukla, K. M.; Nagalingam, J.; Lall, M. V.; Yamada, Y.; Schultheiss, P. J.; Holland, M.; Waite, W. F.

    2017-12-01

    The National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India. The primary objective of this expedition was the exploration and discovery of highly saturated gas hydrate occurrences in sand reservoirs that would be targets of future production testing. The first 2 months of the expedition were dedicated to logging while drilling (LWD) operations with a total of 25 holes being drilled and logged. The next 3 months were dedicated to coring operations at 10 of the most promising sites. NGHP-02 downhole logging, coring and formation pressure testing have confirmed the presence of large, highly saturated, gas hydrate accumulations in coarse-grained sand-rich depositional systems throughout the Krishna-Godavari Basin within the regions defined during NGHP-02 as Area-B, Area-C, and Area-E. The nature of the discovered gas hydrate occurrences closely matched pre-drill predictions, confirming the project developed depositional models for the sand-rich depositional facies in the Krishna-Godavari and Mahanadi Basins. The existence of a fully developed gas hydrate petroleum system was established in Area-C of the Krishna-Godavari Basin with the discovery of a large slope-basin interconnected depositional system, including a sand-rich, gas-hydrate-bearing channel-levee prospect at Sites NGHP-02-08 and -09. The acquisition of closely spaced LWD and core holes in the Area-B L1 Block gas hydrate accumulation have provided one of the most complete three-dimensional petrophysical-based views of any known gas hydrate reservoir system in the world. It was concluded that Area-B and Area-C in the area of the greater Krishna-Godavari Basin contain important world-class gas hydrate accumulations and represent ideal sites for consideration of future gas hydrate production testing.

  11. Gas in Place Resource Assessment for Concentrated Hydrate Deposits in the Kumano Forearc Basin, Offshore Japan, from NanTroSEIZE and 3D Seismic Data

    Science.gov (United States)

    Taladay, K.; Boston, B.

    2015-12-01

    Natural gas hydrates (NGHs) are crystalline inclusion compounds that form within the pore spaces of marine sediments along continental margins worldwide. It has been proposed that these NGH deposits are the largest dynamic reservoir of organic carbon on this planet, yet global estimates for the amount of gas in place (GIP) range across several orders of magnitude. Thus there is a tremendous need for climate scientists and countries seeking energy security to better constrain the amount of GIP locked up in NGHs through the development of rigorous exploration strategies and standardized reservoir characterization methods. This research utilizes NanTroSEIZE drilling data from International Ocean Drilling Program (IODP) Sites C0002 and C0009 to constrain 3D seismic interpretations of the gas hydrate petroleum system in the Kumano Forearc Basin. We investigate the gas source, fluid migration mechanisms and pathways, and the 3D distribution of prospective HCZs. There is empirical and interpretive evidence that deeply sourced fluids charge concentrated NGH deposits just above the base of gas hydrate stability (BGHS) appearing in the seismic data as continuous bottoms simulating reflections (BSRs). These HCZs cover an area of 11 by 18 km, range in thickness between 10 - 80 m with an average thickness of 40 m, and are analogous to the confirmed HCZs at Daini Atsumi Knoll in the eastern Nankai Trough where the first offshore NGH production trial was conducted in 2013. For consistency, we calculated a volumetric GIP estimate using the same method employed by Japan Oil, Gas and Metals National Corporation (JOGMEC) to estimate GIP in the eastern Nankai Trough. Double BSRs are also common throughout the basin, and BGHS modeling along with drilling indicators for gas hydrates beneath the primary BSRs provides compelling evidence that the double BSRs reflect a BGHS for structure-II methane-ethane hydrates beneath a structure-I methane hydrate phase boundary. Additional drilling

  12. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide.

    Science.gov (United States)

    Kang, Hyery; Koh, Dong-Yeun; Lee, Huen

    2014-10-14

    Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH₄-air or CH₄-CO₂/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO₂ was added, we observed a very strong, stable, self-regulating process of exchange (CH₄ replaced by CO₂/air; hereafter CH₄-CO₂/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient.

  13. Marine controlled source electromagnetics on the Hikurangi Margin, NZ : coincidence between cold seep sites and electrical resistivity anomalies indicating sub-seafloor gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Schwalenberg, K. [Federal Inst. for Geosciences and Natural Resources, Hannover (Germany); Pecher, I. [Heriot Watt Univ., Edinburgh (United Kingdom). Inst. of Petroleum Engineering; Netzeband, G.; Jegen, M. [IFM-GEOMAR, Kiel (Germany); Port, J. [Ghent Univ., Ghent (Belgium). Renard Centre of Marine Geology

    2008-07-01

    This study examined the use of marine-controlled source electromagnetic (CSEM) measurements for monitoring the control, release and transformation of methane from gas seep sites and deposits on the Hikurangi Margin near New Zealand. The CSEM experiments were conducted to determine the electrical signature of the gas seeps as a means of identifying the presence of gas hydrate deposits. Data for 4 profiles were obtained and inverted to sub-sea floor resistivities and 1-D layered earth models. An analysis of the data showed a relationship between anomalous resistivities and the location of gas seep sites. Results suggested that concentrated gas hydrates were the cause of the anomalous resistivities. Data obtained from the southeast corner of the North Islands suggested the presence of gas hydrates in the first 100 m of bottom simulating reflector (BSM) data. Seeps were also identified in seismic data that showed faults and high amplitude reflections. A seep site with no resistivity anomalies but with active venting, high heat flow, and seismic fault planes was also identified. The lack of resistive anomalies was attributed to lower concentrations of gas hydrates; strong temporal and spatial variations; and temperature-driven fluid expulsion that hampered gas hydrate formation beneath the vent. The final profile examined in the study demonstrated a single anomaly over a deep, uprising reflective zone cause by both free gas and gas hydrates. 25 refs., 1 tab., 11 figs.

  14. Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico

    Science.gov (United States)

    MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.

    2012-12-01

    Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.

  15. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    Science.gov (United States)

    White, M. D.

    2011-12-01

    Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and

  16. Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery

    International Nuclear Information System (INIS)

    Obara, Shin'ya; Kikuchi, Yoshinobu; Ishikawa, Kyosuke; Kawai, Masahito; Yoshiaki, Kashiwaya

    2015-01-01

    In this study, an independent energy system for houses in cold regions was developed using a small-scale natural gas CGS (cogeneration), air-source heat pump, heat storage tank, and GHB (gas hydrate battery). Heat sources for the GHB were the ambient air and geothermal resources of the cold region. The heat cycle of CO 2 hydrate as a source of energy was also experimentally investigated. To increase the formation speed of CO 2 hydrates, a ferrous oxide–graphite system catalyst was used. The ambient air of cold regions was used as a heat source for the formation process (electric charge) of the GHB, and the heat supplied by a geothermal heat exchanger was used for the dissociation process (electric discharge). Using a geothermal heat source, fuel consumption was halved because of an increased capacity for hydrate formation in the GHB, a shortening of the charging and discharging cycle, and a decrease in the freeze rate of hydrate formation space. Furthermore, when the GHB was introduced into a cold region house, the application rate of renewable energy was 47–71% in winter. The spread of the GHB can greatly reduce fossil fuel consumption and the associated greenhouse gases released from houses in cold regions. - Highlights: • Compound energy system for cold region houses by a gas hydrate battery was proposed. • Heat sources of a gas hydrate battery are exhaust heat of the CGS and geothermal. • Drastic reduction of the fossil fuel consumption in a cold region is realized

  17. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  18. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    Science.gov (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  19. Deposition of naturally occurring radioactivity in oil and gas production

    International Nuclear Information System (INIS)

    Lysebo, I.; Strand, T.

    1997-01-01

    This booklet contains general information about naturally occurring radioactive materials, NORM, in production of oil and natural gas, occupational doses, radiation protection procedures and measures, and classification methods of contaminated equipment. 6 refs., 1 fig., 1 tab

  20. Natural Gas Hydrate as a Storage Mechanism for Safe, Sustainable and Economical Production from Offshore Petroleum Reserves

    Directory of Open Access Journals (Sweden)

    Michael T. Kezirian

    2017-06-01

    Full Text Available Century Fathom presents an innovative process to utilize clathrate hydrates for the production, storage and transportation of natural gas from off-shore energy reserves in deep ocean environments. The production scheme was developed by considering the preferred state of natural gas in the deep ocean and addressing the hazards associated with conventional techniques to transport natural gas. It also is designed to mitigate the significant shipping cost inherent with all methods. The resulting proposed scheme restrains transport in the hydrate form to the ocean and does not attempt to supply energy to the residential consumer. Instead; the target recipients are industrial operations. The resulting operational concept is intrinsically safer by design; environmentally sustainable and significantly cost-effective compared with currently proposed schemes for the use of natural gas hydrates and has the potential to be the optimal solution for new production of reserves; depending on the distance to shore and capacity of the petroleum reserve. A potential additional benefit is the byproduct of desalinated water.

  1. Physical Properties of Gas Hydrates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  2. Deposits of naturally occurring radioactivity in production of oil and natural gas

    International Nuclear Information System (INIS)

    Strand, T.; Lysebo, I.; Kristensen, D.; Birovljev, A.

    1997-01-01

    Deposits of naturally occurring radioactive materials is an increasing problem in Norwegian oil and gas production. Activity concentration in solid-state samples and production water, and doses to workers involved in different operations off-shore, have been measured. The report also includes a discussion of different methods of monitoring and alternatives for final disposal of wastes. 154 refs

  3. Mesozoic authigenic carbonate deposition in the Arctic: Do glendonites record gas hydrate destabilization during the Jurassic?

    Science.gov (United States)

    Morales, Chloe; Suan, Guillaume; Wierzbowski, Hubert; Rogov, Mikhail; Teichert, Barbara; Kienhuis, Michiel V. M.; Polerecky, Lubos; Middelburg, Jack B. M.; Reichart, Gert-Jan; van de Schootbrugge, Bas

    2015-04-01

    Glendonites are calcite pseudomorphs after ikaite, an unstable hydrated calcium carbonate mineral. Because present-day ikaite occurs predominantly in sub-polar environments and is unstable at warm temperatures, glendonites have been used as an indicator of near-freezing conditions throughout Earth history. Ikaite has also been observed in cold deep-sea environments like the Gulf of Mexico, the Japan Trench, and the Zaire Fan where their formation is possibly governed by other parameters. The description of glendonites in Paleocene-Eocene sediments of Svalbard, and Early Jurassic (Pliensbachian) deposits of northern Germany, however questions the role of temperature on ikaite precipitation (Spielhagen and Tripati, 2009; Teichert and Luppold, 2013). Anomalously low carbon isotope values of Jurassic glendonites point to the involvement of methane as a possible carbon source for ikaite/glendonite formation. Terrestrial organic matter degradation is also frequently evoked as a potential source of carbon. The involved bio- and geochemical processes remains thus not well constrained. Here we present new geochemical data of a large number of glendonites specimens from the Lower and Middle Jurassic of northern Siberia and the Lena river middle flows (Bajocian, Bathonian, Pliensbachian). Carbon and oxygen isotopic values show comparable trends between the different sections. Bulk glendonites δ13C and δ18O values vary from 0.0 to -44.5o and -15.0 to -0.8 respectively and show a negative correlation. Some samples display similar low δ13C values as the Pliensbachian glendonites of Germany (Teichert and Luppold, 2013), suggesting thermogenic and/or biogenic methane sources. The range of carbon isotope values is comparable to those observed at other methane seeps deposits. Further investigations are needed to better constrain the carbon cycle in these particular environmental conditions. The role of microbial communities into ikaite/glendonite formation equally needs to be

  4. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  5. Formation of submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.; Ginsburg, G.D. (Reserch Institute of Geology and Mineral Resources of the Ocean ' ' VNII Okeangeologia' ' , St. Petersburg (Russian Federation))

    1994-03-01

    Submarine gas hydrates have been discoverd in the course of deep-sea drilling (DSDP and ODP) and bottom sampling in many offshore regions. This paper reports on expeditions carried out in the Black, Caspian and Okhotsk Seas. Gas hydrate accumulations were discovered and investigated in all these areas. The data and an analysis of the results of the deep-sea drilling programme suggest that the infiltration of gas-bearing fluids is a necessary condition for gas hydrate accumulation. This is confirmed by geological observations at three scale levels. Firstly, hydrates in cores are usually associated with comparatively coarse-grained, permeable sediments as well as voids and fractures. Secondly, hydrate accumulations are controlled by permeable geological structures, i.e. faults, diapirs, mud volcanos as well as layered sequences. Thirdly, in the worldwide scale, hydrate accumulations are characteristic of continental slopes and rises and intra-continental seas where submarine seepages also are widespread. Both biogenic and catagenic gas may occur, and the gas sources may be located at various distances from the accumulation. Gas hydrates presumably originate from water-dissolved gas. The possibility of a transition from dissolved gas into hydrate is confirmed by experimental data. Shallow gas hydrate accumulations associated with gas-bearing fluid plumes are the most convenient features for the study of submarine hydrate formation in general. These accumulations are known from the Black, Caspian and Okhotsk Seas, the Gulf of Mexico and off northern California. (au) (24 refs.)

  6. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  7. Gas hydrate exploration activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Keun-Pil Park, K.P. [Korea Inst. of Geoscience and Mineral Resources, Gas Hydrate R and D Organization, Ministry of Knowledge Economy, Yuseong-gu, Daejeon (Korea, Republic of)

    2008-07-01

    Korea's first gas hydrate research project was launched in 1996 to study the gas hydrate potential in the Ulleung Basin of the East Sea. It involved a series of laboratory experiments followed by a preliminary offshore seismic survey and regional reconnaissance geophysical and marine geological surveys. The bottom simulating reflector (BSR) was interpreted to show wide area distribution in the southern part of the Ulleung Basin, and its average burial depth was 187 m below the sea floor in the East Sea. A three-phase 10-year National Gas Hydrate Development Program was launched in 2004 to estimate the potential reserves in the East Sea. It will involve drilling to identify natural gas hydrates and to determine the most optimized production methods. Drilling sites were proposed based on five indicators that imply gas hydrate occurrence, notably BSR, gas vent, enhanced seismic reflection, acoustic blanking and gas seeping structure. The UBGH-X-01 gas hydrate expedition in the East Sea Ulleung Basin involved 5 logging while drilling (LWD) surveys at three high priority sites. One wire line logging was implemented at the site of the UBGH09. A total 334 m of non-pressurized conventional cores and 16 pressure cores were obtained in late 2007. The UBGH-X-01 was successfully completed, recovering many natural samples of gas hydrate from 3 coring sites in the East Sea. 7 refs., 12 figs.

  8. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  9. THERMODYNAMIC MODEL OF GAS HYDRATES

    OpenAIRE

    Недоступ, В. И.; Недоступ, О. В.

    2015-01-01

    The interest to gas hydrates grows last years. Therefore working out of reliable settlement-theoretical methods of definition of their properties is necessary. The thermodynamic model of gas hydrates in which the central place occupies a behaviour of guest molecule in cell is described. The equations of interaction of molecule hydrate formative gas with cell are received, and also an enthalpy and energy of output of molecule from a cell are determined. The equation for calculation of thermody...

  10. Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage

    International Nuclear Information System (INIS)

    Seo, Young-ju; Park, Seongmin; Kang, Hyery; Ahn, Yun-Ho; Lim, Dongwook; Kim, Se-Joon; Lee, Jaehyoung; Lee, Joo Yong; Ahn, Taewoong; Seo, Yongwon; Lee, Huen

    2016-01-01

    Highlights: • The structural sustainability of sII hydrate is demonstrated during the replacement. • The experimental evidence of isostructural replacement is revealed. • The cage-specific replacement in sII hydrates allows long-term CO 2 storage. • The compositions and extent of replacement are cross-checked by GC and NMR analyses. - Abstract: A replacement technique has been regarded as a promising strategy for both CH 4 exploitation from gas hydrates and CO 2 sequestration into deep-ocean reservoirs. Most research has been focused on replacement reactions that occur in sI hydrates due to their prevalence in natural gas hydrates. However, sII hydrates in nature have been also discovered in some regions, and the replacement mechanism in sII hydrates significantly differs from that in sI hydrates. In this study, we have intensively investigated the replacement reaction of sII (C 3 H 8 + CH 4 ) hydrate by externally injecting CO 2 /N 2 (50:50) gas mixture with a primary focus on powder X-ray diffraction, Raman spectroscopy, NMR spectroscopy, and gas chromatography analyses. In particular, it was firstly confirmed that there was no structural transformation during the replacement of C 3 H 8 + CH 4 hydrate with CO 2 /N 2 gas injection, indicating that sII hydrate decomposition followed by sI hydrate formation did not occur. Furthermore, the cage-specific replacement pattern of the C 3 H 8 + CH 4 hydrate revealed that CH 4 replacement with N 2 in the small cages of sII was more significant than C 3 H 8 replacement with CO 2 in the large cages of sII. The total extent of the replacement for the C 3 H 8 + CH 4 hydrate was cross-checked by NMR and GC analyses and found to be approximately 54%. Compared to the replacement for CH 4 hydrate with CO 2 /N 2 gas, the lower extent of the replacement for the C 3 H 8 + CH 4 hydrate with CO 2 /N 2 gas was attributable to the persistent presence of C 3 H 8 in the large cages and the lower content of N 2 in the feed gas. The

  11. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  12. Natural Gas Hydrates in the Offshore Beaufort-Mackenzie Basin-Study of a Feasible Energy Source II

    International Nuclear Information System (INIS)

    Majorowicz, J. A.; Hannigan, P. K.

    2000-01-01

    In the offshore part of Beaufort-Mackenzie Basin depth of methane hydrate stability reaches more than 1.5 km. However, there are areas in the western part of the basin where there are no conditions of methane hydrate stability. Construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost in the offshore area, shows that these zones can reach 1200 m and 900 m, respectively. Depth to the base of ice-bearing relict permafrost under the sea (depth of the -1 o C isotherm-ice-bearing permafrost base) and regional variations of geothermal gradient are the main controlling factors. Hydrostatic pressures in the upper 1500 m are the rule. History of methane hydrate stability zone is related mainly to the history of permafrost and it reached maximum depth in early Holocene. More recently, the permafrost and hydrate zone is diminishing because of sea transgression. Reevaluation of the location of possible gas hydrate occurrences is done from the analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone. In the offshore Beaufort-Mackenzie Basin, methane hydrate occurs in 21 wells. Nine of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate-stability zone described in this study. Interpretation of geological cross sections and maps of geological sequences reveals that hydrates are occurring in the Iperk-Kugmallit sequence. Hydrate-gas contact zones, however, are possible in numerous situations. As there are no significant geological seals in the deeper part of the offshore basin (all hydrates are within Iperk), it is suggested that overlying permafrost and hydrate stability zone acted as the only trap for upward migrating gas during the last tens of thousand of years (i.e., Sangamonian to Holocene)

  13. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  14. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

    2010-07-01

    To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  15. Gas hydrate resource quantification in Uruguay

    International Nuclear Information System (INIS)

    Tomasini, J.; De Santa Ana, H.; Veroslavsky, G.

    2012-01-01

    The gas hydrates are crystalline solids formed by natural gas (mostly methane) and water, which are stable in thermobaric conditions given under high pressures and low temperatures. These conditions are given in permafrost zones and continental margin basins offshore in the nature

  16. Experimental Study on Methane Hydrate Formation and Transport from Emulsions in a “Gas Lift” Riser in a Flowloop

    OpenAIRE

    Pham , Trung-Kien; Cameirao , Ana ,; Herri , Jean-Michel; Glenat , Philippe

    2017-01-01

    Session : Flow Assurance: Transportability Strategies - GasHyDyn : Logiciel de simulation de la composition et de la stabilité des hydrates de gaz; International audience; Production of crude oil with natural gas and water at low temperature and high pressure favours conditions for gas hydrate formation which can cause many troubles, up to blockage of pipelines. This work deals with hydrate kinetics of crystallization and agglomeration together with slurry transport and deposition under flowi...

  17. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    . For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems......The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually...

  18. Microstructure of natural hydrate host sediments

    International Nuclear Information System (INIS)

    Jones, K.W.; Kerkar, P.B.; Mahajan, D.; Lindquist, W.B.; Feng, H.

    2007-01-01

    There is worldwide interest in the study of natural gas hydrate because of its potential impact on world energy resources, control on seafloor stability, significance as a drilling hazard and probable impact on climate as a reservoir of a major greenhouse gas. Gas hydrates can (a) be free floating in the sediment matrix (b) contact, but do not cement, existing sediment grains, or (c) actually cement and stiffen the bulk sediment. Seismic surveys, often used to prospect for hydrates over a large area, can provide knowledge of the location of large hydrate concentrations because the hydrates within the sediment pores modify seismic properties. The ability to image a sample at the grain scale and to determine the porosity, permeability and seismic profile is of great interest since these parameters can help in determining the location of hydrates with certainty. We report here on an investigation of the structure of methane hydrate sediments at the grain-size scale using the synchrotron radiation-based computed microtomography (CMT) technique. Work has started on the measurements of the changes occurring as tetrahydrofuran hydrate, a surrogate for methane hydrate, is formed in the sediment

  19. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  20. Fiscal 2000 survey report. Feasibility study of reciprocative transportation system for carbon dioxide and natural gas utilizing gas hydrate; 2000 nendo gas hidrate wo riyosuru nisanka tanso to tennen gas no kogo yuso system no kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A reciprocative CO2/CH{sub 4} transportation system will constitute a foundation on which minor gas fields may be made good use of in the Asia-Pacific region. For the construction of such a system, a survey is conducted into key technologies of separating CO2 from combustion exhaust with the aid of the hydrate process, reciprocative CO2/CH{sub 4} transportation with hydrate acting as medium, and subsurface CO2 storage and its utilization in minor gas fields or the like. The contents of the survey and the results fall in six areas, which are (1) the states of greenhouse gas reduction and natural gas utilization, (2) reciprocative CO2/CH{sub 4} transportation with hydrate acing as medium, (3) CO2 separation from combustion exhaust with the aid of the hydrate process, (4) reciprocative CO2/CH{sub 4} transportation with hydrate acing as medium, (5) subsurface CO2 storage and its utilization in minor gas fields, and (6) the establishment of a reciprocative CO2/CH{sub 4} transportation system and the evaluation of its cost performance. (NEDO)

  1. On the use of hydrate inhibitors for operating natural gas caverns; Zum Einsatz von Hydratinhibitoren beim Betrieb von Erdgasspeichern

    Energy Technology Data Exchange (ETDEWEB)

    Kleinitz, W.; Lissanon, S.J.; Luehn, H.G. [Preussag Energie GmbH, Lingen/Ems (Germany)

    1997-12-31

    One way to prevent gas hydrates in natural gas caverns is to use thermodynamic or kinetic inhibitors in a defined temperature / pressure range. The present contribution describes the temperature conditions prevailing in the tubing string. It also discusses bacterial processes around wells arising in association with methanol digesting bacteria, diethylene glycol digesting bacteria, and kinetic inhibitors. Further topics include inhibitor dosage and absorption drying. (MSK) [Deutsch] Zur Vermeidung von Gashydraten im Erdgasspeicherbereich werden thermodynamische oder kinetische Inhibitoren in einem definierten Temperatur/Druckbereich eingesetzt. Im Folgenden werden die Temperaturbedingungen im Steigrohrsystem erlaeutert. Ebenso werden die bakteriellen Vorgaenge im Bohrlochsbereich in folgenden Einzelheiten: Methanol-verwertenden Bakterien, Diethylenglykol-verwertende Bakterien sowie kinetische Inhibitoren diskutiert. Weitere Themenpunkte sind die Inhibitordosierung und die Adsorptionstrocknung.

  2. FY1995 molecular control technology for mining of methane-gas-hydrate; 1995 nendo methane hydrate no bunshi seigyo mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of the investigation are as follows: 1) developing a method to control formation/dissociation of methane-gas-hydrate, 2) developing a technology to displace methane gas by CO{sub 2} in methane-gas-hydrate deposit, 3) developing a technology to produce methane gas from the deposit efficiently. The final purpose of the project is to create new mining industry that solves both the problems of energy and global environment. 1) Clustering of water molecules is found to play the key role in the methane gas hydrate formation. 2) Equilibrium properties and kinetics of gas hydrates formation and dissociation in bulk-scale gas-hydrate are clarified in the practical environmental conditions. 3) Particle size of hydrate deposit influences the formation and dissociation of bulk-scale gas-hydrate crystal. 4) Mass transfer between gas and liquid phase in turbulent bubbly flow is a function of bubble diameter. The mass transfer depends on interfacial dynamics. (NEDO)

  3. Stages of Gas-Hydrate Evolution on the Northern Cascadia Margin

    Directory of Open Access Journals (Sweden)

    the IODP Expedition 311 Scientists

    2006-09-01

    Full Text Available Natural gas hydrate occurs beneath many continental slopes and in arctic permafrost areas. Recent studies have indicated that the largest deposits of gas hydrate might lie in nearly horizontal layers several hundred meters beneath the seafloor of continental slopes, especially in the large, accretionary sedimentary prisms of subduction zones. Expedition 311 of the Integrated Ocean Drilling Program (IODP investigated the formation of gas hydrate in the accretionary prism of the Cascadia subduction zone (Fig. 1. The primary objectives of Expedition 311 were to test and constraingeological models of gas hydrate formation by upward fluidand methane transport in accretionary prisms. We specifi -cally sought to (a determine the mechanisms that controlthe nature, magnitude, and distribution of the gas hydrate,(b find the pathways of the fluid migration required to formlarge concentrations of gas hydrate, (c examine the effectsof gas hydrate on the physical properties of the host sediment,and (d investigate the microbiology and geochemistryassociated with the occurrence of gas hydrate. Furthermore,we concentrated on the contrast between methane transportby focused fl ow in fault zones and by dispersed pervasiveupward flow at various scales of permeability.

  4. Effect of gas hydrates melting on seafloor slope stability

    Science.gov (United States)

    Sultan, N.; Cochonat, P.; Foucher, J. P.; Mienert, J.; Haflidason, H.; Sejrup, H. P.

    2003-04-01

    Quantitative studies of kinetics of gas hydrate formation and dissociation is of a particular concern to the petroleum industry for an evaluation of environmental hazards in deep offshore areas. Gas hydrate dissociation can generate excess pore pressure that considerably decreases the strength of the soil. In this paper, we present a theoretical study of the thermodynamic chemical equilibrium of gas hydrate in soil, which is based on models previously reported by Handa (1989), Sloan (1998) and Henry (1999). Our study takes into account the influence of temperature, pressure, pore water chemistry, and the pore size distribution of the sediment. This model fully accounts for the latent heat effects, as done by Chaouch and Briaud (1997) and Delisle et al. (1998). It uses a new formulation based on the enthalpy form of the law of conservation of energy. The model allows for the evaluation of the excess pore pressure generated during gas hydrate dissociation using the Soave’s (1972) equation of state. Fluid flow in response to the excess pore pressure is simulated using the finite element method. In the second part of the paper, we present and discuss an application of the model through a back-analysis of the case of the giant Storegga slide on the Norwegian margin. Two of the most important changes during and since the last deglaciation (hydrostatic pressure due to the change of the sea level and the increase of the sea water temperature) were considered in the calculation. Simulation results are presented and discussed. Chaouch, A., &Briaud, J.-L., 1997. Post melting behavior of gas hydrates in soft ocean sediments, OTC-8298, in 29th offshore technology conference proceedings, v. 1, Geology, earth sciences and environmental factors: Society of Petroleum Engineers, p. 217-224. Delisle, G.; Beiersdorf, H.; Neben, S.; Steinmann, D., 1998. The geothermal field of the North Sulawesi accretionary wedge and a model on BSR migration in unstable depositional environments. in

  5. Numerical Simulation of the Depressurization Process of a Natural Gas Hydrate Reservoir: An Attempt at Optimization of Field Operational Factors with Multiple Wells in a Real 3D Geological Model

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2016-09-01

    Full Text Available Natural gas hydrates, crystalline solids whose gas molecules are so compressed that they are denser than a typical fluid hydrocarbon, have extensive applications in the areas of climate change and the energy crisis. The hydrate deposit located in the Shenhu Area on the continental slope of the South China Sea is regarded as the most promising target for gas hydrate exploration in China. Samples taken at drilling site SH2 have indicated a high abundance of methane hydrate reserves in clay sediments. In the last few decades, with its relatively low energy cost, the depressurization gas recovery method has been generally regarded as technically feasible and the most promising one. For the purpose of a better acquaintance with the feasible field operational factors and processes which control the production behavior of a real 3D geological CH4-hydrate deposit, it is urgent to figure out the effects of the parameters such as well type, well spacing, bottom hole pressure, and perforation intervals on methane recovery. One years’ numerical simulation results show that under the condition of 3000 kPa constant bottom hole pressure, 1000 m well spacing, perforation in higher intervals and with one horizontal well, the daily peak gas rate can reach 4325.02 m3 and the cumulative gas volume is 1.291 × 106 m3. What’s more, some new knowledge and its explanation of the curve tendency and evolution for the production process are provided. Technically, one factor at a time design (OFAT and an orthogonal design were used in the simulation to investigate which factors dominate the productivity ability and which is the most sensitive one. The results indicated that the order of effects of the factors on gas yield was perforation interval > bottom hole pressure > well spacing.

  6. Indian continental margin gas hydrate prospects : results of the Indian National Gas Hydrate Program (NGHP) expedition 01

    Energy Technology Data Exchange (ETDEWEB)

    Collett, T [United States Geological Survey, Denver, CO (United States); Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences; Cochran, J.R. [Columbia Univ., Palisades, NY (United States). Lamont Doherty Earth Observatory; Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Kumar, P. [Pushpendra Kumar Oil and Natural Gas Corp. Ltd., Mumbai (India). Inst. of Engineering and Ocean Technology; Sathe, A.V. [Oil and Natural Gas Corp. Ltd., Uttaranchal (India). KDM Inst. of Petroleum Exploration

    2008-07-01

    The geologic occurrence of gas hydrate deposits along the continental margins of India were investigated in the first expedition of the Indian National Gas Hydrate Program (NGHP). The objective was to determine the regional context and characteristics of the gas hydrate deposits through scientific ocean drilling, logging, and analytical activities. A research drill ship was the platform for the drilling operation. The geological and geophysical studies revealed 2 geologically distinct areas with inferred gas hydrate occurrences, notably the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The NGHP Expedition 01 focused on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these 2 diverse settings. The study established the presence of gas hydrates in Krishna-Godavari, Mahanadi and Andaman basins. Site 10 in the Krishna-Godavari Basin was discovered to be the one of the richest gas hydrate accumulations yet documented, while site 17 in the Andaman Sea had the thickest and deepest gas hydrate stability zone yet known. The existence of a fully-developed gas hydrate system in the Mahanadi Basin was also discovered. Most of the gas hydrate occurrences discovered during this expedition appeared to contain mostly methane which was generated by microbial processes. However, there was also evidence of a thermal origin for a portion of the gas within the hydrates of the Mahanadi Basin and the Andaman offshore area. Gas hydrate in the Krishna-Godavari Basin appeared to be closely associated with large scale structural features, in which the flux of gas through local fracture systems, generated by the regional stress regime, controlled the occurrence of gas hydrate. 3 refs., 1 tab., 2 figs.

  7. Compressive Strength Properties of Natural Gas Hydrate Pellet by Continuous Extrusion from a Twin-Roll System

    Directory of Open Access Journals (Sweden)

    Yun-Hoo Lee

    2013-01-01

    Full Text Available This study investigates the compressive strength of natural gas hydrate (NGH pellet strip extruded from die holes of a twin-roll press for continuous pelletizing (TPCP. The lab-scale TPCP was newly developed, where NGH powder was continuously fed and extruded into strip-type pellet between twin rolls. The system was specifically designed for future expansion towards mass production of solid form NGH. It is shown that the compressive strength of NGH pellet strip heavily depends on parameters in the extrusion process, such as feeding pressure, pressure ratio, and rotational speed. The mechanism of TPCP, along with the compressive strength and density of pellets, is discussed in terms of its feasibility for producing NGH pellets in the future.

  8. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  9. Effect of overpressure on gas hydrate distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    Natural gas hydrate systems can be characterized by high sedimentation rates and/or low permeability sediments, which can lead to pore pressure higher than hydrostatic. This paper discussed a study that examined this effect of overpressure on gas hydrate and free gas distribution in marine sediments. A one-dimensional numerical model that coupled sedimentation, fluid flow, and gas hydrate formation was utilized. In order to quantify the relative importance of sedimentation rates and low permeability sediments, a dimensionless sedimentation-compaction group (scN) was defined, that compared the absolute permeability of the sediments to the sedimentation rate. Higher values of scN mean higher permeability or low sedimentation rate which generally yield hydrostatic pore pressure while lower values of scN normally create pore pressure greater than hydrostatic. The paper discussed non-hydrostatic consolidation in gas hydrate systems, including mass balances; constitutive relationships; normalized variables; and dimensionless groups. A numerical solution to the problem was presented. It was concluded that simulation results demonstrated that decreasing scN not only increased pore pressure above hydrostatic values, but also lowered the lithostatic stress gradient and gas hydrate saturation. This occurred because overpressure resulted in lower effective stress, causing higher porosity and lower bulk density of the sediment. 16 refs., 5 figs., 1 appendix.

  10. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  11. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  12. Numerical Simulations for Enhanced Methane Recovery from Gas Hydrate Accumulations by Utilizing CO2 Sequestration

    Science.gov (United States)

    Sridhara, Prathyusha

    In 2013, the International Energy Outlook (EIA, 2013) projected that global energy demand will grow by 56% between 2010 and 2040. Despite strong growth in renewable energy supplies, much of this growth is expected to be met by fossil fuels. Concerns ranging from greenhouse gas emissions and energy security are spawning new interests for other sources of energy including renewable and unconventional fossil fuel such as shale gas and oil as well as gas hydrates. The production methods as well as long-term reservoir behavior of gas hydrate deposits have been under extensive investigation. Reservoir simulators can be used to predict the production potentials of hydrate formations and to determine which technique results in enhanced gas recovery. In this work, a new simulation tool, Mix3HydrateResSim (Mix3HRS), which accounts for complex thermodynamics of multi-component hydrate phase comprised of varying hydrate solid crystal structure, is used to perform the CO2-assisted production technique simulations from CH4 hydrate accumulations. The simulator is one among very few reservoir simulators which can simulate the process of CH4 substitution by CO2 (and N2 ) in the hydrate lattice. Natural gas hydrate deposits around the globe are categorized into three different classes based on the characteristics of the geological sediments present in contact with the hydrate bearing deposits. Amongst these, the Class 2 hydrate accumulations predominantly confirmed in the permafrost and along seashore, are characterized by a mobile aqueous phase underneath a hydrate bearing sediment. The exploitation of such gas hydrate deposits results in release of large amounts of water due to the presence of permeable water-saturated sediments encompassing the hydrate deposits, thus lowering the produced gas rates. In this study, a suite of numerical simulation scenarios with varied complexity are considered which aimed at understanding the underlying changes in physical, thermodynamic and

  13. Observation of ice sheet formation on methane and ethane gas hydrates using a scanning confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, J.; Shimomura, N.; Ebinuma, T.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira, Sapporo (Japan). Methane Hydrate Research Lab.

    2008-07-01

    Interest in gas hydrates has increased in recent years due to the discovery of large deposits under the ocean floor and in permafrost regions. Natural gas hydrates, including methane, is expected to become a new energy source and a medium for energy storage and transportation. Gas hydrates consist of an open network of water molecules that are hydrogen-bonded in a similar manner to ice. Gas molecules are interstitially engaged under high pressures and low temperatures. Although the dissociation temperature of methane hydrate under atmospheric pressure is about 193 K, studies have shown that methane hydrate can be stored at atmospheric pressure and 267 K for 2 years. Because of this phenomenon, known as self-preservation, transportation and storage of methane hydrate can occur at temperature conditions milder than those for liquefied methane gas at atmospheric pressure. This study examined the surface changes of methane and ethane hydrates during dissociation using an optical microscope and confocal scanning microscope (CSM). This paper reported on the results when the atmospheric gas pressure was decreased. Ice sheets formed on the surfaces of methane and ethane gas hydrates due to depressurizing dissociation of methane and ethane hydrates when the methane and ethane gas pressures were decreased at designated temperatures. The dissociation of methane gas hydrate below below 237 K resulted in the generation of small ice particles on the hydrate surface. A transparent ice sheet formed on the hydrate surface above 242 K. The thickness of the ice sheet on the methane hydrate surface showed the maximum of ca. 30 {mu}m at 253 K. In the case of ethane hydrates, ice particles and ice sheets formed below 262 and 267 respectively. Since the ice particles and ice sheets were formed by water molecules generated during the gas hydrate dissociation, the mechanism of ice sheet formation depends on the dissociation rate of hydrate, ice particle sintering rate, and water molecule

  14. Advanced Gas Hydrate Reservoir Modeling Using Rock Physics

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Daniel

    2017-12-30

    Prospecting for high saturation gas hydrate deposits can be greatly aided with improved approaches to seismic interpretation and especially if sets of seismic attributes can be shown as diagnostic or direct hydrocarbon indicators for high saturation gas hydrates in sands that would be of most interest for gas hydrate production.

    A large 3D seismic data set in the deep water Eastern Gulf of Mexico was screened for gas hydrates using a set of techniques and seismic signatures that were developed and proven in the Central deepwater Gulf of Mexico in the DOE Gulf of Mexico Joint Industry Project JIP Leg II in 2009 and recently confirmed with coring in 2017.

    A large gas hydrate deposit is interpreted in the data where gas has migrated from one of the few deep seated faults plumbing the Jurassic hydrocarbon source into the gas hydrate stability zone. The gas hydrate deposit lies within a flat-lying within Pliocene Mississippi Fan channel that was deposited outboard in a deep abyssal environment. The uniform architecture of the channel aided the evaluation of a set of seismic attributes that relate to attenuation and thin-bed energy that could be diagnostic of gas hydrates. Frequency attributes derived from spectral decomposition also proved to be direct hydrocarbon indicators by pseudo-thickness that could be only be reconciled by substituting gas hydrate in the pore space. The study emphasizes that gas hydrate exploration and reservoir characterization benefits from a seismic thin bed approach.

  15. Morphology studies on gas hydrates interacting with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Servio, P. [McGill Univ., Montreal, PQ (Canada). Dept. of Chemical Engineering

    2008-07-01

    Clathrate hydrates or gas hydrates are non-stoichiometric, crystalline compounds that form when small molecules come in contact with water at certain temperatures and pressures. Natural gas hydrates are found in the ocean bottom and in permafrost regions. It is thought that the amount of energy stored in natural hydrates is at least twice that of all other fossil fuels combined. In addition, trapping carbon dioxide as a hydrate in the bottom of the ocean has been suggested as an alternative means of reducing atmospheric carbon dioxide levels. Naturally occurring clathrates are found in close interaction with fine grained particles of very small mean pore diameters. Even though an increasing amount of hydrate equilibrium data for small diameter porous media has become available, the morphological behavior of hydrates subject to such conditions is yet to be explored. This paper presented a study that visually examined hydrate formation and decomposition of gas hydrates while interacting with fine grains of silica gel. The study showed still frames from high-resolution video recordings for hydrate formation and decomposition. The paper discussed the experiment including the apparatus as well as the results of hydrate formation and hydrate dissociation. This study enabled for the first time to observe clathrate morphology while hydrates interacted closely with fine grain particles with small mean pore diameters. 9 refs., 8 figs.

  16. A Computationally Efficient Equation of State for Ternary Gas Hydrate Systems

    Science.gov (United States)

    White, M. D.

    2012-12-01

    The potential energy resource of natural gas hydrates held in geologic accumulations, using lower volumetric estimates, is sufficient to meet the world demand for natural gas for nearly eight decades, at current rates of increase. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. The thermodynamic complexity of gas hydrate systems makes numerical simulation a particularly attractive research tool for understanding production strategies and experimental observations. Simply stated, producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. Alternatively, the guest-molecule exchange technology releases CH4 by replacing it with more thermodynamically stable molecules (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it potentially releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, nonaqueous liquid, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulations that predict

  17. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  18. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  19. Deposits of naturally occurring radioactivity in production of oil and natural gas; Radioaktive avleiringer i olje- og gassproduksjon

    Energy Technology Data Exchange (ETDEWEB)

    Strand, T; Lysebo, I; Kristensen, D; Birovljev, A

    1997-01-01

    Deposits of naturally occurring radioactive materials is an increasing problem in Norwegian oil and gas production. Activity concentration in solid-state samples and production water, and doses to workers involved in different operations off-shore, have been measured. The report also includes a discussion of different methods of monitoring and alternatives for final disposal of wastes. 154 refs.

  20. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    Science.gov (United States)

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  1. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon; Santamarina, Carlos

    2016-01-01

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  2. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  3. Energy from gas hydrates - assessing the opportunities and challenges for Canada: report of the expert panel on gas hydrates

    International Nuclear Information System (INIS)

    2008-09-01

    Gas hydrates form when water and natural gas combine at low temperatures and high pressures in regions of permafrost and in marine subseafloor sediments. Estimates suggest that the total amount of natural gas bound in hydrate form may exceed all conventional gas resources, or even the amount of all combined hydrocarbon energy. Gas from gas hydrate could provide a potentially vast new source of energy to offset declining supplies of conventional natural gas in North America and to provide greater energy security for countries such as Japan and India that have limited domestic sources. However, complex issues would need to be addressed if gas hydrate were to become a large part of the energy future of Canada. Natural Resources Canada asked the Council of Canadian Academies to assemble a panel of experts to examine the challenges for an acceptable operational extraction of gas hydrates in Canada. This report presented an overview of relevant contextual background, including some basic science; the medium-term outlook for supply and demand in markets for natural gas; broad environmental issues related to gas hydrate in its natural state and as a fuel; and an overview of Canada's contribution to knowledge about gas hydrate in the context of ongoing international research activity. The report also presented current information on the subject and what would be required to delineate and quantify the resource. Techniques for extracting gas from gas hydrate were also outlined. The report also addressed safety issues related to gas hydrate dissociation during drilling operations or release into the atmosphere; the environmental issues associated with potential leakage of methane into the atmosphere and with the large volumes of water produced during gas hydrate dissociation; and jurisdictional and local community issues that would need to be resolved in order to proceed with the commercial exploitation of gas hydrate. It was concluded that there does not appear to be

  4. Gas hydrates in gas storage caverns; Gashydrate bei der Gaskavernenspeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Groenefeld, P. [Kavernen Bau- und Betriebs-GmbH, Hannover (Germany)

    1997-12-31

    Given appropriate pressure and temperature conditions the storage of natural gas in salt caverns can lead to the formation of gas hydrates in the producing well or aboveground operating facilities. This is attributable to the stored gas becoming more or less saturated with water vapour. The present contribution describes the humidity, pressure, and temperature conditions conducive to gas hydrate formation. It also deals with the reduction of the gas removal capacity resulting from gas hydrate formation, and possible measures for preventing hydrate formation such as injection of glycol, the reduction of water vapour absorption from the cavern sump, and dewatering of the cavern sump. (MSK) [Deutsch] Bei der Speicherung von Erdgas in Salzkavernen kann es unter entsprechenden Druck- und Temperaturverhaeltnissen zur Gashydratbildung in den Foerdersonden oder obertaegigen Betriebseinrichtungen kommen, weil sich das eingelagerte Gas mehr oder weniger mit Wasserdampf aufsaettigt. Im Folgenden werden die Feuchtigkeits-, Druck- und Temperaturbedingungen, die zur Hydratbildung fuehren erlaeutert. Ebenso werden die Verringerung der Auslagerungskapazitaet durch die Hydratbildung, Massnahmen zur Verhinderung der Hydratbildung wie die Injektion von Glykol, die Verringerung der Wasserdampfaufnahme aus dem Kavernensumpf und die Entwaesserung der Kavernensumpfs selbst beschrieben.

  5. Can hydrate dissolution experiments predict the fate of a natural hydrate system?

    Energy Technology Data Exchange (ETDEWEB)

    Hester, K.C.; Peltzer, E.T.; Dunk, R.M.; Walz, P.M.; Brewer, P.G. [Monterey Bay Aquarium Research Inst., Moss Landing, CA (United States); Dendy Sloan, E. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    2008-07-01

    Gas hydrates are naturally occurring compounds found in permafrost regions and in oceans. In the natural environment, sufficient temperature and pressure conditions for hydrate formation exist over a significant portion of the ocean. However, in addition to pressure and temperature, the chemical potential of the gas in the hydrate must be equal to the surrounding waters. If the concentration of the gas in surrounding water is under-saturated with respect to the gas in the hydrate, the hydrate will dissolve to drive the system towards chemical equilibrium. This paper presented a dissolution study of exposed hydrate from outcrops at Barkley Canyon, located off Vancouver Island, British Columbia. A previous field experiment on synthetic methane hydrate samples had demonstrated that mass transfer controlled dissolution in under-saturated seawater. However, seafloor hydrate outcrops have been shown to have significant longevity compared to expected dissolution rates based upon convective boundary layer diffusion calculations. An in-situ dissolution experiment was performed on two distinct natural hydrate fabrics in order to help resolve this apparent disconnect between the dissolution rates of synthetic and natural hydrate. The paper presented a map of Barkley Canyon and discussed the field measurements and methods for the study. Exposed outcrops of gas hydrates were cored using a specially constructed stainless steel coring device and a hydraulic ram was located inside the corer. Hydrate samples were cored directly using the a manipulator arm and then injected into a sampling cell. The hydrate was then added to an open mesh exposure container, which allowed for exposure to ambient benthic currents with minimal disturbance. As well, in order to observe the slow dissolution of the hydrate in seawater at Barkley Canyon, time-lapse photography was employed. Last, the paper presented the results of the hydrate fabric porosities and hydrate dissolution rates. It was

  6. Large-scale depositional characteristics of the Ulleung Basin and its impact on electrical resistivity and Archie-parameters for gas hydrate saturation estimates

    Science.gov (United States)

    Riedel, Michael; Collett, Timothy S.; Kim, H.-S.; Bahk, J.-J.; Kim, J.-H.; Ryu, B.-J.; Kim, G.-Y.

    2013-01-01

    Gas hydrate saturation estimates were obtained from an Archie-analysis of the Logging-While-Drilling (LWD) electrical resistivity logs under consideration of the regional geological framework of sediment deposition in the Ulleung Basin, East Sea, of Korea. Porosity was determined from the LWD bulk density log and core-derived values of grain density. In situ measurements of pore-fluid salinity as well as formation temperature define a background trend for pore-fluid resistivity at each drill site. The LWD data were used to define sets of empirical Archie-constants for different depth-intervals of the logged borehole at all sites drilled during the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2). A clustering of data with distinctly different trend-lines is evident in the cross-plot of porosity and formation factor for all sites drilled during UBGH2. The reason for the clustering is related to the difference between hemipelagic sediments (mostly covering the top ∼100 mbsf) and mass-transport deposits (MTD) and/or the occurrence of biogenic opal. For sites located in the north-eastern portion of the Ulleung Basin a set of individual Archie-parameters for a shallow depth interval (hemipelagic) and a deeper MTD zone was achieved. The deeper zone shows typically higher resistivities for the same range of porosities seen in the upper zone, reflecting a shift in sediment properties. The presence of large amounts of biogenic opal (up to and often over 50% as defined by XRD data) was especially observed at Sites UBGH2-2_1 and UBGH2-2_2 (as well as UBGH1-9 from a previous drilling expedition in 2007). The boundary between these two zones can also easily be identified in gamma-ray logs, which also show unusually low readings in the opal-rich interval. Only by incorporating different Archie-parameters for the different zones a reasonable estimate of gas hydrate saturation was achieved that also matches results from other techniques such as pore-fluid freshening

  7. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  8. Geochemical Characterization of Concentrated Gas Hydrate Deposits on the Hikurangi Margin, New Zealand: Preliminary Geochemical Cruise Report

    Science.gov (United States)

    2008-02-29

    by staining with ethidium bromide and viewed under UV. The intensity of bands represents the strength of the produce in each sample. Positive and...hydrates with seafloor instability, submarine landslides , and possibly Tsunamis by a freeze-thaw mechanism similar to frost heave [Pecher et al...seeps and mud volcanoes associated with methane seeps and hydrates. The heatflow instrument used was a 3.5-meter-long “violin bow” or “Lister-type

  9. Exploring and Monitoring of Methane Hydrate Deposits

    Science.gov (United States)

    Sudac, D.; Obhođaš, J.; Nađ, K.; Valković, V.

    2018-01-01

    Relatively recently, in the last 20 years, it was discovered that methane hydrate (MH) deposits are globally distributed in the permafrost and oceans. Before 1965 when first deposits were discovered in nature, it was believed that MH can occur only in laboratory conditions or in vast parts of the Universe. Presently it is presumed that this solid crystalline compounds in which CH4 molecules occupies the water ice lattices (nominal chemical formula of MH is C4H62O23) can serve as an energy source favorably to the all of the world remaining conventional hydrocarbon sources. The worldwide estimates of MH deposits range from 2x1014 m3 to 3.053x1018 cubic meters. This uncertainty partly results from our limitations in geological understanding of the MH deposits, which is due to the relatively bad quality of data obtained by presently available seismic and electromagnetic techniques. Moreover, MH deposits can become vulnerable to climate changes, which were already occurring in geological past whit tremendous consequences for the global life on Earth. Thus, further development of advanced techniques is needed to enhance our abilities to better characterize, quantify and monitor the MH deposits. In the work presented 14 MeV neutrons and associated alpha particle imaging (API) where used to quantify the amount of MH in the sample. Samples were prepared from sea sediment, quartz sand and MH simulant. MH simulant with chemical formula C4H46O23 was made from sucrose (25 % by mass) and water. MH quantity was measured by measuring the carbon content in the sample [1-8].

  10. Exploring and Monitoring of Methane Hydrate Deposits

    Directory of Open Access Journals (Sweden)

    Sudac D.

    2018-01-01

    Full Text Available Relatively recently, in the last 20 years, it was discovered that methane hydrate (MH deposits are globally distributed in the permafrost and oceans. Before 1965 when first deposits were discovered in nature, it was believed that MH can occur only in laboratory conditions or in vast parts of the Universe. Presently it is presumed that this solid crystalline compounds in which CH4 molecules occupies the water ice lattices (nominal chemical formula of MH is C4H62O23 can serve as an energy source favorably to the all of the world remaining conventional hydrocarbon sources. The worldwide estimates of MH deposits range from 2x1014 m3 to 3.053x1018 cubic meters. This uncertainty partly results from our limitations in geological understanding of the MH deposits, which is due to the relatively bad quality of data obtained by presently available seismic and electromagnetic techniques. Moreover, MH deposits can become vulnerable to climate changes, which were already occurring in geological past whit tremendous consequences for the global life on Earth. Thus, further development of advanced techniques is needed to enhance our abilities to better characterize, quantify and monitor the MH deposits. In the work presented 14 MeV neutrons and associated alpha particle imaging (API where used to quantify the amount of MH in the sample. Samples were prepared from sea sediment, quartz sand and MH simulant. MH simulant with chemical formula C4H46O23 was made from sucrose (25 % by mass and water. MH quantity was measured by measuring the carbon content in the sample [1-8].

  11. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  12. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and

  13. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  14. GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    James Sorensen; Jaroslav Solc; Bethany Bolles

    2000-07-01

    The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

  15. Gas hydrate inhibition by perturbation of liquid water structure

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  16. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  17. Experimental setting for assessing mechanical strength of gas hydrate pellet

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S.J.; Choi, J.H.; Koh, B.H. [Dongguk Univ., Phil-dong, Chung-gu, Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    2008-07-01

    Due to the constant increase in global demand for clean energy, natural gas production from stranded medium and small size gas wells has drawn significant interest. Because the ocean transport of natural gas in the form of solid hydrate pellets (NGHP) has been estimated to be economically feasible, several efforts have been made to develop a total NGHP ocean transport chain. The investigation of mechanical strength of solid-form hydrate pellet has been an important task in fully exploiting the benefit of gas hydrate in the perspective of mass transportation and storage. This paper provided the results of a preliminary study regarding the assessment of mechanical properties of the gas hydrate pellet. The preliminary study suggested some of the key issues regarding formation and strength of gas hydrate pellets. Instead of utilizing the gas hydrate pellet, the study focused on a preliminary test setup for developing the ice pellet which was readily applied to the gas hydrate pellet in the future. The paper described the pelletization of ice powder as well as the experimental setup. Several photographs were illustrated, including samples of ice pellets; compression test for ice pellet using air press and load cell; and the initiation of crack in the cross section of an ice pellet. It was found that mechanical strength, especially, compression strength was not significantly affected by different level of press-forming force up to a certain level. 4 refs., 1 tab., 4 figs.

  18. Prospects of gas hydrate presence in the Chukchi sea

    Directory of Open Access Journals (Sweden)

    Т. В. Матвеева

    2017-08-01

    Full Text Available The purpose of this study is to forecast the scale and distribution character of gas hydrate stability zone in the Chukchi Sea under simulated natural conditions and basing on these results to estimate resource potential of gas hydrates within this area. Three types of stability zone have been identified. A forecast map of gas hydrate environment and potentially gas hydrate-bearing water areas in the Chukchi Sea has been plotted to a scale of 1:5 000 000. Mapping of gas hydrate stability zone allowed to give a justified forecast based on currently available data on geologic, fluid dynamic, cryogenic, geothermal and pressure-temperature conditions of gas hydrate formation in the Chukchi Sea. It is the first forecast of such kind that focuses on formation conditions for hydrates of various types and compositions in the Arctic seas offshore Russia. Potential amount of gas, stored beneath the Chukchi Sea in the form of hydrates, is estimated based on mapping of their stability zone and falls into the interval of 7·1011-11.8·1013 m3.

  19. Stability Zone of Natural Gas Hydrates in a Permafrost-Bearing Region of the Beaufort-Mackenzie Basin: Study of a Feasible Energy Source (Geological Survey of Canada Contribution No.1999275)

    International Nuclear Information System (INIS)

    Majorowicz, J. A.; Hannigan, P. K.

    2000-01-01

    Analysis of geological and geophysical data from 150 wells in the Beaufort-Mackenzie region(study area between 68 deg. 30'-70 deg. 00'N and 131 deg. -39 deg. W) led to reinterpretation of the depth of methane hydrate stability and construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost. Calculations were based on construction of temperature-depth profiles incorporating regional heat-flow values, temperature at the base of ice-bearing permafrost, and models relating thermal conductivity with depth. Data analysis indicates the presence and extent of the methane hydrate stability zone is related mainly to the history of permafrost development and less so by the relatively small regional variations of temperature gradients. Analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone allows reevaluation of the location of possible gas hydrate occurrences. Log analysis indicates that in the onshore and shallow sea area of the Beaufort-Mackenzie Basin, methane hydrate occurs in 27 wells. Fifteen of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate stability zone described in this study. Interpretation of geological cross sections reveals that hydrates are related mainly to sandy deltaic and delta-plain deposits in Iperk, Kugmallit, and Reindeer sequences although additional hydrate picks have been inferred in other sequences, such as Richards. Overlying permafrost may act as seal for hydrate accumulations; however, the thickness of permafrost and its related hydrate stability zone fluctuated during geological time. It is interpreted that only in the last tens of thousand of years (i.e., Sangamonian to Holocene), conditions for hydrates changed from nonstable to stable. During Early and Late

  20. Carbon dioxide gas hydrates accumulation in freezing and frozen sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilin, E.; Guryeva, O. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology

    2008-07-01

    Carbon dioxide (CO{sub 2}) hydrates and methane hydrates can be formed, and exist under natural conditions. The permafrost area has been considered as an environment for the potential disposal of CO{sub 2}. The favorable factors for preserving CO{sub 2} in liquid and gas hydrate states in frozen sediments and under permafrost horizons are great thickness of frozen sediments; low permeability in comparison with thawed sediments; and favourable conditions for hydrates formation. Therefore, research on the formation and existence conditions of CO{sub 2} gas hydrates in permafrost and under permafrost sediments are of great importance for estimation of CO{sub 2} disposal conditions in permafrost, and for working out specific sequestration schemes. This paper presented the results of an experimental study on the process of carbon dioxide (CO{sub 2}) gas hydrates formation in the porous media of sediments under positive and negative temperatures. Sediment samples of various compositions including those selected in the permafrost area were used. The research was conducted in a special pressure chamber, which allowed to monitor pressure and temperature. The study used the monitoring results in order to make quantitative estimation of the kinetics of CO{sub 2} hydrates accumulation in the model sediments. Results were presented in terms of kinetics of CO{sub 2} hydrates accumulation in the porous media at positive and negative temperatures; kinetics of CO{sub 2} hydrates accumulation in various porous media; gas hydrate-former influence on kinetics of hydrates accumulation in frozen sediments; and influence of freezing on CO{sub 2} hydrates accumulation in porous media. It was concluded that hydrate accumulation took an active place in porous media not only under positive, but also under high negative temperatures, when the water was mainly in the form of ice in porous media. 27 refs., 3 tabs., 5 figs.

  1. The U.S. Geological Survey’s Gas Hydrates Project

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    The Gas Hydrates Project at the U.S. Geological Survey (USGS) focuses on the study of methane hydrates in natural environments. The project is a collaboration between the USGS Energy Resources and the USGS Coastal and Marine Geology Programs and works closely with other U.S. Federal agencies, some State governments, outside research organizations, and international partners. The USGS studies the formation and distribution of gas hydrates in nature, the potential of hydrates as an energy resource, and the interaction between methane hydrates and the environment. The USGS Gas Hydrates Project carries out field programs and participates in drilling expeditions to study marine and terrestrial gas hydrates. USGS scientists also acquire new geophysical data and sample sediments, the water column, and the atmosphere in areas where gas hydrates occur. In addition, project personnel analyze datasets provided by partners and manage unique laboratories that supply state-of-the-art analytical capabilities to advance national and international priorities related to gas hydrates.

  2. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  3. Gas Hydrates | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Preliminary Report - Cascadia Margin Gas Hydrates, Volume 204 Initial Report Mallik 2002 GSC Bulletin 585 : Scientific results from the Mallik 2002 gas hydrate production well program Offshore gas hydrate sample

  4. Physical properties of sediments from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Winters, W.J.

    1999-01-01

    A 1150 m deep gas hydrate research well was drilled in the Canadian Arctic in February and March 1998 to investigate the interaction between the presence of gas hydrate and the natural conditions presented by the host sediments. Profiles of the following measured and derived properties are presented from that investigation: water content, sediment wet bulk density, grain size, porosity, gas hydrate quantity, and salinity. These data indicate that the greatest concentration of gas hydrate is located within sand and gravel deposits between 897 m and 922 m. American Society for Testing and Materials 1997: Standard test method for specific gravity of soil solids by gas pycnometer D 5550-94; in American Society for Testing and Materials, Annual Book of ASTM Standards, v. 04.09, Soil and Rock, West Conshohocken, Pennsylvania, p. 380-383.

  5. Reservoir Models for Gas Hydrate Numerical Simulation

    Science.gov (United States)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple

  6. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  7. Dissociation behavior of methane gas hydrate in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, C.; Yu-gang, Y.; Chang-ling, L. [Ministry of Land and Resources, Quindao (China). Qingdao Inst. of Marine Geology; Qing-guo, M. [Qingdao Univ. College of Chemical Engineering and Environment, Shandong, Qingdao (China)

    2008-07-01

    Gas hydrates are ice-like compounds that form by natural gas and water and are considered to be a new energy resource. In order to make good use of this resource, it is important to know the hydrate dissociation process. This paper discussed an investigation of methane hydrate dissociation through a simulation experiment. The paper discussed the gas hydrates dissociation experiment including the apparatus and experiment equipment, including methane gas supply; reaction cell; temperature controller; pressure maintainer; and gas flow meter. The paper also presented the method and material including iso-volumetric dissociation and normal pressure dissociation. Last, results and discussion of the results were presented. A comparison of five different particle sizes did not reveal any obvious effects that were related to the porous media, mostly likely because the particle size was too large. 15 refs., 2 tabs., 4 figs.

  8. Measurements of gas permeability and non-Darcy flow in gas-water-hydrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Ersland, G.; Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Baldwin, B. [Green Country Petrophysics LLC, Dewey, OK (United States); Stevens, J.; Howard, J. [ConocoPhillips, OK (United States)

    2008-07-01

    Storage of carbon dioxide (CO{sub 2}) in natural gas hydrate reservoirs may offer stable long-term storage of a greenhouse gas while benefiting from methane production, without requiring heat. By exposing hydrate to a thermodynamically preferred hydrate former, CO{sub 2}, the hydrate may be maintained macroscopically in the solid state and retain the stability of the formation. However, there is concern over the flow capacity in such reservoirs. This depends on several factors, notably thermodynamic destabilization of hydrate in small pores due to capillary effects; the presence of liquid channels separating the hydrate from the mineral surfaces; and, the connectivity of gas or liquid filled pores and channels. This paper described a technique for measuring gas permeability in gas-water-hydrate systems. It reported on several experiments that measured gas permeability during stages of hydrate growth in sandstone core plugs. Interactions between minerals and surrounding molecules were also discussed. The formation of methane hydrate in porous media was monitored and quantified with magnetic resonance imaging (MRI). MRI images of hydrate growth within the porous rock were provided along with measurements of gas permeability and non-Darcy flow effects at various hydrate saturations. Gas permeability was measured at steady state flow of methane through the hydrate-bearing core sample. Significant gas permeability was recorded for porous sandstone even when hydrates occupied up to 60 per cent of the pore space. It was concluded that MRI imaging can be used effectively to map and quantify hydrate saturation in sandstone core plugs. 27 refs., 2 tabs., 10 figs.

  9. Transient Electromagnetic Modelling and Imaging of Thin Resistive Structures: Applications for Gas Hydrate Assessment

    Science.gov (United States)

    Swidinsky, Andrei

    Gas hydrates are a solid, ice-like mixture of water and low molecular weight hydrocarbons. They are found under the permafrost and to a far greater extent under the ocean, usually at water depths greater than 300m. Hydrates are a potential energy resource, a possible factor in climate change, and a geohazard. For these reasons, it is critical that gas hydrate deposits are quantitatively assessed so that their concentrations, locations and distributions may be established. Due to their ice-like nature, hydrates are electrically insulating. Consequently, a method which remotely detects changes in seafloor electrical conductivity, such as marine controlled source electromagnetics (CSEM), is a useful geophysical tool for marine gas hydrate exploration. Hydrates are geometrically complex structures. Advanced electromagnetic modelling and imaging techniques are crucial for proper survey design and data interpretation. I develop a method to model thin resistive structures in conductive host media which may be useful in building approximate geological models of gas hydrate deposits using arrangements of multiple, bent sheets. I also investigate the possibility of interpreting diffusive electromagnetic data using seismic imaging techniques. To be processed in this way, such data must first be transformed into its non-diffusive, seismic-like counterpart. I examine such a transform from both an analytical and a numerical point of view, focusing on methods to overcome inherent numerical instabilities. This is the first step to applying seismic processing techniques to CSEM data to rapidly and efficiently image resistive gas hydrate structures. The University of Toronto marine electromagnetics group has deployed a permanent marine CSEM array offshore Vancouver Island, in the framework of the NEPTUNE Canada cabled observatory, for the purposes of monitoring gas hydrate deposits. In this thesis I also propose and examine a new CSEM survey technique for gas hydrate which would

  10. Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY, USA

    Science.gov (United States)

    Jill A. McMurray; Dave W. Roberts; Mark E. Fenn; Linda H. Geiser; Sarah Jovan

    2013-01-01

    Rapid expansion of natural gas drilling in Sublette County, WY (1999-present), has raised concerns about the potential ecological effects of enhanced atmospheric nitrogen (N) deposition to the Wind River Range (WRR) including the Class I BridgerWilderness. We sampled annual throughfall (TF) N deposition and lichen thalli N concentrations under forest canopies in four...

  11. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    suggests a thermogenic source. Gas hydrate accumulations in the Krishna-Godavari and Mahanadi Basins are the result of a microbially sourced gas hydrate system. The system is enhanced by the migration of microbial gas from surrounding areas through pathways including high-porosity delta sands, shale diapirism, faulting and folding of sediment due to the local processes associated with rapid sediment deposition, sediment overpressure, and the recycling of methane from a rapidly upward moving gas hydrate stability zone. The gas hydrate system in the Andaman Basin is less well constrained due to lack of exploration and occurs in a forearc basin. Each of these hydrate-bearing systems overlies and is likely supported by the presence and possible migration of gas from deeper gas-prone petroleum systems currently generating thermogenic hydrocarbons at much greater depths.

  12. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  13. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    Science.gov (United States)

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  14. An international effort to compare gas hydrate reservoir simulators

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, J.W. [Akron Univ., Akron, OH (United States). Dept. of Theoretical and Applied Math; Moridis, G.J. [California Univ., Berkely, CA (United States). Earth Sciences Div., Lawrence Berkely National Lab.; Wilson, S.J. [Ryder Scott Co., Denver, CO (United States); Kurihara, M. [Japan Oil Engineering Co. Ltd., Tokyo (Japan); White, M.D. [Pacific Northwest National Laboratory Hydrology Group, Richland, WA (United States); Masuda, Y. [Tokyo Univ., Tokyo (Japan). Dept. of Geosystem Engineering; Anderson, B.J. [National Energy Technology Lab., Morgantown, WV (United States)]|[West Virginia Univ., Morgantown, WV (United States). Dept. of Chemical Engineering; Collett, T.S. [United States Geological Survey, Denver, CO (United States); Hunter, R.B. [ASRC Energy Services, Anchorage, AK (United States); Narita, H. [National Inst. of Advanced Industrial Science and Technology, MEthane hydrate Research Lab., Sapporo (Japan); Pooladi-Darvish, M. [Fekete Associates Inc., Calgary, AB (Canada); Rose, K.; Boswell, R. [National Energy Technology Lab., Morgantown, WV (United States)

    2008-07-01

    In this study, 5 different gas hydrate production scenarios were modeled by the CMG STARS, HydateResSim, MH-21 HYDRES, STOMP-HYD and the TOUGH+HYDRATE reservoir simulators for comparative purposes. The 5 problems ranged in complexity from 1 to 3 dimensional with radial symmetry, and in horizontal dimensions of 20 meters to 1 kilometer. The scenarios included (1) a base case with non-isothermal multi-fluid transition to equilibrium, (2) a base case with gas hydrate (closed-domain hydrate dissociation), (3) dissociation in a 1-D open domain, (4) gas hydrate dissociation in a one-dimensional radial domain, similarity solutions, (5) gas hydrate dissociation in a two-dimensional radial domain. The purpose of the study was to compare the world's leading gas hydrate reservoir simulators in an effort to improve the simulation capability of experimental and naturally occurring gas hydrate accumulations. The problem description and simulation results were presented for each scenario. The results of the first scenario indicated very close agreement among the simulators, suggesting that all address the basics of mass and heat transfer, as well as overall process of gas hydrate dissociation. The third scenario produced the initial divergence among the simulators. Other differences were noted in both scenario 4 and 5, resulting in significant corrections to algorithms within several of the simulators. The authors noted that it is unlikely that these improvements would have been identified without this comparative study due to a lack of real world data for validation purposes. It was concluded that the solution for gas hydrate production involves a combination of highly coupled fluid, heat and mass transport equations combined with the potential for formation or disappearance of multiple solid phases in the system. The physical and chemical properties of the rocks containing the gas hydrate depend on the amount of gas hydrate present in the system. Each modeling and

  15. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  16. Gas Hydrate Characterization from a 3D Seismic Dataset in the Eastern Deepwater Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2017-10-26

    The presence of a gas hydrate petroleum system and seismic attributes derived from 3D seismic data are used for the identification and characterization of gas hydrate deposits in the deepwater eastern Gulf of Mexico. In the central deepwater Gulf of Mexico (GoM), logging while drilling (LWD) data provided insight to the amplitude response of gas hydrate saturation in sands, which could be used to characterize complex gas hydrate deposits in other sandy deposits. In this study, a large 3D seismic data set from equivalent and distal Plio-Pleistocene sandy channel deposits in the deepwater eastern Gulf of Mexico is screened for direct hydrocarbon indicators for gas hydrate saturated sands.

  17. Northern gas fields and NGH technology. A feasibility study to develop natural gas hydrate technology for the international gas markets; Nordlige gassfelt and NGH-teknologi. En studie av muligheter for utvikling av naturgasshydratteknologi for det internasjonale gassmarked

    Energy Technology Data Exchange (ETDEWEB)

    Ramsland, Trond Ragnvald; Loy, Erik F.; Doesen, Sturle

    1997-12-31

    Two natural gas fields have been studied for three different technological solutions using two different economic theories. The aim was to examine whether a new technology for transporting natural gas, Natural Gas Hydrates (NGH), can compete with the existing technologies pipeline and Liquefied Natural Gas (LNG). Natural gas can rarely be used immediately after production and the supply systems can be divided into four interrelated parts: 1) Exploration. 2) Development and production. 3) Transportation. 4) Distribution. The emphasis in the study is on production costs and transportation. Exploration is assumed carried out and thus viewed sunk cost. Distribution from landing point to consumers is not part of the study. Production can take place either onshore or offshore, the natural gas can be transported to the market either by pipeline or ship and the costs are becoming more important as the distance from the fields to the markets increase. Natural gas projects have long lead times and large capital requirements. New supplies will materialise then if there is confidence that demand for the gas exists at a profitable price. Therefore natural gas is generally sold on long term contracts. The conclusions are that economies of scale exist and that pipeline is the superior technology for high volumes but cannot compete for smaller volumes where the LNG technology has been the best alternative. However, the report concludes that the NGH can compete fully. The distance to the market where the natural gas is to be transported is crucial for choice of transportation mode. The shipping modes are superior for long transportation distances. NGH is superior to LNG also with regards to distance. Despite that the two economic models used for the evaluation have provided very different absolute project values, they have provided the same conclusions about the ranking of the different technologies. It is clear then that if NGH technology is developed further into a reliable and

  18. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

    Energy Technology Data Exchange (ETDEWEB)

    Retamal, María J., E-mail: moretama@uc.cl; Cisternas, Marcelo A.; Seifert, Birger; Volkmann, Ulrich G. [Instituto de Física, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, 7820436 Santiago (Chile); Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, 7820436 Santiago (Chile); Gutierrez-Maldonado, Sebastian E.; Perez-Acle, Tomas [Computational Biology Lab (DLab), Fundación Ciencia y Vida, Av. Zañartu 1482, Santiago (Chile); Centro Interdisciplinario de Neurociencias de Valparaiso (CINV), Universidad de Valparaiso, Pasaje Harrington 287, Valparaiso (Chile); Busch, Mark; Huber, Patrick [Institute of Materials Physics and Technology, Hamburg University of Technology (TUHH), D-21073 Hamburg-Harburg (Germany)

    2014-09-14

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (∼25 Å) and DPPC (∼60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

  19. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

    Science.gov (United States)

    Retamal, María J.; Cisternas, Marcelo A.; Gutierrez-Maldonado, Sebastian E.; Perez-Acle, Tomas; Seifert, Birger; Busch, Mark; Huber, Patrick; Volkmann, Ulrich G.

    2014-09-01

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (˜25 Å) and DPPC (˜60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

  20. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

    International Nuclear Information System (INIS)

    Retamal, María J.; Cisternas, Marcelo A.; Seifert, Birger; Volkmann, Ulrich G.; Gutierrez-Maldonado, Sebastian E.; Perez-Acle, Tomas; Busch, Mark; Huber, Patrick

    2014-01-01

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (∼25 Å) and DPPC (∼60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer

  1. Frozen heat: Global outlook on methane gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, Yannick; Solgaard, Anne

    2010-09-15

    The United Nations Environment Programme via its collaborating center in Norway, UNEP/GRID-Arendal, is undertaking an assessment of the state of the knowledge of methane gas hydrates. The Global Outlook on Methane Gas Hydrates seeks to bridge the gap between the science, research and development activities related to this potential large scale unconventional source of natural gas and the needs of decision makers and the general public to understand the underlying societal and environmental drivers and impacts. The Outlook aims to provide credible and unbiased information sourced from stakeholders representing the environment, government, industry and society.

  2. Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin

    Science.gov (United States)

    Kumar, Pushpendra; Collett, Timothy S.; Boswell, Ray; Cochran, James R.; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna; Yadav, U.S.

    2014-01-01

    Gas hydrate resource assessments that indicate enormous global volumes of gas present within hydrate accumulations have been one of the primary driving forces behind the growing interest in gas hydrates. Gas hydrate volumetric estimates in recent years have focused on documenting the geologic parameters in the “gas hydrate petroleum system” that control the occurrence of gas hydrates in nature. The primary goals of this report are to review our present understanding of the geologic controls on the occurrence of gas hydrate in the offshore of India and to document the application of the petroleum system approach to the study of gas hydrates.

  3. Effect of changes in seafloor temperature and sea-level on gas hydrate stability

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Pritchett, W. [Science Applications International Corp., San Diego, CA (United States)

    2008-07-01

    Natural gas hydrates occur in oceanic sediments and in permafrost regions around the world. As a greenhouse gas, large amounts of methane released from the global hydrate reservoir would have a significant impact on Earth's climate. The role of methane released by hydrate dissociation in climate change is uncertain. However, changes in global climate such as glaciation and warming can destabilize the hydrates. During the last glacial maximum, the sea level dropped about 100 meters. It has been suggested that the sea-level fall was associated with gas hydrate instability and seafloor slumping. This paper investigated the effect of changes in seafloor temperature and sea level on gas hydrate stability and on gas venting at the seafloor. A one-dimensional numerical computer model (simulator) was developed to describe methane hydrate formation, decomposition, reformation, and distribution with depth below the seafloor in the marine environment. The simulator was utilized to model hydrate distributions at two sites, notably Blake Ridge, located offshore South Carolina and Hydrate Ridge, located off the coast of Oregon. The numerical models for the two sites were conditioned by matching the sulfate, chlorinity, and hydrate distribution measurements. The effect of changes in seafloor temperature and sea-level on gas hydrate stability were then investigated. It was concluded that for Blake Ridge, changes in hydrate concentration were small. Both the changes in seafloor temperature and sea-level led to a substantial increase in gas venting at the seafloor for Hydrate Ridge. 17 refs., 8 figs.

  4. Handling of natural occurring radioactive deposits in the oil and gas industry in Norway, United Kingdom and the Netherlands

    International Nuclear Information System (INIS)

    Lysebo, I.; Tufto, P.

    1999-03-01

    Deposits containing naturally occurring radioactive materials is an increasing problem in oil and gas production. Laws and regulations in this area is under preparation, and it is a wish for harmonization with the other oil and gas producing countries in the North Sea. The report gives an overview of amounts of waste and activity levels, decontamination methods and waste handling in Norway, Great Britain and the Netherlands

  5. Broadband Seismic Studies at the Mallik Gas Hydrate Research Well

    Science.gov (United States)

    Sun, L. F.; Huang, J.; Lyons-Thomas, P.; Qian, W.; Milkereit, B.; Schmitt, D. R.

    2005-12-01

    The JAPEX/JNOC/GSC et al. Mallik 3L-38, 4L-38 and 5L-38 scientific wells were drilled in the MacKenzie Delta, NWT, Canada in early 2002 primarily for carrying out initial tests of the feasibility of producing methane gas from the large gas hydrate deposits there [1]. As part of this study, high resolution seismic profiles, a pseudo-3D single fold seismic volume and broadband (8~180Hz) multi-offset vertical seismic profiles (VSP) were acquired at the Mallik site. Here, we provide details on the acquisition program, present the results of the 2D field profile, and discuss the potential implications of these observations for the structure of the permafrost and gas hydrate zones. These zones have long been problematic in seismic imaging due to the lateral heterogeneities. Conventional seismic data processing usually assume a stratified, weak-contrast elastic earth model. However, in permafrost and gas hydrate zones this approximation often becomes invalid. This leads to seismic wave scattering caused by multi-scale perturbation of elastic properties. A 3D viscoelastic finite difference modeling algorithm was employed to simulate wave propagation in a medium with strong contrast. Parameters in this modeling analysis are based on the borehole geophysical log data. In addition, an uncorrelated Vibroseis VSP data set was studied to investigate frequency-dependent absorption and velocity dispersion. Our results indicate that scattering and velocity dispersion are important for a better understanding of attenuation mechanisms in heterogeneous permafrost and gas hydrate zones. [1] Dallimore, S.R., Collett, T.S., Uchida, T., and Weber, M., 2005, Overview of the science program for the Mallik 2002 Gas Hydrate Production Research Well Program; in Scientific Results from Mallik 2002 Gas Hydrate production Research Well Program, MacKenzie Delta, Northwest Territories, Canada, (ed.) S.R. Dallimore and T.S. Collett; Geological Survey of Canada, Bulletin 585, in press.

  6. Free energy landscape and molecular pathways of gas hydrate nucleation

    International Nuclear Information System (INIS)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-01-01

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  7. Free energy landscape and molecular pathways of gas hydrate nucleation.

    Science.gov (United States)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  8. Free energy landscape and molecular pathways of gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu, E-mail: tsli@gwu.edu [Department of Civil and Environmental Engineering, George Washington University, Washington DC 20052 (United States)

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p{sub B} histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p{sub B} histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  9. Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania (Black Sea)

    Science.gov (United States)

    Riboulot, V.; Cattaneo, A.; Sultan, N.; Ker, S.; Scalabrin, C.; Gaillot, A.; Jouet, G.; Marsset, B.; Thomas, Y.; Ballas, G.; Marsset, T.; Garziglia, S.; Ruffine, L.; Boulart, C.

    2016-12-01

    The Romanian sector of the Black Sea deserves attention because the Danube deep-sea fan is one of the largest sediment depositional systems worldwide and is considered the world's most isolated sea, the largest anoxic water body on the planet and a unique energy-rich sea. Due to the high sediment accumulation rate, presence of organic matter and anoxic conditions, the Black sea sediment offshore the Danube delta is rich in gas and thus show BSR. The cartography of the BSR over the last 20 years, exhibits its widespread occurrence, indicative of extensive development of hydrate accumulations and a huge gas hydrate potential. By combining old and new datasets acquired in 2015 during the GHASS expedition, we performed a geomorphological analysis of the continental slope north-east of the Danube canyon that reveals the presence of several landslides inside and outside several canyons incising the seafloor. It is a complex study area presenting sedimentary processes such as seafloor erosion and instability, mass wasting, formation of gas hydrates, fluid migration, gas escape, where the imprint of geomorphology seems to dictate the location where gas seep occurs. . Some 1409 gas seeps within the water column acoustic records are observed between 200 m and 800 m water depth. No gas flares were detected in deeper areas where gas hydrates are stable. Overall, 93% of the all gas seeps observed are above geomorphological structures. 78% are right above escarpment induced by sedimentary destabilizations inside or outside canyons. The results suggest a geomorphological control of degassing at the seafloor and gas seeps are thus constrained by the gas hydrates stability zone. The stability of the gas hydrates is dependent on the salinity gradient through the sedimentary column and thus on the Black Sea recent geological history. The extent and the dynamics of gas hydrates have a probable impact on the sedimentary destabilization observed at the seafloor.

  10. Study on gas hydrate as a new energy resource in the twenty first century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byung Jae; Kim, Won Sik; Oh, Jae Ho [Korea Institute of Geology Mining and Materials, Taejon (Korea)] [and others

    1998-12-01

    Methane hydrate, a special type of clathrate hydrates, is a metastable solid compound mainly consisted of methane and water and generally called as gas hydrate. It is stable in the specific low- temperature/high-pressure conditions. Very large amount of methane that is the main component of natural gas, is accumulated in the form of methane hydrate subaquatic areas. Methane hydrate are the major reservoir of methane on the earth. On the other hand, the development and transmission through pipeline of oil and natural gas in the permafrost and deep subaquatic regions are significantly complicated by formation and dissociation of methane hydrate. The dissociation of natural methane hydrates caused by increasing temperature and decreasing pressure could cause the atmospheric pollution and geohazard. The formation, stable existence and dissociation of natural methane hydrates depend on the temperature, pressure, and composition of gas and characteristics of the interstitial waters. For the study on geophysical and geological conditions for the methane hydrate accumulation and to find BSR in the East Sea, Korea, the geophysical surveys using air-gun system, multibeam echo sounder, SBP were implemented in last September. The water temperature data vs. depth were obtained to determine the methane hydrate stability zone in the study area. The experimental equilibrium condition of methane hydrate was also measured in 3 wt.% sodium chloride solution. The relationship between Methane hydrate formation time and overpressure was analyzed through the laboratory work. (author). 49 refs., 6 tabs., 26 figs.

  11. The formation of gas hydrates and the effect of inhibitiors on their ...

    African Journals Online (AJOL)

    Natural gas hydrate is a solid crystalline compound produced by combining water and gas and it is considered as the clathrates. Guest gas molecules are stuck insider the pores of water networks produced by hydrogen bonds between molecules of water. There are different ways to analyze the hydrate formation operating ...

  12. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    Directory of Open Access Journals (Sweden)

    Qingbai Wu

    2013-03-01

    Full Text Available The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on water transfer to the hydrate surfaces with lower Gibbs free energy after nucleation. Significant differences in the reactions in the two types of media arose from differences in the water retention capacity and lithology of media due to the internal surface area and pore size distributions. Compared with methane hydrate formation in silica gel, the reaction in loess was much slower and formed far less methane hydrate. The results of this study will advance the understanding of how the properties of the environment affect the formation of gas hydrates in nature.

  13. Results of analyzing natural gas during the use of biochemical processes in a petroleum deposit

    Energy Technology Data Exchange (ETDEWEB)

    Yulbarisov, E M

    1972-01-01

    Laboratory and commercial scale experiments with a geobioreagent and the Arlanskii deposit petroleum gave a sharp increase in the content of heavier hydrocarbons, nitrogen, and carbon dioxide in the gas and an increase in the yield of gasoline fraction boiling below 122/sup 0/C. The commercial scale experiments were done in a stratum 1200 m deep during waterflood recovery at 200 kg/cm/sup 2/. A substantial increase in ethane and higher hydrocarbons in the gas and increased petroleum yield were observed, especially after each waterflood. The effect of water was explained by higher activity of the bacteria at a lower concentration of rock salts.

  14. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  15. Permafrost-associated gas hydrates of Northern Alaska: A possible source of atmospheric methane

    International Nuclear Information System (INIS)

    Collett, T.S.

    1991-01-01

    Numerous researchers have suggested that destabilized gas hydrates may be contributing to this buildup in atmospheric methane. Little is known about the geologic or geochemical nature of gas hydrates, even though they are known to occur in numerous arctic sedimentary basins. Because of the abundance of available geologic data, the author's research has focused on assessing the distribution of gas hydrates within the onshore regions of northern Alaska; currently, onshore permafrost-associated gas hydrates are believed to be insulated from most atmospheric temperature changes and are not at this time an important source of atmospheric methane. Their onshore gas hydrate studies, however, can be used to develop geologic analogs for potential gas hydrate occurrences within unexplored areas, such as the thermally unstable nearshore continental shelf. On the North Slope, gas hydrates have been identified in 36 industry wells by using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by an oil company. Most gas hydrates they identified occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. Stable carbon isotope geochemical analysis of well cuttings suggests that the identified hydrates originated from a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. They postulate that the thermogenic gas migrated from deeper reservoirs along the faults thought to be migration pathways for the large volumes of shallow, heavy oil found in the same area

  16. Marine Gas Hydrates - An Untapped Non-conventional Energy ...

    Indian Academy of Sciences (India)

    Table of contents. Marine Gas Hydrates - An Untapped Non-conventional Energy Resource · Slide 2 · Slide 3 · Slide 4 · Gas Hydrate Stability Zone · Slide 6 · Slide 7 · Exploration of gas hydrates (seismic) · Characteristics of BSR · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Distribution of Gas Hydrates in KG ...

  17. Permafrost-associated gas hydrate: is it really approximately 1% of the global system?

    Science.gov (United States)

    Ruppel, Carolyn

    2015-01-01

    Permafrost-associated gas hydrates are often assumed to contain ∼1 % of the global gas-in-place in gas hydrates based on a study26 published over three decades ago. As knowledge of permafrost-associated gas hydrates has grown, it has become clear that many permafrost-associated gas hydrates are inextricably linked to an associated conventional petroleum system, and that their formation history (trapping of migrated gas in situ during Pleistocene cooling) is consistent with having been sourced at least partially in nearby thermogenic gas deposits. Using modern data sets that constrain the distribution of continuous permafrost onshore5 and subsea permafrost on circum-Arctic Ocean continental shelves offshore and that estimate undiscovered conventional gas within arctic assessment units,16 the done here reveals where permafrost-associated gas hydrates are most likely to occur, concluding that Arctic Alaska and the West Siberian Basin are the best prospects. A conservative estimate is that 20 Gt C (2.7·1013 kg CH4) may be sequestered in permafrost-associated gas hydrates if methane were the only hydrate-former. This value is slightly more than 1 % of modern estimates (corresponding to 1600 Gt C to 1800 Gt C2,22) for global gas-in-place in methane hydrates and about double the absolute estimate (11.2 Gt C) made in 1981.26

  18. Experimental hydrate formation and gas production scenarios based on CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.C.; Howard, J.J. [ConocoPhillips, Bartlesville, OK (United States). Reservoir Laboratories; Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States); Ersland, G.; Husebo, J.; Graue, A. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology

    2008-07-01

    Gas hydrate production strategies have focused on depressurization or thermal stimulation of the reservoir, which in turn leads to hydrate dissociation. In order to evaluate potential production scenarios, the recovery efficiency of the natural gas from hydrate must be known along with the corresponding amounts of produced water. This study focused on the exchange of carbon dioxide (CO{sub 2}) with the natural gas hydrate and the subsequent release of free methane (CH{sub 4}). Laboratory experiments that investigated the rates and mechanisms of hydrate formation in coarse-grained porous media have shown the significance of initial water saturation and salinity on forming methane hydrates. Many of the experiments were performed in a sample holder fitted with an MRI instrument for monitoring hydrate formation. Hydrate-saturated samples were subjected to different procedures to release methane. The rates and efficiency of the exchange process were reproducible over a series of initial conditions. The exchange process was rapid and efficient in that no free water was observed in the core with MRI measurements. Injection of CO{sub 2} into the whole-core hydrate-saturated pore system resulted in methane production at the outlet end. Permeability measurements on these hydrate saturated cores during hydrate formation decreased to low values, but enough for gas transport. The lower permeability values remained constant during the methane-carbon dioxide exchange process in the hydrate structure. 12 refs., 9 figs.

  19. Gas geochemistry studies at the gas hydrate occurrence in the permafrost environment of Mallik (NWT, Canada)

    Science.gov (United States)

    Wiersberg, T.; Erzinger, J.; Zimmer, M.; Schicks, J.; Dahms, E.; Mallik Working Group

    2003-04-01

    We present real-time mud gas monitoring data as well as results of noble gas and isotope investigations from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. Mud gas monitoring (extraction of gas dissolved in the drill mud followed by real-time analysis) revealed more or less complete gas depth profiles of Mallik 4L-38 and Mallik 5L-38 wells for N_2, O_2, Ar, He, CO_2, H_2, CH_4, C_2H_6, C_3H_8, C_4H10, and 222Rn; both wells are approx. 1150 m deep. Based on the molecular and and isotopic composition, hydrocarbons occurring at shallow depth (down to ˜400 m) are mostly of microbial origin. Below 400 m, the gas wetness parameter (CH_4/(C_2H_6 + C_3H_8)) and isotopes indicate mixing with thermogenic gas. Gas accumulation at the base of permafrost (˜650 m) as well as δ13C and helium isotopic data implies that the permafrost inhibits gas flux from below. Gas hydrate occurrence at Mallik is known in a depth between ˜890 m and 1100 m. The upper section of the hydrate bearing zone (890 m--920 m) consists predominantly of methane bearing gas hydrates. Between 920 m and 1050 m, concentration of C_2H_6, C_3H_8, and C_4H10 increases due to the occurrence of organic rich sediment layers. Below that interval, the gas composition is similar to the upper section of the hydrate zone. At the base of the hydrate bearing zone (˜1100 m), elevated helium and methane concentrations and their isotopic composition leads to the assumption that gas hydrates act as a barrier for gas migration from below. In mud gas

  20. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  1. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  2. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  3. Ultrasonic experiment on hydrate formation of a synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shicai; Fan, Shuanshi; Liang, Deqing; Zhang, Junshe; Feng, Ziping

    2005-07-01

    The effect of ultrasonic on the induction time and formation rate of natural gas hydrates was investigated in a stainless steel cell in this study. The results show that the induction time with ultrasonic was about 1/6 of that without ultrasonic and only about 1/10 if rehydration after decomposition in water-gas system. In sodium dodecyl sulfate (SDS) solution-gas system, the critical micellar concentration (CMC) was not identified with ultrasonic. The formation rate and storage capacity of hydrate increased with increasing SDS concentration at a range of 0 to 800ppm. However, the increase was insignificant as the SDS concentration increased from 600 to 800ppm, (Author)

  4. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface

    Science.gov (United States)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2018-04-01

    We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

  5. Detailed evaluation of gas hydrate reservoir properties using JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well downhole well-log displays

    Science.gov (United States)

    Collett, T.S.

    1999-01-01

    The JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well project was designed to investigate the occurrence of in situ natural gas hydrate in the Mallik area of the Mackenzie Delta of Canada. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas-hydrate-bearing sediments. Downhole logging tool strings deployed in the Mallik 2L-38 well included the Schlumberger Platform Express with a high resolution laterolog, Array Induction Imager Tool, Dipole Shear Sonic Imager, and a Fullbore Formation Microlmager. The downhole log data obtained from the log- and core-inferred gas-hydrate-bearing sedimentary interval (897.25-1109.5 m log depth) in the Mallik 2L-38 well is depicted in a series of well displays. Also shown are numerous reservoir parameters, including gas hydrate saturation and sediment porosity log traces, calculated from available downhole well-log and core data. The gas hydrate accumulation delineated by the Mallik 2L-38 well has been determined to contain as much as 4.15109 m3 of gas in the 1 km2 area surrounding the drill site.

  6. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  7. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    McDonnell, S.L.; Cherkis, N.Z.; Czarnecki, M.F. [Naval Research Lab., Washington, DC (United States); Max, M.D. [MDS Research, Washington, DC (United States)

    2000-09-01

    Marine sediments on the continental slope of the NE South China Sea have appropriate thickness, methane-generating potential, and occur in a suitable pressure-temperature regime to host gas hydrate. Evidence for gas hydrate, the bottom simulating reflector (BSR), is observed to the south of Taiwan on reflection seismic records, and can be used to suggest that gas hydrates are widely distributed. The tectono-sedimentary framework south of Taiwan bears directly upon methane generation and the likelihood of the presence of significant gas hydrate deposits. Three zones of probable hydrate occurrence have been delineated along the margins of the NE South China Sea: (1) in a thick accumulation of sediment along the northern passive margin; (2) along a more thinly sedimented eastern active collisional margin, and especially; (3) in a zone of thick originally passive margin sedimentation into which the collisional margin has encroached obliquely. (author)

  8. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS

    Science.gov (United States)

    Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua

    2018-02-01

    Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.

  9. Introduction of the 2007-2008 JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Research Program, NWT, Canada

    Science.gov (United States)

    Yamamoto, K.; Dallimore, S. R.; Numasawa, M.; Yasuda, M.; Fujii, T.; Fujii, K.; Wright, J.; Nixon, F.

    2007-12-01

    Japan Oil, Gas and Metals National Corporation (JOGMEC) and Natural Resource Canada (NRCan) have embarked on a new research program to study the production potential of gas hydrates. The program is being carried out at the Mallik gas hydrate field in the Mackenzie Delta, a location where two previous scientific investigations have been carried in 1998 and 2002. In the 2002 program that was undertaken by seven partners from five countries, 468m3 of gas flow was measured during 124 hours of thermal stimulation using hot warm fluid. Small-scale pressure drawdown tests were also carried out using Schlumberger's Modular Dynamics Tester (MDT) wireline tool, gas flow was observed and the inferred formation permeabilities suggested the possible effectiveness of the simple depressurization method. While the testing undertaken in 2002 can be cited as the first well constrained gas production from a gas hydrate deposit, the results fell short of that required to fully calibrate reservoir simulation models or indeed establish the technical viability of long term production from gas hydrates. The objectives of the current JOGMEC/NRCan/Aurora Mallik production research program are to undertake longer term production testing to further constrain the scientific unknowns and to demonstrate the technical feasibility of sustained gas hydrate production using the depressurization method. A key priority is to accurately measure water and gas production using state-of-art production technologies. The primary production test well was established during the 2007 field season with the re-entry and deepening of JAPEX/JNOC/GSC Mallik 2L-38 well, originally drilled in 1998. Production testing was carried out in April of 2007 under a relatively low drawdown pressure condition. Flow of methane gas was measured from a 12m perforated interval of gas-hydrate-saturated sands from 1093 to 1105m. The results establish the potential of the depressurization method and provide a basis for future

  10. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  11. Short- and Long-Term Dynamics of Gas Hydrate at GC600: A Gulf of Mexico Hydrocarbon Seep

    Science.gov (United States)

    MacDonald, I. R.; Johansen, C.; Silva, M.; Daneshgar, S.; Garcia-Pineda, O. G.; Shedd, W. W.

    2014-12-01

    The GC600 hydrocarbon seep is located at 1200 m in the northern Gulf of Mexico (GOM). Satellite data show it to be one of the most prolific sources of natural oil slicks in the entire GOM. We mapped its seafloor oil and gas vents with 3-D seismic, swath-bathymetry acoustics and submersible observations, documenting gas hydrate deposits, brine pools, benthic fauna, and authigenic carbonates. Geophysical profiles show subbottom locations of salt bodies and migration conduits. We deployed time-lapse imaging systems focused on individual vents to quantify release rates. Oil and gas flow upward along the flanks of an allochthonous salt body from source rocks at 10,000 m and migrate to the seafloor from faults emanating from the salt. Venting to the water column and surface consists of oily bubbles and occurs in two fields separated by ~1 km. The NW vent field (Megaplume) appears to be a more recent expression and hosts about three highly active vents; while the SE vent field (Birthday Candles) hosts more than 10 vents that are generally slower. We measured discharge rates of 2.6 cm3 s-1 and Megaplume and 0.09 cm3 s-1 at Birthday Candles. Although surface deposits of gas hydrate were evident at both vent fields, the Birthday Candles area featured dozens of conical mounds formed by gas hydrate that were dark brown due to large amounts of liquid oil perfused throughout the deposits. Large brine pools indicated gas hydrate formation at the seafloor. Venting occurred in horizontal fissures on the mounds, in which oil and hydrate combined to form short-lived chimneys and balloon-like structures. Ice worms (Hesiocaeca methanicola) were extremely abundant in burrows extending from the sediment into the gas hydrate. Proceeding farther to the SE, venting is reduced and absent, but surface carbonate deposits suggest relict gas hydrate mounds. We propose that the NW to SE trend at GC600 encompasses the progressive development of a biogeochemical filter that sequesters and

  12. Geomechanical, Hydraulic and Thermal Characteristics of Deep Oceanic Sandy Sediments Recovered during the Second Ulleung Basin Gas Hydrate Expedition

    Directory of Open Access Journals (Sweden)

    Yohan Cha

    2016-09-01

    Full Text Available This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21%, 1.3% and 77.7%, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state friction angle under drained conditions were ~26° and ~22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ~1.4–1.6 to ~0.5–0.7 W·m−1·K−1 was observed when water saturation decreased from 100% to ~10%–20%. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions

  13. Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough, Japan

    Science.gov (United States)

    Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.

    2013-12-01

    Effective and absolute permeability are key parameters for gas production from methane-hydrate-bearing sandy sediments. Effective and/or absolute permeability have been measured using methane-hydrate-bearing sandy cores and clayey and silty cores recovered from Daini Atsumi Knoll in the Eastern Nankai Trough during the 2012 JOGMEC/JAPEX Pressure coring operation. Liquid-nitrogen-immersed cores were prepared by rapid depressurization of pressure cores recovered by a pressure coring system referred to as the Hybrid PCS. Cores were shaped cylindrically on a lathe with spraying of liquid nitrogen to prevent hydrate dissociation. Permeability was measured by a flooding test or a pressure relaxation method under near in-situ pressure and temperature conditions. Measured effective permeability of hydrate-bearing sediments is less than tens of md, which are order of magnitude less than absolute permeability. Absolute permeability of clayey cores is approximately tens of μd, which would perform a sealing function as cap rocks. Permeability reduction due to a swelling effect was observed for a silty core during flooding test of pure water mimicking hydrate-dissociation-water. Swelling effect may cause production formation damage especially at a later stage of gas production from methane hydrate deposits. This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).

  14. Dissociation heat of mixed-gas hydrate composed of methane and ethane

    Energy Technology Data Exchange (ETDEWEB)

    Hachikubo, A.; Nakagawa, R.; Kubota, D.; Sakagami, H.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan)

    2008-07-01

    Formation and dissociation processes of natural gas hydrates in permafrost, marine and lake sediments are highly controlled by their thermal properties. Dissociation heat of gas hydrates can be estimated from phase equilibrium data using the Clausius-Clapeyron equation. However, this method is applicable for pure gas hydrate and at a temperature of 0 degrees Celsius. Direct calorimetric measurements on gas hydrates using a calorimeter have been developed to obtain thermal properties of gas hydrates, including dissociation heat and heat capacity. Studies have shown that a structure 2 gas hydrate appears in appropriate gas composition of methane and ethane. This paper investigated the effect of ethane concentration on dissociation heat of mixed-gas (methane and ethane) hydrate. Raman spectroscopy was used to confirm the appearance of a structure 2 gas hydrate. The paper identified the experimental procedure and discussed sample preparation, Raman spectroscopy, and calorimetric measurements. A schematic diagram of the calorimeter was also presented. It was concluded that in most cases, two stages of dissociation were found at the dissociation process. 15 refs., 6 figs.

  15. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space

    Science.gov (United States)

    Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.

    2018-02-01

    Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.

  16. Numerical simulation studies of gas production scenarios from hydrate accumulations at the Mallik Site, McKenzie Delta, Canada

    International Nuclear Information System (INIS)

    Moridis, George J.; Collett, Timothy S.; Dallimore, Scott R.; Satoh, Tohru; Hancock, Stephen; Weatherill, Brian

    2002-01-01

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. An 1150 m deep gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from several gas-hydrate-bearing zones at the Mallik site. The TOUGH2 general-purpose simulator with the EOSHYDR2 module were used for the analysis. EOSHYDR2 is designed to model the non-isothermal CH(sub 4) (methane) release, phase behavior and flow under conditions typical of methane-hydrate deposits by solving the coupled equations of mass and heat balance, and can describe any combination of gas hydrate dissociation mechanisms. Numerical simulations indicated that significant gas hydrate production at the Mallik site was possible by drawing down the pressure on a thin free-gas zone at the base of the hydrate stability field. Gas hydrate zones with underlying aquifers yielded significant gas production entirely from dissociated gas hydrate, but large amounts of produced water. Lithologically isolated gas-hydrate-bearing reservoirs with no underlying free gas or water zones, and gas-hydrate saturations of at least 50% were also studied. In these cases, it was assumed that thermal stimulation by circulating hot water in the well was the method used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increases with gas-hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the rock and hydrate specific heat and permeability of the formation

  17. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  18. Molecular analysis of petroleum derived compounds that adsorb onto gas hydrate surfaces

    International Nuclear Information System (INIS)

    Borgund, Anna E.; Hoiland, Sylvi; Barth, Tanja; Fotland, Per; Askvik, Kjell M.

    2009-01-01

    Field observations have shown that some streams of water, gas and crude oil do not form gas hydrate plugs during petroleum production even when operating within thermodynamic conditions for hydrate formation. Also, when studied under controlled laboratory conditions, some oils are found to form hydrate dispersed systems whereas others form plugs. Oils with low tendency to form hydrate plugs are believed to contain natural hydrate plug inhibiting components (NICs) that adsorb onto the hydrate surface, making them less water-wet and preventing the particles from agglomerating into large hydrate clusters. The molecular structure of the NICs is currently unknown. In this work, hydrate adsorbing components were extracted from crude oils using freon hydrates as an extraction phase. The fractions were found to be enriched in polar material, and more polar material is associated with hydrates generated in biodegraded crude oils than in non-biodegraded oils. Various fractionation schemes and analytical techniques have been applied in the search for molecular characterisation. The average molecular weights were found to be approximately 500 g/mole. GC-MS chromatograms show a large UCM (Unresolved Complex Mixture). Thus, GC-MS has a limited potential for identification of compounds. A commercial biosurfactant was used as a model compound in the search for similar structures in the extracts. The results from analysis of the hydrate adsorbing components suggest that the type and structure are more important for hydrate morphology than the amount of material adsorbed.

  19. Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues

    DEFF Research Database (Denmark)

    Perfeldt, Christine Malmos; Sharifi, Hassan; von Solms, Nicolas

    2015-01-01

    Gas hydrate deposition can cause plugging in oil and gas pipelines with resultant flow assurance challenges. Presently, the energy industry uses chemical additives in order to manage hydrate formation, however these chemicals are expensive and may be associated with safety and environmental...... concerns. Here we show the effect of a hydrophobically coated surface on hydrate formation in the presence of an antifreeze protein type I (AFP I) and a biodegradable synthetic polymer (LuvicapBio) in a high pressure crystallizer setup. The hydrophobic surface increased the hydrate induction time...... crystallizer. This indicates that 10 to 14 times less KHI is needed in the presence of a hydrophobically coated surface. These experimental studies suggest that the use of hydrophobic surfaces or pipelines could serve as an alternative or additional flow assurance approach for gas hydration mitigation...

  20. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data

    Science.gov (United States)

    Kumar, Dhananjay; Sen, Mrinal K.; Bangs, Nathan L.

    2007-12-01

    A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.

  1. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  2. The economics of exploiting gas hydrates

    International Nuclear Information System (INIS)

    Döpke, Lena-Katharina; Requate, Till

    2014-01-01

    We investigate the optimal exploitation of methane hydrates, a recent discovery of methane resources under the sea floor, mainly located along the continental margins. Combustion of methane (releasing CO2) and leakage through blow-outs (releasing CH4) contribute to the accumulation of greenhouse gases. A second externality arises since removing solid gas hydrates from the sea bottom destabilizes continental margins and thus increases the risk of marine earthquakes. We show that in such a model three regimes can occur: i) resource exploitation will be stopped in finite time, and some of the resource will stay in situ, ii) the resource will be used up completely in finite time, and iii) the resource will be exhausted in infinite time. We also show how to internalize the externalities by policy instruments. - Highlights: • We set up a model of optimal has hydrate exploitation • We incorporate to types of damages: contribution to global warming and geo-hazards • We characterize optimal exploitation paths and study decentralization with an exploitation tax. • Three regimes can occur: • i) exploitation in finite time and some of the stock remaining in situ, • ii) exploitation in finite time and the resource will be exhausted, • iii) exploitation and exhaustion in infinite time

  3. Overview of the science activities for the 2002 Mallik gas hydrate production research well program, Mackenzie Delta, N.W.T., Canada

    Science.gov (United States)

    Dallimore, S. R.; Collett, T. S.; Uchida, T.; Weber, M.

    2003-04-01

    With the completion of scientific studies undertaken as part of the 1998 Mallik 2L-38 gas hydrate research well, an international research site was established for the study of Arctic natural gas hydrates in the Mackenzie Delta of northwestern Canada. Quantitative well log analysis and core studies reveal multiple gas hydrate layers from 890 m to 1106 m depth, exceeding 110 m in total thickness. High gas hydrate saturation values, which in some cases exceed 80% of the pore volume, establish the Mallik gas hydrate field as one of the most concentrated gas hydrate reservoirs in the world. Beginning in December 2001 and continuing to the middle of March 2002, two 1188 m deep science observation wells were drilled and instrumented and a 1166 m deep production research well program was carried out. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. In addition the project has been accepted as part of the International Scientific Continental Drilling Program. The Geological Survey of Canada is coordinating the science program for the project and JAPEX Canada Ltd. acted as the designated operator for the fieldwork. Primary objectives of the research program are to advance fundamental geological, geophysical and geochemical studies of the Mallik gas hydrate field and to undertake advanced production testing of a concentrated gas hydrate reservoir. Full-scale field experiments in the production well monitored the physical behavior of the hydrate deposits in response to depressurization and thermal stimulation. The observation wells facilitated cross-hole tomography and vertical seismic profile experiments (before and after production) as well as

  4. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  5. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    Science.gov (United States)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  6. The natural and artificial hydration of a bentonite engineered barrier system in a full-scale KBS-3V mock-up; results from the first 7 years of the large scale gas injection test (LASGIT)

    International Nuclear Information System (INIS)

    Cuss, R.J.; Harrington, J.F.; Noy, D.J.; Bennett, D.P.; Sellin, P.

    2012-01-01

    Document available in extended abstract form only. The Large scale gas injection test is a full-scale in situ canister test designed to answer specific questions regarding the movement of gas through bentonite in a mock KBS-3v deposition hole. The test is located at 420 m depth within SKB's Aespoe Hard Rock Laboratory (HRL) in Sweden. The objective of Lasgit is to provide quantitative data to improve process understanding and test/validate modelling approaches which might be used in performance assessment. The deposition hole has a depth of 8.5 m and a diameter of around 1.75 m. A full scale KBS-3 canister has been modified for the Lasgit experiment with thirteen circular filters of varying dimensions located on its surface to provide point sources for gas injection, mimicking potential canister defects. These filters can also be used to inject water during the hydration stage, with hydration also conducted through 4 filter mats within the buffer. The deposition hole, buffer and canister are equipped with instrumentation to measure the total stress, pore water pressure and relative humidity in 32, 26 and 7 positions respectively. Additional instrumentation continually monitors variations in temperature, relative displacement of the lid and the restraining forces on the rock anchors. Groundwater inflow through a number of highly-conductive discrete fractures quickly resulted in elevated pore water pressures in sections of the borehole. This lead to the formation of conductive channels, the extrusion of bentonite from the deposition hole, and the discharge of groundwater to the gallery floor. Artificial hydration began after 106 days of testing. Up until the first gas injection test (day 843), the pressures in all of the canister filters and hydration mats were used to hydrate the clay. Initial attempts to raise pore water pressure in the artificial hydration arrays occasionally resulted in the formation of preferential pathways resulting in localized increases in

  7. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    Science.gov (United States)

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  8. Lectures held at the congress on ``Gas hydrates: problem substance / resource``, organised by the GDMK Division for ``Exploration and Extraction`` and the Institute for Mineral Oil and Natural Gas Research, in Clausthal-Zellerfeld (Harz) on 6/7 November 1997. Author`s manuscripts; Vortraege der Veranstaltung ``Gashydrate: Problemstoff/Resource`` des GDMK-Fachbereichs `Aufsuchung und Gewinnung` und dem Institut fuer Erdoel- und Erdgasforschung am 06. und 07. November 1997 in Clausthal-Zellerfeld (Harz). Autorenmanuskripte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The following topics are dealt with in detail: the chemical and physical properties of gas hydrates as derivable from their phase behaviour; the significance and occurrence of gas hydrates in offshore areas; gas hydrates and permafrost in continental northern West Siberia; information on HYACE, a research project of the European Union on test drilling for gas hydrates in offshore areas; sediment-mechanical criteria of gas hydrate formation in deep-sea sediments; gas hydrate formation in gas cavern storages; the use of hydrate inhibitors in operating natural gas storages; and the inhibition of gas hydrates with kinetic inhibitors. Eight abstracts were abstracted individually for the Energy Database. (MSK) [Deutsch] Folgende Themen werden detailliert behandelt: die chemischen und physikalischen Eigenschaften von Gashydraten,welche aus dem Phasenverhalten der Gashydrate herzuleiten sind; zur Bedeutung und Vorkommen von Gashydraten im Offshore-Bereich; Gashydrate und Permafrost im kontinentalen noerdlichen Westsibirien; Informationen zu HYACE, einem Forschungsprojekt der Europaeischen Union zu Probebohrungen nach Gashydraten im Offshore-Bereich; sedimentmechanische Kriterien bei der Gashydratbildung in Tiefseesedimenten; die Gashydratbildung in Gaskavernenspeichern; der Einsatz von Hydratinhibitoren beim Betrieb von Erdgasspeichern sowie die Inhibierung von Gashydraten mit kinetischen Inhibitoren. Fuer die Datenbank Energy wurden acht Beitraege einzeln aufgenommen.

  9. Disrupting the balance of natural fluid systems during the working of gas condensate deposits. Narushenie ravnovesiya prirodnykh flyuidal'nykh sistem pri razrabotke gazovykh i gazokondensatnykh mestorozhdenii

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V.N.

    1980-01-01

    Natural processes that occur in the ground as a result of almost complete or partial depletion of large gas and gas-condensate deposits are analyzed. Problems concerned with the disruption of the fluid systems equilibrium are examined as represented by interstitial water and industrial gaseous and gas-condensate accumulations. Observations over a period of 20-25 years were made of the depleted deposits of North-Stavropol', Gazlin, and Shebel, whose initial hydrogeological background that serves as the basis of the reference system, has been studied in detail. Information is also presented on recently exploited water-vapor systems, such as the large Vuktyl', Orenburg, Medvezh', and Shatlyk deposits. The book is intended for a broad spectrum of geologists, hydrogeologists, and engineers interested in geology and the working of gas and gas condensate deposits. 36 references, 27 figures, 35 tables.

  10. Seismic Characterization of the Terrebonne Mini-basin, a Hydrate Rich Depositional System in the Gulf of Mexico

    Science.gov (United States)

    Dafov, L. N.; Eze, P. C.; Haines, S. S.; Graham, S. A.; McHargue, T.; Hosford Scheirer, A.

    2017-12-01

    Natural gas bearing hydrates are a focus of research as a potential source of energy and carbon storage because they occur globally in permafrost regions and marine sediment along every continent. This study focuses on the structural and stratigraphic architecture of the Terrebonne mini-basin, northwest Walker Ridge, Gulf of Mexico, to characterize the depositional architecture and to describe possible migration pathways for petroleum. Questions addressed include: a) continuity of sand layers b) effects of faulting and c) ponding versus fill and spill. To address these questions, seven of forty-two high resolution USGS 2D seismic lines were interpreted and then verified with WesternGeco 3D seismic data, yielding three qualitative models for the depositional environment of hydrate-bearing sand intervals. Deeper hydrate-bearing sand reservoirs were deposited as sheet-like turbidite lobes. Two shallower hydrate-bearing intervals display two possible depositional systems which form reservoirs- 1) sandy to muddy channel sealed laterally by muddy levees with associated sandy crevasse splays, and 2) ponded sandy lobes cut by channels filled with sand lags and mud. Additional observations in the 2D seismic include mass transport deposits and possible contourites. Salt movement facilitated mini-basin formation which was then ponded by sediment and followed by episodes of fill-and-spill and erosion. These seismic interpretations indicate periodic salt uplift. Overturn of salt along the northwestern edge of the basin resulted in thrust faults. The faults and erosional surfaces act as seals to reservoirs. The greatest volume of sandy reservoir potential occurs in sheet-like turbidite lobes with high lateral continuity, which facilitates updip migration of deep-sourced thermogenic gas along bedding surfaces. Channel levees serve as lateral seals to gas hydrate reservoirs, whereas faults, erosional surfaces, and shales provide vertical seals. Characterization of the Terrebonne

  11. Global Assessment of Methane Gas Hydrates: Outreach for the public and policy makers

    Science.gov (United States)

    Beaudoin, Yannick

    2010-05-01

    The United Nations Environment Programme (UNEP), via its official collaborating center in Norway, GRID-Arendal, is in the process of implementing a Global Assessment of Methane Gas Hydrates. Global reservoirs of methane gas have long been the topic of scientific discussion both in the realm of environmental issues such as natural forces of climate change and as a potential energy resource for economic development. Of particular interest are the volumes of methane locked away in frozen molecules known as clathrates or hydrates. Our rapidly evolving scientific knowledge and technological development related to methane hydrates makes these formations increasingly prospective to economic development. In addition, global demand for energy continues, and will continue to outpace supply for the foreseeable future, resulting in pressure to expand development activities, with associated concerns about environmental and social impacts. Understanding the intricate links between methane hydrates and 1) natural and anthropogenic contributions to climate change, 2) their role in the carbon cycle (e.g. ocean chemistry) and 3) the environmental and socio-economic impacts of extraction, are key factors in making good decisions that promote sustainable development. As policy makers, environmental organizations and private sector interests seek to forward their respective agendas which tend to be weighted towards applied research, there is a clear and imminent need for a an authoritative source of accessible information on various topics related to methane gas hydrates. The 2008 United Nations Environment Programme Annual Report highlighted methane from the Arctic as an emerging challenge with respect to climate change and other environmental issues. Building upon this foundation, UNEP/GRID-Arendal, in conjunction with experts from national hydrates research groups from Canada, the US, Japan, Germany, Norway, India and Korea, aims to provide a multi-thematic overview of the key

  12. Natural gas trends

    International Nuclear Information System (INIS)

    Anderson, A.

    1991-01-01

    This book provides data on many facets of the natural gas industry. Topics include: Canadian, Mexican; US natural gas reserves and production; Mexican and US natural gas consumption; market conditions for natural gas in the US; and Canadian natural gas exports

  13. Study on gas hydrate as a new energy resource in the 21th century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byeong-Jae; Kwak Young-Hoon; Kim, Won-Sik [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Natural gas hydrate, a special type of clathrate hydrates, is a metastable solid compound which mainly consists of methane and water, and generally called as gas hydrate. It is stable in the specific low-temperature/high-pressure conditions. Gas hydrates play an important role as major reservoir of methane on the earth. On the other hand, the formation and dissociation of gas hydrates could cause the plugging in pipeline, gas kick during production, atmospheric pollution and geohazard. To understand the formation and dissociation of the gas hydrate, the experimental equilibrium conditions of methane hydrate were measured in pure water, 3 wt.% NaCl and MgCl{sub 2} solutions. The equilibrium conditions of propane hydrates were also measured in pure water. The relationship between methane hydrate formation time and overpressure was also analyzed through the laboratory work. The geophysical surveys using air-gun system and multibeam echo sounder were implemented to develop exploration techniques and to evaluate the gas hydrate potential in the East Sea, Korea. General indicators of submarine gas hydrates on seismic data is commonly inferred from the BSR developed parallel to the see floor, amplitude blanking at the upper part of the BSR, and phase reversal and decrease of the interval velocity at BSR. The field data were processed using Geobit 2.9.5 developed by KIGAM to detect the gas hydrate indicators. The accurate velocity analysis was performed by XVA (X-window based Velocity Analysis). Processing results show that the strong reflector occurred parallel to the sea floor were shown at about 1800 ms two way travel time. The interval velocity decrease at this strong reflector and at the reflection phase reversal corresponding to the reflection at the sea floor. Gas hydrate stability field in the study area was determined using the data of measured hydrate equilibrium condition, hydrothermal gradient and geothermal gradient. The depth of BSR detected in the seismic

  14. Experimental investigation of methane release from hydrate formation in sandstone through both hydrate dissociation and CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Stevens, J.; Howard, J.J. [ConocoPhillips, Ponca City, OK (United States); Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States)

    2008-07-01

    Large amounts of natural gas trapped in hydrate reservoirs are found in Arctic regions and in deep offshore locations around the world. Natural gas production from hydrate deposits offer significant potential for future energy needs. However, research is needed in order to propose potential production schemes for natural gas hydrates. Natural gas molecules can be freed from hydrate structured cages by depressurization, by heating and by exposing the hydrate to a substance that will form a thermodynamically more stable hydrate structure. This paper provided a comparison of two approaches for releasing methane from methane hydrate in porous sandstone. The study scope covered the dissociation rate of methane hydrate in porous media through depressurization, and also referred to previous work done on producing methane from hydrates in sandstone while sequestering carbon dioxide (CO{sub 2}). The study was conducted in a laboratory setting. The paper discussed the experimental design which included the placing of a pressure- and temperature-controlled sample holder inside the bore of a magnetic resonance imager. The experimental procedures were then outlined, with reference to hydrate formation; carbon dioxide sequestration; hydrate dissociation experiments with constant volume; and hydrate dissociation experiments at constant pressure. The constant volume experiments demonstrated that in order to dissociate a large amount of hydrate, the initial depressurization had to be significantly lower than the hydrate stability pressure. 9 refs., 9 figs.

  15. Catalysis of gas hydrates by biosurfactants in seawater-saturated sand/clay

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. E.; Kothapalli, C.; Lee, M.S. [Mississippi State University, Swalm School of Chemical Engineering, MS (United States); Woolsey, J. R. [University of Mississippi, Centre of Marine Resources and Environmental Technology, MS (United States)

    2003-10-01

    Large gas hydrate mounds have been photographed in the seabed of the Gulf of Mexico and elsewhere. According to industry experts, the carbon trapped within gas hydrates is two or three times greater than all known crude oil, natural gas and coal reserves in the world. Gas hydrates, which are ice-like solids formed from the hydrogen bonding of water as water temperature is lowered under pressure to entrap a suitable molecular-size gas in cavities of the developing crystal structure, are found below the ocean floor to depths exhibiting temperature and pressure combinations within the appropriate limits. The experiments described in this study attempt to ascertain whether biosurfactant byproducts of microbial activity in seabeds could catalyze gas hydrate formation. Samples of five possible biosurfactants classifications were used in the experiments. Results showed that biosurfactants enhanced hydrate formation rate between 96 per cent and 288 percent, and reduced hydrate induction time 20 per cent to 71 per cent relative to the control. The critical micellar concentration of rhamnolipid/seawater solution was found to be 13 ppm at hydrate-forming conditions. On the basis of these results it was concluded that minimal microbial activity in sea floor sands could achieve the threshold concentration of biosurfactant that would greatly promote hydrate formation. 28 refs., 2 tabs., 4 figs.

  16. A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Varaminian, Farshad

    2013-01-01

    Highlights: • A unified kinetic model for description of promoted and non-promoted gas hydrate formation processes is presented. • Effects of impeller speed, promoter concentration and different kinetic promoters are investigated. • A unique region of gas hydrate formation is identified regarding gas hydrate formation processes. • The proposed model is useful for understanding the behavior of gas hydrate formation processes and design of GTH converters. - Abstract: The kinetic promoters have found wide applications in enhancing the rate of energy conversion and storage via gas hydrate formation processes. Effects of different kinetic promoters such as anionic surfactants sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBSA), and sodium dodecyl benzene sulfonate (SDBS); cationic surfactants, Cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB) and non-ionic surfactants, alkylpolyglucoside (APG), dodecyl polysaccharide glycoside (DPG), TritonX-100 (TX100) on methane (CH 4 ), ethane (C 2 H 6 ) and propane (C 3 H 8 ) gas hydrate formation processes are investigated in this work. A macroscopic kinetic model based on the time variations of reaction chemical potential is also presented for global description of gas hydrate formation processes. Experimental gas hydrate formation data are employed to validate the proposed kinetic model. Effects of promoter’s concentrations and agitation intensities on the gas consumption profiles are also investigated. A universal correlation and a unified kinetic map have been proposed for macroscopic description of gas hydrate formation kinetics in the presence or absence of kinetic promoters. According to the presented unified kinetic map, a unique region of gas hydrate formation is identified for the first time. For negligible amounts of kinetic promoters, the presented region disappears and approaches to a unique path at high agitation intensities. The presented unified approach is

  17. Regional Mapping and Resource Assessment of Shallow Gas Hydrates of Japan Sea - METI Launched 3 Years Project in 2013.

    Science.gov (United States)

    Matsumoto, R.

    2014-12-01

    Agency of Natural Resources and Energy of METI launched a 3 years shallow gas hydrate exploration project in 2013 to make a precise resource assessment of shallow gas hydrates in the eastern margin of Japan Sea and around Hokkaido. Shallow gas hydrates of Japan Sea occur in fine-grained muddy sediments of shallow subsurface of mounds and gas chimneys in the form of massive nodular to platy accumulation. Gas hydrate bearing mounds are often associated with active methane seeps, bacterial mats and carbonate concretions and pavements. Gases of gas hydrates are derived either from deep thermogenic, shallow microbial or from the mixed gases, contrasting with totally microbial deep-seated stratigraphically controlled hydrates. Shallow gas hydrates in Japan Sea have not been considered as energy resource due to its limited distribution in narrow Joetsu basin. However recently academic research surveys have demonstrated regional distribution of gas chimney and hydrate mound in a number of sedimentary basins along the eastern margin of Japan Sea. Regional mapping of gas chimney and hydrate mound by means of MBES and SBP surveys have confirmed that more than 200 gas chimneys exist in 100 km x 100 km area. ROV dives have identified dense accumulation of hydrates on the wall of half collapsed hydrate mound down to 30 mbsf. Sequential LWD and shallow coring campaign in the Summer of 2014, R/V Hakurei, which is equipped with Fugro Seacore R140 drilling rig, drilled through hydrate mounds and gas chimneys down to the BGHS (base of gas hydrate stability) level and successfully recovered massive gas hydrates bearing sediments from several horizons.

  18. Gas hydrate geohazards in shallow sediments and their impact on the design of subsea systems

    Energy Technology Data Exchange (ETDEWEB)

    Peters, D.; Hatton, G. [Shell Global Solutions Inc., Houston, TX (United States); Mehta, A. [Shell Malaysia Exploration and Production, Sarawak (Malaysia); Hadley, C. [Shell Exploration and Production Inc., Houston, TX (United States)

    2008-07-01

    This paper described the challenges that exist in producing gas hydrates in deepwater and Arctic environments as a potential source of methane gas. In order to safely produce hydrocarbon reservoirs far beneath near-mudline hydrates, it is important to understand and manage the geohazard risks associated with wells that pass through hydrate-bearing sediments. Since these wells may produce for decades, the temperature of near-mudline sediments may increase above the hydrate dissociation temperature for hundreds of meters from the well. This can result in the release of large quantities of gas causing a volume change that can impact the subsea system in many ways. As the fluids of an underlying reservoir flow to the mudline, heat carried by the fluids warms nearwell sediments and dissociates hydrates, which releases gas that can displace and fracture near well soil. This gas release may be calculated with numerical simulations that model heat and mass transfer in hydrate-bearing sediments. The model simulations require information on the nature and distribution of hydrates within the sediments, the melting behaviour of the hydrates, the thermal and mechanical properties of these shallow sediments, and the amount of hydrates contained in the sediments. However, this information is costly to acquire and characterize with certainty for an offshore development. Therefore, it is important to understand what information, processes, and calculations are needed in order to ensure safe, robust systems to produce the hydrocarbon reservoirs far below the hydrates. It was concluded that the relation between the quantity of gas released and dissociated gas quantities must be well understood. The hydrate concentration is a critical reservoir parameter for reservoirs with severe geohazard risk. 6 refs., 6 figs.

  19. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...... a characteristic broad absorption peak at 0.5 THz corresponding to the dipole moment of THF molecules. The refractive indices of THF and propane hydrates are 1.725 and 1.775 at 1 THz, respectively, and show a slight but clear difference from the refractive index of ice (1.79). THz-TDS is a potentially useful...... technique for the ondestructive inspection of gas hydrates. # 2009 The Japan Society of Applied Physics...

  20. Public subscription project for international joint research proposals in fiscal 2000 - public subscription of international proposal (substitution No.3). Report on achievements in research related to industrial utilization and social systematization of gas hydrate technologies; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo - kokusai teian kobo (daitai No.3). Gas hydrate gijutsu no sangyo riyo shakai system ka ni kansuru kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Activities have been advanced to establish necessary basic technologies by making clear the possibilities and problems in applying gas hydrate technologies to industrial fields. Activities have been taken in the following three fields: 1) industrial utilization and social systematization of gas hydrate technologies, 2) conceptual design of gas hydrate utilization technologies, and 3) researches on basic technologies to utilize the gas hydrate technologies in industries. In Item 1), discussions were given on significance of social systematization of the gas hydrate technologies, conditions for social systematization of the gas hydrate technologies, the current status of natural gas development and industrial utilization of the gas hydrate technologies. In Item 2), discussions were given on utilization of gas containability (application to natural gas transportation and storage processes), utilization of cold heat storage performance (utilization to suction air cooling of gas turbine generators), and utilization of gas selectivity (application to gas separation processes and acidic gas (CO2, SOx) separation). (NEDO)

  1. Natural gas marketing II

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing

  2. Natural gas in India

    International Nuclear Information System (INIS)

    Lefevre, Thierry; Todoc, Jessie L.

    1999-11-01

    Contains Executive Summary and Chapters on: Country background; Overview of the energy sector; Natural gas supply; Natural gas infrastructure; Natural gas infrastructure; Natural gas demand; Outlook-government policy reform and industry development, and Appendices on Global and regional energy and gas trends; Overview of India's investment policy, incentives and regulation; The ENRON Dabhol power project. (Author)

  3. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  4. Storage capacity of hydrogen in gas hydrates

    International Nuclear Information System (INIS)

    Tsuda, Takaaki; Ogata, Kyohei; Hashimoto, Shunsuke; Sugahara, Takeshi; Sato, Hiroshi; Ohgaki, Kazunari

    2010-01-01

    The storage capacity of H 2 in the THF, THT, and furan hydrates was studied by p-V-T measurements. We confirmed that the storage and release processes of H 2 in all hydrates could be performed reversibly by pressure swing without destroying of hydrate cages. H 2 absorption in both THT and furan hydrates is much faster than THF hydrate in spite of same unit-cell structure. On the other hand, the storage amounts of H 2 are coincident in the all additive hydrates and would reach at about 1.0 mass% asymptotically.

  5. Subsurface gas hydrates in the northern Gulf of Mexico

    Science.gov (United States)

    Boswell, Ray; Collett, Timothy S.; Frye, Matthew; Shedd, William; McConnell, Daniel R.; Shelander, Dianna

    2012-01-01

    The northernGulf of Mexico (GoM) has long been a focus area for the study of gashydrates. Throughout the 1980s and 1990s, work focused on massive gashydrates deposits that were found to form at and near the seafloor in association with hydrocarbon seeps. However, as global scientific and industrial interest in assessment of the drilling hazards and resource implications of gashydrate accelerated, focus shifted to understanding the nature and abundance of "buried" gashydrates. Through 2005, despite the drilling of more than 1200 oil and gas industry wells through the gashydrate stability zone, published evidence of significant sub-seafloor gashydrate in the GoM was lacking. A 2005 drilling program by the GoM GasHydrate Joint Industry Project (the JIP) provided an initial confirmation of the occurrence of gashydrates below the GoM seafloor. In 2006, release of data from a 2003 industry well in Alaminos Canyon 818 provided initial documentation of gashydrate occurrence at high concentrations in sand reservoirs in the GoM. From 2006 to 2008, the JIP facilitated the integration of geophysical and geological data to identify sites prospective for gashydrate-bearing sands, culminating in the recommendation of numerous drilling targets within four sites spanning a range of typical deepwater settings. Concurrent with, but independent of, the JIP prospecting effort, the Bureau of Ocean Energy Management (BOEM) conducted a preliminary assessment of the GoM gashydratepetroleum system, resulting in an estimate of 607 trillion cubic meters (21,444 trillion cubic feet) gas-in-place of which roughly one-third occurs at expected high concentrations in sand reservoirs. In 2009, the JIP drilled seven wells at three sites, discovering gashydrate at high saturation in sand reservoirs in four wells and suspected gashydrate at low to moderate saturations in two other wells. These results provide an initial confirmation of the complex nature and occurrence of gashydrate-bearing sands in

  6. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lorenson, T.D.

    1999-01-01

    Molecular and isotopic composition of gases from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well demonstrate that the in situ gases can be divided into three zones composed of mixtures of microbial and thermogenic gases. Sediments penetrated by the well are thermally immature; thus the sediments are probably not a source of thermogenic gas. Thermogenic gas likely migrated from depths below 5000 m. Higher concentrations of gas within and beneath the gas hydrate zone suggest that gas hydrate is a partial barrier to gas migration. Gas hydrate accumulations occur wholly within zone 3, below the base of permafrost. The gas in gas hydrate resembles, in part, the thermogenic gas in surrounding sediments and gas desorbed from lignite. Gas hydrate composition implies that the primary gas hydrate form is Structure I. However, Structure II stabilizing gases are more concentrated and isotopically partitioned in gas hydrate relative to the sediment hosting the gas hydrate, implying that Structure II gas hydrate may be present in small quantities.

  7. Behaviour of gas production from type 3 hydrate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pooladi-Darvish, M. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Fekete Associates Inc., Calgary, AB (Canada); Zatsepina, O. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Hong, H. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-07-01

    The possible role of gas hydrates as a potential energy resource was discussed with particular reference to methods for estimating the rate of gas production from hydrate reservoirs under different operating conditions. This paper presented several numerical simulations studies of gas production from type 3 hydrate reservoirs in 1-D and 2-D geometries. Type 3 reservoirs include gas production from hydrate-reservoirs that lie totally within the hydrate stability zone and are sandwiched by impermeable layers on top and bottom. The purpose of this study was to better understand hydrate decomposition by depressurization. The study questioned whether 1-D modeling of type 3 hydrate reservoirs is a reasonable approximation. It also determined whether gas rate increases or decreases with time. The important reservoir characteristics for determining the rate of gas production were identified. Last, the study determined how competition between fluid and heat flow affects hydrate decomposition. This paper also described the relation and interaction between the heat and fluid flow mechanisms in depressurization of type 3 hydrate reservoirs. All results of 1-D and 2-D numerical simulation and analyses were generated using the STARS simulator. It was shown that the rate of gas production depends on the initial pressure/temperature conditions and permeability of the hydrate bearing formation. A high peak rate may be achieved under favourable conditions, but this peak rate is obtained after an initial period where the rate of gas production increases with time. The heat transfer in the direction perpendicular to the direction of fluid flow is significant, requiring 2D modeling. The hydraulic diffusivity is low because of the low permeability of hydrate-bearing formations. This could result in competition between heat and fluid flow, thereby influencing the behaviour of decomposition. 6 refs., 3 tabs., 12 figs.

  8. The Potential Socio-economic Impacts of Gas Hydrate Exploitation

    Science.gov (United States)

    Riley, David; Schaafsma, Marije; Marin-Moreno, Héctor; Minshull, Tim A.

    2017-04-01

    Gas hydrate has garnered significant interest as a possible clean fossil fuel resource, especially in countries with limited energy supplies. Whilst the sector is still in its infancy, there has been escalating development towards commercial production. To the best of our knowledge it appears that, despite its potential, existing analyses of the social and economic impacts of hydrate exploitation have been very limited. Before any viable commercial production commences, the potential impacts across society must be considered. It is likely that such impact assessments will become a legislative requirement for hydrate exploitation, similar to their requirement in conventional oil and gas projects. Social impact analysis should guide hydrate development to have the highest possible net benefits to the human and natural environment. Without active commercial hydrate operations, potential socio-economic impacts can only be inferred from other fossil fuel resource focused communities, including those directly or indirectly affected by the oil and gas industry either in the vicinity of the well or further afield. This review attempts to highlight potential impacts by synthesising current literature, focusing on social impacts at the extraction stage of operation, over time. Using a DPSIR (Driving forces; Pressures; States; Impacts; Responses) framework, we focus on impacts upon: health and wellbeing, land use and access, services and infrastructure, population, employment opportunities, income and lifestyles. Human populations directly or indirectly related with fossil fuel extraction activities often show boom and bust dynamics, and so any impacts may be finite or change temporally. Therefore potential impacts have to be reassessed throughout the lifetime of the exploitation. Our review shows there are a wide range of possible positive and negative socio-economic impacts from hydrate development. Exploitation can bring jobs and infrastructure to remote areas, although

  9. Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01

    Digital Repository Service at National Institute of Oceanography (India)

    Collett, T.S.; Boswell, R.; Cochran, J.R.; Kumar, P.; Lall, M.; Mazumdar, A.; Ramana, M.V.; Ramprasad, T.; Riedel, M.; Sain, K.; Sathe, A.V.; Vishwanath, K.; NGHP Expedition 01 Scientific Party

    in Japan (Tsujii et al., 2009) and in the Gulf of Mexico (Boswell et al., 2012a) and the pace of gas-hydrate energy-assessment projects continues to accelerate. Beyond a future energy resource, gas hydrates may in some cases represent a significant...

  10. Forecasting world natural gas supply

    International Nuclear Information System (INIS)

    Al-Fattah, S. M.; Startzman, R. A.

    2000-01-01

    Using the multi-cyclic Hubert approach, a 53 country-specific gas supply model was developed which enables production forecasts for virtually all of the world's gas. Supply models for some organizations such as OPEC, non-OPEC and OECD were also developed and analyzed. Results of the modeling study indicate that the world's supply of natural gas will peak in 2014, followed by an annual decline at the rate of one per cent per year. North American gas production is reported to be currently at its peak with 29 Tcf/yr; Western Europe will reach its peak supply in 2002 with 12 Tcf. According to this forecast the main sources of natural gas supply in the future will be the countries of the former Soviet Union and the Middle East. Between them, they possess about 62 per cent of the world's ultimate recoverable natural gas (4,880 Tcf). It should be noted that these estimates do not include unconventional gas resulting from tight gas reservoirs, coalbed methane, gas shales and gas hydrates. These unconventional sources will undoubtedly play an important role in the gas supply in countries such as the United States and Canada. 18 refs., 2 tabs., 18 figs

  11. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    The National Gas Hydrate Program Expedition 01 (NGHP-01) targeted gas hydrate accumulations offshore of the Indian Peninsula and along the Andaman convergent margin. The primary objectives of coring were to understand the geologic and geochemical controls on the accumulation of methane hydrate and their linkages to underlying petroleum systems. Four areas were investigated: 1) the Kerala-Konkan Basin in the eastern Arabian Sea, 2) the Mahanadi and 3) Krishna-Godavari Basins in the western Bay of Bengal, and 4) the Andaman forearc Basin in the Andaman Sea.Upward flux of methane at three of the four of the sites cored during NGHP-01 is apparent from the presence of seafloor mounds, seismic evidence for upward gas migration, shallow sub-seafloor geochemical evidence of methane oxidation, and near-seafloor gas composition that resembles gas from depth.The Kerala-Konkan Basin well contained only CO2 with no detectable hydrocarbons suggesting there is no gas hydrate system here. Gas and gas hydrate from the Krishna-Godavari Basin is mainly microbial methane with δ13C values ranging from −58.9 to −78.9‰, with small contributions from microbial ethane (−52.1‰) and CO2. Gas from the Mahanadi Basin was mainly methane with lower concentrations of C2-C5 hydrocarbons (C1/C2 ratios typically >1000) and CO2. Carbon isotopic compositions that ranged from −70.7 to −86.6‰ for methane and −62.9 to −63.7‰ for ethane are consistent with a microbial gas source; however deeper cores contained higher molecular weight hydrocarbon gases suggesting a small contribution from a thermogenic gas source. Gas composition in the Andaman Basin was mainly methane with lower concentrations of ethane to isopentane and CO2, C1/C2 ratios were mainly >1000 although deeper samples were exploration and occurs in a forearc basin. Each of these hydrate-bearing systems overlies and is likely supported by the presence and possible migration of gas from deeper gas-prone petroleum

  12. Constraining gas hydrate occurrence in the northern Gulf of Mexico continental slope : fine scale analysis of grain-size in hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hangsterfer, A.; Driscoll, N.; Kastner, M. [Scripps Inst. of Oceanography, La Jolla, CA (United States). Geosciences Research Division

    2008-07-01

    Methane hydrates can form within the gas hydrate stability zone (GHSZ) in sea beds. The Gulf of Mexico (GOM) contains an underlying petroleum system and deeply buried, yet dynamic salt deposits. Salt tectonics and fluid expulsion upward through the sediment column result in the formation of fractures, through which high salinity brines migrate into the GHSZ, destabilizing gas hydrates. Thermogenic and biogenic hydrocarbons also migrate to the seafloor along the GOMs northern slope, originating from the thermal and biogenic degradation of organic matter. Gas hydrate occurrence can be controlled by either primary permeability, forming in coarse-grained sediment layers, or by secondary permeability, forming in areas where hydrofracture and faulting generate conduits through which hydrocarbon-saturated fluids flow. This paper presented a study that attempted to determine the relationship between grain-size, permeability, and gas hydrate distribution. Grain-size analyses were performed on cores taken from Keathley Canyon and Atwater Valley in the GOM, on sections of cores that both contained and lacked gas hydrate. Using thermal anomalies as proxies for the occurrence of methane hydrate within the cores, samples of sediment were taken and the grain-size distributions were measured to see if there was a correlation between gas hydrate distribution and grain-size. The paper described the methods, including determination of hydrate occurrence and core analysis. It was concluded that gas hydrate occurrence in Keathley Canyon and Atwater Valley was constrained by secondary permeability and was structurally controlled by hydrofractures and faulting that acted as conduits through which methane-rich fluids flowed. 11 refs., 2 tabs., 5 figs.

  13. Natural gas monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  14. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Dallimore, S.R.; Satoh, T.; Hancock, S.; Weatherill, B.

    2004-01-01

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. A gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from five methane hydrate-bearing zones at the Mallik site. In Zone #1, numerical simulations using the EOSHYDR2 model indicated that gas production from hydrates at the Mallik site was possible by depressurizing a thin free gas zone at the base of the hydrate stability field. Horizontal wells appeared to have a slight advantage over vertical wells, while multiwell systems involving a combination of depressurization and thermal stimulation offered superior performance, especially when a hot noncondensible gas was injected. Zone #2, which involved a gas hydrate layer with an underlying aquifer, could yield significant amounts of gas originating entirely from gas hydrates, the volumes of which increased with the production rate. However, large amounts of water were also produced. Zones #3, #4 and #5 were lithologically isolated gas hydrate-bearing deposits with no underlying zones of mobile gas or water. In these zones, thermal stimulation by circulating hot water in the well was used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increased with the gas hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the specific heat of the rock and of the hydrate, and to the permeability of the formation. ?? 2004 Published by Elsevier B.V.

  15. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    Science.gov (United States)

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  16. Halogen systematics in the Mallik 5L-38 gas hydrate production research well, Northwest Territories, Canada: Implications for the origin of gas hydrates under terrestrial permafrost conditions

    International Nuclear Information System (INIS)

    Tomaru, Hitoshi; Fehn, Udo; Lu, Zunli; Matsumoto, Ryo

    2007-01-01

    The authors report here halogen concentrations in pore waters and sediments collected from the Mallik 5L-38 gas hydrate production research well, a permafrost location in the Mackenzie Delta, Northwest Territories, Canada. Iodine and Br are commonly enriched in waters associated with CH 4 , reflecting the close association between these halogens and source organic materials. Pore waters collected from the Mallik well show I enrichment, by one order of magnitude above that of seawater, particularly in sandy layers below the gas hydrate stability zone (GHSZ). Although Cl and Br concentrations increase with depth similar to the I profile, they remain below seawater values. The increase in I concentrations observed below the GHSZ suggests that I-rich fluids responsible for the accumulation of CH 4 in gas hydrates are preferentially transported through the sandy permeable layers below the GHSZ. The Br and I concentrations and I/Br ratios in Mallik are considerably lower than those in marine gas hydrate locations, demonstrating a terrestrial nature for the organic materials responsible for the CH 4 at the Mallik site. Halogen systematics in Mallik suggest that they are the result of mixing between seawater, freshwater and an I-rich source fluid. The comparison between I/Br ratios in pore waters and sediments speaks against the origin of the source fluids within the host formations of gas hydrates, a finding compatible with the results from a limited set of 129 I/I ratios determined in pore waters, which gives a minimum age of 29 Ma for the source material, i.e. at the lower end of the age range of the host formations. The likely scenario for the gas hydrate formation in Mallik is the derivation of CH 4 together with I from the terrestrial source materials in formations other than the host layers through sandy permeable layers into the present gas hydrate zones

  17. Relation between gas hydrate and physical properties at the Mallik 2L-38 research well in the Mackenzie delta

    Science.gov (United States)

    Winters, W.J.; Dallimore, S.R.; Collett, T.S.; Jenner, K.A.; Katsube, J.T.; Cranston, R.E.; Wright, J.F.; Nixon, F.M.; Uchida, T.

    2000-01-01

    As part of an interdisciplinary field program, a 1150-m deep well was drilled in the Canadian Arctic to determine, among other goals, the location, characteristics, and properties of gas hydrate. Numerous physical properties of the host sediment were measured in the laboratory and are presented in relation to the lithology and quantity of in situ gas hydrate. Profiles of measured and derived properties presented from that investigation include: sediment wet bulk density, water content, porosity, grain density, salinity, gas hydrate content (percent occupancy of non-sediment grain void space), grain size, porosity, and post-recovery core temperature. The greatest concentration of gas hydrate is located within sand and gravel deposits between 897 and 922 m. Silty sediment between 926 and 952 m contained substantially less, or no, gas hydrate perhaps because of smaller pore size.

  18. Simulation of microwave stimulation for the production of gas from methane hydrate sediment

    International Nuclear Information System (INIS)

    Zhao, Jiafei; Fan, Zhen; Wang, Bin; Dong, Hongsheng; Liu, Yu; Song, Yongchen

    2016-01-01

    Graphical abstract: Schematic diagram illustrating the process of gas production in hydrate-bearing sediment induced by microwave stimulation. Temperature gradients caused by the drop of microwave penetration depth appear in the sediment, leading to a rapid dissociation rate at the upper part of reservoir. - Highlights: • Hydrate dissociation behavior was analyzed in porous media by microwave stimulation. • Microwave stimulation provides sufficient energy conversion for hydrate dissociation. • Hydrate saturation and specific heat capacity of sediment mainly affect efficiency. • Heat conduction decreases temperature gradients promoting homogeneous dissociation. - Abstract: Natural gas hydrates dissociate via an endothermic process. One of the key requirements for any production technique is to supply the heat necessary for this dissociation. In this study, first, a microwave stimulation model for the production of gas from methane hydrate sediment is developed, which includes mass transport, energy conversion and conservation, and intrinsic kinetic reactions as the governing equations. In addition, the theoretical mixing rule of Lichtenecker and Rother is introduced for calculating the average dielectric data of the sediment containing methane hydrates, which affects the penetration of microwaves into the sediment. Next, simulations are performed for investigating gas production, as well as effects of initial water saturation, initial hydrate saturation, and sediment thermal properties induced by microwave stimulation. Moreover, the energy efficiency ratio is employed in the simulation. The simulation results show that microwave stimulation provides timely energy conversion sufficient for promoting the dissociation of hydrates, with rapid, continuous gas production. Temperature gradients caused by the decrease of the microwave penetration depth appear in the reservoir, leading to a rapid dissociation rate in the upper part of the sediment. The energy

  19. Gas hydrates in the Ulleung Basin, East Sea of Korea

    Directory of Open Access Journals (Sweden)

    Byong-Jae Ryu Michael Riedel

    2017-01-01

    Full Text Available To develop gas hydrates as a potential energy source, geophysical surveys and geological studies of gas hydrates in the Ulleung Basin, East Sea off the east coast of Korea have been carried out since 1997. Bottom-simulating reflector (BSR, initially used indicator for the potential presence of gas hydrates was first identified on seismic data acquired in 1998. Based on the early results of preliminary R&D project, 12367 km of 2D multichannel reflection seismic lines, 38 piston cores, and multi-beam echo-sounder data were collected from 2000 to 2004. The cores showed high amounts of total organic carbon and high residual hydrocarbon gas levels. Gas composition and isotope ratios define it as of primarily biogenic origin. In addition to the BSRs that are widespread across the basin, numerous chimney structures were found in seismic data. These features indicate a high potential of the Ulleung Basin to host significant amounts of gas hydrate. Dedicated geophysical surveys, geological and experimental studies were carried out culminating in two deep drilling expeditions, completed in 2007 and 2010. Sediment coring (including pressure coring, and a comprehensive well log program complements the regional studies and were used for a resource assessment. Two targets for a future test-production are currently proposed: pore-filling gas hydrate in sand-dominated sediments and massive occurrences of gas hydrate within chimney-like structures. An environmental impact study has been launched to evaluate any potential risks to production.

  20. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

    2008-04-15

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

  1. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Yang, Jinhai; Okwananke, Anthony; Tohidi, Bahman; Chuvilin, Evgeny; Maerle, Kirill; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2017-01-01

    Highlights: • Flue gas was injected for both methane recovery and carbon dioxide sequestration. • Kinetics of methane recovery and carbon dioxide sequestration was investigated. • Methane-rich gas mixtures can be produced inside methane hydrate stability zones. • Up to 70 mol% of carbon dioxide in the flue gas was sequestered as hydrates. - Abstract: Flue gas injection into methane hydrate-bearing sediments was experimentally investigated to explore the potential both for methane recovery from gas hydrate reservoirs and for direct capture and sequestration of carbon dioxide from flue gas as carbon dioxide hydrate. A simulated flue gas from coal-fired power plants composed of 14.6 mol% carbon dioxide and 85.4 mol% nitrogen was injected into a silica sand pack containing different saturations of methane hydrate. The experiments were conducted at typical gas hydrate reservoir conditions from 273.3 to 284.2 K and from 4.2 to 13.8 MPa. Results of the experiments show that injection of the flue gas leads to significant dissociation of the methane hydrate by shifting the methane hydrate stability zone, resulting in around 50 mol% methane in the vapour phase at the experimental conditions. Further depressurisation of the system to pressures well above the methane hydrate dissociation pressure generated methane-rich gas mixtures with up to 80 mol% methane. Meanwhile, carbon dioxide hydrate and carbon dioxide-mixed hydrates were formed while the methane hydrate was dissociating. Up to 70% of the carbon dioxide in the flue gas was converted into hydrates and retained in the silica sand pack.

  2. Gas Hydrate-Sediment Morphologies Revealed by Pressure Core Analysis

    Science.gov (United States)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M.

    2006-12-01

    Analysis of HYACINTH pressure cores collected on IODP Expedition 311 and NGHP Expedition 1 showed gas hydrate layers, lenses, and veins contained in fine-grained sediments as well as gas hydrate contained in coarse-grained layers. Pressure cores were recovered from sediments on the Cascadia Margin off the North American West Coast and in the Krishna-Godavari Basin in the Western Bay of Bengal in water depths of 800- 1400 meters. Recovered cores were transferred to laboratory chambers without loss of pressure and nondestructive measurements were made at in situ pressures and controlled temperatures. Gamma density, P-wave velocity, and X-ray images showed evidence of grain-displacing and pore-filling gas hydrate in the cores. Data highlights include X-ray images of fine-grained sediment cores showing wispy subvertical veins of gas hydrate and P-wave velocity excursions corresponding to grain-displacing layers and pore-filling layers of gas hydrate. Most cores were subjected to controlled depressurization experiments, where expelled gas was collected, analyzed for composition, and used to calculate gas hydrate saturation within the core. Selected cores were stored under pressure for postcruise analysis and subsampling.

  3. Geo-scientific investigations of gas-hydrates in India

    Digital Repository Service at National Institute of Oceanography (India)

    Sain, K.; Gupta, H.; Mazumdar, A.; Bhaumik, A.K.; Bhowmick, P.K.

    The best solution to meet India's overwhelming energy requirement is to tap the nuclear and solar power to the maximum extent possible. Another feasible major energy resource is gas-hydrates (crystalline substances of methane and water) that have...

  4. Infrared spectroscopy for monitoring gas hydrates in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, G.T.; Luzinova, Y.; Mizaikoff, B. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Raichlin, Y.; Katzir, A. [Tel-Aviv Univ., Tel-Aviv (Israel). Shool of Physics and Astronomy

    2008-07-01

    This paper introduced the first principles for monitoring gas hydrate formation and dissociation in aqueous solution by evaluating state-responsive infrared (IR) absorption features of water with fiberoptic evanescent field spectroscopy. A first order linear functional relationship was also derived according to Lambert Beer's law in order to quantify the percentage gas hydrate within the volume of water probed via the evanescent field. In addition, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components. As such, evanescent field sensing strategies were established as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments. 21 refs., 5 figs.

  5. Advanced research and development of gas hydrate resources. R and D of exploration and others - R and D of excavation technologies and others - surveys/researches on methods of evaluating environmental effects - surveys/researches on application systems; Gas hydrate shigenka gijutsu sendo kenkyu kaihatsu. Tansa nado ni kansuru kenkyu kaihatsu / kussaku gijutsu nado ni kansuru kenkyu kaihatsu / kankyo eikyo hyokaho no chosa kenkyu / riyo system ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Gas hydrate is a clathrate compound in a gaseous molecule as the host, stable under relatively mild environments. It is deposited in the 600m or deeper sea bottoms to form the gas hydrate deposit and massively occurring in the sea areas around Japan. This deposit has been studied viewed from natural gas resources, causes for natural hazards and contribution to the global warming. This project excavates a well in the deposit, to study possibilities of the technologies for decomposing, fluidizing and lifting the hydrate as the gas source, and for establishing the natural gas transporting/mooring systems in which its characteristics are utilized. The R and D activities are directed to the 4 areas, (1) development of the exploration technologies to determine the deposit sea area, quantity and conditions, (2) development of the stable well-excavation technologies, (3) studies on the effects of gas production on the environments, and development of the system for predicting the effects, (4) and studies on the application systems. The item (3) finds out the transportation/storage system possibly more economical than the current freezing/liquefaction technologies. The item (3) has the development themes of evaluating the geohazards caused by excavation and gas production, and their effects on the ecological systems. (NEDO)

  6. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  7. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes

    Science.gov (United States)

    Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.

    2009-01-01

    Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.

  8. In situ thermal conductivity of gas-hydrate-bearing sediments of the Mallik 5L-38 well

    Science.gov (United States)

    Henninges, J.; Huenges, E.; Burkhardt, H.

    2005-11-01

    Detailed knowledge about thermal properties of rocks containing gas hydrate is required in order to quantify processes involving gas hydrate formation and decomposition in nature. In the framework of the Mallik 2002 program, three wells penetrating a continental gas hydrate occurrence under permafrost were successfully equipped with permanent fiber-optic distributed temperature sensing cables. Temperature data were collected over a 21-month period after completing the wells. Thermal conductivity profiles were calculated from the geothermal data as well as from a petrophysical model derived from the available logging data and application of mixing law models. Results indicate that thermal conductivity variations are mainly lithologically controlled with a minor influence from hydrate saturation. Average thermal conductivity values of the hydrate-bearing sediments range between 2.35 and 2.77 W m-1 K-1. Maximum gas hydrate saturations can reach up to about 90% at an average porosity of 0.3.

  9. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  10. Thermodynamic simulations of hydrate formation from gas mixtures in batch operations

    International Nuclear Information System (INIS)

    Kobayashi, Takehito; Mori, Yasuhiko H.

    2007-01-01

    This paper deals with the hydrate formation from mixed hydrate-forming gases such as natural gas to be converted to hydrates for the purpose of its storage and biogases from which carbon dioxide is to be separated by hydrate formation. When a batch operation is selected for processing such a gas mixture in a closed reactor, we need to predict the evolution of the thermodynamic and compositional states inside the reactor during the operation. We have contrived a simulation scheme that allows us to estimate the simultaneous changes in the composition of the residual gas, the structure of the hydrate formed and the guest composition in the hydrate, in addition to the change in the system pressure, with the progress of hydrate formation during each operation. This scheme assumes the transient hydrate forming process in a reactor during each operation to be a series of numerous equilibrium states, each slightly deviating from the preceding state. That is, a thermodynamic system composed of the contents of the reactor is assumed to be subjected to a quasi-static, irreversible change in state, instantaneously keeping itself in thermodynamic equilibrium. The paper demonstrates a simulation of a process of hydrate formation from a methane + propane mixture and compares its results to relevant experimental results reported by Uchida et al. [Uchida T, Morikawa M, Takeya S, Ikeda IY, Ohmura R, Nagao J, et al. Two-step formation of methane-propane mixed gas hydrates in a batch-type reactor. AIChE J 2004;50(2):518-23

  11. Papers of a Canadian Institute conference : Unconventional gas symposium : Tight gas, gas shales, coalbed methane, gas hydrates

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for participants to learn from gas industry leaders in both Canada and the United States, different strategies to cost-effectively develop unconventional gas resources. In particular, the representative from EnCana Corporation discussed the results of tight gas drilling in Northeastern British Columbia. The speaker for MGV Energy reported on the outcome of test drilling for coalbed methane (CBM) in Southern Alberta. The economic development of tight gas reservoirs in the United States Permian Basin was discussed by the speaker representing BP America Production Company. The role of unconventional gas in the North American natural gas supply and demand picture was dealt with by TransCanada PipeLines Limited and Canadian Gas Potential Committee. The trend for natural gas prices in North America was examined by Conoco Inc. The Geological Survey of Canada addressed the issue of gas hydrate potential in the Mackenzie Delta Mallik Field. In addition, one presentation by El Paso Production Company discussed the successful drilling for deep, tight gas and CBM in the United States. There were nine presentations at this symposium, of which three were indexed separately for inclusion in this database. refs., tabs., figs

  12. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    OpenAIRE

    Boudreau, B.P.; Luo, Y.; Meysman, F.J.R.; Middelburg, J

    2015-01-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the oceanic dissolved carbonate system over the next 13?kyr in response to CO2 from gas hydrates, combined with a reasonable scenario for long-term anthropogenic CO2 emissions. Hydrate-derived CO2 will appr...

  13. The method of predicting the process of condensation of moisture and hydrate formation in the gas pipeline

    OpenAIRE

    Хвостова, Олена Вікторівна

    2014-01-01

    The problem of ensuring the required value of one of the natural gas quality indicators during its transportation to the consumer - moisture content is considered in the paper. The method for predicting possible moisture condensation and hydrate formation processes in gas pipelines considering mixing gas flows with different moisture content was developed.Predicting the moisture condensation and hydrate formation in gas pipelines is an actual task since a timely prevention of these processes ...

  14. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  15. Insights into the dynamics of in situ gas hydrate formation and dissociation at the Bush Hill gas hydrate field, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Evan A.; Kastner, Miriam; Robertson, Gretchen; Jannasch, Hans; Weinstein, Yishai

    2005-07-01

    Four newly designed flux meters called the MOSQUITO (Multiple Orifice Sampler and Quantitative Injection Tracer Observer), capable of measuring fluid flow rates and sampling pore fluid chemistry simultaneously, and two temperature loggers were deployed for 430 days adjacent to the Bush Hill hydrate mound in the northern Gulf of Mexico (GC 185). The main objective of the deployment was to understand how chemistry, temperature, and subsurface hydrology dynamically influence the growth and dissociation of the gas hydrate mound. The flux meters were deployed in a mussel field, in bacterial mats, in a tubeworm field, and at a background site approximately 100 m southwest of the hydrate mound. Results from the longterm chemical monitoring suggest that this system is not in dynamic equilibrium. Gas hydrate actively formed within the mussel field adjacent to the most active gas vent, in the tubeworm field, and at the background site. The hydrology is variable with upward flow rates ranging from 1-90 cm/yr and downward flow rates from 3-130 cm/yr. Two distinct hydrologic pulsing events were sampled across the three mound sites, which advect a fluid from depth that further stabilizes the gas hydrate deposit. The hydrogeochemistry at Bush Hill seems to be influenced by multiple mechanisms such as active formation of gas hydrate, fluid influx and outflux due to active venting of CH4 at transient methane seeps at and near the mound, local salt tectonics, and density driven convection. The fluxes of fluid, solutes, and methane may have a significant impact on the seafloor biochemical environment and the water column chemistry at Bush Hill. (Author)

  16. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    OpenAIRE

    Peng Zhang; Qingbai Wu; Yuzhong Yang

    2013-01-01

    The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on...

  17. Natural gas annual 1995

    International Nuclear Information System (INIS)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level

  18. Natural gas annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1993 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition from 1989 to 1993 are given for each Census Division and each State. Annual historical data are shown at the national level

  19. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1991 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition form 1987 to 1991 are given for each Census Division and each State. Annual historical data are shown at the national level

  20. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities

  1. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Annual 1991 provides information on the supply and disposition of natural gas to a wide audience including industry, consumers Federal and State agencies, and education institutions. This report, the Natural Gas Annual 1991 Supplement: Company Profiles, presents a detailed profile of selected companies

  2. NATURAL GAS TRANSPORTATION

    OpenAIRE

    Stanis³aw Brzeziñski

    2007-01-01

    In the paper, Author presents chosen aspects of natural gas transportation within global market. Natural gas transportation is a technicaly complicated and economicly expensive process; in infrastructure construction and activities costs. The paper also considers last and proposed initiatives in natural gas transportation.

  3. The rates measurement of methane hydrate formation and dissociation using micro-drilling system application for gas hydrate exploration

    Energy Technology Data Exchange (ETDEWEB)

    Bin Dou [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)]|[Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Reinicke, K.M. [Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Guosheng Jiang; Xiang Wu; Fulong Ning [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)

    2006-07-01

    When drilling through gas hydrate bearing formations, the energy supplied by virtue of the drilling process may lead to a destabilization of the hydrates surrounding the wellbore. Therefore, as the number of oil and gas fields being development in deepwater and onshore arctic environments increases, greater emphasis should be placed on quantifying the risks, gas hydrates pose to drilling operations. The qualification of these risks requires a comprehensive understanding of gas hydrate-formation and dissociation as a result of drilling induced processes. To develop the required understanding of gas hydrat formation and dissociation, the authors conducted laboratory experiments by using a micro-drilling system, to study the dissociation rates of methane hydrates contained in a tank reactor. The test facility used is a development of China University of Geosciences. The rates of methane hydrate formation and dissociation in the tank reactor were measured at steady-state conditions at pressures ranging from 0.1 to 25 MPa and temperatures ranging from -5 to 20 C. The experimental results show that the rate of hydrate formation is strongly influenced by the fluid system used to form the hydrates, pressure and temperature, with the influence of the temperature on methane hydrate dissociation being stronger than that of the pressure. Drilling speed, drilling fluids and hydrate dissociation inhibitors were also shown to influence hydrate dissociation rate. The derived results have been used to predict hydrate drilling stability for several drilling fluid systems.

  4. FY 1998 result report. Research/development on the energy overall development/utilization technology of gas hydrate resource; 1998 nendo seika hokokusho. Gas haidoreto shigen no energy sogo kaihatsu riyo gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This study is aimed at studying for survey of gas hydrate (GH) deposit required for GH resource development and gathering of it, and further at studying for industrial utilization technology development of GH which is different in formation condition depending on kind of gas with which it reacts. The results of FY 1998 are as follows. In the study of the situation of existence of gas hydrate in the tundra, the sedimentary environment of the tundra where natural gas hydrate exists was simulated in laboratory to measure thermal conductivity of the sediments including GH. In this fiscal year, design/fabrication/calibration were conducted of the GH synthesizer and thermal analyzer. In the study of GH gathering technology in the tundra, a technology is discussed for recovering gas from GH layer and at the same time substituting CO2 hydrate for GH by blowing CO2 into the geologic layer. In FY 1998, formation/dissociation behaviors were first studied of methane/CO2 mixture hydrate. For the overall energy development of GH resource and promotion of R and D of the utilization technology, studies were made on physical properties of GH and development of the usage. (NEDO)

  5. Gas hydrates distribution in the Shenhu area, northern South China Sea: comparisons between the eight drilling sites with gashydrate petroleum system

    Energy Technology Data Exchange (ETDEWEB)

    Su, M.; Yang, R.; Wang, H.; Sha, Z.; Liang, J.; Wu, N.; Qiao, S.; Cong, X.

    2016-07-01

    hydrates within Unit I. However, overlying fine-grained sediments related to soft-sediment deformation would hinder the further migration of gases/fluids, causing the extremely low methane concentration in Unit I. Three of the eight sites with hydrates from recovered core samples were located within sedimentary Unit I, and the other five sites were not. Because, the most significant difference between the eight sites is the nature and type of sedimentary deposits above the BSRs, it is suggested therefore that sedimentary conditions are the crucial factor controlling. (Author)

  6. Seismic Modeling Of Reservoir Heterogeneity Scales: An Application To Gas Hydrate Reservoirs

    Science.gov (United States)

    Huang, J.; Bellefleur, G.; Milkereit, B.

    2008-12-01

    Natural gas hydrates, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The occurrence of gas hydrates in permafrost regions has been confirmed by core samples recovered from the Mallik gas hydrate research wells located within Mackenzie Delta in Northwest Territories of Canada. Strong vertical variations of compressional and shear sonic velocities and weak surface seismic expressions of gas hydrates indicate that lithological heterogeneities control the distribution of hydrates. Seismic scattering studies predict that typical scales and strong physical contrasts due to gas hydrate concentration will generate strong forward scattering, leaving only weak energy captured by surface receivers. In order to understand the distribution of hydrates and the seismic scattering effects, an algorithm was developed to construct heterogeneous petrophysical reservoir models. The algorithm was based on well logs showing power law features and Gaussian or Non-Gaussian probability density distribution, and was designed to honor the whole statistical features of well logs such as the characteristic scales and the correlation among rock parameters. Multi-dimensional and multi-variable heterogeneous models representing the same statistical properties were constructed and applied to the heterogeneity analysis of gas hydrate reservoirs. The petrophysical models provide the platform to estimate rock physics properties as well as to study the impact of seismic scattering, wave mode conversion, and their integration on wave behavior in heterogeneous reservoirs. Using the Biot-Gassmann theory, the statistical parameters obtained from Mallik 5L-38, and the correlation length estimated from acoustic impedance inversion, gas hydrate volume fraction in Mallik area was estimated to be 1.8%, approximately 2x108 m3 natural gas stored in a hydrate bearing interval within 0.25 km2 lateral extension and between 889 m and 1115 m depth

  7. Seismic modeling of multidimensional heterogeneity scales of Mallik gas hydrate reservoirs, Northwest Territories of Canada

    Science.gov (United States)

    Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd

    2009-07-01

    In hydrate-bearing sediments, the velocity and attenuation of compressional and shear waves depend primarily on the spatial distribution of hydrates in the pore space of the subsurface lithologies. Recent characterizations of gas hydrate accumulations based on seismic velocity and attenuation generally assume homogeneous sedimentary layers and neglect effects from large- and small-scale heterogeneities of hydrate-bearing sediments. We present an algorithm, based on stochastic medium theory, to construct heterogeneous multivariable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this algorithm, we model some key petrophysical properties of gas hydrates within heterogeneous sediments near the Mallik well site, Northwest Territories, Canada. The modeled density, and P and S wave velocities used in combination with a modified Biot-Gassmann theory provide a first-order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a range of 528 to 768 × 106 m3/km2 of natural gas trapped within hydrates, nearly an order of magnitude lower than earlier estimates which did not include effects of small-scale heterogeneities. Further, the petrophysical models are combined with a 3-D finite difference modeling algorithm to study seismic attenuation due to scattering and leaky mode propagation. Simulations of a near-offset vertical seismic profile and cross-borehole numerical surveys demonstrate that attenuation of seismic energy may not be directly related to the intrinsic attenuation of hydrate-bearing sediments but, instead, may be largely attributed to scattering from small-scale heterogeneities and highly attenuate leaky mode propagation of seismic waves through larger-scale heterogeneities in sediments.

  8. Maximum Recoverable Gas from Hydrate Bearing Sediments by Depressurization

    KAUST Repository

    Terzariol, Marco

    2017-11-13

    The estimation of gas production rates from hydrate bearing sediments requires complex numerical simulations. This manuscript presents a set of simple and robust analytical solutions to estimate the maximum depressurization-driven recoverable gas. These limiting-equilibrium solutions are established when the dissociation front reaches steady state conditions and ceases to expand further. Analytical solutions show the relevance of (1) relative permeabilities between the hydrate free sediment, the hydrate bearing sediment, and the aquitard layers, and (2) the extent of depressurization in terms of the fluid pressures at the well, at the phase boundary, and in the far field. Close form solutions for the size of the produced zone allow for expeditious financial analyses; results highlight the need for innovative production strategies in order to make hydrate accumulations an economically-viable energy resource. Horizontal directional drilling and multi-wellpoint seafloor dewatering installations may lead to advantageous production strategies in shallow seafloor reservoirs.

  9. Polyethylene glycol drilling fluid for drilling in marine gas hydrates-bearing sediments: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, G.; Liu, T.; Ning, F.; Tu, Y.; Zhang, L.; Yu, Y.; Kuang, L. [China University of Geosciences, Faculty of Engineering, Wuhan (China)

    2011-07-01

    Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na{sub 2}CO{sub 3}, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from -8 {sup o}C to 15 {sup o}C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments. (authors)

  10. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  11. Proceedings of the 6. international conference on gas hydrates : ICGH 2008

    Energy Technology Data Exchange (ETDEWEB)

    Englezos, P. (ed.) [British Columbia Univ., Vancouver, BC (Canada); Ripmeester, J. (ed.) [National Research Council of Canada, Ottawa, ON (Canada); Dallimore, S.R. [Natural Resources Canada, Ottawa, ON (Canada). Geological Survey of Canada; Servio, P. [McGill Univ., Montreal, PQ (Canada). Dept. of Chemical Engineering; Austvik, T. [Statoil, Trondheim (Norway); Collett, T.S. [United States Geological Survey, Denver, CO (United States); Mehta, A. [Shell E and P Asia Pacific, Sarawak (Malaysia); Paull, C.K. [Monterey Bay Aquarium Research Inst., CA (United States); Sloan, E.D.Jr. [Colorado School of Mines, Golden, CO (United States); Uchida, T. [Hokkaido Univ., Sapporo (Japan)] (comps.)

    2008-07-01

    This international conference provided a forum to highlight gas hydrate research that is underway at academic institutions as well as government and industrial laboratories around the world. The gas or clathrate hydrate research community includes chemical, petroleum and mechanical engineers, geologists, geophysicists, marine biologists, chemists and physicists. The conference was attended by more than 500 delegates who presented their professional knowledge in all areas of the gas hydrates field, emphasizing new aspects. The topics of discussion included resource delineation, reservoir simulation modeling and production technology. Environmental considerations involving natural gas hydrates and global climate change were also highlighted along with carbon dioxide disposal in aquifers and deep oceans. Issues facing oil and gas operations were also discussed, with reference to flow assurance in pipelines, safety issues, permafrost and marine geohazards. Novel technologies involving hydrogen storage, carbon dioxide capture and sequestration were also highlighted along with basic science and engineering aspects of gas hydrate systems. All 417 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  12. Proceedings of the 6. international conference on gas hydrates : ICGH 2008

    International Nuclear Information System (INIS)

    Englezos, P.; Ripmeester, J.; Dallimore, S.R.; Collett, T.S.; Mehta, A.; Paull, C.K.; Sloan, E.D.Jr.; Uchida, T.

    2008-01-01

    This international conference provided a forum to highlight gas hydrate research that is underway at academic institutions as well as government and industrial laboratories around the world. The gas or clathrate hydrate research community includes chemical, petroleum and mechanical engineers, geologists, geophysicists, marine biologists, chemists and physicists. The conference was attended by more than 500 delegates who presented their professional knowledge in all areas of the gas hydrates field, emphasizing new aspects. The topics of discussion included resource delineation, reservoir simulation modeling and production technology. Environmental considerations involving natural gas hydrates and global climate change were also highlighted along with carbon dioxide disposal in aquifers and deep oceans. Issues facing oil and gas operations were also discussed, with reference to flow assurance in pipelines, safety issues, permafrost and marine geohazards. Novel technologies involving hydrogen storage, carbon dioxide capture and sequestration were also highlighted along with basic science and engineering aspects of gas hydrate systems. All 417 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs

  13. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)

    Science.gov (United States)

    Ryu, Byong-Jae; Collett, Timothy S.; Riedel, Michael; Kim, Gil-Young; Chun, Jong-Hwa; Bahk, Jang-Jun; Lee, Joo Yong; Kim, Ji-Hoon; Yoo, Dong-Geun

    2013-01-01

    As a part of Korean National Gas Hydrate Program, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas hydrates as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas hydrate-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two phases. The first phase included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second phase, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both phases of the expedition. Recovered gas hydrates occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas hydrates is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.

  14. [Prospects for Application of Gases and Gas Hydrates to Cryopreservation].

    Science.gov (United States)

    Shishova, N V; Fesenko, E E

    2015-01-01

    In the present review, we tried to evaluate the known properties of gas hydrates and gases participating in the formation of gas hydrates from the point of view of the mechanisms of cryoinjury and cryoprotection, to consider the papers on freezing biological materials in the presence of inert gases, and to analyze the perspectives for the development of this direction. For the purpose, we searched for the information on the physical properties of gases and gas hydrates, compared processes occured during the formation of gas hydrates and water ice, analyzed the influence of the formation and growth of gas hydrates on the structure of biological objects. We prepared a short review on the biological effects of xenon, krypton, argon, carbon dioxide, hydrogen sulfide, and carbon monoxide especially on hypothermal conditions and probable application of these properties in cryopreservation technologies. The description of the existing experiments on cryopreservation of biological objects with the use of gases was analyzed. On the basis of the information we found, the most perspective directions of work in the field of cryopreservation of biological objects with the use of gases were outlined. An attempt was made to forecast the potential problems in this field.

  15. Development of an offshore gas field: Hydrate and paraffin tests for ensuring continuous production; Entwicklung eines offshore Gasfelds - Hydrat- und Paraffinuntersuchungen zur Sicherstellung der kontinuierlichen Produktion

    Energy Technology Data Exchange (ETDEWEB)

    Zettlitzer, M.; Busch, M. [RWE Dea AG, Wietze (Germany)

    2005-07-01

    Production in offshore gas fields often requires transporting of undried raw gas through pipelines laid on, or in, the sea floor. This will cool the gas down - at worst to sea floor temperature, which may be as low as 4 C. This will cause condensation of the water and higher hydrocarbons. Two of the related problems are gone into here, i.e. potential formation of gas hydrates and potential paraffin deposits. The paraffin problem is relevant not only for crude gas transport but also - even more so - for gas conditioning in a freeze-dryer. (orig.)

  16. Modelling of oceanic gas hydrate instability and methane release in response to climate change

    International Nuclear Information System (INIS)

    Reagan, M.T.; Moridis, G.J.

    2008-01-01

    Methane releases from oceanic hydrates are thought to have played a significant role in climatic changes that have occurred in the past. In this study, gas hydrate accumulations subjected to temperature changes were modelled in order to assess their potential for future methane releases into the ocean. Recent ocean and atmospheric chemistry studies were used to model 2 climate scenarios. Two types of hydrate accumulations were used to represent dispersed, low-saturation deposits. The 1-D multiphase thermodynamic-hydrological model considered the properties of benthic sediments; ocean depth; sea floor temperature; the saturation and distribution of the hydrates; and the effect of benthic biogeochemical activity. Results of the simulations showed that shallow deposits undergo rapid dissociation and are capable of producing methane fluxes of 2 to 13 mol m 3 per year over a period of decades. The fluxes exceed the ability of the anaerobic sea floor environment to sequester or consume the methane. A large proportion of the methane released in the scenarios emerged in the gas phase. Arctic hydrates may pose a threat to regional and global ecological systems. It was concluded that results of the study will be coupled with global climate models in order to assess the impact of the methane releases in relation to global climatic change. 39 refs., 5 figs

  17. Natural Gas STAR Program

    Science.gov (United States)

    EPA’s Voluntary Methane Programs encourage oil and natural gas companies to adopt cost-effective technologies and practices that improve operational efficiency and reduce emissions of methane, a potent greenhouse gas.

  18. Natural gas and the environment

    International Nuclear Information System (INIS)

    DeCarufel, A.

    1991-01-01

    The role of various atmospheric pollutants in environmental changes and the global water cycle, carbon cycle, and energy balance is explained. The role of sulfur dioxide and nitrogen oxides in acid deposition is also outlined. The pollutants that contribute to environmental problems include nitrogen oxides and volatile organic compounds, carbon dioxide, and other greenhouse gases. The potential for natural gas utilization to mitigate some of these pollution problems is explored. Natural gas combustion emits less carbon dioxide and nitrogen oxides than combustion of other fossil fuel, and also does not produce sulfur dioxide, particulates, or volatile organics. Other pollution controlling opportunities offered by natural gas include the use of low-polluting burners, natural gas vehicles, and cogeneration systems. 18 figs., 4 tabs

  19. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    Science.gov (United States)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    hydrate dissociation applying the foamy oil approach, a method earlier adopted to model the Mallik production test (see abstract Abendroth et al., this volume). Combined with a dense set of data from a cylindrical electrical resistance tomography (ERT) array (see abstract Priegnitz et al., this volume), very valuable information were gained on the spatial as well as temporal formation and dissociation of gas hydrates as well as changes in permeability and resulting pathways for the fluid flow. Here we present the set-up and execution of the experiment and discuss the results from temperature and flow measurements with respect to the gas hydrate dissociation and characteristics of resulting fluid flow. Uddin, M., Wright, F., and Coombe, D. 2011. Numerical Study of Gas Evolution and Transport Behaviours in Natural Gas-Hydrate Reservoirs. Journal of Canadian Petroleum Technology 50, 70-89.

  20. Natural gas in Mexico

    International Nuclear Information System (INIS)

    Ramirez, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which focused on various aspects of the natural gas industry in Mexico. Some of the viewgraphs depicted statistics from 1998 regarding natural gas throughput from various companies in North America, natural gas reserves around the world, and natural gas reserves in Mexico. Other viewgraphs depicted associated and non-associated natural gas production from 1988 to 1998 in million cubic feet per day. The Burgos Basin and the Cantarell Basin gas production from 1997 to 2004 was also depicted. Other viewgraphs were entitled: (1) gas processing infrastructure for 1999, (2) cryogenic plant at Cd. PEMEX, (3) average annual growth of dry natural gas production for 1997-2004 is estimated at 5.2 per cent, (4) gas flows for December 1998, (5) PGPB- interconnect points, (6) U.S. Mexico gas trade for 1994-1998, (7) PGPB's interconnect projects with U.S., and (8) natural gas storage areas. Technological innovations in the industry include more efficient gas turbines which allow for cogeneration, heat recovery steam generators which reduce pollutant emissions by 21 per cent, cold boxes which increase heat transfer efficiency, and lateral reboilers which reduce energy consumption and total costs. A pie chart depicting natural gas demand by sector shows that natural gas for power generation will increase from 16 per cent in 1997 to 31 per cent in 2004. The opportunities for cogeneration projects were also reviewed. The Comision Federal de Electricidad and independent power producers represent the largest opportunity. The 1997-2001 investment program proposes an 85 per cent sulphur dioxide emission reduction compared to 1997 levels. This presentation also noted that during the 1998-2001 period, total ethane production will grow by 58 tbd. 31 figs

  1. Natural gas annual 1997

    International Nuclear Information System (INIS)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs

  2. Natural gas annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  3. Natural gas outlook

    International Nuclear Information System (INIS)

    Molyneaux, M.P.

    1998-01-01

    An overview of natural gas markets in Canada and in the United States was provided. The major factors that determine the direction of natural gas prices were depicted graphically. Price volatility has decreased in recent months. As expected, April through November total energy consumption reached historically high levels. Demand for natural gas during the summer of 1997 was not as strong as anticipated. Nuclear energy appears to be on the slippery slope, with natural gas-driven electricity projects to fill the void. Hydroelectricity had a strong showing in 1997. Prospects are less bright for 1998 due to above average temperatures. Canadian natural gas export capacity has increased 5.5 times between 1986 and estimated 1999 levels. Despite this, in 1997, deliveries to the United States were marginally behind expectations. Natural gas consumption, comparative fuel prices, natural gas drilling activity, natural gas storage capacity, actual storage by region, and average weekly spot natural gas prices, for both the U. S. and Canada, were also provided. With regard to Canada, it was suggested that Canadian producers are well positioned for a significant increase in their price realization mostly because of the increase in Canada's export capacity in 1997 (+175 Mmcf/d), 1998 (1,060 Mmcf/d) and potentially in 1999 or 2000, via the Alliance Pipeline project. Nevertheless, with current production projections it appears next to impossible to fill the 10.9 Bcf/d of export capacity that will be potentially in place by the end of 1999. tabs., figs

  4. Natural gas resources in Canada

    International Nuclear Information System (INIS)

    Meneley, R.A.

    2001-01-01

    Natural gas is an important component in many of the technologies aimed at reducing greenhouse gas emissions. In order to understand the role that natural gas can play, it is important to know how much may be present, where it is, when can it be accessed and at what cost. The Canadian Gas Potential Committee has completed its second report 'Natural Gas Potential in Canada - 2001' (CGPC, 2001). This comprehensive study of exploration plays in Canada addresses the two issues of 'how much may be present' and 'where is it'. The Report deals with both conventional gas and non-conventional gas. One hundred and seven Established Conventional Exploration Plays, where discoveries of gas exist, have been assessed in all of the sedimentary basins in Canada. In addition, where sufficient information was available, twelve Conceptual Exploration Plays, where no discoveries have been made, were assessed. Sixty-five other Conceptual Plays were described and qualitatively ranked. An experienced volunteer team of exploration professionals conducted assessments of undiscovered gas potential over a four-year period. The team used technical judgment, statistical techniques and a unique peer review process to make a comprehensive assessment of undiscovered gas potential and estimates of the size of individual undiscovered gas accumulations. The Committee assessed all gas in place in individual exploration plays. For Established Plays, estimates of Undiscovered Nominal Marketable Gas are based on the percentage of the gas in place that is marketable gas in the discovered pools in a play. Not all of the Nominal Marketable Gas will be available. Some underlies areas where exploration is not possible, such as parks, cities and other closed areas. Some will be held in gas pools that are too small to be economic and some of the pools will never be found. In some areas no production infrastructure will be available. Detailed studies of individual exploration plays and basins will be required

  5. Report: Fourth International Conference on Gas Hydrates, held at Yokohama, Japan, 19-23 May 2002

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.

    formations, while Dr. L. Stern presented ne insights into the phenomena of anomalous or self- preservation of gas hydrates. JOUR.GEOL.SOC.INDIA, VOL.61, JAN. 2001 Posters on hydrate formation and prevention in pipelines and hydrate based...-1 REPORT ON THE 4TH INTERNATIONAL CONFERENCE ON GAS HYDRATES The fourth International Conference on Gas Hydrates was recently held at Yokohama, Japan, between 19-23 May 2002 following the earlier conferences held in USA (1993...

  6. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    International Nuclear Information System (INIS)

    Moridis, George J.; Sloan, E. Dendy

    2007-01-01

    In this paper, we evaluate the gas production potential of disperse, low-saturation (S H H hydrate-bearing sediments subject to depressurization-induced dissociation over a 10-year production period. We investigate the sensitivity of items (a)-(c) to the following hydraulic properties, reservoir conditions, and operational parameters: intrinsic permeability, porosity, pressure, temperature, hydrate saturation, and constant pressure at which the production well is kept. The results of this study indicate that, despite wide variations in the aforementioned parameters (covering the entire spectrum of such deposits), gas production is very limited, never exceeding a few thousand cubic meters of gas during the 10-year production period. Such low production volumes are orders of magnitude below commonly accepted standards of economic viability, and are further burdened with very unfavorable gas-to-water ratios. The unequivocal conclusion from this study is that disperse, low-S H hydrate accumulations in oceanic sediments are not promising targets for gas production by means of depressurization-induced dissociation, and resources for early hydrate exploitation should be focused elsewhere

  7. Methods of gas hydrate concentration estimation with field examples

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, D.; Dash, R.; Dewangan, P.

    physics and seismic inversion: examples from the northern deepwater Gulf of Mexico: The Leading Edge, 23, 60-66. Dash R., 2007, Crustal structure and marine gas hydrate studies near Vancouver Island using seismic tomography: PhD thesis, University...-resistivity logs: Examples from Green Canyon, Gulf of Mexico: SEG expanded abstracts, 26, 1579-1583. Singh, S. C., Minshull, T. A., and Spence, G. D., 1993, Velocity structure of a gas hydrate reflector: Science, 260, 204-207. Sloan, E. D. Jr., 1998, Clathrate...

  8. Protocol for Measuring the Thermal Properties of a Supercooled Synthetic Sand-water-gas-methane Hydrate Sample.

    Science.gov (United States)

    Muraoka, Michihiro; Susuki, Naoko; Yamaguchi, Hiroko; Tsuji, Tomoya; Yamamoto, Yoshitaka

    2016-03-21

    Methane hydrates (MHs) are present in large amounts in the ocean floor and permafrost regions. Methane and hydrogen hydrates are being studied as future energy resources and energy storage media. To develop a method for gas production from natural MH-bearing sediments and hydrate-based technologies, it is imperative to understand the thermal properties of gas hydrates. The thermal properties' measurements of samples comprising sand, water, methane, and MH are difficult because the melting heat of MH may affect the measurements. To solve this problem, we performed thermal properties' measurements at supercooled conditions during MH formation. The measurement protocol, calculation method of the saturation change, and tips for thermal constants' analysis of the sample using transient plane source techniques are described here. The effect of the formation heat of MH on measurement is very small because the gas hydrate formation rate is very slow. This measurement method can be applied to the thermal properties of the gas hydrate-water-guest gas system, which contains hydrogen, CO2, and ozone hydrates, because the characteristic low formation rate of gas hydrate is not unique to MH. The key point of this method is the low rate of phase transition of the target material. Hence, this method may be applied to other materials having low phase-transition rates.

  9. Gas Hydrate Research Database and Web Dissemination Channel

    Energy Technology Data Exchange (ETDEWEB)

    Micheal Frenkel; Kenneth Kroenlein; V Diky; R.D. Chirico; A. Kazakow; C.D. Muzny; M. Frenkel

    2009-09-30

    To facilitate advances in application of technologies pertaining to gas hydrates, a United States database containing experimentally-derived information about those materials was developed. The Clathrate Hydrate Physical Property Database (NIST Standard Reference Database {number_sign} 156) was developed by the TRC Group at NIST in Boulder, Colorado paralleling a highly-successful database of thermodynamic properties of molecular pure compounds and their mixtures and in association with an international effort on the part of CODATA to aid in international data sharing. Development and population of this database relied on the development of three components of information-processing infrastructure: (1) guided data capture (GDC) software designed to convert data and metadata into a well-organized, electronic format, (2) a relational data storage facility to accommodate all types of numerical and metadata within the scope of the project, and (3) a gas hydrate markup language (GHML) developed to standardize data communications between 'data producers' and 'data users'. Having developed the appropriate data storage and communication technologies, a web-based interface for both the new Clathrate Hydrate Physical Property Database, as well as Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program was developed and deployed at http://gashydrates.nist.gov.

  10. Almacenamiento de gas natural

    Directory of Open Access Journals (Sweden)

    Tomás Correa

    2008-12-01

    Full Text Available The largest reserves of natural gas worldwide are found in regions far of main cities, being necessary different alternatives to transport the fluid to the consumption cities, such as pipelines, CNG or ships, LNG, depending on distances between producing regions and demanding regions and the producing volumes. Consumption regions have three different markets to naturalgas; residential and commercial, industrial and power generation sector. The residential and commercial is highly seasonal and power generation sector is quite variable depending on increases of temperature during summer time. There are also external issuesthat affect the normal gas flow such as fails on the national system or unexpected interruptions on it, what imply that companies which distribute natural gas should design plans that allow supplying the requirements above mentioned. One plan is using underground natural gas storage with capacities and deliverability rates enough to supply demands. In Colombia there are no laws in this sense but it could be an exploration to discuss different ways to store gas either way as underground natural gas storage or above superficies. Existing basically three different types of underground natural gas storage; depleted reservoirs, salt caverns and aquifers. All ofthem are adequate according to geological characteristics and the needs of the distributors companies of natural gas. This paper is anexploration of technical and economical characteristics of different kind of storages used to store natural gas worldwide.

  11. Capillary pressure controlled methane hydrate and ice growth-melting patterns in porous media : synthetic silica versus natural sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Tohidi, B.; Webber, B. [Heriot-Watt Univ., Centre for Gas Research, Edinburgh (United Kingdom). Inst. of Petroleum Engineering

    2008-07-01

    Although naturally-occurring gas hydrates (or clathrate hydrates) in marine sediments can pose a hazard to deepwater hydrocarbon production operations, they represent a potential strategic energy reserve. Gas hydrates can also provide a means for deep ocean carbon dioxide disposal through sequestration/storage. They have long-term importance with respect to ocean margin stability, methane release, and global climate change. However, fundamental knowledge is still lacking regarding the mechanisms of hydrate growth, accumulation and distribution within the subsurface. Marine sediments which host gas hydrates are commonly fine-grained silts, muds, and clays with narrow mean pore diameters, leading to speculation that capillary phenomena could play a significant role in controlling hydrate distribution in the seafloor, and may be partly responsible for discrepancies between observed and predicted hydrate stability zone thicknesses. A close relationship between hydrate inhibition and pore size has been confirmed through previous laboratory studies. Clathrate stability has been significantly reduced in narrow pores. However, the focus of investigations has generally been hydrate dissociation conditions in porous media, with capillary controls on the equally important process of hydrate growth being largely overlooked. This paper presented the results of an experimental investigation into methane hydrate growth and dissociation equilibria in natural medium grained sandstone. The study also compared data with that previously measured for mesoporous silica glasses. The paper discussed solid-liquid phase behaviour in confined geometries including hysteresis in porous media. It also discussed the experimental equipment and method. It was concluded that, as for synthetic silicas, hydrate growth and dissociation in the sandstone were characterised by a measurable hysteresis between opposing transitions, notably hydrate (or ice) formation occurring at temperatures lower than

  12. Natural gas pricing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    Natural gas pricing is the heart and soul of the gas business. Price specifically affects every phase of the industry. Too low a price will result in short supplies as seen in the mid-1970s when natural gas was scarce and in tight supply. To fully understand the pricing of this energy commodity, it is important to understand the total energy picture. In addition, the effect and impact of world and US economies, and economics in general are crucial to understanding natural gas pricing. The purpose of this presentation will be to show the parameters going into US natural gas pricing including the influence of the many outside industry factors like crude oil and coal pricing, market drivers pushing the gas industry, supply/demand parameters, risk management for buyers and sellers, and other elements involved in pricing analysis

  13. European natural gas

    International Nuclear Information System (INIS)

    Thackeray, Fred

    1999-11-01

    Contains Executive Summary and Chapters on: Main issues; Natural gas consumption and supply: statistics and key features of individual countries; Sectoral natural gas consumption; Indigenous production; Imports; Prices and taxes; The spot market: The interconnector; Forecasts of production and consumption and contracted imports; Progress of markets liberalisation; Effects of environmentalist developments; Transmission networks and storage; Some principal players. (Author)

  14. High-resolution seismic imaging of the gas and gas hydrate system at Green Canyon 955 in the Gulf of Mexico

    Science.gov (United States)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2015-12-01

    High-resolution 2D seismic data acquired by the USGS in 2013 enable detailed characterization of the gas and gas hydrate system at lease block Green Canyon 955 (GC955) in the Gulf of Mexico, USA. Earlier studies, based on conventional industry 3D seismic data and logging-while-drilling (LWD) borehole data acquired in 2009, identified general aspects of the regional and local depositional setting along with two gas hydrate-bearing sand reservoirs and one layer containing fracture-filling gas hydrate within fine-grained sediments. These studies also highlighted a number of critical remaining questions. The 2013 high-resolution 2D data fill a significant gap in our previous understanding of the site by enabling interpretation of the complex system of faults and gas chimneys that provide conduits for gas flow and thus control the gas hydrate distribution observed in the LWD data. In addition, we have improved our understanding of the main channel/levee sand reservoir body, mapping in fine detail the levee sequences and the fault system that segments them into individual reservoirs. The 2013 data provide a rarely available high-resolution view of a levee reservoir package, with sequential levee deposits clearly imaged. Further, we can calculate the total gas hydrate resource present in the main reservoir body, refining earlier estimates. Based on the 2013 seismic data and assumptions derived from the LWD data, we estimate an in-place volume of 840 million cubic meters or 29 billion cubic feet of gas in the form of gas hydrate. Together, these interpretations provide a significantly improved understanding of the gas hydrate reservoirs and the gas migration system at GC955.

  15. More natural gas

    International Nuclear Information System (INIS)

    Leprince, P.; Valais, M.

    1993-01-01

    This paper reports that large resources and growing markets are the salient prospects of natural gas for the coming decades. The greater impact of natural gas on the worldwide energy market can become a reality if several scientific disciplines can be mobilized in order to succeed in cutting production costs. Modeling, mechanics of complex fluids, and physical chemistry of interfaces are basic disciplines for understanding and mastering the gas processing technologies

  16. Growing natural gas usage

    International Nuclear Information System (INIS)

    Saarni, T.

    1996-01-01

    Finnish natural gas usage topped the 3.3 billion cubic metre mark last year, up 3.6 % on the 1994 figure. Growth has increased now for 12 years in a row. Thanks to offtake by large individual users, the pipeline network has been expanded from South-East Finland to the Greater Helsinki area and central southern Finland. Natural gas plays a much larger role in this region than the 10 % accounted for by natural gas nationally would indicate. The growth in the share of Finland's energy use accounted for by natural gas has served to broaden the country's energy supply base. Natural gas has replaced coal and oil, which has considerably reduced the level of emissions resulting form energy generation

  17. Modelling a deep water oil/gas spill under conditions of gas hydrate formation and decomposition

    International Nuclear Information System (INIS)

    Zheng, L.; Yapa, P.D.

    2000-01-01

    A model for the behavior of oil and gas spills at deepwater locations was presented. Such spills are subjected to pressures and temperatures that can convert gases to gas hydrates which are lighter than water. Knowing the state of gases as they rise with the plume is important in predicting the fate of an oil or gas plume released in deepwater. The objective of this paper was to develop a comprehensive jet/plume model which includes computational modules that simulate the gas hydrate formation/decomposition of gas bubbles. This newly developed model is based on the kinetics of hydrate formation and decomposition coupled with mass and heat transfer phenomena. The numerical model was successfully tested using results of experimental data from the Gulf of Mexico. Hydrate formation and decomposition are integrated with an earlier model by Yapa and Zheng for underwater oil or gas jets and plumes. The effects of hydrate on the behavior of an oil or gas plume was simulated to demonstrate the models capabilities. The model results indicate that in addition to thermodynamics, the kinetics of hydrate formation/decomposition should be considered when studying the behavior of oil and gas spills. It was shown that plume behavior changes significantly depending on whether or not the local conditions force the gases to form hydrates. 25 refs., 4 tabs., 12 figs

  18. Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory.

    Science.gov (United States)

    May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M

    2018-03-13

    Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.

  19. Strength Estimation for Hydrate-Bearing Sediments From Direct Shear Tests of Hydrate-Bearing Sand and Silt

    Science.gov (United States)

    Liu, Zhichao; Dai, Sheng; Ning, Fulong; Peng, Li; Wei, Houzhen; Wei, Changfu

    2018-01-01

    Safe and economic methane gas production, as well as the replacement of methane while sequestering carbon in natural hydrate deposits, requires enhanced geomechanical understanding of the strength and volume responses of hydrate-bearing sediments during shear. This study employs a custom-made apparatus to investigate the mechanical and volumetric behaviors of carbon dioxide hydrate-bearing sediments subjected to direct shear. The results show that both peak and residual strengths increase with increased hydrate saturation and vertical stress. Hydrate contributes mainly the cohesion and dilatancy constraint to the peak strength of hydrate-bearing sediments. The postpeak strength reduction is more evident and brittle in specimens with higher hydrate saturation and under lower stress. Significant strength reduction after shear failure is expected in silty sediments with high hydrate saturation Sh ≥ 0.65. Hydrate contribution to the residual strength is mainly by increasing cohesion at low hydrate saturation and friction at high hydrate saturation. Stress state and hydrate saturation are dominating both the stiffness and the strength of hydrate-bearing sediments; thus, a wave velocity-based peak strength prediction model is proposed and validated, which allows for precise estimation of the shear strength of hydrate-bearing sediments through acoustic logging data. This method is advantageous to geomechanical simulators, particularly when the experimental strength data of natural samples are not available.

  20. Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores

    Directory of Open Access Journals (Sweden)

    Vargas-Cordero Iván

    2017-12-01

    Full Text Available Two sectors, Itata and Valdivia, which are located in the Chilean margin were analysed by using seismic data with the main purpose to characterize the gas hydrate concentration. Strong lateral velocity variations are recognised, showing a maximum value in Valdivia offshore (2380 ms−1 above the BSR and a minimum value in the Itata offshore (1380 m·s−1 below the BSR. In both of the sectors, the maximum hydrate concentration reaches 17% of total volume, while the maximum free gas concentration is located Valdivia offshore (0.6% of total volume in correspondence of an uplift sector. In the Itata offshore, the geothermal gradient that is estimated is variable and ranges from 32 °C·km−1 to 87 °C·km−1, while in Valdivia offshore it is uniform and about 35 °C·km−1. When considering both sites, the highest hydrate concentration is located in the accretionary prism (Valdivia offshore and highest free gas concentration is distributed upwards, which may be considered as a natural pathway for lateral fluid migration. The results that are presented here contribute to the global knowledge of the relationship between hydrate/free gas presence and tectonic features, such as faults and folds, and furnishes a piece of the regional hydrate potentiality Chile offshore.

  1. The combined effect of thermodynamic promoters tetrahydrofuran and cyclopentane on the kinetics of flue gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; von Solms, Nicolas

    2015-01-01

    ) hydrate formation using a rocking cell apparatus. Hydrate formation and decomposition kinetics were investigated by constant cooling (hydrate nucleation temperature) and isothermal (hydrate nucleation time) methods. Improved (synergistic) hydrate formation kinetics (hydrate nucleation and growth) were...... of these two promoters is favorable both thermodynamically and kinetically for hydrate formation from flue gas....

  2. Approaching hydrate and free gas distribution at the SUGAR-Site location in the Danube Delta

    Science.gov (United States)

    Bialas, Joerg; Dannowski, Anke; Zander, Timo; Klaeschen, Dirk; Klaucke, Ingo

    2017-04-01

    Gas hydrates did receive a lot of attention over the last decades when investigating their potential to serve as a possible source for Methane production. Among other world-wide programs the German SUGAR project sets out to investigate the entire chain from exploitation to production in Europe. Therefore research in the scope of the SUGAR project sets out to investigate a site in European EEZ for the detailed studies of hydrate and gas distribution in a permeable sediment matrix. Among others one aim of the project is to provide in situ samples of natural methane hydrate for further investigations by MEBO drilling. The Danube paleo-delta with its ancient canyon and levee systems was chosen as a possible candidate for hydrate formation within the available drilling range of 200 m below seafloor. In order to decide on the best drilling location cruise MSM34 (Bialas et al., 2014) of the German RV MARIA S MERIAN set out to acquire geophysical, geological and geochemical datasets for assessment of the hydrate content within the Danube paleo-delta, Black Sea. The Black Sea is well known for a significant gas content in the sedimentary column. Reports on observations of bottom simulating reflectors (BSR) by Popescu et al. (2007) and others indicate that free gas and hydrate occurrence can be expected within the ancient passive channel levee systems. A variety of inverted reflection events within the gas hydrate stability zone (GHSZ) were observed within the drilling range of MEBO and chosen for further investigation. Here we report on combined seismic investigations of high-resolution 2D & 3D multichannel seismic (MCS) acquisition accompanied by four component Ocean-Bottom-Seismometer (OBS) observations. P- and converted S-wave arrivals within the OBS datasets were analysed to provide overall velocity depth models. Due to the limited length of profiles the majority of OBS events are caused by near vertical reflections. While P-wave events have a significant lateral

  3. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Boswell, R.; Kurihara, M.; Reagan, M.T.; Koh, C.; Sloan, E.D.

    2009-01-01

    Gas hydrates (GHs) are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural GH accumulations, the status of the primary international research and development (R&D) programs, and the remaining science and technological challenges facing the commercialization of production. After a brief examination of GH accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate-production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical-simulation capabilities are quite advanced and that the related gaps either are not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of GH deposits and determine that there are consistent indications of a large production potential at high rates across long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets; (b) methods to maximize production; and (c) some of the conditions and characteristics that render certain GH deposits undesirable for production. Copyright ?? 2009 Society of Petroleum Engineers.

  4. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  5. The role of hydrophobic interactions for the formation of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Wang, J.; Eriksson, J.C. [Virginia Polytech Inst. and State Univ., Blacksburg, VA (United States). Center for Advanced Separation Technologies; Sum, A.K. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering

    2008-07-01

    The process of hydrate formation remains largely unexplained due to a lack of evidence for the water molecules around the hydrophobic solute such as methane, and the nucleation process leading to the clustering that induces hydrate growth. However, the water structure is known to play a major role in the mechanism for hydrate nucleation. This paper presented evidence that hydrophobic solutes promote the structuring of water. Water molecules at room temperature tend to form ice structures around the hydrocarbon chains of surfactant molecules dissolved in water. An atomic force microscope (AFM) was used in this study to measure the surface forces between thiolated gold surfaces. The purpose was to better understand the structure of the thin films of water between hydrophobic surfaces. The water molecules tended to reorganize themselves to form ordered structures, which may be related to the nucleation of hydrates. The entropy reduction associated with the ice structure can be considered as the net driving force for self-assembly. Recent studies have revealed that long-range attractive forces exist between hydrophobic surfaces, which are likely to result from structuring of the water molecules in the vicinity of the hydrophobic surfaces. Similarly, the hydrophobic nature of most gas hydrate formers may induce ordering of water molecules in the vicinity of dissolved solutes. It was concluded that the results of this study may be used to develop a new mechanism for the formation of gas hydrates, including methane. 20 refs., 2 figs.

  6. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    NARCIS (Netherlands)

    Boudreau, B.P.; Luo, Yiming; Meysman, Filip J R; Middelburg, J.J.; Dickens, G.R.

    2015-01-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the

  7. Gas hydrate contribution to Late Permian global warming

    Czech Academy of Sciences Publication Activity Database

    Majorowicz, J.; Grasby, S. E.; Šafanda, Jan; Beauchamp, B.

    2014-01-01

    Roč. 393, May (2014), s. 243-253 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Latest Permian extinction * gas hydrates * carbon isotope shift Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.734, year: 2014

  8. Natural gas purchasing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    In recent years, natural gas has gained new momentum because of changes in marketing and regulations. The gas industry has always received an inordinate amount of regulatory control starting at the well head where the gas is produced to the consuming burner tip. Regulations have drastically impacted the availability of gas. Changes in the marketing and regulations have made the natural gas market sensitive at the point of production, the well head. Now, with plentiful supply and ease of transportation to bring the gas from the producing fields to the consumer, natural gas markets are taking advantage of the changed conditions. At the same time, new markets are developing to take advantage of the changes. This section shows consumers, especially the energy planners for large buyers of fuel, the advantages, sources and new methods of securing natural gas supplies. Background on how natural gas is produced and marketed are given. This section lists marketing sources, regulatory agencies and information groups available to help buyers and consumers of this important fuel for US industries and residences. 7 figs., 8 tabs

  9. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    Science.gov (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  10. Seismic evidence of gas hydrates, multiple BSRs and fluid flow offshore Tumbes Basin, Peru

    Science.gov (United States)

    Auguy, Constance; Calvès, Gérôme; Calderon, Ysabel; Brusset, Stéphane

    2017-12-01

    Identification of a previously undocumented hydrate system in the Tumbes Basin, localized off the north Peruvian margin at latitude of 3°20'—4°10'S, allows us to better understand gas hydrates of convergent margins, and complement the 36 hydrate sites already identified around the Pacific Ocean. Using a combined 2D-3D seismic dataset, we present a detailed analysis of seismic amplitude anomalies related to the presence of gas hydrates and/or free gas in sediments. Our observations identify the occurrence of a widespread bottom simulating reflector (BSR), under which we observed, at several sites, the succession of one or two BSR-type reflections of variable amplitude, and vertical acoustic discontinuities associated with fluid flow and gas chimneys. We conclude that the uppermost BSR marks the current base of the hydrate stability field, for a gas composition comprised between 96% methane and 4% of ethane, propane and pure methane. Three hypotheses are developed to explain the nature of the multiple BSRs. They may refer to the base of hydrates of different gas composition, a remnant of an older BSR in the process of dispersion/dissociation or a diagenetically induced permeability barrier formed when the active BSR existed stably at that level for an extended period. The multiple BSRs have been interpreted as three events of steady state in the pressure and temperature conditions. They might be produced by climatic episodes since the last glaciation associated with tectonic activity, essentially tectonic subsidence, one of the main parameters that control the evolution of the Tumbes Basin.

  11. The natural gas market

    International Nuclear Information System (INIS)

    Lagrasta, F.; Kaminski, V.; Prevatt, R.

    1999-01-01

    This chapter presents a brief history of the natural gas market highlighting the changes in the gas market and examining risk management in practice detailing the types of price risks, and the use of hedging using forwards and swaps. Options to manage risk are identified, and the role of risk management in financing, the role of the intermediary, and the market outlook are discussed. Panels describing the market structure, storage and natural gas risk management, the art of risk management, the winter 1995-96 basis blowout, spark spreads, the UK gas market and Europe, and weather derivatives are presented

  12. Field Data and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Ralf Löwner

    2007-06-01

    Full Text Available Data and information exchange are crucial for any kind of scientific research activities and are becoming more and more important. The comparison between different data sets and different disciplines creates new data, adds value, and finally accumulates knowledge. Also the distribution and accessibility of research results is an important factor for international work. The gas hydrate research community is dispersed across the globe and therefore, a common technical communication language or format is strongly demanded. The CODATA Gas Hydrate Data Task Group is creating the Gas Hydrate Markup Language (GHML, a standard based on the Extensible Markup Language (XML to enable the transport, modeling, and storage of all manner of objects related to gas hydrate research. GHML initially offers an easily deducible content because of the text-based encoding of information, which does not use binary data. The result of these investigations is a custom-designed application schema, which describes the features, elements, and their properties, defining all aspects of Gas Hydrates. One of the components of GHML is the "Field Data" module, which is used for all data and information coming from the field. It considers international standards, particularly the standards defined by the W3C (World Wide Web Consortium and the OGC (Open Geospatial Consortium. Various related standards were analyzed and compared with our requirements (in particular the Geographic Markup Language (ISO19136, GML and the whole ISO19000 series. However, the requirements demanded a quick solution and an XML application schema readable for any scientist without a background in information technology. Therefore, ideas, concepts and definitions have been used to build up the modules of GHML without importing any of these Markup languages. This enables a comprehensive schema and simple use.

  13. Estimating pore-space gas hydrate saturations from well log acoustic data

    Science.gov (United States)

    Lee, Myung W.; Waite, William F.

    2008-07-01

    Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate-bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.

  14. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Frank R. Rack

    2006-09-20

    Cooperative Agreement DE-FC26-01NT41329 between Joint Oceanographic Institutions and DOE-NETL was divided into two phases based on successive proposals and negotiated statements of work pertaining to activities to sample and characterize methane hydrates on ODP Leg 204 (Phase 1) and on IODP Expedition 311 (Phase 2). The Phase 1 Final Report was submitted to DOE-NETL in April 2004. This report is the Phase 2 Final Report to DOE-NETL. The primary objectives of Phase 2 were to sample and characterize methane hydrates using the systems and capabilities of the D/V JOIDES Resolution during IODP Expedition 311, to enable scientists the opportunity to establish the mass and distribution of naturally occurring gas and gas hydrate at all relevant spatial and temporal scales, and to contribute to the DOE methane hydrate research and development effort. The goal of the work was to provide expanded measurement capabilities on the JOIDES Resolution for a dedicated hydrate cruise to the Cascadia continental margin off Vancouver Island, British Columbia, Canada (IODP Expedition 311) so that hydrate deposits in this region would be well characterized and technology development continued for hydrate research. IODP Expedition 311 shipboard activities on the JOIDES Resolution began on August 28 and were concluded on October 28, 2005. The statement of work for this project included three primary tasks: (1) research management oversight, provided by JOI; (2) mobilization, deployment and demobilization of pressure coring and core logging systems, through a subcontract with Geotek Ltd.; and, (3) mobilization, deployment and demobilization of a refrigerated container van that will be used for degassing of the Pressure Core Sampler and density logging of these pressure cores, through a subcontract with the Texas A&M Research Foundation (TAMRF). Additional small tasks that arose during the course of the research were included under these three primary tasks in consultation with the DOE

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  16. Canadian natural gas

    International Nuclear Information System (INIS)

    Lucas, D.A.

    1991-01-01

    Canada's natural gas industry enjoys a quiet confidence as it looks ahead to the 1990s. In this paper, the author explains why, despite some critical uncertainties, the optimism endures. Reviewing the current conditions of supply, production, consumption, pipelines, and pipeline expansion plans, the author contends that the New World of the 1990s will belong to natural gas. The author's assessment of natural gas markets proceeds far beyond the borders of Canada. The author examines the determinants of gas prices throughout North America and he identifies the one force that promises to seize almost complete control of gas prices throughout the continent. While the analysis points out the attributes of this new pricing regime, it also names the obstacles that could prevent this emerging mechanism from assuming its anticipated position

  17. Solid Organic Deposition During Gas Injection Studies

    DEFF Research Database (Denmark)

    Dandekar, Abhijit Y.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    2000-01-01

    Recently a series of first contact miscibility (swelling) experiments have been performed on undersaturated light and heavy oils using LPG rich and methane rich injection gases, in which solid organic deposition was observed. A compositional gradient in the oils during the gas injection process....... The asphaltene content of the different oil samples were determined by the TP 143 method. The standard asphaltenes and the solid organic deposit recovered from the swelling tests were analyzed using FTIR, HPLC-SEC and H-1 NMR. The aim of these analyses is to reveal the molecular nature of the deposits formed...... during the gas injection process in comparison with the standard asphaltenes in order to understand the mechanisms involved in asphaltene deposition....

  18. Seismic Characterization and Continuity Analysis of Gas Hydrate Horizons Near the Mallik Research Wells, Mackenzie Delta, Canada

    Science.gov (United States)

    Bellefleur, G.; Riedel, M.; Brent, T.

    2005-12-01

    Gas hydrate deposits in arctic environment generally lack the BSR signature diagnostic of their presence in marine seismic data. The absence of the BSR signature complicates the estimation of the resources within or below the permafrost and the determination of their potential impact on future energy supplies, geohazard and climate change. We present results from a detailed seismic characterization of three gas hydrate horizons (A, B and C) intersected below the permafrost in five wells of the Mallik gas hydrate field located in the Mackenzie delta (Northwest Territories, Canada). The detailed seismic characterization included attribute analyses, synthetic modeling and acoustic impedance inversion and allowed estimation of the lateral continuity of the three horizons in the vicinity of the wells. Vertical Seismic Profiling (VSP) data, 3D and 2D industry seismic data and the 5L/2L-38 geophysical logs (density, P-wave sonic velocity) were used for this study. Synthetic modeling using the sonic and density logs reveals that the base of the lower gas hydrate horizons B and C can be identified on the industry 3D and 2D seismic sections as prominent isolated reflections. The uppermost gas hydrate occurrence (horizon A) and potentially other additional smaller-scale layers are identified only on the higher-resolution VSP data. The 3D industry seismic data set processed to preserve the relative true-amplitudes was used for attribute calculations and acoustic impedance inversion. The attribute maps defined areas of continuous reflectivity for horizons B and C and structural features disrupting them. Results from impedance inversion indicate that such continuous reflectivity around the wells is most likely attributable to gas hydrates. The middle gas hydrate occurrence (horizon B) covers an area of approximately 25 000m2. Horizon C, which marks the base of gas hydrate occurrence zone, extends over a larger area of approximately 120 000m2.

  19. Oil and natural gas

    International Nuclear Information System (INIS)

    Riddell, C.H.

    1993-01-01

    The natural gas industry and market prospects in Canada are reviewed from a producer's point of view. In the first eight months of 1993, $2.3 billion in new equity was raised for natural gas exploration and production, compared to $900 million in 1991 and $1.2 billion in 1992. The number of wells drilled in the western Canada basin is expected to reach 8,000-9,000 in 1993, up from 5,600 in 1992, and Canadian producers' share of the North American natural gas market will probably reach 20% in 1993, up from 13% in 1986. Potential and proved gas supply in North America is ca 750 trillion ft 3 , of which ca 30% is in Canada. Factors affecting gas producers in Canada are the deregulated nature of the market, low costs for finding gas (finding costs in the western Canada basin are the lowest of any basin in North America), and the coming into balance of gas supply and demand. The former gas surplus has been reduced by expanding markets and by low prices which reduced the incentive to find new reserves. This surplus is largely gone, and prices have started rising although they are still lower than the pre-deregulation prices. Progress is continuing toward an integrated North American gas market in which a number of market hubs allow easy gas trading between producers and consumers. Commodity exchanges for hedging gas prices are beginning operation and electronic trading of gas contracts and pipeline capacity will also become a reality. 4 figs

  20. Natural Gas Acquisition Program

    Data.gov (United States)

    General Services Administration — The "NGAP" system is a web based application which serves NGAP GSA users for tracking information details for various natural gas supply chain elements like Agency,...

  1. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  2. Natural gas benefits

    International Nuclear Information System (INIS)

    1999-01-01

    The General Auditor in the Netherlands studied the natural gas policy in the Netherlands, as has been executed in the past decades, in the period 1997-1999. The purpose of the study is to inform the Dutch parliament on the planning and the backgrounds of the natural gas policy and on the policy risks with respect to the benefits for the Dutch State, taking into account the developments in the policy environment. The final conclusion is that the proposed liberalization of the national natural gas market will result in a considerable deprivation of income for the State in case the benefit policy is not adjusted. This report includes a reaction of the Dutch Minister of Economic Affairs and an afterword of the General Auditor. In the appendix an outline is given of the natural gas policy

  3. Natural Gas Market Hubs

    Data.gov (United States)

    Department of Homeland Security — A hub is a physical transfer point for natural gas where several pipelines are connected. A market center is a hub where the operator offers services that facilitate...

  4. Natural gas industry regulations

    International Nuclear Information System (INIS)

    Clo, A.

    1999-01-01

    In the reception of the EU Directive on the internal gas market, it is quite necessary to avoid the mistakes already made in the case of electricity. A possible cause is there suggested which may help rearrange the natural gas industry and market in Italy. It's four points are: general interests, national peculiarities, public policies, regulatory framework [it

  5. Gas hydrates and permafrost in continental northern West Siberia; Gashydrate und Permafrost im kontinentalen noerdlichen Westsibirien

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, B. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Braun, A.; Poelchau, H.S. [Forschungszentrum Juelich (Germany). Inst. fuer Erdoel und Organische Geochemie; Littke, R. [RWTH Aachen (Germany). Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle

    1997-12-31

    The largest natural gas pool in the world is located in northern part of the West Siberian Basin. During the Quaternary this reservoir became overlaid with several hundreds of metres of permafrost. The pressure and temperature conditions prevailing under this permafrost zone have led to the development of gas hydrates. As far as is known today there is no genetic relationship between the formation of the gas pool and the development of gas hydrates. The present contribution deals with these questions in detail. (MSK) [Deutsch] Im Nordteil des westsibirischen Beckens liegt die groesste Erdgaslagerstaette der Erde. Darueber hat sich im Quartaer ein mehrere hundert Meter maechtiger Permafrost gebildet. Die unter der Premafrostzone herrschenden Druck-und Temperaturbedingungen ermoeglichten die Bildung von Gashydraten. Nach heutigen Erkenntnisse besteht kein genetischer Zusammenhang zwischen Lagerstaettenbildung und Gashydraten. Im Folgenden werden Einzelheiten geschildert.

  6. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Tissot-Favre, V.; Sudour, D.; Binutti, M.; Zanetta, P.; Rieussec, J.L.

    2005-01-01

    As a true alternative to oil products, and environment friendly fuel, Natural Gas for Vehicles complies with requirements for sustainable development. In addition, it is part of the European Union policy which underlines the importance of energy diversification through alternative fuels. This workshop will look into the current offer to the public transport segment, waste collection vehicles, and commercial vehicle fleets. Actions taken to spread the use of natural gas to all types of cars will also be covered. This article gathers 5 presentations about this topic given at the gas conference

  7. Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data

    Science.gov (United States)

    Lee, Myung Woong; Collett, Timothy S.

    2011-01-01

    High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.

  8. Results at Mallik highlight progress in gas hydrate energy resource research and development

    Science.gov (United States)

    Collett, T.S.

    2005-01-01

    The recent studies that project the role of gas hydrates in the future energy resource management are reviewed. Researchers have long speculated that gas hydrates could eventually be a commercial resource for the future. A Joint Industry Project led by ChevronTexaco and the US Department of Energy is designed to characterize gas hydrates in the Gulf of Mexico. Countries including Japan, canada, and India have established large gas hydrate research and development projects, while China, Korea and Mexico are investigating the viability of forming government-sponsored gas hydrate research projects.

  9. Effective-Medium Models for Marine Gas Hydrates, Mallik Revisited

    Science.gov (United States)

    Terry, D. A.; Knapp, C. C.; Knapp, J. H.

    2011-12-01

    Hertz-Mindlin type effective-medium dry-rock elastic models have been commonly used for more than three decades in rock physics analysis, and recently have been applied to assessment of marine gas hydrate resources. Comparisons of several effective-medium models with derivative well-log data from the Mackenzie River Valley, Northwest Territories, Canada (i.e. Mallik 2L-38 and 5L-38) were made several years ago as part of a marine gas hydrate joint industry project in the Gulf of Mexico. The matrix/grain supporting model (one of the five models compared) was clearly a better representation of the Mallik data than the other four models (2 cemented sand models; a pore-filling model; and an inclusion model). Even though the matrix/grain supporting model was clearly better, reservations were noted that the compressional velocity of the model was higher than the compressional velocity measured via the sonic logs, and that the shear velocities showed an even greater discrepancy. Over more than thirty years, variations of Hertz-Mindlin type effective medium models have evolved for unconsolidated sediments and here, we briefly review their development. In the past few years, the perfectly smooth grain version of the Hertz-Mindlin type effective-medium model has been favored over the infinitely rough grain version compared in the Gulf of Mexico study. We revisit the data from the Mallik wells to review assertions that effective-medium models with perfectly smooth grains are a better predictor than models with infinitely rough grains. We briefly review three Hertz-Mindlin type effective-medium models, and standardize nomenclature and notation. To calibrate the extended effective-medium model in gas hydrates, we use a well accepted framework for unconsolidated sediments through Hashin-Shtrikman bounds. We implement the previously discussed effective-medium models for saturated sediments with gas hydrates and compute theoretical curves of seismic velocities versus gas hydrate

  10. OPEC and natural gas

    International Nuclear Information System (INIS)

    Samsam Bakhtiari, A.M.; Shahbudaghlou, F.

    1998-01-01

    This paper reviews the involvement of OPEC Member Countries in the natural gas industry in the past, present and future. It notes a tenfold increase in marketed production and a fourfold rise in re-injection since 1970. Collectively, Members now hold 41 per cent of the world's proven gas reserves and account for 20 per cent of exports. Individually, four of these countries hold position 2-5 in the world gas reserve rankings. Within OPEC, however, there remains an emphasis of oil over gas, not least because of oil's favourable position with regard to revenue-generation and profitability. As global demand continues on its upward growth curve in a more environmentally aware world, OPEC's gas horizons will widen. OPEC's strong reserve base will give its Members an undeniable role to play on the future global gas stage. However, these countries will give priority to domestic usage, particularly re-injection schemes

  11. Gas hydrate saturation from acoustic impedance and resistivity logs in the shenhu area, south china sea

    Science.gov (United States)

    Wang, X.; Wu, S.; Lee, M.; Guo, Y.; Yang, S.; Liang, J.

    2011-01-01

    During the China's first gas hydrate drilling expedition -1 (GMGS-1), gas hydrate was discovered in layers ranging from 10 to 25 m above the base of gas hydrate stability zone in the Shenhu area, South China Sea. Water chemistry, electrical resistivity logs, and acoustic impedance were used to estimate gas hydrate saturations. Gas hydrate saturations estimated from the chloride concentrations range from 0 to 43% of the pore space. The higher gas hydrate saturations were present in the depth from 152 to 177 m at site SH7 and from 190 to 225 m at site SH2, respectively. Gas hydrate saturations estimated from the resistivity using Archie equation have similar trends to those from chloride concentrations. To examine the variability of gas hydrate saturations away from the wells, acoustic impedances calculated from the 3 D seismic data using constrained sparse inversion method were used. Well logs acquired at site SH7 were incorporated into the inversion by establishing a relation between the water-filled porosity, calculated using gas hydrate saturations estimated from the resistivity logs, and the acoustic impedance, calculated from density and velocity logs. Gas hydrate saturations estimated from acoustic impedance of seismic data are ???10-23% of the pore space and are comparable to those estimated from the well logs. The uncertainties in estimated gas hydrate saturations from seismic acoustic impedances were mainly from uncertainties associated with inverted acoustic impedance, the empirical relation between the water-filled porosities and acoustic impedances, and assumed background resistivity. ?? 2011 Elsevier Ltd.

  12. Identifying the morphologies of gas hydrate distribution using P-wave velocity and density: a test from the GMGS2 expedition in the South China Sea

    Science.gov (United States)

    Liu, Tao; Liu, Xuewei

    2018-06-01

    Pore-filling and fracture-filling are two basic distribution morphologies of gas hydrates in nature. A clear knowledge of gas hydrate morphology is important for better resource evaluation and exploitation. Improper exploitation may cause seafloor instability and exacerbate the greenhouse effect. To identify the gas hydrate morphologies in sediments, we made a thorough analysis of the characteristics of gas hydrate bearing sediments (GHBS) based on rock physics modeling. With the accumulation of gas hydrate in sediments, both the velocities of two types of GHBS increase, and their densities decrease. Therefore, these two morphologies cannot be differentiated only by velocity or density. After a series of tests, we found the attribute ρ {{V}{{P}}}0.5 as a function of hydrate concentration show opposite trends for these two morphologies due to their different formation mechanisms. The morphology of gas hydrate can thus be identified by comparing the measured ρ {{V}{{P}}}0.5 with its background value, which means the ρ {{V}{{P}}}0.5 of the hydrate-free sediments. In 2013, China’s second gas hydrate expedition was conducted by Guangzhou Marine Geologic Survey to explore gas hydrate resources in the northern South China Sea, and both two hydrate morphologies were recovered. We applied this method to three sites, which include two pore-filling and three fracture-filling hydrate layers. The data points, that agree with the actual situations, account for 72% and 82% of the total for the two pore-filling hydrate layers, respectively, and 86%, 74%, and 69% for the three fracture-filling hydrate layers, respectively.

  13. Distribution of the dominant microbial communities in marine sediments containing high concentrations of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.; Colwell, F.; Carini, P.; Torres, M. [Oregon State Univ., Corvallis, OR (United States); Hangsterfer, A.; Kastner, M. [California Univ., San Diego, CA (United States). Scripps Inst. of Oceanography; Brodie, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Center for Environmental Biotechnology; Daly, R. [California Univ., Berkeley, CA (United States); Holland, M. [GeoTek, Daventry, Northants (United Kingdom); Long, P.; Schaef, H. [Pacific Northwest National Laboratory, Richland, WA (United States). Environmental Technology; Delwiche, M. [Idaho National Laboratory, Idaho Falls, ID (United States). Biotechnology; Winters, W. [United States Geological Survey, Woods Hole, MA (United States). Woods Hole Science Center; Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences

    2008-07-01

    Methane produced by microorganisms represents a large portion of the methane that occurs in marine sediments where gas hydrates are present. The diverse communities that populate these formations have been documented by cultures or through molecular traces. Previous studies have explored the biogeography of hydrate-bearing systems by comparing clone libraries developed from sediments where hydrates are abundant with those developed from sediments that lack hydrates. There is a distinct microbial community present in sediments that have methane hydrates. This paper presented an investigation into finer-scale biogeography, in order to determine how factors such as the presence or absence of hydrates, grain size, and the depositional environment in marine sediments may control the number, type and distribution of microbial communities in sediments. The purpose of the study was to understand the controls on the distribution and activity of all microbes that contribute to the conversion of organic matter to methane. To this aim, DNA was extracted from deep marine sediments cored from continental slope locations including offshore India and the Cascadia Margin. The data from the study was used to refine computational models that require biological rate terms that are consistent with sediment conditions in order to accurately describe the dynamics of this large methane reservoir. The paper discussed the materials and methods used for the study, including the sample site, sample collection and microbiological analysis. Results were presented in terms of DNA extractions; microbial diversity; and biofilm analyses. It was concluded that the findings from the study complemented previously reported studies which indicated the presence of diverse microbial communities in sediments containing methane hydrates. 9 refs., 5 figs.

  14. Natural gas prices

    International Nuclear Information System (INIS)

    Johnson, W.A.

    1990-01-01

    Since the 1970s, many electric utilities and industrial boiler fuel users have invested in dual fuel use capability which has allowed them to choose between natural gas, residual fuel oil, and in some instances, coal as boiler fuels. The immediate reason for this investment was the need for security of supply. Wellhead regulation of natural gas prices had resulted in shortages during the 1970s. Because many industrial users were given lowest priority in pipeline curtailments, these shortages affected most severely boiler fuel consumption of natural gas. In addition, foreign supply disruptions during the 1970s called into question the ready availability of oil. Many boiler fuel users of oil responded by increasing their ability to diversify to other sources of energy. Even though widespread investment in dual fuel use capability by boiler fuel users was initially motivated by a need for security of supply, perhaps the most important consequence of this investment was greater substitutability between natural gas and resid and a more competitive boiler fuel market. By the early 1980s, most boiler fuel users were able to switch from one fuel to another and often did for savings measured in pennies per MMBtu. Boiler fuel consumption became the marginal use of both natural gas and resid, with coal a looming threat on the horizon to both fuels

  15. Natural gas deregulation

    International Nuclear Information System (INIS)

    Ronchi, M.

    1993-01-01

    With the aim of establishing realistic options for deregulation in the natural gas industry, this paper first considers the structural evolution of this industry and evidences how it differs from the petroleum industry with which it exhibits some essential characteristics in common. This comparison is made in order to stress that, contrary to popular belief, that which is without doubt good for the petroleum industry is not necessarily so also for the natural gas industry. The paper concludes with separate analyses of the natural gas markets in the principal industrialized countries. Arguments are provided to show that the 'soft' deregulation option for the natural gas industry is not feasible, and that 'total' deregulation instead, backed by the passing of a suitable package of anti-trust laws 'unbundling' the industry's four major activities, i.e., production, storage, primary and secondary distribution, is the preferable option. The old concept of guaranteed supplies for minor users of natural gas should give way to the laws of supply and demand governing inter-fuel competition ensured through the strict supervision of vigilance committees

  16. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-07-21

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... abandonment of facilities by Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... resources, fisheries, and wetlands; Cultural resources; Vegetation and wildlife; Endangered and threatened...

  17. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy

    Science.gov (United States)

    Rose, K.; Boswell, R.; Collett, T.

    2011-01-01

    In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594??m (1950??ft), approximately 15??m (50??ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606??m (1987??ft) to 760??m (2494??ft) and drilled to a total depth of 914??m. Ice-bearing permafrost extends to a depth of roughly 536??m and the base of gas hydrate stability is interpreted to extend to a depth of 870??m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6??cm (3??in) diameter core through 154??m (504??ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise the majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to

  18. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection

    International Nuclear Information System (INIS)

    Lim, Dongwook; Ro, Hyeyoon; Seo, Yongwon; Seo, Young-ju; Lee, Joo Yong; Kim, Se-Joon; Lee, Jaehyoung; Lee, Huen

    2017-01-01

    Highlights: • We examine the thermodynamic stability and guest distribution of CH 4 /N 2 /CO 2 mixed hydrates. • Phase equilibria of the CH 4 /N 2 /CO 2 mixed hydrates were measured to determine the thermodynamic stability. • The N 2 /CO 2 ratio of the hydrate phase is almost constant despite the enrichment of CO 2 in the hydrate phase. • 13 C NMR results indicate the preferential occupation of N 2 and CO 2 in the small and large cages of sI hydrates, respectively. - Abstract: In this study, thermodynamic stability and cage occupation behavior in the CH 4 – CO 2 replacement, which occurs in natural gas hydrate reservoirs by injecting flue gas, were investigated with a primary focus on phase equilibria and composition analysis. The phase equilibria of CH 4 /N 2 /CO 2 mixed hydrates with various compositions were measured to determine the thermodynamic stability of gas hydrate deposits replaced by N 2 /CO 2 gas mixtures. The fractional experimental pressure differences (Δp/p) with respect to the CSMGem predictions were found to range from −0.11 to −0.02. The composition analysis for various feed gas mixtures with a fixed N 2 /CO 2 ratio (4.0) shows that CO 2 is enriched in the hydrate phase, and the N 2 /CO 2 ratio in the hydrate phase is independent of the feed CH 4 fractions. Moreover, 13 C NMR measurements indicate that N 2 molecules preferentially occupy the small 5 12 cages of sI hydrates while the CO 2 molecules preferentially occupy the large 5 12 6 2 cages, resulting in an almost constant area ratio of CH 4 molecules in the large to small cages of the CH 4 /N 2 /CO 2 mixed hydrates. The overall experimental results provide a better understanding of stability conditions and guest distributions in natural gas hydrate deposits during CH 4 – flue gas replacement.

  19. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    Science.gov (United States)

    Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.

    2006-01-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  20. Natural Gas Regulation

    International Nuclear Information System (INIS)

    1995-01-01

    The regulation of Natural Gas. Natural gas Regulation clarifies and consolidates the legal and institutional framework for development of the industry through six principal elements: 1) Establishment of a vision of the industry. 2) Development of regulatory objectives. 3) Determination of relationships among industry participants. 4) Clear specification of the role of PEMEX in the industry. 5) Definition of the functions of the Regulatory authority. 6) Creation of a transition regime. In parallel with the development of the substantive legal framework, the law of the Comision Reguladora de Energia (CRE) was also enacted by Congress in October 1995 to strength the institutional framework and implement the legal changes. This law defines the CRE as an agency of the Energy Ministry with technical, operational, and budgetary autonomy, and responsibility for implementing natural gas industry regulation. (Author)

  1. Natural gas's hottest spot

    International Nuclear Information System (INIS)

    Peterson, T.

    1993-01-01

    This paper reviews the growing power and economic strength of Enron Corp., a natural gas distributor and exploration company. The paper reviews the policy of the company to exploit deregulation at home and privatization of all sorts of energy companies abroad. Enron is actively building its own power plants in the US and has successfully boosted their profits by 20 percent in what was considered a flat natural gas market. The paper goes on to discuss the company's view of the new energy tax and how it should benefit natural gas companies as a whole. Finally the paper reviews the contracting procedures of the company to secure long-term fixed price contracts in a volatile market which precludes most companies from taking the risk

  2. Geophysical approach to gas hydrates studies in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, A; Mizukoshi, I [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1997-10-22

    Studies are under way to estimate by geophysical approaches the saturation of gasses and gas hydrates in the sedimentary rock. Gasses and gas hydrates under stable strata are deemed to be fossil fuel resources. If the characteristics of sonic or elastic waves are related to the amount of gasses or gas hydrates, it will be possible to assess quantitatively the said resources by geophysical approaches. This is the reason why studies have been started for the acquisition of data of a wider frequency range by seismic exploration and about stratum models concerned. In relation to the mean elastic moduli of mixed materials, studies have been made about the applicability of several theories to data from wire-line test boring, to data from seismic exploration, and to pits in zones of perpetual frost. The effort to acquire data of a wider frequency range by seismic exploration aims at filling up the gap between the now-available seismic exploration data and laboratory data. It is believed that these will enable a quantitative assessment of the said resources. 6 refs., 3 figs.

  3. Natural gas; Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Frank [DVGW-Forschungsstelle am KIT, Karlsruhe (Germany); Groeschl, Frank; Wetzel, Uwe [DVGW, Bonn (Germany); Heikrodt, Klaus [Hochschule Ostwestfalen-Lippe, Lemgo (Germany); Krause, Hartmut [DBI Gastechnologisches Institut, An-Institut der TU Bergakademie, Freiberg (Germany); Beestermoeller, Christina; Witschen, Bernhard [Team Consult G.P.E. GmbH, Berlin (Germany); Albus, Rolf; Burmeister, Frank [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2015-07-01

    The reform of the EEG in Germany, a positive global development in natural gas, the decline in oil prices, questions about the security of supply in Europe, and not least the effect of the decision by E.on at the end of 2014 have moved the gas industry. Gas has the lowest CO{sub 2} emissions of fossil fuels. Flexibility, storability, useful for networks and the diversity in the application make it an ideal partner for renewable energy. However, these complementary properties are valued at wind and photovoltaics internationally and nationally different. The situation in the gas power plants remains tense. LNG - liquefied natural gas - is on the rise. [German] Die Reform des EEG in Deutschland, eine positive Entwicklung beim Gas weltweit, der Verfall der Oelpreises, Fragen zur Versorgungssicherheit in Europa und nicht zuletzt die Auswirkung der Entscheidung von E.on Ende 2014 haben die Gaswirtschaft bewegt. Gas weist die geringsten CO{sub 2}-Emissioen der fossilen Energietraeger auf. Flexibilitaet, Speicherbarkeit, Netzdienlichkeit sowie die Vielfalt in der Anwendung machen es zum idealen Partner der erneuerbaren Energien. Allerdings werden diese komplementaeren Eigenschaften zu Wind und Photovoltaik international und national unterschiedlich bewertet. Die Lage bei den Gaskraftwerken bleibt weiter angespannt. LNG - verfluessigtes Erdgas - ist auf dem Vormarsch.

  4. Gas hydrates stability zone thickness map of Indian deep offshore areas - A GIS based approach

    Digital Repository Service at National Institute of Oceanography (India)

    Rastogi, A.; Deka, B.; Bhattacharya, G.C.; Ramprasad, T.; KameshRaju, K.A.; Srinivas, K.; Murty, G.P.S.; Chaubey, A.K.; Ramana, M.V.; Subrahmanyam, V.; Sarma, K.V.L.N.S.; Desa, M.; Paropkari, A.L.; Menezes, A.A.A.; Murty, V.S.N.; Antony, M.K.; SubbaRaju, L.V.; Desa, E.; Veerayya, M.

    hydrate occurrence in offshore regions and around the Indian sub-continent. This was accomplished by estimating the gas hydrate stability zone (GHSZ) thickness from the saptial analysis of the physical parameters that control the formation and stability...

  5. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sá nchez, Marcelo; Gai, Xuerui; Santamarina, Carlos

    2016-01-01

    , hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical

  6. Natural gas : nirvana

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2001-01-01

    Despite completing 8,900 gas wells in year 2000, the deliverability of natural gas out of the Western Canadian Sedimentary Basin (WCSB) was stagnant which has left many analysts wondering whether the basin has reached its limit. It also leaves many wondering if gas producers will be able to meet the strong demand for natural gas in the future. Nearly all new electrical generation being built in the U.S. is gas-based due to strict new environmental standards limiting the growth in hydro and coal-powered generation. Any future coal plants will use gasification technology and combined cycle turbines. Combined cycle turbines developed by Boeing and Lockheed are more efficient than combustion turbines, making gas more competitive with fuel alternatives. The lack of growth in natural gas supply has left storage levels near record lows. Demand is expected to increase in 2001 by 3.2 per cent to 23 trillion cubic feet in the U.S. Longer term, major new reserves must be brought on stream to meet this demand. It was noted that the easy discoveries within the WCSB have been made. The new plays are smaller, more technically complex and expensive which suggests that more investment is needed in training geologists, geophysicists and petroleum engineers to find new reserves. The Canadian Energy Research Institute agrees that there is enough gas in Alberta and British Columbia to meet current demands but efforts must shift towards drilling in the foothills front and northwest regions of Alberta to increase deliverability. Brief notes on several gas finds by various oil and gas companies in the area were presented. The article also discussed the huge untapped potential of northern reserves. Analysts have noted 44 Tcf of proven reserve, with a potential of 165 Tcf. In addition, new pipelines from the Alaskan North Slope and the Mackenzie Delta could transport nearly 2 Tcf annually to market. Wells drilled by Chevron and Paramount at Fort Liard in 1999 initially flowed at rates up to

  7. FY 1998 annual report on the preliminary research and development of techniques for developing resources from gas-hydrate. Studies on gas-hydrate exploration, excavation techniques, methods for assessing environmental impacts, and gas hydrate handling systems; 1998 nendo gas hydrate shigenka gijutsu sendoken kaihatsu seika hokokusho. Tansanado ni kansuru kenkyu kaihatsu, kussaku gijutsu nado ni kansuru kenkyu kaihatsu, kankyo eikyo hyokaho no kenkyu kaihatsu, riyo system ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This R and D project is for the preliminary studies on development of the following 4 types of techniques for developing resources from gas-hydrates (GH): (1) gas-hydrate exploration, (2) excavation techniques, (3) methods for assessing environmental impacts, and (4) gas hydrate handling systems. The FY 1988 R and D results are described. For gas-hydrate exploration, the methods for analyzing inorganic ions and trace quantities of elements, which are necessary for accurately estimating the offshore GH around Japan, are established; and case studies are conducted for methods of predicting GH deposit forming mechanisms, and stability fields of GH, based on terrestrial heat flow and seismic data. For excavation techniques, GH decomposition rate is analyzed using a laboratory system which reproduces conditions of excavation of GH layers. For methods for assessing environmental impacts, a geo-hazard predicting model is established, to study ground displacement and gas leakage sensing systems and data transmission systems to cope with the hazards. For gas hydrate handling systems, an overall system is studied, and storage and transportation systems are outlined. (NEDO)

  8. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  9. Putting the Deep Biosphere on the Map for Oceanography Courses: Gas Hydrates As a Case Study for the Deep Biosphere

    Science.gov (United States)

    Sikorski, J. J.; Briggs, B. R.

    2014-12-01

    The ocean is essential for life on our planet. It covers 71% of the Earth's surface, is the source of the water we drink, the air we breathe, and the food we eat. Yet, the exponential growth in human population is putting the ocean and thus life on our planet at risk. However, based on student evaluations from our introductory oceanography course it is clear that our students have deficiencies in ocean literacy that impact their ability to recognize that the ocean and humans are inextricably connected. Furthermore, life present in deep subsurface marine environments is also interconnected to the study of the ocean, yet the deep biosphere is not typically covered in undergraduate oceanography courses. In an effort to improve student ocean literacy we developed an instructional module on the deep biosphere focused on gas hydrate deposits. Specifically, our module utilizes Google Earth and cutting edge research about microbial life in the ocean to support three inquiry-based activities that each explore different facets of gas hydrates (i.e. environmental controls, biologic controls, and societal implications). The relevant nature of the proposed module also makes it possible for instructors of introductory geology courses to modify module components to discuss related topics, such as climate, energy, and geologic hazards. This work, which will be available online as a free download, is a solid contribution toward increasing the available teaching resources focused on the deep biosphere for geoscience educators.

  10. Amount of gas hydrate estimated from compressional- and shear-wave velocities at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lee, M.W.

    1999-01-01

    The amount of in situ gas hydrate concentrated in the sediment pore space at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well was estimated by using compressional-wave (P-wave) and shear-wave (S-wave) downhole log measurements. A weighted equation developed for relating the amount of gas hydrate concentrated in the pore space of unconsolidated sediments to the increase of seismic velocities was applied to the acoustic logs with porosities derived from the formation density log. A weight of 1.56 (W=1.56) and the exponent of 1 (n=1) provided consistent estimates of gas hydrate concentration from the S-wave and the P-wave logs. Gas hydrate concentration is as much as 80% in the pore spaces, and the average gas hydrate concentration within the gas-hydrate-bearing section from 897 m to 1110 m (excluding zones where there is no gas hydrate) was calculated at 39.0% when using P-wave data and 37.8% when using S-wave data.

  11. Natural gas in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    de Voogd, J G

    1965-08-01

    In 1948, the first natural gas was found in Netherlands. Since 1951 it has been supplied by gas undertakings. Originally reserves were limited (c. 350 milliard ftU3D of dry gas in the NE. and c. 175 milliard ftU3D, mostly wet gas, in the SW). These finds have been completely overshadowed by the huge deposits discovered in 1960 in the province of Groningen near the village of Slochteren, these reserves being estimated now at 38.5 billion ftU3D at least. This gas is not of high cal val (894 Btu/ftU3D), but contains only traces of sulfur. The concession is being developed for a partnership formed by Shell (30%), Standard Oil Company of new Jersey (Esso, 30%), and ''Staatsmijnen,'' the Government owned Netherlands State Mining Industry (40%). The natural gas is destined, first, for domestic use, especially, for space heating, and secondly, for industrial purpose, after which important quantities will be available for export.

  12. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  13. Gas Hydrate Petroleum System Modeling in western Nankai Trough Area

    Science.gov (United States)

    Tanaka, M.; Aung, T. T.; Fujii, T.; Wada, N.; Komatsu, Y.

    2017-12-01

    Since 2003, we have been conducting Gas Hydrate (GH) petroleum system models covering the eastern Nankai Trough, Japan, and results of resource potential from regional model shows good match with the value depicted from seismic and log data. In this year, we have applied this method to explore GH potential in study area. In our study area, GH prospects have been identified with aid of bottom simulating reflector (BSR) and presence of high velocity anomalies above the BSR interpreted based on 3D migration seismic and high density velocity cubes. In order to understand the pathway of biogenic methane from source to GH prospects 1D-2D-3D GH petroleum system models are built and investigated. This study comprises lower Miocene to Pleistocene, deep to shallow marine sedimentary successions of Pliocene and Pleistocene layers overlain the basement. The BSR were interpreted in Pliocene and Pleistocene layers. Based on 6 interpreted sequence boundaries from 3D migration seismic and velocity data, construction of a depth 3D framework model is made and distributed by a conceptual submarine fan depositional facies model derived from seismic facies analysis and referring existing geological report. 1D models are created to analyze lithology sensitivity to temperature and vitrinite data from an exploratory well drilled in the vicinity of study area. The PSM parameters are applied in 2D and 3D modeling and simulation. Existing report of the explanatory well reveals that thermogenic origin are considered to exist. For this reason, simulation scenarios including source formations for both biogenic and thermogenic reaction models are also investigated. Simulation results reveal lower boundary of GH saturation zone at pseudo wells has been simulated with sensitivity of a few tens of meters in comparing with interpreted BSR. From sensitivity analysis, simulated temperature was controlled by different peak generation temperature models and geochemical parameters. Progressive folding

  14. Estimation of potential distribution of gas hydrate in the northern South China Sea

    Science.gov (United States)

    Wang, Chunjuan; Du, Dewen; Zhu, Zhiwei; Liu, Yonggang; Yan, Shijuan; Yang, Gang

    2010-05-01

    Gas hydrate research has significant importance for securing world energy resources, and has the potential to produce considerable economic benefits. Previous studies have shown that the South China Sea is an area that harbors gas hydrates. However, there is a lack of systematic investigations and understanding on the distribution of gas hydrate throughout the region. In this paper, we applied mineral resource quantitative assessment techniques to forecast and estimate the potential distribution of gas hydrate resources in the northern South China Sea. However, current hydrate samples from the South China Sea are too few to produce models of occurrences. Thus, according to similarity and contrast principles of mineral outputs, we can use a similar hydrate-mining environment with sufficient gas hydrate data as a testing ground for modeling northern South China Sea gas hydrate conditions. We selected the Gulf of Mexico, which has extensively studied gas hydrates, to develop predictive models of gas hydrate distributions, and to test errors in the model. Then, we compared the existing northern South China Sea hydrate-mining data with the Gulf of Mexico characteristics, and collated the relevant data into the model. Subsequently, we applied the model to the northern South China Sea to obtain the potential gas hydrate distribution of the area, and to identify significant exploration targets. Finally, we evaluated the reliability of the predicted results. The south seabed area of Taiwan Bank is recommended as a priority exploration target. The Zhujiang Mouth, Southeast Hainan, and Southwest Taiwan Basins, including the South Bijia Basin, also are recommended as exploration target areas. In addition, the method in this paper can provide a useful predictive approach for gas hydrate resource assessment, which gives a scientific basis for construction and implementation of long-term planning for gas hydrate exploration and general exploitation of the seabed of China.

  15. Venezuela natural gas outlook

    International Nuclear Information System (INIS)

    Silva, P.

    1991-01-01

    This paper reports on the natural gas outlook for Venezuela. First of all, it is very important to remember that in the last few years we have had frequent and unforeseen changes in the energy, ecological, geopolitical and economical fields which explain why all the projections of demand and prices for hydrocarbons and their products have failed to predict what later would happen in the market. Natural gas, with its recognized advantages over other traditional competitors such as oil, coal and nuclear energy, is identified as the component that is acquiring more weight in the energy equation, with a strengthening projection, not only as a resource that covers demand but as a key element in the international energy business. In fact, natural gas satisfies 21% of overall worldwide energy consumption, with an annual increase of 2.7% over the last few years, which is higher than the global energy growth of other fossil fuels. This tendency, which dates from the beginning of the 1980's, will continue with a possibility of increasing over the coming years. Under a foreseeable scenario, it is estimated that worldwide use of natural gas will increase 40% over the next 10 years and 75% on a longer term. Specifically for liquid methane (LNG), use should increase 60% during this last decade. The LPG increase should be moderate due to the limited demand until 1995 and to the stable trends that will continue its use until the end of this century

  16. Natural gas annual 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data for the Nation from 1930 to 1992, and by State from 1967 to 1992. The Supplement of this report presents profiles of selected companies

  17. Introduction to the Gas Hydrate Master Project of Energy National Science and Technology Program of Taiwan

    Science.gov (United States)

    Yang, T. F.; Research Team of Gas Hydrate Project of CGS of Taiwan

    2011-12-01

    Bottom Simulating Reflectors (BSRs), which have been considered as one of major indicators of the gas hydrate in sub-seafloor, have been detected and widely distributed in offshore SW Taiwan. The Central Geological Survey of Taiwan launched a 4-year multidisciplinary gas hydrate investigation program in 2004 to explore the potential of gas hydrate resources in the area. The results indicate that enormous amounts of gas hydrate should occur beneath the seafloor, although none of solid gas hydrate samples have been found. Therefore, a second stage of another 4-year program started in 2008 to extend the studies/investigation. In the ongoing projects, some specific areas will be studied in detail to assess the components of gas hydrate petroleum system and provide a better assessment of the energy resource potential of gas hydrate in the target area. In addition to the field investigations, phase equilibrium of gas hydrate via experiment, theoretical modeling, and molecular simulations has also been studied. The results can provide insights into gas hydrate production technology. Considering the high potential energy resources, the committee of the energy national science and technology program suggests initiating a master project to plan the strategy and timeline for the gas hydrate exploration, exploitation and production in Taiwan. The plan will be introduced in this presentation.

  18. Geochemical and geologic factors effecting the formulation of gas hydrate: Task No. 5, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kvenvolden, K.A.; Claypool, G.E.

    1988-01-01

    The main objective of our work has been to determine the primary geochemical and geological factors controlling gas hydrate information and occurrence and particularly in the factors responsible for the generation and accumulation of methane in oceanic gas hydrates. In order to understand the interrelation of geochemical/geological factors controlling gas hydrate occurrence, we have undertaken a multicomponent program which has included (1) comparison of available information at sites where gas hydrates have been observed through drilling by the Deep Sea Drilling Project (DSDP) on the Blake Outer Ridge and Middle America Trench; (2) regional synthesis of information related to gas hydrate occurrences of the Middle America Trench; (3) development of a model for the occurrence of a massive gas hydrate as DSDP Site 570; (4) a global synthesis of gas hydrate occurrences; and (5) development of a predictive model for gas hydrate occurrence in oceanic sediment. The first three components of this program were treated as part of a 1985 Department of Energy Peer Review. The present report considers the last two components and presents information on the worldwide occurrence of gas hydrates with particular emphasis on the Circum-Pacific and Arctic basins. A model is developed to account for the occurrence of oceanic gas hydrates in which the source of the methane is from microbial processes. 101 refs., 17 figs., 6 tabs.

  19. Thermodynamic Modeling of Natural Gas Systems Containing Water

    DEFF Research Database (Denmark)

    Karakatsani, Eirini K.; Kontogeorgis, Georgios M.

    2013-01-01

    As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium...... with a heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE...

  20. Gas Hydrate Investigations Using Pressure Core Analysis: Current Practice

    Science.gov (United States)

    Schultheiss, P.; Holland, M.; Roberts, J.; Druce, M.

    2006-12-01

    Recently there have been a number of major gas hydrate expeditions, both academic and commercially oriented, that have benefited from advances in the practice of pressure coring and pressure core analysis, especially using the HYACINTH pressure coring systems. We report on the now mature process of pressure core acquisition, pressure core handling and pressure core analysis and the results from the analysis of pressure cores, which have revealed important in situ properties along with some remarkable views of gas hydrate morphologies. Pressure coring success rates have improved as the tools have been modified and adapted for use on different drilling platforms. To ensure that pressure cores remain within the hydrate stability zone, tool deployment, recovery and on-deck handling procedures now mitigate against unwanted temperature rises. Core analysis has been integrated into the core transfer protocol and automated nondestructive measurements, including P-wave velocity, gamma density, and X-ray imaging, are routinely made on cores. Pressure cores can be subjected to controlled depressurization experiments while nondestructive measurements are being made, or cores can be stored at in situ conditions for further analysis and subsampling.

  1. Computational phase diagrams of noble gas hydrates under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Teeratchanan, Pattanasak, E-mail: s1270872@sms.ed.ac.uk; Hermann, Andreas, E-mail: a.hermann@ed.ac.uk [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-I{sub h}, ice-I{sub c}, ice-II, and C{sub 0} interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C{sub 0} water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C{sub 0} hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.

  2. Repowering with natural gas

    International Nuclear Information System (INIS)

    Wilkinson, P.L.

    1992-01-01

    This chapter examines the concept of combined-cycle repowering with natural gas as one possible solution to the impending dilemma facing electric utilities - tight capacity margins in the 1990s and the inordinate expense of traditional powerplants. Combined-cycle repowering refers to the production of electricity through the integration of new and used equipment at an existing site, with the final equipment configuration resembling a new gas-fired combined-cycle unit (i.e., gas turbine, waste heat recovery unit and steam turbine/generator). Through the utilization of improved waste heat recovery and gas-fired equipment, repowering provides both additional capacity and increased generating efficiency. Three modes of repowering are considered: (1) peak turbine repowering refers to the addition of a steam turbine and heat recovery unit to an existing gas turbine, with the efficiency improvement allowing the unit to convert from peaking to baseload operation; (2) heat recovery repowering is the replacement of an old coal boiler with a gas turbine and heat recovery unit, leaving the existing steam turbine in place; and (3) boiler repowering, in which the exhaust from a new gas turbine is fed into an existing coal boiler, replacing existing forced-draft fans and air heaters. These three options are compared with the option of adding new coal-fired boilers on the basis of economics, energy efficiency and environmental impacts

  3. Dissociation behavior of pellet shaped mixed gas hydrate samples that contain propane as a guest

    International Nuclear Information System (INIS)

    Kawamura, Taro; Sakamoto, Yasuhide; Ohtake, Michika; Yamamoto, Yoshitaka; Komai, Takeshi; Haneda, Hironori; Yoon, Ji-Ho; Ohga, Kotaro

    2006-01-01

    The dissociation kinetics of mixed gas hydrates that contain propane as a guest molecule have been investigated. The mixed gas hydrates used in this work were artificially prepared using the binary gas mixture of methane-propane and the ternary gas mixture of methane-ethane-propane. The crystal structures and the guest compositions of the mixed hydrates were clearly identified by using Raman spectroscopy and gas chromatography. The dissociation rates of the gas hydrates observed under several isothermal and isobaric conditions were discussed with an analytical model. The isobaric conditions were achieved by pressurizing with mixed gases using buffer cylinders, which had similar compositions to those of the initial gases used for synthesizing each hydrate sample. Interestingly, the calculated result agreed well with the experimentally observed results only when the composition of the vapor phase was assumed to be identical with that of the hydrate phase instead of the bulk (equilibrium) gas composition

  4. Fluid flow and methane occurrences in the Disko Bugt area offshore West Greenland: indications for gas hydrates?

    Science.gov (United States)

    Nielsen, Tove; Laier, Troels; Kuijpers, Antoon; Rasmussen, Tine L.; Mikkelsen, Naja E.; Nørgård-Pedersen, Niels

    2014-12-01

    The present study is the first to directly address the issue of gas hydrates offshore West Greenland, where numerous occurrences of shallow hydrocarbons have been documented in the vicinity of Disko Bugt (Bay). Furthermore, decomposing gas hydrate has been implied to explain seabed features in this climate-sensitive area. The study is based on archive data and new (2011, 2012) shallow seismic and sediment core data. Archive seismic records crossing an elongated depression (20×35 km large, 575 m deep) on the inner shelf west of Disko Bugt (Bay) show a bottom simulating reflector (BSR) within faulted Mesozoic strata, consistent with the occurrence of gas hydrates. Moreover, the more recently acquired shallow seismic data reveal gas/fluid-related features in the overlying sediments, and geochemical data point to methane migration from a deeper-lying petroleum system. By contrast, hydrocarbon signatures within faulted Mesozoic strata below the strait known as the Vaigat can be inferred on archive seismics, but no BSR was visible. New seismic data provide evidence of various gas/fluid-releasing features in the overlying sediments. Flares were detected by the echo-sounder in July 2012, and cores contained ikaite and showed gas-releasing cracks and bubbles, all pointing to ongoing methane seepage in the strait. Observed seabed mounds also sustain gas seepages. For areas where crystalline bedrock is covered only by Pleistocene-Holocene deposits, methane was found only in the Egedesminde Dyb (Trough). There was a strong increase in methane concentration with depth, but no free gas. This is likely due to the formation of gas hydrate and the limited thickness of the sediment infill. Seabed depressions off Ilulissat Isfjord (Icefjord) previously inferred to express ongoing gas release from decomposing gas hydrate show no evidence of gas seepage, and are more likely a result of neo-tectonism.

  5. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    . This review presents the various types of water soluble polymers used for hydrate inhibition, including conventional and novel polymeric inhibitors along with their limitations. The review covers the relevant properties of vinyl lactam, amide, dendrimeric, fluorinated, and natural biodegradable polymers....... The factors affecting the performance of these polymers and the structure-property relationships are reviewed. A comprehensive review of the techniques used to evaluate the performance of the polymeric inhibitors is given. This review also addresses recent developments, current and future challenges...

  6. Western Australian natural gas

    International Nuclear Information System (INIS)

    Harman, Frank

    1994-01-01

    Western Australia has 80% of Australia's natural gas resources. These are currently exploited to supply the Western Australian market and LNG to Japan. Growth in the market is dependent on limited prospects for power generation and mineral resource processing. Future exploitation of gas resources will require new export LNG markets and/or the installations of a transcontinental pipeline to eastern Australia. The transcontinental option should only be considered after other options for energy supply in eastern Australia are eliminated. Competition to meet market growth in North-east Asia will be considerable and Australia lacks the policies to underpin future LNG capacity. (author)

  7. Natural gas technology

    International Nuclear Information System (INIS)

    Todaro, J.M.; Herbert, J.H.

    1997-01-01

    This presentation is devoted to a discussion regarding current and planned US fossil energy research and development for fiscal years 1996, 1997 and 1998. The principal focus of research in the immediate future will be: clean coal fuels, natural gas and oil exploration and production, especially reservoir life extension, advanced drilling completion and stimulation systems, advanced diagnostics and imaging systems, environmental compliance in technology development, regulatory streamlining and risk assessment. Program goals to 2010 were summarized as: increasing domestic oil and gas recovery; increasing recoverable reserves; decreasing cumulative industry environmental compliance costs; increasing revenues to the federal government; saving jobs in the U.S

  8. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  9. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    Science.gov (United States)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  10. Experimental determination of methane hydrate formation in the presence of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.B.; Wang, L.Y.; Liu, A.X.; Guo, X.Q.; Chen, G.J.; Ma, Q.L.; Li, G.W. [China Univ. of Petroleum, Beijng (China). State Key Laboratory of Heavy Oil Processing

    2008-07-01

    Gas hydrates are non-stoichiometric inclusion compounds that are created by a lattice of water molecules. The host molecule has a strong hydrogen bond and encages low molecular weight gases or volatile liquids. The guest molecules favor hydrate formation. Historically, gas hydrates have been thought to be problematic during natural gas transportation because the formed solid hydrate can block pipelines and cause tubing and casing collapse. However, the discovery of huge deposits of gas hydrates in deep-sea sediments and in permafrost has renewed interest in gas hydrates as a new energy resource. This paper discussed a study that is a part of an ongoing experimental and computational program dealing with the thermodynamics of gas hydrate formation in ammonia-water systems. The purpose of the study was to develop a new method to separate and recycle the vent gas of ammonia synthesis by forming or dissociating hydrate. The hydrate-forming conditions of methane in ammonia and water system were studied and reported in this paper with reference to the experimental apparatus and procedure. The materials and preparation of samples were also explained. The experimental results showed that the ammonia had an inhibitive effect on the hydrate formation. 26 refs., 2 tabs., 3 figs.

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  12. Experimental Study on Hydrate Induction Time of Gas-Saturated Water-in-Oil Emulsion using a High-Pressure Flow Loop

    Directory of Open Access Journals (Sweden)

    Lv X.F.

    2015-11-01

    Full Text Available Hydrate is one of the critical precipitates which have to be controlled for subsea flow assurance. The induction time of hydrate is therefore a significant parameter. However, there have been few studies on the induction time of the natural gas hydrate formation in a flow loop system. Consequently, a series of experiments were firstly performed, including water, natural gas and Diesel oil, on the hydrate induction time under various conditions such as the supercooling and supersaturation degree, water cut, anti-agglomerant dosage, etc. The experiments were conducted in a high-pressure hydrate flow loop newly constructed in the China University of Petroleum (Beijing, and dedicated to flow assurance studies. Then, based on previous research, this study puts forward a method for induction time, which is characterized by clear definition, convenient measurement and good generality. Furthermore, we investigated the influences of the experimental parameters and analyzed the experimental phenomena for the hydrate induction time in a flowing system.

  13. Highlights and Opportunities from Continuous Access to Gas Hydrates Sites at Ocean Networks Canada's NEPTUNE Observatory

    Science.gov (United States)

    Scherwath, M.; Heesemann, M.; Riedel, M.; Thomsen, L.; Roemer, M.; Chatzievangelou, D.; Purser, A.

    2017-12-01

    Since 2009 Ocean Networks Canada provides permanent access and continuous data in near real-time from two prominent gas hydrates research sites at the Northern Cascadia Margin, Barkley Canyon and Clayoquot Slope off Vancouver Island, through power and communication cables directly from shore. We show data highlights from the seafloor crawler Wally, the world's first internet operated vehicle, in a field of hydrate mounds and outcropping gas hydrates, and its co-located sonars and state-of-the-ocean sensors and Barkley Canyon. For example, spectacular views from the benthic communities and their changes over time are captured by video. At Clayoquot Slope highly active gas seep fields are monitored with a rotating multibeam sonar and various other environmental sensors. In addition, newly installed geodetic sensors as well as an instrumented borehole in that area are now online and provide additional data on subduction-related deformation and potential links to gas discharge. These show-case examples highlight the benefits of co-located experiments that enable interdisciplinary research and also the ability for high-power and -bandwidth long-term monitoring at remote seafloor locations, that over time will provide baselines for environmental monitoring together with natural variability and potential long-term trends.

  14. Petroleum and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    060,

    1965-02-01

    Substantial increases in demand for Canadian petroleum and natural gas in both domestic and export markets resulted in another good year throughout the main sectors of the industry. In February, production averaged 850,000 bpd, or about 8% more than 1963 output of crude oil and natural gas liquids. Construction began on the first full scale plant for the extraction of oil from the Athabasca bituminous sands. In 1964, exploratory and development drilling in western Canada increased 10% from the previous year. A total of 15.5 million ft was drilled, the largest since the record drilling year of 1956. The main oil field development areas in Alberta were the House Mountain, Deer Mountain and Goose River Fields, and the Bantry-Taber heavy oil region in southeastern Alberta. Oil reserves were increased substantially by waterflood pressure maintenance projects in many of the older oil fields. The largest oil accumulation discovered in 1964 was the Syvia-Honda Field in the Devonian Gilwood sandstone in N.-central Alberta. Two graphs illustrate the crude petroleum in Canada in millions of barrels from 1940 to 1964, and natural gas in Canada in billions of cu ft from 1950 to 1964. The outlook for the industry in 1965 is good.

  15. Heat flow pattern in the gas hydrate drilling areas of northern south china sea and the implication for further study

    Science.gov (United States)

    Wang, Lifeng; Sha, Zhibin

    2015-04-01

    observations bring new insights to our growing understanding of the stability of this dynamic hydrate reservoir in the continental margin shallow subsurface, and alert us that occurrence patterns may be more complex than previously thought. So the future aim of this program is to better understand the factors constraining the distribution of hydrate deposits, and the processes involved in gas hydrate formation.

  16. Application of gas hydrate formation in separation processes: A review of experimental studies

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali; Mohammadi, Amir H.; Richon, Dominique; Naidoo, Paramespri; Ramjugernath, Deresh

    2012-01-01

    Highlights: ► Review of gas hydrate technology applied to separation processes. ► Gas hydrates have potential to be a future sustainable separation technology. ► More theoretical, simulation, and economic studies needed. - Abstract: There has been a dramatic increase in gas hydrate research over the last decade. Interestingly, the research has not focussed on only the inhibition of gas hydrate formation, which is of particular relevance to the petroleum industry, but has evolved into investigations on the promotion of hydrate formation as a potential novel separation technology. Gas hydrate formation as a separation technology shows tremendous potential, both from a physical feasibility (in terms of effecting difficult separations) as well as an envisaged lower energy utilization criterion. It is therefore a technology that should be considered as a future sustainable technology and will find wide application, possibly replacing a number of current commercial separation processes. In this article, we focus on presenting a brief description of the positive applications of clathrate hydrates and a comprehensive survey of experimental studies performed on separation processes using gas hydrate formation technology. Although many investigations have been undertaken on the positive application of gas hydrates to date, there is a need to perform more theoretical, experimental, and economic studies to clarify various aspects of separation processes using clathrate/semi-clathrate hydrate formation phenomena, and to conclusively prove its sustainability.

  17. Natural gas monthly, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  18. Alternative ways to transport natural gas; Transporte alternativo de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Moura, N.R.; Campos, F.B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The Brazilian energy matrix has been showing a huge increase in the demand of natural gas due mainly to industries and power plants. Today the Brazilian gas market is supplied with gas produced by PETROBRAS and imported from Bolivia. To increase the Brazilian gas supply, on the short and middle term, PETROBRAS will import LNG (liquefied natural gas) and exploit the new offshore fields discovered on the pre-salt area. The only proven technology available today to bring this offshore gas to the market is the pipeline, but its costs for the pre-salt area are high enough to keep the solution economically attractive. So, PETROBRAS are evaluating and developing alternative ways to transport offshore gas, such as LNG, CNG (Compressed Natural Gas), GTS (Gas-to-Solids or Natural Gas Hydrates) and ANG (Adsorbed Natural Gas). Using information available in the literature, this paper analyses the main concepts of CNG and LNG floating unities. This paper also presents the PETROBRAS R and D results on ANG and GTS aiming at offshore application. (author)

  19. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    Science.gov (United States)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep

  20. Potential impact on climate of the exploitation of methane hydrate deposits offshore

    Digital Repository Service at National Institute of Oceanography (India)

    Glasby, G.P.

    . Brewer (2000) has identified two examples, one in the Eel River Basin off the coast of northern California (Brooks, Field, & Kennicutt, 1991) and the other in the Gulf of Mexico (MacDonald et al., 1994), where the methane hydrate deposits lie almost... of Mexico (an example of the structural type of deposit) are potentially the most attractive deposits economically. In particular, it was considered that devel- opment costs for these deposits would be low because the accumulations are located at relatively...

  1. Report on the research and development achievements in fiscal 1999 on the international research cooperation project for comprehensive development and utilization technologies for gas hydrate resources; 1999 nendo gas hydrate shigen no energy sogo kaihatsu riyo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper reports the achievements in fiscal 1999 on development of gas hydrate resources. As a result of synthesizing gas hydrates in deposit systems, identifying stability zones in compositions, and studying thermal conductivity and dielectric constant of the deposits, the estimation accuracy has been enhanced steadily in estimating hydrate existing areas in actual frost areas. In the collecting technologies, a proposal was presented for a system by which carbon dioxide is introduced into ground beds at the same time as recovering gases, and gas hydrates are displaced with carbon dioxide hydrates. The displacement phenomenon was verified experimentally by controlling temperatures and pressures. Even below the freezing point, the production rate of the carbon dioxide hydrates is fast if it is above minus 4 degrees C. Salt diffusion behavior important in control of the production and decomposition, and action mechanisms of production and suppression agents were made clear microscopically. Experimental and theoretical discussions were given on dynamics of the production and decomposition. The cage occupation rate of methane hydrates was quantitatively measured successfully by using the Raman spectroscopy. Hydrates of gas mixture were utilized to have verified the possibility of separating the gas mixture constituents. (NEDO)

  2. Insights into Gulf of Mexico Gas Hydrate Study Sites GC955 and WR313 from New Multicomponent and High-Resolution 2D Seismic Data

    Science.gov (United States)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2014-12-01

    In 2013, the U.S. Geological Survey led a seismic acquisition expedition in the Gulf of Mexico, acquiring multicomponent data and high-resolution 2D multichannel seismic (MCS) data at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313). Based on previously collected logging-while-drilling (LWD) borehole data, these gas hydrate study sites are known to include high concentrations of gas hydrate within sand layers. At GC955 our new 2D data reveal at least three features that appear to be fluid-flow pathways (chimneys) responsible for gas migration and thus account for some aspects of the gas hydrate distribution observed in the LWD data. Our new data also show that the main gas hydrate target, a Pleistocene channel/levee complex, has an areal extent of approximately 5.5 square kilometers and that a volume of approximately 3 x 107 cubic meters of this body lies within the gas hydrate stability zone. Based on LWD-inferred values and reasonable assumptions for net sand, sand porosity, and gas hydrate saturation, we estimate a total equivalent gas-in-place volume of approximately 8 x 108 cubic meters for the inferred gas hydrate within the channel/levee deposits. At WR313 we are able to map the thin hydrate-bearing sand layers in considerably greater detail than that provided by previous data. We also can map the evolving and migrating channel feature that persists in this area. Together these data and the emerging results provide valuable new insights into the gas hydrate systems at these two sites.

  3. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  4. Natural gas powered bus

    International Nuclear Information System (INIS)

    Ambuehl, D.; Fernandez, J.

    2003-01-01

    This report for the Swiss Federal Office of Energy presents the results of a project carried out by the Swiss Federal Institute of Technology in Zurich to evaluate the performance of a natural-gas-powered bus in comparison with two diesel buses. The report provides details on the vehicles, their routes and the results of interviews made with both passengers and drivers. Details of measurements made on fuel consumption and pollutant emissions are presented in tabular and graphical form, as are those made on noise emissions inside and outside the vehicles. The conclusions of the project are presented including economic aspects of using gas as a motor fuel. Also, the views of passengers, who were more concerned with comfort aspects, and drivers, who were more interested in technical aspects, are quoted

  5. Who's afraid of natural gas?

    International Nuclear Information System (INIS)

    Patterson, W.

    1999-01-01

    Changes in our electricity systems provoked by natural gas power generation technology are paving the way for large-scale renewables use in the future. Natural gas and gas turbines are now such a cheap and easy option for electricity generation that they appear to cast a pall over renewables. The market share of gas-fired generation continues expanding inexorably. Its cost continues to fall, setting renewables an ever more demanding competitive target. Nevertheless, paradoxical though this may sound, natural gas is actually the natural ally of renewables. Despite the fierce competitive challenge it represents, natural gas may even be the most important single factor shaping a bright future for renewables. (author)

  6. Natural gas monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  7. Multicomponent seismic methods for characterizing gas hydrate occurrences and systems in deep-water Gulf of Mexico

    Science.gov (United States)

    Haines, Seth S.; Lee, Myung W.; Collett, Timothy S.; Hardage, Bob A.

    2011-01-01

    In-situ characterization and quantification of natural gas hydrate occurrences remain critical research directions, whether for energy resource, drilling hazard, or climate-related studies. Marine multicomponent seismic data provide the full seismic wavefield including partial redundancy, and provide a promising set of approaches for gas hydrate characterization. Numerous authors have demonstrated the possibilities of multicomponent data at study sites around the world. We expand on this work by investigating the utility of very densely spaced (10’s of meters) multicomponent receivers (ocean-bottom cables, OBC, or ocean-bottom seismometers, OBS) for gas hydrate studies in the Gulf of Mexico and elsewhere. Advanced processing techniques provide high-resolution compressional-wave (PP) and converted shearwave (PS) reflection images of shallow stratigraphy, as well as P-wave and S-wave velocity estimates at each receiver position. Reflection impedance estimates can help constrain velocity and density, and thus gas hydrate saturation. Further constraint on velocity can be determined through identification of the critical angle and associated phase reversal in both PP and PS wideangle data. We demonstrate these concepts with examples from OBC data from the northeast Green Canyon area and numerically simulated OBS data that are based on properties of known gas hydrate occurrences in the southeast (deeper water) Green Canyon area. These multicomponent data capabilities can provide a wealth of characterization and quantification information that is difficult to obtain with other geophysical methods.

  8. Liquid Natural Gas

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    After a brief introduction on the origins of the Liquid Natural Gas (LNG) industry the production and transportation of LNG are discussed. Special attention is paid to the importance of the safety aspect during every activity or handling of LNG. Next the most important trade flows for LNG are dealt with. Two zones can be distinguished: the western part of the Pacific and the Atlantic basin. Subsequently the main aspects of a LNG-project are mentioned, as well as the success factors. Finally the prospects for the LNG-industry are reviewed. 11 figs

  9. Possible gas hydrates on the Bjarmeland Platform; seismic expression and stability modelling

    OpenAIRE

    Løvaas, John Sverre

    2016-01-01

    Seismic evidence of shallow gas anomalies are prominent at Ververis Dome structure and Hoop Fault Complex in Bjarmeland Platform. Ubiquitous high amplitude anomalies at the same depth as these shallow gas anomalies infer a possible relation to gas hydrates. A wide range of fluid flow structures within the two study areas have previously been discovered and reported, and may possibly feed the base of the gas hydrate stability zone (BGHSZ) with upward migrating thermogenic gas. This thesis f...

  10. Natural gas monthly, October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  11. Natural gas monthly, May 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  12. Natural gas monthly, June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  13. Natural gas monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  14. Natural gas monthly, November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information

  15. Influence of surfactants on gas-hydrate formation' kinetics in water-oil emulsion

    Science.gov (United States)

    Zemenkov, Yu D.; Shirshova, A. V.; Arinstein, E. A.; Shuvaev, A. N.

    2018-05-01

    The kinetics of gas hydrate formation of propane in a water-oil emulsion is experimentally studied when three types of surfactants (SAA (surface acting agent)) - anionic type emulsifiers - are added to the aqueous phase. It is shown that all three types of surfactants decelerate the growth of the gas-hydrate in the emulsion and can be considered as anti-agglutinating and kinetic low-dose inhibitors. The most effective inhibitor of hydrate formation in water-oil emulsion of SV-102 surfactant was revealed. For comparison, experimental studies of gas-hydrate formation under the same conditions for bulk water have been carried out. It is shown that in bulk water, all the surfactants investigated act as promoters (accelerators) of hydrate formation. A qualitative explanation of the action mechanisms of emulsifiers in the process of gas-hydrate formation in water-oil emulsion is given.

  16. Natural gas for vehicles (NGV)

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities. (author)

  17. Assessment of Gas Production Potential from Hydrate Reservoir in Qilian Mountain Permafrost Using Five-Spot Horizontal Well System

    Directory of Open Access Journals (Sweden)

    Yun-Pei Liang

    2015-09-01

    Full Text Available The main purpose of this study is to investigate the production behaviors of gas hydrate at site DK-2 in the Qilian Mountain permafrost using the novel five-spot well (5S system by means of numerical simulation. The whole system is composed of several identical units, and each single unit consists of one injection well and four production wells. All the wells are placed horizontally in the hydrate deposit. The combination method of depressurization and thermal stimulation is employed for hydrate dissociation in the system. Simulation results show that favorable gas production and hydrate dissociation rates, gas-to-water ratio, and energy ratio can be acquired using this kind of multi-well system under suitable heat injection and depressurization driving forces, and the water production rate is manageable in the entire production process under current technology. In addition, another two kinds of two-spot well (2S systems have also been employed for comparison. It is found that the 5S system will be more commercially profitable than the 2S configurations for gas production under the same operation conditions. Sensitivity analysis indicates that the gas production performance is dependent on the heat injection rate and the well spacing of the 5S system.

  18. HYFLUX: Satellite Exploration of Natural Hydrocarbon Seeps and Discovery of a Methane Hydrate Mound at GC600

    Science.gov (United States)

    Garcia-Pineda, O. G.; MacDonald, I. R.; Shedd, W.; Zimmer, B.

    2009-12-01

    Analysis of natural hydrocarbon seeps is important to improve our understanding of methane flux from deeper sediments to the water column. In order to quantify natural hydrocarbon seep formations in the Northern Gulf of Mexico, a set of 686 Synthetic Aperture Radar (SAR) images was analyzed using the Texture Classifying Neural Network Algorithm (TCNNA), which processes SAR data to delineate oil slicks. This analysis resulted in a characterization of 396 natural seep sites distributed in the northern GOM. Within these sites, a maximum of 1248 individual vents where identified. Oil reaching the sea-surface is deflected from its source during transit through the water column. This presentation describes a method for estimating locations of active oil vents based on repeated slick detection in SAR. One of the most active seep formations was detected in MMS lease block GC600. A total of 82 SAR scenes (collected by RADARSAT-1 from 1995 to 2007) was processed covering this region. Using TCNNA the area covered by each slick was computed and Oil Slicks Origins (OSO) were selected as single points within detected oil slicks. At this site, oil slick signatures had lengths up to 74 km and up to 27 km^2 of area. Using SAR and TCNNA, four active vents were identified in this seep formation. The geostatistical mean centroid among all detections indicated a location along a ridge-line at ~1200m. Sea truth observations with an ROV, confirmed that the estimated location of vents had a maximum offset of ~30 m from their actual locations on the seafloor. At the largest vent, a 3-m high, 12-m long mound of oil-saturated gas hydrate was observed. The outcrop contained thousands of ice worms and numerous semi-rigid chimneys from where oily bubbles were escaping in a continuous stream. Three additional vents were found along the ridge; these had lower apparent flow, but were also plugged with gas hydrate mounds. These results support use of SAR data for precise delineation of active seep

  19. Oil and natural gas

    International Nuclear Information System (INIS)

    Hamm, Keith

    1992-01-01

    The two major political events of 1991 produced a much less dramatic reaction in the global oil industry than might have been expected. The economic dislocation in the former USSR caused oil production to fall sharply but this was largely offset by a concurrent fall in demand. Within twelve months of the invasion of Kuwait, crude oil prices had returned to their pre-invasion level; there was no shortage of supply due to the ability of some producers to boost their output rapidly. Details are given of world oil production and developments in oil demand. Demand stagnated in 1991 due to mainly to the economic chaos in the former USSR and a slowdown in sales in the USA; this has produced problems for the future of the refining industry. By contrast, the outlook for the natural gas industry is much more buoyant. Most clean air or carbon emissions legislation is designed to promote the use of gas rather than other hydrocarbons. World gas production rose by 1.5% in 1991; details by production on a country by country basis are given. (UK)

  20. Prediction of gas hydrate saturation throughout the seismic section in Krishna Godavari basin using multivariate linear regression and multi-layer feed forward neural network approach

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, Y.; Nair, R.R.; Singh, H.; Datta, P.; Jaiswal, P.; Dewangan, P.; Ramprasad, T.

    , Goldberg DS, Malinverno A (2014) Natural gas hydrates oc- cupying fractures: a focus on non-vent sites on the Indian continen- tal margin and the northern Gulf of Mexico. Mar Pet Geol 58:278– 291 Dafflon B, Barrash W (2012) 3-D stochastic estimation..., Collett TS (2012) Pore-and fracture-filling gas hydrate reser- voirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955 H well. Mar Pet Geol 34:62–71 Lu S, McMechan GA (2004) Elastic imdedance inversion of multichan- nel...

  1. Iron and Sulfur Species and Sulfur Isotopic Compositions of Authigenic Pyrite in Gas Hydrate-Bearing Sediments from Hydrate Ridge, Cascadia Margin (ODP Leg 204): A Proposal of Conceptual Models to Indicate the Non-Steady State Depositional and Diagenetic Processes

    Science.gov (United States)

    Liu, C.; Jiang, S. Y.; Su, X.

    2017-12-01

    Two accretionary sediment sequences from Sites 1245 and 1252 recovered during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge, Cascadia Margin were investigated to explore the non-steady state depositional and diagenetic history. Five iron species and three sulfur species were chemically extracted, and their concentrations and the sulfur isotopic compositions of pyrite were determined. After the mineral recognitions of these species and detailed comparative analyses, the aerobic history of bottom seawater has been determined. The formation of pyrite is thought to be controlled by the limited production of hydrogen sulfide relative to the supply of reactive iron. Also, the intrusion of oxygen by bioturbation would oxidize the reduced sulfur species and further suppress pyritization. To explain the geochemical relationship between pyrite and siderite and the sulfur isotope characteristics of pyrite, we propose seven conceptual models based on the variations in depositional rate and methane flux, and the models succeed in explaining the geochemical results and are validated by the observed non-steady state events. These models may contribute to the reconstruction of the non-steady state processes in other research areas in the future.

  2. The natural gas storage in France and in Europe

    International Nuclear Information System (INIS)

    2006-02-01

    The natural gas storages play a great role in the gas supplying security. They allow to compensate for the variations of the supply and demand. This document presents the different natural gas storage technic: in the phreatic cave, in salt hollows, in abandoned deposits and the natural liquefied gas. It includes also a map of the natural gas storage situation in France. (A.L.B.)

  3. Radon gas in oil and natural gas production facilities

    International Nuclear Information System (INIS)

    Chandler, W.P.

    1994-01-01

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it's decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs

  4. Changes in structure and preferential cage occupancy of ethane hydrate and ethane-methane mixed gas hydrate under high pressure

    International Nuclear Information System (INIS)

    Hirai, H; Takahara, N; Kawamura, T; Yamamoto, Y; Yagi, T

    2010-01-01

    Structural changes and preferential cage occupancies were examined for ethane hydrate and ethane-methane mixed gas hydrates with five compositions in a pressure range of 0.2 to 2.8 GPa at room temperature. X-ray diffractometry and Raman spectroscopy showed the following structural changes. The initial structure, structure I (sI), of ethane hydrate was retained up to 2.1 GPa without any structural change. For the mixed hydrates, sI was widely distributed throughout the region examined except for the methane-rich and lower pressure regions, where sII and sH appeared. Above 2.1 GPa ethane hydrate and all of the mixed hydrates decomposed into ice VI and ethane fluid or methane-ethane fluid, respectively. The Raman study revealed that occupation of the small cages by ethane molecules occurred above 0.1 GPa in ethane hydrate and continued up to decomposition at 2.1 GPa, although it was thought that ethane molecules were contained only in the large cage.

  5. Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems

    Energy Technology Data Exchange (ETDEWEB)

    Daigle, Hugh; Nole, Michael; Cook, Ann; Malinverno, Alberto

    2017-12-14

    In marine environments, gas hydrate preferentially accumulates in coarse-grained sediments. At the meso- to micro-scale, however, hydrate distribution in these coarse-grained units is often heterogeneous. We employ a methane hydrate reservoir simulator coupling heat and mass transfer as well as capillary effects to investigate how capillary controls on methane solubility affect gas and hydrate accumulations in reservoirs characterized by graded bedding and alternating sequences of coarse-grained sands and fine-grained silt and clay. Simulations bury a channelized reservoir unit encased in homogeneous, fine-grained material characterized by small pores (150 nm) and low permeability (~1 md in the absence of hydrate). Pore sizes within each reservoir bed between vary between coarse sand and fine silt. Sands have a median pore size of 35 microns and a lognormal pore size distribution. We also investigate how the amount of labile organic carbon (LOC) affects hydrate growth due to microbial methanogenesis within the sediments. In a diffusion-dominated system, methane movies into reservoir layers along spatial gradients in dissolved methane concentration. Hydrate grows in such a way as to minimize these concentration gradients by accumulating slower in finer-grained reservoir layers and faster in coarser-grained layers. Channelized, fining-upwards sediment bodies accumulate hydrate first along their outer surfaces and thence inward from top to bottom. If LOC is present in thin beds within the channel, higher saturations of hydrate will be distributed more homogeneously throughout the unit. When buried beneath the GHSZ, gas recycling can occur only if enough hydrate is present to form a connected gas phase upon dissociation. Simulations indicate that this is difficult to achieve for diffusion-dominated systems, especially those with thick GHSZs and/or small amounts of LOC. However, capillary-driven fracturing behavior may be more prevalent in settings with thick GHSZs.

  6. Natural gas monthly, August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  7. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  8. Natural gas monthly, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  9. Natural gas monthly, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  10. Relating gas hydrate saturation to depth of sulfate-methane transition

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    The stability of gas hydrates which often form in pore spaces of marine sediment along continental margins, depends on temperature, pressure, salinity and gas composition. Gas hydrate can precipitate in pore space of marine sediment when gas concentrations exceed solubility conditions within a gas hydrate stability zone (GHSZ). The amount of gas hydrate present in the GHSZ can vary significantly because it relates to dynamic inputs and outputs of gas, primarily methane, over a long timescale. In anoxic marine sediments, depletion of pore water sulfate occurs when sulfate is reduced through bacteria or when anaerobic oxidation of methane occurs. The presence of gas hydrates in shallow sediments implies a significant methane flux towards the seafloor, which can make the second route for sulfate depletion significant. This paper presented a numerical model that incorporates a dynamic sulfate-methane transition (SMT) for gas hydrate systems where methane is supplied from depth. The approach has the advantage of needing only pore water data from shallow piston cores. The analytical expressions are only valid for steady-state systems in which all gas is methane, all methane enters the GHSZ from the base, and no methane escapes the top through seafloor venting. These constraints mean that anaerobic oxidation of methane (AOM) is the only sink of gas, allowing a direct coupling of SMT depth to net methane flux. This study showed that a basic gas hydrate saturation profile can be determined from the SMT depth via analytical expressions if site-specific parameters such as sedimentation rate, methane solubility and porosity are known. This analytical model was verified at gas hydrate bearing sites along the Cascadia margin where methane is mostly sourced from depth. It was concluded that the analytical expressions provides a fast and convenient method to calculate gas hydrate saturation for a given geologic setting, including deep-source systems. 28 refs., 2 tabs., 5 figs., 1

  11. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  12. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  13. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    Science.gov (United States)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water

  14. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.

    Science.gov (United States)

    Wallmann, Klaus; Riedel, M; Hong, W L; Patton, H; Hubbard, A; Pape, T; Hsu, C W; Schmidt, C; Johnson, J E; Torres, M E; Andreassen, K; Berndt, C; Bohrmann, G

    2018-01-08

    Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.

  15. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    Directory of Open Access Journals (Sweden)

    Span Roland

    2012-04-01

    Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  16. Handling of natural occurring radioactive deposits in the oil and gas industry in Norway, United Kingdom and the Netherlands; Haandtering av radioaktive avleiringer i olje- og gassproduksjon i Norge, Storbritania og Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Lysebo, I.; Tufto, P

    1999-03-01

    Deposits containing naturally occurring radioactive materials is an increasing problem in oil and gas production. Laws and regulations in thisarea is under preparation, and it is a wish for harmonization with the other oil and gas producing countries in the North Sea. The report gives an overview of amounts of waste and activity levels, decontamination methods and waste handling in Norway, Great Britain and the Netherlands.

  17. Liquefied Natural Gas Transfer

    Science.gov (United States)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  18. Velocity and AVO analysis for the investigation of gas hydrate along a profile in the western continental margin

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Ramprasad, T.

    The occurrence of gas hydrate has been inferred from the presence of Bottom-Simulating Reflectors (BSRs) along the western continental margin of India. In this paper, we assess the spatial and vertical distribution of gas hydrates by analyzing...

  19. Turkey and natural gas

    International Nuclear Information System (INIS)

    Yardim, G.

    1992-01-01

    Turkey is a developing country with a population of 56 millions and approximately $ 2604 per capita income. Geographically she is located among the energy rich countries whereas almost half of her energy requirement is met by imports. Turkey is relatively well endowed with hydro-power and lignite resources, some limited amount of oil, gas and coal resources exist and there is significant geothermal potential in the country. Environmental issues are increasingly important consideration in energy policy decisions in the world. Energy production, transportation and use are contributing to environmental degradation to a certain extent. Protection of the environment and public health from pollution arising from energy production and consumption activities is one of the principles of Turkish national energy policy. In conjunction with this policy the 'Environment Law' was promulgated in 1983 and 'The Regulation on Protection of the Air Quality' in order to control all kinds of emissions in the form of soot, smoke, fines and particulate and to prevent the adverse impacts of the air pollution, was issued in October 1986. Policy of diversification of energy sources and the environmental issues which were explained above brought the natural gas usage into the energy scene in Turkey. 6 figs., 4 tabs

  20. Combining Novel Simulation Methods and Nucleation Theory to Uncover the Secrets of Gas Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, Thomas [Boston Univ., MA (United States). Dept. of Chemistry

    2016-04-14

    Conventional computer simulation methods fail for some of the most important problems. With the design and application of innovative algorithms, this project achieved a breakthrough for the case of systems undergoing first-order phase transitions. We gave a complete simulation protocol based upon a well optimized version of our "generalized replica exchange method". The transition of primary interest was gas hydrate formation, a process of significance for climate science and natural gas retrieval. Since hydrates consist of guest molecules in the cages of a water matrix, β ice, the freezing and melting of water was also studied. New information was uncovered about the transition pathways and thermodynamics. Some highlights are 1. the finding that in a very dilute solution without deep supercooling, representative of real-world conditions and very challenging to conventional algorithms, methane can act as a catalyst to drive the formation of large amounts of β ice with empty cages as metastable intermediates, which might be filled by additional methane in a mechanism for hydrate formation, and 2. illumination of the role of metastable cubic ice in water freezing, with determination of the surface tensions of the cubic, hexagonal, and β ices, and the free energy difference of cubic vs hexagonal ice. Work was begun on lipid systems, bilayers and nanoreactors promising for energy-related photoreductions, and targets for future research. Our methods yielded what is arguably the most complete description of the composite lipid/water phases and the transition pathways among them.

  1. Description of gas hydrates equilibria in sediments using experimental data of soil water potential

    Energy Technology Data Exchange (ETDEWEB)

    Istomin, V. [NOVATEK, Moscow (Russian Federation); Chuvilin, E. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology; Makhonina, N.; Kvon, V. [VNIIGAZ, Moscow (Russian Federation); Safonov, S. [Schlumberger Moscow Research, Moscow (Russian Federation)

    2008-07-01

    Analytical relationships have been developed between hydrate dissociation pressure and vapor pressure above the pore water surface. In addition, experiments have been discussed in numerous publications on the effect of narrow interconnected throats between pores on clathrate dissociation conditions in porous media. This paper presented an approach that improved upon the available thermodynamic methods for calculation of hydrate phase equilibria. The approach took into account the properties of pore water in natural sediments including three-phase equilibrium of gas-pore water-gas hydrate in a similar way as for unfrozen water in geocryology science. The purpose of the paper was to apply and adapt geocryology and soil physics method to the thermodynamic calculation of non-clathrated water content in sediments. It answered the question of how to estimate the non-clathrated water content if pore water potential was known. The paper explained the thermodynamics of water phase in porous media including the thermodynamic properties of supercooled water, the thermodynamic properties of pore water and pore ice in sediments, and the phase equilibria of pore water. The paper also discussed the quantitative techniques that were utilized for determination of unfrozen water content in sediments and its dependence on temperature variation. These included contact-saturation, calorimetric, dielectric, nuclear magnetic resonance, and others. The thermodynamic calculations of pore water phase equilibria were also presented. 30 refs., 5 tabs., 8 figs.

  2. Electrical Conductive Mechanism of Gas Hydrate-Bearing Reservoirs in the Permafrost Region of Qilian Mountain

    Science.gov (United States)

    Peng, C.; Zou, C.; Tang, Y.; Liu, A.; Hu, X.

    2017-12-01

    In the Qilian Mountain, gas hydrates not only occur in pore spaces of sandstones, but also fill in fractures of mudstones. This leads to the difficulty in identification and evaluation of gas hydrate reservoir from resistivity and velocity logs. Understanding electrical conductive mechanism is the basis for log interpretation. However, the research is insufficient in this area. We have collected well logs from 30 wells in this area. Well logs and rock samples from DK-9, DK-11 and DK-12 wells were used in this study. The experiments including SEM, thin section, NMR, XRD, synthesis of gas hydrate in consolidated rock cores under low temperature and measurement of their resistivity and others were performed for understanding the effects of pore structure, rock composition, temperature and gas hydrate on conductivity. The results show that the porosity of reservoir of pore filling type is less than 10% and its clay mineral content is high. As good conductive passages, fractures can reduce resistivity of water-saturated rock. If fractures in the mudstone are filled by calcite, resistivity increases significantly. The resistivity of water-saturated rock at 2°C is twice of that at 18°C. The gas hydrate formation process in the sandstone was studied by resistivity recorded in real time. In the early stage of gas hydrate formation, the increase of residual water salinity may lead to the decrease of resistivity. In the late stage of gas hydrate formation, the continuity decrease of water leads to continuity increase of resistivity. In summary, fractures, rock composition, temperature and gas hydrate are important factors influencing resistivity of formation. This study is helpful for more accurate evaluation of gas hydrate from resistivity log. Acknowledgment: We acknowledge the financial support of the National Special Program for Gas Hydrate Exploration and Test-production (GZH201400302).

  3. Green gas in the natural gas network

    International Nuclear Information System (INIS)

    Bruinsma, B.

    2007-09-01

    The aim of this study is to map the technical, economic and organizational options and limitations of feeding biogas back into the natural gas grid by means of regional co-digestion. Emphasis is put on feeding back into the natural gas grid, analogous to a comparable situation in a number of landfill gas projects. This report first provides insight into the energetic potential of co-digestion. Next several landfill gas projects are examined that feed back into the natural gas grid. After that the political and policy-related issues and preconditions for feeding back biogas from co-digestion are discussed, including the technical and economic aspects. Finally, a picture is painted of the future potential of green gas. [mk] [nl

  4. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics; Walia, R [Victoria Univ., BC (Canada) School of Earth and Ocean Sciences; Hyndman, R [Geological Survey of Canada, Sidney, BC (Canada) Pacific Geoscience Centre

    1999-07-01

    A gas hydrate research well was drilled in the Canadian Arctic to study gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., the Geological Survey of Canada and other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, comprehensive downhole geophysical logging and measurement. Laboratory studies concerned studies on recovered cuttings and core including sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the Mallik 2L-38 field program, a vertical seismic profiling survey was conducted at zero and other offset source positions with three component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, which will be used to estimate the effect of gas hydrate on formation velocities and to determine gas hydrate concentration as a function of the Mallik gas accumulation. From the initial VSP analysis, certain conclusions follow: 1) zero offset vertical vibration component Z and horizontal X component data give reliable velocity determination within the gas hydrate formation zone. P wave velocities from offset VSP data show an excellent consistency with that from offset data and with the sonic log. And 2) the VSP data permit reliable identification of gas hydrate bearing zones. Abstract only included.

  5. Gas hydrate drilling transect across northern Cascadia margin - IODP Expedition 311

    Science.gov (United States)

    Riedel, M.; Collett, T.; Malone, M.J.; Collett, T.S.; Mitchell, M.; Guerin, G.; Akiba, F.; Blanc-Valleron, M.; Ellis, M.; Hashimoto, Y.; Heuer, V.; Higashi, Y.; Holland, M.; Jackson, P.D.; Kaneko, M.; Kastner, M.; Kim, J.-H.; Kitajima, H.; Long, P.E.; Malinverno, A.; Myers, Gwen E.; Palekar, L.D.; Pohlman, J.; Schultheiss, P.; Teichert, B.; Torres, M.E.; Trehu, A.M.; Wang, Jingyuan; Worthmann, U.G.; Yoshioka, H.

    2009-01-01

    A transect of four sites (U1325, U1326, U1327 and U1329) across the northern Cascadia margin was established during Integrated Ocean Drilling Program Expedition 311 to study the occurrence and formation of gas hydrate in accretionary complexes. In addition to the transect sites, a fifth site (U1328) was established at a cold vent with active fluid flow. The four transect sites represent different typical geological environments of gas hydrate occurrence across the northern Cascadia margin from the earliest occurrence on the westernmost first accreted ridge (Site U1326) to the eastward limit of the gas hydrate occurrence in shallower water (Site U1329). Expedition 311 complements previous gas hydrate studies along the Cascadia accretionary complex, especially ODP Leg 146 and Leg 204 by extending the aperture of the transect sampled and introducing new tools to systematically quantify the gas hydrate content of the sediments. Among the most significant findings of the expedition was the occurrence of up to 20 m thick sand-rich turbidite intervals with gas hydrate concentrations locally exceeding 50% of the pore space at Sites U1326 and U1327. Moreover, these anomalous gas hydrate intervals occur at unexpectedly shallow depths of 50-120 metres below seafloor, which is the opposite of what was expected from previous models of gas hydrate formation in accretionary complexes, where gas hydrate was predicted to be more concentrated near the base of the gas hydrate stability zone just above the bottom-simulating reflector. Gas hydrate appears to be mainly concentrated in turbidite sand layers. During Expedition 311, the visual correlation of gas hydrate with sand layers was clearly and repeatedly documented, strongly supporting the importance of grain size in controlling gas hydrate occurrence. The results from the transect sites provide evidence for a structurally complex, lithology-controlled gas hydrate environment on the northern Cascadia margin. Local shallow

  6. Assessing the conditions favorable for the occurrence of gas hydrate in the Tuonamu area Qiangtang basin, Qinghai–Tibetan, China

    International Nuclear Information System (INIS)

    He Jianglin; Wang Jian; Fu Xiugen; Zheng Chenggang; Chen Yanting

    2012-01-01

    Highlights: ► This is a pioneer research on the exploration of gas hydrate in Qiangtang basin. ► The factors influencing the stable of gas hydrate in Tuonamu area were studied. ► Simulation shows that gas hydrate stable zone is about 300 m thick in target area. ► Source condition is the key factor for the formation of gas hydrate in this area. ► The areas around the deeper faults are favorable targets for gas hydrate. - Abstract: Qiangtang basin, which is located in the largest continuous permafrost area in Qinghai–Tibetan Plateau, is expected to be a strategic area of gas hydrate exploitation in China. However, relatively little work has been done on the exploration of gas hydrate in this area. In this work, we evaluated the factors controlling the formation of gas hydrate in the Tuonamu area and provided a preliminary insight into gas hydrate distribution in it on the basis of the core samples, seismic data and laboratory analysis. It can be concluded that the source rock in the deeper formation would be dominant thermogenic source for the formation of gas hydrate in Tuonamu area. The thickness of gas hydrate stable zone in this area is about 300 m. The gas hydrate in the area most probably is in the form of gas-hydrate-water. The source condition is the key factor for the formation of gas hydrate and the gas hydrate layer would be mainly present in the form of interlayer in this area. The areas around the deeper faults are the favorable targets for the exploration of gas hydrate in the Tuonamu area.

  7. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process fro