WorldWideScience

Sample records for natural gas fuel

  1. Alternative Fuels Data Center: Natural Gas

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on

  2. Alternative Fuels Data Center: Natural Gas Benefits

    Science.gov (United States)

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas

  3. Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling

    Science.gov (United States)

    Station in Arkansas Krug Energy Opens Natural Gas Fueling Station in Arkansas to someone by E -mail Share Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in Arkansas on Facebook Tweet about Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in

  4. Alternative Fuels Data Center: Natural Gas Vehicles

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative

  5. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  6. Has the natural gas fueled bus any future?

    International Nuclear Information System (INIS)

    Riikonen, A.

    2001-01-01

    Helsinki City Transport has decided to operate public transport in the center of the city with tramways and gas-fuelled busses. The decision is that there will be about 100 natural gas fueled busses in Helsinki by the year 2003. European exhaust gas emission (NO x and particulates) regulations have tightened strongly during the past few years. The regulations have forced to search for new fuels by the side of development of diesel engines. Alcohols, in spite of favourable fuel properties, are too expensive, so the use of them needs large subsidies for transportation sector. Gaseous fuels, both LPG and natural gas are suitable fuels for Otto cycle-cycle engines. After the previous oil crisis the interest in gas-fuelled engines has steadily decreased, but at present it is increasing again because of the objectives to decrease emissions of heavy vehicles at the level of gasoline-fuelled vehicles, equipped with three-way catalyst. From the point of view of emissions natural gas and LPG are seen as equivalent alternatives. The price of LPG varies on the basis of demand and on the basis of the prices of other oil products. Refuelling of a vehicle and storage of LPG in liquid form in the tank of the vehicle is easier than refuelling and fuel storage of natural gas. Investments to refuelling equipment of LPG are only 20% of those of the natural gas refuelling systems. The problem of natural gas is also the fact that is not easy to carry in the vehicle. Even if natural gas is compressed to pressure of 200 bars, it requires six times larger tanks if the refuelling intervals are the same. Liquefaction of natural gas reduces the volume significantly, but this is complicated and hence expensive. The tank of a vehicle should be vacuum insulated because the temperature of the LNG is about 160 deg C. Tank volume of LPG is only about twice that of diesel oil. Safety of natural gas is high, because it is lighter than the air, nearly a half of the density of the air. Octane ratings

  7. Fuels Containing Methane of Natural Gas in Solution

    Science.gov (United States)

    Sullivan, Thomas A.

    2004-01-01

    While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine

  8. Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas

    Science.gov (United States)

    Fueling Stations Colorado Airport Relies on Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on

  9. Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas

    Science.gov (United States)

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural

  10. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  11. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Science.gov (United States)

    Trucks Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark

  12. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov (United States)

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  13. The development of natural gas as an automotive fuel in China

    International Nuclear Information System (INIS)

    Ma, Linwei; Geng, Jia; Li, Weqi; Liu, Pei; Li, Zheng

    2013-01-01

    This manuscript aims to systematically review the development of natural gas as an automotive fuel in China and to draw policy implications for decision making. This manuscript presents a brief overview of natural gas development and the potential of natural gas as an automotive fuel in China, followed by an introduction to the development of various technology pathways for using natural gas as an automotive fuel, including CNG (compressed natural gas) vehicles, LNG (liquefied natural gas) vehicles, and others. This material suggests, a large potential to increase the use of natural gas as an automotive fuel, especially for CNG and LNG vehicles. The following activities will promote the development of natural gas vehicles: prioritizing vehicle use in the utilization of natural gas, supporting the construction of natural gas filling stations, developing a favorable pricing policy for natural gas used in vehicles, and enhancing the research and development to further improve the technology performance, especially for the technology of LNG vehicles. -- Highlights: •An overview of the natural gas development in China. •A systematic introduction of the development of natural gas vehicles in China. •A review of the technological performance of natural gas vehicles. •Policy suggestions to promote the development of natural gas vehicles in China

  14. Natural gas: Fuel for urban fleets

    International Nuclear Information System (INIS)

    Mariani, F.

    1992-01-01

    The search for new ecological solutions for public transport has given an important role to natural gas for vehicles in the national context. Under current prices of fuel and costs of plants, the management of a bus fleet running on natural gas allows consistent savings, besides reducing the atmospheric pollution of urban centres. Within this context, solutions offered by current technology available on the market are examined. Low polluting emissions are taken into consideration and a complete analysis of costs and savings is reported. Reference is made to the Thermie European programme which calls for fuel diversification, energy conservation and air pollution abatement

  15. Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas

    Science.gov (United States)

    Pennsylvania School Buses Run on Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Twitter Bookmark Alternative Fuels Data Center

  16. Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas

    Science.gov (United States)

    Central Ohio Turns Trash Into Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Central Ohio Turns Trash Into Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Central Ohio Turns

  17. Natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, A I; Vasiliev, Y N; Jankiewicz, A [VPO ' Soyuzgastekhnologiya' All-Union Scientific Research Inst. of Natural gases (VNIIGAS) (SU)

    1990-02-01

    The review presented covers mass production of gas-petrol and gas-diesel automobiles in the USSR, second generation auto gas filling compressor stations, principal exhaust toxicants, and tests indicating natural gas fired autos emit >5 times less NO{sub x} and 10 times less hydrocarbons excluding methane. The switch over to gas as auto fuel and ensuing release of petrol and diesel for other uses are discussed. (UK).

  18. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    Science.gov (United States)

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).

  19. Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse

    Science.gov (United States)

    Trucks Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet about Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Twitter Bookmark Alternative

  20. Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas

    Science.gov (United States)

    Trucks Golden Eagle Delivers Beer With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Twitter Bookmark

  1. Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas

    Science.gov (United States)

    Buses Little Rock Gains Momentum with Natural Gas Buses to someone by E-mail Share Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas Buses on Facebook Tweet about Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas Buses on Twitter Bookmark Alternative

  2. Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas

    Science.gov (United States)

    New Hampshire Fleet Revs up With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Twitter Bookmark Alternative Fuels Data Center

  3. Natural gas : the green fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Harbinson, S.W. [Halliburton Energy Services, Calgary, AB (Canada); Tertzakian, P. [ARC Financial, Calgary, AB (Canada); Wall, T.; Wilkinson, J. [Apache Canada Ltd., Calgary, AB (Canada); Graham, M. [EnCana Corp., Calgary, AB (Canada); Young, P.J. [DYAD Consulting, Cambridge, MA (United States)

    2010-07-01

    Studies have shown that the demand for crude oil exceeds supply and other energy sources are needed to met the shortfall. Natural gas and coal are the only 2 current energy sources that have the global capacity to, by themselves, address increased energy demand in a timely manner. Both these resources have been used primarily for power generation and heating. This paper discussed the transition that will likely occur in which natural gas and coal will be used increasingly as transportation fuels. It presented data comparing the environmental impact of using methane versus coal and proposed natural gas as the future green fuel. A strengths, weaknesses, opportunities and threats (SWOT) analysis was conducted to obtain a better understanding of the current Canadian natural gas market. The strengths include recent discoveries in the Horn River Basin and the Montney plays in British Columbia which are expected to triple natural gas production within the next decade. The weaknesses include an oversupply of gas compared to current demand; gas prices are currently in a range that are barely economic for many shale plays; and Canadian gas is disadvantaged for sales in the United States by additional pipeline transportation costs. The opportunities include global export opportunities of liquefied natural gas (LNG) through the proposed Kitimat LNG export facility and others off the west coast of Canada. The threat facing natural gas development is the strong competition for market share with coal. However, emissions data and energy efficiencies provide evidence to support the choice to use natural gas. 5 refs., 2 tabs., 26 figs.

  4. Natural gas : the green fuel of the future

    International Nuclear Information System (INIS)

    Taylor, R.S.; Harbinson, S.W.; Tertzakian, P.; Wall, T.; Wilkinson, J.; Graham, M.; Young, P.J.

    2010-01-01

    Studies have shown that the demand for crude oil exceeds supply and other energy sources are needed to met the shortfall. Natural gas and coal are the only 2 current energy sources that have the global capacity to, by themselves, address increased energy demand in a timely manner. Both these resources have been used primarily for power generation and heating. This paper discussed the transition that will likely occur in which natural gas and coal will be used increasingly as transportation fuels. It presented data comparing the environmental impact of using methane versus coal and proposed natural gas as the future green fuel. A strengths, weaknesses, opportunities and threats (SWOT) analysis was conducted to obtain a better understanding of the current Canadian natural gas market. The strengths include recent discoveries in the Horn River Basin and the Montney plays in British Columbia which are expected to triple natural gas production within the next decade. The weaknesses include an oversupply of gas compared to current demand; gas prices are currently in a range that are barely economic for many shale plays; and Canadian gas is disadvantaged for sales in the United States by additional pipeline transportation costs. The opportunities include global export opportunities of liquefied natural gas (LNG) through the proposed Kitimat LNG export facility and others off the west coast of Canada. The threat facing natural gas development is the strong competition for market share with coal. However, emissions data and energy efficiencies provide evidence to support the choice to use natural gas. 5 refs., 2 tabs., 26 figs.

  5. Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas

    Science.gov (United States)

    Cities Make the Clean Switch to Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Facebook Tweet about Alternative Fuels Data Center : Cities Make the Clean Switch to Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Cities

  6. Evaluation of Ultra Clean Fuels from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  7. ISO New England Dual Fuel Capabilities to Limit Natural Gas and Electricity Interdependencies

    Energy Technology Data Exchange (ETDEWEB)

    Adder, Justin M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-04-22

    Since 2000, natural gas has seen tremendous growth as a fuel source for electricity generation in the United States (U.S.) with annual installations exceeding 20 GW in all but four years. It also accounts for an increasingly significant share of the nation’s electricity generation, growing from around 15 percent in the early part of the 2000s to between 26 and 29 percent in the last three years. (1) Increasing reliance on natural gas has led to concerns that an extreme weather event – which may cause curtailments in gas delivery – or a natural gas infrastructure failure could lead to local or regional electric reliability issues. (2) These concerns stem from differences in delivery methods of natural gas to electric generating units (EGUs) contrasted with the fuel delivery and storage methods for traditional baseload power systems (i.e. coal and nuclear units).1 (3) Although it seems that there is an abundance of natural gas in a post-shale gas world, infrastructure limitations and differences in electric and natural gas markets persist that differentiate natural gas-fired generators from traditional baseload power generators. Such concerns can be partially mitigated by modifying natural gas EGUs for operation on secondary fuels and installing on-site fuel storage for the secondary fuel, thus ensuring continuity of operation in the case of a gas delivery problem.2 This report examines technical, regulatory, and market issues associated with operating power plants primarily fueled with natural gas, on a secondary fuel, such as fuel oil or liquefied natural gas (LNG). In addition, a regional case study was completed to identify the current and near-term potential for dual fuel operation in New England, along with a market impact analysis of potential cost savings during an extreme weather event. The New England Independent System Operator (ISO-NE) was selected as the study area based on a preponderance of natural gas-fired generators contributing to the

  8. Leveling the playing field of transportation fuels: Accounting for indirect emissions of natural gas

    International Nuclear Information System (INIS)

    Sexton, Steven; Eyer, Jonathan

    2016-01-01

    Natural gas transportation fuels are credited in prior studies with greenhouse gas emissions savings relative to petroleum-based fuels and relative to the total emissions of biofuels. These analyses, however, overlook a source of potentially large indirect emissions from natural gas transportation fuels, namely the emissions from incremental coal-fired generation caused by price-induced substitutions away from natural-gas-fired electricity generation. Because coal-fired generation emits substantially more greenhouse gases and criteria air pollutants than natural-gas-fired generation, this indirect coal-use change effect diminishes potential emissions savings from natural gas transportation fuels. Estimates from a parameterized multi-market model suggest the indirect coal-use change effect rivals in magnitude the indirect land-use change effect of biofuels and renders natural gas fuels as carbon intensive as petroleum fuels. - Highlights: •Natural gas used in transport causes indirect emissions in the electricity sector. •These emissions result from increased coal use in electricity generation. •They rival in magnitude indirect land use change (ILUC) emissions of biofuels. •Natural gas fuels are estimated to be as carbon intensive as the petroleum fuels. •Policy ignores indirect emissions from natural gas.

  9. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Yborra

    2007-04-30

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling

  10. adaptation of natural gas for motor fuels in nigeria transport system

    African Journals Online (AJOL)

    In recent years, as a result of limiting reserve of crude oil and the clamour for the deregulation of the petroleum sector of the nation's economy, there is need to look beyond liquid fuel (gasoline, diesel) as vehicular fuels. The viability of adapting natural gas for motor fuels had been presented. Natural gas as automobile fuel ...

  11. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  12. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  13. Gasoline and other transportation fuels from natural gas in Canada

    International Nuclear Information System (INIS)

    Symons, E.A.; Miller, A.I.

    1981-03-01

    Ways in which natural gas might displace cude oil as a source of fuels for the Canadian transportation market are reviewed. Three approaches are possible: (1) direct use as compressed natural gas; (2)conversion of natural gas to methanol; and (3) further conversion of methanol to synthetic gasoline. (author)

  14. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    Science.gov (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  15. Integrated modeling for optimized regional transportation with compressed natural gas fuel

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2016-03-01

    Full Text Available Transportation represents major energy consumption where fuel is considered as a primary energy source. Recent development in the vehicle technology revealed possible economical improvements when using natural gas as a fuel source instead of traditional gasoline. There are several fuel alternatives such as electricity, which showed potential for future long-term transportation. However, the move from current situation where gasoline vehicle is dominating shows high cost compared to compressed natural gas vehicle. This paper presents modeling and simulation methodology to optimize performance of transportation based on quantitative study of the risk-based performance of regional transportation. Emission estimation method is demonstrated and used to optimize transportation strategies based on life cycle costing. Different fuel supply scenarios are synthesized and evaluated, which showed strategic use of natural gas as a fuel supply.

  16. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  17. How Swiss fuel dealers are fighting natural gas

    International Nuclear Information System (INIS)

    May, U.

    1995-01-01

    The upward trend of natural gas in Switzerland and its favourable future prospects have put Swiss fuel dealers into a state of alarm. The trade has set itself the aim to prevent a further expansion of natural gas with all the means at its disposal. The author describes and comments on the arguments put forward and measures taken to this end. (orig.) [de

  18. A natural-gas fuel processor for a residential fuel cell system

    Science.gov (United States)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  19. Hydrogen generation from natural gas for the fuel cell systems of tomorrow

    Science.gov (United States)

    Dicks, Andrew L.

    In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.

  20. Performance and exhaust emissions in a natural-gas fueled dual-fuel engine; Tennen gas dual fuel kikan no seino oyobi haiki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M.; Ishiyama, T.; Shibata, H. [Kyoto Univ., Kyoto (Japan). Inst. of Atomic Energy; Ikegami, M. [Fukui Institute of Technology, Fukui (Japan). Faculty of Engineering

    2000-07-25

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, tests were made for some operational parameters and their combination on the engine performances and the exhaust emissions. The results show that the gas oil quantity should be increased and gas oil injection timing should be advanced to suppress unburned hydrocarbon emission at middle and low output range, while the quantity should be reduced and the timing should be retarded to avoid onset of knock at high loads. The unburned hydrocarbon emission and the thermal efficiency are improved at the same load avoiding too lean natural gas premixture by restriction of intake charge air. However the improvement is limited because the ignition and initial combustion of pilot diesel fuel is deteriorated when the cylinder pressure is excessively lowered by throttling. The increase in pilot gas oil amount is effective for low-load operation and the adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation. (author)

  1. Sustitución de fuel oil por gas natural en ANDERCOL Medellín

    OpenAIRE

    Peña Puerto, José Miguel; Ayala Mendoza, Miguel Eduardo

    2008-01-01

    Introduction. This article shows the evaluation of the demand and the tendencies of fuel in the plant of ANDERCOL-Medellín, the current and future trends of the prices for the fuels available (fuel oil and natural gas) and also the operation costs, the investments required for their substitution and the limitations and benefits of substituting fuel oil with natural gas. Objective. To evaluate the impact of substituting fuel oil with natural gas in the ANDERCOL´s plant in Medell...

  2. Natural gas -- introduction on the market as a motor fuel without tax reduction

    International Nuclear Information System (INIS)

    Seifert, M.; Weber, J.-C.

    2001-01-01

    This extensive article reviews the history of efforts being made to promote the use of gas as a motor fuel in Switzerland and the work done in various institutions in Europe and Switzerland on natural gas driven vehicles, from small cars up to full sized trucks and hybrid vehicles. The reduction of airborne pollution as a result of using natural gas is looked at and the certification of vehicles according to European and American standards is commented. The motor fuel taxing situation in Switzerland and various parliamentary initiatives calling for the reduction of taxes on more environmentally friendly fuels such as natural gas are discussed. The use of biogas as a tax-exempted motor fuel and the technology necessary for its refinement is examined and its potential assessed. Pilot and demonstration projects in the natural gas fuels area are described and the gas industry's activities in their promotion are discussed. The article is concluded by a look at today's fiscal and technical situation; future trends and developments on the market are also discussed

  3. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    Science.gov (United States)

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    International Nuclear Information System (INIS)

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians

  5. Combined cycles and cogeneration with natural gas and alternative fuels

    International Nuclear Information System (INIS)

    Gusso, R.

    1992-01-01

    Since 1985 there has been a sharp increase world-wide in the sales of gas turbines. The main reasons for this are: the improved designs allowing better gas turbine and, thus, combined cycle efficiencies; the good fuel use indices in the the case of cogeneration; the versatility of the gas turbines even with poly-fuel plants; greatly limited exhaust emissions; and lower manufacturing costs and delivery times with respect to conventional plants. This paper after a brief discussion on the evolution in gas turbine applications in the world and in Italy, assesses their use and environmental impacts with fuels other than natural gas. The paper then reviews Italian efforts to develop power plants incorporating combined cycles and the gasification of coal, residual, and other low calorific value fuels

  6. North American natural gas outlook : does gas remain a fuel option for oil sands?

    International Nuclear Information System (INIS)

    George, R.R.

    2003-01-01

    This paper presents a North America natural gas outlook from Purvin and Gertz, an international energy consulting firm that has 30 years experience in providing strategic, commercial and technical advice to the petroleum industry. In particular, this presentation focuses on natural gas market fundamentals and how they may impact on oil sands development. It includes charts and graphs depicting NYMEX natural gas outlooks to July, 2009 and examines how supply will react to major changes in Canada's supply portfolio. It was noted that oil sands development is a driver for natural gas demand in Alberta. The existing regional gas pipeline infrastructure was presented and the market impact on upgrader options was discussed. The author suggests that if gas prices are too high, there are other fuel options for steam and power generation. These include bitumen, asphalt, coke, coal and nuclear. However, these options have additional costs, uncertainties and environmental issues. A key factor for success would be to have a clear understanding of the benefits and risks between these fuel options. 1 tab., 9 figs

  7. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  8. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e

  9. The petroleum, natural gas and bio fuel transportation; O transporte de petroleo, gas natural e biocombustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Diego Varela; Campos, Carlos Hebert

    2011-01-15

    The paper expose on the activity of petroleum, natural gas and bio fuels transportation, outlining the transportation means used by the petroleum industry. After that, analyses the importance and the economic relevance of the Transpetro. Yet, proceeds an examination of the transportation activity under a constitutional optics, based on the EC 9/95; a legal optic, from the Petroleum Law (Law 9478/97) and some other legal documents related to the theme. Finally, presents the importance that the Law of Natural Gas (Law 11909/09) brought for that activity, by making possible that the natural gas transportation can also be effectuated through the Concession.

  10. Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR

    International Nuclear Information System (INIS)

    Abdelaal, M.M.; Hegab, A.H.

    2012-01-01

    Highlights: ► An existed DI diesel engine has been modified to suit dual fuel operation with EGR. ► Comparative study has been conducted between different operating modes. ► Dual fuel mode exhibits better performance at high loads than diesel. ► Dual fuel mode exhibits lower NOx and higher HC emissions than diesel. ► EGR improves performance at part loads and emissions of dual fuel mode. - Abstract: The use of natural gas as a partial supplement for liquid diesel fuel is a very promising solution for reducing pollutant emissions, particularly nitrogen oxides (NOx) and particulate matters (PM), from conventional diesel engines. In most applications of this technique, natural gas is inducted or injected in the intake manifold to mix uniformly with air, and the homogenous natural gas–air mixture is then introduced to the cylinder as a result of the engine suction. This type of engines, referred to as dual-fuel engines, suffers from lower thermal efficiency and higher carbon monoxide (CO) and unburned hydrocarbon (HC) emissions; particularly at part load. The use of exhaust gas recirculation (EGR) is expected to partially resolve these problems and to provide further reduction in NOx emission as well. In the present experimental study, a single-cylinder direct injection (DI) diesel engine has been properly modified to run on dual-fuel mode with natural gas as a main fuel and diesel fuel as a pilot, with the ability to employ variable amounts of EGR. Comparative results are given for various operating modes; conventional diesel mode, dual-fuel mode without EGR, and dual-fuel mode with variable amounts of EGR, at different operating conditions; revealing the effect of utilization of EGR on combustion process and exhaust emission characteristics of a pilot ignited natural gas diesel engine.

  11. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Science.gov (United States)

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel...

  12. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Korakianitis, T.; Namasivayam, A.M.; Crookes, R.J. [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom)

    2011-02-15

    Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NO{sub x}) emissions, while producing lower emissions of carbon dioxide (CO{sub 2}), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NO{sub x} emissions. High NO{sub x} emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NO{sub x} and CO{sub 2} emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is

  13. Natural gas prices

    International Nuclear Information System (INIS)

    Johnson, W.A.

    1990-01-01

    Since the 1970s, many electric utilities and industrial boiler fuel users have invested in dual fuel use capability which has allowed them to choose between natural gas, residual fuel oil, and in some instances, coal as boiler fuels. The immediate reason for this investment was the need for security of supply. Wellhead regulation of natural gas prices had resulted in shortages during the 1970s. Because many industrial users were given lowest priority in pipeline curtailments, these shortages affected most severely boiler fuel consumption of natural gas. In addition, foreign supply disruptions during the 1970s called into question the ready availability of oil. Many boiler fuel users of oil responded by increasing their ability to diversify to other sources of energy. Even though widespread investment in dual fuel use capability by boiler fuel users was initially motivated by a need for security of supply, perhaps the most important consequence of this investment was greater substitutability between natural gas and resid and a more competitive boiler fuel market. By the early 1980s, most boiler fuel users were able to switch from one fuel to another and often did for savings measured in pennies per MMBtu. Boiler fuel consumption became the marginal use of both natural gas and resid, with coal a looming threat on the horizon to both fuels

  14. Natural gas and quality of fuels for the reduction of atmospheric pollution

    International Nuclear Information System (INIS)

    Riva, A.; Occhio, L.; Andreetto, B.

    1998-01-01

    The production of atmospheric pollutants in combustion processes depends on plant characteristic, combustion conditions and fuel quality. The influence of fuel quality on the emission of sulphur oxides, nitrogen oxides, carbon monoxide, dust and carbon dioxide and on the emission of some toxic pollutants, such as heavy metals and polycyclic aromatic hydrocarbons, is analysed. The comparison between the emission limits, fixed by the Italian legislation, and the uncontrolled pollutant emissions, produced by fossil fuel combustion in power plants and industrial use, shows that, in order to comply with the limits, a reduction of pollutant emissions is required through the use of abatement systems and cleaner fuels where natural gas has a primary role. The use of cleaner fuels is particularly required in heating plants and appliances for the residential sector, where the development of new gas technologies further increases the environmental advantages of natural gas in comparison with other fuels [it

  15. Fuel cells: new technology of natural gas for energetical building; Pilas de combustible: nueva tecnologia de gas natural para edificios energeticamente autoabastecidos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A. M.

    2000-07-01

    Fuel Cells have emerged in the last decade as one of the most promising new and sustainable natural gas technologies for meeting the energy needs of all the economy sectors into the 21st century. Fuel Cells are an environmentally clean, quiet, and highly efficient method for generating electricity and heat from natural gas. A fuel cell is an electrochemical device that converts the chemical energy of a fuel directly to usable energy (electricity and heat) without combustion. For this reason, the application and use of the fuel cell technology may be the most important technological advancement of the next century. At the beginning of the 2000 year Sociedad de Gas de Euskadi, s. a. started a demonstration project in favour of the high-temperature planar solid oxide fuel cell (SOFC) for domestic micro-CHP utilization. This type is certainly most exacting from the materials standpoint, and it offers the advantage of uncomplicated fuel pretreatment. (Author)

  16. Pressure-time characteristics in diesel engine fueled with natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Helwan Univ., Mechanical Power Engineering Dept., Cairo (Egypt)

    2001-04-01

    Combustion pressure data are measured and presented for a dual fuel engine running on dual fuel of diesel and compressed natural gas, and compared to the diesel engine case. The maximum pressure rise rate during combustion is presented as a measure of combustion noise. Experimental investigation on diesel and dual fuel engines revealed the noise generated from combustion in both cases. A Ricardo E6 diesel version engine is converted to run on dual fuel of diesel and compressed natural gas and is used throughout the work. The engine is fully computerized and the cylinder pressure data, crank angle data are stored in a PC for off-line analysis. The effect of engine speeds, loads, pilot injection angle, and pilot fuel quantity on combustion noise is examined for both diesel and dual engine. Maximum pressure rise rate and some samples of ensemble averaged pressure-crank angle data are presented in the present work. The combustion noise, generally, is found to increase for the dual fuel engine case as compared to the diesel engine case. (Author)

  17. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Science.gov (United States)

    2010-01-01

    ... natural gas or petroleum. 503.38 Section 503.38 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS... mixtures containing natural gas or petroleum. (a) Eligibility. Section 212(d) of the Act provides for a... proposes to use a mixture of natural gas or petroleum and an alternate fuel as a primary energy source; (2...

  18. Improvement performance and emissions in a diesel engine dual-fueled with natural gas; Tennen gas dual fuel diesel kikan no seino haishutsu gas tokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, S; Okamoto, T; Kusaka, J; Daisho, Y; Kihara, R; Saito, T [Waseda University, Tokyo (Japan)

    1997-10-01

    This paper deals with a study on combustion and emission characteristics of a direct injection diesel engine dual-fueled with natural gas. Dual fueling systems tend to emit high unburned fuel especially at low load, resulting in a decreased thermal efficiency. This is because natural gas-air mixtures are too lean for flame to propagate under low load conditions. Intake charge heating and uncooled EGR are very useful to improve emissions and thermal efficiency at low load. Such favorable effects are supported by NO kinetic simulations. 2 refs., 13 figs.

  19. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  20. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  1. Estimating Externalities of Natural Gas Fuel Cycles, Report 4

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general

  2. Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures

    NARCIS (Netherlands)

    Gersen, Sander; van Essen, Martijn; van Dijk, Gerco; Levinsky, Howard

    2014-01-01

    The physicochemical origins of how changes in fuel composition affect autoignition of the end gas, leading to engine knock, are analyzed for a natural gas engine. Experiments in a lean-burn, high-speed medium-BMEP gas engine are performed using a reference natural gas with systematically varied

  3. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    International Nuclear Information System (INIS)

    Wai-Lin Litzke; James Wegrzyn

    2001-01-01

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications

  4. Air quality and use of natural gas fuels: Assessment of improvement

    International Nuclear Information System (INIS)

    Riva, A.; Andreetto, B.

    1992-01-01

    This paper describes the application of the ARICOM code in the evaluation of air pollution and air quality in the Italian district of Verona. The study compared the environmental effects resulting from the use of natural gas, diesel fuels and fuel oils in a variety of real and simulated consumption schemes involving different mixes of fuels for space heating, automobile operation and industrial processes. The Verona district was divided into one square kilometer sections and the exhaust emission data were utilized in a dispersion model to calculate ground level pollution concentration levels. Real condition scenario pollution concentration levels calculated with this code were validated by actual measurements taken with an air quality monitoring network. The results evidenced the reduction in sulfur oxide pollution levels which can be obtained with the increased use of natural gas

  5. Waste-to-Fuel: A Case Study of Converting Food Waste to Renewable Natural Gas as a Transportation Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mintz, Marianne [Argonne National Lab. (ANL), Argonne, IL (United States); Tomich, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-01

    This case study explores the production and use of renewable compressed natural gas (R-CNG)—derived from the anaerobic digestion (AD) of organic waste—to fuel heavy-duty refuse trucks and other natural gas vehicles in Sacramento, California.

  6. Gas fuels in the world

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Gas fuels are the petroleum substitution fuels that have received the best agreement in most parts of the world. This success is due to the existence of natural gas fields or LPG reserves in several countries and to the possibility of fast development of these resources. Countries with various size and economic policy such as New Zealand, USA, Argentina, Japan or Italy have developed a very significant fleet of gas fuel vehicles. This paper summarizes the consumption of gas fuels, the number of gas fuel equipped vehicles and of gas fuel stations in the principal consuming countries. The size and composition of vehicle fleets varies from one country to the other and depends on the economical and environmental incitements and constraints from the governments. Details are given separately for LPG and natural gas vehicle fuels. (J.S.)

  7. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  8. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Science.gov (United States)

    2010-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...

  9. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    Science.gov (United States)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  10. Fuel strategies for natural gas fired cogeneration and IPP projects

    International Nuclear Information System (INIS)

    Gottlieb, J.W.

    1992-01-01

    This paper as published is the outline of a presentation on managing the risk of varying fuel costs as part of a successful fuel strategy for natural gas fired cogeneration and Independent Power Producer (IPP) projects. So long as the fuel cost that electric utilities recover from their ratepayers differs from the fuel costs incurred by IPP and Qualifying Facility (QF) plant operators, the largest variable cost risk of any QF or IPP will continue to be the cost of fuel. Managing that risk is the mission of any successful fuel procurement strategy. Unfortunately, a quick review of the last 20 years in the oil and gas industry reveals dramatic and substantial changes in price and fuel availability that few, if any, industry experts could have predicted in 1971. Recognizing that the fuel cost risk to a QF or IPP investor also spans a 20 year period, the typical term of a QF or IPP power purchase contract, a successful fuel procurement strategy must consider and address the likelihood of future changes. Due to federal and state regulatory changes made from 1978 to 1989, the current structure of the oil and gas industry appears to provide end-users with the tools to improve the manageability of fuel cost risks. QF and IPP developers can choose the type of service they desire and can negotiate most of the contractual elements of that service. Until electric utilities are allowed to flow through their rates the fuel costs incurred by QFs and IPPs, a thorough analysis of the available fuel procurement options prior to development of a QF or IPP will continue to be absolutely necessary

  11. Natural gas purchasing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    In recent years, natural gas has gained new momentum because of changes in marketing and regulations. The gas industry has always received an inordinate amount of regulatory control starting at the well head where the gas is produced to the consuming burner tip. Regulations have drastically impacted the availability of gas. Changes in the marketing and regulations have made the natural gas market sensitive at the point of production, the well head. Now, with plentiful supply and ease of transportation to bring the gas from the producing fields to the consumer, natural gas markets are taking advantage of the changed conditions. At the same time, new markets are developing to take advantage of the changes. This section shows consumers, especially the energy planners for large buyers of fuel, the advantages, sources and new methods of securing natural gas supplies. Background on how natural gas is produced and marketed are given. This section lists marketing sources, regulatory agencies and information groups available to help buyers and consumers of this important fuel for US industries and residences. 7 figs., 8 tabs

  12. Ensuring Reliable Natural Gas-Fired Generation with Fuel Contracts and Storage - DOE/NETL-2017/1816

    Energy Technology Data Exchange (ETDEWEB)

    Myles, Paul T. [National Energy Technology Lab. (NETL), Albany, OR (United States); Labarbara, Kirk A. [National Energy Technology Lab. (NETL), Albany, OR (United States); Logan, Cecilia Elise [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-11-17

    This report finds that natural gas-fired power plants purchase fuel both on the spot market and through firm supply contracts; there do not appear to be clear drivers propelling power plants toward one or the other type. Most natural gas-fired power generators are located near major natural gas transmission pipelines, and most natural gas contracts are currently procured on the spot market. Although there is some regional variation in the type of contract used, a strong regional pattern does not emerge. Whether gas prices are higher with spot or firm contracts varies by both region and year. Natural gas prices that push the generators higher in the supply curve would make them less likely to dispatch. Most of the natural gas generators discussed in this report would be unlikely to enter firm contracts if the agreed price would decrease their dispatch frequency. The price points at which these generators would be unlikely to enter a firm contract depends upon the region that the generator is in, and how dependent that region is on natural gas. The Electric Reliability Council of Texas (ERCOT) is more dependent on natural gas than either Eastern Interconnection or Western Interconnection. This report shows that above-ground storage is prohibitively expensive with respect to providing storage for an extended operational fuel reserve comparable to the amount of on-site fuel storage used for coal-fired plants. Further, both pressurized and atmospheric tanks require a significant amount of land for storage, even to support one day’s operation at full output. Underground storage offers the only viable option for 30-day operational storage of natural gas, and that is limited by the location of suitable geologic formations and depleted fields.

  13. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  14. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  15. Liquefied natural gas, a maritime fuel: Initiatives for the energy transition now under way

    International Nuclear Information System (INIS)

    Burdeau, Julien

    2015-01-01

    Usually considered to be a simple means for easily transporting natural gas over long distances, liquefied natural gas is rapidly gaining ground as a new maritime fuel. As it seeks to reduce its emissions of pollution and greenhouse gases, the maritime transportation industry is preferring this alternative to liquid petroleum fuels because of its low cost and environmental advantages. Developing this new fuel for maritime and river shipping runs up against several difficulties that, to be solved, call for, among other things, setting up a new supply chain - in which Gaztransport and Technigaz (GTT) wants to find its place

  16. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  17. Assessment of institutional barriers to the use of natural gas fuel in automotive vehicle fleets

    Science.gov (United States)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-01-01

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified. Recommendations for barrier removal were developed. Eight types of institutional barriers were assessed: (1) lack of a national standard for the safe design and certification of natural gas vehicles and refueling stations; (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements; (3) need for clarification of EPA's tampering enforcement policy; (4) the U.S. hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale for resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufactures warranties; and (8) need for a natural gas to gasoline equivalent units conversion factor for use in calculation of state road use taxes.

  18. Shock wave calibration of under-expanded natural gas fuel jets

    Science.gov (United States)

    White, T. R.; Milton, B. E.

    2008-10-01

    Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.

  19. Selective catalytic oxidation: a new catalytic approach to the desulfurization of natural gas and liquid petroleum gas for fuel cell reformer applications

    Science.gov (United States)

    Lampert, J.

    In both natural gas and liquid petroleum gas (LPG), sulfur degrades the performance of the catalysts used in fuel reformers and fuel cells. In order to improve system performance, the sulfur must be removed to concentrations of less than 200 ppbv (in many applications to less than 20 ppbv) before the fuel reforming operation. Engelhard Corporation presents a unique approach to the desulfurization of natural gas and LPG. This new method catalytically converts the organic and inorganic sulfur species to sulfur oxides. The sulfur oxides are then adsorbed on a high capacity adsorbent. The sulfur compounds in the fuel are converted to sulfur oxides by combining the fuel with a small amount of air. The mixture is then heated from 250 to 270 °C, and contacted with a monolith supported sulfur tolerant catalyst at atmospheric pressure. When Engelhard Corporation demonstrated this catalytic approach in the laboratory, the result showed sulfur breakthrough to be less than 10 ppbv in the case of natural gas, and less than 150 ppbv for LPG. We used a simulated natural gas and LPG mixture, doped with a 50-170 ppmv sulfur compound containing equal concentrations of COS, ethylmercaptan, dimethylsulfide, methylethylsulfide and tetrahydrothiophene. There is no need for recycled H 2 as in the case for hydrodesulfurization.

  20. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A.

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils number-sign 2 and number-sign 6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort

  1. Natural gas as fuel - chances and risks; Erdgas als Kraftstoff-Chancen und Risiken.

    Energy Technology Data Exchange (ETDEWEB)

    Wackertapp, H.; Wember, G. [Ruhrgas AG, Essen (Germany)

    2001-11-01

    By reducing the tax payable on natural gas as part of the ecological tax reform, the German government has created the economic framework for the break-through of the automotive fuel, natural gas. Consequently, natural gas has since become much more popular for driving motor engines. The gas industry sees its main task as the development of a natural gas filling station network. There are currently about 200 filling stations with natural gas fuelling facilities in Germany. (orig.) [German] Die Bundesregierung hat mit der in der oekologischen Steuerreform verankerten Mineraloelsteuerbeguenstigung fuer Erdgas die wirtschaftlichen Voraussetzungen fuer einen Durchbruch des neuen Kraftstoffs ''Erdgas'' geschaffen. Demzufolge hat der mobile Einsatz von Erdgas deutlich an Bedeutung gewonnen. Die Gaswirtschaft sieht den Aufbau der Betankungsinfrastruktur als ihre Hauptaufgabe an. Aktuell kann an etwa 200 Tankstellen Erdgas getankt werden. (orig.)

  2. Experimental study on the natural gas dual fuel engine test and the higher the mixture ratio of hydrogen to natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Lee, Y.S.; Park, C.K. [Cheonnam University, Kwangju (Korea); Masahiro, S. [Kyoto University, Kyoto (Japan)

    1999-05-28

    One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of Total Hydrogen Carbon(THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. And when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the nocking limit decreases and the produce of NOx increases. 5 refs., 9 figs., 1 tab.

  3. Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity

    International Nuclear Information System (INIS)

    Grubert, Emily A; Beach, Fred C; Webber, Michael E

    2012-01-01

    Thermal electricity generation is a major consumer of freshwater for cooling, fuel extraction and air emissions controls, but the life cycle water impacts of different fossil fuel cycles are not well understood. Much of the existing literature relies on decades-old estimates for water intensity, particularly regarding water consumed for fuel extraction. This work uses contemporary data from specific resource basins and power plants in Texas to evaluate water intensity at three major stages of coal and natural gas fuel cycles: fuel extraction, power plant cooling and power plant emissions controls. In particular, the water intensity of fuel extraction is quantified for Texas lignite, conventional natural gas and 11 unconventional natural gas basins in Texas, including major second-order impacts associated with multi-stage hydraulic fracturing. Despite the rise of this water-intensive natural gas extraction method, natural gas extraction appears to consume less freshwater than coal per unit of energy extracted in Texas because of the high water intensity of Texas lignite extraction. This work uses new resource basin and power plant level water intensity data to estimate the potential effects of coal to natural gas fuel switching in Texas’ power sector, a shift under consideration due to potential environmental benefits and very low natural gas prices. Replacing Texas’ coal-fired power plants with natural gas combined cycle plants (NGCCs) would reduce annual freshwater consumption in the state by an estimated 53 billion gallons per year, or 60% of Texas coal power’s water footprint, largely due to the higher efficiency of NGCCs. (letter)

  4. Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Mechanical Engineering Department, College of Engineering, UAE University, Jimmi, Al-Ain, P.O. Box 17555, Abu Dhabi (United Arab Emirates); Radwan, M.S.; Saleh, H.E. [Mechanical Power Engineering Department, Faculty of Engineering at Mattaria, Helwan University, Cairo (Egypt)

    2008-06-15

    The use of jojoba methyl ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or liquefied petroleum gas (LPG) at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or LPG as the main fuel and jojoba methyl ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic variability data of 100 engine cycles in terms of maximum pressure and its pressure rise rate average and standard deviation. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion. (author)

  5. Natural gas: modern application - the environmental question

    International Nuclear Information System (INIS)

    Suarez, Miriam Liliana Hinostroza; Guerra, Sinclair Mallet-Guy

    1999-01-01

    Natural gas has been proposed as a transition fuel. The combustion of natural gas emits less CO 2 per unit of energy than the combustion of other fossil fuels. Increased reliance upon natural gas in preference to other fossil fuels would be encouraged to mitigate greenhouse gas releases while more comprehensive responses are devised to provide more time for adaptation to the inevitable climate change. In this context, the article overviews of natural gas and its relation with the environment

  6. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  7. Developing the market for natural gas and biogas as a vehicle fuel on a regional level (MADEGASCAR)

    Energy Technology Data Exchange (ETDEWEB)

    Emmerling, Bettina; Jellinek, Reinhard (Austrian Energy Agency (Austria)); Baumgartner, Birgit (Graz Energy Agency, Graz (Austria))

    2009-07-01

    Although natural gas as a car fuel is a more environmentally clean alternative to gasoline or diesel and gas is considerable cheaper and much safer than other fuels, costumers are still suspicious of alternative fuels and vehicles. The main reasons are a lack of awareness and information on the consumer side, as well as a low information and acceptance level among car dealers and service stations. Therefore the MADEGASCAR project directly addresses major barriers by specific actions. The project MADEGASCAR (Market development for gas driven cars including supply and distribution of biogas), co-funded by the Intelligent Energy Europe programme of the European commission, aims at developing the market for natural gas vehicles by addressing target groups at the demand side (private car owners, fleet managers) as well as strengthening the supply and distribution infrastructure for Compressed Natural Gas (CNG) and Natural Gas Vehicles (NGVs) municipalities, car dealers, owners of fuel stations, natural gas and biogas suppliers) in 10 participating partner countries. The Unique Selling Point of the MADEGASCAR project is deployment in several regional areas instead of sole basic research. Country specific action plans, which are developed and implemented in the project, will have direct impact on regional markets but also affect car manufacturers and national regulations, resulting in long term changes. The main ambition of the MADEGASCAR project is to increase the number of gas vehicles in the partner regions by 50%.

  8. Assessing demand when introducing a new fuel: natural gas on Java

    International Nuclear Information System (INIS)

    Groenendaal, W.J.H. van

    1995-01-01

    The Indonesian government is investing in a gas transmission system on Java. For the evaluation of this investment a forecast of the demand for natural gas by the manufacturing sector is needed. To obtain this forecast the manufacturing sector is divided into subsectors according to energy use in production processes. On the level of production processes the opportunities for natural gas are based on net present value evaluations of its future benefits in production. This results in the desired fuel mix for manufacturing subsectors, from which the gas intensity ratios per subsector for existing production and new investments are calculated. Gas demand can then be forecast by combining the gas intensity ratios with subsectoral (growth in) gross value-added. This approach leads to a flexible forecasting tool that can readily account for changes in economic structure and energy prices, as encountered by rapidly developing economies. (author)

  9. Economics of natural gas upgrading

    International Nuclear Information System (INIS)

    Hackworth, J.H.; Koch, R.W.

    1995-01-01

    Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels

  10. Assessment of future natural gas vehicle concepts

    Science.gov (United States)

    Groten, B.; Arrigotti, S.

    1992-10-01

    The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.

  11. Neural control systems for alternatively fuelled vehicles and natural gas fuel injection for DACIA NOVA

    Energy Technology Data Exchange (ETDEWEB)

    Sulatisky, M. [Saskatchewan Research Council, Saskatoon, SK (Canada); Ghelesel, A. [BC Gas International, Vancouver, BC (Canada)

    1999-07-01

    The elements of natural gas vehicle conversion technology are described as background to a discussion of the development of bi-fuel injection system for the Rumanian-manufactured DACIA-NOVA automobile. The bi-fuel injection system mirrors the fueling system installed by the original equipment manufacturer; it can also be easily installed on Ford, General Motors and DaimlerChrysler vehicles as well as on most imports.To meet emission standards after 2000, it is envisaged to install on the DACIA NOVA a neural control system (NCS) and a completely adaptive linear control system (ACLS). Details of natural gas vehicles development and the development of NCS and ACLS are discussed, including short-term and long-term objectives.

  12. Natural gas vehicles. An option for Europe

    International Nuclear Information System (INIS)

    Engerer, Hella; Horn, Manfred

    2010-01-01

    In Europe natural gas vehicles play a minor role. A decisive reason for this is the dependence of most European countries from gas imports. Except for Italy, there is no tradition to use natural gas as fuel. In addition, there is a lack of infrastructure (e.g. fuelling stations). In contrast to Europe, in Latin American and Asian countries natural gas vehicles are widespread. Some countries foster natural gas vehicles because they have own gas resources. Many countries must reduce the high air pollution in big cities. Environmental reasons are the main motive for the use of natural gas vehicles in Europe. In last years, high oil prices stimulated the use of natural gas as fuel. European governments have developed incentives (e.g. tax reductions) to foster natural gas vehicles. However, the focus is on hybrid technology and the electric car, which, however, need further technical improvement. In contrast, the use of natural gas in conventional engines is technically mature. Additional gas imports can be avoided by further improvements of energy efficiency and the use of renewable energy. In sum, the market penetration of natural gas as fuel should be promoted in Europe. (author)

  13. Liquefied Natural Gas for Trucks and Buses

    International Nuclear Information System (INIS)

    James Wegrzyn; Michael Gurevich

    2000-01-01

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems

  14. Life cycle water consumption for shale gas and conventional natural gas.

    Science.gov (United States)

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  15. Future perspective for CNG (Compressed Natural Gas)

    International Nuclear Information System (INIS)

    Veen, D.

    1999-01-01

    Driving on natural gas (CNG, Compressed Natural Gas) has been the talk of the industry for many years now. Although the benefits of natural gas as an engine fuel have become well-known, this phenomenon does not seem to gain momentum in the Netherlands. Over the last few months, however, the attitude towards CNG seems to be changing. Energy companies are increasingly engaged in commercial activities, e.g. selling natural gas at petrol stations, an increasing number of car manufacturers are delivering natural gas vehicles ex-works, and recently the NGV (Natural Gas Vehicles) Holland platform was set up for the unequivocal marketing of natural gas as an engine fuel

  16. Comparative economics of natural gas vehicles and other vehicles

    International Nuclear Information System (INIS)

    Biederman, R.T.; Blazek, C.F.

    1992-01-01

    The utilization of alternative fuels for transportation applications is now a certainty. The only real questions that remain to be answered involve the type of fuel (or fuels) to be adopted most extensively. While some alternative fuel advocates suggest that a niche will exist for all alternative fuels, the most likely scenario will involve widespread use of only a few major fuel types. Undoubtedly, reformulated gasoline will be a major force as an interim fuel, due to inertia and a predominant bias toward liquid fuels. The prospects for utilization of ethanol, methanol, MTBE, and ETBE appear to be most promising in the area of blending with gasoline to meet the needs of reformulated gasoline and flexible fueled vehicles (FFV's). Propane fueled vehicles will continue to grow in popularity, especially with fleets, but will never become a major force in the transportation market in the U.S. due to unresolvable supply limitations. The clear winner in the alternative fuels transportation market appears to be natural gas. Either in compressed or liquefied form, natural gas enjoys low costs, tremendous availability, and impressive environmental benefits. As shown in this analysis, natural gas competes favorably with gasoline in terms of economics. Natural gas is also preferential to other alternative fuels in terms of safety and heath issues as well as operational issues. Adoption of natural gas as a standard transportation fuel will probably require market segmentation characterized by compressed natural gas utilization in light-duty vehicles and liquefied natural gas utilization in heavy-duty vehicles. The most significant barrier to natural gas utilization will continue to be the creation of a refueling infrastructure. As these problems are resolved, however, natural gas will emerge as the transportation fuel of the future

  17. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  18. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Tissot-Favre, V.; Sudour, D.; Binutti, M.; Zanetta, P.; Rieussec, J.L.

    2005-01-01

    As a true alternative to oil products, and environment friendly fuel, Natural Gas for Vehicles complies with requirements for sustainable development. In addition, it is part of the European Union policy which underlines the importance of energy diversification through alternative fuels. This workshop will look into the current offer to the public transport segment, waste collection vehicles, and commercial vehicle fleets. Actions taken to spread the use of natural gas to all types of cars will also be covered. This article gathers 5 presentations about this topic given at the gas conference

  19. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  20. The golden age of natural gas

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The experts of energy policy agree to predict a brilliant future for natural gas. Among fossil energies, natural gas produces the least quantity of CO 2 . Geological reserves are estimated to 65 years for gas and 43 years for petroleum. Throughout the world, industrial infrastructures of gas production, transport and distribution are being developed, for instance 430000 km of gas pipeline are planned. In western Europe half the increase of gas demand by 2010 will be due to electricity production. Innovative techniques using natural gas are studied in various fields: cogeneration, transport, urban heating and fuel cells. The gas-fed fuel cell is based on a reversed electrolysis: hydrogen produced by the decomposition of natural gas interacts with oxygen and yields electricity. (A.C.)

  1. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  2. Natural gas and Brazilian energetic matrix; Gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Ricardo Luchese de [White Martins S.A., Rio de Janeiro, RJ (Brazil)

    1997-07-01

    Recent projection of the market in global scale shows a tendency in natural gas using replacing mostly the fuel oil. Its market share well increase from 21.1% in 1994 to 24.0% in 2010. The annual energetic use will reach 29.23 x 10{sup 9} Gcal in 2010 (8990 million Nm{sup 3} natural gas/day) versus 18.90 x 10{sup 9} Gcal in 1994 (5810 million Nm{sup 3} natural gas/day). For Brazil, its consumption will increase from 8.7 million Nm{sup 3} natural gas/day in 1994 to 35.9 million Nm{sup 3} natural gas/day in 2010. Projects like Brazil-Bolivia natural gas pipeline, will supply 18 million Nm{sup 3} natural gas/day, which expected to start-up before the year 2000. This projects will supply the Brazilian southern regions, that do not consume natural gas at the current moment. Although there are many different kind of natural gas consumption in the industry this paper presents the technical and economical estimate of the injection in the blast furnace operating with coke or charcoal. The process simulation is done assisted by math modeling developed by White Martins/Praxair Inc. (author)

  3. Petroleum and natural gas in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Presentations made at the 7th Annual Illinois Energy Conference are compiled and reported. Specific topics include: Illinois petroleum and natural gas supply; energy use patterns for Illinois and the nation; impacts of the National Energy Act on the natural gas industry; natural gas for North America; natural gas supply under the Natural Gas Policy; US access to international oil; deregulation and its impact on the US petroleum supply; the US Energy Policy; petroleum pricing and taxation policies in Illinois; the high cost of energy and its impact on the poor; impact of increased fuel prices on Illinois' industrial future; energy prices and inflation; opportunities for energy conservation in transportaton; overview of energy and synfuels from biomass and wastes; an inventory of energy potential from biomass in Illinois; problems and potential of alcohol from agriculture; liquid and gaseous fuels from coal; and alternatives to liquid and gaseous fuels.

  4. The utilization of natural gas in the electricity production through fuel cell; A utilizacao do gas natural na geracao distribuida atraves de celulas combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi Junior, Paulo

    2004-07-01

    In function of the necessity of electric energy as input of vital importance for the development of the country, this work aims at to offer plus an energy alternative for Brazil. The exploitation of the natural gas reserves recently discovered can be made through modern methods that give as priority the distributed generation and the low ambient impact. All these aspects can be gotten with the use of fuel cell, working with the remodelled natural gas. Increased to the factor of a low ambient impact in the proper generation, the project suggests that the generating source can be located next the consumer, diminishing still more the problems generated for transmission lines, fuel transport, etc. The fuel cell has received a great attention in the international community and some models, some already in commercial period of training, they have shown excellent possibilities of capsize to be one of the future technologies in the generation of electric energy with low ambient impact. (author)

  5. Natural gas vehicles in Europe: Commercialization prospects

    International Nuclear Information System (INIS)

    Vettori, P.; Merigo, F.

    1992-01-01

    This paper tables numerous statistical data to evidence that whereas the use of natural gas as an automotive fuel for private and public vehicles is growing in Asia, North and South America, in Europe this trend is currently being followed only in Italy. However, with the relatively recent expansion of the European Communities' natural gas distribution network, coupled with growing interest in this fuel as a cost effective and environmentally compatible alternative to petroleum, the demand for natural gas automotive fuels is expected to increase even in this continent. The trucking industry in particular should derive significant benefits from the switch to natural gas

  6. Spark ignition natural gas engines-A review

    International Nuclear Information System (INIS)

    Cho, Haeng Muk; He, Bang-Quan

    2007-01-01

    Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the operating envelope, fuel economy, emissions, cycle-to-cycle variations in indicated mean effective pressure and strategies to achieve stable combustion of lean burn natural gas engines are highlighted. Stoichiometric natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to those of their gasoline or Diesel counterparts, high boost pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precise air-fuel ratio control strategies should be developed to meet future stringent emission standards

  7. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  8. Experimental and modelling study of reverse flow catalytic converters for natural gas/diesel dual fuel engine pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.

    2000-07-01

    There is renewed interest in the development of natural gas vehicles in response to the challenge to reduce urban air pollution and consumption of petroleum. The natural gas/diesel dual fuel engine is one way to apply natural gas to the conventional diesel engine. Dual fuel engines operating on natural gas and diesel emit less nitrogen oxides, and less carbon soot to the air compared to conventional diesel engines. The problem is that at light loads, fuel efficiency is reduced and emissions of hydrocarbons and carbon monoxide are increased. This thesis focused on control methods for emissions of hydrocarbons and carbon monoxide in the dual fuel engine at light loads. This was done by developing a reverse flow catalytic converter to complement dual fuel engine exhaust characteristics. Experimental measurements and numerical simulations of reverse flow catalytic converters were conducted. Reverse flow creates a high reactor temperature even when the engine is run at low exhaust temperature levels at light loads. The increase in reactor temperature from reverse flow could be 2 or 3 times higher than the adiabatic temperature increase, which is based on the reactor inlet temperature and concentration. This temperature makes it possible for greater than 90 per cent of the hydrocarbon and carbon monoxide to be converted with a palladium based catalyst. Reverse flow appears to be better than conventional unidirectional flow to deal with natural gas/diesel dual fuel engine pollution at light loads. Reverse flow could also maintain reactor temperature at over 800 K and hydrocarbon conversion at about 80 per cent during testing. The newly presented model simulates reactor performance with reasonable accuracy. Both carbon monoxide and methane oxidation over the palladium catalyst in excess oxygen and water were described using first order kinetics.

  9. Natural gas in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ask, T Oe; Einang, P M; Stenersen, D [MARINTEK (Norway)

    1996-12-01

    The transportation sector is responsible for more than 50% of all oil products consumed, and it is the fastest growing oil demand sector and the fastest growing source of emissions. During the last 10 years there have been a considerable and growing effort in developing internal combustion gas engines. This effort has resulted in gas engines with efficiencies comparable to the diesel engines and with emissions considerably lower than engines burning conventional fuels. This development offers us opportunities to use natural gas very efficiently also in the transportation sector, resulting in reduced emissions. However, to utilize all the built in abilities natural gas has as engine fuel, the natural gas composition must be kept within relatively narrow limits. This is the case with both diesel and gasoline today. A further development require therefore specified natural gas compositions, and the direct use of pipeline natural gas as today would only in limited areas be acceptable. An interesting possibility for producing a specified natural gas composition is by LNG (Liquid Natural Gas) production. (EG)

  10. Feasibility of landfill gas as a liquefied natural gas fuel source for refuse trucks.

    Science.gov (United States)

    Zietsman, Josias; Bari, Muhammad Ehsanul; Rand, Aaron J; Gokhale, Bhushan; Lord, Dominique; Kumar, Sunil

    2008-05-01

    The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2). Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option.

  11. Canadian natural gas and climate change

    International Nuclear Information System (INIS)

    2002-03-01

    The Canadian Gas Association (CGA) has expressed concerns regarding how the goal to reduce greenhouse gas emissions can be met. It also has concerns regarding the possible economic impacts of required measures to reduce emissions to 6 per cent below 1990 levels. The CGA argued that since the initial negotiations of the Kyoto Protocol, Canada's greenhouse gas emissions have increased significantly, meaning that if the agreement were to come into force, Canada would have to reduce emissions by about 29 per cent below the currently-projected 2008-2012 level. The report states that 28 per cent of Canada's energy needs are met by natural gas. Excluding energy use in transportation, natural gas contributes more than 40 per cent to Canada's energy portfolio. More than half of Canadian households rely on pipeline services and distribution companies to deliver natural gas for household use. The manufacturing sector relies on natural gas for more than half of its energy needs. Natural gas is a major energy source for the iron/steel, petroleum refining and chemical manufacturing industries. Natural gas is a cleaner-burning fuel than coal or crude oil, and its use results in fewer environmental impacts than other fossil fuels. Vehicles powered by natural gas produce 20 - 30 per cent less carbon dioxide emissions than vehicles powered by gasoline. Pipelines are also a more efficient way of transporting and distributing natural gas than marine transport, railways or trucks. The CGA recommends that policy development should emphasize the environmental benefits of natural gas and recognize its role as a bridge fuel to a cleaner energy-based economy. It also recommends that policies should be developed to encourage the use of natural gas in electricity generation to lower greenhouse gases and air pollutants such as oxides of nitrogen that cause smog

  12. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  13. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  14. Natural gas and crude oil

    International Nuclear Information System (INIS)

    Valais, M.R.

    1991-01-01

    Two main development could gradually modify these traditional features of natural gas markets and prices. First, environmental pressures and the tightening of emission standards and of the quality specifications for fuels should work in favor of natural gas. Second the increasing distance of resources in relation to the major consuming zones should bring about a considerable development of international natural gas trade. International expansion should mark the development of the gas industry in the coming decades. This evolution will give natural gas an importance and a role appreciably closer to those of oil on the world energy scene. But it is obvious that such a development can come about only at the cost of considerable investments for which the economic viability is and will remain dependent on the level of the prices of natural gas as the inlet to its consuming markets. This paper attempts to answer the questions: Will these markets accept a new scale of value for gas in relation to other fossil fuels, including oil, which will take into account new environmental constraints and which will be able to fulfill the formidable financial needs of the gas industry in the coming decades?

  15. Natural gas industry and its effects on the environment

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Kejeijan, B.

    2008-01-01

    The discoveries of natural gas have increased during the last ten years in Syria, These increases lead to the necessity of knowing the effects of this industry on the environment. Syrian Arabic Republic has been planning to convert most of the current electric of plants to natural gas in addition to future plans to export natural gas to the surrounding countries. In addition, the government is working on the use of LPG gas in automobiles. However, environmentally, the importance of natural gas is due to the followings: 1- Natural gas, when burned, emits lower quantities of greenhouse gases and criteria pollutants per unit of energy produced than to other fossil fuels. This occurs in part because natural gas is more fully combusted, and in part because natural gas contains fewer impurities than any other fossil fuel. 2-The amount of carbon dioxide produced from the combustion of natural gas is less than the amount produced from the combustion of other fossil fuels to produce the same amount of heat. One of the important uses of natural gas is in the transportation since natural gas does not produce during combustion toxic compounds which are usually produced during the combustion of diesel and benzene. therefore natural gas is seen and considered as an important fuel to address environmental concerns. (author)

  16. Experimental investigation and combustion analysis of a direct injection dual-fuel diesel-natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Carlucci, A.P.; De Risi, A.; Laforgia, D.; Naccarato, F. [Department of Engineering for Innovation, University of Salento, CREA, via per Arnesano, 73100 Lecce (Italy)

    2008-02-15

    A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG-air charge. The CNG was injected into the intake manifold via a gas injector on purpose designed for this application. The main performance of the gas injector, such as flow coefficient, instantaneous mass flow rate, delay time between electrical signal and opening of the injector, have been characterized by testing the injector in a constant-volume optical vessel. The CNG jet structure has also been characterized by means of shadowgraphy technique. The engine, operating in dual-fuel mode, has been tested on a wide range of operating conditions spanning different values of engine load and speed. For all the tested operating conditions, the effect of CNG and diesel fuel injection pressure, together with the amount of fuel injected during the pilot injection, were analyzed on the combustion development and, as a consequence, on the engine performance, in terms of specific emission levels and fuel consumption. (author)

  17. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  18. Experimental energetic analysis of gas natural-powered fuel cell cogeneration plant; Analise energetica experimental de uma planta de co-geracao com celulas a combustivel e gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose G.M.; Lopes, Francisco C.; Silva Junior, Fernando R.; Soares, Guilherme F.W.; Serra, Eduardo T. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Power systems based on fuel cells have been considered for residential and commercial applications in energy Distributed Generation (DG) market as these systems can minimize their acquisition, installation and operation high costs. In this work we present an experimental analysis of a power generation system formed by a 5 kW proton exchange membrane fuel cell unit and a natural gas reformer (fuel processor) for hydrogen production, of the CEPEL's Fuel Cell Laboratory. It was determined the electrical performance of the cogeneration system in function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic reforming provided the system operation in excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economy of the cogeneration power plant. The maximum electrical efficiency achieved was around 38% and in all power range unit operated with average potential per single fuel cell higher than 0.60 V. (author)

  19. Liquefied natural gas projects in Altamira: impacts on the prices of the natural gas; Proyectos de gas natural licuado en Altamira: impactos sobre los precios del gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Perez Cordova, Hugo; Elizalde Baltierra, Alberto [Petroleos Mexicanos (PEMEX), (Mexico)

    2004-06-15

    The possible incorporation of new points of supply of natural gas to the Sistema National de Gasoductos (SNG) through the import of Liquified Natural Gas or (GNL) could cause an important modification in the national balance of supply-demand of the fuel and in its price, if large volumes are received. An analysis is presented of the possible impact that would have in the natural gas national market and in its prices the import of GNL made by the region of Altamira, Tamaulipas. [Spanish] La posible incorporacion de nuevos puntos de oferta de gas natural al Sistema Nacional de Gasoductos (SNG) a traves de la importacion de Gas Natural Licuado (GNL), podria provocar una modificacion importante en el balance oferta-demanda nacional del combustible y en su precio, si se reciben fuertes volumenes. Se presenta un analisis del posible impacto que tendria en el mercado nacional del gas natural y en sus precios la importacion de GNL realizada por la region de Altamira, Tamaulipas.

  20. Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices

    International Nuclear Information System (INIS)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2006-01-01

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then-contrary to common practice-any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000 to 2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation

  1. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  2. Natural gas utilization in Santa Cruz thermal-electric power; A utilizacao de gas natural em Santa Cruz

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Mauricio F. de.; Lundeqvist, Carl G; Gomes, Gerson; Almeida, A E

    1994-12-31

    Use of natural gas as an alternative energy source on the thermo electric power plant of Santa Cruz are presented. Economic studies on hydroelectric power plants to use thermal generators during low water supply periods, costs of natural gas as a alternative energy fuel, and the engineer services to the conversion of fuel oil system, are discussed. 5 figs., 6 tabs.

  3. 40 CFR 1065.715 - Natural gas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet the...

  4. Why natural gas for CO2 and climate control?

    International Nuclear Information System (INIS)

    Roose, T.R.

    1996-01-01

    The Intergovernmental Panel on Climate Change (IPCC) and the US Environmental Protection Agency (EPA) have suggested that increased use of natural gas is a possible strategy for reducing the potential for global warming. Carbon dioxide (CO 2 ) contributes as much to global warming as all other greenhouse gases combined. During combustion, natural gas generates less CO 2 per unit of energy produced than either coal or oil. On the basis of the amount of CO 2 emitted, the potential for global warming could be reduced by substituting natural gas to coal or oil. However, since natural gas is primarily methane, a potent greenhouse gas, these emissions could reduce natural gas's inherent advantage of lower CO 2 emissions. To address this issue and compare the fuels on an equivalent basis, it is necessary to account for emissions of all greenhouse gases throughout the fuel cycle of each fuel and to determine the impact of these gases on global warming. Gas Research Institute and EPA jointly funded a study to quantify methane emissions from the natural gas industry so that this information could be used as input to address the issue of the fuel switching strategy. The study found that the natural gas industry emitted 1.4% of natural gas production (314 Bscf of methane) to the atmosphere in 1992. Today, due to voluntary reductions from the gas industry, the percent leaked is even less. This 1992 amount has been analyzed over a broad range of global warming potentials, and the conclusion that fuel switching to natural gas reduces the potential for global warming is supported. The results of this study are presented in this paper

  5. Intermediate Temperature Hybrid Fuel Cell System for the Conversion of Natural to Electricity and Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Theodore [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-22

    This goal of this project was to develop a new hybrid fuel cell technology that operates directly on natural gas or biogas to generate electrical energy and to produce ethane or ethylene from methane, the main component of natural gas or biogas, which can be converted to a liquid fuel or high-value chemical using existing process technologies. By taking advantage of the modularity and scalability of fuel cell technology, this combined fuel cell/chemical process technology targets the recovery of stranded natural gas available at the well pad or biogas produced at waste water treatment plants and municipal landfills by converting it to a liquid fuel or chemical. By converting the stranded gas to a liquid fuel or chemical, it can be cost-effectively transported to market thus allowing the stranded natural gas or biogas to be monetized instead of flared, producing CO2, a greenhouse gas, because the volumes produced at these locations are too small to be economically recovered using current gas-to-liquids process technologies.

  6. Globalization of the Natural Gas Industry

    International Nuclear Information System (INIS)

    Burns, RJ.

    1996-01-01

    This document deals with the foreseeable evolution of natural gas demand in the next 15 years. Natural gas consumption is growing faster than any other fossil fuel and, according to ENRON, the natural consumption growth will continue. The environmental aspect of natural gas use for power generation is presented, showing that gas use reduces pollution emissions (when compared with coal). On top of that, it appears that the conversion efficiency of gas is much higher than the conversion efficiency of coal steam. Eventually, natural gas resources should meet energy demand for decades. (TEC)

  7. Regulators debate support of natural gas in electricity

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    State regulators recently tabled a controversial proposal to encourage natural gas use in electricity generation. Proponents of natural gas support such an endorsement since state regulators can influence utility fuel-supply choices through planning incentives and disincentives. Members of the National Association of Regulatory Utility Commissioners vowed to take up the matter at their Winter Committee Meetings, February 28 to March 4 in Washington, DC. NARUC's Gas Committee offered the resolution at the NARUC Annual Convention in Los Angeles in November. Presentations and debate covered the merits and drawbacks of formal support for natural gas. Natural gas generation has fast construction and low capital-cost benefits, air quality and fuel handling advantages over other fossil fuels. Still, regulators and utility representatives expressed concern over long-term availability, over reliance on one resource and price

  8. Cow Power: A Case Study of Renewable Compressed Natural Gas as a Transportation Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mintz, Marianne [Argonne National Lab. (ANL), Argonne, IL (United States); Tomich, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This case study explores the production and use of renewable compressed natural gas (R-CNG)—derived from the anaerobic digestion (AD) of dairy manure—to fuel 42 heavy-duty milk tanker trucks operating in Indiana, Michigan, Tennessee, and Kentucky.

  9. Performance of an Otto cycle motor with natural gas direct injection; Desempenho de um motor ciclo Otto com injecao direta de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Cleiton Rubens Formiga

    1997-07-01

    A Otto cycle engine with natural gas direct injection, during the inlet stroke, was submitted to runs with full power in a Foucaut dynamometer. The results obtained show a increase in the volumetric efficiency of the engine with natural gas direct injection when compared with natural gas injection applied in the inlet manifold, upstream of the throttle butterfly. In the conversion to natural gas direct injection, the technical characteristics were not changed. A kit for natural gas direct injection, with electronic management was located on the cylinder head of the test engine. Maintaining the pressure constant in the natural gas fuel line, using a reduction valve, the mass of fuel injected into the cylinder was regulated, varying the opening time of the solenoid valve fuel injector. Engine performance data is compared, emphasizing the factors that contribute to this increase in relative volumetric efficiency. Modifications are made to maximize the power of the engine with natural gas direct injection. (author)

  10. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Compressed natural gas (CNG). 48.4041-21 Section... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply tank...

  11. Liquefied natural gas (LNG) market and Australia

    Science.gov (United States)

    Alam, Firoz; Alam, Quamrul; Reza, Suman; Khurshid-ul-Alam, S. M.; Saleque, Khondkar; Ahsan, Saifuddin

    2017-06-01

    As low carbon-emitting fossil fuel, the natural gas is mainly used for power generation and industrial applications. It is also used for heating and cooling in commercial and residential buildings as well as in transport industry. Although the natural gas reaches the end-user mainly through pipelines (if gas is available locally), the liquefied form is the most viable alternative to transport natural gas from far away location to the end user. The economic progress in Asia and other parts of the world creates huge demand for energy (oil, gas and coal). As low carbon-emitting fuel, the demand for gas especially in liquefied form is progressively rising. Having 7th largest shale gas reserve (437 trillion cubic feet recoverable), Australia has become one of the world's major natural gas producers and exporters and is expected to continue a dominating role in the world gas market in foreseeable future. This paper reviews Australia's current gas reserve, industries, markets and LNG production capabilities.

  12. Climate impacts of air quality policy: switching to a natural gas-fueled public transportation system in New Delhi.

    Science.gov (United States)

    Reynolds, Conor C O; Kandlikar, Milind

    2008-08-15

    Between 2001 and 2003, public transport vehicles in New Delhi were required to switch their fuel to natural gas in an attemptto reduce their air pollution impacts. This study examines the climatic impacts of New Delhi's fuel switching policy, and outlines implications for such efforts in rapidly industrializing countries. Natural gas is mostly composed of methane, an important greenhouse gas. Emitted aerosols (black carbon, particulate organic carbon, and sulfate) also cause radiative forcing. We find that methane and black carbon emissions are critical contributors to the change in carbon dioxide equivalent [CO2(e)] emissions. In New Delhi, the switch to natural gas results in a 30% increase in CO2(e) when the impact of aerosols is not considered. However, when aerosol emissions are taken into account in our model, the net effect of the switch is estimated to be a 10% reduction in CO2(e), and there may be as much as a 30% reduction in CO2(e). There is significant potential for emissions reductions through the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism for such fuel switching projects.

  13. Fuel switching? Demand destruction? Gas market responses to price spikes

    International Nuclear Information System (INIS)

    Lippe, D.

    2004-01-01

    This presentation defined fuel switching and addressed the issue regarding which consumers have the capability to switch fuels. In response to short term price aberrations, consumers with fuel switching capabilities reduce their use of one fuel and increase consumption of an alternative fuel. For example, natural gas consumption by some consumers declines in response to price spikes relative to prices of alternative fuels. This presentation also addressed the issue of differentiating between fuel switching and demand destruction. It also demonstrated how to compare gas prices versus alternative fuel prices and how to determine when consumers will likely switch fuels. Price spikes have implications for long term trends in natural gas demand, supply/demand balances and prices. The power generating sector represents a particular class of gas consumers that reduce operating rates of gas fired plants and increase operating rates of other plants. Some gas consumers even shut down plants until gas prices declines and relative economies improve. Some practical considerations for fuel switching include storage tank capacity, domestic refinery production, winter heating season, and decline in working gas storage. tabs., figs

  14. Dedicated natural gas vehicle with low emission

    NARCIS (Netherlands)

    Voogd, A. de; Weide, J. van der; Konig, A.; Wegener, R.

    1995-01-01

    In the introduction an overview is given of international activities in the field of natural gas vehicles. The main incentives for the use of natural gas in vehicles are: emission reduction in urban areas, fuel diversification, and long term availability. Heavy duty natural gas engines are mainly

  15. Natural gas deregulation

    International Nuclear Information System (INIS)

    Ronchi, M.

    1993-01-01

    With the aim of establishing realistic options for deregulation in the natural gas industry, this paper first considers the structural evolution of this industry and evidences how it differs from the petroleum industry with which it exhibits some essential characteristics in common. This comparison is made in order to stress that, contrary to popular belief, that which is without doubt good for the petroleum industry is not necessarily so also for the natural gas industry. The paper concludes with separate analyses of the natural gas markets in the principal industrialized countries. Arguments are provided to show that the 'soft' deregulation option for the natural gas industry is not feasible, and that 'total' deregulation instead, backed by the passing of a suitable package of anti-trust laws 'unbundling' the industry's four major activities, i.e., production, storage, primary and secondary distribution, is the preferable option. The old concept of guaranteed supplies for minor users of natural gas should give way to the laws of supply and demand governing inter-fuel competition ensured through the strict supervision of vigilance committees

  16. Natural gas industry and global warming

    International Nuclear Information System (INIS)

    Staropoli, R.; Darras, M.

    1997-01-01

    Natural gas has a very good potential compared to other fossil fuels as regard to global warming because of its high content of hydrogen, and its versatility in uses. To take full advantage of this potential, further development of gas designed boilers and furnaces, gas catalytic combustion, fuel cells are needed, but progresses in the recent years have been very promising. The natural gas industry' environmental potential is discussed. Regarding methane emission, progresses have been done is Western Europe on the distribution network, and some improvement are underway. It is however important to rationalize the effort by acting on the most emitting subsystem: this can be achieved by cooperation along the whole gas chain. (R.P.)

  17. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  18. Resourceful utilization technology for natural gas

    International Nuclear Information System (INIS)

    Matsumura, Y.

    1994-01-01

    This paper is a description of new applications that will contribute in increasing the demand for natural gas. First, technical issues to turn natural gas into a more resourceful fuel (efficient transportation and storage, integrated utilization of energies, uses as non-fuel), and also pitch-based high performance carbon materials and utilization techniques in the field of energy (isotropic carbon fiber, activated carbon fiber, spherical carbon micro-beads, high modulus carbon fiber). (TEC)

  19. Rapid fuel switching from coal to natural gas through effective carbon pricing

    Science.gov (United States)

    Wilson, I. A. Grant; Staffell, Iain

    2018-05-01

    Great Britain's overall carbon emissions fell by 6% in 2016, due to cleaner electricity production. This was not due to a surge in low-carbon nuclear or renewable sources; instead it was the much-overlooked impact of fuel switching from coal to natural gas generation. This Perspective considers the enabling conditions in Great Britain and the potential for rapid fuel switching in other coal-reliant countries. We find that spare generation and fuel supply-chain capacity must already exist for fuel switching to deliver rapid carbon savings, and to avoid further high-carbon infrastructure lock-in. More important is the political will to alter the marketplace and incentivize this switch, for example, through a stable and strong carbon price. With the right incentives, fuel switching in the power sector could rapidly achieve on the order of 1 GtCO2 saving per year worldwide (3% of global emissions), buying precious time to slow the growth in cumulative carbon emissions.

  20. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but unce...

  1. Natural gas outlook

    International Nuclear Information System (INIS)

    Molyneaux, M.P.

    1998-01-01

    An overview of natural gas markets in Canada and in the United States was provided. The major factors that determine the direction of natural gas prices were depicted graphically. Price volatility has decreased in recent months. As expected, April through November total energy consumption reached historically high levels. Demand for natural gas during the summer of 1997 was not as strong as anticipated. Nuclear energy appears to be on the slippery slope, with natural gas-driven electricity projects to fill the void. Hydroelectricity had a strong showing in 1997. Prospects are less bright for 1998 due to above average temperatures. Canadian natural gas export capacity has increased 5.5 times between 1986 and estimated 1999 levels. Despite this, in 1997, deliveries to the United States were marginally behind expectations. Natural gas consumption, comparative fuel prices, natural gas drilling activity, natural gas storage capacity, actual storage by region, and average weekly spot natural gas prices, for both the U. S. and Canada, were also provided. With regard to Canada, it was suggested that Canadian producers are well positioned for a significant increase in their price realization mostly because of the increase in Canada's export capacity in 1997 (+175 Mmcf/d), 1998 (1,060 Mmcf/d) and potentially in 1999 or 2000, via the Alliance Pipeline project. Nevertheless, with current production projections it appears next to impossible to fill the 10.9 Bcf/d of export capacity that will be potentially in place by the end of 1999. tabs., figs

  2. Assessment of greenhouse gas emissions from natural gas

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The study, 'Assesment of greenhouse gas emission from natural gas' by independent consultants Energetics Pty Ltd, shows that natural gas has significantly fewer greenhouses gas emissions than either black or brown cola for the defined life cycle stages. The life cycle emissions from natural gas use by an Australian Major User are approximately 50% less than the emissions from Victorian brown coal and approximately 38% less than the emissions from Australian average black coal. Australian Best Practice gas fired electricity generation is estimated to emit between 514 and 658 kg CO 2 e/MWh. By comparison, Australian Best Practice coal-fired electricity generation is estimated to emit between 907 and 1,246 kg CO 2 e/MWh for black and brown coal respectively. Greenhouse gas emissions from Australian Best Practice gas-fired electricity generation using combined cycle gas turbines (including full fuel cycle emissions) vary from 41% to 46% of the emissions from brown coal-fired electricity generation and 57% to 64% of emissions from black coal-fired electricity generation. Greenhouse gas emissions from direct gas supply water heating range from 1,470 to 2,042 kilograms per annum. This compares with emissions of 1,922 to 2,499 kg for electric heating from gas-fired electricity generation and 3,975 to 5,393 kg for coal-fired electricity generation. The implications for greenhouse policy nationally are also discussed, emphasising the need to review national energy policy, currently tied to 'fuel neutrality' doctrine

  3. Price Comovement Between Biodiesel and Natural Gas

    OpenAIRE

    Janda, Karel; Kourilek, Jakub

    2016-01-01

    We study relationship between biodiesel, as a most important biofuel in the EU, relevant feedstock commodities and fossil fuels. Our main interest is to capture relationship between biodiesel and natural gas. They are both used either directly as a fuel or indirectly in form of additives in transport. Therefore, our purpose is to �nd price linkage between biofuel and natural gas to support or reject the claim that they compete as alternative fuels and potential substitutes. The estimated p...

  4. A state regulator's perspective on the natural gas industry

    International Nuclear Information System (INIS)

    Heintz, F.O.

    1992-01-01

    This paper reviews the history of the natural gas distribution industry and the role of state regulation in controlling pricing and supply. The paper discusses the results of national policies such as the Fuel Use Act and the subsequent Natural Gas Policy Act. It then discusses the resulting market and prices resulting from both regulation and deregulation of the natural gas industry. The paper goes on to discuss the market potential for natural gas and the reliability of this fuel source for future demand

  5. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  6. Liquefied natural gas: a harbor plan; Plano diretor portuario para o gas natural liquefeito

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Aluisio de Souza; Baitelo, Ricardo Lacerda [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica; Rego, Erik Eduardo [Excelencia Energetica Consultoria Empresarial Ltda., Sao Paulo, SP (Brazil); Rosim, Sidney Olivieri [Rosim e Papaleo Consultoria e Participacoes Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    The objective of this article is to present the structuring of a port directing plan for the liquefied natural gas. In this sense, an integrated approach between the applied logistic and the requested market conditions was used. For the large distances transportation of liquefied natural gas, the marine modal must attain technical requirements that are not usual in the port routine. Apart from the proper dimensioning of the naval fleet in order to maximize the transported load, providing the optimization of the economic distance, the entire port infra-structure is planned for the reception of liquefied natural gas, in order to attend the physical peculiarities as well as security aspects of extreme importance. The selection of the studied local was motivated by the fuel supply shortage suffered by the country, especially in the northeast region, which owns already installed thermal units in need of the fuel supply to be operated. (author)

  7. Green future of natural gas

    International Nuclear Information System (INIS)

    Mallardi, P.

    1991-01-01

    A sectoral analysis of current trends in the use of natural gas in Italy shows that this energy source, now estimated to be covering 23.7% of total Italian national energy requirements, is fulfilling its role as an environmentally compatible, low cost and readily available energy alternative well suited to alleviate Italy's worrisome over-dependence on foreign supplied oil and reduce the severity of the urban air pollution problem (it being a low nitrogen oxide and carbon dioxide emitting, non-sulfur containing fuel). This paper expands this theme by giving a complete panorama of the natural gas market in Italy, sector by sector, and by coupling projections on the expected increased use of this energy source (as mandated by the National Energy Plan) with estimates of consequent reductions in air pollution based on a comparative analysis of fuel oil versus natural gas combustion

  8. Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines

    International Nuclear Information System (INIS)

    Canova, Aldo; Chicco, Gianfranco; Genon, Giuseppe; Mancarella, Pierluigi

    2008-01-01

    The increasing diffusion of small-scale energy systems within the distributed generation (DG) paradigm is raising the need for studying the environmental impact due to the different DG solutions in order to assess their sustainability. Addressing the environmental impact calls for building specific models for studying both local and global emissions. In this framework, the adoption of natural gas-fueled DG cogeneration technologies may provide, as a consequence of cogeneration enhanced overall energy efficiency and of natural gas relatively low carbon content, a significant reduction of global impact in terms of CO 2 emissions with respect to the separate production of electricity and heat. However, a comprehensive evaluation of the DG alternatives should take into account as well the impact due to the presence of plants spread over the territory that could increase the local pollution, in particular due to CO and NO x , and thus could worsen the local air quality. This paper provides an overview on the characterization of the emissions from small-scale natural gas-fueled cogeneration systems, with specific reference to the DG technologies nowadays most available in the market, namely, microturbines and internal combustion engines. The corresponding local and global environmental impacts are evaluated by using the emission balance approach. A numerical case study with two representative machines highlights their different emission characteristics, also considering the partial-load emission performance

  9. The pricing of natural gas in US markets

    International Nuclear Information System (INIS)

    Brown, S.P.A.; Yucel, M.K.

    1993-01-01

    Our econometric evidence indicates that changes in natural gas prices are unequal in the long run. Nonetheless, all downstream prices change by at least as much as the average well-head price. Statistically, residential and commercial prices change as much as the city gate price. In the face of persistent shocks, however, market institutions and market dynamics can lead to lengthy periods in which the residential and commercial prices of natural gas adjust less than the wellhead or city gate prices. Electrical and industrial users of natural gas rely heavily on spot supplies and can switch fuels easily. Their ability to switch fuels may be related to the development of a spot market to serve them. Reliance on the spot market may explain why these end users have seen a greater reduction in natural gas prices than have the LDCs over the past seven years. The ability to switch fuels may account for electrical and industrial prices being the source of shocks in their relationships with the wellhead price. It also may explain why prices in these end-sue markets are quick to adjust. Commercial and residential customers cannot switch fuels easily and rely heavily on LDCs for their natural gas. The inability of these end users to switch fuels probably contributes to the reluctance of LDCs to purchase spot supplies of gas. Reliance on contract supplies may explain why the city gate price has not declined as much as electrical and industrial prices of natural gas over the past seven years. Furthermore, the LDCs administer prices in the commercial and residential markets under state regulation

  10. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Urgun Demirtas, Meltem [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), which can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic

  11. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    OpenAIRE

    Abbanat, Brian A.

    2001-01-01

    Compressed natural gas (CNG) vehicles have been used internationally by fleets and households for decades. The use of CNG vehicles results in less petroleum consumption, and fewer air pollutant and greenhouse gas emissions in most applications. In the United States, the adoption of CNG technology has been slowed by the availability of affordable gasoline and diesel fuel. This study addresses the potential market for CNG vehicles at the consumer level in California. Based on semi-structured pe...

  12. British Columbia natural gas: Core market policy

    International Nuclear Information System (INIS)

    1988-06-01

    The core market for natural gas in British Columbia is defined as all natural gas consumers in the residential, institutional, commercial, and industrial sectors not currently purchasing natural gas directly and not exempted from the core market by the British Columbia Utilities Commission (BCUC). The intent of the definition is to include all customers who must be protected by contracts which ensure long-term security of supply and stable prices. Core market customers are excluded from direct natural gas purchase and will be served by distribution utilities. A customer may apply to BCUC to leave the core market; such an application may be approved if it is demonstrated that the customer has adequate long-term natural gas supplies or alternative fuel supplies to protect him from supply interruptions. The non-core market is defined as all large industrial customers who elect to make their own natural gas supply arrangements and who can demonstrate to the BCUC sufficient long-term natural gas supply protection or alternative fuel capability to ensure security of the industry. Non-core market customers have full and open access to the competitive natural gas market. The British Columbia government will not apply its core market policy to other jurisdictions through Energy Removal Certificates

  13. Wood and natural gas as fuels for tunnel kilns in the clay-product industry; Serragem e gas natural como fontes energeticas em fornos tuneis na industria ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gabriel M. dos; Bazzo, Edson; Nicolau, Vicente de P.; Oliveira, Amir A.M. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica]. E-mails: mann@emc.ufsc.br; ebazzo@emc.ufsc.br; vicente@lmpt.ufsc.br; amirol@emc.ufsc.br

    2000-07-01

    The clay-product industry is responsible to large part of the thermal energy consumption, especially on drying and burning process. In spite of the success obtained with the burning of wood like principal fuel for tunnel kilns, the clay-product industries of Santa Catarina have looked for alternatives to substitute it. The interest appears especially due to imminent shortage of the wood on the market and due to possibility of use natural gas as a good and environmentally favorable alternative to reduce the energy specific consumption of the kilns, to increase the production and to improve the quality of the ceramic products. Nowadays, the natural gas is more expensive when compared with the wood. However, we believe that additional studies can place this fuel as a viable alternative to the clay-product industries. (author)

  14. Liquefied Natural Gas as an alternative fuel: a regional-level social cost-benefit appraisal

    OpenAIRE

    Moreira, Paulo Pires; Caetano, Fernando J. P.

    2017-01-01

    The impact from traditional marine fuels has the potential of causing health and non-health damages and contributes to climate change. Here, the introduction of Liquefied Natural Gas (LNG) as an energy end-use fuel for marine purposes is analysed. The aim of this study is to verify LNG’s policy implementation feasibility as a step-change for a low carbon perspective for shipping by means of developing a social cost-benefit analysis on a regional basis. Emissions from the Portuguese merchant f...

  15. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    Science.gov (United States)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  16. Modern approach to the problem of fossil gas fuels replacement by alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Soroka, Boris [Gas Institute, National Academy of Sciences, Kiev (Ukraine)

    2013-07-01

    New scientific and engineering fundamentals of fuels substitution have been developed instead of obsolete methodology “Interchangeability of Fuel Gases” developed in USA and existing from the middle of XX{sup th} century. To perform the complex prediction of total or partial substitution of given flow rate of natural gas NG for alternative gases AG the following parameters are to be predicted: plant utilization efficiencies – regarding fuel and energy utilization, the last in form of heat Ș{sub H} and exergy Ș{sub eff} efficiencies, saving or overexpenditure of the NG flow rate in the gas mixture with AG, specific fuel consumption b f and specific issue of harmful substances C{sub t} – pollutants in the combustion products (C{sub NO{sub x}} ) and greenhouse gases (C {sub CO{sub 2}} ). Certification of alternative gas fuels and fuel mixtures as a commodity products is carried out in frame of our approach with necessary set of characteristics, similar to those accepted in the world practice. Key words: alternative fuel, fuel replacement (substitution), natural gas, process gases, theoretical combustion temperature, thermodynamic equilibrium computations, total enthalpy.

  17. Natural gas and production of electricity

    International Nuclear Information System (INIS)

    Defago, E.

    2005-01-01

    The forthcoming power supply shortage in Switzerland due to increasing consumption is discussed, as are the possibilities for securing the future supply. Today, the main sources are hydroelectric (roughly 55 %) and nuclear (40 %) power. The share of electricity from natural gas amounts to only 1.4 %. The possibilities of further economic production of hydropower are practically exhausted. Therefore, further electric power has to be either imported or generated from other energy sources (renewable, nuclear, fossil) in the country itself. Due to the low acceptance of nuclear energy and the limited potential of renewable energy sources, natural gas is the most favoured candidate. The advantages of distributed production in cogeneration plants are compared with the centralized production in larger plants using combined cycles. Finally, a project currently under development is presented: an existing thermal power plant fueled with heavy fuel oil shall be refurbished and converted to natural gas as the new fuel

  18. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  19. Natural gas for electric power generation: Strategic issues, risks and opportunities

    International Nuclear Information System (INIS)

    Linderman, C.

    1992-01-01

    Natural gas is again being regarded as a significant fuel for electric power generation. It was once a predominant fuel for utilities in gas-producing areas, but natural gas consumption declined greatly after the 1973 oil shock because of reduced electricity demand and increased coal and nuclear generation. Moreover, wellhead price and other forms of regulation produced gas shortages in the 1970s. The resurgence of natural gas in future resource plans stems from its inherent ideal fuel characteristics: short lead time; low capital costs; small increments of modular capacity; delivered close to load centers; environmentally benign, preferable to oil and coal; and potential for high thermal efficiency in gas turbines. Natural gas, if available and attractively priced, is an ideal fuel for electric power generation. No other fuel shares these attractive characteristics, and utilities, facing higher than expected load growth, are relying on an increasing proportion of gas-fired combustion turbines, combined cycle plants, and cogeneration to meet a growing, yet uncertain, future demand for electricity. Despite these desirable operating characteristics, the varied past and uncertain future of natural gas markets raise legitimate concerns about the riskiness of current utility natural gas strategies. This report, which summarizes the major findings from research efforts, is intended to help utility decision-makers understand the full range of risks they face with natural gas electric power generation and to identify actions they can take to mitigate those risks

  20. Natural gas: A bridge to the future?

    International Nuclear Information System (INIS)

    Andriesse, C.D.

    1991-01-01

    Natural gas is the cleanest fossil fuel, but never got the chance to develop its use. The reason for that is the notion that the natural gas supplies would last for only some decennia. That is only right for the conventional gas supplies. In ice crystals, some hundreds of meters deep in the oceans, enormous methane reserves, many times larger than the conventional supplies, are enclosed in so-called clathrates. From the literature it appears that other sources of natural gas or methane and new options to use these energy sources are considered or to be developed. Attention is paid to the methane reserves in geologic formations, methane produced by microbes, and methane in clathrates. It is estimated that the methane reserve is 8 x 10 2 3 Joule. By using natural gas as a fuel CO 2 emission will be reduced considerably. Methane emission however must be limited, because of the reducing effect of methane on the oxygen production in the troposphere. The large reserves of methane also offer good prospects for the production of hydrogen, large-scale applications to generate electric power or the use of CH 4 as a fuel in the transportation sector. New techniques and economic, social and institutional factors determine how fast the use of natural gas will increase. It is expected that 0.54 Tm 3 of natural gas will be needed for the twelve countries of the European Community. Main users in the year 2030 will be the electric power industry (39%), industry (26%), households and trade (18%), and transportation sector and supply (15%). In 2030 63% of natural gas has to be imported. 3 refs

  1. Natural gas is more than gas power plants

    International Nuclear Information System (INIS)

    Lind, Oddvar

    2000-01-01

    Through the Statpipe gas line at Karmoey, Norway supplies 20% of the natural gas on the European market. The pipeline is 'leaking' a little bit of gas to the local communities at Karmoey and Haugesund. These communities have replaced 65% of their oil consumption with natural gas, which is a fine contribution to a better environment. The supplier of the natural gas, Gasnor ASA in this case, claims an energy efficiency of 90% at the end user because the gas burns directly and the loss in the pipeline is minimal. The efficiency of natural gas utilisation is twice that of the planned gas power stations in West-Norway, subtracting the losses in the electrical network. Gasnor ASA competes with oil suppliers and, if necessary, with electric utilities. The county hospital at Haugesund is quoted as an example. The hospital has two large boilers with dual fuel burners. They have been using natural gas since 1998 because it was worth while both economically and environmentally. The use of natural gas in the transport sector would be very important, but the necessary infrastructure is very little developed. For instance, five diesel-powered ferries on the Boknafjord emit as much NOx as the planned gas power plant at Kaarstoe

  2. Comportamento de um motor de ignição por compressão trabalhando com óleo Diesel e gás natural A dual fuel compression ignition engine performance, running with Diesel fuel and natural gas

    Directory of Open Access Journals (Sweden)

    José F. Schlosser

    2004-12-01

    Full Text Available A previsível escassez de petróleo aliada a uma consciência ecológica está levando pesquisadores a procurar novas fontes de energia e processos de combustão mais eficientes e menos poluentes. Entre os combustíveis menos poluentes está o gás natural, cujo consumo aumenta ano a ano. Os motores de combustão interna são transformadores de energia que têm baixa eficiência de conversão. Este trabalho avaliou um motor Diesel, bicombustível, movido a Diesel e gás natural. Nesse motor, a energia provém, basicamente, da combustão do gás natural. O Diesel tem a função de produzir o início da combustão do gás, que é o combustível principal. Assim, haverá uma substituição parcial de óleo Diesel por gás natural, aumentando o rendimento da combustão. Inicialmente, foi feito um ensaio-testemunha, somente com óleo Diesel e após foram feitos ensaios, com três repetições, para variadas proporções de óleo Diesel, gás natural e ângulos de avanço da injeção. O melhor desempenho foi obtido para 22% de óleo Diesel em relação ao máximo débito da bomba injetora e 13 L min-1 de gás natural com ângulo de avanço de injeção original (21º. Nesse caso, a potência média aumentou 14%, e o consumo específico (medido em valores monetários diminuiu 46% em relação ao ensaio-testemunha.The foresight of a petroleum shortage and an ecological conscience is moving scientists to look for new sources of energy and to develop more efficient combustion processes and reduced emissions. Natural gas is a reduced emission fuel, whose consumption increases every year. The present work evaluates a dual fuel compression ignition engine. The major portion of the fuel burned is natural gas. The Diesel fuel acts as combustion starter, which ignites under the compression heat. Diesel fuel is used only as an ignition source. The partial substitution of Diesel fuel by natural gas increases the combustion efficiency and achieves significant

  3. Natural gas for utility generation

    International Nuclear Information System (INIS)

    Moore, T.

    1992-01-01

    Forecasters predict that natural gas will be the dominant fuel choice for utility capacity additions in the coming decade and that power generation will be by far the largest growth market for gas sales. While gas's low emissions, high efficiency potential, and present low cost argue persuasively for a surge in gas-fired generation, many utilities have been slow to commit to a gas future, citing reasoned concern about long-term price trends and the ability of gas suppliers to deliver the fuel where and when it will be needed. Meanwhile, the relatively low cost of gas-fired units is providing an opportunity for independent power producers to compete strongly with utilities for generation contracts. EPRI studies suggest that a sound, competitive strategy will be based not on how much gas a utility burns, but rather on how this capacity fits into its overall generating mix at various fuel price levels. Gas suppliers will need to pay special attention to the operating needs of power generators if they are to solidify this important market

  4. Natural gas industry R and D

    International Nuclear Information System (INIS)

    Pavan, S.

    1992-01-01

    The last three decades have witnessed significant developments in engineering relative to the distribution and use of natural gas. This paper reviews these developments which, in natural gas distribution, include - polyethylene conduits, the use of radar to trace buried conduits, telemetering, innovative pressure reducing techniques and equipment, optimized retrofitting of buried pipelines, leak detection techniques, and energy recovery systems applied to pressure reducing operations. Relative to the efficient combustion and new uses of natural gas, the paper reviews the state-of-the-art in the design of compact wall mounted gas fired boilers for building space heating, gas fuelled space heating ventilation and air conditioning systems, and natural gas fed fuel cells

  5. North American natural gas price outlook

    International Nuclear Information System (INIS)

    Denhardt, R.

    1998-01-01

    Issues regarding future natural gas prices for North America were discussed. Various aspects of the issue including the relationship between storage, weather and prices, received attention. It was noted that strong demand-growth will be needed to support near-term Canadian export increases without price declines. The issue of Gulf Coast production was also discussed. Power generation using natural gas as fuel is expected to support strong growth in the demand for natural gas. tabs., figs

  6. The co-evolution of alternative fuel infrastructure and vehicles. A study of the experience of Argentina with compressed natural gas

    International Nuclear Information System (INIS)

    Collantes, Gustavo; Melaina, Marc W.

    2011-01-01

    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. (author)

  7. Natural gas vehicles: Technical assessment and overview of world situation

    International Nuclear Information System (INIS)

    Klimstra, J.

    1992-01-01

    In evaluating commercialization prospects for natural gas fuelled vehicles, this paper compares the performance and emission quality of these innovative vehicles with those using conventional fuels - gasoline and diesel fuels. Assessments are made of the state-of-the-art of current technology relative to fuel storage, air/fuel mixture preparation, in cylinder combustion processes and pollution control. The analysis evidences that while natural gas is an excellent fuel for spark ignition engines, in transport applications its use is hampered by large storage volume requirements and weight. Moreover, the air/fuel mixture preparation, combustion process and exhaust-gas cleaning require a greater research and development effort to make this alternative fuel economically and environmentally competitive with conventional fuels

  8. Governmental support for driving on natural gas. An outline of political factors

    International Nuclear Information System (INIS)

    Van der Knoop, J.; Overmars, P.

    2005-09-01

    Government support is crucial for the viability of the market for natural gas as engine fuel. This outlook focuses on the viewpoint of the government and the large political parties in this respect. At first this study was meant to be a brief outlook, but the study expanded in two directions. First of all, more attention was paid to the discussion on the use of natural gas as engine fuel and in line with the various incentivisation regulations in the context of more general greening taxes. The stimulation of driving on natural gas cannot be separated from similar measures for other (clean(er)) fuels. Secondly, based on the obtained insights, conclusions were drawn on the chances for government subsidy for driving on natural gas. Finally, attention has also been paid to the question if politicians recognise and acknowledge the intermediary role of natural gas in the transition towards sustainable fuels. If this is the case, the parliament will probably put more pressure on the government to stimulate driving on natural gas in view of the additional value of investments in the natural gas fuel infrastructure.[mk] [nl

  9. Liquefied natural gas storage at Ambergate

    Energy Technology Data Exchange (ETDEWEB)

    Higton, C W; Mills, M J

    1970-08-19

    Ambergate works was planned in 1965-1966 and the decision was taken to install 4 ICI lean gas reformers using natural gas as feedstock, fuel, and enrichment. To cover the possible failure of natural gas supplies, petroleum distillate would be used as alternative feedstock and fuel. The choice for alternative enrichment lay between LPG or LNG. Since LNG would provide peak-on-peak storage facilities for either the East Midlands Board or the Gas Council when conversion was completed--and in the meantime would provide an additional source of LNG for local requirements when temporary LNG installations were used during conversion--agreement was reached with the Gas Council for it to build a 5,000-ton storage installation at Ambergate. The installation consists of 3 major sections: (1) the offloading bay and storage tank; (2) the reliquefaction system; and (3) the export system. The offloading bay and storage tank are for the reception and storage of liquefied Algerian natural gas, delivered to Ambergate by road tanker from the Canvey Is. Terminal. The reliquefaction system is to maintain the necessary storage tank conditions by reliquefying the boil-off natural gas. The export system delivers LNG from the storage tank at high pressure through a vaporization section in the national methane grid.

  10. Mercury Removal from Natural Gas in Egypt

    International Nuclear Information System (INIS)

    Korkor, H.; AI-Alf, A.; EI-Behairy, S.

    2004-01-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems

  11. Mercury Removal from Natural Gas in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Korkor, H; AI-Alf, A; EI-Behairy, S [EGAS, Cairo (Egypt)

    2004-07-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems.

  12. Natural gas and the environment

    International Nuclear Information System (INIS)

    DeCarufel, A.

    1991-01-01

    The role of various atmospheric pollutants in environmental changes and the global water cycle, carbon cycle, and energy balance is explained. The role of sulfur dioxide and nitrogen oxides in acid deposition is also outlined. The pollutants that contribute to environmental problems include nitrogen oxides and volatile organic compounds, carbon dioxide, and other greenhouse gases. The potential for natural gas utilization to mitigate some of these pollution problems is explored. Natural gas combustion emits less carbon dioxide and nitrogen oxides than combustion of other fossil fuel, and also does not produce sulfur dioxide, particulates, or volatile organics. Other pollution controlling opportunities offered by natural gas include the use of low-polluting burners, natural gas vehicles, and cogeneration systems. 18 figs., 4 tabs

  13. The Influence of fuel Diversification Concerning Vapour and Gas Electric Power Performance

    International Nuclear Information System (INIS)

    Amiral-Aziz; Panca-Porakusuma

    2007-01-01

    Nowadays consumption of electricity in Indonesia has increased. The oil fuel as the primary fuel for power plant installation has decreased the amount of resources and makes the oil fuel prices very high. In the recent years it has been developed the Combined Cycle technology with Fuel Diversification from the oil fuel (HSD) to natural gas in power plant installation. From the investigation it could be concluded that in the Combined Cycle power plant the production cost using natural gas for the primary fuel cheaper than HSD fuel. The production cost of the combined cycle with configuration of 1-1-1 for 199 MW load is Rp. 172/kWh for natural gas fuel and Rp 941/kWh for HSD fuel. (author)

  14. Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas. Environmental assessment

    International Nuclear Information System (INIS)

    1996-09-01

    DOE's natural gas mission, in partnership with its stakeholders, is to undertake and promote activities to maximize the Nation's ability to supply, transport, and use natural gas to encourage economic growth, enhance energy interests security, and improve the environment. In implementing this mission, DOE has been involved in promoting domestic natural gas as a clean, abundant, and reliable source of energy. In particular, DOE is interested in technologies capable of converting natural gas to other valuable resources, such as transportation fuels, hydrogen, and premium chemicals. The purpose of the proposed action is to further examine the potential of one such technology for natural gas conversion. Over the past five years, DOE's Pittsburgh Energy Technology Center has supported a research program to determine the feasibility of producing methyl chloride (CH 3 Cl), a key ingredient used in the silicone industry, directly from methane (the primary component of natural gas) via an oxyhydrochlorination (OHC) process. As a result of this research program the OHC process is now ready for further development. The proposed action would advance the OHC natural gas conversion technology to an integrated engineering-scale process at the Dow Corning plant in Carrollton, Kentucky

  15. Methane leakage in natural gas operations

    International Nuclear Information System (INIS)

    Jennervik, A.

    1992-01-01

    The world gas industry is efficient in conservation of natural gas within its systems. As the influence of methane as an infra-red absorbent gas has been more widely recognized, the considerations of methane's greenhouse effect has become vitally important to gas companies around the world. The industry is universally environmentally conscious. natural gas transmission and distribution companies want to maintain their image as suppliers of clean fuel. Further reductions in methane leakage --- particularly in older distribution systems --- can, should and will be pursued. Unfortunately, there has been little exchange of views on methane leakages between commentators on environmental matters and gas companies and organizations. There is absolutely no need for the industry to avoid the issue of greenhouse gases. Without industry involvement, the environmental debate concerning fossil fuels could lead to selective interpretation of scientific views and available evidence. Companies and authorities would be presented with confusing, contradictory evidence on which to base policy approaches and regulations

  16. Natural gas turbine topping for the iris reactor

    International Nuclear Information System (INIS)

    Oriani, L.; Lombardi, C.; Paramonov, D.

    2001-01-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  17. Natural gas turbine topping for the iris reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oriani, L.; Lombardi, C. [Politecnico di Milano, Milan (Italy); Paramonov, D. [Westinghouse Electric Corp., LLC, Pittsburgh, PA (United States)

    2001-07-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  18. Large-scale application of natural gas as an engine fuel in public transport

    International Nuclear Information System (INIS)

    Verstegen, P.; Nieuwenhuis, A.; Van Schagen, G.J.

    1993-02-01

    Options and bottlenecks for the use of compressed natural gas (CNG) as an automotive fuel in public transportation have been inventorized and discussed. Based on interviews with representatives of transportation businesses and their umbrella organizations the demands and wishes are listed in chapter one. In chapter two several types of natural gas storage cylinders, focusing on the weight and the costs of the cylinders and the consequences for the road tax. In chapter three attention is paid to the delivery possibilities of the bus manufacturers DAF, Mercedes-Benz, Volvo and MAN. Technical specifications and data on the energy consumption, emission and other aspects are presented. In chapter three the characteristics of fastfill stations and slowfill stations are assessed for implementing problems, costs and reliability. The costs for the use of CNG in buses, as discussed in chapter five, consist of additional costs for the bus, maintenance, road tax, filling station, safety provisions, and reduced costs for the fuel. In chapter six the regulations and legislation for the use of CNG in vehicles, filling stations and storage cylinders is dealt with. In the final chapters seven and eight the necessity of introductory courses and training is briefly discussed, and an overview of current projects in the Netherlands is given. 13 figs., 14 tabs., refs

  19. The Impact of Wind Power on European Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    Due to its clean burning properties, low investment costs and flexibility in production, natural gas is often put forward as the ideal partner fuel for wind power and other renewable sources of electricity generation with strongly variable output. This working paper examines three vital questions associated with this premise: 1) Is natural gas indeed the best partner fuel for wind power? 2) If so, to what extent will an increasing market share of wind power in European electricity generation affect demand for natural gas in the power sector? and 3) Considering the existing European natural gas markets, is natural gas capable of fulfilling this role of partner for renewable sources of electricity?.

  20. Reversing flow catalytic converter for a natural gas/diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, E.; Checkel, M.D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Hayes, R.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Zheng, M.; Mirosh, E. [Alternative Fuel Systems Inc., Calgary, AB (Canada)

    2001-07-01

    An experimental and modelling study was performed for a reverse flow catalytic converter attached to a natural gas/diesel dual fuel engine. The catalytic converter had a segmented ceramic monolith honeycomb substrate and a catalytic washcoat containing a predominantly palladium catalyst. A one-dimensional single channel model was used to simulate the operation of the converter. The kinetics of the CO and methane oxidation followed first-order behaviour. The activation energy for the oxidation of methane showed a change with temperature, dropping from a value of 129 to 35 kJ/mol at a temperature of 874 K. The reverse flow converter was able to achieve high reactor temperature under conditions of low inlet gas temperature, provided that the initial reactor temperature was sufficiently high. (author)

  1. Environmental benefits of natural gas for buses

    International Nuclear Information System (INIS)

    Rabl, A.

    2002-01-01

    This paper presents a life cycle assessment comparing diesel buses with buses fueled by natural gas. The data for the emission of pollutants are based on the MEET Project of the European Commission (EC), supplemented by data measured for diesel and gas buses in Paris. The benefits of the gas fueled bus are then quantified using the damage cost estimates of the ExternE Project of the EC. A diesel bus with emissions equal to Standard EURO2 of the EC is compared with the same bus equipped with a natural gas engine, for use in Paris and in Toulouse. The damage cost of a diesel bus is significant, in the range of 0.4-1.3 euro/km. Natural gas allows an appreciable reduction of the emissions, lowering the damage cost by a factor of about 2.5 (Toulouse) to 5.5 (Paris). An approximate rule is provided for transferring the results to other cities. A sensitivity analysis is carried out to evaluate the effect of the evolution of the emissions standard towards EURO3, 4 and 5, as well as the effect of uncertainties. Finally a comparison is presented between a EURO2 diesel bus with particle filter, and a gas fueled bus with the MPI engine of IVECO, a more advanced and cleaner technology. With this engine the damage costs of the gas fueled bus are about 3-5 times lower than those of the diesel with particle filter, even though the latter has already very low emissions.(author)

  2. Natural gas vehicles : Status, barriers, and opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  3. Challenges and solutions in natural gas engine development and productions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mahdi; Izanloo, Hossein [Irankhodro Powertrain Co. (IPCO) (Iran)

    2008-07-01

    As an alternative fuel, natural gas is generally accepted for internal combustion engines and some developments have been conducted in order to adopt it for the road vehicles and stationary applications. Foresights shows natural gas vehicles will be a part of the future transportation technology regarding to their mid and long-term benefits. Therefore inherent problems of natural gas engine technology should be overcome to produce a competitive engine. In this paper major problems and their possible solutions in developing and producing natural gas engine for passenger cars are detailed and discussed. Challenging materials are sorted and presented in two categorizes: technical and econo-strategical problems. In the technical section major difficulties faced in components or systems of natural gas engine are analysed in different aspects of design, validation, and production. In addition problems arisen from the fuel characteristics which influence the function and durability of engine are argued. Subjects like freezing in gas regulator, cold start fuel injection, gas leakage, impurities within compressed natural gas, variation in fuel composition, thermo-mechanics of cylinder head and block, wear of valve seat inserts, spark plug erosion, back-fire phenomenon, engine oil quality requirement, low power density and mileage are described. In the econo-strategical discussion, challenges like limited gas distribution infrastructure, lack of specific manufacturing standards and codes, and non-dedicated emission standards are explained. In both part of the paper a comprehensive view is extended to clarify the effect, risk and solutions of each problem. Due to the fact that almost all information and analysis presented in this paper are based on the experience of developing a natural gas engine family, and an extensive literature review, discussions and conclusions could be useful as a guide line for future natural gas engine projects. (orig.)

  4. MOFs for storage of natural gas in mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Marx, S.; Arnold, L.; Gaab, M.; Maurer, S.; Weickert, M.; Mueller, U. [BASF SE, Ludwigshafen (Germany); Gummaraju, R.; SantaMaria, M.; Wilson, K.; Garbotz, C.; Lynch, J. [BASF Corporation, Iselin, NJ (United States)

    2013-11-01

    Metal-organic frameworks (MOFs) are supposed to have high potential in gas storage, particular in the storage of natural gas (NG) for mobile applications. Due to the shale gas exploration and the cost advantage of natural gas on the North American market as well as the environmental benign behavior upon combustion, storage of gaseous fuels will become more important for future mobility. The main challenge with all gaseous fuels is the limited range of the fuel stored on board of a vehicle. Instead of increasing the pressure in the tank, which would lead to heavy tanks and high compression costs, MOFs might help to improve the energy density of the gas stored in a tank resulting in an increased driving distance or reduced space needed for the gas tanks. (orig.)

  5. Electric utilities and the demand for natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Uri, N D; Atkinson, S

    1976-03-01

    The scarcity of natural gas has given rise to a series of priorities of deliveries based on end use and drafted by the Federal Power Commission. The U.S. Supreme Court, on June 7, 1972, held that the Commission has jurisdiction over curtailments in the service of gas in interstate commerce to both resale and direct industrial customers. This decision reversed a Fifth Circuit Court ruling that protected direct industrial customers from curtailments. The FPC priority curtailments are classed from 1 to 9, for which electric utilities are concentrated in classes 4 to 9. As weather conditions become more severe, not only do the residential and commercial consumers demand more electrical energy, they also demand more natural gas. The result is that there is less natural gas available for electric utilities to use for generation so they change to an alternative fuel. A demand model for the short term for natural gas for electric utilities is given; primary factors involve the price of natural gas, the prices of substitute fuels, and the demand for electrical energy by the various consumer classes. (MCW)

  6. Combined production og energy by vapor-gas unit on natural gas in Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1998-01-01

    The steam and gas turbine power plant for combine heat (for district heating of Skopje - the capital of Macedonia) and power (connected to the grid) production is analyzed and determined. Two variants of power plants are analyzed: power plant with gas turbine, heat recovery steam generator and a back pressure steam turbine; and power plant with two gas turbines, two heat recovery steam generators (HRSG) and one back pressure steam turbine. The power plant would operate on natural gas as the main fuel source. It will be burnt in the gas turbine as well in the HRSG as an auxiliary fuel.The backup fuel for the gas turbine would be light oil. In normal operation, the HRSG uses the waste heat of the exhaust gases from the gas turbine. During gas turbine shutdowns, the HRSG can continue to generate the maximum steam capacity. The heat for district heating would be produce in HRSG by flue gases from the gas turbine and in the heat exchanger by condensed steam from back pressure turbine. The main parameters of the combined power plant, as: overall energy efficiency, natural gas consumption, natural gas saving are analyzed and determined in comparison with separated production of heat (for district heating) and power (for electrical grid). (Author)

  7. A Generalized Nash-Cournot Model for the North-Western European Natural Gas Markets with a Fuel Substitution Demand Function: The GaMMES Model

    International Nuclear Information System (INIS)

    Abada, Ibrahim; Briat, Vincent; GABRIEL, Steve A.; MASSOL, Olivier

    2011-01-01

    This article presents a dynamic Generalized Nash-Cournot model to describe the evolution of the natural gas markets. The major players along the gas chain are depicted including: producers, consumers, storage and pipeline operators, as well as intermediate local traders. Our economic structure description takes into account market power and the demand representation tries to capture the possible fuel substitution that can be made between the consumption of oil, coal, and natural gas in the overall fossil energy consumption. We also take into account long-term contracts in an endogenous way, which makes the model a Generalized Nash Equilibrium problem. We discuss some means to solve such problems. Our model has been applied to represent the European natural gas market and forecast, until 2030, after a calibration process, consumption, prices, production, and natural gas dependence. A comparison between our model, a more standard one that does not take into account energy substitution, and the European Commission natural gas forecasts is carried out to analyze our results. Finally, in order to illustrate the possible use of fuel substitution, we studied the evolution of the natural gas price as compared to the coal and oil prices. (authors)

  8. Experimental study of the effects of natural gas injection timing on the combustion performance and emissions of a turbocharged common rail dual-fuel engine

    International Nuclear Information System (INIS)

    Yang, Bo; Wei, Xing; Xi, Chengxun; Liu, Yifu; Zeng, Ke; Lai, Ming-Chia

    2014-01-01

    Highlights: • Natural gas injection timing has obvious effects on combustion of dual-fuel engine. • Combustion performance is improved with optimized natural gas injection timing. • BSHC and BSCO decreased with retarded natural gas injection timing at low load. • BSNO x increased at part load while reduced at high load with delay N.G. injection. • PM is very low and insensitive to the variation of natural gas injection timing. - Abstract: Natural gas combustion with pilot ignition has been considered to be one of the most promising ways to utilize natural gas in existing diesel engine without serious engine modification and it has been widely researched all over the world. In this study, three experiments of different loads (BMEP 0.240 MPa, 0.480 MPa and 0.767 MPa) were performed on a 2.8 L four-cylinder, natural gas manifold injection dual-fuel engine to investigate the effects of natural gas injection timing on engine combustion performance and emissions. The pilot injection parameters (pilot injection timing and pressure) and natural gas injection pressure remain constant at a speed of 1600 rpm in the experiment. The cylinder pressure, HRR, CoV imep , flame development duration, CA50 and brake thermal efficiency were analyzed. The results indicated that under low and part engine loads, the flame development duration and CA50 can be reduced by properly retarding natural gas injection timing, while the CoV imep increased with retarded natural gas injection timing. As a result, the brake thermal efficiency is increased and the combustion stability slightly deteriorates. Meanwhile, under low and part engine loads, PM emissions in the dual-fuel engine is much lower than that in conventional diesel engines, furthermore, at high load, the PM emissions are near zero. CO and HC emissions are reduced with retarded natural gas injection timing under low and part loads, however, NO x emissions are slightly increased. Under high load, the flame development duration

  9. The greenhouse advantage of natural gas appliances

    International Nuclear Information System (INIS)

    Coombe, N.

    2000-01-01

    The life cycle report prepared recently by Energetics for the AGA, Assessment of Greenhouse Gas Emissions from Natural Gas, demonstrates clearly the greenhouse advantage natural gas has over coal in generating electricity. This study also goes one step further in applying this life cycle approach to the use of space and water heating within the home. The study shows the significant green-house advantage that natural gas appliances have over electric appliances. Findings from other studies also support this claim. The natural gas suppliers are encouraged to take advantage of the marketing opportunity that these studies provide, offering the householders the fuel that will significantly reduce their contribution to greenhouse emission

  10. Use of catalytic reforming to aid natural gas HCCI combustion in engines: experimental and modelling results of open-loop fuel reforming

    Energy Technology Data Exchange (ETDEWEB)

    Peucheret, S.; Wyszynski, M.L.; Lehrle, R.S. [Future Power Systems Group, Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Golunski, S. [Johnson Matthey, Technology Centre, Blount' s Court, Sonning Common, Reading RG4 9NH (United Kingdom); Xu, H. [Jaguar Land Rover Research, Jaguar Land Rover W/2/021, Abbey Road, Coventry CV3 4LF (United Kingdom)

    2005-12-01

    The potential of the homogeneous charge compression ignition (HCCI) combustion process to deliver drastically reduced emissions of NO{sub x} and improved fuel economy from internal combustion engines is well known. The process is, however, difficult to initiate and control, especially when methane or natural gas are used as fuel. To aid the HCCI combustion of natural gas, hydrogen addition has been successfully used in this study. This hydrogen can be obtained from on-line reforming of natural gas. Methane reforming is achieved here by reaction with engine exhaust gas and air in a small scale monolith catalytic reactor. The benchmark quantity of H{sub 2} required to enhance the feasibility and engine load range of HCCI combustion is 10%. For low temperature engine exhaust gas, typical for HCCI engine operating conditions, experiments show that additional air is needed to produce this quantity. Experimental results from an open-loop fuel exhaust gas reforming system are compared with two different models of basic thermodynamic equilibria calculations. At the low reactor inlet temperatures needed for the HCCI application (approx. 400 deg C) the simplified three-reaction thermodynamic equilibrium model is in broad agreement with experimental results, while for medium (550-650 deg C) inlet temperature reforming with extra air added, the high hydrogen yields predicted from the multi-component equilibrium model are difficult to achieve in a practical reformer. (author)

  11. Comparison of vibration and noise level on the boiler during operation of fuel heavy oil (mazut) and on natural gas in TO 'Istok' - Toplifikacija - Joint-Stock Co. for district heating Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Kirovski, Hristo; Ninevski, Gjorgji; Sekovanikj, Ivica; Dzhingov, Gjorgji

    1999-01-01

    In the beginning of the heat season 1997/98, we started to use natural gas as a second fuel (the basic fuel is heavy fuel oil). Preparations were made for the use of natural gas in half of the TO 'Istok' Plant capacity (147 MW) in Skopje (Macedonia). During operation on natural gas, we noted that the levels of vibration and noise are higher when operating on heavy fuel oil. This was the reason why an investigation was carried out through a special company working on that issue. The investigation was made by measurement of vibration levels and noise at the boiler furnace in various orientation and levels. This material gives the results and conclusions from that investigation. A comparison has been made of the dynamic conditions and noise levels of the same boilers during operation on heavy fuel oil and on natural gas. We also compared the dynamic conditions and noise levels of different boilers during operations on natural gas, with different equipment for the atomizing of the natural gas. Conclusions on the dynamic conditions of the investigated boilers while operating on heavy fuel oil and on natural gas are given at the end of this material. (Author)

  12. The fuel of choice: forecasting natural gas availability and use

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    This article examines predictions set out in the US Energy Information Administration's 'International Energy Outlook 2001' concerning growth in energy consumption, the use of natural gas for electricity generation, and growth in worldwide natural gas consumption in industrialised and developing countries. The reported increase in global natural gas reserves is considered, and regional activity and natural gas reserves in North America, Europe, the former Soviet Union, Central and South America, Asia, the Middle East and Asia are discussed

  13. Feeling the pressure from natural gas

    International Nuclear Information System (INIS)

    Taffe, Peter

    1998-01-01

    The European directive establishing a competitive internal natural gas market will be the most important, though not the only, factor in advancing the rapid and far reaching changes which Europe's natural gas sector is undergoing. The knock-on effects which these changes will have on the chemical industry are examined. The benefits of opening up the gas market will be more consumer choice and a more efficient and globally competitive EU gas industry. But for the chemical industry it raises strategic issues surrounding gas procurement such as price risks and security of supply. These are especially acute where gas is used not just as a fuel but also as a feedstock. As the electricity market is progressively deregulated, independent power generation using combined heat and power could be an attractive choice in the chemical industry with the possibility of selling surplus electricity on the spot market. Other changes in the gas sector could arise from the environmental targets agreed in Kyoto which are likely to lead to an increase in fuel taxation, and the development of a spot market in gas as the link between oil and gas prices becomes less direct. (UK)

  14. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  15. Prediction of major pollutants emission in direct injection dual-fuel diesel and natural-gas engines

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Kashani, B.O.

    2000-01-01

    The dual-fuel diesel engine is a conventional diesel engine in which much of the energy released, hence power, comes from the combustion of gaseous fuel such as natural gas. The exhaust emission characteristics of the dual-fuel diesel engine needs further refinements, particularly in terms of reduction of Unburnt Hydrocarbons and Carbon Monoxide (CO) emission, because the concentration of these pollutants are higher than that of the baseline diesel engine. Furthermore, the combustion process in a typical dual-fuel diesel engine tends to be complex, showing combination of the problems encountered both in diesel and spark ignition engines. In this work, a computer code has been modified for simulation of dual-fuel diesel engine combustion process. This model simulates dual-fuel diesel engine combustion by using a Multi-Zone Combustion Model for diesel pilot jet combustion and a conventional spark ignition combustion model for modelling of combustion of premixed gas/air charge. Also, in this model, there are four submodels for prediction of major emission pollutants such as: Unburnt Hydrocarbons, No, Co and soot which are emitted from dual-fuel diesel engine. For prediction of formation and oxidation rates of pollutants, relevant s conventional kinetically-controlled mechanisms and mass balances are used. the model has been verified by experimental data obtained from a heavy-duty truck and bus diesel engines. The comparison shows that, there exist good agreements between the experimental and predicted results from the dual-fuel diesel engine

  16. Substitution of petroleum liquefied gas for natural gas in a metallurgical industry: a case study; Substituicao de gas liquefeito de petroleo por gas natural em uma siderurgica: um estudo de caso

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Isac Quintao; Miranda, Luciano Lellis; Fullin Junior, Benjamin; Rodrigues, Henrique de Castro; Manella, Roberto [Aperam South America, Timoteo, MG (Brazil). Utilidades e Eficiencia Energetica; Lins, Vanessa de Freitas Cunha [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Quimica

    2011-12-21

    Minas Gerais is a State where there is no production of natural gas. Aiming to increase the consumption of natural gas in Minas Gerais, PETROBRAS increase the network of gas natural distribution in the State of Minas Gerais and the State concessionaire (GASMIG) installed the Project of Natural Gas Valley. The case study is associated to an enterprise that firmed contract for supplying of natural gas. The fuel to be substituted is the Liquefied Petroleum Gas and the results of the substitution were shown. The advantages of the substitution were related to costs, and environmental aspects with the reduction of CO{sub 2} production. The natural gas contains a lower content of impurities and is operated with higher safety than the petroleum liquefied gas. (author)

  17. Natural gas industry at the 2020 prospects

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2006-01-01

    Natural gas was for a long time reserved to the most noble uses in the industry. However, natural gas, which get a priori no captive market, has progressively imposed itself in all possible energy uses. The gas resources and abundant enough to represent the main contribution of the energy industry of the 21 century. With intrinsic qualities which make it an energy less polluting than the other fossil fuels, natural gas is the commercial energy source with the highest potential growth in the energy status of the future. (J.S.)

  18. Revolution in the natural gas industry?

    International Nuclear Information System (INIS)

    Thomas, V.

    1999-01-01

    The demand for cleaner automotive fuels has created an opening for converting natural gas to liquid transport fuels and blending agents using Fischer-Tropsch technology. While the technology is well established, it is not yet clear whether the conversion can compete with crude oil refining or with pipelines and liquefied natural gas. Although all the oil giants are interested in the technology, the only commercial-sized plant in the world was the Shell plant in Malaya which had capacity of 12,000 bpd, but the profitability of the plant came from the wax by-products. The plant has been closed since a fire and explosion in 1997. The process chain is described. The gas-to-liquid activities and achievements of Saol, Exxon and Texaco are reported. It was concluded that although there are still some problems to be ironed-out, there is a promising future for gas-to-liquid conversion. (UK)

  19. Making sure natural gas gets to market

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    The role of natural gas in power generation was discussed with reference to price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. 13 figs

  20. History of gas fuels in France

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Summarizing the history of gas fuels in France consist essentially in the description of an economic and tax adventure with shortage constraints. The technology itself was developed long time ago and its principle do not raise any problem except for its optimization. The first LPG car was built in 1912 in the USA and fixed engines using town-gas as fuel were developed earlier. The French experience started during the second World War liquid fuels shortage and with the discovery of the Saint-Marcet gas field. The following history is directly related to the geopolitical fluctuations of energy supplies such as the independence of Algeria and the successive petroleum crashes. This short paper describes separately the evolution of natural gas for vehicles (NGV) and LPG fuels. The development of LPG fuels for public use vehicles started in 1979 but did not reached its expected impact due to the single-fuel constraint for vehicle design, applied until 1985, and to an unfavourable tax policy. Only public companies were capable to develop their own LPG vehicles fleet. The tendency of LPG development has recently changed as a consequence of the reinforcement of the environmental and economical policies initiated during the 70's. (J.S.)

  1. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    Science.gov (United States)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  2. Impacts of fuel oil substitution by natural gas in a pipeline network scheduling; Impactos da substituicao do oleo combustivel por gas natural na programacao de uma rede de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, Erito M.; Bahiense, Laura; Ferreira Filho, Virgilio J.M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil)

    2012-07-01

    In recent decades, due to the advancement and computational methods for solving optimization problems, the number of articles addressing the scheduling of products has grown. The mathematical models developed have proved useful to schedule from a single pipeline with multiple products to complex networks of multiple pipelines. Moreover, the planning of these activities is of even greater importance when considering the existence of new environmental requirements to be applied to production and marketing of petroleum products. An example of this paradigm shift is the reduction in fuel oil consumption due to increased share of natural gas in the Brazilian energy matrix. In this context, this paper proposes a mathematical model to obtain feasible solutions for problems of scheduling a network of pipelines considering replacing all or part of the demand for fuel oil to natural gas. We tested the model on three real instances of a multi commodity network consists of 4 terminals, 4 refineries and 8 unidirectional pipelines, considering a planning horizon of one week. (author)

  3. Renewable Natural Gas Clean-up Challenges and Applications

    Science.gov (United States)

    2011-01-13

    produced from digesters ─ Animal manure (dairy cows, swine ) ─ Waste water treatment facilities > Methane from Landfills > RNG produced from...LNG) for vehicle fuel ─Ft. Lewis — Anaerobic digestion of waste water for production of hydrogen as a fuel cell vehicle fuel ─SCRA * – Landfill gas...BE CLEANED- UP AND PLACED IN THE NATURAL GAS PIPELINE SYSTEM 6 GTI RNG Project Examples >Example GTI Projects: ─Gills Onions— Anaerobic

  4. US Department of Energy investments in natural gas R ampersand D: An analysis of the gas industry proposal

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1992-01-01

    The natural gas industry has proposed an increase in the DOE gas R ampersand D budget from about $100 million to about $250 million per year for each of the next 10 years. The proposal includes four programs: natural gas supplies, fuel cells, natural gas vehicles and stationary combustion systems. This paper is a qualitative assessment of the gas industry proposal and recommends a natural gas R ampersand D strategy for the DOE. The methodology is a conceptual framework based on an analysis of market failures and the energy policy objectives of the DOE's (1991) National Energy Strategy. This framework would assist the DOE in constructing an R ampersand D portfolio that achieves energy policy objectives. The natural gas supply program is recommended to the extent that it contributes to energy price stability. Stationary combustion programs are supported on grounds of economic efficiency and environmental quality. The fuel cell program is supported on grounds of environmental quality. The natural gas vehicle program may potentially contribute to environmental quality and energy price stability. The R ampersand D programs in natural gas vehicles and in fuel cells should be complemented with policies that encourage the commercialization and use of the technology, not merely its development

  5. Improving cost-effectiveness for the furnace in a full-scale refinery plant with reuse of waste tail gas fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chien-Li [Department of Leisure and Recreation Management, Diwan University, Tainan (China); Hou, Shuhn-Shyurng [Department of Mechanical Engineering, Kun Shan University (China); Lee, Wen-Jhy [Department of Environmental Engineering, National Cheng Kung University (China); Jou, Chih-Ju G. [Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, 2, Juoyue Rd., Nantz District, Kaohsiung 811 (China)

    2010-02-15

    The waste tail gas fuel emitted from refinery plant in Taiwan e.g. catalytic reforming unit, catalytic cracking unit and residue desulfurization unit, was recovered and reused as a replacement fuel. In this study, it was slowly added to the fuel stream of a heater furnace to replace natural gas for powering a full-scale distillation process. The waste tail gas fuel contained on average 60 mol% of hydrogen. On-site experimental results show that both the flame length and orange-yellowish brightness decrease with increasing proportion of waste gas fuel in the original natural gas fuel. Moreover, the adiabatic flame temperature increases as the content of waste gas fuel is increased in the fuel mixture since waste gas fuel has a higher adiabatic flame temperature than that of natural gas. The complete replacement of natural gas by waste gas fuel for a heater furnace operating at 70% loading (i.e. 3.6 x 10{sup 7} kcal/h of combustion capacity) will save 5.8 x 10{sup 6} m{sup 3} of natural gas consumption, and 3.5 x 10{sup 4} tons (or 53.4%) of CO{sub 2} emission annually. Recovering and reusing the waste tail gas fuel as natural gas replacement will achieve tremendous savings of natural gas usage and effectively lower the emission of carbon dioxide. (author)

  6. Key numbered-data of the French natural gas industry

    International Nuclear Information System (INIS)

    1999-01-01

    The third edition of this folder contains the numbered data relative to the activity of the French natural gas industry in 1998 according to the information available in June 15, 1999. Consumption, sales and supplies data are presented for both natural gas and LPG fuel together with a map of the French natural gas transportation network. (J.S.)

  7. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  8. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Lenox, Carol; Kaplan, P. Ozge

    2016-01-01

    With advances in natural gas extraction technologies, there is an increase in the availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At higher leakage levels, the additional methane emissions could offset the carbon dioxide emissions reduction benefit of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is required to meet a specific carbon dioxide reduction target across a number of scenarios in which the availability of natural gas changes. Scenarios are run with carbon dioxide emissions and a range of upstream methane emission leakage rates from natural gas production along with upstream methane and carbon dioxide emissions associated with production of coal and oil. While the system carbon dioxide emissions are reduced in most scenarios, total carbon dioxide equivalent emissions show an increase in scenarios in which natural gas prices remain low and, simultaneously, methane emissions from natural gas production are higher. - Highlights: • MARKAL analysis of energy system GHG emissions reduction scenarios. • High methane leakage can eliminate the benefit that natural gas brings over coal. • A robust GHG reduction strategy takes into account upstream emissions for all fuels.

  9. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    Science.gov (United States)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  10. Role of natural gas in meeting an electric sector emissions ...

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  11. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  12. Methane emissions from the natural gas industry

    International Nuclear Information System (INIS)

    Harrison, M.R.; Cowgill, R.M.; Campbell, L.M.; Lott, R.A.

    1993-01-01

    The U.S. EPA and the United Nation's Intergovernmental Panel on Climate Change (IPCC) have suggested that global warming could be reduced if more energy was generated using natural gas rather than fuels such as coal. An increased use of natural gas instead of coal would decrease global warming since methane emits less carbon dioxide (CO 2 ) than any fossil fuel. However, methane is a more potent as a greenhouse gas than CO 2 , and leakage from the gas system could reduce or eliminate the inherent advantage of natural gas. For this reason, methane emissions must be quantified before a national policy on preferred fuels is developed. Therefore, GRI and EPA have developed this confunded program to quantify methane emissions from the U.S. gas industry. This paper presents, for general industry review, the approach and methodology that the project is using to determine the emissions. The study will measure or calculate all gas industry methane emissions - from production at the wellhead, through the system, to the customer's meter. When these data are combined with data from other studies, a definitive comparison of the relative environmental impact of using methane versus other fuels will be possible. The study will also provide data that can be used by the industry to identify cost-effective mitigation techniques to reduce losses. The methane emissions project is being conducted in three phases: the first two phases have identified and ranked all known potential methane-emitting sources and established methods for measuring, calculating, and extrapolating emissions from those sources. The third phase, which is currently in progress, will gather sufficient data to achieve the accuracy goal. This paper briefly summarizes the methodology being used for the completion of the third phase

  13. Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kay L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ramsden, Margo M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gonzales, John E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lynch, Lauren [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coale, Bob [Gladstein, Neandross & Associates, Santa Monica, CA (United States); Kohout, Jarrod [Gladstein, Neandross & Associates, Santa Monica, CA (United States)

    2017-09-28

    To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. The hazard presented by liquid fuels, such as gasoline and diesel, results from the spillage of these liquids and subsequent ignition of vapors, causing a fire or explosion. Facilities that maintain liquid-fueled vehicles and implement appropriate safety measures are protected with ventilation systems designed to capture liquid fuel vapors at or near floor level. To minimize the potential for ignition in the event of a spill, receptacles, electrical fixtures, and hot-work operations, such as welding, are located outside of these areas. Compressed natural gas (CNG) is composed of methane with slight amounts of heavier simple hydrocarbons. Maintenance facilities that maintain CNG vehicles indoors must be protected against fire and explosion. However, the means of ensuring safety are different from those employed for liquid fuels because of the gaseous nature of methane and the fact that it is lighter than air. Because CNG is lighter than air, a release will rise to the ceiling of the maintenance facility and quickly dissipate rather than remaining at or near floor level like liquid fuel vapors. Although some of the means of protection for CNG vehicle maintenance facilities are similar to those used for liquid-fueled vehicles (ventilation and elimination of ignition sources), the types and placement of the protection equipment are different because of the behavior of the different fuels. The nature of gaseous methane may also require additional safeguards, such as combustible

  14. Technical and Feasibility Analysis of Gasoline and Natural Gas Fuelled Vehicles

    Directory of Open Access Journals (Sweden)

    Charalambos Chasos

    2014-03-01

    Full Text Available There is recent interest for the utilisation of natural gas for empowering the internal combustion engines (ICE of vehicles. The production of novel natural gas ICE for vehicles, as well as the conversion of existing gasoline fuelled ICE of vehicles to natural gas fuelled ICE are new technologies which require to be analysed and assessed. The objective of the present study is to examine the adaptation of natural gas as vehicle fuel and carry out a technical analysis and an economical feasibility analysis of the two types of ICE vehicles, namely gasoline and natural gas fuelled vehicles. The technical model uses the physical properties of the two fuels and the performance factors of internal combustion engines including brake thermal efficiency. The resulting exhaust gas emissions are also estimated by the technical model using combustion calculations which provide the expected levels of exhaust gas emissions. Based on the analysis with the technical model, comparisons of the two types of engines are performed. Furthermore, the estimated performance characteristics of the two types of engines, along with local statistical data on annual fuel imports and annual fuel consumption for transportation and data on the vehicles fleet for the case study of Cyprus are used as input in the economical model. For the base year 2013, data of natural gas price is also used in the economical model. The economical model estimates the capital cost, the carbon dioxide emissions avoidance of fines, the net present value and the internal rate of return of the investment of large scale adaptation of natural gas fuelled vehicles for the case study. From the results and comparisons, conclusions are drawn and recommendations are provided for the adaptation of natural gas vehicles which can provide improved performance with reduced pollutant emissions.

  15. Natural gas passenger vehicles: challenges and way forward

    International Nuclear Information System (INIS)

    Sahari, B. B.; Hamouda, A. M. S.

    2006-01-01

    Natural gas vehicles have been used in the world for many years: at present, there are about 3 million vehicles running on natural gas and many governments and vehicle manufactures are involved in programs for further developing the market for natural gas vehicles. In comparison to other forms of energy for vehicles, natural gas (NG) engenders low pressures on the environment. At the same time, because of its technical characteristics, NG is very suitable for motor use. The economic advantage of converting a vehicles (NGVs) would be expected to attract the interest of a great number of people, and achieve rapid and widespread diffusion. On the contrary, traditional fuels still dominate the scene, and show no sign of going out of fashion. The use of natural gas as automotive fuel has become of national and worldwide interests particularly so with the recent increase in petrol price, depleting petrol reserves and stringent control of exhaust emission levels. For automotive applications, shifting from petrol to gas needs technological research and development. Within the framework of the reciprocating piston based engine this development is very challenging with technological issues of low range, refueling infrastructure, heavy fuel storage, safety, emissions control and gas operating pressures. Other issues include available expertise and experience in research management. This paper describes the advances being made with passenger vehicles natural gas engines worldwide and in Malaysia more specific. The significant milestones in the development of NGV in Malaysia and the rationale behind the choice of NGV industry including the NGV vehicle population growth, the development of service station as well as the expansion of the sales volume will be illustrated. The presentation presents also development stages and advances in development, fabrication and testing a Compressed Natural Gas Direct Injection vehicle and NGV refueling station. This presentation discuses the

  16. Natural gas supply, demand and price outlook

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Natural gas consumption in the US grew 15.9 percent between 1986 and 1989. Its share of total primary energy use in the US grew from 22.5 percent to 23.8 percent. Despite unusually warm weather and an economic downturn, natural gas use in the first eight months of 1990 fell only modestly from its 1989 pace - while its market share of US total primary energy use has remained stable. The American Gas Association's Total Energy Resource Analysis energy modeling system (A.G.A.-TERA) projects continued growth in natural gas demand and supply. Natural gas is projected to gain a growing share of total US primary use. Natural gas prices are projected to be sufficient to encourage growth in well completions and reserve additions, yet competitive with electricity, fuel oil and other alternative forms of energy

  17. Outlook for Noth American natural gas supplies

    International Nuclear Information System (INIS)

    Kuuskraa, V.A.

    1995-01-01

    The underlying resource base for North America natural gas is large, sufficient for nearly 100 years of current consumption. As such, the issues are not the size of the resource, but how to convert this resource into economically competitive supply. The key questions are: Will the cost (price) of natural gas remain competitive? What is the status of near-term deliverability? Will there be enough supply to meet growing demand? These economic and market issues frame the outlook for gas supplies in North America. Most importantly, they will determine how natural gas emerges from its competition for markets with other fuels and electricity. The paper addresses these questions by examining: (1) the underlying nature of the natural gas resource base; (2) the current status and trends in deliverability; and, (3) the potential of new technologies for producing gas more cost-effectively. (author)

  18. Analysis of Modifications on a Spark Ignition Engine for Operation with Natural Gas

    Directory of Open Access Journals (Sweden)

    Ramasamy D.

    2016-01-01

    Full Text Available Transportation is one of the key contributors to petroleum usage and emissions to the atmosphere. According to researchers, there are many ways to use transport by using renewable energy sources. Of these solutions, the immediate solution which requires less modification to current engine technology is by using gaseous fuels. Natural gas is the fuel of choice for minor modification to current engines. As it can be derived from anaerobic digestion process, the potential as a renewable energy source is tremendous, especially for an agricultural country such a Malaysia. The aim in the future will be operating an engine with natural gas only with pipelines straight to houses for easy filling. The fuel is light and can be easily carried in vehicles when in compressed form. As such, Compressed Natural Gas (CNG is currently used in bi-fuel engines, but is mostly not optimized in term of their performance. The focus of the paper is to optimize a model of natural gas engine by one dimensional flow modeling for operation with natural gas. The model is analyzed for performance and emission characteristics produced by a gasoline engine and later compared with natural gas. The average performance drop is about 15% from its gasoline counterpart. The 4% benchmark indicates that the modification to ignition timing and compression ratio does improve engine performance using natural gas as fuel.

  19. Debunking the myths: Natural gas and SO2 allowance solutions

    International Nuclear Information System (INIS)

    Roberts, G.D. Jr.

    1993-01-01

    During the decade of the 1990's and beyond, natural gas is expected to be the fuel of choice for a significant portion of new generation capacity. Natural gas already enjoys a greater than 50% market share as a fuel source in the non-regulated cogeneration and Independent Power Producer market. With the new administration in Washington, increased environmental focus will likely increase the attractiveness of natural gas based capacity expansions. While these various issues may appear to contribute to making this decade, the decade for natural gas, there are a number of challenges that must be met if the natural gas and power generation industries are going to satisfy the ever increasing needs of the marketplace. These challenges include: (1) myths of natural gas supply availability, (2) transportation and operational coordination issues, (3) uncertainty of price and reliability, and (4) natural gas for NO x and SO 2 compliance. The author believes that these challenges are actively being met and that there are existing solutions already being offered and incorporated into contracts by natural gas suppliers. The focus of this paper is how electric utilities need to become comfortable with the new natural gas industry and how services can be structured to meet these challenges of serving the electric market requirements

  20. Natural gas: energy, environment, development and externalities; Gas natural: energia, meio-ambiente, desenvolvimento e externalidades

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Eduardo F. de [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    Natural gas is a major source of non-renewable energy in the Brazilian energy matrix, and the noticeable increase in demand for this energy. This can be checked with the expansion of investments in Brazil and in the state of Bahia for the various sectors. The environmental benefits of natural gas highlight the advantages of using this input to the other fossil fuels. This paper discusses the availability of natural gas in Brazil and how it occurs its participation in the national energy matrix. This issue of the vulnerability of the market by the conflict between the growing demand from various industries and the need for order of thermal. It indicates scenarios and future prospects, and limiting factors for their growth. (author)

  1. Hyper market of the Natural Gas

    International Nuclear Information System (INIS)

    2002-01-01

    The article tries about the Center of Commercialization of Gas-CCG located in Bogota where experts take charge minute to minute that and that fuel that ECOPETROL sells arrives every day to its final destination. They work 24 hours during 365 days, they receive and they respond in time their clients' record applications, they analyze rates; they sell, they negotiate, they give the prices, but the mainly, they control the key that guarantees that the Colombians receive the supply of natural gas on time. It has the most modern tip technology and a complete system of compute that allows knowing the requirements of the buyers in real time. From there they decide that natural gas will be made every day and they detect quickly where flaws are presented. The CCG sells every month an average of $35.000 millions. Although the thermal plants are the biggest buyers of natural gas in the country, some industrial clients and big companies have begun the conversion of their teams to make use of this fuel, recognized in the world to be more economic and cleaner for the environment

  2. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  3. Construction and start-up of a 250 kW natural gas fueled MCFC demonstration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, R.A.; Carter, J.; Rivera, R.; Otahal, J. [San Diego Gas & Electric, CA (United States)] [and others

    1996-12-31

    San Diego Gas & Electric (SDG&E) is participating with M-C Power in the development and commercialization program of their internally manifolded heat exchanger (IMHEX{reg_sign}) carbonate fuel cell technology. Development of the IMHEX technology base on the UNOCAL test facility resulted in the demonstration of a 250 kW thermally integrated power plant located at the Naval Air Station at Miramar, California. The members of the commercialization team lead by M-C Power (MCP) include Bechtel Corporation, Stewart & Stevenson Services, Inc., and Ishikawajima-Harima Heavy Industries (IHI). MCP produced the fuel cell stack, Bechtel was responsible for the process engineering including the control system, Stewart & Stevenson was responsible for packaging the process equipment in a skid (pumps, desulfurizer, gas heater, turbo, heat exchanger and stem generator), IHI produced a compact flat plate catalytic reformer operating on natural gas, and SDG&E assumed responsibility for plant construction, start-up and operation of the plant.

  4. The emerging role of natural gas on the African economy : the case study of the Nigerian gas industry

    International Nuclear Information System (INIS)

    Ndubuisi, E.N.; Amanetu, M.C.

    2003-01-01

    This paper presents a general overview of the African gas market, gas development, distribution, and utilization in Africa with particular emphasis on investment opportunities in Nigeria. Africa's non-renewable energy sources include fossil fuel such as coal, oil and natural gas. These fuels can be used to generate electricity. Their abundance is required for economic development and their efficient exploitation results in expansion of markets and industrialization, both of which are essential for Africa's social and economic progress. Natural gas is a premium fuel in the industrial, commercial and domestic sectors because of its unique characteristics. In Nigeria, the gas market is relatively untapped in the domestic sector, but much progress has been made in the past decade to develop and use natural gas as an energy feedstock for the cement and fertilizer industries. Some major gas transmission systems have been developed along with export oriented projects. 5 refs., 3 figs

  5. The role of natural gas in assessing environmental cost of fossil fuels

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1999-01-01

    The actual price of a resource is the results of its internal and external costs. Internal costs means the price paid by the users in order to utilise the resource. On the other hand, externals costs, which are associated with the resource, are not paid directly by the users, but they shall be paid for by the society of the future generations. The article presents methodologies and issues relevant to energy policy decisions, when it comes to evaluating and using environmental external costs of fossil fuel life, with particular consideration to the end-use phase. The results of published studies on environmental costs of energy sources and an analysis applied to the Italia case show that natural gas as a significantly higher environmental value than other fossil fuels. The range of values depends upon the technologies considered and on the assumptions adopted when assessment environmental damages [it

  6. Natural gas; Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Frank [DVGW-Forschungsstelle am KIT, Karlsruhe (Germany); Groeschl, Frank; Wetzel, Uwe [DVGW, Bonn (Germany); Heikrodt, Klaus [Hochschule Ostwestfalen-Lippe, Lemgo (Germany); Krause, Hartmut [DBI Gastechnologisches Institut, An-Institut der TU Bergakademie, Freiberg (Germany); Beestermoeller, Christina; Witschen, Bernhard [Team Consult G.P.E. GmbH, Berlin (Germany); Albus, Rolf; Burmeister, Frank [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2015-07-01

    The reform of the EEG in Germany, a positive global development in natural gas, the decline in oil prices, questions about the security of supply in Europe, and not least the effect of the decision by E.on at the end of 2014 have moved the gas industry. Gas has the lowest CO{sub 2} emissions of fossil fuels. Flexibility, storability, useful for networks and the diversity in the application make it an ideal partner for renewable energy. However, these complementary properties are valued at wind and photovoltaics internationally and nationally different. The situation in the gas power plants remains tense. LNG - liquefied natural gas - is on the rise. [German] Die Reform des EEG in Deutschland, eine positive Entwicklung beim Gas weltweit, der Verfall der Oelpreises, Fragen zur Versorgungssicherheit in Europa und nicht zuletzt die Auswirkung der Entscheidung von E.on Ende 2014 haben die Gaswirtschaft bewegt. Gas weist die geringsten CO{sub 2}-Emissioen der fossilen Energietraeger auf. Flexibilitaet, Speicherbarkeit, Netzdienlichkeit sowie die Vielfalt in der Anwendung machen es zum idealen Partner der erneuerbaren Energien. Allerdings werden diese komplementaeren Eigenschaften zu Wind und Photovoltaik international und national unterschiedlich bewertet. Die Lage bei den Gaskraftwerken bleibt weiter angespannt. LNG - verfluessigtes Erdgas - ist auf dem Vormarsch.

  7. Low Carbon Technology Options for the Natural Gas ...

    Science.gov (United States)

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic

  8. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  9. Use of compressed natural gas in automotive vehicles; Uso del gas natural comprimido aplicado en vehiculos automotores

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, Adrian [Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    The natural gas is natural origin energy (fossil fuel); it contains predominantly 90 percent methane; does not require transformation process for its use; is supplied the 24 hours to commerce, industries and homes by underground pipes; it is lighter than air; it is not corrosive, nor absorbent or toxic. For those reasons a study was performed where it is widely justified why the natural gas ought to be used in vehicles. [Spanish] El gas natural es un energetico de origen natural (combustible fosil), contiene predominantemente 90 por ciento de metano, no requiere proceso de transformacion para su utilizacion, llega directamente las 24 horas del dia a los hogares, comercios e industrias por tuberias subterraneas, es mas ligero que el aire, no es corrosivo, no es absorbente y no es toxico. Por esas razones se hizo un estudio donde se justifica ampliamente porque el gas natural debe utilizarse en vehiculos.

  10. Natural gas - bridge to a clean energy future

    International Nuclear Information System (INIS)

    Doelman, J.

    1991-01-01

    Per unit of useful energy natural gas gives the lowest environmental pollution of all fossil fuels. This is due to its low carbon content, the absence of sulphur compounds, and the fact that natural gas can, rather easily, be burnt completely in such a way that also the NO x emission is acceptably low. Although natural gas has already a good record as an efficient and clean fuel large improvements are still possible, but this requires more R+D and time. The presently known natural gas world reserves are high enough to go for a substantially higher share of gas in the energy package. E.g. replacing coal by natural gas will give large environmental improvements. Furthermore, direct gas use is very often the most efficient and cleanest option, also when electricity is an alternative. To develop and connect the known large reserves to the market enormous amounts of money are required. The political and economical situation should make these investments possible and attractive. The ideas first expressed by the Dutch prime minister, now incorporated in the Energy Charter, have been developed to that end. Special attention should be given to the development of small gas fields as is e.g. being done in The Netherlands, which has improved the local gas reserves situation impressively. As a first major step to a clean future the potential of natural gas should be explored and put to work worldwide. Its potential as an important diversified source of energy is underestimated. Amongst others by funding more natural gas R+D natural gas should develop a keyrole in the energy scene of the next 3-5 decades.(author) 3 figs., 8 tabs., 3 refs

  11. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  12. Evaluation And Analysis of Natural Gas Rates

    International Nuclear Information System (INIS)

    Taheri, Ali Akbar

    1999-01-01

    Natural gas is considered as a preferred fuel and its utility is growing every day in the country (Iran). The usage of natural gas has increased from 3.5 to 44 billion cubic meters from 1980 to 1997, respectively. Currently, 4 million residences and most of the industrial sector are being provided with the pipelined natural gas. Because of the tremendous increase in consumption, it is necessary to give the needed considerations to natural gas rate structure. The objective of the paper is to 1.Evaluate the fundamentals and principal methods used for rate structures. 2. Identification of effective components. 3. Analyze the current rates including connection fees and other customer charges

  13. Removal of methane from compressed natural gas fueled vehicle exhaust

    International Nuclear Information System (INIS)

    Subramanian, S.; Kudla, R.J.; Chattha, M.S.

    1992-01-01

    The objective of this paper is to investigate the modes of methane (CH 4 ) removal from simulated compressed natural gas (CNG) fueled vehicle exhaust under net oxidizing, net reducing, and stoichiometric conditions. Model reaction studies were conducted. The results suggest that the oxidation of methane with oxygen contributes to the removal of methane under net oxidizing conditions. In contrast, the oxidation of methane with oxygen as well as nitric oxide contributes to its removal under net reducing conditions. The steam reforming reaction does not significantly contribute to the removal of methane. The methane conversions under net reducing conditions are higher than those observed under net oxidizing conditions. The study shows that the presence of carbon monoxide in the feed gas leads to a gradual decrease in the methane conversion with increasing redox ratio, under net oxidizing conditions. a minimum in methane conversion is observed at a redox ratio of 0. 8. The higher activity for the methane-oxygen reaction resulting from a lowering in the overall oxidation state of palladium and the contribution of the methane-nitric oxide reaction toward the removal of CH 4 appear to account for the higher CH 4 conversions observed under net reducing conditions

  14. Economic balance sheet of a natural gas vehicle fleet

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Natural gas fuels for vehicles bear an important and variable additional cost which corresponds to the cost for compression. This short paper gives a cost-benefit comparative estimation of the m 3 of natural gas cost when the FUELMAKER and the CIRRUS compressors are used, respectively. A comparative economic estimation between petrol and natural gas for vehicles is given for two Renault vehicles. (J.S.)

  15. Maritimes natural gas market : an overview and assessment

    International Nuclear Information System (INIS)

    Booth, G.

    2003-01-01

    In 1987, Canada's National Energy Board (NEB) adopted a market-based procedure (MBP) to assess long-term gas exports. The MPB included monitoring and assessment of Maritimes natural gas markets. The NEB is responsible for interprovincial and international oil and gas pipelines as well as tolls and tariffs on NEB-regulated pipelines. The NEB is also responsible for electricity and natural gas exports and exploration programs on federally regulated lands not covered by an Accord agreement. The province of New Brunswick requested a new set of rules for the export of natural gas from the Maritimes to ensure competitiveness with other jurisdictions. The NEB decided that the public interest is best served by allowing the market to work. It also decided that the developing Maritimes market faces several challenges not faced by buyers in the export market. It was concluded that the market is working reasonably well to meet the needs of domestic consumers. 20 per cent of Scotian gas is being used in the Maritimes and many laterals have been constructed to extend service. Most major population centres have natural gas. However, there is no residential or commercial natural gas service in Nova Scotia, and only limited penetration of natural gas in residential and commercial markets in New Brunswick. Maritimers have a long history of using other fuel options and must make capital investment to switch to natural gas. They must, therefore, be convinced that investment will pay off in fuel savings and other benefits. The NEB will have to improve price transparency and strive for regulatory efficiency and cooperation with other jurisdictions. 2 figs

  16. Experimental Study of Gas Explosions in Hydrogen Sulfide-Natural Gas-Air Mixtures

    Directory of Open Access Journals (Sweden)

    André Vagner Gaathaug

    2014-01-01

    Full Text Available An experimental study of turbulent combustion of hydrogen sulfide (H2S and natural gas was performed to provide reference data for verification of CFD codes and direct comparison. Hydrogen sulfide is present in most crude oil sources, and the explosion behaviour of pure H2S and mixtures with natural gas is important to address. The explosion behaviour was studied in a four-meter-long square pipe. The first two meters of the pipe had obstacles while the rest was smooth. Pressure transducers were used to measure the combustion in the pipe. The pure H2S gave slightly lower explosion pressure than pure natural gas for lean-to-stoichiometric mixtures. The rich H2S gave higher pressure than natural gas. Mixtures of H2S and natural gas were also studied and pressure spikes were observed when 5% and 10% H2S were added to natural gas and also when 5% and 10% natural gas were added to H2S. The addition of 5% H2S to natural gas resulted in higher pressure than pure H2S and pure natural gas. The 5% mixture gave much faster combustion than pure natural gas under fuel rich conditions.

  17. Energetic-economical analysis of a stationary for energy generation with fuel cells and natural gas reforming; Analise energetico-economica de um sistema estacionario de geracao de energia com celulas a combustivel e reforma de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose Geraldo de Melo; Silva Junior, Fernando Rodrigues; Silva, Cristiane Abrantes da; Soares, Guilherme Fleury Wanderley; Lopes, Francisco da Costa; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)]. E-mail: furtado@cepel.br; Codeceira Neto, Alcides [Companhia HidroEletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2008-07-01

    Power systems based on fuel cells have been considered for residential and commercial applications in energy Distributed Generation (DG) market as these systems can minimize their acquisition, installation and operation high costs. In this work we present an experimental analysis of a power generation system formed by a 5 kW proton exchange membrane fuel cell unit and a natural gas reformer (fuel processor) for hydrogen production, of the CEPEL's Fuel Cell Laboratory. It was determined the electrical performance of the cogeneration system in function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic reforming provided the system operation in excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economicity of the cogeneration power plant. The maximum electrical efficiency achieved was around 38% and in all power range unit operated with average potential per single fuel cell higher than 0.60 V. (author)

  18. Well-to-wheel analysis of direct and indirect use of natural gas in passenger vehicles

    International Nuclear Information System (INIS)

    Curran, Scott J.; Wagner, Robert M.; Graves, Ronald L.; Keller, Martin; Green, Johney B.

    2014-01-01

    The abundance of natural gas in the United States because of the number of existing natural gas reserves and the recent advances in extracting unconventional reserves has been one of the main drivers for low natural gas prices. A question arises of what is the optimal use of natural gas as a transportation fuel. Is it more efficient to use natural gas in a stationary power application to generate electricity to charge electric vehicles, compress natural gas for onboard combustion in vehicles, or re-form natural gas into a denser transportation fuel? This study investigates the well-to-wheels energy use and greenhouse gas emissions from various natural gas to transportation fuel pathways and compares the results to conventional gasoline vehicles and electric vehicles using the US electrical generation mix. Specifically, natural gas vehicles running on compressed natural gas are compared against electric vehicles charged with electricity produced solely from natural gas combustion in stationary power plants. The results of the study show that the dependency on the combustion efficiency of natural gas in stationary power can outweigh the inherent efficiency of electric vehicles, thus highlighting the importance of examining energy use on a well-to-wheels basis. - Highlights: • Well-to-wheels analysis shows differences in use of natural gas for transportation. • Well-to-wheels approach needed to evaluate total energy use and greenhouse gas emissions. • Well-to-wheels energy and GHG (greenhouse gas) emissions depend on efficiency of the prime mover. • Efficiency of power generation critical for low GHG emissions with electric vehicles. • Fuel economy critical for low GHG emissions with compressed natural gas vehicles

  19. Evaluation of alternatives for reducing the consumption of natural gas fuel at city-gates of Brazilian transport systems; Avaliacao das alternativas de reducao do consumo de gas natural combustivel nos pontos de entrega dos sistemas de transporte brasileiros

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Almir B. [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Augusto, Cristiane R.; Seidl, Peter R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Goncalves, Raquel G. [UNISUAM - Centro Universitario Augusto Motta, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work aims to identify actions that can be implemented to increase the energy efficiency of processes involved in the value chain of natural gas, specifically in the process of heating in existing city-gates of transporting natural gas Brazilians plants. The goal is increase supply of gas in Brazil. The main function of city-gates is to deliver the natural gas in contract terms (flow, pressure, temperature and quality). The main issue related to the consumption of natural gas fuel in city-gates is related to the operation (set-up and control) of natural gas combustion, in other words, depends on how the heating system is adjusted dynamically to burn, efficiently, the exact amount of gas required by this system, depending on temperature, pressure, temperature, quality and flow of natural gas at the 'city-gates'. The main objective of this work is to present a study on alternatives at design, set-up and control of natural gas city-gates (transport) in Brazil, aiming to increase the energy efficiency of this facility, and thus contributing to the growth in supply of natural gas available to the market. (author)

  20. Evaluation of alternatives for reducing the consumption of natural gas fuel at city-gates of Brazilian transport systems; Avaliacao das alternativas de reducao do consumo de gas natural combustivel nos pontos de entrega dos sistemas de transporte brasileiros

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Almir B [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Augusto, Cristiane R; Seidl, Peter R [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Goncalves, Raquel G [UNISUAM - Centro Universitario Augusto Motta, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work aims to identify actions that can be implemented to increase the energy efficiency of processes involved in the value chain of natural gas, specifically in the process of heating in existing city-gates of transporting natural gas Brazilians plants. The goal is increase supply of gas in Brazil. The main function of city-gates is to deliver the natural gas in contract terms (flow, pressure, temperature and quality). The main issue related to the consumption of natural gas fuel in city-gates is related to the operation (set-up and control) of natural gas combustion, in other words, depends on how the heating system is adjusted dynamically to burn, efficiently, the exact amount of gas required by this system, depending on temperature, pressure, temperature, quality and flow of natural gas at the 'city-gates'. The main objective of this work is to present a study on alternatives at design, set-up and control of natural gas city-gates (transport) in Brazil, aiming to increase the energy efficiency of this facility, and thus contributing to the growth in supply of natural gas available to the market. (author)

  1. In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery

    Science.gov (United States)

    Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall

    2016-01-01

    This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.

  2. Natural gas markets in the Pacific Rim

    International Nuclear Information System (INIS)

    Hertzmark, D.I.

    1991-01-01

    In the 1980s, Asian energy markets expanded at a rapid rate to meet the surge in demand from Japan, South Korea, and Taiwan. This demand boom coincided with an increase in non-OPEC oil production in the region. As oil production stabilizes, demand appears to be surging again, but this time in the Southeast Asian countries. Natural gas will play a key role in this expansion of energy use and could start to lead rather than follow the oil market. This will be especially true as compressed natural gas and oxygenates start to take significant shares of the transportation fuel markets, while the role of residual fuel oil is increasingly usurped by gas for environmental reasons. Many new gas sources such as Papua New Guinea, Siberia, China, and Canada will fight for market share while domestic demand in Indonesia and Malaysia takes up increasing proportions of those countries' gas production. Extensive regional transportation schemes are likely to direct more of the gas output of Southeast Asia to intra-ASEAN uses. 2 tabs

  3. Development of natural gas qualities in Europe; Entwicklung der Erdgasbeschaffenheiten in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Altfeld, Klaus; Schley, Peter [E.ON Ruhrgas AG, Essen (Germany)

    2012-04-15

    Natural gas qualities in Europe will become increasingly diverse and combustion characteristics (Wobbe index, methane number) will vary over wider ranges. The article presents the gas qualities to be expected over the medium term and analyses and discusses their effects on future gas utilisation. Aside from rich (high-calorific) LNG qualities, future natural gas and biomethane qualities are not expected to cause problems in gas utilisation in most European countries. This also applies where up to 10 % of hydrogen produced from renewable surplus electricity is admixed except for three important applications: tanks for compressed natural gas used as a motor fuel, gas turbines with premixed burners and underground porous rock storage facilities; here further R and D input is still required. Biomethane produced from contaminated feedstock may carry undesirable trace substances. Particularly careful treatment and quality control are then necessary. Hydrogen or methane produced from renewable surplus electricity will have a high purity level and, like biomethane, will contribute to further reducing CO{sub 2} emissions. This will make natural gas an even more climate-protecting fuel compared with other fossil fuels. (orig.)

  4. Liquefied natural gas tender crashworthiness research

    Science.gov (United States)

    2015-03-23

    Research is being conducted to develop technical : information needed to formulate effective natural gas fuel : tender crashworthiness standards. This research is being : performed for the Federal Railroad Administrations (FRAs) : Office of Res...

  5. The vehicular natural gas - The new motor era

    International Nuclear Information System (INIS)

    Carta Petrolera

    1998-01-01

    The natural gas is the new proposal of ECOPETROL, it is to replace the use of the gasoline and other self-driven fuels for natural gas, taking advantage of the big reserves which Colombia has; the project contemplates to generalize its use in places different to the Atlantic Coast, place where it operates since 1982

  6. Market prospective of natural gas 2010-2025; Prospectiva del mercado de gas natural 2010-2025

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Bautista, Alejandro; Doniz Gonzalez, Virginia; Navarrete Barbosa, Juan Ignacio [Secretaria de Energia, Mexico, D.F. (Mexico)

    2010-07-01

    The Ministry of Energy, in compliance to Article 109 of the Natural Gas Regulations, publishes the Prospective natural gas market 2010-2025, which contains the most current information about the historical evolution and growth prospects of the domestic market country's natural gas and its role in the international context. This foresight is attached to the lines of action established in the National Energy Strategy, ratified by Congress in April 2010 in regard to strengthening the transportation infrastructure of natural gas, in order to ensure the supply of this fuel, therefore remains congruence with the instruments of power sector planning. The first one concerns the international panorama of natural gas in the different producing and consuming regions around the world. Chapter two provides a current perspective of those actions in the sector within the regulatory framework for natural gas in Mexico. The third chapter details the issues that occurred in the natural gas market during the period 1999-2009 and the fourth chapter discusses the expected evolution of demand and domestic supply of natural gas by 2025. [Spanish] La Secretaria de Energia, en el cumplimiento al Articulo 109 del Reglamento de Gas Natural, publica la Prospectiva del mercado de gas natural 2010-2025, la cual contiene la informacion mas actualizada acerca de la evolucion historica y las expectativas de crecimiento del mercado interno de gas natural del pais y su papel en el contexto internacional. Esta Prospectiva se apega a las lineas de accion establecidas en la Estrategia Nacional de Energia, ratificada por el Congreso en abril de 2010, en lo relativo a fortalecer la infraestructura de transporte de gas natural, con el fin de asegurar el suministro de este combustible, por lo cual se mantiene congruencia con los instrumentos de planeacion del sector energetico. La Prospectiva esta integrada por cuatro capitulos. El primero se refiere al panorama internacional del gas natural en las

  7. The French natural gas industry

    International Nuclear Information System (INIS)

    1999-01-01

    This little folder summarizes in few pages the main economical data of the French natural gas industry: supplies according to the country of origin, length of transport and distribution networks, LNG tanker ship fleet, underground storage capacity, population of LNG-fueled vehicles, cogeneration installations, consumption by sectors and by industrial activities, LPG consumption, supplies, distribution and sales, LPG-fuel for vehicles, CO 2 and NO x releases, equipment of households. (J.S.)

  8. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  9. Natural gas powered bus

    International Nuclear Information System (INIS)

    Ambuehl, D.; Fernandez, J.

    2003-01-01

    This report for the Swiss Federal Office of Energy presents the results of a project carried out by the Swiss Federal Institute of Technology in Zurich to evaluate the performance of a natural-gas-powered bus in comparison with two diesel buses. The report provides details on the vehicles, their routes and the results of interviews made with both passengers and drivers. Details of measurements made on fuel consumption and pollutant emissions are presented in tabular and graphical form, as are those made on noise emissions inside and outside the vehicles. The conclusions of the project are presented including economic aspects of using gas as a motor fuel. Also, the views of passengers, who were more concerned with comfort aspects, and drivers, who were more interested in technical aspects, are quoted

  10. Performance and heat release analysis of a pilot-ignited natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.R.; Biruduganti, M.; Mo, Y.; Bell, S.R.; Midkiff, K.C. [Alabama Univ., Dept. of Mechanical Engineering, Tuscaloosa, AL (United States)

    2002-09-01

    The influence of engine operating variables on the performance, emissions and heat release in a compression ignition engine operating in normal diesel and dual-fuel modes (with natural gas fuelling) was investigated. Substantial reductions in NO{sub x} emissions were obtained with dual-fuel engine operation. There was a corresponding increase in unburned hydrocarbon emissions as the substitution of natural gas was increased. Brake specific energy consumption decreased with natural gas substitution at high loads but increased at low loads. Experimental results at fixed pilot injection timing have also established the importance of intake manifold pressure and temperature in improving dual-fuel performance and emissions at part load. (Author)

  11. Nordic cooperation within natural gas research

    International Nuclear Information System (INIS)

    Edna, O.-J.

    1993-01-01

    Nordic cooperation within natural gas research is discussed. A reorganization of this cooperation has recently taken place. It is explained that common Nordic resources are now to be concentrated within 7 areas, one of which is the area of energy/industrial policies, regional policies and agriculture and forestry, all under the common heading of ''Economy''. The plan of activities within this area includes international cooperation within the European Communities, the European Energy Charter, the International Energy Agency and will involve the energy policy situation in eastern Europe and the Baltic countries, the electric power and natural gas markets in the northern countries, energy related environmental questions and Nordic energy research cooperation. Nordic research activities constitute 2% of research resources within the OECD. The basis for Nordic research cooperation (for example a common cultural background) is described, and suggestions are made as to how it should be administrated. The Nordic energy research programme for 1991-1994 embodies bioenergy and the environment, fuel cells, energy and the society, solid fuels, district heating and petroleum technology. The status report for the nordic gas market, which represents the Nordic gas companies' evaluation of the Nordic gas market, is summarized, and Nordic research activities related to gas utilization are shortly commented upon. (AB)

  12. The competitiveness of synthetic natural gas as a propellant in the Swedish fuel market

    International Nuclear Information System (INIS)

    Mohseni, Farzad; Görling, Martin; Alvfors, Per

    2013-01-01

    The road transport sector today is almost exclusively dependent on fossil fuels. Consequently, it will need to face a radical change if it aims to switch from a fossil-based system to a renewable-based system. Even though there are many promising technologies under development, they must also be economically viable to be implemented. This paper studies the economic feasibility of synthesizing natural gas through methanation of carbon dioxide and hydrogen from water electrolysis. It is shown that the main influences for profitability are electricity prices, synthetic natural gas (SNG) selling prices and that the by-products from the process are sold. The base scenario generates a 16% annual return on investment assuming that SNG can be sold at the same price as petrol. A general number based on set conditions was that the SNG must be sold at a price about 2.6 times higher per kWh than when bought in form of electricity. The sensitivity analysis indicates that the running costs weigh more heavily than the yearly investment cost and off-peak production can therefore still be economically profitable with only a moderate reduction of electricity price. The calculations and prices are based on Swedish prerequisites but are applicable to other countries and regions. - Highlights: ► The production cost for synthetic natural gas corresponds to the current biogas price. ► High return on capital if the synthetic natural gas could be sold for the same price as petrol. ► Production can cost-effectively be run off-peak hence electricity is the major cost. ► This study is based on Swedish prerequisites but is applicable on other regions.

  13. Research on natural gas fuel injection system. Development of high-performance pressure regulator; Tennen gas yo nenryo funsha system no kenkyu kaihatsu. 1. Tennen gas nenryo funshayo no koseino regulator kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S; Ishii, M; Takigawa, B; Makabe, K; Harada, S; Ono, H [Nippon Carburetor Co. Ltd., Tokyo (Japan)

    1997-10-01

    With the aim of further reducing the exhaust emissions of natural-gas vehicles, vigorous research and development work is under way today on multi point gas injection (MPGI) system. In this studies, a high-performance pressure regulator, which is one of the main components of this MPGI system, has been newly developed. The results showed that a significantly better accuracy of the regulated pressure level using this regulator was obtained under the wide range of operating conditions, including instantaneously greater changes of fuel flow rate. In addition, the advanced studies of gaseous fuel injectors (GFIs) would be also conducted. 4 refs., 8 figs.

  14. Abundance and Utility: For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas

    Science.gov (United States)

    2014-08-01

    GTL plants in the world (two in both Malaysia and Qatar and one in South Africa). As recent developments are increasing the supply of natural gas...SUPPLEMENTARY NOTES The article (likely in cleaner form) will eventually be posted online at: http://www.tacticaldefensemedia.com/archive/dod_power.php The...there are approximately 1,400 CNG and 100 LNG (public and private) refueling stations, compared to about 150,000 retail fueling stations. While

  15. Improved of Natural Gas Storage with Adsorbed Natural Gas (ANG) Technology Using Activated Carbon from Plastic Waste Polyethylene Terepthalate

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.

    2017-07-01

    Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.

  16. World`s first fuel cell in a single-family home - The VNG natural gas house: Low-emission energy meets all household needs

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    VNG - Verbundnetz Gas Aktiengesellschaft of Leipzig, Germany, has pioneered the development of a decentral home energy system combining very high efficiencies with extremely low emissions. The company has installed the world`s first fuel cell total energy system using natural gas as an energy source to generate both heat and power in a single-family home. It replaces the gas-fired mini power station operated as part of the VNG natural gas house project which was instrumental in the rapid advancement of small-scale co-generation technology. The objective of VNG and its project partners is to collect reliable data for advancing fuel cell technology development, allowing appliance manufacturers to design a competitive system for introduction on the market within a few years. Discerning consumers will then be able to opt for an innovative, highly efficient system to meet all their household energy needs. (orig.)

  17. Natural Gas Vehicles in Egypt Challenges and Prospects of A Growing industry

    International Nuclear Information System (INIS)

    Badran, M.

    2004-01-01

    Growing industrialization, if not mere population growth, on the face of the Earth will induce organizations and nations world wide to reconsider the variety, priority, and efficiency of their energy sources. Natural gas has become the world's premier energy source because it is efficient, adaptable, and environmentally safer than other fossil fuels. The vehicular sector is a growing and major fuel consuming sector in any economy. Technological advancements and the flow of funds in that industry have allowed nations to target that sector as a priority in a plan to achieve maximum adaptation to natural gas consumption. The use of compressed natural gas vehicles dates back to the 1930 s in Italy. The late 70 however witnessed the launch of and commitment to a growing and developing industry. Today there are 3 million natural gas vehicles world wide with major concentrations in Argentina, Brazil, Italy, Pakistan, USA, and Egypt. The majority of these vehicles are converted gas vehicles adapted to use CNG in bi-fuel systems

  18. Technological evaluation of fuel cells using natural gas for distributed power generation; Avaliacao tecnologica da utilizacao de gas natural em celulas a combustivel para geracao distribuida de energia

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Mauricio O. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Engenharia Mecanica; Giannini, Marcio P.; Arouca, Mauricio C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2004-07-01

    The search for sustainable and more rational means of power generation motivates the scientific crew to search for more efficient and cleaner systems. Oil dependence becomes from the kind of development that the humanity had and cannot be dismissed. The question is how to use this source in a more intelligent way. Fuel Cells are electrochemical devices that convert into electric energy the chemical energy from oxi-reduction reactions between a fuel and an oxidant. The current fuel used in a Fuel Cell is hydrogen and oxygen is the oxidant. The great advantage of this device is its efficiency, higher than the one achieved with internal combustion engines. Also Fuel Cells are not limited by Carnot's efficiency. This paper is about the implementation of a distributed generation system using Fuel Cells. Technical aspects are approached together with economical and environmental needs. The already existence of Gas pipelines and the grown production of Natural Gas presented by Brazil turns it into a good market for the implementation of this energy source. The evaluation of this paper shows that is technically possible to use NG in Fuel Cells, mostly in South and Southeast regions, applying the distributed generation of energy concept. The most interesting in a strategic manner is that Brazil already have an indication that it's capable of developing this technology, opening a new market tuning with world's new technological developments. Many research centers develop this technology, not only from the cell composition itself, but also manufacturing techniques. (author)

  19. Natural gas technology

    International Nuclear Information System (INIS)

    Todaro, J.M.; Herbert, J.H.

    1997-01-01

    This presentation is devoted to a discussion regarding current and planned US fossil energy research and development for fiscal years 1996, 1997 and 1998. The principal focus of research in the immediate future will be: clean coal fuels, natural gas and oil exploration and production, especially reservoir life extension, advanced drilling completion and stimulation systems, advanced diagnostics and imaging systems, environmental compliance in technology development, regulatory streamlining and risk assessment. Program goals to 2010 were summarized as: increasing domestic oil and gas recovery; increasing recoverable reserves; decreasing cumulative industry environmental compliance costs; increasing revenues to the federal government; saving jobs in the U.S

  20. Energy equivalence factor in gasoline to compressed vehicle natural gas substitution

    International Nuclear Information System (INIS)

    Agudelo Santamaria, John R; Amell Arrieta, Andres A

    1992-01-01

    In this paper, the authors show a model based in a vehicle energy balance used to obtain the ratio of energy equivalence of natural gas and petrol used as fuels in the vehicle. The model includes the engine, transmission and natural gas cylinders effects. The model has been applied to different colombian natural gases, it shows that Guajira natural gas has 14,5% lower ratio than Cusiana natural gas and 5,6% lower ratio than Apiay natural gas, these results shows a need in the study of colombian natural gases interchangeability

  1. Natural gas for public and private transportation: Present situation and prospects

    International Nuclear Information System (INIS)

    Gambino, M.; Iannaccone, S.; Unich, A.

    1992-01-01

    In recent years, the use of natural gas as an automotive fuel for private and public vehicles has grown due to its interesting chemical-physical properties which make it an efficient fuel and more environmentally compatible than conventional fuels. This promising consumption trend has led to increased R ampersand D investments in attempts to enhance the fuel's automotive performance and exhaust emission characteristics. This paper reviews the advances in these directions which have been made thus far by research teams around the world and assesses commercialization prospects for natural gas automotive fuels in light of the more stringent air pollution regulations being proposed by the European Communities

  2. Natural gas: an energetic according the environment; GNP um energetico a servico do meio ambiente

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Heleomar Garcia da; Alvarenga, Zenilton Galhano; Fernandes, Luiz Antonio O.; Sossai, Osmar Vicente [Companhia Siderurgica de Tubarao (CST), Vitoria, ES (Brazil)

    1993-12-31

    Substitution of coal gas by natural gas in the metallurgy industry is related. Composition of natural gas utilized, coal gas components main problems to the fuel substitution, analyse of the change viability and main advantages on these fuel substitution, on technical and economic aspect are also discussed 4 figs.

  3. The PSO support scheme for natural gas - subsidy to industry or environmental policy

    International Nuclear Information System (INIS)

    Eldegard, Tom

    2006-01-01

    Some aspects of the PSO scheme for natural gas are examined critically. Two central arguments used for justifying the PSO subsidy scheme of natural gas and its distribution are reviewed; these include the 'smallholder argument' and the 'environmental argument'. The 'smallholder argument' claims that since Norway has the natural gas resources, it should also make use of the natural gas in the country, and not simply send the raw material to other countries. The 'environmental argument' states that natural gas compared to other fossil fuels such as coal and fuel oil, is a far cleaner alternative, thus an environmental-friendly alternative entitled to financial support. The arguments are critically examined by the author (ml)

  4. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B.B. [Centre for Energy, Indian Institute of Technology, Guwahati 781039 (India); Sahoo, N.; Saha, U.K. [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati 781039 (India)

    2009-08-15

    Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as 'dual-fuel engines'. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that 'dual-fuel concept' is a promising technique for controlling both NO{sub x} and soot emissions even on existing diesel engine. But, HC, CO emissions and 'bsfc' are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition

  5. Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wooldridge, Steven [Ford Motor Co., Detroit, MI (United States); Boyer, Brad [Ford Motor Co., Detroit, MI (United States); Hall, Carrie M. [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-10-17

    The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas -gasoline blends show higher discrepancies comparing chemical and experimental knock onset.

  6. Natural gas and electricity generation in Queensland

    International Nuclear Information System (INIS)

    Webb, G.

    2001-01-01

    The focus of this article is on electricity generation in Queensland. Black coal accounted for 97 percent, while natural gas made up only 1 percent of the fuel used in thermal power generation in 1997-98. The share of natural gas in thermal electricity generation is expected to rise to 21 percent by 2014-2015, because of the emphasis on natural gas in Queensland's new energy policy. Since 1973-1974, Queensland has led the way in electricity consumption, with an average annual growth rate of 6.8 percent but the average thermal efficiency has fallen from 38.0 percent in 1991-1992, to 36.6 percent in 1997-1998

  7. Power industry and the environment IV. Natural gas; Energetika a zivotni prostredi IV. Zemni plyn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    A total of 26 contributions to the conference are presented, two of them in a Supplement. Seven contributions have been inputted in INIS, viz.: Natural gas: an environmentally friendly and energy saving fuel; Pollutants from the combustion of fuels; Consequences of increasing the consumption of gaseous fuels in national economy; Conversion of energy sources to gas consumption: effects on air quality; Experience of the Czech National Energy Inspectorate from the conversion of energy sources in the North-Bohemian region to gas fuel; Environmental consequences of gas fuel uses in towns; Natural gas: evaluation, control, and improvement of its environmental impacts; and Cogeneration units. (J.B.).

  8. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  9. Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu

    2016-01-01

    To construct an effective method to analyze the combustion process of dual fuel engines at low loads, effects of combustion boundaries on the combustion process of an electronically controlled diesel natural gas dual-fuel engine at low loads were investigated. Three typical combustion modes, including h, m and n, appeared under different combustion boundaries. In addition, the time-sequenced characteristic and the heat release rate-imbalanced characteristic were found in the dual fuel engine combustion process. To quantify these characteristics, two quantitative indicators, including the TSC (time-sequenced coefficient) and the HBC (HRR-balanced coefficient) were defined. The results show that increasing TSC and HBC can decrease HC (hydrocarbon) emissions and improve the BTE (brake thermal efficiency) significantly. The engine with the n combustion mode can obtain the highest BTE and the lowest HC emissions, followed by m, and then h. However, the combustion process of the engine will deteriorate sharply if boundary conditions are not strictly controlled in the n combustion mode. Based on the n combustion mode, advancing the start of diesel injection significantly, using large EGR (exhaust gas recirculation) rate and appropriately intake throttling can effectively reduce HC emissions and improve the BTE of dual fuel engines at low loads with relatively high natural gas PES (percentage energy substitution). - Highlights: • We reported three typical combustion modes of a dual-fuel engine at low loads. • Time-sequenced characteristic was put forward and qualified. • HRR-imbalanced characteristic was put forward and qualified. • Three combustion modes appeared as equivalence ratio/diesel injection timing varied. • The engine performance varied significantly with different combustion mode.

  10. Natural gas in the Asian Pacific region: market behavior and the Japanese electricity market

    International Nuclear Information System (INIS)

    Jonsson, Bo

    2001-04-01

    This dissertation consists of four main chapters, all related to the Asian Pacific natural gas market, and the role of the Japanese electricity sector. The natural gas market in Asia Pacific is heavily dependent on the demand from Japan, which imports around 75% of the gas traded as LNG (liquefied natural gas) in the region. The demand for natural gas in Japan is, in turn, almost exclusively driven by the electricity industry that consumes around 70 % of the imported natural gas. On the supply side we find seller concentrations with only six countries exporting LNG in the region. The first main chapter analyzes the market structure of the Asian Pacific natural gas market, the next two relate to the usage of natural gas in the Japanese fossil-fueled electricity production, and the final study investigates the demand for electricity in the residential sector in Japan. The first chapter argues that the buyers in Japan, through cooperation, have the potential to exert the market power that their large market share provides them with. This could be offset by the monopoly power that the six present sellers have. In the chapter four, the solutions for the four imperfect competition cases of, monoposony, monopoly, bilateral monopoly, and the Cournot model are simulated. Neither of the model solutions comes close to both the actual market price, and the actual gas volumes. The model that best mimics the actual price is the bilateral monopoly model, while the monoposony model comes closest to the actual volumes. Giving some mixed evidence of how the Asian LNG market works. Given the indication of market power, the second study analyzes the fossil-fuel mix efficiency in the power sector in Japan. If the power sector is able to exert the alleged market power, it may be the case that they minimize costs according to shadow prices instead of actual market prices. Such behavior could cause the fossil-fuel mix used for power generation to be inefficient. The analysis is based on a

  11. Insurance issues and natural gas vehicles. Final report, January 1992

    International Nuclear Information System (INIS)

    Squadron, W.F.; Ward, C.O.; Brown, M.H.

    1992-01-01

    GRI has been funding research on natural gas vehicle (NGV) technology since 1986. To support the activity, GRI is evaluating a number of NGV issues including fuel storage, tank inspection, system safety, refueling, U.S. auto and truck use characteristics, and the fleet vehicle infrastructure. In addition, insurance and leasing companies will require new regulations and policies to address clean-fueled vehicle fleets' emergence into the marketplace. These policies may influence and partially determine the structure of the alternatively fueled vehicle industry, and the requirements, if any, imposed upon vehicle technologies. The report asseses the insurance and leasing industries' infrastructure/institutional barriers as they relate to the introduction of natural gas fueled vehicle fleets

  12. Effect of Energy Efficiency Standards on Natural Gas Prices

    Energy Technology Data Exchange (ETDEWEB)

    Carnall, Michael; Dale, Larry; Lekov, Alex

    2011-07-26

    A primary justification for the establishment of energy efficiency standards for home appliances is the existence of information deficiencies and externalities in the market for appliances. For example, when a long-term homeowner purchases a new gas-fired water heater, she will maximize the value of her purchase by comparing the life-cycle cost of ownership of available units, including both total installed cost - purchase price plus installation costs - and operating cost in the calculus. Choice of the appliance with the lowest life-cycle costs leads to the most economically efficient balance between capital cost and fuel cost. However, if the purchaser's expected period of ownership is shorter than the useful life of the appliance, or the purchaser does not pay for the fuel used by the appliance, as is often the case with rental property, fuel cost will be external to her costs, biasing her decision toward spending less on fuel efficiency and resulting in the purchase of an appliance with greater than optimal fuel usage. By imposing an efficiency standard on appliances, less efficient appliances are made unavailable, precluding less efficient purchases and reducing fuel usage. The reduction in fuel demanded by residential users affects the total demand for such fuels as natural gas, for example. Reduced demand implies that residential customers are willing to purchase less gas at each price level. That is, the demand curve, labeled D{sub 0} in Figure 1, shifts to the left to D{sub 1}. If there is no change in the supply function, the supply curve will intersect the demand curve at a lower price. Residential demand is only one component of the total demand for natural gas. It is possible that total demand will decline very little if demand in other sectors increases substantially in response to a decline in the price. If demand does decrease, modeling studies generally confirm the intuition that reductions in demand for natural gas will result in reductions

  13. Multi-criteria evaluation of natural gas resources

    International Nuclear Information System (INIS)

    Afgan, Naim H.; Pilavachi, Petros A.; Carvalho, Maria G.

    2007-01-01

    Geologically estimated natural gas resources are 500 Tcm. With the advance in geological science increase of estimated resources is expected. Natural gas reserves in 2000 have been proved to be around 165 Tcm. As it is known the reserves are subject to two constraints, namely: capital invested in the exploration and drilling technologies used to discover new reserves. The natural gas scarcity factor, i.e. ratio between available reserves and natural gas consumption, is around 300 years for the last 50 years. The new discovery of natural gas reserves has given rise to a new energy strategy based on natural gas. Natural gas utilization is constantly increasing in the last 50 years. With new technologies for deep drilling, we have come to know that there are enormous gas resources available at relatively low price. These new discoveries together with high demand for the environment saving have introduced a new energy strategy on the world scale. This paper presents an evaluation of the potential natural gas utilization in energy sector. As the criteria in this analysis resource, economic, environmental, social and technological indicators are used. Among the potential options of gas utilization following systems are considered: Gas turbine power plant, combine cycle plant, CHP power plant, steam turbine gas-fired power plant, fuel cells power plant. Multi-criteria method was used for the assessment of potential options with priority given to the Resource, Economic and Social Indicators. Results obtained are presented in graphical form representing priority list of potential options under specific constraints in the priority of natural gas utilization strategy in energy sector

  14. “Greenwashing gas: Might a ‘transition fuel’ label legitimize carbon-intensive natural gas development?”

    International Nuclear Information System (INIS)

    Stephenson, Eleanor; Doukas, Alexander; Shaw, Karena

    2012-01-01

    Natural gas is widely considered to be the crucial “bridging fuel” in the transition to the low-carbon energy systems necessary to mitigate climate change. This paper develops a case study of the shale gas industry in British Columbia (BC), Canada to evaluate this assumption. We find that the transition fuel argument for gas development in BC is unsubstantiated by the best available evidence. Emissions factors for shale gas and LNG remain poorly characterized and contested in the academic literature, and context-specific factors have significant impacts on the lifecycle emissions of shale gas but have not been evaluated. Moreover, while the province has attempted to frame natural gas development within its ambitious climate change policy, this framing misrepresents substantive policy on gas production. The “transition fuel” and “climate solution” labels applied to development by the BC provincial government risk legitimizing carbon-intensive gas development. We argue that policy makers in BC and beyond should abandon the “transition fuel” characterization of natural gas. Instead, decision making about natural gas development should proceed through transparent engagement with the best available evidence to ensure that natural gas lives up to its best potential in supporting a transition to a low-carbon energy system. - Highlights: ► Transition fuel discourse may greenwash gas development. ► Gaps in research obscure emissions factors for LNG and shale gas. ► Climate solution label for shale gas and LNG development in BC is unsubstantiated.

  15. Natural gas : a critical component of Ontario's electricity future

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    This PowerPoint presentation identified natural gas as part of the electricity solution. It reviewed price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. tabs., figs

  16. Use of natural gas, methanol, and ethanol fuel emulsions as environmentally friendly energy carriers for mobile heat power plants

    Science.gov (United States)

    Likhanov, V. A.; Lopatin, O. P.

    2017-12-01

    The need for using environmentally friendly energy carriers for mobile heat power plants (HPPs) is grounded. Ecologically friendly sources of energy, such as natural gas as well as renewable methyl and ethyl alcohols, are investigated. In order to develop, determine, and optimize the composition of environmentally friendly energy carriers for an HPP, the latter has been tested when working on diesel fuel (DF), compressed natural gas (CNG), and methanol and ethanol fuel emulsions (MFE, EFE). It has been experimentally established that, for the application of environmentally friendly energy carriers for a 4Ch 11.0/12.5 diesel engine of a mobile fuel and power plant, it is necessary to maintain the following ratio of components when working on CNG: 80% gas and 20% DF primer portion. When working on an alcohol mixture, emulsions of the following composition were used: 25% alcohol (methanol or ethanol), 0.5% detergent-dispersant additive succinimide C-5A, 7% water, and 67.5% DF. When this diesel passed from oil DF to environmentally friendly energy sources, it allowed for the reduction of the content of exhaust gases (EG) (1) when working on CNG with recirculation of exhaust gases (EGR) (recirculation was used to eliminate the increased amount of nitric oxides by using CNG): carbon black by 5.8 times, carbon dioxide by 45.9%, and carbon monoxide by 23.8%; (2) when working on MFE: carbon black by 6.4 times, nitrogen oxides by 29.6%, carbon dioxide by 10.1%, and carbon oxide by 47.6%; (3) when working on EFE: carbon black by 4.8 times; nitrogen oxides by 40.3%, carbon dioxide by 26.6%, and carbon monoxide by 28.6%. The prospects of use of environmentally friendly energy carriers in diesels of mobile HPPs, such as natural gas, ethanol, and methanol, has been determined.

  17. Ecobalance of natural gas vehicles; Oekobilanz von Erdgasfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Nigge, K.M. [Simon, Kucher und Partners Strategy und Marketing Consultants GmbH, Bonn (Germany)

    2000-07-01

    The impacts on human health and the natural environment of using natural gas, Diesel and petrol as fuels for city buses and passenger cars are compared in a Life Cycle Assessment. In addition to the burning of the fuels in the engines, this assessment also comprises the upstream processes of the fuel supply chain. Despite the increased energy demand of the vehicles, natural gas is associated with the lowest impacts overall for both city buses and passenger cars. The health impacts that can be avoided through the use of natural gas instead of Diesel or petrol thereby differ only weakly between the use of the vehicles in cities of various sizes within Germany. From the perspective of environmental protection, the market introduction of natural gas vehicles therefore does not need remain limited to large cities within agglomerated regions. (orig.) [German] Die Auswirkungen der Verwendung von Erdgas, Diesel und Benzin als Kraftstoffe fuer Stadtbusse und Pkw auf die menschliche Gesundheit und die natuerliche Umwelt werden in einer Oekobilanz verglichen. Diese umfasst neben der motorischen Verbrennung der Kraftstoffe auch die vorgelagerten Prozessketten der Kraftstoffbereitstellung. Sowohl fuer Stadtbusse als auch fuer Pkw schneidet Erdgas trotz eines energetischen Mehrbedarfes der Fahrzeuge insgesamt am guenstigsten ab. Die durch den Einsatz von Erdgas anstelle von Diesel oder Benzin vermeidbaren Gesundheitsschaeden unterscheiden sich dabei zwischen einem Einsatz der Fahrzeuge in Staedten verschiedener Groesse innerhalb von Deutschland nur wenig. Die Markteinfuehrung von Erdgasfahrzeugen muss also aus Sicht des Umweltschutzes nicht auf grosse Staedte in Ballungsgebieten beschraenkt bleiben. (orig.)

  18. Natural gas cooling: Part of the solution

    International Nuclear Information System (INIS)

    Jones, D.R.

    1992-01-01

    This paper reviews and compares the efficiencies and performance of a number of gas cooling systems with a comparable electric cooling system. The results show that gas cooling systems compare favorably with the electric equivalents, offering a new dimension to air conditioning and refrigeration systems. The paper goes on to compare the air quality benefits of natural gas to coal or oil-burning fuel systems which are used to generate the electricity for the electric cooling systems. Finally, the paper discusses the regulatory bias that the author feels exists towards the use of natural gas and the need for modification in the existing regulations to provide a 'level-playing field' for the gas cooling industry

  19. Operation and planning of coordinated natural gas and electricity infrastructures

    Science.gov (United States)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and

  20. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    Science.gov (United States)

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  1. Natural gas contracts in an emerging competitive market

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1992-01-01

    Natural gas is being viewed by many as the fuel of the 1990s and beyond because of its environmental qualities, relatively low cost and significant domestic resource base. However, in the Fall of 1991, a group of electric utility executives met with then Deputy Secretary of Energy Henson Moore and asserted that an inability to obtain long term gas contracts meant that supplies are unreliable and construction of gas-fueled generating stations is being discouraged. This study was requested by the Deputy Secretary to address the issues surrounding long-term gas contracts and supply reliability. The relationship between supply reliability and contracts is explained in terms of the number of buyers and sellers in a market. With the appropriate state regulatory policies, utilities can contract for gas and obtain reliable supplies at competitive market prices. Public utility commissioners are encouraged to permit utilities a free choice in signing gas contracts, but to allow only competitive market prices to be reflected in allowable fuel costs

  2. Natural gas contracts in an emerging competitive market

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, R.J.

    1992-11-01

    Natural gas is being viewed by many as the fuel of the 1990s and beyond because of its environmental qualities, relatively low cost and significant domestic resource base. However, in the Fall of 1991, a group of electric utility executives met with then Deputy Secretary of Energy Henson Moore and asserted that an inability to obtain long term gas contracts meant that supplies are unreliable and construction of gas-fueled generating stations is being discouraged. This study was requested by the Deputy Secretary to address the issues surrounding long-term gas contracts and supply reliability. The relationship between supply reliability and contracts is explained in terms of the number of buyers and sellers in a market. With the appropriate state regulatory policies, utilities can contract for gas and obtain reliable supplies at competitive market prices. Public utility commissioners are encouraged to permit utilities a free choice in signing gas contracts, but to allow only competitive market prices to be reflected in allowable fuel costs.

  3. Natural gas contracts in an emerging competitive market

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, R.J.

    1992-01-01

    Natural gas is being viewed by many as the fuel of the 1990s and beyond because of its environmental qualities, relatively low cost and significant domestic resource base. However, in the Fall of 1991, a group of electric utility executives met with then Deputy Secretary of Energy Henson Moore and asserted that an inability to obtain long term gas contracts meant that supplies are unreliable and construction of gas-fueled generating stations is being discouraged. This study was requested by the Deputy Secretary to address the issues surrounding long-term gas contracts and supply reliability. The relationship between supply reliability and contracts is explained in terms of the number of buyers and sellers in a market. With the appropriate state regulatory policies, utilities can contract for gas and obtain reliable supplies at competitive market prices. Public utility commissioners are encouraged to permit utilities a free choice in signing gas contracts, but to allow only competitive market prices to be reflected in allowable fuel costs.

  4. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  5. The world's first supply ship powered by natural gas

    International Nuclear Information System (INIS)

    2003-01-01

    The article describes the newly developed natural gas powered supply ship ''Viking Energy'', which reduces the emission of NOx by 200 tonnes per year. The shipping company has for many years been working on the developing of environmentally friendly ships with less fuel consumption. The gas is stored in liquid form at a temperature of 160 o C. The engines can run on gas or diesel as needed. These dual-fuel engines offers great flexibility, which is very desirable since liquid natural gas is not widely available along the coast. This type of engine has been used in power stations and on offshore platforms, but not in ships. The operating conditions are quite different for ships than for power stations. So far, both investment and operating costs are higher than for conventional ships

  6. Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels

    Science.gov (United States)

    Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA

    2008-10-14

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  7. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  8. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  9. Natural gas and its consumption in Switzerland

    International Nuclear Information System (INIS)

    Baniriah, N.

    1991-01-01

    In this report the worldwide position of natural gas as an important energy of the coming decades and its modest current standing in the Swiss energy balance are highlighted. The relative role and importance of the principal fossil fuels in the energy supply, the average energy prices and taxes, particularly those of gas and fuel oil in the residential sector and the overall statistically related inter-fuel substitution in Switzerland are examined. The role of governments in energy supply in general and with gas utilization in particular is examined. The international trade in gas and its supply infrastructure are reviewed and the advantageous situation of Switzerland in Western Europe and the latter in the World, with respect to present and future gas supplies, are underlined. Considering the current level of gas consumption in Switzerland and its past and projected rates of market penetration, in comparison to other OECD countries, it would appear that Switzerland is not taking full advantage of the situation. The implicit message, even if diffidently conveyed, is intervention by prescription and by proscription. In the absence of such measures, and with the virtual demise of nuclear energy or its expansion, the disproportionate and dominant position of fuel oil in the energy mix, will endure whereas the share of gas grows very slowly remaining at much lower levels than in the neighbouring countries. (author) figs., tabs., refs

  10. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  11. Management reporting in gas and fuel

    International Nuclear Information System (INIS)

    Taylor, J.L.; Foot, B.G.

    1997-01-01

    Gas and Fuel is the sole supplier of reticulated natural gas to 1.3 m customers in the State of Victoria, Australia. Reporting is performed monthly and is tailored to satisfy the requirements of the Board, executive management and business units. The reports include profit and cash statements, gas sales data, capital expenditure, benchmarks, operational data and human resources information. The reports are a mixture of written commentary, accounting statements and graphical presentations. The reports are used at monthly Board and executive meetings to review performance and manage the business. (au)

  12. Compressed natural gas for vehicles and how we can develop and meet the market

    International Nuclear Information System (INIS)

    Pinkerton, W.E.

    1992-01-01

    This paper reports that state and federal legislation have mandated the use of clean burning fuels. Clean fuels include: compressed natural gas (CNG), ethanol, methanol, liquefied petroleum gas (LPG), electricity, and reformulated gasoline. The Clean Air Amendments 1990 have created support for the rapid utilization of the compressed natural gas (CNG). Responsively, diverse occupations related to this industry are emerging. A coordinated infrastructure is vital to the successful promotion of clean fuels and synchronized endorsement of the law

  13. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  14. Thermodynamic and transport properties of air and its products of combustion with ASTMA-A-1 fuel and natural gas at 20, 30, and 40 atmospheres

    Science.gov (United States)

    Poferl, D. J.; Svehla, R. A.

    1973-01-01

    The isentropic exponent, molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, Prandtl number, and enthalpy were calculated for air, the combustion products of ASTM-A-1 jet fuel and air, and the combustion products of natural gas and air. The properties were calculated over a temperature range from 300 to 2800 K in 100 K increments and for pressures of 20, 30 and 40 atmospheres. The data for natural gas and ASTM-A-1 were calculated for fuel-air ratios from zero to stoichiometric in 0.01 increments.

  15. Low pressure storage of natural gas on activated carbon

    Science.gov (United States)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  16. The Role of Post Flame Oxidation on the UHC Emission for Combustion of Natural Gas and Hydrogen Containing fuels

    DEFF Research Database (Denmark)

    Jensen, Torben Kvist; Schramm, Jesper

    2003-01-01

    In-cylinder post flame oxidation of unburned hydro-carbons from crevices in a lean burn spark ignition engine has been examined for natural gas and mixtures of natural gas and a hydrogen containing producer gas. For this purpose a model was developed to describe the mixing of cold unburned...... reactants from crevices and hot burned bulk gas and to describe the oxidation of the unburned fuel. The post oxidation was described by a single step chemical reaction mechanism instead of detailed chemical kinetics in order to reduce the calculation time. However, the exploited Arrhenius expressions used...... to describe the chemical reactions were deduced from a detailed reaction mechanism. Different detailed reaction mechanisms were compared with results from combustion reactor experiments. Experiments and simulations were compared at different pressures and excesses of air similar to the conditions present...

  17. Emissions deterioration for three alternative fuel vehicle types: Natural gas, ethanol, and methanol vehicles

    International Nuclear Information System (INIS)

    Winebrake, J.J.; Deaton, M.L.

    1997-01-01

    Although there have been several studies examining emissions from in-use alternative fuel vehicles (AFVs), little is known about the deterioration of these emissions over vehicle lifetimes and how this deterioration compares with deterioration from conventional vehicles (CVs). This paper analyzes emissions data from 70 AFVs and 70 CVs operating in the federal government fleet to determine whether AFV emissions deterioration differs significantly from CV emissions deterioration. The authors conduct the analysis on three alternative fuel types (natural gas, methanol, and ethanol) and on five pollutants (carbon monoxide, carbon dioxide, total hydrocarbons, non-methane hydrocarbons, and nitrogen oxides). They find that for most cases they studied, deterioration differences are not statistically significant; however, several exceptions suggest that air quality planners and regulators must further analyze AFV emissions deterioration in order to properly include these technologies into broader air quality management schemes

  18. Characteristic of The RSG-Gas Oxide Fuel Element Temperature Under Forced Convection And Natural Convection Mode

    International Nuclear Information System (INIS)

    Sudarmono

    2000-01-01

    One of the methods used for fuel element plate temperature measurement in RSG-Gas is a direct measurement. Evaluation on the measurement results were done by using HEATHYDE and NATCON code, which was then compared to the safety margin criteria. Results of thermalhydraulic measurement on transitional core both under forced and natural convection were compared with the results of calculations using the two codes. Measurement result for maximum fuel element plate temperature at typical working core of 30 MW, was 121 o C. The deviation between calculation and measurement result was under 9.75 %. Under normal operation, safety margin on DNB and OFI are 3.56 and 2.60, respectively. Natcon calculation result showed that the typical working core under the natural circulation mode, an onset of nucleate boiling (ONB)occurred at a core power level of 826 kW (2.8% of the nominal power)

  19. A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine

    International Nuclear Information System (INIS)

    Bahlouli, Keyvan; Atikol, Ugur; Khoshbakhti Saray, R.; Mohammadi, Vahid

    2014-01-01

    Highlights: • A two-stage reduction process is used to produce two reduced mechanisms. • The mechanisms are combined to develop a reaction mechanism for a fuel blend. • The genetic algorithm is used for optimization of reaction constants. • The developed reduced mechanism can be used to predict the ignition timing in HCCI engine for a fuel blend. - Abstract: One of the main challenges associated with homogeneous charge compression ignition (HCCI) combustion engine application is the lack of direct control on ignition timing. One of the solutions to this problem is mixing two fuels with various properties at a variety of ratios on a cycle-by-cycle basis. In the current study, a reduced mechanism for a fuel blend of natural-gas and n-heptane is proposed. The approach is validated for the prediction of ignition timing in the HCCI combustion engine. A single-zone combustion model is used to simulate the HCCI engine. A two-stage reduction process is used to produce two reduced mechanisms of existing semi-detailed GRI-Mech. 3.0 mechanism that contains 53 species and 325 reactions and Golovichev’s mechanism consisting of 57 species and 290 reactions for natural gas and n-heptane fuels, respectively. Firstly, the unimportant species and related reactions are identified by employing the directed relation graph with error propagation (DRGEP) reduction method and then, to extend reduction, the principal component analysis (PCA) method is utilized. To evaluate the validity of the reduced mechanism, representative engine combustion parameters such as peak pressure, maximum heat release, and CA50 are used. The reduced mechanism of GRI-Mech. 3.0 mechanism, containing 19 species and 39 reactions, and the reduced mechanism of Golovichev’s mechanism, consisting of 40 species and 95 reactions, provide good prediction for the mentioned parameters in comparison with those of detailed mechanisms. The combination of the generated reduced mechanisms is used to develop a

  20. Performance evaluation of a fuel cell with NiO-YSV anode operating with natural gas; Avaliacao do desempenho de uma celula a combustivel com anodo de NiO YSZ operando com gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Vasconcelos, Carmel Suzarte Ayres; Lima, Luiz Rogerio Pinho de Andrade [Universidade Federal da Bahia (UFBa), Salvador, BA (Brazil). Escola Politecnica. Dept. de Ciencia e Tecnologia dos Materiais]. E-mail: shayennedn@yahoo.com.br

    2008-07-01

    Fuel cell is an electrochemical device that converts the chemical energy into electric energy. The natural gas, for its proven improvement in the income of the equipment in relation to other energy ones, has been very used to feed the solid oxide fuel cell (SOFC) in the generation of electric power. Ceramics of Yttria-stabilized zirconia had been used as electrolyte and when supported with nickel oxide they act as anode in the solid oxide fuel cell, due to raised ionic conductivity that these materials present in high temperatures, while lanthanum with strontium and manganite are used as cathode. In the composition of the anode, the concentration of Ni O, acting as catalytic in the YSZ confers high electric conductivity and high electrochemical activity of the reactions, providing the internal reform in the SOFC. In this work, the solid oxide fuel cell, formed by Yttria- stabilized zirconia, nickel oxide, and lanthanum with strontium and manganite were tested in the reform had been prepared samples of electrode/electrolyte for use in SOFC of the natural gas in the presence of low water text, similar condition to the operation of the SOFC, operating in temperatures range from 700 to 800 deg C. This cell also was characterized using the impedance spectroscopy technique. These results allowed the development of components of the current versus voltage. (author)

  1. Natural gas poised to penetrate deeper into electric generation

    International Nuclear Information System (INIS)

    Swanekamp, R.

    1995-01-01

    This article describes how advancements in gas supply, distribution and storage, coupled with new options in combustion equipment, continue to expand the use of natural gas for electric generation. The challenge is to meet the increasing demand while keeping prices competitive with other fuels--and keep a small band of skeptics at bay. To prepare for the projected growth in gas consumption, the natural-gas industry has invented in new infrastructure and technologies. Pipelines have been built; storage facilities have been expanded; and highly precise flow measurement stations have been installed. To mitigate supply and price risk, suppliers are offering short-, mid-, or long-term contracts which include service options and guarantees. In spite of these preparations, not all power producers are comfortable with the potential tidal wave of gas-fired capacity. Reason: It limits the electric-generation resource base to one fuel for future capacity

  2. A study of burning processes of fossil fuels in straitened conditions of furnaces in low capacity boilers by an example of natural gas

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Khokhlov, D. A.; Zaichenko, M. N.

    2018-03-01

    The aim of this work is to research operations of modern combined low-emission swirl burner with a capacity of 2.2 MW for fire-tube boiler type KV-GM-2.0, to ensure the effective burning of natural gas, crude oil and diesel fuel. For this purpose, a computer model of the burner and furnace chamber has been developed. The paper presents the results of numerical investigations of the burner operation, using the example of natural gas in a working load range from 40 to 100%. The basic features of processes of fuel burning in the cramped conditions of the flame tube have been identified to fundamentally differ from similar processes in the furnaces of steam boilers. The influence of the design of burners and their operating modes on incomplete combustion of fuel and the formation of nitrogen oxides has been determined.

  3. Fuel tank for liquefied natural gas

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  4. A Decision Support System (DSS to Select the Premier Fuel to Develop in the Value Chain of Natural Gas

    Directory of Open Access Journals (Sweden)

    Ahmad Mousaei

    2015-07-01

    Full Text Available A value chain is a series of events that takes a raw material and with each step adds value to it. Global interest in the application of natural gas (NG in production and transportation has grown dramatically, representing a long-term, low-cost, domestic, and secure alternative to petroleum-based fuels. Many technological solutions are currently considered on the market or in development, which address the challenge and opportunity of NG. In this paper, a decision support system (DSS is introduced for selecting the best fuel to develop in the value chain of NG through four options, namely compressed NG (CNG, liquefied NG (LNG, dimethyl ether (DME, and gas-to-liquids (GTL. The DSS includes a model which uses the technique for order performance by similarity to ideal solution (TOPSIS to select the best fuel in the value chain of NG based on the attributes such as market situations, technology availability, and transportation infrastructure. The model recommends some key guidelines for two branches of countries, i.e. those which have NG resources and the others. We believe that applying the proposed DSS helps the oil and gas/energy ministries in a most effective and productive manner dealing with the complicated fuel-related production and transportation decision-making situations.

  5. Natural gas adsorption on biomass derived activated carbons: A mini review

    Directory of Open Access Journals (Sweden)

    Hamza Usman D.

    2016-01-01

    Full Text Available Activated carbon materials are good candidates for natural gas storage due excellent textural properties that are easy to enhance and modify. Natural gas is much cleaner fuel than coal and other petroleum derivatives. Storage of natural gas on porous sorbents at lower pressure is safer and cheaper compared to compressed and liquefied natural gas. This article reviews some works conducted on natural gas storage on biomass based activated carbon materials. Methane storage capacities and deliveries of the various sorbents were given. The effect of factors such as surface area, pore characteristic, heat of adsorption, packing density on the natural gas storage capacity on the activated carbons are discussed. Challenges, improvements and future directions of natural gas storage on porous carbonaceous materials are highlighted.

  6. CNG (compressed natural gas) as fuel for the transport sector in Trinidad and Tobago

    Energy Technology Data Exchange (ETDEWEB)

    So`Brien, G.C.; Persad, P.; Satcunanathan, S. [University of the West Indies, St. Augustine (Trinidad)

    1996-08-01

    Several studies have established that Trinidad and Tobago is well positioned to consider the substitution of compressed natural gas (CNG) for gasoline or diesel in the transport sector. Consequently a programme of conversion of private motors was initiated. Despite considerable advertisement programs projecting CNG as an environmentally friendly and cheap fuel, there is not yet widespread acceptance of the technology. The reasons for this are analysed. It is recommended that the policy of CNG usage be reviewed and the emphasis be shifted to transport fleets. It is also recommended that tax credits be considered as an incentive to users. (author)

  7. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    Monado, F.; Permana, S.

    2013-01-01

    Full-text: A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8 % HM. From the neutronic point of view, this design is in compliance with good performance. (author)

  8. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-01-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance

  9. Natural gas engine concept with EZEV potential; Erdgasmotorkonzept mit EZEV-Potential

    Energy Technology Data Exchange (ETDEWEB)

    Maier, F.; Mueller, P.; Heck, E.; Langen, P. [BMW AG (Germany)

    1997-09-01

    The first natural gas vehicles form BMW are designed for arbitrary gasoline or natural gas operation. It is possible only to a limited extent to take advantage of the benefits of natural gas as a fuel as long as this is the case. An analysis was made to determine possible improvements in terms of fuel economy, emissions, full load and maximum exhaust gas temperatures through selective optimisation for exclusive natural gas operation. The results of this analysis have been used in the design of natural gas engines for mid-sized vehicles. Vehicle examinations in FTP75 confirm the existing potential for satisfying EZEV standards discussed in California even with vehicles of the upper midsize category by using optimised natural gas engines. (orig.) [Deutsch] Die ersten Automobile mit Erdgasantrieb von BMW sind fuer den wahlweisen Benzin- oder Erdgasbetrieb ausgelegt. Deshalb koennen die Vorteile des Kraftstoffs Erdgas nur zum Teil genutzt werden. Es wurde untersucht, welche Verbesserungen durch gezielte Optimierung fuer den ausschliesslichen Erdgasbetrieb bei Kraftstoffverbrauch, Emissionen, Vollast und maximalen Abgastemperaturen moeglich sind. Die Ergebnisse wurden bei der Auslegung von Erdgasmotoren fuer Mittelklassefahrzeuge verwendet. Untersuchungen im FTP-75 bestaetigen, dass mit optimierten Erdgasmotoren das Potential besteht, selbst mit Automobilen der oberen Mittelklasse die in Kalifornien diskutierten EZEV-Standards zu erfuellen. (orig.)

  10. Concept for a LNG Gas Handling System for a Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Michael Rachow

    2017-09-01

    Full Text Available Nowadays, ships are using LNG as main engine fuel because based on the facts that LNG has no sulphur content, and its combustion process, LNG produces low NOx content compared to heavy fuel oil and marine diesel oil. LNG is not only produces low gas emission, but may have economic advantages. In the engine laboratory of maritime studies department in Warnemunde, Germany, there is a diesel engine type MAN 6L23/30 A, where the mode operation of these engine would be changed to dual fuel engine mode operation. Therefore, in this thesis, the use dual fuel engine will be compared where it will utilize natural gas and marine diesel oil and select the required components for fuel gas supply system. By conducting the process calculation, engine MAN 6L23/30 A requires the capacity natural gas of 12.908  for 5 days at full load. A concept for LNG supply system would be arranged from storage tank until engine manifold. Germanischer Lloyd and Project Guide of dual fuel engine will be used as a guidelines to develop an optimal design and arrangement which comply with the regulation.

  11. Effect of advanced injection timing on the performance of natural gas ...

    Indian Academy of Sciences (India)

    Recent interest has centred on the use of natural gas in a diesel engine. Natural gas ... temperatures. Fuel was fed to the injector pump under gravity and the volumetric flow rate .... produce very erratic behaviour of the engine. The test results ...

  12. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand

    International Nuclear Information System (INIS)

    Singh, M. K.; Moore, J. S.

    2002-01-01

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas

  13. National blueprint for the deployment of liquefied natural gas as marine fuel

    International Nuclear Information System (INIS)

    2016-01-01

    Based on a consultation of professional bodies, this blueprint expresses the strong commitment of the French State with economic actors towards an energy transition on the long term, and more particularly concerns the development of LNG (liquefied natural gas) as marine fuel. This objective complies with national and European environmental objectives for the reduction of greenhouse emissions and for a better air quality. This blueprint notably develops two European directives which addresses the sulphur content of marine fuels, and the deployment of an infrastructure for alternative fuels. In its first part, this document states the strong political support to the development of LNG: environmental objectives, existing financial levers for a progressive evolution towards LNG, adaptation of the regulatory framework for a sustainable emergence of a LNG sector, implementation of specific trainings of sea-based and ground-based personnel for the handling of LNG. It sketches the development of LNG for each French coastline (Manche-North Sea, Atlantic, Mediterranean Sea) by analysing the potential demand, and by presenting current projects. Some specific issues related to LNG development are then addressed and discussed: creation of global LNG sectors, inclusion of projects within a trans-national approach, taking of the LNG multimodal reality into account. A set of actions is finally defined: definition of a national framework, stronger support of actors in the search for relevant financing solutions, emergence of harmonized regulatory conditions, implementation of relevant training for LNG handling, support to the implementation of projects which will enable the emergence of a LNG sector for fuel supply in France

  14. Natural Gas Reserves, Development and Production in Qatar

    International Nuclear Information System (INIS)

    Naji, Abi-Aad.

    1998-01-01

    Qatar entered the club of natural gas exporters in early 1997 when the first shipment of liquefied natural gas left the state for Japan. Qatar was helped by the discovery in 1971 of supergiant North Field gas field, the country's suitable location between the established gas consuming markets in Europe and Southeast Asia, and its proximity to developing markets in the Indian subcontinent and in neighbouring countries. All that have combined to make gas export projects from Qatar economically viable and commercially attractive. In addition to export-oriented development, increased gas production from the North Field is planned for meeting a growing domestic demand for gas as fuel and feedstock for power generation and desalination plants, as well as value-added petrochemical and fertilizer industries

  15. Natural gas market review 2006 - towards a global gas market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market.

  16. Natural gas market review 2006 - towards a global gas market

    International Nuclear Information System (INIS)

    2006-01-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market

  17. The Natural Gas Vehicle Challenge 1992: Exhaust emissions testing and results

    Science.gov (United States)

    Rimkus, W. A.; Larsen, R. P.; Zammit, M. G.; Davies, J. G.; Salmon, G. S.; Bruetsch, R. I.

    The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the U.S. Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the U.S. Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  18. The price of natural gas

    International Nuclear Information System (INIS)

    Bakhtiari, A.M.S.

    2001-01-01

    Natural gas used to be a relatively cheap primary energy source, always at a discount to crude oil (on a comparative British thermal unit basis). It gradually evolved into a major resource during the 20th century - reaching a 24 per cent share of global primary energy in 1999. In the year 2000, natural gas prices in the USA rose to unheard-of highs of 10/million US dollars Btu, ushering in a new era, with natural gas at a 120 per cent premium to crude oil. This clearly was a watershed for gas, somehow similar to the 1973-74 watershed for oil prices. And similarly, any return to the status quo-ante looks rather improbable, although a number of experts (alongside the International Energy Agency) still believe the 2000 price 'spike' to have been ''only transitory''. The consequences of higher gas prices (at a level equal to crude oil prices on a Btu basis) will be multifaceted and momentous, altering habits and uses in downstream industries and economic sectors, as well as providing added income for major gas-exporters, such as Russia, Canada and Algeria. Another potential consequence of the 2000 watershed might be to propel US standard prices (such as the 'Henry Hub' spot) to international status and gas price-setter, as the 'WTI spot' became an 'international benchmark' for crude oils in the post-1993 era. For the time being, the equality of gas and oil prices has become the new norm; but, in the longer term, a discount of crude oil relative to natural gas might be envisaged, as the latter is a cleaner fuel and emits less carbon dioxide when used. (author)

  19. Venezuela natural gas outlook

    International Nuclear Information System (INIS)

    Silva, P.

    1991-01-01

    This paper reports on the natural gas outlook for Venezuela. First of all, it is very important to remember that in the last few years we have had frequent and unforeseen changes in the energy, ecological, geopolitical and economical fields which explain why all the projections of demand and prices for hydrocarbons and their products have failed to predict what later would happen in the market. Natural gas, with its recognized advantages over other traditional competitors such as oil, coal and nuclear energy, is identified as the component that is acquiring more weight in the energy equation, with a strengthening projection, not only as a resource that covers demand but as a key element in the international energy business. In fact, natural gas satisfies 21% of overall worldwide energy consumption, with an annual increase of 2.7% over the last few years, which is higher than the global energy growth of other fossil fuels. This tendency, which dates from the beginning of the 1980's, will continue with a possibility of increasing over the coming years. Under a foreseeable scenario, it is estimated that worldwide use of natural gas will increase 40% over the next 10 years and 75% on a longer term. Specifically for liquid methane (LNG), use should increase 60% during this last decade. The LPG increase should be moderate due to the limited demand until 1995 and to the stable trends that will continue its use until the end of this century

  20. CryoFuel gas : capture and purification of methane at source

    International Nuclear Information System (INIS)

    Bailey, R.

    2002-01-01

    The mandate of CFS Alternative Fuels Incorporated, located in Victoria, British Columbia, which came into operation in 1995, is the installation and operation of gas purification and liquefaction systems using the patented small-scale cryogenic technologies which were designed by an affiliate, CryoFuel Systems Incorporated in Monroe, Washington. Liquefied Natural Gas (LNG) at 97 per cent is produced using gas processing systems from a variety of gases such as unutilized sources like stranded gas wells and coalbed methane. Waste gases like flares, landfills and bio-digesters, as well as pipeline natural gas are also used to produce LNG. The recovery of carbon dioxide at 99.8 per cent purity is possible from landfill and biogas streams. No new emissions are generated by the autonomous, modular, skid-mounted cryofuel plants. Additionally, no external utilities are required. Some of the applications of LNG are the replacement of conventional fuels in the transportation sector and in commercial and industrial applications. The technology's core design and process capabilities were verified in a one-year demonstration project. Firm orders for eight full-scale systems have been received as of April 2002

  1. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Boisvert, Patrick G.; Runstedtler, Allan

    2014-01-01

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  2. Developing compressed natural gas as an automotive fuel in Nigeria: Lessons from international markets

    International Nuclear Information System (INIS)

    Ogunlowo, Olufemi O.; Bristow, Abigail L.; Sohail, M.

    2015-01-01

    The Nigerian government proposed the use of compressed natural gas (CNG) as an automotive fuel in 1997 as part of the initiatives to harness natural gas (NG) resources but progress has been slow. This paper examines the natural gas vehicle (NGV) implementation approaches and outcomes in seven countries with diverse experiences in order to gain an understanding of the barriers to the NGV market development in Nigeria. The analysis employs hermeneutic principles to secondary data derived from academic literature, published reports from a variety of international agencies, grey literature, and text from online sources and identifies eight success factors for NGV market development namely: strategic intent, legal backing, learning and adaptation, assignment of responsibilities, financial incentives, NG pricing, consumer confidence, and NG infrastructure. The paper concludes that the principal impediment to NGV market development in Nigeria is the uncoordinated implementation approach and that greater government involvement is required in setting strategic goals, developing the legal and regulatory frameworks, setting of clear standards for vehicles and refuelling stations as well as assigning responsibilities to specific agencies. Short-term low cost policy interventions identified include widening the existing NG and gasoline price gap and offering limited support for refuelling and retrofitting facilities. - Highlights: • We examined the NGV policies and implementation strategies in selected countries. • The use of legislative mandates help deepen NGV penetration. • Aligning stakeholder interest is critical to NGV adoption. • Making national interest a priority ahead of regional infrastructure is a critical success factor. • Government support drives participation

  3. Development of Key-Enabling Technologies for a Variable-blend Natural Gas Vehicle

    Science.gov (United States)

    2017-12-01

    A portable, economic and reliable sensor for the Natural Gas (NG) fuel quality has been developed. Both Wobbe Index (WI) and Methane Indexes (MI) as well as inert gas content (inert%) of the NG fuel can be measured in real time within 5% accuracy. Th...

  4. Development of a multi-fuel burner for operation with light oil, natural gas and low calorific value gas; Entwicklung eines Mehrstoffbrenners fuer Heizoel-, Erdgas- und Schwachgasbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Giese, Anne; Tali, Eren [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2013-08-15

    In the course of the AiF research project 'Development of a multi-fuel burner for operation with natural gas, light oil and low calorific value gas (MSB)' (IGF Grant No. 16202 N), various burner concepts based on the principle of continuously staged air were developed, analysed by means of computational fluid dynamics, built, investigated experimentally and finally tested at a real biomass gasifier (plant). This article describes the results of this research project. (orig.)

  5. Assessment of Methane Emissions – Impact of Using Natural Gas Engines in Unconventional Resource Development

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew [West Virginia Univ., Morgantown, WV (United States); Johnson, Derek [West Virginia Univ., Morgantown, WV (United States); Heltzel, Robert [West Virginia Univ., Morgantown, WV (United States); Oliver, Dakota [West Virginia Univ., Morgantown, WV (United States)

    2018-04-08

    Researchers at the Center for Alternative Fuels, Engines, and Emissions (CAFEE) completed a multi-year program under DE-FE0013689 entitled, “Assessing Fugitive Methane Emissions Impact Using Natural Gas Engines in Unconventional Resource Development.” When drilling activity was high and industry sought to lower operating costs and reduce emissions they began investing in dual fuel and dedicated natural gas engines to power unconventional well equipment. From a review of literature we determined that the prime-movers (or major fuel consumers) of unconventional well development were the service trucks (trucking), horizontal drilling rig (drilling) engines, and hydraulic stimulation pump (fracturing) engines. Based on early findings from on-road studies we assessed that conversion of prime movers to operate on natural gas could contribute to methane emissions associated with unconventional wells. As such, we collected significant in-use activity data from service trucks and in-use activity, fuel consumption, and gaseous emissions data from drilling and fracturing engines. Our findings confirmed that conversion of the prime movers to operate as dual fuel or dedicated natural gas – created an additional source of methane emissions. While some gaseous emissions were decreased from implementation of these technologies – methane and CO2 equivalent emissions tended to increase, especially for non-road engines. The increases were highest for dual fuel engines due to methane slip from the exhaust and engine crankcase. Dedicated natural gas engines tended to have lower exhaust methane emissions but higher CO2 emissions due to lower efficiency. Therefore, investing in currently available natural gas technologies for prime movers will increase the greenhouse gas footprint of the unconventional well development industry.

  6. Combustion of coal gas fuels in a staged combustor

    Science.gov (United States)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  7. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  8. Hydrogen-enriched natural gas; Bridge to an ultra low carbon world

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Joshua; Oliver, Mike

    2010-09-15

    Natural gas is recognized as an important part of the solution to climate change, as it has the smallest carbon footprint among fossil fuels and can be used with high efficiency. This alone is not enough. Supplementing natural gas with hydrogen creating hydrogen-enriched natural gas (HENG), where the hydrogen comes from a low- or zero-carbon energy source. HENG, the subject of this paper, can leverage existing natural gas infrastructure to reduce CO2 and NOx, improve the efficiency of end-use equipment, and lower the overall carbon intensity of energy consumption.

  9. Possibilities for the reduction of CO2- and CH4-emissions of natural gas

    International Nuclear Information System (INIS)

    Muessig, S.

    1994-01-01

    The use of fossil fuels increases the portion of greenhouse gases, especially CO 2 and CH 4 . In this paper firstly the specific emission rates of these greenhouse gases for the various fuels are compared. Secondly possibilities for the reduction of CO 2 and CH 4 for natural gas which are relatively small anyhow are discussed. Thirdly the use of renewable energy within the gas industry and the ocean and into depleted reservoirs are discussed. It is shown that the efficient use of energy of the fossil fuel natural gas is most successful in all branches of gas consumption to decrease emission. Combined-cycle processes, cogeneration as well as modern domestic heating systems are described. Fuel cells and the application of hydrogen is shortly discussed. (orig.)

  10. Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [United Arab Emirates Univ., Dept. of Mechanical Engineering, Al-Ain (United Arab Emirates)

    2003-03-01

    Combustion pressure rise rate and thermal efficiency data are measured and presented for a dual fuel engine running on a dual fuel of Diesel and compressed natural gas and utilizing exhaust gas recirculation (EGR). The maximum pressure rise rate during combustion is presented as a measure of combustion noise. The experimental investigation on the dual fuel engine revealed the noise generated from combustion and the thermal efficiency at different EGR ratios. A Ricardo E6 Diesel version engine is converted to run on a dual fuel of Diesel and compressed natural gas and having an exhaust gas recycling system is used throughout the work. The engine is fully computerized, and the cylinder pressure data and crank angle data are stored in a PC for offline analysis. The effects of EGR ratio, engine speeds, loads, temperature of recycled exhaust gases, intake charge pressure and engine compression ratio on combustion noise and thermal efficiency are examined for the dual fuel engine. The combustion noise and thermal efficiency of the dual fuel engine are found to be affected when EGR is used in the dual fuel engine. (Author)

  11. Natural gas pricing reform in China: Getting closer to a market system?

    International Nuclear Information System (INIS)

    Paltsev, Sergey; Zhang, Danwei

    2015-01-01

    Recent policy in China targets an increase in the contribution of natural gas to the nation's energy supply. Historically, China's natural gas prices have been highly regulated with a goal to protect consumers. The old pricing regime failed to provide enough incentives for natural gas suppliers, which often resulted in natural gas shortage. A new gas pricing reform was tested in Guangdong and Guangxi provinces in 2011, and introduced nationwide in 2013. The reform is aimed at creating a more market-based pricing mechanism. We show that a substantial progress toward a better predictability and transparency of prices has been made. The prices are now more connected with the international fuel oil and liquid petroleum gas prices. The government's approach for a temporary two-tier pricing when some volumes are still traded at old prices reduced a potential opposition during the new regime implementation. Some limitations of the natural gas pricing remain as it created biased incentives for producers and favors large natural gas suppliers. The pricing reform at its current stage falls short of establishing a complete market mechanism driven by an interaction of supply and demand of natural gas in China. - Highlights: • China's reform of natural gas pricing is in effect nationwide from 2013. • Prices are now connected to international fuel oil and liquid petroleum gas prices. • The reform benefits domestic producers and importers of natural gas. • There are still price distortions between industrial and residential sector. • The reform needs to create a system where both supply and demand are considered.

  12. Consolidation of natural gas on the energy matrix

    International Nuclear Information System (INIS)

    Augusto, C.

    1990-01-01

    This paper joints itself in the effort to make natural gas a competitive fuel in Brazil as occurs in many countries. In the world, petroleum by products have an outstanding importance on the energy market as well as equals 38% of consumption. Comparing other commercialized energy, natural gas by itself contributes with 20% while other sources complete the world energy necessity. In Brazil, natural gas consumption is almost 2% of total consumption or 1/10 of that 20% said above so that there are plenty possibilities ahead to grow its participation. This paper aims to enlarge and solidify the natural gas utilization on the energy matrix so that new analysis have been made from new elements sources. The date collected should be considered not as an end result but as a first start to guide a market analysis study. (author)

  13. Performance analysis of a gas turbine for power generation using syngas as a fuel

    International Nuclear Information System (INIS)

    Lee, Jong Jun; Cha Kyu Sang; Kim, Tong Seop; Sohn, Jeong Lak; Joo, Yong Jin

    2008-01-01

    Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increase the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition

  14. Natural gas drive for city buses in Skopje

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Veljanovski, Krsto; Dimitrovski, Dame

    2002-01-01

    Emission improvement in both city centers and conurbations is an important factor which developers of public-utility vehicles and buses must take into account. If natural gas is used as a fuel the emission is considerably lower than that from conventional diesel drive. Thus it is an important contribution to keep the air clean in the area where the vehicles are deployed. In this paper the project 'Ecological Natural gas drive for city buses in Skopje' is analysed. (Original)

  15. Pre-reforming of natural gas in solid oxide fuel-cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.; Riensche, E.; Cremer, P. [Institute for Materials and Processes Systems IWV 3: Energy Process Engineering, Forschungszentrum Juelich (Germany)

    2000-03-01

    Several measures concerning fuel processing in a solid oxide fuel cell (SOFC) system offer the possibility of significant cost reduction and higher system efficiencies. For SOFC systems, the ratio between internal and pre-reforming has to be optimized on the basis of experimental performance data. Furthermore, anode gas recycling by an injector in front of the pre-reformer can eliminate the steam generator and the corresponding heat of evaporation. A detailed study is carried out on pre-reforming in a reformer of considerable size (10 kW{sub el}). Simulating anode gas recycling with an injector, the influence of carbon dioxide on reactor performance was studied. Also, the dependence of the methanol conversion on mass flow and temperature will be discussed. In addition, some results concerning the dynamic behaviour of the pre-reformer are given. (orig.)

  16. An emerging economic view of world natural gas demand and supply

    International Nuclear Information System (INIS)

    Dorsett, W.H.; Ackerman, G.B.

    1992-01-01

    Natural gas is swiftly moving from a locally traded commodity in regional markets to a globally traded commodity. This paper describes a numerical model of international gas trade which evaluates the effects of inter- and intra-regional gas trade on demand, supply and price. Preliminary evidence indicates natural gas prices are 15 to 30% lower in real terms when inter-regional trade occurs and local consumption of natural gas increases relative to fuel oil in the local market. Natural gas developers or marketers that explicitly consider the inter-regional impacts of gas trade will have a greater likelihood of understanding the risks in marginal projects and are more likely to embrace economic projects and eschew noneconomic projects

  17. Theories and Conflict: The Origins of Natural Gas. Instructional Materials.

    Science.gov (United States)

    Anderson, Susan

    This unit explores a recent and controversial theory of the origin of much of the Earth's natural gas and oil. The materials provided will give students the opportunity to: (1) gain an understanding of science and what is involved in the acceptance or rejection of theories; (2) learn about fossil fuels, especially natural gas; (3) learn the…

  18. Natural gas : nirvana

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2001-01-01

    Despite completing 8,900 gas wells in year 2000, the deliverability of natural gas out of the Western Canadian Sedimentary Basin (WCSB) was stagnant which has left many analysts wondering whether the basin has reached its limit. It also leaves many wondering if gas producers will be able to meet the strong demand for natural gas in the future. Nearly all new electrical generation being built in the U.S. is gas-based due to strict new environmental standards limiting the growth in hydro and coal-powered generation. Any future coal plants will use gasification technology and combined cycle turbines. Combined cycle turbines developed by Boeing and Lockheed are more efficient than combustion turbines, making gas more competitive with fuel alternatives. The lack of growth in natural gas supply has left storage levels near record lows. Demand is expected to increase in 2001 by 3.2 per cent to 23 trillion cubic feet in the U.S. Longer term, major new reserves must be brought on stream to meet this demand. It was noted that the easy discoveries within the WCSB have been made. The new plays are smaller, more technically complex and expensive which suggests that more investment is needed in training geologists, geophysicists and petroleum engineers to find new reserves. The Canadian Energy Research Institute agrees that there is enough gas in Alberta and British Columbia to meet current demands but efforts must shift towards drilling in the foothills front and northwest regions of Alberta to increase deliverability. Brief notes on several gas finds by various oil and gas companies in the area were presented. The article also discussed the huge untapped potential of northern reserves. Analysts have noted 44 Tcf of proven reserve, with a potential of 165 Tcf. In addition, new pipelines from the Alaskan North Slope and the Mackenzie Delta could transport nearly 2 Tcf annually to market. Wells drilled by Chevron and Paramount at Fort Liard in 1999 initially flowed at rates up to

  19. Plentiful natural gas headed for big growth in Mideast

    International Nuclear Information System (INIS)

    Hamid, S.H.; Aitani, A.M.

    1995-01-01

    Natural gas is increasingly becoming a major contributor in the industrial development of most Middle Eastern countries. Demand there will rise steeply in coming years. This is because of the abundant and growing natural gas resources in the region, the economic benefits of using local resources, as well as increased emphasis on a cleaner environment. Today, proved reserves of natural gas in the Middle East are 45 trillion cu meters (tcm), or 1,488 trillion cu ft (tcf). This is over 30% of the world's natural gas reserves. A table presents data on reserves and production of natural gas in the region. About 20% of this gross production is rein-injecting for oil field pressure maintenance, 13% is flared or vented, and 7% is accounted as losses. The remaining 60% represents consumption in power generation, water desalination, petrochemicals and fertilizers production, aluminum and copper smelting, and fuel for refineries and other industries. The use of natural gas in these various industries is discussed. Thirteen tables present data on gas consumption by country and sector, power generation capacity, major chemicals derived from natural gas, and petrochemical plant capacities

  20. Adsorbed natural gas usage in vehicles; Uso veicular do gas natural adsorvido

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Flavio Barboza; Miller, Francisco Mateus; Moura, Newton Reis de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper presents and evaluates the actual state of development of the natural gas storage in activated carbons (ANG - adsorbed natural gas) for vehicles applications. This paper also presents the technological challenges that must be overcome to turn ANG viable for vehicles applications. The main results published in ANG, its theoretical limit and a preliminary comparison between the ANG and the GNC technologies are also presented in this work. The parameters used in that comparison were storage capacity, reservoir's weight and volume. The maximum methane storage capacity in activated carbon monoliths (theoretical limit), determined by molecular simulation, is lower than the CNG ones. Therefore, the ANG contribution to vehicles applications is not related to a higher storage capacity but to its lower working pressure, that represents an advantage by the following aspects: reduction or elimination the loss of useful space inside the vehicle; safety and price reduction of NG at fueling station. (author)

  1. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  2. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    Energy Technology Data Exchange (ETDEWEB)

    Moses, L. Ng; Chien-Liang Lin [Industrial Technology Research Institute, Taiwan (China); Ya-Tang Cheng [Power Research Institute, Taiwan (China)

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  3. Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.; Willems, F.; Somers, B.

    2015-01-01

    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  4. Towards control-oriented modeling of natural gas-diesel RCCI combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.S.G.; Willems, F.P.T.; Somers, L.M.T.

    2015-01-01

    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  5. The tax legislation of the natural gas in France (without AVT, the value added tax)

    International Nuclear Information System (INIS)

    2003-11-01

    These data on the TICGN (interior tax on the natural gas consumptions) evolution between 1996 and 2004, concern the industrial uses of the natural gas, the domestic uses and the natural gas uses as fuel. (A.L.B.)

  6. Use of wood as an alternative fuel to coal and natural gas at the Holnam Cement Plant, north of LaPorte, Colorado

    Science.gov (United States)

    Kurt H. Mackes

    2001-01-01

    The Holnam Company currently operates a cement plant north of Laporte, CO. The plant is attempting to use wood as an alternate fuel to coal and natural gas. The principal objective of this project is to investigate the extended use of wood as an alternate fuel at the plant. Tests conducted at Holnam indicate that wood is suitable for use at the plant and Holnam could...

  7. Use of a single-zone thermodynamic model with detailed chemistry to study a natural gas fueled homogeneous charge compression ignition engine

    International Nuclear Information System (INIS)

    Zheng Junnian; Caton, Jerald A.

    2012-01-01

    Highlights: ► Auto-ignition characteristics of a natural gas fueled HCCI engine. ► Engine speed had the greatest effect on the auto-ignition process. ► Increases of C 2 H 6 or C 3 H 8 improved the auto-ignition process. ► Engine performance was not sensitive to small changes in C 2 H 6 or C 3 H 8 . ► Nitric oxides concentrations decreased as engine speed or EGR level was increased. - Abstract: A single zone thermodynamic model with detailed chemical kinetics was used to simulate a natural gas fueled homogeneous charge compression ignition (HCCI) engine. The model employed Chemkin and used chemical kinetics for natural gas with 53 species and 325 reactions. This simulation was used to complete analyses for a modified 0.4 L single cylinder engine. The engine possessed a compression ratio of 21.5:1, and had a bore and stroke of 86 and 75 mm, respectively. Several sets of parametric studies were completed to investigate the minimal initial temperature, engine performance, and nitric oxide emissions of HCCI engine operation. The results show significant changes in combustion characteristics with varying engine operating conditions. Effects of varying equivalence ratios (0.3–1.0), engine speeds (1000–4000 RPM), EGR (0–40%), and fuel compositions were determined and analyzed in detail. In particular, every 0.1 increase in equivalence ratio or 500 rpm increase in engine speed requires about a 5 K higher initial temperature for complete combustion, and leads to around 0.7 bar increase in IMEP.

  8. Role of a natural gas utility in the hydrogen economy

    International Nuclear Information System (INIS)

    Bayko, J.

    2004-01-01

    'Full text:' Enbridge Gas Distribution is the largest natural gas distribution company in Canada at about 1.7 million residential, commercial and industrial customers. Enbridge will speak to the role of a natural gas utility in the hydrogen economy, and outline the benefits of hydrogen production from natural gas reformation for both stationary and mobile applications. Hydrocarbon reformation will act at least as a bridge until a more fully developed hydrogen economy infrastructure is developed. Reformation allows immediate leveraging of the reliability of vast existing natural gas distribution systems, and a reduced need for on-site hydrogen storage. Natural gas powered fuel cells provide improved emissions over traditional internal combustion engines, and in the stationary market provide smarter use of resources through the higher efficiencies of cogeneration (the capture and use of otherwise waste heat). (author)

  9. Natural gas-driven driving on the way up

    International Nuclear Information System (INIS)

    Van Nifterik, G.

    1996-01-01

    The position of natural gas vehicles (NGV) is improving. Although there are no real breakthroughs yet, recently there have been some promising developments, in particular with regard to light-duty vehicles. More important, however, is the growing awareness of the automobile industry of the use of natural gas as an automotive fuel to improve the urban air quality. Apart from the production of dedicated NGV there is room for improvement in the field of conversion, and the major technological and financial obstacles

  10. Potentiality of the Usage of Compressed Natural Gas for Competitiveness in Service Delivery Industries

    Directory of Open Access Journals (Sweden)

    Gazi Mohammad Hasan Jamil

    2014-08-01

    Full Text Available Abstract. With the rising costs of gasoline, many vehicle owners are looking for alternatives of it. Compressed natural gas (CNG has been tested for this very purpose in some countries and found as a better alternative so far. CNG comes from country’s natural resources and it is clean and less costly to use. This paper is mainly an analysis of the potential benefits of using natural gas as a transportation fuel by the service delivery industries. It will examine CNG’s potential contribution in reducing delivery and vehicle maintenance cost, saving money in the long run projects, improving fuel efficiency, enhancing physical safety and assuring environment friendly emissions of carbon monoxide or reactive gases for the service delivery industries.Keywords: Compressed natural gas (CNG, Service Delivery, Fossil fuel, Global warming, Competitiveness

  11. Injection of natural gas in the blast furnace tuyeres three of the Usiminas, Ipatinga Plant; Injecao de gas natural nas ventaneiras do alto-forno 3 da Usiminas, Usina de Ipatinga

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Murilo Alves Tito de; Rosa, Ericson Rimen Ribeiro; Oliveira, Claudiney Freitas de; Hostt, Helton [USIMINAS, Ipatinga, MG (Brazil). Gerencia Geral de Reducao

    2011-12-21

    The reduction in production costs is a major strategic objectives of Usiminas and the use of natural gas in the Blast Furnace 3 (BF 3) contribute to achieve this goal. The use of natural gas as fuel in the BF 3 to reduce the use of metallurgical coke (main fuel) and reduces production losses during periods of maintenance in the pulverized coal injection system and improving operational control of the Blast Furnace. The work presents the deployment of the natural gas injection and the performance obtained by the BF 3 from the start of injection, with a focus on reducing consumption of metallurgical coke and stable operation of blast furnace (author)

  12. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  13. Low Pressure Storage of Natural Gas for Vehicular Applications

    International Nuclear Information System (INIS)

    Tim Burchell; Mike Rogers

    2000-01-01

    Natural gas is an attractive fuel for vehicles because it is a relatively clean-burning fuel compared with gasoline. Moreover, methane can be stored in the physically adsorbed state[at a pressure of 3.5 MPa (500 psi)] at energy densities comparable to methane compressed at 24.8 MPa (3600 psi). Here we report the development of natural gas storage monoliths[1]. The monolith manufacture and activation methods are reported along with pore structure characterization data. The storage capacities of these monoliths are measured gravimetrically at a pressure of 3.5 MPa (500 psi) and ambient temperature, and storage capacities of and gt;150 V/V have been demonstrated and are reported

  14. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  15. Natural gas in road transport in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, C J

    1986-01-01

    This paper describes how the products of New Zealand's natural gas fields are to be used in the transport sector to reduce oil imports. As a result of such developments New Zealand will be about 53% self-sufficient in transport fuels in 1986/1987. This self-sufficiency will be made up as follows: 25% from condensate from gas fields, 18% from synthetic gasoline, 5% from the use of compressed natural gas (CNG) and liquefied petroleum gas (LPT) in vehicles and 5% from indigenous oil supplies. History and status of the CNG Programme are outlined. Government has set a goal of 200,000 vehicles operating on CNG by 1990 and, at present, about 80,000 vehicles are powered by natural gas. The Gas to Gasoline project is described in some detail. New Zealand's imports of crude oil and oil products for 1986/1987 are forecast to total 1,900,000 tonnes, less than one-half of the 4,257,000 tonnes of comparable imports in 1973/1974.

  16. Combined natural gas and electricity network pricing

    Energy Technology Data Exchange (ETDEWEB)

    Morais, M.S.; Marangon Lima, J.W. [Universidade Federal de Itajuba, Rua Dr. Daniel de Carvalho, no. 296, Passa Quatro, Minas Gerais, CEP 37460-000 (Brazil)

    2007-04-15

    The introduction of competition to electricity generation and commercialization has been the main focus of many restructuring experiences around the world. The open access to the transmission network and a fair regulated tariff have been the keystones for the development of the electricity market. Parallel to the electricity industry, the natural gas business has great interaction with the electricity market in terms of fuel consumption and energy conversion. Given that the transmission and distribution monopolistic activities are very similar to the natural gas transportation through pipelines, economic regulation related to the natural gas network should be coherent with the transmission counterpart. This paper shows the application of the main wheeling charge methods, such as MW/gas-mile, invested related asset cost (IRAC) and Aumman-Shapley allocation, to both transmission and gas network. Stead-state equations are developed to adequate the various pricing methods. Some examples clarify the results, in terms of investments for thermal generation plants and end consumers, when combined pricing methods are used for transmission and gas networks. The paper also shows that the synergies between gas and electricity industry should be adequately considered, otherwise wrong economic signals are sent to the market players. (author)

  17. LNG [liquefied natural gas]: Fueling energy demand in the Far East

    International Nuclear Information System (INIS)

    Brown, R.L.

    1993-01-01

    An overview is presented of the supply and demand outlook for liquefied natural gas (LNG) in the far east, and the basic elements of an LNG supply project in Japan. Power generation is the primary market for LNG in the far east, due to a preference for energy supply diversity, large undeveloped gas resources, drastic improvements in power generation technology, and environmental advantages of natural gas. India and mainland China represent huge potential markets, and projects are under discussion to bring gas by pipeline from Iran or Qatar to both Pakistan or India. The economics of LNG plant development in Japan, including large ($4 billion for field and plant development) capital costs, long-term contracts, government involvement, and gas prices are discussed. Falling yen/dollar exchange rates have substantially bettered the Japanese economy in terms of gas prices. 11 figs., 2 tabs

  18. Coordination of ministerial actions regarding the use of liquefied natural gas as marine fuel. A challenge to take up collectively

    International Nuclear Information System (INIS)

    Jouffray, Jean-Francois; Erhardt, Jean-Bernard; Allais, Vincent; Ourliac, Jean-Paul

    2013-02-01

    This report is the first of a series dealing with the coordination of ministerial actions in favor of the use of liquefied natural gas (LNG) as marine fuel. Tougher sulfur oxides pollution regulations will lead to the progressive abandonment of heavy fuels in maritime propulsion. LNG can meet the future environmental imperatives but its introduction as marine fuel implies important naval and infrastructure investments. This report presents, first, a summary of the report's recommendations and the aim of this coordination study, and, then, treats more thoroughly of the different coordination aspects: 1 - ship fuels; 2 - LNG's advantages; 3 - the necessary adaptations in France for LNG development as marine fuel (infrastructures, regulation, existing examples, exemptions, European policies); 4 - economical actors involvement, industrial challenges, pilot projects, communication, investments financing and actors coordination

  19. Tariffs for natural gas, heat, electricity and cogeneration in 1998

    International Nuclear Information System (INIS)

    1998-03-01

    The rate of return of the combined generation of heat and power is not only determined by the capital expenditures and the costs of maintenance, control, management and insurance, but also by the fuel costs of the cogeneration installation and the avoided fuel costs in case of separated heat production, the avoided/saved costs of electricity purchase, and the compensation for possible supply to the public grid (sellback). This brochure aims at providing information about the structure of natural gas and electricity tariffs to be able to determine the three last-mentioned expenditures. First, attention is paid to the tariffs of natural gas for large-scale consumers, the tariff for cogeneration and horticulture, and natural gas supply contracts. Next, the structure of the electricity tariffs is dealt with in detail, discussing the accounting system within the electric power sector, the tariffs and compensations for large-scale consumers and specific large-scale consumers, electricity sellback tariffs, and compensations for reserve capacity. Also attention will be paid to tariffs for electricity transport. Finally, several taxes, excises and levies that have a direct or indirect impact on natural gas tariffs, are discussed. 9 refs

  20. Natural gas trends

    International Nuclear Information System (INIS)

    Anderson, A.

    1991-01-01

    This book provides data on many facets of the natural gas industry. Topics include: Canadian, Mexican; US natural gas reserves and production; Mexican and US natural gas consumption; market conditions for natural gas in the US; and Canadian natural gas exports

  1. Natural gas utilization study : offshore Newfoundland

    International Nuclear Information System (INIS)

    1998-10-01

    A study was conducted to quantify the natural gas resources of Newfoundland and to identify production and transportation options. The objective was to create a development strategy for natural gas which is growing in global importance as an energy source and as a feedstock for the downstream industry. The growth is driven by general economic expansion and the fact that natural gas is far less polluting than its main fossil fuel alternatives of oil and coal. New use is dominated by the power generation sector. The natural gas industry is also evolving rapidly as new reserves are established and pipelines are being constructed. Proven world reserves of natural gas now stand in excess of 5000 Tcf, 70 per cent of which is in the Russian Federation (CIS) and Middle East regions. Production and consumption, however, is dominated by the industrialized countries of North America and western Europe. This difference between markets and reserves has major implications including the need to develop cost effective long-distance transportation technologies and delivery systems or to relocate downstream industries closer to the reserves. In Newfoundland, the estimated reserves total 61.9 Tcf, including 8.2 Tcf of discovered reserves and 53.7 Tcf of undiscovered reserves. Of the discovered reserves, 4.2 Tcf is on the Labrador Shelf and 4.0 Tcf is in the the Jeanne d'Arc Basin on the Grand Banks. The Hibernia development could play a major role in the development of the natural gas resources of fields within a radius of 50 km around the platform. The general conclusion from the first phase of this study is that Newfoundland's natural gas resources are valuable and potentially capable of supporting significant industrial activities. The undiscovered potential holds significant promise for both the Newfoundland offshore and onshore areas. Phase Two of the study will deal with the development and implementation of a Strategic Plan for Newfoundland's natural gas resources. A series of

  2. Impact of State and Federal regulatory policy on natural gas

    International Nuclear Information System (INIS)

    Malloy, K.

    1992-01-01

    This paper presents information which demonstrates the decline in the use and subsequent demand of natural gas as the result of regulatory constraints. These regulations have allowed for a 10 percent decline in the use of natural gas in the last 20 years. The author believes that the major reason for this decline is the existence of State and Federal regulatory requirements which prevent the natural gas industry from effectively responding to new market opportunities. The paper goes on to discuss historical regulations such as the Fuel Use Act and the Natural Gas Policy Act which caused severe impacts to development in the gas industry by placing incremental price controls on natural gas. The author then discusses the effect of deregulation and how it has boosted the gas industry. He specifically discusses the US Canada Free-Trade Agreement and the new negotiations which would greatly enhance the gas sales to Mexico. Finally the author goes on to discuss deregulatory stances proposed as part of the National Energy Strategy regarding natural gas. These include the removal of obstacles to building new pipeline capacities; reformation of rates policies; assurances of nondiscriminatory access to natural gas pipeline services and facilities; and removal of impediments to free and open international trade in natural gas

  3. 76 FR 4516 - Revisions to Forms, Statements, and Reporting Requirements for Natural Gas Pipelines

    Science.gov (United States)

    2011-01-26

    ...; Order No. 710-B] Revisions to Forms, Statements, and Reporting Requirements for Natural Gas Pipelines... for natural gas companies, contained in FERC Form Nos. 2, 2-A, and 3-Q, to include functionalized fuel..., and reports for natural gas companies, contained in FERC Form Nos. 2, 2-A, and 3-Q, to include...

  4. Effects of natural gas composition on performance and regulated, greenhouse gas and particulate emissions in spark-ignition engines

    International Nuclear Information System (INIS)

    Amirante, R.; Distaso, E.; Di Iorio, S.; Sementa, P.; Tamburrano, P.; Vaglieco, B.M.; Reitz, R.D.

    2017-01-01

    Highlights: • The influence of natural gas composition is investigated. • Real-time methane/propane fuel mixtures were realized. • IMEP, HRR and MBF were used to evaluate the effects on engine performance. • Gaseous, greenhouse and Particulate emissions were studied. • The propane content strongly influenced performance and emissions. - Abstract: In vehicles fueled with compressed natural gas, a variation in the fuel composition can have non-negligible effects on their performance, as well as on their emissions. The present work aimed to provide more insight on this crucial aspect by performing experiments on a single-cylinder port-fuel injected spark-ignition engine. In particular, methane/propane mixtures were realized to isolate the effects of a variation of the main constituents in natural gas on engine performance and associated pollutant emissions. The propane volume fraction was varied from 10 to 40%. Using an experimental procedure designed and validated to obtain precise real-time mixture fractions to inject directly into the intake manifold. Indicative Mean Effective Pressure, Heat Release Rate and Mass Burned Fraction were used to evaluate the effects on engine performance. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed with the aim to identify possible correlations existing between fuel composition and soot emissions. Emissions samples were taken from the exhaust flow, just downstream of the valves. Opacity was measured downstream the Three-Way Catalyst. Three different engine speeds were investigated, namely 2000, 3000 and 4000 rpm. Stoichiometric and full load conditions were considered in all tests. The results were compared with pure methane and propane, as well as with natural gas. The results indicated that both performance and emissions were strongly influenced by the variation of the propane content. Increasing the propane fraction favored more complete combustion and increased NO

  5. Research needs on the natural gas field in Finland

    International Nuclear Information System (INIS)

    Rutanen, V.

    1992-01-01

    This report deals with the research needs on natural gas sector in Finland during the next 5-10 years. 0n that ground it has also been drafted a proposal for organization of the research and on which fields the research should be directed. The basis and criterium in this study has been on the other hand, the improvement of the possibilities in international trade of finnish companies and on the other hand the improvement of the efficiency and the reduction of the environmental impacts of energy use and production in Finland. As a result of the study it is proposed that a research entireness, which will direct extensively towards the gaseous fuels (gasification of coal and biomass, natural gas, LPG, hydrogen), will be formed. The key topics of the research would be: Production of the gases (gasification), high-efficient power and heat generation with gaseous fuels, improvement of efficiency and reduction of environmental impacts of energy use in industry with direct use of gaseous fuels and gaseous fuels in vehicles

  6. Market Power with Interdependent Demand. Sale of Emission Permits and Natural Gas from Russia

    International Nuclear Information System (INIS)

    Hagem, C.; Kallbekken, S.; Westskog, H.; Maestad, O.

    2006-01-01

    With implementation of the Kyoto Protocol, Russia will most likely be able to exert market power in the emission permit market. But, as Russia is also a big exporter of fossil fuels, the incentives to boost the permit price may be weak. However, a significant share of Russia's fossil fuel exports is natural gas. If a high permit price boosts the demand for natural gas through substitution from more polluting fuels and thus increase gas profits, this may increase the incentives to exert monopoly power in the permit market. Moreover, a large fossil fuel exporter may use its market position to influence the effective demand for permits. Hence, the relationship between permit income and fossil fuels exports runs in both directions. In this article, we explore the interdependence between the revenues from permit and fossil fuel exports both theoretically and numerically. A computable general equilibrium model suggests the fact that Russia as a big gas exporter has small effect on the incentives to exert monopoly power in the permit market. Moreover, Russia's monopoly power in the permit market has a small, but non-negligible impact on the optimal level of Russian gas exports. (author)

  7. Hydraulic fracturing for natural gas: impact on health and environment.

    Science.gov (United States)

    Carpenter, David O

    2016-03-01

    Shale deposits exist in many parts of the world and contain relatively large amounts of natural gas and oil. Recent technological developments in the process of horizontal hydraulic fracturing (hydrofracturing or fracking) have suddenly made it economically feasible to extract natural gas from shale. While natural gas is a much cleaner burning fuel than coal, there are a number of significant threats to human health from the extraction process as currently practiced. There are immediate threats to health resulting from air pollution from volatile organic compounds, which contain carcinogens such as benzene and ethyl-benzene, and which have adverse neurologic and respiratory effects. Hydrogen sulfide, a component of natural gas, is a potent neuro- and respiratory toxin. In addition, levels of formaldehyde are elevated around fracking sites due to truck traffic and conversion of methane to formaldehyde by sunlight. There are major concerns about water contamination because the chemicals used can get into both ground and surface water. Much of the produced water (up to 40% of what is injected) comes back out of the gas well with significant radioactivity because radium in subsurface rock is relatively water soluble. There are significant long-term threats beyond cancer, including exacerbation of climate change due to the release of methane into the atmosphere, and increased earthquake activity due to disruption of subsurface tectonic plates. While fracking for natural gas has significant economic benefits, and while natural gas is theoretically a better fossil fuel as compared to coal and oil, current fracking practices pose significant adverse health effects to workers and near-by residents. The health of the public should not be compromized simply for the economic benefits to the industry.

  8. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035.

    Science.gov (United States)

    Clark, Nigel N; Johnson, Derek R; McKain, David L; Wayne, W Scott; Li, Hailin; Rudek, Joseph; Mongold, Ronald A; Sandoval, Cesar; Covington, April N; Hailer, John T

    2017-12-01

    Today's heavy-duty natural gas-fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas-fueled vehicles has been identified as a concern. Since today's heavy-duty natural gas-fueled fleet penetration is low, today's total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas-fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These "pump-to-wheels"(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions. Newly collected pump-to-wheels methane emissions data for current natural gas technologies

  9. Design Guidelines for Bus Transit Systems Using Liquefied Petroleum Gas (LPG) as an Alternative Fuel.

    Science.gov (United States)

    1996-09-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Petroleum Gas (LPG), Compressed Natural Gas (CNG), and Methanol/Ethanol, are already being used in buses. At present, there do not exist co...

  10. Technological innovations to development remote gas reserves: gas-to-liquids; Inovacoes tecnologicas no desenvolvimento de reservas remotas de gas natural: gas-to-liquids

    Energy Technology Data Exchange (ETDEWEB)

    Maculan, Berenice D. [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Falabella, Eduardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The GTL - gas to liquids technology was born in Germany, after the 20's with the goal to product liquid fuel from coal to supply the bellicose and domestic demand. The grow of the petroleum industry lead the world to the forgiveness of the GTL technology, except in South Africa. In the last two decades the number of news natural gas reserves and the perspectives of the increase demand from natural gas for the next 20 years change this scenario. Nearly 60% of this reserves are calling stranded or remote, meaning reserves which can't produce with conventional technologies (logistics and economics barriers). So, the oil and gas industry restart to analyze the economics and applicability of the GTL technology. The competitively and applicability of this technology were evaluated and compared to the traditional way of natural gas transport, as well as the solidification of the new environmental rules and the creation of niche to this kind of fuel - the cleans ones - seams the cause of this changes in the oil and gas industries. Which began to adjust to all this news rules and conditions, as show in the sum of investments in R and D area. So, is in this new scenario that the reappear of GTL technology is consider has a technological innovation. (author)

  11. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    Science.gov (United States)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  12. Determining the economic consequences of natural gas substitution

    International Nuclear Information System (INIS)

    Rimos, Shaun; Hoadley, Andrew F.A.; Brennan, David J.

    2014-01-01

    Highlights: • The economics of the extraction and usage of Australian gas and coal are examined. • Effect of feedstock substitution on power, hydrogen and ammonia costs is studied. • Influence of capital cost, transfer price, discount rate and carbon tax is studied. • Black coal has lower transfer price than gas but results in higher overall costs. • Conventional gas and coal seam gas can be substituted with little economic penalty. - Abstract: Resource depletion is a key aspect of sustainability, because the consumption of finite resources impacts on their availability for future generations. There are many proposed methods for accounting for the depletion of a particular resource, amongst which include the proportion of the resource depleted, the rate of resource depletion, and the energy, exergy, or monetary cost of extraction as the resource becomes harder to find or extract. This paper is part of a wider study to measure resource depletion using its environmental and economic impacts for the case of natural gas, where depletion of natural gas requires substitution by black coal or coal seam gas. The capital and operating costs are estimated both for upstream fuel extraction and purification and downstream use of the fuel to produce electricity, hydrogen and ammonia. These costs are based on a commercial scale of operation, using the same basis for economic modelling in each case. Black coal was found to have the lowest transfer price from upstream to downstream processing among the three feedstocks, but the highest capital and operating costs in the downstream processes. Conventional gas produced slightly higher transfer prices and downstream processing costs compared to coal seam gas. The favourable economic and environmental indicators for natural gas and coal seam gas are expected to lead to increased demand for these resources over coal, running the risk of a gas shortage. The economic consequence of a scarcity of either gas resource will be a

  13. Test results for fuel cell operation on anaerobic digester gas

    Science.gov (United States)

    Spiegel, R. J.; Preston, J. L.

    EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.

  14. Overview of U.S. DOE's Natural Gas-to-Liquids RD and D program and commercialization strategy

    International Nuclear Information System (INIS)

    Venkataraman, V.K.; Guthrie, H.D.; Avellanet, R.A.; Driscoll, D.J.

    1998-01-01

    Natural gas, which is comprised mostly of methane, is one of our most abundant natural resources, both in the U.S. and world wide. In the United States alone, recoverable natural gas resources are several times its current estimate of reserves, 166 trillion cubic feet (TCF). Unfortunately, many of these resources are located offshore or in remote areas. High transportation costs, or complete lack of any transportation mechanism, prohibits extensive use of this 'stranded' natural resource. To overcome this limitation, the U.S. Department of Energy's (DOE) Federal Energy Technology Center (FETC) has developed a highly diversified gas-to-liquids research program to evaluate, promote and develop processes that convert natural gas into higher value products (i.e., liquid fuels) which will offset the high transportation costs and allow use of this untapped, environmentally friendly resource. By advancing technologies to convert unmarketable gas resources into valuable products, cooperative efforts between DOE and industry could yield the following benefits by 20 10: (1) Our shortfall in domestic production of oil will be reduced by 200,000 to 500,000 barrels per day of high quality transportation fuel made from Alaska's North Slope gas resources; (2) Advanced gas-to-liquids conversion technology that yields ultra clean burning diesel fuels that meet the most stringent emissions requirements, at costs competitive with those of comparable fuels made from crude oils, will be utilized; and (3) Small-scale gas-to-liquids technology for both natural gas liquefaction and chemical conversion to higher hydrocarbon liquids will provide an economic and environmentally sound option for utilization of the associated gas of remote offshore oil reservoirs, and also for onshore gas reservoirs without pipeline access. In summary, development of efficient gas conversion technologies will enhance U.S. energy security, reduce dependence on oil imports and strengthen the economic

  15. Effects of Fuel and Nozzle Characteristics on Micro Gas Turbine System: A Review

    Science.gov (United States)

    Akasha Hashim, Muhammad; Khalid, Amir; Salleh, Hamidon; Sunar, Norshuhaila Mohamed

    2017-08-01

    For many decades, gas turbines have been used widely in the internal combustion engine industry. Due to the deficiency of fossil fuel and the concern of global warming, the used of bio-gas have been recognized as one of most clean fuels in the application of engine to improve performance of lean combustion and minimize the production of NOX and PM. This review paper is to understand the combustion performance using dual-fuel nozzle for a micro gas turbine that was basically designed as a natural gas fuelled engine, the nozzle characteristics of the micro gas turbine has been modelled and the effect of multi-fuel used were investigated. The used of biogas (hydrogen) as substitute for liquid fuel (methane) at constant fuel injection velocity, the flame temperature is increased, but the fuel low rate reduced. Applying the blended fuel at constant fuel rate will increased the flame temperature as the hydrogen percentages increased. Micro gas turbines which shows the uniformity of the flow distribution that can be improved without the increase of the pressure drop by applying the variable nozzle diameters into the fuel supply nozzle design. It also identifies the combustion efficiency, better fuel mixing in combustion chamber using duel fuel nozzle with the largest potential for the future. This paper can also be used as a reference source that summarizes the research and development activities on micro gas turbines.

  16. What are the natural gas possibilities for Sweden?; Hvilke muligheter har Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Dalman, Bengt Goeran [Goeteborg energi, Goeteborg (Sweden)

    1998-07-01

    This presentation discusses natural gas in Sweden. It is often claimed that, if the use of natural gas is developed, then the CO{sub 2} emissions will increase. This is certainly correct if the gas is only used for heating and only the Swedish emissions are considered. However, CO{sub 2} emission is a global problem, which implies that the emissions from the use of natural gas in Sweden must be considered in a Nordic perspective. The gas must be used in the most effective way, which is to use it for instance as fuel in combined heat and electricity production. Unlike heat, electric energy is supplied to a system where it is transferred freely and among all the North-European countries. However, the production of electricity in Denmark and Finland is predominantly based on coal and associated with very large CO{sub 2} emissions. This emission is due partly to the presence of carbon, partly to the low efficiency of this form of production. It is argued that developing the natural gas grid will reduce the CO{sub 2} emission more than can be achieved by means of biomass fuel.

  17. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  18. Natural gas to improve energy security in Small Island Developing States: A techno-economic analysis

    Directory of Open Access Journals (Sweden)

    Pravesh Raghoo

    Full Text Available There is a paucity of studies on natural gas-based energy production in Small Island Developing States (SIDS even though technological improvements today are likely to make the application of natural gas more and more feasible. The development of natural gas in some of the regions of the Pacific, Africa, Indian Ocean and Caribbean attracts nearby countries and the coming up of the compressed natural gas (CNG technology which can serve regional markets are two motivations for SIDS to develop natural gas-based energy provision. A third factor concerns long-term energy security. Due to continued reliance on fossil fuels and slow uptake of renewable energy, there is a need to diversify SIDS’ energy mix for a sustainable electricity industry. Comparing the opportunities and constraints of liquefied natural gas (LNG and compressed natural gas (CNG in a SIDS-specific context, this paper discusses how to improve the integration of natural gas in prevailing energy regimes in SIDS as an alternative fuel to oil and complementary to renewable energy sources. To illustrate feasibility in practice, a techno-economic analysis is carried out using the island of Mauritius as an example. Keywords: Energy security, Natural gas, Small Island Developing States

  19. Investigating the reactivity controlled compression ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber

    International Nuclear Information System (INIS)

    Salahi, Mohammad Mahdi; Esfahanian, Vahid; Gharehghani, Ayatallah; Mirsalim, Mostafa

    2017-01-01

    Highlights: • A novel combustion strategy, RCCI with a pre-chamber, is proposed and investigated. • The proposed strategy extends the RCCI operating range to use less intake air temperatures. • The new concept extends the RCCI operating range to use lower portions of the active fuel. • The proposed strategy is sensitive to engine load and is more efficient for high loads. - Abstract: Reactivity controlled compression ignition (RCCI) concept has been proven to be a promising combustion mode for the next generations of internal combustion engines. This strategy is still subject of extensive studies to overcome its operational limitations. In the present work, the effect of using a pre-chamber to extend some operating ranges in a RCCI engine is investigated using coupled multidimensional computational fluid dynamics (CFD) with detailed chemical kinetic mechanisms. To accomplish this, the combustion and flow field in a single cylinder engine with a pre-chamber, working in RCCI mode and fueled with natural gas/diesel are numerically modeled. Experimental data is used to validate the simulation results and then, combustion characteristics and engine emissions in some various operating regions, in terms of initial temperature, fuel equivalence ratio and portions of the two fuels are discussed. The results reveal that the proposed strategy provides the ability to extend the engine operating ranges to use lower intake temperatures, even to 50 K lower for some cases, and also using a larger portion of natural gas instead of diesel fuel. On the other hand, the new strategy could result in incomplete combustion and formation of related emissions in low loads, but for higher engine loads it shows better combustion characteristics.

  20. Possibilities of the using Natural Gas in Kakanj Thermal Power Plant

    International Nuclear Information System (INIS)

    Begic, F.; Sabanovic, E.; Sakovic, A.

    1998-01-01

    Feasibility study of the rehabilitation of units in TPP Kakanj has shown that the oldest units 1 and 3 (2x32MW) are not included in the plans for the future. The conclusion of the study envisage the installation of a combined-cycle instead of the existing units 1 and 3 and the conversion injection systems (from liquid to gas fuel) in all other units 2, 4 (2x32MW), 5 and 6 (2x110MW) and unit 7 (30MW). The main reason for this suggestion are: - higher efficiency - increased availability and reliability - possibility to meet peek loads with low water accumulations and unfavourable hydrological conditions - harmonization of the natural gas demand curve, which decreases the fuel price - lower natural gas price compared to that of liquid gas per measure unit - environmental pollution reduction. (author)

  1. Development of natural gas rotary engines

    Science.gov (United States)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  2. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  3. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-01-01

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE's upstream as well as downstream natural gas R ampersand D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE's Natural Gas Strategic Plan requires that its R ampersand D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R ampersand D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R ampersand D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R ampersand D programs

  4. CFD analysis of NOx reduction by domestic natural gas added to coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Ziv, E.; Yasur, Y.; Chudnovsky, B. [Ben-Gurion University of the Negev, Beer-Sheva (Israel). Dept. of Mechanical Engineering and Inst. for Applied Research

    2004-07-01

    To date, Israel's electrical energy has been based only on imported fuels. However, with the recently discovered natural gas in the Ashqulon shores, Israel can examine the benefits to its energy resources, environment, and economy of blending its domestic natural gas with imported coal. As for using natural gas, the proposal is to burn it in existing IEC coal-fired boilers in order to significantly reduce NOx emission by reburning. An important aspect is to provide retrofitting in existing IEC boilers by replacing a fraction of the coal by natural gas. This would allow the purchase of coal with a wide range of parameters, which is less expensive. Hence, mixed gas-coal burning would benefit Israel. The authors have made numerical simulations in order to study the optimal conditions of operation and evaluate the economic as well as environmental benefits. Indeed, extensive simulations have shown that there is a significant reduction of NOx emission, as expected, with the addition of relatively small amounts of natural gas. Experiments will now be carried out in a test facility that will provide accurate physicochemical properties of the mixed fuel for more reliable simulations. 19 refs., 6 figs., 1 tab.

  5. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    Science.gov (United States)

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  6. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  7. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  8. Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion

    International Nuclear Information System (INIS)

    Eriksson, Ola; Finnveden, Goeran; Ekvall, Tomas; Bjoerklund, Anna

    2007-01-01

    The aim of this consequential life cycle assessment (LCA) is to compare district heating based on waste incineration with combustion of biomass or natural gas. The study comprises two options for energy recovery (combined heat and power (CHP) or heat only), two alternatives for external, marginal electricity generation (fossil lean or intense), and two alternatives for the alternative waste management (landfill disposal or material recovery). A secondary objective was to test a combination of dynamic energy system modelling and LCA by combining the concept of complex marginal electricity production in a static, environmental systems analysis. Furthermore, we wanted to increase the methodological knowledge about how waste can be environmentally compared to other fuels in district-heat production. The results indicate that combustion of biofuel in a CHP is environmentally favourable and robust with respect to the avoided type of electricity and waste management. Waste incineration is often (but not always) the preferable choice when incineration substitutes landfill disposal of waste. It is however, never the best choice (and often the worst) when incineration substitutes recycling. A natural gas fired CHP is an alternative of interest if marginal electricity has a high fossil content. However, if the marginal electricity is mainly based on non-fossil sources, natural gas is in general worse than biofuels

  9. Trends in the development of the use of natural gas in Latvia in the EU context

    International Nuclear Information System (INIS)

    Davis, A.; Gedrovics, M.; Ekmanis, J.; Zeltins, N.

    2004-01-01

    The work reflect the growing share of natural gas among various types of fuel used in the EU, which has taken place during the recent decade as a result of technological progress, better understanding of the environmental issues in the European Union as well as lower prices in comparison with those of the liquid fuel. The Latvian fuel balance of the recent years indicates that the prevailing energy resources are natural gas, oil products and firewood. The paper gives comparison of the share of natural gas in the balance of energy consumption in the EU and the future member states as well as a comparison of the energy balance in Latvia and the EU-15. (authors)

  10. Norwegian Natural Gas. Liberalization of the European Gas Market

    International Nuclear Information System (INIS)

    Austvik, Ole Gunnar

    2003-01-01

    Leading abstract. This book focuses on issues that are important for Norway as a major gas exporter and to the development of a liberalized European market. Chapter 2 explains main features of the European gas market. Natural gas is sold in regional markets with independent pricing structure and particularities. In Europe, this has led to large investments for the producers and long-term contracts. The strong market growth and EU's actions to liberalize the market may change this. The organization of the Norwegian gas production and sale is discussed, as well as the reorganization taking place in 2001. Pricing mechanisms are discussed in Chapter 3, both in the ''old'' / existing structure and how a liberalization of the market may change price formation. The increased importance of energy taxation in EU countries is covered in Chapter 4. Even though natural gas is the most environmentally friendly of the fossil fuels, the use of natural gas may be taxed far harder in the future. The report discusses price effects of such a development. Chapter 5 discusses whether or not a gas producer, like Norway, necessarily must earn a resource rent. With the use of economic theory for exhaustible resources it is shown how prices to consumers may increase at the same time as prices to producers drop, where the difference is made up by higher gas taxes to the consuming countries. Transportation of natural gas involves considerable scale advantages and there are often scope advantages from production, storage and sale, as well. Chapter 6 discusses how competition and regulation may influence the functioning and social efficiency of the market, and the concentration of market power. When companies become large, they may exploit market power, supported by the authorities of their respective countries. Chapter 7 focuses on regulatory challenges for the EU, and how the transporters may change between conflicting and cooperation with the EU. Chapter 8 focuses on schedules for

  11. Case Study: Natural Gas Regional Transport Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, M.; Burnham, A.

    2016-08-01

    Learn about Ryder System, Inc.'s experience in deploying nearly 200 CNG and LNG heavy-duty trucks and construction and operation of L/CNG stations using ARRA funds. Using natural gas in its fleet, Ryder mitigated the effects of volatile fuel pricing and reduced lifecycle GHGs by 20% and petroleum by 99%.

  12. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Paranhos, Elizabeth [Univ. of Colorado, Boulder, CO (United States); Boyd, William [Univ. of Colorado, Boulder, CO (United States); Carlson, Ken [Colorado State Univ., Fort Collins, CO (United States)

    2012-11-01

    Domestic natural gas production was largely stagnant from the mid-1970s until about 2005. However, beginning in the late 1990s, advances linking horizontal drilling techniques with hydraulic fracturing allowed drilling to proceed in shale and other formations at much lower cost. The result was a slow, steady increase in unconventional gas production. The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset from the wider dialogue on natural gas; regarding the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity; existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and changes in response to the rapid industry growth and public concerns; natural gas production companies changing their water-related practices; and demand for natural gas in the electric sector.

  13. Numerical calculation and analysis of natural convection removal of the spent fuel residual heat of 10 MW high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Wang Jinhua; Huang Yifan; Wu Bin

    2013-01-01

    The spent fuel of 10 MW High Temperature Gas Cooled Reactor (HTR-10) could be stored in the shielded tank, and the tank is stored in the concrete shielded canister in spent fuel storage room, the residual heat of the spent fuel could be removed by the air. The ability of residual heat removal is analyzed in the paper, and the temperature field is numerically calculated through FEA program ANSYS, the analysis and the calculation are used to validate the safety of the spent fuel and the tank, the ultimate temperature of the spent fuel and the tank should below the safety limit. The calculation shows that the maximum temperature locates in the middle of the fuel pebble bed in the spent fuel tank, and the temperature decreases gradually with radial distance, the temperature in the tank body is evenly distributed, and the temperature in the concrete shielded canister decreases gradually with radial distance. It is feasible to remove the residual heat of the spent fuel storage tank by natural ventilation, in natural ventilation condition, the temperature of the spent fuel and the tank is lower than the temperature limit, which provides theoretical evidence for the choice of the residual heat removal method. (authors)

  14. World natural gas supply and demand: Brief pause in production

    International Nuclear Information System (INIS)

    Coccia, G.

    1993-01-01

    With reference to the 1992 CEDIGAZ (Centre International sur le Gas Naturel et tous Hydrocarbures Gazeux) report on world natural gas supply and demand, this paper assesses current market and production trends in this industry. The slight drop in production in 1992, the first which has which has occurred after many consecutive years of steady increases, is ascribed to ownership disputes among the former-USSR republics and major changes in the organizational structure of the former-USSR's natural gas industry. Strong increases in demand are forecasted due to expected strong population growth and increased industrialization to take place in China and India. Price trends in natural gas should remain steady as a result of plentiful supplies of this fuel and coal, a major competitor. The use of relatively clean natural gas is suggested as a practical alternative to energy taxes now being proposed as a means for the reduction of greenhouse gas emissions

  15. Natural gas monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  16. Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode

    International Nuclear Information System (INIS)

    Basavaraja, R.J.; Jayanti, S.

    2015-01-01

    CLC (chemical looping combustion) promises to be a more efficient way of CO 2 capture than conventional oxy-fuel combustion or post-combustion absorption. While much work has been done on CLC in the past two decades, the issue of multi-fuel compatibility has not been addressed sufficiently, especially with regard to plant layout and reactor design. In the present work, it is shown that this is non-trivial in the case of a CLC-based power plant. The underlying factors have been examined in depth and design criteria for fuel compatibility have been formulated. Based on these, a layout has been developed for a power plant which can run with either natural gas or syngas without requiring equipment changes either on the steam side or on the furnace side. The layout accounts for the higher CO 2 compression costs associated with the use of syngas in place of natural gas. The ideal thermodynamic cycle efficiency, after accounting for the energy penalty of CO 2 compression, is 43.11% and 41.08%, when a supercritical steam cycle is used with natural gas and syngas, respectively. It is shown that fuel switching can be enabled by incorporating the compatibility conditions at the design stage itself. - Highlights: • Concept of fuel sensitivity of plant layout with carbon capture and sequestration. • Power plant layout for natural gas and syngas as fuels. • Criteria for compatibility of air and fuel reactors for dual fuel mode operation. • Layout of a plant for carbon-neutral or carbon negative power generation

  17. Driving on Natural Gas, Greening the Gasunie Fleet

    NARCIS (Netherlands)

    Faber, Tom

    2008-01-01

    Driving on CNG is preferable to conventional fuels because of diversification of the energy mix, local availability of natural gas, the financial benefit and the transition function towards (sustain-able) biogas and emission reduction. Furthermore, the CNG technology is expected to be safer than

  18. Canadian natural gas market dynamics and pricing : an update

    International Nuclear Information System (INIS)

    2002-10-01

    This energy market assessment (EMA) report discusses natural gas price formation and describes the current functioning of regional gas markets in Canada. This EMA also describes the factors affecting the price of natural gas in Canada and examines natural gas markets on a region-by region basis. It is shown that as part of an integrated North American market, prices of natural gas in Canada reflect supply and demand factors in both Canada and the United States. During the low oil price period of 1997/1998, high demand for natural gas outpaced the supply because of low drilling and production activity by producers. In response to the increased demand and lower levels of supply, the price of natural gas increased significantly in 1999 and 2000. This was followed by a period of market adjustment. The importance of electronic trading systems for enhancing price discovery was also discussed with reference to how spot and futures markets allow market participants to manage price volatility. It was determined that Canadians have had access to natural gas on terms and conditions equal to export customers, and at equal pricing. In early November 2000, natural gas prices in North American began to rise due to low levels of natural gas in storage. The price shocks were felt unevenly across the North American market. In response to the high prices, consumers conserved energy use, and many industrial users switched to cheaper fuels. By the spring 2001, demand continued to decrease at a time when production was high. These factors contributed to the downward pressure on gas prices. This EMA discusses the structure of market transactions and market adjustment mechanisms. It is presented in the context of the approaching 2002/2003 winter season where the tightening between natural gas supply and demand is expected to result in price volatility. 28 figs

  19. Natural gas demand in the European household sector

    International Nuclear Information System (INIS)

    Nilsen, Odd Bjarte; Asche, Frank; Tveteras, Ragnar

    2005-08-01

    This paper analyzes the residential natural gas demand per capita in 12 European countries using a dynamic log linear demand model, which allows for country-specific elasticity estimates in the short- and long-run. The explanatory variables included lagged demand per capita, heating degree days index, real prices of natural gas, light fuel oil, electricity, and real private income per capita. The short-run own-price and income elasticity tend to be very inelastic, but with greater long-run responsiveness. By splitting the data set in two time periods, an increase in the own-price elasticities were detected for the European residential natural gas demand market as a whole. We have provided support for employing a heterogeneous estimator such as the shrinkage estimator. But the empirical results also motivate a further scrutiny of its properties. (Author)

  20. Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China

    Directory of Open Access Journals (Sweden)

    Tianduo Peng

    2017-11-01

    Full Text Available The Tsinghua University Life Cycle Analysis Model (TLCAM is applied to calculate the life cycle fossil energy consumption and greenhouse gas (GHG emissions for more than 20 vehicle fuel pathways in China. In addition to conventional gasoline and diesel, these include coal- and gas-based vehicle fuels, and electric vehicle (EV pathways. The results indicate the following. (1 China’s current dependence on coal and relative low-efficiency processes limits the potential for most alternative fuel pathways to decrease energy consumption and emissions; (2 Future low-carbon electricity pathways offer more obvious advantages, with coal-based pathways needing to adopt carbon dioxide capture and storage technology to compete; (3 A well-to-wheels analysis of the fossil energy consumption of vehicles fueled by compressed natural gas and liquefied natural gas (LNG showed that they are comparable to conventional gasoline vehicles. However, importing rather than domestically producing LNG for vehicle use can decrease domestic GHG emissions by 35% and 31% compared with those of conventional gasoline and diesel vehicles, respectively; (4 The manufacturing and recovery of battery and vehicle in the EV analysis has significant impact on the overall ability of EVs to decrease fossil energy consumption and GHG emissions from ICEVs.

  1. Natural gas and renewable methane for powertrains future strategies for a climate-neutral mobility

    CERN Document Server

    2016-01-01

    This book focuses on natural gas and synthetic methane as contemporary and future energy sources. Following a historical overview, physical and chemical properties, occurrence, extraction, transportation and storage of natural gas are discussed. Sustainable production of natural gas and methane as well as production and storage of synthetic methane are scrutinized next. A substantial part of the book addresses construction of vehicles for natural and synthetic methane as well as large engines for industrial and maritime use. The last chapters present some perspectives on further uses of renewable liquid fuels as well as natural gas for industrial engines and gas power plants.

  2. NATURAL GAS - A CHANCE FOR SUSTAINABLE DEVELOPMENT OF SERBIAN ENERGY SECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Krstic, S.; Djajic, N.; Kukobat, M.

    2007-07-01

    Republic Serbia has produced and consumed natural gas domestically since 1952, but has always been net importer. Strategy of Energy Development in Serbia and, especially, National Action Plan for the Gasification on the Territory of Republic of Serbia dedicated special attention to gas economy development in respect with expected contribution in efficient energy use and environmental policy protection in our country. Option of expanded share of natural gas in fulfilling energy requirements in future is reasonable, considering natural gas with its energetic, ecological and economical characteristics as very suitable fuel. Also, in mid-term and most probably in long-term period, the gas import is expected to be more advantageous than oil import. The paper deals the basic features of natural gas consumption in Serbia in nineties and analyses the further development in gas sector for next period until 2015 based on strategic analyses. (auth)

  3. Energy efficiency - cogeneration - marketing - natural gas market: a complete cycle; Eficiencia energetica - cogeracao - marketing - mercado de gas natural: um ciclo completo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Ricardo Uchoa C. [PETROBRAS - Gas e Energia, Rio de Janeiro, RJ (Brazil). Unidade de Negocios de Gas Natural; Aragao, Raimundo [International Institute for Energy Conservation - IIEC, Rio de Janeiro, RJ (Brazil); Arruda, Rodrigo

    2004-07-01

    This paper shows the current level of some technologies which are applied in Combined Heat Power - CHP, having natural gas as fuel, and the future perspectives for its technological advances. The work introduces the economic feasibility of these technologies having as reference the present prices of electricity and natural gas in Brazilian Market. This report also informs the influence of specific parameters in Combined Heat Power - CHP projects net present value. Finally the paper shows the main barrels for Combined Heat Power - CHP dissemination in Brazil and indicates some recommendations on how to eliminate and/or attenuate them. (author)

  4. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2012-11-01

    The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

  5. Building the NGV [natural gas vehicle] industry into the 21st century

    International Nuclear Information System (INIS)

    Eaves, M.

    1992-01-01

    The status and potential of the natural gas vehicle (NGV) industry is reviewed. The current status of NGV technology is discussed, and a perspective on the business potential of NGV is offered. The cost of compressed natural gas is compared with the cost of conventional fuel options. At present there is a ca 92-97 cent/gallon differential between natural gas and gasoline, however it is not clear that this is sufficient to provide an incentive for purchasing a compressor. The economics of running a Sierra pickup truck are calculated, and it is proposed that a fuel cost differential in the order of 30 cents may be enough to entice consumers to purchase NGV. The gas industry is expected to finance the fuelling infrastructure for NGVs for the reasonable future. The investment must be made using a 25-40 cent per therm differential (or 30-50 cent/gallon equivalent) to finance compressor facilities. Extensive tables and graphs are presented that show the dependence of number of vehicles (and gas sales) on simple payback periods for compressor facilities. 4 figs., 19 tabs

  6. Techno-economic analysis of expander-based configurations for natural gas liquefaction

    DEFF Research Database (Denmark)

    Nagy, Matteo; Nguyen, Tuong-Van; Elmegaard, Brian

    2017-01-01

    The use of liquefied natural gas (LNG) as a marine fuel is rapidly growing because of the possible economic advantages over conventional fuels and stricter environmental regulations. Production of LNG is energy-intensive because of the required temperature level of around -160°C. Three main types...

  7. The Pacific Rim and global natural gas

    International Nuclear Information System (INIS)

    Dreyfus, D.A.

    1993-01-01

    There is a growing interest in natural gas as a part of national or international strategies to moderate the environmental consequences of fuel use. Although the underutilized global gas resource justifies the interest, the future consumption of gas is likely to be constrained by the high capital costs of new transportation facilities to bring remote gas supplies into areas of growing energy demand. The Asian Pacific Rim countries include rapidly growing demand areas as well as significant reserves of gas. The region will continue to play a leading role in the evolution of a world trade in gas. Gas resources within the Asian Pacific region are adequate to serve the foreseeable demands, but historically the region has utilized liquefied natural gas (LNG) imports. Financial constraints upon the gas producing countries of the region and political instability in some of them will probably continue to require the importing of sustantial quantities of gas from the Middle East and possibly from Alaska and the former USSR as the resources indigenous to the region itself are developed more slowly than demand. The financial arrangements and contractual approaches that evolve to meet the needs of the Asia Pacific Rim will shape the future of world LNG markets. (Author)

  8. Issues in Energy Economics Led by Emerging Linkages between the Natural Gas and Power Sectors

    International Nuclear Information System (INIS)

    Platt, Jeremy B.

    2007-01-01

    Fuel prices in 2006 continued at record levels, with uranium continuing upward unabated and coal, SO 2 emission allowances, and natural gas all softening. This softening did not continue for natural gas, however, whose prices rose, fell and rose again, first following weather influences and, by the second quarter of 2007, continuing at high levels without any support from fundamentals. This article reviews these trends and describes the remarkable increases in fuel expenses for power generation. By the end of 2005, natural gas claimed 55% of annual power sector fuel expenses, even though it was used for only 19% of electric generation. Although natural gas is enormously important to the power sector, the sector also is an important driver of the natural gas market-growing to over 28% of the market even as total use has declined. The article proceeds to discuss globalization, natural gas price risk, and technology developments. Forces of globalization are poised to affect the energy markets in new ways-new in not being only about oil. Of particular interest in the growth of intermodal traffic and its a little-understood impacts on rail traffic patterns and transportation costs, and expected rapidly expanding LNG imports toward the end of the decade. Two aspects of natural gas price risk are discussed: how understanding the use of gas in the power sector helps define price ceilings and floors for natural gas, and how the recent increase in the natural gas production after years of record drilling could alter the supply-demand balance for the better. The article cautions, however, that escalation in natural gas finding and development costs is countering the more positive developments that emerged during 2006. Regarding technology, the exploitation of unconventional natural gas was one highlight. So too was the queuing up of coal-fired power plants for the post-2010 period, a phenomenon that has come under great pressure with many consequences including increased

  9. Leakage analysis of fuel gas pipe in large LNG carrier engine room

    Directory of Open Access Journals (Sweden)

    CEN Zhuolun

    2017-10-01

    Full Text Available [Objectives] The electric propulsion dual-fuel engine is becoming dominant in newly built Liquefied Natural Gas(LNGcarriers. To avoid the potential risks that accompany the use of flammable and explosive boil-off gas,the performance of precise safety and reliability assessments is indispensable. [Methods] This research concerns the engine rooms of large LNG carriers which are propelled electrically by a dual-fuel engine. Possible fuel gas(natural gasleak cases in different areas of the engine room are simulated and analyzed. Five representative leak cases defined by leak form,leak location and leak rate are entered into a Computational Fluid Dynamics(CFDsimulation,in which the Reynolds stress model of Fluent software is adopted as the turbulence model. The results of the leaked gas distribution and ventilation velocity field are analyzed in combination to obtain the diffusion tendency and concentration distribution of leaked gas in different areas.[Results] Based on an analysis of the results,an optimized arrangement of flammable gas detectors is provided for the engine room, and the adoption of an explosion-proof exhaust fan is proven to be unnecessary.[Conclusions] These analysis methods can provide a reference for similar gas leakage scenarios occurring in confined ventilated spaces. In addition, the simulation results can be used to quantitatively assess potential fire or explosion damage in order to guide the design of structural reinforcements.

  10. Obstacles to the penetration of electric generation markets by natural gas

    International Nuclear Information System (INIS)

    Schleede, G.R.

    1992-01-01

    This paper reviews and compares the advantages and disadvantages that electric power generators have in generating electricity from a variety of fuel sources. It then goes on to emphasize the use of natural gas and how it can become more competitive in the electric generation field. The paper is based primarily on experiences by the author during his employment with the New England Electric System (NEES). The author reviews the source of electricity for this utility and describes the percentages of each fuel source. It then goes on to specifically discuss the planned natural gas-fired projects in the utility system. The paper outlines the NEES strategy of diversification with respect to gas suppliers and describes the important considerations it used when planning for electric generation with gas. These include determining pressure requirements needed by the gas distribution system when the gas-generators come on-line; determining the placement of the generators within the overall system (i.e. peak load facilities, base load facilities, etc.); contracting flexibility because of the need to vary the amount of gas taken; and the ability to manage pipeline capacity and gas supplies when they are not needed

  11. Natural gas in Norway - Possibilities and limitations

    International Nuclear Information System (INIS)

    Bjoerstad, H.; Eldegard, T.; Reve, T.; Sunnevaag, K.; Aarrestad, J.

    1995-06-01

    Norway is rich in gas resources. In recent years, gas sales from the Norwegian continental shelf have been in the order of 25 to 30 billion Sm 3 /yr and are expected to increase strongly the next 10 to 15 years. However, a scattered population, a difficult topography, long distances between large potential consumers and where the gas is brought ashore, make it difficult to utilize the gas commercially in this country. Moreover, the gas will have to compete with a highly developed hydro-electric network. This report evaluates possibilities and hindrances in the establishment of a home market for natural gas in Norway. The low population density implies that using gas for preheating of water, heating of rooms etc will not become important except, perhaps, locally, where gas may be available for other reasons. As a source of energy and raw material in many industrial processes, natural gas can become important in some coastal areas and in central parts of eastern Norway. Discussions are in progress on gas power stations for electricity production. This has aroused some controversy because of environmental problems, and for political acceptance gas power will have to replace coal power. As a fuel, gas may be of interest for domestic ferries and for busses. A lack of capital under financial risk and gas prices limit the market development. Although tax policy is presently favourable to gas power, the risk taken by private investors in converting to natural gas is increased by their not knowing for how long the gas will be exempt from environmental tax. 74 refs., 8 figs., 27 tabs

  12. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-07-21

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... abandonment of facilities by Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... resources, fisheries, and wetlands; Cultural resources; Vegetation and wildlife; Endangered and threatened...

  13. Future markets and technologies for natural gas vehicles; Futurs marches et technologies pour les vehicules au gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J. [Development Engineer, Lotus Engineering (United Kingdom); Carpenter, B. [Gas Applications, BG Technology (United Kingdom)

    2000-07-01

    Lotus Engineering and BG Technology recently collaborated on the conversion of the Lotus Elise for operation on natural gas. This paper considers the world-wide opportunities for natural gas as an automotive fuel by comparison with other fuels. It looks at how technology can be used to exploit this potential, by examining the special features of the gas fuelled Elise, and how other technologies such as hybrid vehicles and fuel cells can be expected to respond to this challenge in future. (authors)

  14. The ties between natural gas and oil prices

    International Nuclear Information System (INIS)

    Maisonnier, G.

    2006-01-01

    On the European continent, the price of natural gas is still tied directly and to a great extent to the price of competing energies, especially heavy fuel oil and home heating oil. In other words, the gas market is linked to the oil market. Under the effect of deregulation, this model is likely to change in the future, making a shift like that which took place on the American market in the past. (author)

  15. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2013-12-01

    Full Text Available Strong restrictions on emissions from marine power plants (particularly SOx, NOx will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  16. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    Science.gov (United States)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SOx, NOx) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heatrecovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  17. Performance analysis of solar energy integrated with natural-gas-to-methanol process

    International Nuclear Information System (INIS)

    Yang, Sheng; Liu, Zhiqiang; Tang, Zhiyong; Wang, Yifan; Chen, Qianqian; Sun, Yuhan

    2017-01-01

    Highlights: • Solar energy integrated with natural-gas-to-methanol process is proposed. • The two processes are modeled and simulated. • Performance analysis of the two processes are conducted. • The proposed process can cut down the greenhouse gas emission. • The proposed process can save natural gas consumption. - Abstract: Methanol is an important platform chemical. Methanol production using natural gas as raw material has short processing route and well developed equipment and technology. However, natural gas reserves are not large in China. Solar energy power generation system integrated with natural-gas-to-methanol (NGTM) process is developed, which may provide a technical routine for methanol production in the future. The solar energy power generation produces electricity for reforming unit and system consumption in solar energy integrated natural-gas-to-methanol system (SGTM). Performance analysis of conventional natural-gas-to-methanol process and solar energy integrated with natural-gas-to-methanol process are presented based on simulation results. Performance analysis was conducted considering carbon efficiency, production cost, solar energy price, natural gas price, and carbon tax. Results indicate that solar energy integrated with natural-gas-to-methanol process is able to cut down the greenhouse gas (GHG) emission. In addition, solar energy can replace natural gas as fuel. This can reduce the consumption of natural gas, which equals to 9.2% of the total consumed natural gas. However, it is not economical considering the current technology readiness level, compared with conventional natural-gas-to-methanol process.

  18. Increased power to heat ratio of small scale CHP plants using biomass fuels and natural gas

    International Nuclear Information System (INIS)

    Savola, Tuula; Fogelholm, Carl-Johan

    2006-01-01

    In this paper, we present a systematic study of process changes for increased power production in 1-20 MW e combined heat and power (CHP) plants. The changes are simulated, and their economic feasibility evaluated by using existing small scale CHP case plants. Increasing power production in decentralised CHP plants that operate according to a certain heat demand could reduce the fuel consumption and CO 2 emissions per power unit produced and improve the feasibility of CHP plant investments. The CHP plant process changes were simulated under design and off design conditions and an analysis of power and heat production, investment costs and CO 2 emissions was performed over the whole annual heat demand. The results show that using biomass fuels, there are profitable possibilities to increase the current power to heat ratios, 0.23-0.48, of the small scale CHP plants up to 0.26-0.56, depending on the size of the plant. The profitable changes were a two stage district heat exchanger and the addition of a steam reheater and a feed water preheater. If natural gas is used as an additional fuel, the power to heat ratio may be increased up to 0.35-0.65 by integrating a gas engine into the process. If the CO 2 savings from the changes are also taken into account, the economic feasibility of the changes increases. The results of this work offer useful performance simulation and investment cost knowledge for the development of more efficient and economically feasible small scale CHP processes

  19. Fission gas retention in irradiated metallic fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Gruber, E.E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5Fs) are presented. The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations to the measurements shows quantitative agreement with both the magnitude and the axial variation of the retained gas content

  20. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-03-22

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... notice that on March 5, 2010, Northern Natural Gas Company (Northern Natural), 1111 South 103rd Street, Omaha, Nebraska 68124- 1000, filed on behalf of itself and other owners, Southern Natural Gas Company...

  1. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    logo, Direct FuelCell and “DFC” are all registered trademarks (®) of FuelCell Energy, Inc. Applications •On-site self generation of combined heat... of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency

  2. Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, N.; Hofmann, Ph.; Spyrakis, S. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Panopoulos, K.D. [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece); Kakaras, E. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece)

    2010-03-15

    The Solid Oxide Cells (SOCs) are able to operate in two modes: (a) the Solid Oxide Fuel Cells (SOFCs) that produce electricity and heat and (b) the Solid Oxide Electrolyser Cells (SOEC) that consume electricity and heat to electrolyse water and produce hydrogen and oxygen. The present paper presents a carbon free SOEC/SOFC combined system for the production of hydrogen, electricity and heat (tri-generation) from natural gas fuel. Hydrogen can be locally used as automobile fuel whereas the oxygen produced in the SOEC is used to combust the depleted fuel from the SOFC, which is producing electricity and heat from natural gas. In order to achieve efficient carbon capture in such a system, water steam should be used as the SOEC anode sweep gas, to allow the production of nitrogen free flue gases. The SOEC and SOFC operations were matched through modeling of all components in Aspenplus trademark. The exergetic efficiency of the proposed decentralised system is 28.25% for power generation and 18.55% for production of hydrogen. The system is (a) carbon free because it offers an almost pure pressurised CO{sub 2} stream to be driven for fixation via parallel pipelines to the natural gas feed, (b) does not require any additional water for its operation and (c) offers 26.53% of its energetic input as hot water for applications. (author)

  3. A Dynamic Model of the Combined Electricity and Natural Gas Markets

    DEFF Research Database (Denmark)

    Jenkins, Sandra; Annaswamy, Anuradha M.; Hansen, Jacob

    2015-01-01

    With the shale gas revolution, coal retirements, environmental regulations, and increasing renewable energy resources, the interdependency of natural gas and electricity has grown significantly. Interdependency challenges, such as mismatched market schedules and disparate market operations, require...... quantitative modeling in order to garner insights into the effectiveness of various solutions. In this paper, a quantitative model with a dynamic market mechanism is proposed to evaluate the effects of the fuel uncertainty of natural gas-fired power plants on Social Welfare. The results of the model show...

  4. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  5. Emission reductions through precombustion chamber design in a natural gas, lean burn engine

    International Nuclear Information System (INIS)

    Crane, M.E.; King, S.R.

    1992-01-01

    A study was conducted to evaluate the effects of various precombustion chamber design, operating and control parameters on the exhaust emissions of a natural gas engine. Analysis of the results showed that engine-out total hydrocarbons and oxides of nitrogen (NO x ) can be reduced, relative to conventional methods, through prechamber design. More specifically, a novel staged prechamber yielded significant reductions in NO x and total hydrocarbon emissions by promoting stable prechamber and main chamber ignition under fuel-lean conditions. Precise fuel control was also critical when balancing low emissions and engine efficiency (i.e., fuel economy). The purpose of this paper is to identify and explain positive and deleterious effects of natural gas prechamber design on exhaust emissions

  6. Gas. A bridging technology for future mobility?; Gas. Eine Brueckentechnologie fuer die Mobilitaet der Zukunft?

    Energy Technology Data Exchange (ETDEWEB)

    Warnecke, Wolfgang; Karanikas, John; Levell, Bruce; Mesters, Carl; Schreckenberg, Jens; Adolf, Joerg [Shell Deutschland (Germany)

    2013-08-01

    Great progress has been made in the exploration and production of natural gas in recent years. Reserves of conventional gas are plentiful, and large resources of unconventional gas have been added. At the same time, there is still a lot of pressure for climate action to reduce greenhouse gas emissions. Natural gas is the lowest-carbon fossil fuel. Almost all medium- to long-term energy scenarios foresee a substantial increase in global consumption of natural gas. It can be used to generate both power and heat. But so far gaseous fuels have had only a niche position as an option for the transport sector. Increased discussion of gas, in particular natural gas, as a future transport fuel started just recently. The following article starts by considering the development of supply and current expectations for availability of natural gas. It discusses the various types of gas, in particular conventional and unconventional, and technical methods both standard and new for gas production. It also deals with natural gas demand scenarios and future markets, including the value chain for natural gas fuels. The article covers in particular the use of gaseous and gas-based fuels in the transport sector. It examines various production paths for natural gas fuels for transport, and also the fuels as such (CNG, LNG, GTL); it compares the product characteristics of natural gas fuels with those of conventional fuels (gasoline / diesel fuel) and other gaseous fuels (in particular LPG and hydrogen). It discusses the application possibilities of gas fuels in the various transport sectors. It considers the use of gas fuels in internal combustion engines in different transport sectors with different combustion processes, including consideration of their energy efficiency (consumption / performance) and their ecological performance (air pollutants and greenhouse gas emissions). Finally, it addresses the question of what and under what conditions natural gas fuels can contribute to an &apos

  7. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    Energy Technology Data Exchange (ETDEWEB)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  8. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    International Nuclear Information System (INIS)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm

  9. Canadian natural gas price forecast

    International Nuclear Information System (INIS)

    Jones, D.

    1998-01-01

    The basic factors that influenced NYMEX gas prices during the winter of 1997/1998 - warm temperatures, low fuel prices, new production in the Gulf of Mexico, and the fact that forecasters had predicted a mild spring due to El Nino - were reviewed. However, it was noted that for the last 18 months the basic factors had less of an impact on market direction because of an increase in Fund and technical trader participation. Overall, gas prices were strong through most of the year. For the winter of 1998-1999 the prediction was that NYMEX gas prices will remain below $2.00 through to the end of October 1998 because of high U.S. storage levels and moderate temperatures. NYMEX gas prices are expected to peak in January 1999 at $3.25. AECO natural gas prices were predicted to decrease in the short term because of increasing levels of Canadian storage, and because of delays in Northern Border pipeline expansions. It was also predicted that AECO prices will peak in January 1999 and will remain relatively strong through the summer of 1999. tabs., figs

  10. Vale do Aco pipeline: pipeline natural gas implementation in ArcelorMittal Monlevade steel work; Gasoduto Vale do Aco: implantacao do gas natural via gasoduto na ArcelorMittal Monlevade

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Eduardo Sergio da Silva; Arantes, Luiz Flavio Mourao; Ribeiro, Vicente Aleixo Pinheiro [ArcelorMittal Monlevade, Joao Monlevade, MG (Brazil)

    2011-12-21

    Since September 2010, ArcelorMittal Monlevade has gained flexibility and an important opportunity to reduce the cost of its energy mix due to the arrival of the Natural Gas (NG) via Steel Valley Pipeline. The proposal of the project included the substitution of the Liquefied Petroleum Gas (LPG), Fuel Oil and Compressed Natural Gas for natural gas via pipeline. To support the investment decision, in addition to domestic economic and technical aspects, the macro economic environment concerning the NG was also taken into account. This paper shows the analysis for adjustment of internal equipment, the structure of the contract, the conceptual project of the gas distribution built inside the main events, the gains achieved, the alternatives for the acquisition of NG and operational flexibility of ArcelorMittal Monlevade in case of interruption of supply of natural gas. (author)

  11. Fission gas retention in irradiated metallic fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Gruber, E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5 wt. % Fs) are presented. (The symbol 'Fs' designates fissium, a 'pseudo-element' which, in reality, is an alloy whose composition is representative of fission products that remain in reprocessed fuel). The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations with the measurements shows quantitative agreement in both the magnitude and the axial variation of the retained gas content. (orig.)

  12. The perspectives of development of natural gas for vehicles

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This short paper analyses the actions carried out in the world, and in particular in France, to develop and promote the use of natural gas for vehicles (NGV). In France, a protocol of agreement was signed in June 1994 between the French car manufacturers, Gaz de France and the French Association of Natural Gas for Vehicles (AFGNV) in order to develop new kinds of gas fueled vehicles, more optimized engines, to increase the number of gas distribution stations, to ratify the new models of vehicles and the specific parts for these vehicles (composite materials tanks), to carry out R and D work on gas compressors, and to develop public and private fleets of urban buses and public service vehicles. The forthcoming application of the 'Clean Air Law' will support these actions. Significant and similar developments take place also in more than 30 other countries under the same environmental motivation and ambitious programs are planned in the USA, Japan and Argentina for the year 2000. The R and D effort now focusses on the use of LNG instead of compressed natural gas. (J.S.)

  13. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements.

  14. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  15. Review of codes, standards, and regulations for natural gas locomotives.

    Science.gov (United States)

    2014-06-01

    This report identified, collected, and summarized relevant international codes, standards, and regulations with potential : applicability to the use of natural gas as a locomotive fuel. Few international or country-specific codes, standards, and regu...

  16. Design of a Natural Gas Liquefaction System with Minimum Components

    International Nuclear Information System (INIS)

    Bergese, Franco

    2004-01-01

    In this work an economic method for liquefying natural gas by diminishing its temperature by means of the Joule-Thomson effect is presented.The pressures from and to which the gas must be expanded arose from a thermodynamic calculation optimizing the cost per unit mass of Liquefied Natural Gas LNG).It was determined that the gas should be expanded from 200 atm to 4 atm.This expansion ratio can be used in different scales.Large Scale: liquefaction of gas at well.It takes advantage of the fact that the gas inside the well is stored at high pressure.The gas is expanded in a valve / nozzle and then compressed to the pressure of the local pipeline system.The objective of this project is to export natural gas as LNG, which is transported by ships to the markets of consumption.Using this method of liquefaction, the LNG production levels are limited to a fraction of the production of the well, due to the injection of the un condensed gas into the local pipelines system.Medium Scale: A high pressure pipeline is the source of the gas.The expansion is performed and then the gas is again compressed to the pressure of a lower pressure pipeline into which the gas is injected.The pressure reductions of natural gas are performed nearby big cities.The aim of this project scale is the storage of fuel for gas thermal power plants during periods of low energy consumption for later burning when the resource is limited. Another possibility that offers this size of plant is the transportation of gas to regions where the resource is unavailable.This transportation would be carried out by means of cistern trucks, in the same way that conventional liquid fuels are transported.Small scale: the place of production would be a CNG refueling station. The source of gas is in this case a gas pipeline of urban distribution and the gas should be compressed with the compressor of the refueling station.Compressors have generally low loading factor and the periods of time when they are not producing

  17. The future of natural gas in Eastern Europe - the development of the natural ags business in East Germany. An example for Eastern Europe?

    International Nuclear Information System (INIS)

    Geweke, J.

    1994-01-01

    Natural gas is a modern and efficient fuel which is expected to have good chances of gaining a large share of the primary energy consumption in the future. In view of the high share of solid fuels in the primary energy consumption of Eastern Europe and the resulting environmental pollution this is easily understandable not only from a political viewpoint but also from the point of view of the population, especially as natural gas is no unknown myth to Eastern European states but has been an established and much sought-after (and therefore scarce) fuel. (orig.) [de

  18. A Study of Pollutant Formation from the Lean Premixed Combustion of Gaseous Fuel Alternatives to Natural Gas

    Science.gov (United States)

    Fackler, Keith Boyd, Jr.

    The goal of this research is to identify how nitrogen oxide (NO x) emissions and flame stability (blowout) are impacted by the use of fuels that are alternatives to typical pipeline natural gas. The research focuses on lean, premixed combustors that are typically used in state-of-the-art natural gas fueled systems. An idealized laboratory lean premixed combustor, specifically the jet-stirred reactor, is used for experimental data. A series of models, including those featuring detailed fluid dynamics and those focusing on detailed chemistry, are used to interpret the data and understand the underlying chemical kinetic reasons for differences in emissions between the various fuel blends. An ultimate goal is to use these data and interpretive tools to develop a way to predict the emission and stability impacts of changing fuels within practical combustors. All experimental results are obtained from a high intensity, single-jet stirred reactor (JSR). Five fuel categories are studied: (1) pure H 2, (2) process and refinery gas, including combinations of H2, CH4, C2H6, and C3H8, (3) oxygen blown gasified coal/petcoke composed of H2, CO, and CO2, (4) landfill and digester gas composed of CH4, CO2, and N2, and (5) liquified natural gas (LNG)/shale/associated gases composed of CH4, C2H6, and C3 H8. NOx measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. This is done to focus the results on differences caused by fuel chemistry by comparing all fuels at a common temperature, pressure, and residence time. This is one of the few studies in the literature that attempts to remove these effects when studying fuels varying in composition. Additionally, the effects of changing temperature and residence time are investigated for selected fuels. At the nominal temperature and residence time, the experimental and modeling results show the following trends for NOx emissions as a function of fuel type: 1.) NOx

  19. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  20. Alternative ways to transport natural gas; Transporte alternativo de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Moura, N.R.; Campos, F.B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The Brazilian energy matrix has been showing a huge increase in the demand of natural gas due mainly to industries and power plants. Today the Brazilian gas market is supplied with gas produced by PETROBRAS and imported from Bolivia. To increase the Brazilian gas supply, on the short and middle term, PETROBRAS will import LNG (liquefied natural gas) and exploit the new offshore fields discovered on the pre-salt area. The only proven technology available today to bring this offshore gas to the market is the pipeline, but its costs for the pre-salt area are high enough to keep the solution economically attractive. So, PETROBRAS are evaluating and developing alternative ways to transport offshore gas, such as LNG, CNG (Compressed Natural Gas), GTS (Gas-to-Solids or Natural Gas Hydrates) and ANG (Adsorbed Natural Gas). Using information available in the literature, this paper analyses the main concepts of CNG and LNG floating unities. This paper also presents the PETROBRAS R and D results on ANG and GTS aiming at offshore application. (author)

  1. Quick response to growth opportunities makes a winner of Piedmont Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    Diversification became a necessity to Piedmont Natural Gas Co. as it increasingly faced curtailments and restrictions on supplies from its single energy source, Transcontinental Gas Pipeline Corp. Passage of the Natural Gas Policy Act of 1978 marked the beginning of a turnaround in Piedmont's sharply curtailed gas supplies, keeping Piedmont totally involved in both conventional marketing and construction and expansion into diversified operations. Its diversifications include (1) a program of energy-saving conservation services, (2) formation of a propane gas division, and (3) distribution of fuel oil, all of which helped Piedmont become a full-service energy-distribution system.

  2. Inventory of methane losses from the natural gas industry

    International Nuclear Information System (INIS)

    Burklin, C.E.; Campbell, L.M.; Campbell, M.V.

    1992-01-01

    Natural gas is being considered as an important transition fuel in an integrated national strategy to reduce emissions of greenhouse gases in the United States due to its lower carbon dioxide (CO 2 ) emission per unit of energy produced. However, the contribution of atmospheric methane (CH 4 ) from the production and handling of natural gas must also be considered. Radian Corporation has been working with the Gas Research Institute and the US Environmental Protection Agency to detail the sources of methane from the natural gas industry in the United States. All aspects of natural gas production, processing, transmission, storage and distribution are being examined. Preliminary results of preliminary testing for the below-ground gas distribution industry segment are presented. The emission rate (scf/hr) is the product of the leak rate per unit length of underground pipe and the total length of US distribution system pipelines. Preliminary estimates for the below-ground distribution segment are nearly 9 billion scf/yr. This total likely underestimates below-ground methane emissions for several reasons. These preliminary analyses suggest that significant uncertainty surround current methane emission estimates from below-ground distribution systems. Emission estimates from all segments of the US Natural Gas Industry, broken down by fugitive sources and non-fugitive sources, are also presented. The specific test methods being implemented to quantify emissions from each segment are described

  3. Economic growth to raise U.S. oil products, natural gas demand

    International Nuclear Information System (INIS)

    Beck, R.J.

    1994-01-01

    An accelerating economy will raise consumption of oil products and natural gas in the US this year. Contributing to demand growth will be the slump that began late last year in prices for crude oil and petroleum products. Some price recovery is likely in 1994, but there's little reason to expect a major increase. With oil production falling and demand rising, imports will have to climb again this year. OGJ projects a 2.6% increase this year following a 6.6% increase last year. Imports are expected to fill a record high 49.3% of US oil demand this year. The paper discusses energy and the economy, overall energy use, energy by source, the electrification trend, energy supplies, imports, refining operations, the growth of margins, and the energy demand of motor gasoline, jet fuel, distillate fuels, residual fuel oils, other petroleum products, and natural gas

  4. Natural gas marketing II

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing

  5. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  6. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  7. Fiscal 2000 survey report. Survey of long-term energy technology strategy and the like (Survey of natural gas technology trend); 2000 nendo choki energy gijutsu senryaku nadoni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (tennen gas gijutsu doko chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In search of new technical tasks involving the supply, transportation, and utilization of natural gas, a survey is conducted of the trend of natural gas supply and demand, trend of development of related technologies, and their impact on the market. After natural gas matters are outlined and definition and classification are established, investigations are conducted into natural gas production and the trend of new natural gas consuming countries supposedly to affect the natural gas supply and demand situation. Taken up as relevant technologies are cogeneration, natural gas powered automobiles, fuel cells, GTL (gas to liquid) technology, and micro gas turbines. These technologies are examined from the viewpoints of environmentally-friendliness and energy conservation feature, and then tasks to discharge are proposed in the fields of technology development, operation, and fuel. For natural gas powered automobiles, vehicular performance improvement and the conformability and standardization of high-pressure parts and components are taken up in the field of technology development, and the introduction and augmentation of quick fillers for natural gas and increase in the number of natural gas supply stations are taken up in the field of operation. Concerning fuel cells, in the field of fuels to be fed to the same, technologies of hydrogen storage and of refining and reforming of oil based fuels are taken up. (NEDO)

  8. Balancing natural gas policy : Fueling the demands of a growing economy

    International Nuclear Information System (INIS)

    Howard, R.

    2003-01-01

    In March 2002 a request was made to the National Petroleum Council by the United States Secretary of Energy to examine the potential implications of new supplies, technologies, perceptions of risk on natural gas demand, supplies, and delivery through 2025. In addition, the Secretary was looking for insight on energy market dynamics and an outlook on the longer-term sustainability of natural gas supplies. Ideas on ways to improve the productivity and efficiency of North American natural gas markets while ensuring adequate and reliable supplies of energy for consumers were also requested. Two options were examined by the National Petroleum Council (NPC). The reactive path involves public policies which remain in conflict, while the balanced future involves aligned public policies. It was discovered that 75 per cent of long-term American gas needs will be met by traditional North American producing areas which will be unable to meet projected demand. Production growth is desirable in the Rockies and deepwater Gulf of Mexico, as well as non conventional production. After careful examination, it was determined that demand flexibility and efficiency must be improved, along with an increase in supply diversity. Infrastructure must be enhanced and sustained, and efficient markets must be promoted. All these measures would result in higher economic growth, higher employment, and stronger industrial activity. figs

  9. NATURAL GAS TRANSPORTATION

    OpenAIRE

    Stanis³aw Brzeziñski

    2007-01-01

    In the paper, Author presents chosen aspects of natural gas transportation within global market. Natural gas transportation is a technicaly complicated and economicly expensive process; in infrastructure construction and activities costs. The paper also considers last and proposed initiatives in natural gas transportation.

  10. Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Mao, Tianzhi; Sui, Jun; Jin, Hongguang

    2015-01-01

    Co-firing biomass and fossil energy is a cost-effective and reliable way to use renewable energy and offer advantages in flexibility, conversion efficiency and commercial possibility. This study proposes a co-fired CCHP (combined cooling, heating and power) system based on natural gas and biomass gasification gas that contains a down-draft gasifier, ICE (internal combustion engine), absorption chiller and heat exchangers. Thermodynamic models are constructed based on a modifying gasification thermochemical equilibrium model and co-fired ICE model for electricity and heat recovery. The performance analysis for the volumetric mixture ratio of natural gas and product gas indicates that the energy and exergy efficiencies are improved by 9.5% and 13.7%, respectively, for an increasing mixture ratio of 0–1.0. Furthermore, the costs of multi-products, including electricity, chilled water and hot water, based on exergoeconomic analysis are analyzed and discussed based on the influences of the mixture ratio of the two gas fuels, investment cost and biomass cost. - Highlights: • Propose a co-fired CCHP system by natural gas and biomass gasification gas. • Modify biomass gasification and co-fired ICE models. • Present the thermodynamic analysis of the volumetric mixture ratios of two gas fuels. • Energy and exergy efficiencies are improved 9.5% and 13.7%. • Discuss multi-products’ costs influenced by investment and fuel costs.

  11. The future of the US natural gas market

    International Nuclear Information System (INIS)

    Linden, H.R.

    1993-01-01

    The United States gas industry is entering a period when it will have an excellent opportunity to recapture the 30 percent share of the primary energy market it enjoyed in 1973. In spite of unresolved problems stemming from its drastic restructuring during the Reagan and Bush administrations, most aspects of today's political and regulatory climate favor a substantial expansion of natural gas use in the economy. Combined with the now nearly universal recognition that Lower-48 natural gas resources and North American resources as a whole are abundant and recoverable at relatively low cost, this has created unusually high levels of preference for natural gas as a primary energy source. The favorable outlook for the US gas industry at the start of 1993 is the result of an extremely positive political, regulatory, and business climate for expanded use of natural gas, supported by a Lower-48 resource base capable of meeting expected levels of demand at competitive costs for at least 25 years. This assumes continued advances in the whole spectrum of technologies from exploration and production to end use that halted and partially reversed the sharp 1973 to 1986 decline of gas share of the US energy market. In addition to the uncertainties that cloud this assumption, as the gas industry's commitment to aggressive support of R ampersand D seems to be faltering, there are other problems that need to be resolved to ensure the full realization of the potential of gas as the bridge fuel to a sustainable energy system

  12. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  13. The natural gas vehicles; Le gaz naturel vehicules

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The NGV (Natural Gas Vehicles) is a new ''clean'' fuel used for the urban public transports which can be adapted to the vehicles. It is the same gas as those for the cooking and the heating, but compressed at 200 bars. this document presents this abundant energy sources, the bound emissions standards, the technical and economical aspects, the environmental advantages, the today implementation and compare the french policy towards the NGV to other countries. (A.L.B.)

  14. Well-to-wheel analysis of renewable transport fuels: synthetic natural gas from wood gasification and hydrogen from concentrated solar energy[Dissertation 17437

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.

    2007-07-01

    In order to deal with problems such as climate change, an increasing energy demand and the finiteness of fossil resources, alternative CO{sub 2}-low technologies have to be found for a sustainable growing future. Laboratories at PSI are conducting research on two pathways delivering such car fuels: synthetic natural gas from wood gasification (SNG) and hydrogen from solar thermochemical ZnO dissociation (STD). The biofuel SNG is produced using wood in an auto-thermal gasification reactor. It can be supplied to the natural-gas grid and be used in a compressed natural gas (CNG) vehicle. STD is a long-term option, using concentrated solar radiation in a thermochemical reactor, producing zinc as solar energy carrier. Zinc can be used for hydrolysis, in order to produce hydrogen as a locally low-polluting future car fuel. In the frame of the thesis, both fuels are assessed using a life cycle assessment, i.e. investigating all environmental interactions from the extraction of resources over the processing and usage steps to the final disposal. Different methodologies are applied for a rating, compared to alternatives and standard fuels of today. In addition, costs of the technologies are calculated in order to assess economic competitiveness. The thesis is structured as follows: After an introduction giving an overview (chapter A), the methodology is presented (chapter B). It includes various life cycle impact assessment methods such as greenhouse gas emissions, the cumulative energy demand or comprehensive rating approaches. Calculations of the production and supply costs of the assessed fuels are included as well as the eco-efficiency, a combination of environmental with economic indicators. In addition, external costs caused by the emissions are quantified. Sensitivity studies investigate the importance of different parameters and substantiate conclusions. In chapter C, the production, supply and use of the assessed fuels is discussed, following the well

  15. Renewable energy as a natural gas price hedge: the case of wind

    International Nuclear Information System (INIS)

    Berry, David

    2005-01-01

    Electric utilities use natural gas to fuel many of their power plants, especially those plants which provide electricity at peak and intermediate hours. Natural gas prices are highly volatile and have shown a general upward trend. Wind energy can provide a cost-effective hedge against natural gas price volatility or price increases. This conclusion is based on analysis of the costs of marginal conventional generation given the historical probability distribution of natural gas prices, the cost of wind energy, wind integration costs, transmission costs for wind energy, the capacity value of wind, and environmental benefits of wind energy for a hypothetical utility in the Southwestern United States. The efficacy of using wind energy as a hedge at a particular utility will depend on site specific conditions

  16. Tariffs for natural gas, electricity and cogeneration

    International Nuclear Information System (INIS)

    1995-02-01

    The rate of return of the combined generation of heat and power is not only determined by the capital expenditures and the costs of maintenance, control, management and insurances, but also by the fuel costs of the cogeneration installation and the avoided fuel costs in case of separated heat production, the avoided/saved costs of electricity purchase, and the compensation for possible supply to the public grid (sellback). This brochure aims at providing information about the structure of natural gas and electricity tariffs to be able to determine the three last-mentioned expenditures. First, attention is paid to the tariffs of natural gas for large-scale consumers, the tariff for cogeneration, and other tariffs. Next, the structure of the electricity tariffs is dealt with in detail, discussing the accounting system within the electric power sector, including the alterations in the National Basic Tariff and the Regional Basic Tariff (abbreviated in Dutch LBR, respectively RBT) per January 1, 1995, the compensations for large-scale consumers and specific large-scale consumers, electricity sellback tariffs, and compensations for reserve capacity. 7 figs., 5 tabs., 2 appendices, 7 refs

  17. Fiscal 1998 research report on the development trends of natural gas conversion technologies into liquefied fuel in Russia; 1998 nendo Roshia ni okeru tennen gas no ekitai nenryoka gijutsu no kaihatsu doko nado ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Russia having natural gas resources largest in the world is actively promoting the basic research on liquefaction technology of natural gas such as Fischer-Tropsch (FT) synthetic catalyst, and its research potential is extremely high. This 3-year research project surveys the R and D trends of catalyst technology for liquefaction of natural gas, and fabricates the prototype FT synthetic catalyst based on the idea of Russian researchers to evaluate its feasibility experimentally. This report summarizes the following to clarify the research background: (1) The technology system for liquefaction of natural gas, and its future R and D trend, (2) The R and D trends of liquefaction technology of natural gas in the world, (3) The R and D trends of liquefaction technology of natural gas in Russia, (4) The research system of catalyses in Russia, (5) The activities of Russian catalysis research institutes, (6) The fuel liquefaction technologies of Russian major research institutes, and (7) The proposals from Russian research institutes. (NEDO)

  18. Exergic, economic and environmental impacts of natural gas and diesel in operation of combined cycle power plants

    International Nuclear Information System (INIS)

    Mohammadi Khoshkar Vandani, Amin; Joda, Fatemeh; Bozorgmehry Boozarjomehry, Ramin

    2016-01-01

    Highlights: • Investigating the effect of natural gas and diesel on the power plant performance. • Exergy, economic and environmental evaluation of a combined cycle power plant. • Using life cycle assessment (LCA) to perform the environmental evaluation. • Optimizing the power plant in terms of exergy and economic. • Better performance of natural gas with respect to diesel. - Abstract: Combined cycle power plants (CCPPs) play an important role in electricity production throughout the world. Their energy efficiency is relatively high and their production rates of greenhouse gases are considerably low. In a country like Iran with huge oil and gas resources, most CCPP’s use natural gas as primary fuel and diesel as secondary fuel. In this study, effect of using diesel instead of natural gas for a selected power plant will be investigated in terms of exergy, economic and environmental impacts. The environmental evaluation is performed using life cycle assessment (LCA). In the second step, the operation of the plant will be optimized using exergy and economic objective functions. The results show that the exergy efficiency of the plant with natural gas as fuel is equal to 43.11%, while this efficiency with diesel will be 42.03%. Furthermore, the annual cost of plant using diesel is twice as that of plant using natural gas. Finally, diesel utilization leads to more contaminants production. Thus, environmental effects of diesel are much higher than that of natural gas. The optimization results demonstrate that in case of natural gas, exergy efficiency and annual cost of the power plant improve 2.34% and 4.99%, respectively. While these improvements for diesel are 2.36% and 1.97%.

  19. Natural gas and bio methane in the future fuel mix. Need of action and solution approaches for an accelerated etablishment in the traffic; Erdgas und Biomethan im kuenftigen Kraftstoffmix. Handlungsbedarf und Loesungsansaetze fuer eine beschleunigte Etablierung im Verkehr

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    The contribution under consideration reports on the need of action and on solution attempts for an accelerated establishment of natural gas and bio methane in the future fuel mix. The authors come to the following conclusions: The energy situation and climatic situation require a stronger diversification of fuels and drives. The targets for the amount of natural gas and bio methane as a fuel are not reached yet. The characteristics of natural gas speak for an accelerated establishment in the traffic sector. The admixture of bio methane can increase the climatic, environmental and resources advantages. In order to penetrate the market all participants involved must commit themselves to a concrete 'roadmap'. The contribution shows which measures must be converted by the participants involved in order to be able to utilize fully the potentials of the employment of natural gas and bio methane in the traffic sector.

  20. 77 FR 23105 - Supporting Safe and Responsible Development of Unconventional Domestic Natural Gas Resources

    Science.gov (United States)

    2012-04-17

    ... 2011, natural gas provided 25 percent of the energy consumed in the United States. Its production creates jobs and provides economic benefits to the entire domestic production supply chain, as well as to... appropriate safeguards, natural gas can provide a cleaner source of energy than other fossil fuels. For these...

  1. Industrial-energy markets: Implications for natural gas technology R and D

    International Nuclear Information System (INIS)

    Samsa, M.E.

    1989-04-01

    The paper reviews the role and competitive position of natural gas for major industrial functional uses and focuses on the key issues and factors affecting the future of natural gas use in industrial applications. Gas use is discussed within the context of all other major fuel groups used by the industrial sector. The manufacturing and nonmanufacturing segments are isolated and each of the major uses (boilers, cogeneration, process heating, feedstocks, lease and plant, and nonstationary applications) are discussed separately. A discussion is included on the implications of the analysis on GRI's R and D program and on the technical service options that are available to the gas industry

  2. A Decision Support System (DSS) to Select the Premier Fuel to Develop in the Value Chain of Natural Gas

    OpenAIRE

    Ahmad Mousaei; Mohammad Ali Hatefi

    2015-01-01

    A value chain is a series of events that takes a raw material and with each step adds value to it. Global interest in the application of natural gas (NG) in production and transportation has grown dramatically, representing a long-term, low-cost, domestic, and secure alternative to petroleum-based fuels. Many technological solutions are currently considered on the market or in development, which address the challenge and opportunity of NG. In this paper, a decision support system (DSS) is int...

  3. Natural gas reserves/total energy consumption: a useful new ratio for addressing global climate change concerns

    International Nuclear Information System (INIS)

    Siddiqi, T.A.

    2002-01-01

    Energy analysts have used the reserves/production ratios for oil and natural gas for decades as indicators of the ability of countries to maintain or increase their production of those fuels. The global community is now faced with the challenge of reducing carbon dioxide emissions from a variety of sources, with the energy sector being the largest contributor to the anthropogenic emissions of greenhouse gases. Natural gas has emerged as a highly desirable fuel, since it produces lower emissions of carbon dioxide than coal or oil for equivalent amounts of energy supplied. The ratio of a country's proven natural gas reserves to its total energy consumption is a good indicator of its ability to improve its air quality situation or address greenhouse gas reduction targets from domestic natural gas sources. This paper provides the ratio for several countries at different stages of development, and discusses some of the implications. In countries where exploration for natural gas has been limited, the estimated resources in place may sometimes be a more useful indicator than proven reserves, and could be used instead. (author)

  4. Greenhouse gas emissions from the production and use of alternative transport fuels

    International Nuclear Information System (INIS)

    Le Cornu, J.K.

    1990-01-01

    A number of the commonly proposed alternative transport fuels were ranked according to both the cumulative greenhouse gas emissions and the production costs incurred between the recovery of the prime resource and the fuel's end use by the Australian transport fleet. An examination of the emissions of each greenhouse gas at each production stage confirmed the common presumption that the low levels of secondary greenhouse gas emissions involved contribute little to the overall greenhouse impact of a fuel's production and use. From a greenhouse point of view the transport fuels studied could be reasonable well ranked by considering their carbon dioxide emissions alone. A possible exception may apply in the case of the compressed natural gas option, which may need to separate consideration of the effect of fugitive emissions of methane from gas distribution systems. An assumption involved in reaching this result was that nitrous oxide emissions, on which there was inadequate hard data, would not form more than 1% of the total nitrogen oxide emissions. At such an emission level it could contribute up to 5% of a fuel's total greenhouse impact. It is concluded that apart from some small niche opportunities, there is no Australian alternative transport fuel option whose production cost and greenhouse impact makes it one which policy should favour over other fuels. It is stressed that this is no more than a preliminary scouting study of generic options, which addresses only greenhouse issues. 17 refs., 1 tab., 8 figs

  5. Natural gas imports and exports: First quarter report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This quarter`s focus is market penetration of gas imports into New England. Attachments show the following: % takes to maximum firm contract levels and weighted average per unit price for the long-term importers, volumes and prices of gas purchased by long-term importers and exporters, volumes and prices for gas imported on short-term or spot market basis, and gas exported short-term to Canada and Mexico.

  6. Bio-fuels for the gas turbine: A review

    International Nuclear Information System (INIS)

    Gupta, K.K.; Rehman, A.; Sarviya, R.M.

    2010-01-01

    Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy independence, foreseen depletion of nonrenewable fuel resources, fluctuating petroleum fuel costs, the necessity of stimulating agriculture based economy, and the reality of climate change have created an interest in the development of bio-fuels. The application of bio-fuels in automobiles and heating applications is increasing day by day. Therefore the use of these fuels in gas turbines would extend this application to aviation field. The impact of costly petroleum-based aviation fuel on the environment is harmful. So the development of alternative fuels in aviation is important and useful. The use of liquid and gaseous fuels from biomass will help to fulfill the Kyoto targets concerning global warming emissions. In addition, to reduce exhaust emission waste gases and syngas, etc., could be used as a potential gas turbine fuel. The term bio-fuel is referred to alternative fuel which is produced from biomass. Such fuels include bio-diesel, bio-ethanol, bio-methanol, pyrolysis oil, biogas, synthetic gas (dimethyl ether), hydrogen, etc. The bio-ethanol and bio-methanol are petrol additive/substitute. Bio-diesel is an environment friendly alternative liquid fuel for the diesel/aviation fuel. The gas turbine develops steady flame during its combustion; this feature gives a flexibility to use alternative fuels. Therefore so the use of different bio-fuels in gas turbine has been investigated by a good number of researchers. The suitability and modifications in the existing systems are also recommended. (author)

  7. The issue of natural gas deregulation has arrived on Canada's east coast

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-06-01

    It is predicted that the introduction of natural gas to Atlantic Canada from Nova Scotia's Sable Offshore Energy Project, will usher in an era of competition among suppliers and choice for customers, making gas deregulation a likely development. Natural gas from the Sable Project is regulated by the National Energy Board for such things as tolls and the cost of transmission through the Maritimes and Northeast Pipeline; residential customer service will be provided by Sempra Atlantic Gas, a provincially regulated distributor which holds the franchise to service the entire province with a gas transportation network. Sempra will provide the infrastructure to move the gas to customers, however, in a deregulated market place customers may choose to purchase gas from a wide range of marketers, producers and brokers, the same way as is now done with home heating fuel. It is expected that several fuel companies will go after the kind of business opportunities that will open up with deregulation, which means that customers will have a choice to buy natural gas from a supplier other than the company that delivers it. The resulting competition among suppliers will translate into savings for the consumer.

  8. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  9. Study of cycle-by-cycle variations of a spark ignition engine fueled with natural gas-hydrogen blends

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinhua; Chen, Hao; Liu, Bing; Huang, Zuohua [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2008-09-15

    Cycle-by-cycle variations of a spark ignition engine fueled with natural gas-hydrogen blends with hydrogen volumetric fraction of 0%, 12%, 23%, 30% and 40% were studied. The effect of hydrogen addition on cycle-by-cycle variations of the natural gas engine was analyzed. The results showed that the peak cylinder pressure, the maximum rate of pressure rise and the indicated mean effective pressure increased and their corresponding cycle-by-cycle variations decreased with the increase of hydrogen fraction at lean mixture operation. The interdependency between the combustion parameters and the corresponding crank angle tended to be strongly correlated with the increase of hydrogen fraction under lean mixture operation. Coefficient of variation of the indicated mean effective pressure gave a low level and is slightly influenced by hydrogen addition under the stoichiometric and relatively rich mixture operation while it decreased remarkably with the increase of hydrogen fraction under the lean mixture operation. The excessive air ratio at CoV{sub imep} = 10% extended to the leaner mixture side with the increase of hydrogen fraction and this indicated that the engine lean operating limit could be extended with hydrogen addition. (author)

  10. Air impacts of increased natural gas acquisition, processing, and use: a critical review.

    Science.gov (United States)

    Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B

    2014-01-01

    During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource.

  11. The immunity of the ICMS (Circulation Tax) on interstate operations involving natural gas; Da imunidade do ICMS (Imposto sobre Circulacao de Mercadorias e Servicos) em operacoes interestaduais envolvendo gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Yvy, Maytta A.S.; Galvao, Katia C.P.; Mendonca, Fabiano A.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Faculdade de Direito

    2004-07-01

    The Federal Constitution of Brazil, in the article 155, para. 2nd, X, b, determines that there will not be Circulation Taxs (ICMS) over operations that destinates to other States petroleum, including lubricants, liquid and gaseous fuels of him derived. It establishes, therefore, hypothesis of tributary immunity. However, the interpretation of this rule in the juridical scenery is rounded by doubts. There are two possible interpretations: or the natural gas is included in this hypothesis of tributary immunity, considering it is a derived gaseous fuel of the petroleum or, in the other hand, it is not included in the hypothesis, since it is not admitted as a petroleum product. Using not juridical interpretative elements and using constitutional principles and interpretative rules, the conclusion is that the natural gas doesn't integrate the normative hypothesis, in view that the opposite comprehension would surpass the meaning of the norm in exam, falling in inconstitutionality. However, having in mind the convenience of enlarging the natural gas participation in the national energy head office, the possibility of granting tributary discharge through exemption of ICMS over operations between States involving natural gas is open. (author)

  12. Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model

    International Nuclear Information System (INIS)

    Yin, Chungen

    2017-01-01

    Highlights: • A gas radiation model for general combustion CFD presented, programmed & verified. • Its general applicability/practical accuracy demonstrated in air-fuel and oxy-fuel. • Useful guidelines for air-fuel and oxy-fuel combustion CFD suggested. • Important to include the impact of CO in gas radiation for oxy-fuel combustion CFD. - Abstract: Thermal radiation plays an important role in heat transfer in combustion furnaces. The weighted-sum-of-gray-gases model (WSGGM), representing a good compromise between computational efficiency and accuracy, is commonly used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gaseous radiative properties. However, the WSGGMs still have some limitations in practical use, e.g., unable to naturally accommodate different combustion environments, difficult to accurately address the variations in species concentrations in a flame, and inconvenient to account for the impacts of participating species other than H_2O and CO_2. As a result, WSGGMs with different coefficients have been published for specific applications. In this paper, a reliable generic model for gaseous radiation property calculation, which is a computationally efficient exponential wide band model (E-EWBM) applicable to combustion CFD and able to naturally solve all the practical limitations of the WSGGMs, is presented, programmed and verified. The model is then implemented to CFD simulation of a 300 kW air-fuel and a 0.8 MW oxy-fuel combustion furnace, respectively, to demonstrate its computational applicability to general combustion CFD and its capability in producing reliable CFD results for different combustion environments. It is found that the usefulness of the WSGGMs in oxy-fuel combustion CFD is compromised if the important impacts of high levels of CO under oxy-fuel combustion cannot be accounted for. The E-EWBM that appropriately takes the impacts of H_2O, CO_2, CO and CH_4 into account is a good replacement

  13. The perspectives of the natural gas in Mexico; Las perspecivas del gas natural en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez S, Luis [DIAVAZ S.A de C.V, Mexico, D.F. (Mexico)

    2001-07-01

    As never before in the last year we have suffered the increases in the cost of the natural gas. For those who are not aware, the prices have gone from 2.48 dollars per million BTU a year ago to 9.57 last month. The truth is that we are facing a true world-wide energy crisis. From one year to date the prices of all the energy sources have increased an average superior to 30%, including increases in Diesel oil, LP Gas, Natural Gas, Turbine fuel. The causes are many and very varied, from efficiency decisions, as in the case of the electrical Generation that has chosen to incline definitively to the natural gas, confusing de-regulations as in the case of California, increases of demand beyond the anticipated by economic activity, changes of consumption pattern, etc.. This demonstrates the well focussed and the opportunity of this Seminar, since there is no doubt that it has become imperative a single and efficient criterium on this so limited resource. In Mexico, the situation is very similar. Recently a measurement has been implemented that tries to palliate the conjunctural effects of this crisis and PEMEX has put to the disposition of the users a contract at fixed price, for three years and by a specific amount. [Spanish] Como nunca antes en el ultimo ano hemos resentido los incrementos en el gasto del gas natural. Para quien no este al tanto los precios han pasado de 2.48 dolares por millon de BTU hace un ano a 9.57 el mes pasado. La verdad es que os estamos enfrentando a una verdadera crisis energetica mundial. De un ano para aca todos los energeticos han aumentado un promedio superior al 30%, incluyendo aumentos en Diesel, Gas LP, Gas Natural, Turbosina. Las causas son muchas y muy variadas, desde decisiones de eficiencia, como en el caso de la Generacion electrica que ha optado por inclinarse definitivamente por el gas natural, desregulaciones confusas como en el caso de California, incrementos de demanda mas alla de lo previsto por actividad economica, cambios

  14. Substitute natural gas from biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Tunaa, Per (Lund Inst. of Technology, Lund (SE))

    2008-03-15

    Biomass is by many considered as the only alternative to phase-out the usage of fossil fuels such as natural gas and oil especially for the transportation sector where alternative solutions, such as hydrogen fuel cells and batteries, are not yet fully developed. Thermal gasification or other methods such as pyrolysis of the biomass must be applied in order to produce an intermediate product suitable for further upgrading to either gaseous or liquid products. This thesis will evaluate the possibilities of producing, substitute natural gas, (SNG) from biomass gasification by using computer simulation. Three different gasification techniques were evaluated; entrained-flow, fluidized-bed and indirect gasification coupled with two different desulphurisation systems and two methanation processes. The desulphurisation systems were a zinc oxide bed and a Rectisol wash system. Methanation were performed by a series of adiabatic reactors with gas recycling and by an isothermal reactor. The impact on SNG efficiency from system pressure, isothermal methanation temperature and PSA methane recovery were evaluated as well. The results show that the fluidized-bed and the indirect gasifier have the highest SNG efficiency. Furthermore there are little to no difference between the methanation processes and small differences for the gas cleanup systems. SNG efficiencies in excess of 50 % were possible for all gasifiers. SNG efficiency is defined as the energy in the SNG product divided by the total input to the system from biomass, drying and oxygen. Increasing system pressure has a negative impact on SNG efficiency as well as increasing operating costs due to increased power for compression. Isothermal methanation temperature has no significant impact on SNG efficiency. Recovering as much methane as possible in the PSA is the most important parameter. Recovering methane that has been dissolved in condensed process water increases the SNG efficiency by 2-10% depending on system.

  15. Strengthening Canada's position in the North American natural gas market

    International Nuclear Information System (INIS)

    2001-09-01

    The Canadian Gas Association (CGA) is the industry organization that represents the Canadian natural gas and energy delivery industry. It is on the frontline of consumer perceptions regarding natural gas, which is the fuel of choice for Canadian homeowners. Canadian consumers have benefitted from the deregulation initiatives of the mid-1980s which provided significant growth opportunities. Given the tumultuous energy environment throughout North America, the CGA believes that a national energy strategy should be developed to address future supply issues and also to examine ways to ensure that extreme market shifts are anticipated and mitigated as much as possible. The CGA is ready to provide governments with input for such a strategy representing the perspective of the Canadian consumer. The CGA recommends that the Government of Canada, the provinces and territories adopt the following initiatives regarding the use of natural gas: (1) recognize and promote the environmental qualities and applications of natural gas, (2) encourage competition, (3) promote transparent and consistent approach to regulation, (4) reaffirm commitment to market-based policies, (5) facilitate economic research, analysis and communication about trends in the natural gas market, and (6) promote the development of new technologies that expand the uses of natural gas and support research in infrastructure development. The government's actions in the areas proposed in this report will contribute to advancing Canada's environmental objectives and economic growth. 2 figs

  16. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  17. Natural gas in India

    International Nuclear Information System (INIS)

    Lefevre, Thierry; Todoc, Jessie L.

    1999-11-01

    Contains Executive Summary and Chapters on: Country background; Overview of the energy sector; Natural gas supply; Natural gas infrastructure; Natural gas infrastructure; Natural gas demand; Outlook-government policy reform and industry development, and Appendices on Global and regional energy and gas trends; Overview of India's investment policy, incentives and regulation; The ENRON Dabhol power project. (Author)

  18. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Science.gov (United States)

    2013-06-26

    ... Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and...

  19. Natural Gas and CO2 Price Variation: Impact on the Relative Cost-Efficiency of LNG and Pipelines

    OpenAIRE

    Øverland, Indra; Ulvestad, Marte

    2012-01-01

    This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carri...

  20. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Science.gov (United States)

    2010-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... burning that fuel. Similarly, when your total heat input is greater than 50 percent distillate oil and...

  1. Fission gas release behaviour in MOX fuels

    International Nuclear Information System (INIS)

    Viswanathan, U.K.; Anantharaman, S.; Sahoo, K.C.

    2002-01-01

    As a part of plutonium recycling programme MOX (U,Pu)O 2 fuels will be used in Indian boiling water reactors (BWR) and pressurised heavy water reactors (PHWR). Based on successful test irradiation of MOX fuel in CIRUS reactor, 10 MOX fuel assemblies have been loaded in the BWR of Tarapur Atomic Power Station (TAPS). Some of these MOX fuel assemblies have successfully completed the initial target average burnup of ∼16,000 MWD/T. Enhancing the burnup target of the MOX fuels and increasing loading of MOX fuels in TAPS core will depend on the feedback information generated from the measurement of released fission gases. Fission gas release behaviour has been studied in the experimental MOX fuel elements (UO 2 - 4% PuO 2 ) irradiated in pressurised water loop (PWL) of CIRUS. Eight (8) MOX fuel elements irradiated to an average burnup of ∼16,000 MWD/T have been examined. Some of these fuel elements contained controlled porosity pellets and chamfered pellets. This paper presents the design details of the experimental set up for studying fission gas release behaviour including measurement of gas pressure, void volume and gas composition. The experimental data generated is compared with the prediction of fuel performance modeling codes of PROFESS and GAPCON THERMAL-3. (author)

  2. Environmental benefits and economic rationale of expanding the Italian natural gas private car fleet

    International Nuclear Information System (INIS)

    Ballardin, Giorgio

    2005-01-01

    There are several concerns which bring to consider natural gas as a viable alternative to liquid fuels in transport. First, natural gas allows the curbing of global pollution in this steadily growing industry. Indeed, decoupling greenhouse gas emissions from transport growth has become a major issue in tackling climate change. Second, a more extensive use of natural gas would relieve city air quality, which is presently at levels harmful of human health. Nonetheless, this is just one side of the coin. The other side entails building a refuelling station network, and this carries financial requirements. The financing fraction holds a pivotal role in deciding whether natural gas for automotive purposes is an efficient solution. The final aim of this work is, therefore, to compare the natural gas advantages, stemming from avoided global and local emission, with the economic rationale of engaging in supplementary model network investments. A system dynamics model underlies this study's economic reasoning and is taken as reference for quantitative assertions. The model, named CH 4 CleanerAir, contains data referring to two scenarios: a Business As Usual Scenario and an Expansion Scenario. Simulation runs in Expansion Scenario serve to understand how gaseous pollution diminishes and network investments rise when the natural gas-fuelled fleet, as share of the total fleet, increases. Are new infrastructures needs compatible with existing refuelling facilities? What is the extent by which the natural gas-fuelled fleet can actually reduce global and local emission? The scenarios' gap analysis lead to the work's final considerations. The sounder reductions of gaseous pollutants in the last years of the considered time lag make the overall assessment lean towards a positive evaluation of natural gas employment in this industry. The beneficial effects of increasing the natural gas-fuel-led fleet take some time to unfold, but they eventually prevail. This study shows how natural

  3. Development and implementation of a 600-MW natural gas cogeneration project - a financial case history

    International Nuclear Information System (INIS)

    Quinn, N.K.; Sherrill, R.L.

    1992-01-01

    In February 1990, General Electric Capital Corporation (GECC), through its wholly owned subsidiary, General Electric Power Funding Corporation (GEPFC), provided a number of commitments to a partnership (the Partnership) formed by a company that develops, owns, and operates cogeneration facilities to fund the development, construction, and permanent debt and equity financing of a 614 megawatt (M) cogeneration facility (the Project) to be located near a large refinery in the northeastern United States. The Project is unusual both for the magnitude of its natural gas requirements and for its contractual configuration. The Project's entire transportation needs and a substantial portion of its gas requirements will be met by a joint venture between two local gas distribution companies (the Joint Venture), one of which is a large gas-consuming utility in the eastern United States. The Project's power purchase customer, (the Utility Host), is another very large gas-consuming utility. Thus, the fuel cost recovery of the Project is determined by the Utility Host's gas costs while its actual bill for fuel will be heavily influenced by the Joint Venture's gas commodity and transportation costs. Therefore, in appraising the credit quality of the Project's proposed fuel supply arrangements, the key issue to be answered is: Are the Project's natural gas supply and transportation arrangements compatible with the fuel cost recovery provisions of the power sales agreement with the Utility Host? If so, then the sensitivity of the Project's financing to adverse gas price movements would be minimized

  4. Crude oil and natural gas supplies and demands for Denmark

    International Nuclear Information System (INIS)

    Mackay, R.M.; Probert, S.D.

    1995-01-01

    A novel technique for forecasting the supply and extraction life-cycle of a depleting fossil fuel resource has been developed. The supply side utilises a 'skewed-normal production-profile' model that yields a better representation than earlier approaches. A simple model for extrapolating crude oil and natural gas demands has also been devised, based on the so called 'modified logit function'. The predicted crude oil and natural gas balances for the period up to AD 2010 indicate the disparity between indigenous production and future consumption for Denmark. These forecasts depend on current estimates of remaining oil and gas reserves. It will consequently be necessary to revise periodically the present projections as more reliable reserve estimates become available. (author)

  5. Climate and health relevant emissions from in-use Indian three-wheelers fueled by natural gas and gasoline.

    Science.gov (United States)

    Reynolds, Conor C O; Grieshop, Andrew P; Kandlikar, Milind

    2011-03-15

    Auto-rickshaws in India use different fuels and engine technologies, with varying emissions and implications for air quality and climate change. Chassis dynamometer emission testing was conducted on 30 in-use auto-rickshaws to quantify the impact of switching from gasoline to compressed natural gas (CNG) in spark-ignition engines. Thirteen test vehicles had two-stroke CNG engines (CNG-2S) and 17 had four-stroke CNG engines (CNG-4S), of which 11 were dual-fuel and operable on a back-up gasoline (petrol) system (PET-4S). Fuel-based emission factors were determined for gaseous pollutants (CO(2), CH(4), NO(X), THC, and CO) and fine particulate matter (PM(2.5)). Intervehicle variability was high, and for most pollutants there was no significant difference (95% confidence level) between "old" (1998-2001) and "new" (2007-2009) age-groups within a given fuel-technology class. Mean fuel-based PM(2.5) emission factor (mean (95% confidence interval)) for CNG-2S (14.2 g kg(-1) (6.2-26.7)) was almost 30 times higher than for CNG-4S (0.5 g kg(-1) (0.3-0.9)) and 12 times higher than for PET-4S (1.2 g kg(-1) (0.8-1.7)). Global warming commitment associated with emissions from CNG-2S was more than twice that from CNG-4S or PET-4S, due mostly to CH(4) emissions. Comprehensive measurements and data should drive policy interventions rather than assumptions about the impacts of clean fuels.

  6. Using size distribution analysis to forecast natural gas resources in Asia Pacific

    International Nuclear Information System (INIS)

    Aguilera, Roberto F.; Ripple, Ronald D.

    2011-01-01

    Highlights: → We estimate the total endowment of conventional natural gas in Asia Pacific. → Includes volumes in previously unassessed provinces. → Endowment distributed across countries to show where volumes are most likely to be found. → A breakdown between offshore versus onshore resources is also estimated. → We find there is a significant natural gas endowment in the region. -- Abstract: Increasing energy consumption in Asia Pacific will largely be met by fossil fuels. Natural gas production in the region presently ranks behind that of oil and coal. However, the abundance of gas could lead to a significant gas market share increase in the energy mix. The purpose of this paper is to estimate the total endowment of conventional gas in Asia Pacific. This is carried out with a Variable Shape Distribution (VSD) model that forecasts volumes in provinces that have not been previously evaluated. The endowment is then distributed across countries to show where volumes are most likely to be found. A breakdown between offshore versus onshore resources is also estimated. The results of the analysis show there is a significant gas endowment. The estimated distribution across countries and onshore/offshore areas provides insight into the relative economics of gas production, as well as a basis for potential investment decisions. With appropriate energy policies, it may be possible to tap the vast gas potential in Asia Pacific. Considering gas may be the most abundant, inexpensive, and clean fossil fuel, the outcome would be increased energy security and a low carbon economy.

  7. Substituting natural gas heating for electric heating: assessment of the energy and environmental effects in Ontario

    International Nuclear Information System (INIS)

    Rosen, M.A.; Sy, E.; Gharghouri, P.

    1996-01-01

    A study was conducted to find practical ways to reduce Ontario's energy consumption and environmental emissions. A major portion of the study focused on the advantages of cogeneration in certain regions and sectors of Ontario. Substituting direct fuel heating with natural gas for electric heating was the principal recommendation. Results of a technical analysis of the effects of substituting electric heating with natural gas heating were described. One of the benefits of this substitution would be reduced fuel energy requirements for direct heating, relative to the two-step process of electricity generation followed by electric heating. It was suggested that natural gas should still be used for electricity generation because natural gas has many advantages as an electricity supply option including reductions in coal and uranium use and related emissions. It was recommended that developers and designers of energy systems seriously consider this option. 33 refs., 2 tabs., 4 figs

  8. Natural gas in Europe: Development prospects

    International Nuclear Information System (INIS)

    Pasetto, R.

    1992-01-01

    Today, natural gas covers 16% of primary energy demand in Europe. Consumption of this fuel is set at about 380 billion cubic meters to which we can add about 700 billion consumed in the ex-COMECON countries. Europe's consumption alone is forecasted by many to rise to 500 billion cubic meters at the turn of the century and to 600 billion by the year 2010. It is expected that the power plant sector will account for one-third of this rise in consumption. Even if domestic production of this fuel is maximized and foreign suppliers maintain their production trends, the expected demand increases in industriali--ed countries can be sufficiently satisfied only by recourse to new suppliers located in the far reaches of the globe

  9. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  10. Natural gas pricing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    Natural gas pricing is the heart and soul of the gas business. Price specifically affects every phase of the industry. Too low a price will result in short supplies as seen in the mid-1970s when natural gas was scarce and in tight supply. To fully understand the pricing of this energy commodity, it is important to understand the total energy picture. In addition, the effect and impact of world and US economies, and economics in general are crucial to understanding natural gas pricing. The purpose of this presentation will be to show the parameters going into US natural gas pricing including the influence of the many outside industry factors like crude oil and coal pricing, market drivers pushing the gas industry, supply/demand parameters, risk management for buyers and sellers, and other elements involved in pricing analysis

  11. Simulation of fuel demand for wood-gas in combustion engine

    Directory of Open Access Journals (Sweden)

    Botwinska Katarzyna

    2017-01-01

    Full Text Available In the era of the oil crisis and proceeding contamination of the natural environment, it is attempted to substitute fossil raw materials with alternative carriers. For many years, road transport has been considered as one of the main sources of the substances deteriorating air quality. Applicable European directives oblige the member states to implement biofuels and biocomponents into the general fuel market, however, such process is proceeding gradually and relatively slowly. So far, alternative fuels have been used on a large scale to substitute diesel fuel or petrol. Derivatives of vegetable raw materials, such as vegetable oils or their esters and ethanol extracted from biomass, are used to that end. It has been noticed that there is no alternative to LPG which, due to financial reasons, is more and more popular as fuel in passenger cars. In relation to solutions adopted in the past, it has been decided to analyse the option of powering a modern passenger car with wood gas - syngas. Such fuel has been practically used since the 1920's. To that end, a computer simulation created in SciLab environment was carried out. Passenger car Fiat Seicento, fitted with Fire 1.1 8V petrol engine with power of 40kW, whose parameters were used to prepare the model, was selected as the model vehicle. The simulation allows the determination of engine demand on the given fuel. Apart from the wood gas included in the title, petrol, methane and LPG were used. Additionally, the created model enables the determination of the engine power at the time of the indicated fuels supply. The results obtained in the simulation revealed considerable decrease in the engine power when the wood gas was supplied and the increased consumption of this fuel. On the basis of the analysis of the professional literature describing numerous inconveniences connected with the use of this fuel as well as the obtained results, it has been established that using the wood gas as alternative

  12. Simulation of fuel demand for wood-gas in combustion engine

    Science.gov (United States)

    Botwinska, Katarzyna; Mruk, Remigiusz; Tucki, Karol; Wata, Mateusz

    2017-10-01

    In the era of the oil crisis and proceeding contamination of the natural environment, it is attempted to substitute fossil raw materials with alternative carriers. For many years, road transport has been considered as one of the main sources of the substances deteriorating air quality. Applicable European directives oblige the member states to implement biofuels and biocomponents into the general fuel market, however, such process is proceeding gradually and relatively slowly. So far, alternative fuels have been used on a large scale to substitute diesel fuel or petrol. Derivatives of vegetable raw materials, such as vegetable oils or their esters and ethanol extracted from biomass, are used to that end. It has been noticed that there is no alternative to LPG which, due to financial reasons, is more and more popular as fuel in passenger cars. In relation to solutions adopted in the past, it has been decided to analyse the option of powering a modern passenger car with wood gas - syngas. Such fuel has been practically used since the 1920's. To that end, a computer simulation created in SciLab environment was carried out. Passenger car Fiat Seicento, fitted with Fire 1.1 8V petrol engine with power of 40kW, whose parameters were used to prepare the model, was selected as the model vehicle. The simulation allows the determination of engine demand on the given fuel. Apart from the wood gas included in the title, petrol, methane and LPG were used. Additionally, the created model enables the determination of the engine power at the time of the indicated fuels supply. The results obtained in the simulation revealed considerable decrease in the engine power when the wood gas was supplied and the increased consumption of this fuel. On the basis of the analysis of the professional literature describing numerous inconveniences connected with the use of this fuel as well as the obtained results, it has been established that using the wood gas as alternative fuel is currently

  13. Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH)

    International Nuclear Information System (INIS)

    Nogami, T.; Oya, N.; Ishida, H.; Matsumoto, H.

    2008-01-01

    Recent studies in Japan have suggested that natural gas hydrate (NGH) transportation of natural gas is more economical than liquefied natural gas (LNG) transportation systems for small, medium and remote gas fields. Researchers in Japan have built a 600 kg per day NGH production and pelletizing plant and regasification facility. This paper discussed feasibility studies conducted in southeast Asia to determine the unit's commercialization potential with large natural gas-related businesses including shipping companies and electric power utilities. The total supply chain was compared with the corresponding liquefied natural gas (LNG) and compressed natural gas (CNG) supply chains. The study also examined natural gas reserves, energy policies, the positioning of natural gas supplies, and future forecasts of natural gas demand. A conceptual design for an NGH supply chain in Indonesia was presented. Results of the study have demonstrated that the NGH chain is an appropriate and economically feasible transportation method for many areas in southeast Asia. 8 refs., 10 figs

  14. Nanoporous Materials for the Onboard Storage of Natural Gas.

    Science.gov (United States)

    Kumar, K Vasanth; Preuss, Kathrin; Titirici, Maria-Magdalena; Rodríguez-Reinoso, Francisco

    2017-02-08

    Climate change, global warming, urban air pollution, energy supply uncertainty and depletion, and rising costs of conventional energy sources are, among others, potential socioeconomic threats that our community faces today. Transportation is one of the primary sectors contributing to oil consumption and global warming, and natural gas (NG) is considered to be a relatively clean transportation fuel that can significantly improve local air quality, reduce greenhouse-gas emissions, and decrease the energy dependency on oil sources. Internal combustion engines (ignited or compression) require only slight modifications for use with natural gas; rather, the main problem is the relatively short driving distance of natural-gas-powered vehicles due to the lack of an appropriate storage method for the gas, which has a low energy density. The U.S. Department of Energy (DOE) has set some targets for NG storage capacity to obtain a reasonable driving range in automotive applications, ruling out the option of storing methane at cryogenic temperatures. In recent years, both academia and industry have foreseen the storage of natural gas by adsorption (ANG) in porous materials, at relatively low pressures and ambient temperatures, as a solution to this difficult problem. This review presents recent developments in the search for novel porous materials with high methane storage capacities. Within this scenario, both carbon-based materials and metal-organic frameworks are considered to be the most promising materials for natural gas storage, as they exhibit properties such as large surface areas and micropore volumes, that favor a high adsorption capacity for natural gas. Recent advancements, technological issues, advantages, and drawbacks involved in natural gas storage in these two classes of materials are also summarized. Further, an overview of the recent developments and technical challenges in storing natural gas as hydrates in wetted porous carbon materials is also included

  15. Liquefied natural gas as an instrument of enhancing natural gas markets in Northeastern Brazil; Gas natural liquefeito: o indutor da massificacao do uso do gas natural no nordeste brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, Emilio Jose Rocha; Nobre, Junior, Ernesto Ferreira; Arruda, Joao Bosco Furtado [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Programa de Mestrado em Engenharia de Transportes; br, nobre@nupeltd ufc; br, barruda@nupeltd ufc; Praca, Eduardo Rocha [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Nucleo de Pesquisa, Transporte, Logistica e Desenvolvimento

    2004-07-01

    The Brazilian Government, through the Program of massification of the use of the natural gas (NG), it tries to motivate the increase of the participation of this fuel in the national energy head office, stimulating his/her use in the most several sections. In the specific case of the Northeast, where thankfully problems of offer of this energy one exist, the discussion fits if the current proposal of the construction of costly gas pipelines should be implemented or she should use alternative forms to supply the demand for NG of the area (virtual gas pipelines: LNG or CNG). These technologies can induce the use in mass of NG, allowing not only the use of this energy nobleman for great consumers, as well as for the small ones, stimulating the increase of the energy efficiency. This article has as objective to do a reflection on the Northeastern market of NG and the forms of provisioning, using LNG, of areas now no assisted by the mesh of gas pipelines and that you/they are potential consuming. Before that solution alternatives will be discussed for a crucial subject in the expansion of the market of NG: the need of the construction of gas pipelines to supply markets no formed. Corroborating, like this, with the Plan of massification of the use of NG, generating alternative subsidies for the projects of expansion of markets of the energy. (author)

  16. Which future for natural gas in the European-Mediterranean area

    International Nuclear Information System (INIS)

    Giesbert, J.Ch.

    1997-01-01

    In the Mediterranean sea surrounding countries, energy consumption and in particular natural gas, is growing up. However, this development requires the mobilization of important capitals and the creation of multilateral partnerships. These investments must be realized when southern and eastern Mediterranean countries will change for a market economy and when the energy market in the European Union is liberalizing. This paper describes the situation of the development of natural gas uses in the Maghreb countries (power production, development of cogeneration systems, supply of LPG fuels for domestic uses, development of distribution and transportation systems) and the position of European gas companies with respect to this developing market: investments, risks assessment, European Union warranty, liberalization of gas markets in the Maghreb countries and in the European union. (J.S.)

  17. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    International Nuclear Information System (INIS)

    MaClean, H.L.; Lave, L.B.

    2000-01-01

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency

  18. Hydrogen Addition for Improved Lean Burn Capability on Natural Gas Engine

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Tobias [Lund Inst. of Technology (Sweden). Dept. of Heat and Power Engineering

    2002-12-01

    Lean burn spark ignition (SI) engines powered by natural gas is an attractive alternative to the Diesel engine, especially in urban traffic, where reduction of tailpipe emissions are of great importance. A major benefit is the large reduction in soot (PM). Lean burn spark ignition (SI) engines yield high fuel conversion efficiency and also relatively low NO{sub x} emissions at full load. In order to improve the engine operating characteristics at lower loads, the {lambda}-value is normally reduced to some degree, with increased NO{sub x} emissions and reduced efficiency as a result. This is a drawback for the lean burn engines, especially in urban applications such as in city buses and distribution trucks for urban use. So, it is desirable to find ways to extend the lean limit at low loads. One way to improve these part load properties is to add hydrogen to the natural gas in order to improve the combustion characteristics of the fuel. It is possible to extend the lean limit of a natural gas engine by addition of hydrogen to the primary fuel. This report presents measurements made on a single cylinder 1.6 liter natural gas engine. Two combustion chambers, one slow and one fast burning, were tested with various amounts of hydrogen (0 to 20 %-vol) added to natural gas. Three operating conditions were investigated for each combustion chamber and each hydrogen content level; idle, wide open throttle (WOT) and a high load condition (simulated turbo charging). For all three operating conditions, the air/fuel ratio was varied between stoichiometric and the lean limit. For each operating point, the ignition timing was swept in order to find maximum brake torque (MBT) timing. In some cases were the ignition timing limited by knock. Heat release rate calculations were made in order to assess the influence of hydrogen addition on burn rate. Addition of hydrogen showed an increase in burn rate for both combustion chambers, resulting in more stable combustion close to the lean

  19. Investigation of an anti-knock index and hydrocarbon emissions of various natural gas blends.

    Science.gov (United States)

    2016-04-01

    The North American rail industry is examining the use of natural gas to reduce fuel costs for locomotives that are powered by dual : fuel engines. This report evaluates the ability of an existing methane number algorithm to predict rapid combustion i...

  20. Performance Study of Dual Fuel Engine Using Producer Gas as Secondary Fuel

    Directory of Open Access Journals (Sweden)

    Deepika Shaw

    2016-06-01

    Full Text Available In the present paper, development of producer gas fuelled 4 stroke diesel engine has been investigated. Producer gas from biomass has been examined and successfully operated with 4 stroke diesel engine. The effects of higher and lower loads were investigated on the dual fuel mode. The experimental investigations revealed that at lower loads dual fuel operation with producer gas shows lower efficiency due to lower combustion rate cause by low calorific value of the producer gas. Beyond 40% load the brake thermal efficiency of dual fuel operation improved due to faster combustion rate of producer gas and higher level of premixing. It can be observed that at lower load and 20% opening of producer gas the gaseous fuel substitution found to be 56% whereas at 100% opening of producer gas it reaches 78% substitution. The CO2 emission increased at high producer gas opening and high load because at 100% producer gas maximum atoms of carbons were there and at high load condition the diesel use increased. At 80% load and producer gas varying from 20% to 100. Power output was almost comparable to diesel power with marginal higher efficiency. Producer gas is one such technology which is environmentally benign and holds large promise for future.