WorldWideScience

Sample records for natural gas distribution systems

  1. Logistical management system for natural gas distribution; Sistema de gestao logistica para a distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Joao Bosco F; Nobre, Junior, Ernesto F; Praca, Eduardo R [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Nucleo de Pesquisa em Logistica, Transportes e Desenvolvimento

    2004-07-01

    The Brazilian Federal Government has the very purpose of increasing the participation of the Natural Gas in the primary energy internal supply from 7,5% nowadays to about 12% till 2010. However, for that, it is necessary to eliminate the great impedance represented by the restricted accessibility to the product, due to the high distribution costs involved. So, there is an urgent need for availability of technologies to help natural gas distribution systems. This paper proposes an innovative logistics-based approach on the subject of the natural gas distribution, through a computational tool (GASLOG System) to be applied in the North and Northeastern urban and country areas of Brazil, with initial case study in the city of Fortaleza. In its conception, the GASLOG System focuses on the point-of-view of everyone of the actors involved with the natural gas distribution process trying to respond their particular necessities in the sector. (author)

  2. GeoCEGAS: natural gas distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Lorena C.J. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil); Targa, Fernando O. [Gestao Empresarial e Informatica Ltda. (GEMPI), Sao Paulo, SP (Brazil)

    2009-07-01

    This Technical Paper approach the conception, architecture, design, construction, and implementation of GeoCEGAS, a spatially enabled corporate management information system, oriented to store and provide Web access, to information associated with the natural gas distribution network, owned by CEGAS. This paper reports business processes, business entities and business intelligence approached on the project, as well as an overview of system architecture, applications, and technology used on the implementation of GeoCEGAS. Finally, is presented an introduction to the work methodology used, as well a synopsis of benefits achievements. (author)

  3. Distribution forms for biogas and natural gas in Sweden

    International Nuclear Information System (INIS)

    Benjaminsson, Johan; Nilsson, Ronny

    2009-11-01

    Since biogas and natural gas basically have the same characteristics, they can be distributed in the same system. In the parts of the country where there is an extensive natural gas distribution network, the infrastructure for natural gas can be used for distribution of biogas. In order to increase the use of renewable energy, it is a political ambition to increase the share of biogas in the natural gas network, and, in the long run, entirely replace natural gas with biogas. Much of biogas production in the country is, however, not reached by the existing natural gas network, and this is also the case for a large part of the potential for future biogas production. In these areas the gas is transported in more or less extensive local gas distribution networks and by truck in compressed or liquid form. Transport of compressed and liquefied gas is efficient in some cases and development of these systems is an ongoing process. A number of facilities are planned for production of large quantities of biogas, several hundred GWh/year, through digestion and gasification processes. These plants will be located either in conjunction with major gas consumers or in the vicinity of the existing natural gas grid. The potential for biogas production is, however, present throughout the country and in order to meet market demand biogas requires efficient distribution systems

  4. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A

  5. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  6. Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

  7. Natural gas transmission and distribution model of the National Energy Modeling System

    International Nuclear Information System (INIS)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA's modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes

  8. Natural gas transmission and distribution model of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  9. Health risk assessment linked with purified biogas injection in a natural gas distribution system

    International Nuclear Information System (INIS)

    Leroux, Carole; Modelon, Hugues; Rousselle, Christophe; Zdanevitch, Isabelle; Evanno, Sebastien

    2009-06-01

    This document provides for the opinion of the French Agency for Environmental and Occupational Health and Safety (Afsset) expressed after the collective expertise carried out for the evaluation of the health risk linked with biogas injection in the natural gas distribution system. Following the recommendations issued by the Afsset, works have been started in order to collect the sludge-derived biogas and to analyse its composition. These data will be used to assess accidental risks (resulting from biogas valorisation, pipeline transport, industrial and domestic energy valorisation) as well as health risks for users (resulting from the injection in the natural gas distribution system)

  10. Flue gas recovery system for natural gas combined heat and power plant with distributed peak-shaving heat pumps

    International Nuclear Information System (INIS)

    Zhao, Xiling; Fu, Lin; Wang, Xiaoyin; Sun, Tao; Wang, Jingyi; Zhang, Shigang

    2017-01-01

    Highlights: • A flue gas recovery system with distributed peak-shaving heat pumps is proposed. • The system can improve network transmission and distribution capacity. • The system is advantageous in energy saving, emission reduction and economic benefits. - Abstract: District heating systems use distributed heat pump peak-shaving technology to adjust heat in secondary networks of substations. This technology simultaneously adjusts the heat of the secondary network and reduces the return-water temperature of the primary network by using the heat pump principle. When optimized, low temperature return-water is able to recycle more waste heat, thereby further improving the heating efficiency of the system. This paper introduces a flue gas recovery system for a natural gas combined heat and power plant with distributed peak-shaving heat pumps. A pilot system comprising a set of two 9F gas-steam combined cycle-back pressure heating units was used to analyse the system configuration and key parameters. The proposed system improved the network transmission and distribution capacity, increased heating capacity, and reduced heating energy consumption without compromising heating safety issues. As such, the proposed system is advantageous in terms of energy saving, emission reduction, and economic benefits.

  11. Trends in natural gas distribution and measurements

    International Nuclear Information System (INIS)

    Crone, C.F.A.

    1993-01-01

    On the occasion of the GAS EXPO 93, to be held from 13-15 October 1993 in Amsterdam, Netherlands, an overview is given of trends in the distribution of natural gas and the measuring of natural gas, as noted by experts from the energy utilities, GASTEC and Gasunie in the Netherlands. With regard to the natural gas distribution trends attention is paid to synthetic materials, the environmental effects, maintenance, underground natural gas pressure control, horizontal drilling (no-dig techniques), and other trends. With regard to natural gas metering trends brief discussions are given of the direct energy meter, the search for a new gas meter in households, telemetering, improving the accuracy of the gas meters by means of electronics, on the spot calibration of large gas meters, the use of an online chromatograph to determine the calorific value, the development of a calibration instrument, the so-called piston prover, to measure large quantities of natural gas, the recalibration of natural gas stations, the ultrasonic gas meter, and finally the quality of the natural gas supply. 1 fig., 11 ills

  12. Security resolution minute for natural gas distribution pipeline; Minuta de resolucao de seguranca na distribuicao do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Marcus de Barros [ARCE - Agencia Reguladora de Servicos Publicos Delegados do Estado do Ceara, Fortaleza, CE (Brazil)

    2003-07-01

    In the current scenery of natural gas distribution regulation, there is no specific resolution about security. The security is boarded in few concession contracts of some private gas companies, but not as principal theme. The security resolution minute presented in this paper aim break the direct and indirect causes of accidents, eliminating their potential. In this new point of view, the quality of services is the principal cause to guarantee the security of natural gas distribution systems. The methodology used to develop the minute was based on the research of Brazilian and American resolutions of state regulation agencies, concession contracts of private distribution gas companies, American code of federal regulation, ASME code for pressure piping B31.8 - 1999 edition and the NBR 12712 standard. The result of the research was the elaboration of an specific minute resolution of security that can be used as reference in the fiscalization of the natural gas distribution piping companies activities. This minute, can be an important instrument to avoid accidents and incidents, eliminating prejudices to the people, to properties, to environment and to the image of natural gas distribution companies and regulation agencies. (author)

  13. Regulatory issues of natural gas distribution; Aspectos regulatorios acerca da distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Fabio Augusto C.C.M.; Costa, Hirdan Katarina de M. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Faculdade de Direito

    2004-07-01

    In these past few years, natural gas in Brazil has arised as one of the alternatives for the energetic crisis suffered by the country. Such situation was one of the motives for its expansion, rising, after that, the importance of the regulation of its distribution. The regulation of canalized natural gas distribution can be found in the Federal Constitution, after Constitutional Amendment n. 05/95, in the article n. 25, para. 2nd, which say that belongs to the Federal States the concession or direct exercise of canalized natural gas services, now clearly classified as a public service. In order of these events, its imperative the analysis of natural gas distribution's public service, because it belongs to the Federal States. According to this situation, the study of the new regulatory function of the Administration and the tracing of action for the regulatory state agencies are the main goals of this work. As so, the present research aims to focus the reflexes from the actual dimension of natural gas distribution, specially referring to its regulatory statements, the limitations of state agencies, the National Petroleum Agency and the market where distribution belongs, and particularly the open access of new agents. (author)

  14. Natural gas distribution in Brazil - opportunities of improvement; Distribuicao de gas natural no pais - oportunidades de melhoria

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Silvia R. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Quintella, Odair M.; Farias Filho, Jose R. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    2005-07-01

    Great are the challenges established by the Brazilian Government related to goals to be achieved for the increment of the Natural Gas participation in brazilian energetic matrix, from current 5% to 12%, up to 2010. The enlargement of the distribution infrastructure of the gas (gas-pipelines 'mesh') in Brazil is considered one of the greatest challenges for the growth of the Brazilian market of Natural Gas, accomplishment that involves elevated investments. This paper presents a model of Management System for the good organizational performance of the small Natural Gas Supplying Brazilian Companies focused on criteria of Leadership, Strategies and Plans and Results, established by the Premio TOP Empresarial and by the 'Rumo a Excelencia', held by the 'Progama Qualidade Rio' and 'Fundacao para o Premio Nacional da Qualidade', respectively. The management practices of these companies were reviewed, considering the context of the energetic Brazilian scenario, subjected to the political and operational definitions and uncertainties, the available financial resources, limited or not prioritized, and actual barriers to be surpassed by the Gas Supplying Companies in order to achieve the pre-established government goals for this segment. The implementation of the proposed simplified Model, seen as improvement opportunities for the segment of Natural Gas distribution, will lead the Gas Distribution Companies to a intermediary stage envisioning the real steps towards the excellence of the performance. (author)

  15. Intelligent system for control and automation of natural gas distribution operation; Sistema inteligente de controle e automacao da operacao de distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Scucuglia, Jose W.; Souza, Celso C. [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Curso de Engenharia Eletrica; Patricio, Cristian M.M.M.; Cruz, Lauro C.; Reis, Antonio M.; Cortez, Marco A.A.; Maldonado, Waldemar; Rosa, Willian A. [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Nucleo de Energia, Automacao e Controle; Teixeira, Marcelo C.M. [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia Eletrica; Carrasco, Benjamim [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The present work has as objective to present the development of a dedicated intelligent system to the operation of natural gas distribution. The system adds tools of project, simulation, supervision and control of the flow of natural gas in networks distribution, and is composed of hardware and intelligent software. The developed software possess friendly graphical interface, so that the operator composing visually the distribution network automatically, composes a mathematical model formed by a set of differential equations, being solved by the Newton-Raphson method. This tool of simulation allows, in function of network topology, to get through simulation the conditions gas flow in each point of the loop flow. The micro controlled hardware for acquisition of the data in real time and control of valves was developed. The hardware possesses flexible communication (Radio Frequency, Ethernet and Optical Fiber), intelligence for decision taking and auto test of its proper functioning, so that guarantee security in the operations. An implanted neural system in software propitiates the control monitoring of the characteristics operation and conditions of leak with loss of load, identifying inclusive the place of this leak along of the duct. A system with national technology was gotten, of low cost and high added technological value. (author)

  16. Biogas in the natural gas distribution network; Biogas til nettet

    Energy Technology Data Exchange (ETDEWEB)

    Kvist Jensen, T.

    2009-05-15

    With the Danish 'Thorsoe Biogas Plant' as reference case, an assessment of the possibility of using the existing natural gas distribution network for distributing biogas was carried out. Technologies for and cost of upgrading biogas to natural gas quality are presented. Furthermore, a socio-economic analysis has been performed, including the Danish financial conditions, the market models, and the role of the natural gas distribution companies.

  17. Japan does it mainly compact and flexible: Innovate improvements in the natural gas distribution technique and gas appliances

    International Nuclear Information System (INIS)

    Roebers, H.

    1994-01-01

    Specific Japanese innovative improvements in natural gas distribution systems and natural gas appliances are outlined, based on the KAI-ZEN philosophy. Attention is paid to the design of flexible gas pipes, gas plug-in sockets, and safety systems, and the compact design of gas appliances. Much of the innovations focus on details. Briefly, the NEXT 21 project is described, which project anticipates the silent wishes of the Japanese people with regard to lifestyle

  18. Land based use of natural gas - distribution solutions

    International Nuclear Information System (INIS)

    Jordanger, Einar; Moelnvik, Mona J.; Owren, Geir; Einang, Per Magne; Grinden, Bjoern; Tangen, Grethe

    2002-05-01

    The report presents results from the project ''Landbasert bruk av naturgass - distribusjonsloesninger'' (Land based use of natural gas - distribution solutions). It describes the aims of the project, the political external conditions for the use of natural gas, some environmental profits by changing from petroleum and coal to natural gas, the Norwegian infrastructure, the optimisation of energy transport, strategic consequences of the introduction of LNG and the practical consequences of the Enova strategy

  19. Natural gas demand forecast system based on the application of artificial neural networks

    International Nuclear Information System (INIS)

    Sanfeliu, J.M.; Doumanian, J.E.

    1997-01-01

    Gas Natural BAN, as a distribution gas company since 1993 in the north and west area of Buenos Aires Argentina, with 1,000,000 customers, had to develop a gas demand forecast system which should comply with the following basic requirements: Be able to do reliable forecasts with short historical information (2 years); Distinguish demands in areas of different characteristics, i.e. mainly residential, mainly industrial; Self-learning capability. To accomplish above goals, Gas Natural BAN chose in view of its own necessities, an artificial intelligence application (neural networks). 'SANDRA', the gas demand forecast system for gas distribution used by Gas Natural BAN, has the following features: Daily gas demand forecast, Hourly gas demand forecast and Breakdown of both forecast for each of the 3 basic zones in which the distribution area of Gas Natural BAN is divided. (au)

  20. Transference and natural gas distribution system analysis utilizing hybrid modelling; Analise de sistemas de transferencia e distribuicao de gas natural utilizando modelagem hibrida

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Robson A.; Martinkoski, Ricardo [Centro Federal de Educacao Tecnologica do Parana (CEFET), Curitiba, PR (Brazil); Neves Junior, Flavio [Centro Federal de Educacao Tecnologica do Parana (CEFET), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial

    2003-07-01

    The objective of this article is to apply techniques of formal specification in modelling of natural gas transmission and distribution systems. In this case the formal models are characterized by using hybrid automata. Initially the existent components in the net are modeled and represented by independent hybrid automata. The global dynamics is obtained through the product hybrid automata. Languages representing the desirable states of the system are obtained from the hybrid automata, allowing a hybrid control procedure. An automatic tool as SHIFT must be used to modelling and simulation. (author)

  1. Essentials of natural gas microturbines

    CERN Document Server

    Boicea, Valentin A

    2013-01-01

    Addressing a field which, until now, has not been sufficiently investigated, Essentials of Natural Gas Microturbines thoroughly examines several natural gas microturbine technologies suitable not only for distributed generation but also for the automotive industry. An invaluable resource for power systems, electrical, and computer science engineers as well as operations researchers, microturbine operators, policy makers, and other industry professionals, the book: Explains the importance of natural gas microturbines and their use in distributed energy resource (DER) systemsDiscusses the histor

  2. Natural gas industry R and D

    International Nuclear Information System (INIS)

    Pavan, S.

    1992-01-01

    The last three decades have witnessed significant developments in engineering relative to the distribution and use of natural gas. This paper reviews these developments which, in natural gas distribution, include - polyethylene conduits, the use of radar to trace buried conduits, telemetering, innovative pressure reducing techniques and equipment, optimized retrofitting of buried pipelines, leak detection techniques, and energy recovery systems applied to pressure reducing operations. Relative to the efficient combustion and new uses of natural gas, the paper reviews the state-of-the-art in the design of compact wall mounted gas fired boilers for building space heating, gas fuelled space heating ventilation and air conditioning systems, and natural gas fed fuel cells

  3. Advanced model for expansion of natural gas distribution networks based on geographic information systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Rosado, I.J.; Fernandez-Jimenez, L.A.; Garcia-Garrido, E.; Zorzano-Santamaria, P.; Zorzano-Alba, E. [La Rioja Univ., La Rioja (Spain). Dept. of Electrical Engineering; Miranda, V.; Montneiro, C. [Porto Univ., Porto (Portugal). Faculty of Engineering]|[Inst. de Engenharia de Sistemas e Computadores do Porto, Porto (Portugal)

    2005-07-01

    An advanced geographic information system (GIS) model of natural gas distribution networks was presented. The raster-based model was developed to evaluate costs associated with the expansion of electrical networks due to increased demand in the La Rioja region of Spain. The model was also used to evaluate costs associated with maintenance and amortization of the already existing distribution network. Expansion costs of the distribution network were modelled in various demand scenarios. The model also considered a variety of technical factors associated with pipeline length and topography. Soil and slope data from previous pipeline projects were used to estimate real costs per unit length of pipeline. It was concluded that results obtained by the model will be used by planners to select zones where expansion is economically feasible. 4 refs., 5 figs.

  4. Further comprehension of natural gas accumulation, distribution, and prediction prospects in China

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-06-01

    Full Text Available In-depth research reveals that the natural gas accumulation and distribution are characterized by cycle, sequence, equilibrium, traceability, and multi-stage. To be specific, every geotectonic cycle represents a gas reservoir forming system where natural gas is generated, migrated, accumulated, and formed into a reservoir in a certain play. Essentially, hydrocarbon accumulation occurs when migration force and resistance reach an equilibrium. In this situation, the closer to the source rock, the higher the accumulation efficiency is. Historically, reservoirs were formed in multiple phases. Moreover, zones in source rocks and adjacent to source rocks, unconformity belts, and faulted anticline belts are favorable areas to finding large gas fields. Apart from the common unconformity belts and faulted anticline belts, in-source and near-source zones should be considered as critical targets for future exploration. Subsequent exploration should focus on Upper Palaeozoic in the southeastern Ordos Basin, Triassic in southwestern Sichuan Basin, Jurassic in the northern section of the Kuqa Depression and other zones where no great breakthroughs have been made. Keywords: Large gas field, Distribution characteristics, Potential zone, Prospect

  5. Performance study of an innovative natural gas CHP system

    International Nuclear Information System (INIS)

    Fu, Lin; Zhao, Xiling; Zhang, Shigang; Li, Yan; Jiang, Yi; Li, Hui; Sun, Zuoliang

    2011-01-01

    In the last decade, technological innovation and changes in the economic and regulatory environment have resulted in increased attention to distributed energy systems (DES). Combined cooling heating and power (CHP) systems based on the gas-powered internal combustion engine (ICE) are increasingly used as small-scale distribution co-generators. This paper describes an innovative ICE-CHP system with an exhaust-gas-driven absorption heat pump (AHP) that has been set up at the energy-saving building in Beijing, China. The system is composed of an ICE, an exhaust-gas-driven AHP, and a flue gas condensation heat exchanger (CHE), which could recover both the sensible and latent heat of the flue gas. The steady performance and dynamic response of the innovative CHP system with different operation modes were tested. The results show that the system's energy utilization efficiency could reach above 90% based on lower heating value (LHV) of natural gas; that is, the innovative CHP system could increase the heat utilization efficiency 10% compared to conventional CHP systems, and the thermally activated components of the system have much more thermal inertia than the electricity generation component. The detailed test results provide important insight into CHP performance characteristics and could be valuable references for the control of CHP systems. The novel CHP system could take on a very important role in the CHP market. (author)

  6. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues

  7. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  8. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  9. Distributed Energy Generation Systems Based on Renewable Energy and Natural Gas Blending: New Business Models for Economic Incentives, Electricity Market Design and Regulatory Innovation

    Science.gov (United States)

    Nyangon, Joseph

    Expansion of distributed energy resources (DERs) including solar photovoltaics, small- and medium-sized wind farms, gas-fired distributed generation, demand-side management, and energy storage poses significant complications to the design, operation, business model, and regulation of electricity systems. Using statistical regression analysis, this dissertation assesses if increased use of natural gas results in reduced renewable energy capacity, and if natural gas growth is correlated with increased or decreased non-fossil renewable fuels demand. System Generalized Method of Moments (System GMM) estimation of the dynamic relationship was performed on the indicators in the econometric model for the ten states with the fastest growth in solar generation capacity in the U.S. (e.g., California, North Carolina, Arizona, Nevada, New Jersey, Utah, Massachusetts, Georgia, Texas, and New York) to analyze the effect of natural gas on renewable energy diffusion and the ratio of fossil fuels increase for the period 2001-2016 to policy driven solar demand. The study identified ten major drivers of change in electricity systems, including growth in distributed energy generation systems such as intermittent renewable electricity and gas-fired distributed generation; flat to declining electricity demand growth; aging electricity infrastructure and investment gaps; proliferation of affordable information and communications technologies (e.g., advanced meters or interval meters), increasing innovations in data and system optimization; and greater customer engagement. In this ongoing electric power sector transformation, natural gas and fast-flexing renewable resources (mostly solar and wind energy) complement each other in several sectors of the economy. The dissertation concludes that natural gas has a positive impact on solar and wind energy development: a 1% rise in natural gas capacity produces 0.0304% increase in the share of renewable energy in the short-run (monthly) compared

  10. Natural gas power generation: interruptible gas distribution network regulation; Geracao termoeletrica a gas natural: regulacao do segmento interruptivel de distribuicao de gas canalizado

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Claudio Paiva de; Kann, Zevi [Agencia Reguladora de Saneamento e Energia do Estado de Sao Paulo (ARSESP), SP (Brazil)

    2008-07-01

    The paper relates studies regarding the natural gas distribution network interruptible branch. This new service can be appropriate for thermal power generation on flexible dispatch mode, as 'take or pay' contracts surplus jobs. The paper indicates no regulatory restraints in an interruptible network implantation. The final conclusion is that interruptible contracts can be an improvement on the distribution business and certainly can accommodate a suitable demand and supply volumes in the long-term gas market balance. (author)

  11. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  12. Natural gas distribution network of Lima and Callao, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Maroye, Stephane; Aerssens, Andre [Tractebel Engineering, Lima (Peru)

    2005-07-01

    In May 2002, Suez-Tractebel was awarded by the government of Peru a 30-year concession for the construction and operation of the gas distribution network in Lima, Peru. On 10 July, 2004, first gas was delivered to Lima, 1 month ahead of the official date. This gas distribution network, operated by GNLC (Gas Natural de Lima y Callao), delivers gas to some of the largest industries and power generators in and around Lima and the harbour area of Callao. Gas delivered in Lima comes through a 700 km HP gas pipeline from Camisea fields. This pipeline is operated by TGP (Transportadora de Gas del Peru). A City Gate is located at Lurin, on the southern side of the city. The gas distribution network is made of a 62 km main pipeline (20') with 25 km laterals. The main pipeline is operated at 50 bar, as the main customer, the Etevensa power plant, is located on the northern side of the city. Due to this high operating pressure combined to the surroundings, specific design philosophies were adopted to meet the extreme safety requirements. This paper highlights the specific measures taken during construction phase and the experience of the first months of operation of this challenging project. (author)

  13. Microfabricated BTU monitoring device for system-wide natural gas monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

    2005-11-01

    The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

  14. Regulation of the natural gas distribution sector: a comparison of Brazilian and Colombian industries; Regulacao do setor de distribuicao de gas natural: uma comparacao dos casos brasileiro e colombiano

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, Mariana Peralva; Ferraro, Marcelo Colomer [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2008-07-01

    The Bolivia oil industry nationalization in 2006 and the high price of oil on the international market called the public and government attention to the problems of the natural gas industry regulation in Brazil. Recently, the establishment of a specific law for the natural gas industry had been debated in academic circles and in government institutions. In Brazil, the absence of an integrated energy policy and the absence of a homogeneous regulatory framework interfere with natural gas industry development, especially in distribution. Thus, the objective of the work will be contrast the Colombia distribution natural gas regulatory structure sector to the Brazilian natural gas regulatory framework. The comparison of the Brazilian regulatory framework and the Colombian natural gas regulation shows that the existence of different kinds of concession contracts in distribution is one of the explanations for the different levels of investment in Brazil. The contract with exclusive right to explore the distribution service in geographic territories also contributes to explain the low coverage rate of public distribution companies. Thus, the rapid expansion of the natural gas distribution network in Colombia after the regulatory reforms shows the importance of the establishment of a regulatory structure to push private investment. The Colombian case can be considered a good model for other countries in South America, especially to the natural gas distribution regulation. (author)

  15. Using size distribution analysis to forecast natural gas resources in Asia Pacific

    International Nuclear Information System (INIS)

    Aguilera, Roberto F.; Ripple, Ronald D.

    2011-01-01

    Highlights: → We estimate the total endowment of conventional natural gas in Asia Pacific. → Includes volumes in previously unassessed provinces. → Endowment distributed across countries to show where volumes are most likely to be found. → A breakdown between offshore versus onshore resources is also estimated. → We find there is a significant natural gas endowment in the region. -- Abstract: Increasing energy consumption in Asia Pacific will largely be met by fossil fuels. Natural gas production in the region presently ranks behind that of oil and coal. However, the abundance of gas could lead to a significant gas market share increase in the energy mix. The purpose of this paper is to estimate the total endowment of conventional gas in Asia Pacific. This is carried out with a Variable Shape Distribution (VSD) model that forecasts volumes in provinces that have not been previously evaluated. The endowment is then distributed across countries to show where volumes are most likely to be found. A breakdown between offshore versus onshore resources is also estimated. The results of the analysis show there is a significant gas endowment. The estimated distribution across countries and onshore/offshore areas provides insight into the relative economics of gas production, as well as a basis for potential investment decisions. With appropriate energy policies, it may be possible to tap the vast gas potential in Asia Pacific. Considering gas may be the most abundant, inexpensive, and clean fossil fuel, the outcome would be increased energy security and a low carbon economy.

  16. The open access and the natural gas ducts: transport and distribution; O livre acesso e os dutos de gas natural: transporte e distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Mariana de; Xavier, Yanko Marcius de Alencar [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The present research, attempting for the economic relevance of the natural gas sector, for the lack of a law that disciplines it and, still, for the structural question of the natural gas ducts activities; it analyzes, in a comparative way, the monopoly of the natural gas ducts activities and the mechanisms of competition chosen to brighten up it: the open access and the by pas. The transport and the distribution of the natural gas are really similar, but the ways to insert the competition in its areas are not. (author)

  17. Natural gas monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  18. Having our gas and selling it too : natural gas distribution in Atlantic Canada

    International Nuclear Information System (INIS)

    Tucker, T.L.; Crowley, B.L.

    2002-01-01

    This paper presented an overview of the gas industry in Atlantic Canada, its history and development, with particular attention to the future of natural gas in Atlantic Canada, market pricing and rationalized regulation. It also includes a primer on the economic forces behind the industry. A regulatory framework was recommended that will provide gas to the greatest number of consumers at the lowest possible price. The report also describes 10 popular misconceptions regarding how the region believes it can best benefit from natural gas. The report dispels the idea that the greatest benefit comes from consuming natural gas locally. Other misconceptions are that gas can be sold locally at discount prices and at a premium to export markets. It was emphasized that Atlantic Canada needs the gas as much as New England markets, but the investment by consumers in the United States are a big driving force for offshore gas development. The author emphasized that even if Atlantic Canada never consumes its own natural gas, the royalties, economic growth, economic diversification and a new addition to the energy mix will generate benefits much greater than those which could come from local consumption alone. The author also suggests that the lack of market power in Atlantic Canada means that gas-specific provincial regulations to protect the public interest are not required. It was suggested that a gas distributor should be chosen to build the infrastructure and attract customers. This paper demonstrated that the greatest benefit to the region will come from deregulating the distribution industry while realizing the full market value of the gas for its owners. 15 refs

  19. Quantifying the value of investing in distributed natural gas and renewable electricity systems as complements: Applications of discounted cash flow and real options analysis with stochastic inputs

    International Nuclear Information System (INIS)

    Pless, Jacquelyn; Arent, Douglas J.; Logan, Jeffrey; Cochran, Jaquelin; Zinaman, Owen

    2016-01-01

    One energy policy objective in the United States is to promote the adoption of technologies that provide consumers with stable, secure, and clean energy. Recent work provides anecdotal evidence of natural gas (NG) and renewable electricity (RE) synergies in the power sector, however few studies quantify the value of investing in NG and RE systems together as complements. This paper uses discounted cash flow analysis and real options analysis to value hybrid NG-RE systems in distributed applications, focusing on residential and commercial projects assumed to be located in the states of New York and Texas. Technology performance and operational risk profiles are modeled at the hourly level to capture variable RE output and NG prices are modeled stochastically as geometric Ornstein-Uhlenbeck (OU) stochastic processes to capture NG price uncertainty. The findings consistently suggest that NG-RE hybrid distributed systems are more favorable investments in the applications studied relative to their single-technology alternatives when incentives for renewables are available. In some cases, NG-only systems are the favorable investments. Understanding the value of investing in NG-RE hybrid systems provides insights into one avenue towards reducing greenhouse gas emissions, given the important role of NG and RE in the power sector. - Highlights: • Natural gas and renewable electricity can be viewed as complements. • We model hybrid natural gas and renewable electricity systems at the hourly level. • We incorporate variable renewable power output and uncertain natural gas prices. • Hybrid natural gas and renewable electricity systems can be valuable investments.

  20. Suggestions to leak prevention in Fortaleza's natural gas piping system; Sugestoes para a prevencao de vazamentos de gas natural canalizado na regiao metropolitana de Fortaleza

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Marcus de Barros [Agencia Reguladora de Servicos Publicos Delegados do Estado do Ceara (ARCE), Fortaleza, CE (Brazil)

    2004-07-01

    Leaks are the bigger problem in health, safety and environmental when the subject is gas distribution piping systems. Specially in high density human regions, like in the majority districts of Fortaleza, safety have to be the higher priority to the gas company responsible for the gas distribution piping systems. Leaks are able to cause accidents or incidents, depending on the circumstances which they happen. In order to be control the situation and overcome the luck factor, leaks must be previously avoided by the application of some security requirements. This paper present some suggestions to natural gas leak prevention in the Fortaleza's metropolitan region pipeline systems. First, the piping systems are analysed, observing the risk regions. Then, safety actions and basic requirements to avoid pipe corrosion are presented in order to improve safety in the gas distribution piping systems of Fortaleza's metropolitan region. (author)

  1. French natural gas industry statistics

    International Nuclear Information System (INIS)

    2004-01-01

    The opening of the French natural gas market is effective since August 2000. In this context, some information, which were published in the past, have become confidential and strategic and can no longer be revealed. The data published in this 2004 edition concern only the years 2001 and 2002 for which data are available. The year 2000 inquiry could not be exploited. A first part presents the natural gas industry in France (consumption, supplies, production, storage, distribution, definition of gases, information sources, energy equivalence, map of transportation networks, storage, compression and production facilities). The statistical data are summarized in the second part in the form of tables: resources and uses in 1999, 2001 and 2002; sectoral use of the network distributed gas since 1972; regional distribution of gas production; domestic production and imports since 1972; sectoral distribution of network gas supplies; pipelines and distribution systems; personnel in the gas industry; gas supplies in 2002; supplies to the residential-tertiary sector in 2002; supplies to the industry in 2002; regional supplies in 2002; share of gas supplies per use in each region; regional distribution of gas supplies for each use. A comparison between the 2002 inquiry results and the provisional status is given in appendix. The 2002 energy status and the 2002 questionnaire are also given in appendixes. (J.S.)

  2. Pricing natural gas distribution in Mexico

    International Nuclear Information System (INIS)

    Ramirez, Jose Carlos; Rosellon, Juan

    2002-01-01

    We examine regulation of distribution tariffs in the Mexican natural gas industry. Average revenue in each period is constrained not to exceed an upper bound and is calculated as the ratio of total revenue to output in the current period. This regime implies incentives for strategically setting two-part tariffs. The usage charge is typically dropped to its lowest feasible level, while the fixed charge is raised to compensate for the loss of profit. The regime also creates a stochastic effect that implies decreased values of consumer surplus for lower levels of risk aversion and uncertainty

  3. Natural gas retailing: writing the last chapter of natural gas deregulation

    International Nuclear Information System (INIS)

    Bjerkelund, T.

    1995-01-01

    Under the A greement on Natural Gas Markets and Prices of October 1985, the Canadian federal government agreed to deregulate the price of natural gas and to allow a competitive gas market to develop. Several beneficial changes that have occurred as a result of the deregulation were described, including the Industrial Gas Users Association's (IGUA) view on the marketing and sale of natural gas by local gas distributor's (LDC) and the sale within the LDC franchise. IGUA's support for the separation between LDC distribution and LDC sales and marketing activities as the last step in deregulation process, was explained. Several arguments for the opposing view were also discussed. Recommendations were made for effective separation of LDC distribution and LDC sales/marketing activities

  4. Federative competence conflicts in the natural gas sector distribution; Conflitos de competencias federativas no ambito da distribuicao do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Adriano; Nunes, Alessandro; Nascimento, Juliana; Gois, Luciana; Jardim, Mariana; Moura, Tacio; Campos, Vitor [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Direito

    2004-07-01

    This essay intends to broach the role played by the federative agents in the natural gas distribution regulation and analyses the conflict arisen from the new script of the article 25, para. 2nd of the Constitution, given by the amendment 5/95. For this, it is necessary to make a brief expose of the different types of non-tributary federative scope distribution and also to talk over about the natural problems from the lack of a clear appraisal of what canalized gas is, defining the state jurisdiction's object. Only then, it is possible to analyse its limits on the canalized gas local services distribution. In this context, it is evident that the role played by the state regulatory agent in promoting a favourable environment to the competition searching for alternatives concerning the problems of the natural monopoly. Equally important, is the study case of Amazonas, in which is enlightened the position of certain agencies and state agents when their constitutional sphere of influence is extrapolated. For the reasons exposed, it is imperative to improve the current forensic model to guarantee a more effective Union participation, at least to assure a minimum level of regulatory uniformization among the federative states. (author)

  5. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  6. Methane leakage in natural gas operations

    International Nuclear Information System (INIS)

    Jennervik, A.

    1992-01-01

    The world gas industry is efficient in conservation of natural gas within its systems. As the influence of methane as an infra-red absorbent gas has been more widely recognized, the considerations of methane's greenhouse effect has become vitally important to gas companies around the world. The industry is universally environmentally conscious. natural gas transmission and distribution companies want to maintain their image as suppliers of clean fuel. Further reductions in methane leakage --- particularly in older distribution systems --- can, should and will be pursued. Unfortunately, there has been little exchange of views on methane leakages between commentators on environmental matters and gas companies and organizations. There is absolutely no need for the industry to avoid the issue of greenhouse gases. Without industry involvement, the environmental debate concerning fossil fuels could lead to selective interpretation of scientific views and available evidence. Companies and authorities would be presented with confusing, contradictory evidence on which to base policy approaches and regulations

  7. Is further deregulation of the natural gas industry beneficial : discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    Hoey, P.J. [Anbrer Consulting, Ottawa, ON (Canada)

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper examines if a competitive market exists in natural gas distribution and discusses the opportunities for further deregulation of the distribution and storage aspects of the industry. It was noted that the regulatory regime in Ontario will depend on how the Ontario Energy Board deals with issues regarding natural gas storage services. This paper also examines if new storage facilities can charge cost-based or market-based prices as well as the appropriate rate of return on capital to be used to determine those rates. It also examines what the requirement for non-discriminatory access to and from new storage facilities to the Dawn Hub and access to transmission capacity on Union Gas's Dawn to Trafalger pipeline system. Alternative fuels, franchises, bypasses, gated communities, distributed generation, market power and policy issues are the main factors that are considered in assessing the competition in natural gas distribution. It was concluded that further deregulation of the natural gas distribution system in Ontario is not warranted since there is not much possibility in developing a competitive market for distribution services in the short-term. However, the development of storage facilities

  8. Is further deregulation of the natural gas industry beneficial : discussion paper

    International Nuclear Information System (INIS)

    Hoey, P.J.

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper examines if a competitive market exists in natural gas distribution and discusses the opportunities for further deregulation of the distribution and storage aspects of the industry. It was noted that the regulatory regime in Ontario will depend on how the Ontario Energy Board deals with issues regarding natural gas storage services. This paper also examines if new storage facilities can charge cost-based or market-based prices as well as the appropriate rate of return on capital to be used to determine those rates. It also examines what the requirement for non-discriminatory access to and from new storage facilities to the Dawn Hub and access to transmission capacity on Union Gas's Dawn to Trafalger pipeline system. Alternative fuels, franchises, bypasses, gated communities, distributed generation, market power and policy issues are the main factors that are considered in assessing the competition in natural gas distribution. It was concluded that further deregulation of the natural gas distribution system in Ontario is not warranted since there is not much possibility in developing a competitive market for distribution services in the short-term. However, the development of storage facilities in

  9. CRE proposal for the tariffs of use of natural gas distribution networks

    International Nuclear Information System (INIS)

    Syrota, J.

    2003-12-01

    Each French manager of a natural gas distribution network has its own tariff of network use. This document defines the general tariffing rules applicable to all natural gas distribution networks (options, penalties in case of overstepping of the subscribed daily capacity, special option for the supply of the 'Gaz de Barr' network, services included in the tariff). The detailed tariffs of use are given for each gas utility (Gaz de France, Gaz de Bordeaux, Gaz de Strasbourg, Regie Municipale de Colmar (Vialis), Gaz Electricite de Grenoble, Regie Municipale de Dreux (GEdia), Gaz de Barr, Service Gaz et Eau de la Ville de Guebwiller, Syndicat Intercommunal de Huningue, St Louis, Hegenheim et Village Neuf, Regie d'Equipement et Gaz de la Vienne etc..). (J.S.)

  10. Inventory of methane losses from the natural gas industry

    International Nuclear Information System (INIS)

    Burklin, C.E.; Campbell, L.M.; Campbell, M.V.

    1992-01-01

    Natural gas is being considered as an important transition fuel in an integrated national strategy to reduce emissions of greenhouse gases in the United States due to its lower carbon dioxide (CO 2 ) emission per unit of energy produced. However, the contribution of atmospheric methane (CH 4 ) from the production and handling of natural gas must also be considered. Radian Corporation has been working with the Gas Research Institute and the US Environmental Protection Agency to detail the sources of methane from the natural gas industry in the United States. All aspects of natural gas production, processing, transmission, storage and distribution are being examined. Preliminary results of preliminary testing for the below-ground gas distribution industry segment are presented. The emission rate (scf/hr) is the product of the leak rate per unit length of underground pipe and the total length of US distribution system pipelines. Preliminary estimates for the below-ground distribution segment are nearly 9 billion scf/yr. This total likely underestimates below-ground methane emissions for several reasons. These preliminary analyses suggest that significant uncertainty surround current methane emission estimates from below-ground distribution systems. Emission estimates from all segments of the US Natural Gas Industry, broken down by fugitive sources and non-fugitive sources, are also presented. The specific test methods being implemented to quantify emissions from each segment are described

  11. Application Status and Problem Investigation of Distributed Generation in China: The Case of Natural Gas, Solar and Wind Resources

    Directory of Open Access Journals (Sweden)

    Tian-tian Feng

    2017-06-01

    Full Text Available The development of distributed energy systems in China is one of the important measures to promote the revolution for energy production and its utilization patterns. First of all, we analyze the present application status of China’s distributed generation from three major types: natural gas, photovoltaic, and distributed wind. Secondly, based on the analysis of the project overview, project scale, and project effect in three patterns of distributed generation, we summarize the policy deficiencies and development obstacles. Finally, aiming to promote the development of distributed energy in China, we propose some relevant policies corresponding to countermeasures on the problems existing in the development process of China’s distributed generation of natural gas, photovoltaic, and wind power.

  12. Dynamic analysis of natural gas distribution sector in Bahia: case study of the Gas State Company entry

    International Nuclear Information System (INIS)

    Ribeiro, H.M.

    1988-01-01

    For the Natural Gas Distribution Sector in Bahia, some preliminary scenarios and theoretical concerns are presented under the perspectives of the Gas State Company entry. These scenarios are derived from the going institutional changes and physical expansion of the Sector with the increasing natural gas usage. The study has the objective of anticipating, for the State Government and its partners in the Company, the strategies and relevant problems for a successful entrance into this Sector. (author)

  13. Air quality impacts of projections of natural gas-fired distributed generation

    Science.gov (United States)

    Horne, Jeremy R.; Carreras-Sospedra, Marc; Dabdub, Donald; Lemar, Paul; Nopmongcol, Uarporn; Shah, Tejas; Yarwood, Greg; Young, David; Shaw, Stephanie L.; Knipping, Eladio M.

    2017-11-01

    This study assesses the potential impacts on emissions and air quality from the increased adoption of natural gas-fired distributed generation of electricity (DG), including displacement of power from central power generation, in the contiguous United States. The study includes four major tasks: (1) modeling of distributed generation market penetration; (2) modeling of central power generation systems; (3) modeling of spatially and temporally resolved emissions; and (4) photochemical grid modeling to evaluate the potential air quality impacts of increased DG penetration, which includes both power-only DG and combined heat and power (CHP) units, for 2030. Low and high DG penetration scenarios estimate the largest penetration of future DG units in three regions - New England, New York, and California. Projections of DG penetration in the contiguous United States estimate 6.3 GW and 24 GW of market adoption in 2030 for the low DG penetration and high DG penetration scenarios, respectively. High DG penetration (all of which is natural gas-fired) serves to offset 8 GW of new natural gas combined cycle (NGCC) units, and 19 GW of solar photovoltaic (PV) installations by 2030. In all scenarios, air quality in the central United States and the northwest remains unaffected as there is little to no DG penetration in those states. California and several states in the northeast are the most impacted by emissions from DG units. Peak increases in maximum daily 8-h average ozone concentrations exceed 5 ppb, which may impede attainment of ambient air quality standards. Overall, air quality impacts from DG vary greatly based on meteorological conditions, proximity to emissions sources, the number and type of DG installations, and the emissions factors used for DG units.

  14. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour......Local combined heat and power (CHP) plants in Denmark constitute an important part of the national energy conversion capacity. In particular they supply a large share of the district heating networks with heat. At the same time they are important consumers as seen from the gas network system...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...

  15. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-01-01

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE's upstream as well as downstream natural gas R ampersand D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE's Natural Gas Strategic Plan requires that its R ampersand D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R ampersand D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R ampersand D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R ampersand D programs

  16. Design of a Natural Gas Liquefaction System with Minimum Components

    International Nuclear Information System (INIS)

    Bergese, Franco

    2004-01-01

    In this work an economic method for liquefying natural gas by diminishing its temperature by means of the Joule-Thomson effect is presented.The pressures from and to which the gas must be expanded arose from a thermodynamic calculation optimizing the cost per unit mass of Liquefied Natural Gas LNG).It was determined that the gas should be expanded from 200 atm to 4 atm.This expansion ratio can be used in different scales.Large Scale: liquefaction of gas at well.It takes advantage of the fact that the gas inside the well is stored at high pressure.The gas is expanded in a valve / nozzle and then compressed to the pressure of the local pipeline system.The objective of this project is to export natural gas as LNG, which is transported by ships to the markets of consumption.Using this method of liquefaction, the LNG production levels are limited to a fraction of the production of the well, due to the injection of the un condensed gas into the local pipelines system.Medium Scale: A high pressure pipeline is the source of the gas.The expansion is performed and then the gas is again compressed to the pressure of a lower pressure pipeline into which the gas is injected.The pressure reductions of natural gas are performed nearby big cities.The aim of this project scale is the storage of fuel for gas thermal power plants during periods of low energy consumption for later burning when the resource is limited. Another possibility that offers this size of plant is the transportation of gas to regions where the resource is unavailable.This transportation would be carried out by means of cistern trucks, in the same way that conventional liquid fuels are transported.Small scale: the place of production would be a CNG refueling station. The source of gas is in this case a gas pipeline of urban distribution and the gas should be compressed with the compressor of the refueling station.Compressors have generally low loading factor and the periods of time when they are not producing

  17. Europe's Common Market: Natural gas sector normatives and certification

    International Nuclear Information System (INIS)

    Musazzi, V.

    1992-01-01

    Europe's Common Market offers an interesting challenge to its member countries' natural gas distribution system operators in that which regards the creation of a European-wide natural gas control board, and European standardization and regulatory committees contemporaneously guaranteeing a free market for suppliers, as well as, consumer protection. Relative legislation and normatives activities will be deemed the responsibility of the European administrative structure and the the European Normatives Committee respectively. This paper briefly illustrates the progress that has been accomplished thus far in the standardization of technical aspects. Focus is on the certification of natural gas distribution system constructors

  18. Natural gas in a developing country: the tunisian test

    International Nuclear Information System (INIS)

    Rabah, S.

    1993-01-01

    This paper describes the development of natural gas in Tunisia and its importance in the tunisian economy. Existing natural gas pipelines and other future distribution systems are also studied. 2 figs

  19. Natural gas massification plan in Colombia with the National Oil Framework

    International Nuclear Information System (INIS)

    Arenas, I.

    1993-01-01

    The Colombian natural gas industry is described. The Colombian natural gas plan is discussed under the following topics: background of natural gas in Colombia, natural gas reserves, gas plan objectives, methodology, marketing studies, transportation and investment strategy, and economic evaluation. The present natural gas institutional framework is described. The production system structure, transportation, and distribution are also discussed

  20. Almacenamiento de gas natural

    Directory of Open Access Journals (Sweden)

    Tomás Correa

    2008-12-01

    Full Text Available The largest reserves of natural gas worldwide are found in regions far of main cities, being necessary different alternatives to transport the fluid to the consumption cities, such as pipelines, CNG or ships, LNG, depending on distances between producing regions and demanding regions and the producing volumes. Consumption regions have three different markets to naturalgas; residential and commercial, industrial and power generation sector. The residential and commercial is highly seasonal and power generation sector is quite variable depending on increases of temperature during summer time. There are also external issuesthat affect the normal gas flow such as fails on the national system or unexpected interruptions on it, what imply that companies which distribute natural gas should design plans that allow supplying the requirements above mentioned. One plan is using underground natural gas storage with capacities and deliverability rates enough to supply demands. In Colombia there are no laws in this sense but it could be an exploration to discuss different ways to store gas either way as underground natural gas storage or above superficies. Existing basically three different types of underground natural gas storage; depleted reservoirs, salt caverns and aquifers. All ofthem are adequate according to geological characteristics and the needs of the distributors companies of natural gas. This paper is anexploration of technical and economical characteristics of different kind of storages used to store natural gas worldwide.

  1. Well log characterization of natural gas-hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  2. The transport system for natural gas

    International Nuclear Information System (INIS)

    Bjoerndalen, Joergen; Nese, Gjermund

    2003-01-01

    In 2002, the actors on the Norwegian shelf in cooperation with the authorities established a new regime for sale and transport of gas. This article deals with some issues of interest relating to this new regime. The transport system for natural gas shows clear signs of being a natural monopoly, which makes it difficult to use the system efficiently. Two main problems of the current way of organizing are pointed out: (1) lack of price and market signals in capacity allocation and (2) unclear incentive effects. The article indicates a possible solution based on the form of organization that is used in the power market

  3. Literature Review and Synthesis for the Natural Gas Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Folga, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Talaber, Leah [Argonne National Lab. (ANL), Argonne, IL (United States); McLamore, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Kraucunas, Ian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McPherson, Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parrott, Lori [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manzanares, Trevor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The efficient and effective movement of natural gas from producing regions to consuming regions requires an extensive and elaborate transportation system. In many instances, natural gas produced from a particular well has to travel a great distance to reach its point of use. The transportation system for natural gas consists of a complex network of pipelines designed to quickly and efficiently transport the gas from its origin to areas of high demand. The transportation of natural gas is closely linked to its storage: If the natural gas being transported is not immediately required, it can be put into storage facilities until it is needed. A description of the natural gas transmission, storage, and distribution (TS&D) sector is provided as follows.

  4. Gas expanders at M/R Stations in the natural gas distribution network. Pre-project, subreport; Gasexpandere paa distributionsnettets M/R-stationer. Forprojekt, delrapport

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Niels Bjarne

    2010-05-15

    Danish Gas Technology Centre has been carrying out a feasibility project to clarify the possibilities of installing gas expanders at M/R-stations (Measuring and Regulating) in the Distribution system of the natural gas grid. A large number of such expanders are installed around the world. The novelty of this project is to use a heat pump to perform the necessary heating of the gas before the expander, and to ''export'' to the electricity grid the remaining electricity from the generator connected to the expander. The present project includes the small M/R-stations at the gas Distribution grid where pressure is reduced from 40 or 20 bar to 4 bar. The preliminary project (year 1 of project) has investigated whether components for such smaller systems can be found, and it has investigated prices for different quantities. A technical feasibility study has been done. Also, preliminary calculations of payback times has been carried out. A large potential of CO{sub 2}-reduction is present with this technology based on saving of natural gas combustion and on new electricity production displacing existing production without any use of primary energy. The main results and conclusions are: 1) There are component suppliers for expander systems suitable to the size of distribution network M/R stations. 2) Pressure regulators provided at the stations are laid out with significant overcapacity, enabling a simplified installation of the expander systems. 3) If the system is being rolled out across the Danish distribution grid, the realistic saving potential is approx. 2.3 million Nm3 of gas per year and a production of almost 40 million kWh of electricity. 4) If the price is 0.60 DKK/kWh for electricity sold, the simple pay-back is 6-7 years on average, covering a variation from 3 to 16 years at the various stations. The smallest stations are omitted. The best stations covering more than half of the gas flow have a pay-back time between 3 and 6 years. 5) The

  5. Natural gas annual 1993 supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  6. Gas exchange measurements in natural systems

    International Nuclear Information System (INIS)

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes 14 C, 222 Rn and 3 He. The distribution of natural radiocarbon has yielded the average rate of CO 2 exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The 222 Rn to 226 Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess 3 He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with 226 Ra and 3 H in order to allow the use of the 222 Rn and 3 He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO 2 exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables

  7. The environmental and socio-economic impacts and benefits associated with developing a natural gas distribution system in Nova Scotia

    Energy Technology Data Exchange (ETDEWEB)

    Buszynski, M.E.; Peacock, T. [Sempra Atlantic Gas Inc., Halifax, NS (Canada)

    2000-07-01

    The discovery of large natural gas reserves off the Scotian Shelf has resulted in the development and construction of offshore production platforms as well as underwater and onshore pipelines to transport natural gas to markets on the eastern seaboard. A billion-dollar expenditure is proposed to establish a local distribution company to construct and maintain approximately 8000 km of distribution and lateral pipelines in the province of Nova Scotia. The many aspects of the proposed program were described with particular focus on the regulatory hearings. The paper also discussed the different landscapes that will be crossed and the specialized construction techniques that will be used to meet environmental and economic challenges. The mechanisms in place to ensure maximum benefit for Nova Scotians were also discussed. The proposed project was also compared to other local megaprojects in the province such as the Sable Offshore Energy Project and the Interprovincial Pipeline through Nova Scotia and New Brunswick. Some of the successful strategies for implementing benefits plans related to large energy projects were also described. Sempra has been awarded the franchise to distribute natural gas in Nova Scotia. The company has developed a benefits plan that offers significant local involvement in terms of labour and materials. 4 figs.

  8. Role of a natural gas utility in the hydrogen economy

    International Nuclear Information System (INIS)

    Bayko, J.

    2004-01-01

    'Full text:' Enbridge Gas Distribution is the largest natural gas distribution company in Canada at about 1.7 million residential, commercial and industrial customers. Enbridge will speak to the role of a natural gas utility in the hydrogen economy, and outline the benefits of hydrogen production from natural gas reformation for both stationary and mobile applications. Hydrocarbon reformation will act at least as a bridge until a more fully developed hydrogen economy infrastructure is developed. Reformation allows immediate leveraging of the reliability of vast existing natural gas distribution systems, and a reduced need for on-site hydrogen storage. Natural gas powered fuel cells provide improved emissions over traditional internal combustion engines, and in the stationary market provide smarter use of resources through the higher efficiencies of cogeneration (the capture and use of otherwise waste heat). (author)

  9. Risk management system in the natural gas distribution of Lima and Callao according guidelines “Recommendations on transmission and distribution practice” and risk management of the PMI Project (2008)

    OpenAIRE

    Luján Ruiz, Roger Orlando

    2014-01-01

    The purpose of this research study is to analyze quantitative operational risk according to the guidelines of the practice recommendation “Recommendations on Transmission and Distribution Practice” , published by The Institution of Gas Engineers of Great Britain and the PMBOK . Chapter 11 , Managing Project Risk . This study was conducted in the Trunk pipeline system operated by Cálidda the Peru - Natural Gas from the City Gate located in Lurín , to Callao Terminal Station . The purpose of th...

  10. Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States.

    Science.gov (United States)

    Lamb, Brian K; Edburg, Steven L; Ferrara, Thomas W; Howard, Touché; Harrison, Matthew R; Kolb, Charles E; Townsend-Small, Amy; Dyck, Wesley; Possolo, Antonio; Whetstone, James R

    2015-04-21

    Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.

  11. Natural gas supply in Denmark - A model of natural gas transmission and the liberalized gas market

    International Nuclear Information System (INIS)

    Bregnbaek, L.

    2005-01-01

    In the wake of the liberalization of European energy markets a large area of research has spawned. This area includes the development of mathematical models to analyze the impact of liberalization with respect to efficiency, supply security and environment, to name but a few subjects. This project describes the development of such a model. In Denmark the parallel liberalization of the markets of natural gas and electricity and the existence of an abundance of de-centralized combined heat and power generators of which most are natural gas fired, leads to the natural assumption that the future holds a greater deal of interdependency for these markets. A model is developed describing network flows in the natural gas transmission system, the main arteries of natural gas supply, from a technical viewpoint. This yields a technical bounding on the supply available in different parts of the country. Additionally the economic structure of the Danish natural gas market is formulated mathematically giving a description of the transmission, distribution and storage options available to the market. The supply and demand of natural gas is put into a partial equilibrium context by integrating the developed model with the Balmorel model, which describes the markets for electricity and district heat. Specifically on the demand side the consumption of natural gas for heat and power generation is emphasized. General results and three demonstration cases are presented to illustrate how the developed model can be used to analyze various energy policy issues, and to disclose the strengths and weaknesses in the formulation. (au)

  12. System analysis and planning of a gas distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Edwin F.M.; Farias, Helio Monteiro [AUTOMIND, Rio de Janeiro, RJ (Brazil); Costa, Carla V.R. [Universidade Salvador (UNIFACS), BA (Brazil)

    2009-07-01

    The increase in demand by gas consumers require that projects or improvements in gas distribution networks be made carefully and safely to ensure a continuous, efficient and economical supply. Gas distribution companies must ensure that the networks and equipment involved are defined and designed at the appropriate time to attend to the demands of the market. To do that a gas distribution network analysis and planning tool should use distribution networks and transmission models for the current situation and the future changes to be implemented. These models are used to evaluate project options and help in making appropriate decisions in order to minimize the capital investment in new components or simple changes in operational procedures. Gas demands are increasing and it is important that gas distribute design new distribution systems to ensure this growth, considering financial constraints of the company, as well as local legislation and regulation. In this study some steps of developing a flexible system that attends to those needs will be described. The analysis of distribution requires geographically referenced data for the models as well as an accurate connectivity and the attributes of the equipment. GIS systems are often used as a deposit center that holds the majority of this information. GIS systems are constantly updated as distribution network equipment is modified. The distribution network modeling gathered from this system ensures that the model represents the current network condition. The benefits of this architecture drastically reduce the creation and maintenance cost of the network models, because network components data are conveniently made available to populate the distribution network. This architecture ensures that the models are continually reflecting the reality of the distribution network. (author)

  13. Natural gas distribution system for Peninsular Malaysia. Malaysia ni okeru toshi gas jigyo no sosetsu

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, T [Tokyo Gas Co. Ltd., Tokyo (Japan)

    1993-03-30

    Tokyo Gas Co., Ltd. established in 1992 Gas Malaysia Sdn. Bhd, a joint venture company with investments from the Malaysia side, and begun full-fledged activities for supplying natural gas in Peninsular Malaysia. This paper explains the summary of the project. With a background of affluent resources including natural gas reserve of 1.9 trillion m[sup 3] as of 1992, Malaysia is promoting various projects to diversify and refine local energy consumption patterns and improve petroleum exporting capacity. The said joint venture project is one of the international bids executed by the national petroleum company, Petronas, in which Tokyo Gas Co., Ltd. and Mitsui and Co., Ltd. were selected as their partner. The company business includes supply and sales of petroleum, as well as construction of pipelines to support the former activities. Engineers have been either stationed or sent to the country as technical cooperation including necessary technical transfer. This project is highly significant in terms of contributing to growth of economy in both countries and to solving global environmental problems. 6 figs.

  14. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  15. Software for the decision making support on the design of natural gas distribution networks; Software de apoio a decisao para o projeto de rede urbanas de distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Goldbarg, Marco C.; Goldbarg, Elizabeth F.G. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This work presents a computational system to aid the decision making process of installing new networks to distribute natural gas in an urban area. The system is called POM-DIGAS. The purpose of the software is to optimize the design of natural gas distribution networks. The general optimization problem comprises two combinatorial problems. The first one refers to the definition of the network layout. In this problem the objective is to minimize the total length of the network. The second combinatorial problem considers the pipe size optimization in which one must choose the diameters of the pipes regarding the demand requirements. POM-DIGAS is a composite of models and algorithms developed to tackle the two combinatorial problems. Furthermore, the software has a geographic information mode, a tool to automatically acquire several types of data concerning the project and a mode with distinct flow equations in order to allow the utilization of different methodologies for computing the network flows. The system was applied to a case study developed for the city of Natal, Rio Grande do Norte. This work was supported by RedeGasEnergia, FINEP and PETROBRAS. (author)

  16. Policy statement on gas distribution in Nova Scotia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-30

    This paper presented Nova Scotia's policy related to gas distribution. The government of Nova Scotia views natural gas as an economic enabler and is committed to ensuring that natural gas is available and accessible to Nova Scotians where it is economically feasible. Natural gas will give the province an efficient and clean burning energy supply that will make existing businesses more competitive. The province will support and facilitate the construction and operation of a gas distribution system by the private sector and will ensure that there is regulatory oversight by the Nova Scotia Utility and Review Board to protect the public interest. The government will also develop a plan for early conversion of government buildings to natural gas. This paper described the province's policy on gas distribution in relation to: (1) a province-wide franchise, (2) a supplemental franchise, (3) cost of service/performance based rates, (4) postage stamp rates, (5) a Maritimes and Northeast lateral policy, (6) direct access/bypass, (7) existing direct access user, (8) bundling of gas sales and other products and services, (9) licensing of gas marketers, (10) benefits, (11), regulatory efficiency, (12) municipal taxes, and (13) municipal operating agreements.

  17. Constructing a Spatially Resolved Methane Emission Inventory of Natural Gas Production and Distribution over Contiguous United States

    Science.gov (United States)

    Li, X.; Omara, M.; Adams, P. J.; Presto, A. A.

    2017-12-01

    Methane is the second most powerful greenhouse gas after Carbon Dioxide. The natural gas production and distribution accounts for 23% of the total anthropogenic methane emissions in the United States. The boost of natural gas production in U.S. in recent years poses a potential concern of increased methane emissions from natural gas production and distribution. The Emission Database for Global Atmospheric Research (Edgar) v4.2 and the EPA Greenhouse Gas Inventory (GHGI) are currently the most commonly used methane emission inventories. However, recent studies suggested that both Edgar v4.2 and the EPA GHGI largely underestimated the methane emission from natural gas production and distribution in U.S. constrained by both ground and satellite measurements. In this work, we built a gridded (0.1° Latitude ×0.1° Longitude) methane emission inventory of natural gas production and distribution over the contiguous U.S. using emission factors measured by our mobile lab in the Marcellus Shale, the Denver-Julesburg Basin, and the Uintah Basin, and emission factors reported from other recent field studies for other natural gas production regions. The activity data (well location and count) are mostly obtained from the Drillinginfo, the EPA Greenhouse Gas Reporting Program (GHGRP) and the U.S. Energy Information Administration (EIA). Results show that the methane emission from natural gas production and distribution estimated by our inventory is about 20% higher than the EPA GHGI, and in some major natural gas production regions, methane emissions estimated by the EPA GHGI are significantly lower than our inventory. For example, in the Marcellus Shale, our estimated annual methane emission in 2015 is 600 Gg higher than the EPA GHGI. We also ran the GEOS-Chem methane simulation to estimate the methane concentration in the atmosphere with our built inventory, the EPA GHGI and the Edgar v4.2 over the nested North American Domain. These simulation results showed differences in

  18. Nova Scotia's new gas distribution regime

    Energy Technology Data Exchange (ETDEWEB)

    MacIsaac, J.B. [Cox Hanson O' Reilly Matheson, Halifax, NS (Canada)

    2002-07-01

    The most recent amendments to Nova Scotia's gas distribution regime were described in detail. The amended legislation includes: (1) elimination of mandatory service targets, (2) franchise terms of 25 years, (3) a 10 year prohibition on industrial by-pass, (4) gas sales licenses are now required to market gas in Nova Scotia, (5) distributors can offer bundled services, (6) the elimination of province wide uniform tolls for low volume customers, (7) public utilities are permitted to apply for a distribution franchise and to market natural gas, (8) ex-party filing of interim rates, (9) the Pipeline Act applies to the construction of gas distribution systems, (10) socio-economic studies are required for parties seeking a single-end user franchise outside a franchise area, and (11) regulations for underground gas storage have been removed from the legislation. It was noted that these significant changes to the statutory framework of Nova Scotia's delivery of natural gas are sending encouraging signals to parties considering investing in the distribution network in the province. It was also noted, that as in any industry, success of natural gas distribution in Nova Scotia will depend on economics and not on structural changes. 66 refs.

  19. Natural gas monthly, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  20. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...

  1. Natural Gas Value-Chain and Network Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kobos, Peter H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beyeler, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, LaTonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myerly, Melissa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Borns, David J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven

  2. Natural gas monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  3. Natural gas monthly, November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information

  4. Natural gas monthly, August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  5. Natural gas monthly, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  6. Deliverability on the interstate natural gas pipeline system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  7. Spain doubles natural gas consumption in four years

    International Nuclear Information System (INIS)

    Van den Boom, H.

    1996-01-01

    Around the year 2000 3 million Spanish households and 3,000 industrial businesses must be connected to the Spanish natural gas distribution system, which is double the amount of the present connections. The Spanish government aims at a contribution of natural gas of 25% of the total household energy consumption within 10 years. figs., 11 ills

  8. System and method for producing substitute natural gas from coal

    Science.gov (United States)

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  9. Gas turbine control for islanding operation of distribution systems

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2009-01-01

    Danish distribution systems are characterized by a significant penetration of small gas turbine generators (GTGs) and fixed speed wind turbine generators (WTGs). Island operation of these distribution systems are becoming a viable option for economical and technical reasons. However, stabilizing...... frequency in an islanded system is one of the major challenges. This paper presents three different gas turbine governors for possible operation of distribution systems in an islanding mode. Simulation results are presented to show the performance of these governors in grid connected and islanding mode....

  10. Natural gas monthly, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  11. Natural gas monthly, June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  12. Natural gas monthly, October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  13. Natural gas monthly, May 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  14. Natural gas monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  15. Natural gas for New Brunswick: First report

    International Nuclear Information System (INIS)

    1998-01-01

    The development of the gas field off Sable Island and the imminent construction of a gas pipeline which will deliver natural gas to New Brunswick has prompted a thorough examination of energy-related issues in the province. This report presents the findings of the provincial energy committee which examined the implications of the arrival of natural gas to the province. The committee held a series of public hearings and consultations, and also received written submissions. After a historical perspective on natural gas as an energy source in the province and a review of the gas industry participants and their interests, the report discusses such issues as gas pipeline economics, local distribution company operations, infrastructure development, the regulatory framework, energy market competition, regional price equity, development of in-province gas sources, pipeline access, pipeline laterals and expansions, establishment of gas distribution franchises, municipal involvement in gas development, the impact of gas industry development on electric utility restructuring, and the environmental benefits of natural gas. Finally, recommendations are made regarding how natural gas should be regulated and distributed

  16. Model for negotiation on contingency plans for distribution of natural gas; Modelo de negociacao para planos de contingencia energetica na area de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Sobral, Marcos Felipe Falcao; Morais, Danielle Costa [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2008-07-01

    The high consumption of Natural Gas (NG), the environmental and economic turbulences that occurred in recent years raises questions about the supply of the product in critical situations. Characteristic factors of natural gas, like the high cost of storage, show the need for the establishment of contingency plans that define what procedures should be adopted in the distribution of Natural Gas or redistribute among consumers in times of restriction of supply, substantial increase on demand or reduction in the ability of supply. These plans aim to define in advance the actions that will be adopted, providing business and consumer segments clear rules indicate the time to search for alternative sources in case of crisis. The current models can not yet address the problem of negotiation for the division of the product following the concepts proposed by the science of trading, making things like proportionality and envy-free are not observed. The aim of this study is to propose a model for distribution of quotas for supply of NG between different consumer segments. The proposed algorithm combines the procedures of Knaster, Steinhaus and Divide the Dollar, seeking an allocation that minimize the feeling of jealousy and provide an equitable distribution. (author)

  17. The RedeGasEnergia and associated technologies to distributed generation, cogeneration and thermoelectric in developing the natural gas in Brazil; A RedeGasEnergia e as tecnologias associadas a geracao distribuida, cogeracao e termeletrica, no desenvolvimento da industria de gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    From the PETROBRAS Strategic Plan, where 2015 mission and vision are defined, one search to reach the corporative strategy: 'to lead the natural gas market (NG) and to act in a integrated way in the energy market'. Amongst the corporative politics to guide the business strategies, we will be focusing the new businesses development, having as guide line the annual average growth in the domestic demand of NG, 14.2%. The Investment Plan foresees for the energy and gas area investments around US$ 1.8 billion for the 2003/2007 period, being approximately US$ 500 million destined to the conclusion of the already initiated projects of thermoelectric plants. The Strategic Technological Committee of Energy and Gas (COMEG 2003) defined as technologies of interest for PETROBRAS: renewed energies; sustainable development; NG chemical transformation; NG transport, distribution and storage; distributed generation, co-generation and thermoelectric; production, distribution and use of hydrogen as energy vector; industrial, commercial and residential applications of NG; energy efficiency; automotive systems applications; high power electrical systems and environment. The technology explained in this work, for development of the Brazilian Natural Gas Industry, highly compliant with the NG mass use plan, is the distributed generation, co-generation and thermoelectric and its associated technologies (combustion, IGCC, thermoelectric cycles optimization, gas turbines, boiler/heat recovers, microturbines, fuel cells, combustion engines, renewed energies and cold generation among others). There are several business strategies related to this technology: to play in the electric energy business to assure the NG and derivatives market commercialized by PETROBRAS; to play in the development of alternative sources of energy and; to invest in conservation of energy and renewable energy to add value to the company business. The RedeGasEnergia portfolio has 22 projects in this

  18. Green gas. Gas of natural gas quality from biomass. Update of the 2004 study

    International Nuclear Information System (INIS)

    Welink, Jan-Henk; Dumont, M.; Kwant, K.

    2007-01-01

    In 2004 a study was published on green gas. Green gas is defined as a gaseous energy carrier from renewable biomass with a similar quality as natural gas. As a result of new developments in the field of co-digestion/fermentation the Dutch Ministry of Economic Affairs asked it's agency SenterNovem to update the 2004 study. The aim of the update is (1) to gain insight into operational aspects of green gas projects, e.g. reliability, efficiency and maintenance aspects; (2) stimulate the production of green gas, taking into account the economics of green gas projects, calculation of the financial gap of green gas production, efficient use of biogas (conversion to electricity or directly input into the natural gas distribution systems, and aspects with regard to commercialization and the market; and (3) the potential of green gas [nl

  19. Natural gas: an environmental-friendly solution?

    International Nuclear Information System (INIS)

    Vermeire, J.

    1994-01-01

    Since 1970, the portion of natural gas in energy consumption in Western-Europe has grown by 6 percent per year on the average. About 20 percent of the energy demand in Western-Europe is now covered by natural gas. It is forecasted that this growth will continue at a rate of 2 percent per year until 2010. The natural gas consumption will increase from 325 billion cubic metres in 1993 to 450 billion cubic metres per year in 2010. For the coming 10 to 15 years, the natural gas demand is covered by long-term contracts with gas producing countries. From 2010 on, additional contracts, covering 70 to 120 billion cubic metres per year are required. A shift in geographic distribution of countries from which natural gas will be imported by Western-European countries is expected, which implies high investments and additional costs for transport and distribution of natural gas. Due to its qualities with respect to environmental impact, yield, availability, and advanced technology, natural gas is the energy vector of the 21 first century. (A.S.)

  20. Comparative QRA (Quantitative Risk Analysis) of natural gas distribution pipelines in urban areas; Analise comparativa dos riscos da operacao de linhas de gas natural em areas urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz Fernando S. de [Energy Solutions South America (Brazil); Cardoso, Cassia de O.; Storch, Rafael [Det Norske Veritas (DNV) (Brazil)

    2008-07-01

    The natural gas pipeline network grows around the world, but its operation inherently imposes a risk to the people living next to pipelines. Due to this, it is necessary to conduct a risk analysis during the environmental licensing in Brazil. Despite the risk analysis methodology is well established, some points of its application for the distribution pipelines are still under discussion. This paper presents a methodology that examines the influences of major projects and operating parameters on the risk calculation of a distribution pipeline accident in urban areas as well as the possible accident scenarios assessment complexity. The impact of some scenarios has been evaluated using a Computational Fluid Dynamics tool. The results indicate that, under certain conditions, the risks from the pipeline operation under operating pressures of 20 bar may be acceptable in location class 3 or even in class 4. These results play a very important role if management decisions on the growth of the distribution of natural gas network in densely populated areas as well as in the improvement of laws to control the activity of distribution of natural gas. (author)

  1. French natural gas industry. Key-data 2000

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The year 2000 is the year of deregulation of the European gas market. This short article reports on some significant economical data taken from a brochure edited by the French gas association: transport of natural gas (main suppliers), network (pipelines, distribution system), consumption (industry, residential and tertiary sectors), uses (vehicles, cogeneration units), liquefied petroleum gases (consumption in residential-tertiary, industry, agriculture and automotive applications). (J.S.)

  2. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    1994-02-01

    Lacking a detailed characterization of the resource base and a comprehensive borehole-to-burnertip evaluation model of the North American natural gas system, past R ampersand D, tax and regulatory policies have been formulated without a full understanding of their likely direct and indirect impacts on future gas supply and demand. The recent disappearance of the deliverability surplus, pipeline deregulation, and current policy debates about regulatory initiatives in taxation, environmental compliance and leasing make the need for a comprehensive gas evaluation system critical. Traditional econometric or highly aggregated energy models are increasingly regarded as unable to incorporate available geologic detail and explicit technology performance and costing algorithms necessary to evaluate resource-technology-economic interactions in a market context. The objective of this research is to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas system. GSAM explicitly evaluates the key components of the natural gas system, including resource base, exploration and development, extraction technology performance and costs, transportation and storage and end use. The primary focus is the detailed characterization of the resource base at the reservoir and sub-reservoir level and the impact of alternative extraction technologies on well productivity and economics. GSAM evaluates the complex interactions of current and alternative future technology and policy initiatives in the context of the evolving gas markets. Scheduled for completion in 1995, a prototype is planned for early 1994. ICF Resources reviewed relevant natural gas upstream, downstream and market models to identify appropriate analytic capabilities to incorporate into GSAM. We have reviewed extraction technologies to better characterize performance and costs in terms of GSAM parameters

  3. Land-based use of natural gas - distribution methods; Landbasert bruk av naturgass - distribusjonsloesninger

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The Norwegian Government stimulates the use of natural gas in this country at the same time as the increase in the energy consumption should be reduced as much as possible. Thus increased use of natural gas for energy purposes may lead to reduced consumption of other energy carriers, and the use of existing infrastructure must be taken into consideration. The introduction of natural gas increases the need for optimization of the energy consumption with respect to costs and environmental consequences. The principle aim of this project is to evaluate how to implement the increased use of natural gas into existing and planned energy systems in an optimal way.

  4. Decision support in the natural gas distribution process of the Ceara state, Brazil; Apoio a decisao no processo de distribucao do gas natural no ambito do estado do Ceara

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Clarice Augusta Carvalho; Arruda, Joao Bosco Furtado; Nobre, Junior, Ernesto Ferreira [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Engenharia de Transportes. Nucleo de Pesquisa em Logistica, Transporte e Desenvolvimento (NUPELTD); br, barruda@det ufc; br, nobre@det ufc

    2003-07-01

    The participation of natural gas has improved more and more in Brazilian energetic die. In Ceara, the use of natural gas has increased a lot and the expectations are the best. However it's necessary to guarantee a better infrastructure of distribution and interaction among the actors of the sector. This paper is part of a bigger project that intends to contribute with this improvement through an application of multicriteria techniques in the natural gas distribution process in Ceara. The aim of the project is to choose the market segment to be prioritized due to a possible context of restriction of gas offer in order of its potential demands. Nowadays paper, however, only makes a quick analysis of the actual gas situation in Ceara and a small explanation about multicriteria techniques, specifically, the analytic hierarchy process (AHP). Besides, through a simulation of the problem and an application of the analytic hierarchy process, this paper intends to demonstrate the applicability of these methods in this problem. (author)

  5. Decision support in the natural gas distribution process of the Ceara state, Brazil; Apoio a decisao no processo de distribucao do gas natural no ambito do estado do Ceara

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Clarice Augusta Carvalho; Arruda, Joao Bosco Furtado; Nobre Junior, Ernesto Ferreira [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Engenharia de Transportes. Nucleo de Pesquisa em Logistica, Transporte e Desenvolvimento (NUPELTD)]. E-mail: claricerabelo@aol.com; barruda@det.ufc.br; nobre@det.ufc.br

    2003-07-01

    The participation of natural gas has improved more and more in Brazilian energetic die. In Ceara, the use of natural gas has increased a lot and the expectations are the best. However it's necessary to guarantee a better infrastructure of distribution and interaction among the actors of the sector. This paper is part of a bigger project that intends to contribute with this improvement through an application of multicriteria techniques in the natural gas distribution process in Ceara. The aim of the project is to choose the market segment to be prioritized due to a possible context of restriction of gas offer in order of its potential demands. Nowadays paper, however, only makes a quick analysis of the actual gas situation in Ceara and a small explanation about multicriteria techniques, specifically, the analytic hierarchy process (AHP). Besides, through a simulation of the problem and an application of the analytic hierarchy process, this paper intends to demonstrate the applicability of these methods in this problem. (author)

  6. Suggestion for a natural gas development policy

    International Nuclear Information System (INIS)

    Drummond, P.H.

    1987-01-01

    First, this work presents some aspects concerning the reserves and the future of natural gas consumption in Brazil. Then, from the results of a case-study about the implementation of a natural gas distribution company in Fortaleza (Ceara), we analyse under which conditions the business of natural gas distribution is economically interesting (subject of the M.Sc. thesis developed by the author). In possession of this results, the author proposes directions for a Natural Gas Policy in Brazil, approaching also aspects of Tariffs Policy. (author)

  7. Natural gas deregulation

    International Nuclear Information System (INIS)

    Ronchi, M.

    1993-01-01

    With the aim of establishing realistic options for deregulation in the natural gas industry, this paper first considers the structural evolution of this industry and evidences how it differs from the petroleum industry with which it exhibits some essential characteristics in common. This comparison is made in order to stress that, contrary to popular belief, that which is without doubt good for the petroleum industry is not necessarily so also for the natural gas industry. The paper concludes with separate analyses of the natural gas markets in the principal industrialized countries. Arguments are provided to show that the 'soft' deregulation option for the natural gas industry is not feasible, and that 'total' deregulation instead, backed by the passing of a suitable package of anti-trust laws 'unbundling' the industry's four major activities, i.e., production, storage, primary and secondary distribution, is the preferable option. The old concept of guaranteed supplies for minor users of natural gas should give way to the laws of supply and demand governing inter-fuel competition ensured through the strict supervision of vigilance committees

  8. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  9. Natural gas monthly, February 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  10. 75 FR 18607 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2010-04-12

    ...: Petroleum and Natural Gas Systems; Proposed Rule #0;#0;Federal Register / Vol. 75 , No. 69 / Monday, April... Natural Gas Systems AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is... natural gas systems. Specifically, the proposed supplemental rulemaking would require emissions reporting...

  11. Thermodynamic Modeling of Natural Gas Systems Containing Water

    DEFF Research Database (Denmark)

    Karakatsani, Eirini K.; Kontogeorgis, Georgios M.

    2013-01-01

    As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium...... with a heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE...

  12. A distribution planning model for natural gas supply chain: A case study

    International Nuclear Information System (INIS)

    Hamedi, Maryam; Zanjirani Farahani, Reza; Husseini, Mohammad Moattar; Esmaeilian, Gholam Reza

    2009-01-01

    In this paper, a real-world case study of a natural gas supply chain is investigated. By using concepts related to natural gas industry and the relations among the components of transmission and distribution network, a six-level supply chain has been introduced and presented schematically. The defined supply chain is a single-objective, multi-period, and single-product problem that is formulated as a mixed integer non-linear programming model, which can easily be linearized. The objective of this model is to minimize direct or indirect distribution costs. There are six groups of constraints including capacity, input and output balancing, demand satisfaction, network flow continuity, and relative constraints to the required binary variables. The solution algorithm of the problem is hierarchical; in each step, one section of the problem is solved using an exact method; the outputs of this section are passed to the next relative section as inputs. Finally, it is shown that the problem has been solved in a reasonable time and desirable results are attained. The use of proposed model and its solution approach have been studied in two gas trunk lines, to present the priority of its cost saving

  13. Expert hierarchical selection of oil and gas distribution systems

    International Nuclear Information System (INIS)

    Frankel, E.G.

    1991-01-01

    Selection and design of oil and gas distribution systems involves a large number of decision makers and interest groups, as well as many alternative technical, financial, network, operating, management and regulatory options. Their objectives and measures of performance are different. Decision models can be effectively represented by hierarchical structures. A simple deterministic analytic hierarchy process is presented with application to oil and gas distribution systems

  14. Distribution of natural gas: introduction of the interruptible segment in Sao Paulo, Brazil; Distribuicao de gas natural canalizado: introducao do segmento interruptivel em Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Claudio Paiva de [Agencia Reguladora de Saneamento e Energia do Estado de Sao Paulo (ARSESP), SP (Brazil)

    2008-07-01

    The principal objective of this paper is the better knowledge and evaluation of the natural gas distribution network interruptible branch. This new service can be appropriate for thermal power generation on flexible dispatch mode, as 'take or pay' contracts surplus jobs. The paper indicates no regulatory restraints in an interruptible network implantation and one can guess that the inexistence of contracts for this service resembles only lack of conjunctural opportunities for this job applications. These difficulties appear both in the supply and distribution branches of the gas business, which prefer flat contracts. The final conclusion is interruptible contracts can be an improvement on the distribution business and certainly can accommodate a suitable demand and supply volumes in the long-term gas market balance. (author)

  15. Natural gas markets and the creation of an export gas pipeline system in Eastern Russia

    International Nuclear Information System (INIS)

    Saneev, B.G.; Sokolov, A.D.; Popov, S.P.

    2003-01-01

    The world natural gas markets are analysed, with a special focus on the countries of Northeast Asia (NEA). The natural gas demands of China, Japan and South Korea, until the year 2020, is projected, considering a possible share of Russian gas. The resource potential of natural gas from the Siberian platform and the Sakhalin shelf is given as a sound basis for fuelling Russia's position in the natural gas market of NEA countries. Development of the powerful gas industry in the East of Russia faces some particular conditions that can decrease the effectiveness of investments. The eastern geopolitical direction is very important for Russia and the necessity to create a favourable political and economic environment for oil and gas export is of prime interest, as stressed in Energy Strategy for Russia till the Year 2020. In this context, the long-term market for natural gas in East Siberia and the Far East of Russia is investigated. Possible routes of natural gas export from Russia to NEA countries include three main directions: to the west of China with connection to the 'West-East gas pipeline', a route through and/or round Mongolia and, finally, a route along the Trans-Siberian or Baikal-Amur railroads to Russian ports in the Far East. As a result of complex studies, three stages in the creation of the unified gas pipeline system are suggested. Evaluation of the investments required for construction of such a natural gas pipeline system, expected gas volumes and prices on the markets show its high economic efficiency. In conclusion, the most valuable ideas are stressed. (author)

  16. Evaluation of two typical distributed energy systems

    Science.gov (United States)

    Han, Miaomiao; Tan, Xiu

    2018-03-01

    According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.

  17. Technological Innovation in the downstream gas market: Studying the economics of LNG distribution systems with a focus on Norway

    International Nuclear Information System (INIS)

    Madlener, Reinhard; Jarlsby, Erik

    2005-01-01

    Prospects for the market diffusion of natural gas, apart from other factors, depend strongly on the limitations set by the supply infrastructure. One of these limitations is determined by the economic viability of extending the distribution infrastructure, which can vary widely depending on the technology chosen and the prevailing local circumstances. While large-scale pipeline-based systems benefit from economies of scale, they require huge initial capital investments and may in certain cases not be economical at all, or only after excessively long payback periods, especially when end-use energy densities are low, growth in demand slow, and the topography difficult. This paper focuses on the economics of adoption and diffusion of innovative small- and medium-scale liquefied natural gas (LNG) distribution systems, as compared to large pipeline-based distribution systems, with a particular focus on the situation in Norway. We address issues such as scale economies, learning effects, technological lock-in, niche market formation, and flexibility. Besides, we look at both the complementarity and competition among grid-based and LNG-based gas distribution systems. Finally, we briefly touch upon tax issues and political considerations. In Norway, the debate on natural gas extension has become controversial and politicized in recent years. On the one hand, certain stakeholders lobby for heavy, state-sponsored investment into one or more pipelines, which would bring large quantities of natural gas to industrial centers, at least some of which have struggled to maintain their market position in the past. On the other hand, there are stakeholders that have argued for the promotion of modular and more flexible small-scale LNG technology systems that could enhance competition in the gas market, and provide end-users with natural gas that would otherwise not be connected to the grid. Under present regulatory and market conditions in Norway, LNG supply to end users is

  18. Expert System for support of natural gas network management; Sistema especialista para gerenciamento de redes de gas natural: SEGRED

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonny Carlos da [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Hirano, Eduardo Wulff [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Lab. de Hidraulica e Pneumatica (LASHIP); Moura, Newton Reis de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Freire, Luiz Gustavo de Melo [PETROBRAS S.A., Pojuca, BA (Brazil). Unidade de Negocios de Gas Natural (UNGN)

    2004-07-01

    This work reports on the SEGRED project, which aims to develop an expert system for management of natural gas transportation networks. The system is currently being developed by LASHIP-UFSC in partnership with PETROBRAS/CENPES and TBG. The SEGRED system consists of an environment designed to support natural gas pipeline management by means of remote supervision of process parameters and analysis of the mutual interactions of those parameters by an expert system integrated to a dynamic simulator. The system is deployed through a process that contributes to making available for use the knowledge about functions such as line packing analysis and line break detection, thus enhancing the quality of execution of these tasks, which are related to the management of natural gas transportation network. The main benefits consist of promoting efforts to acquire and organize expert knowledge. This process contributes to the generation of a knowledge base with corporate technical memory, which can be made available in a permanent, expansible and useful way for decision-making. (author)

  19. 75 FR 74457 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2010-11-30

    ...: Petroleum and Natural Gas Systems; Final Rule #0;#0;Federal Register / Vol. 75 , No. 229 / Tuesday, November... Natural Gas Systems AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is... natural gas systems. This action adds this source category to the list of source categories already...

  20. Industrial natural gas supply options in British Columbia

    International Nuclear Information System (INIS)

    1994-01-01

    Information is provided on the availability and cost of natural gas in British Columbia for use by firms interested in establishing gas-intensive industrial facilities in the province. British Columbia has an abundant supply of natural gas, originating mainly from deposits in the westernmost part of the Western Canadian Sedimentary Basin in the northeast part of the province. Recoverable resources in British Columbia are estimated at 1,000-1,400 billion m 3 . Over 200 producers compete to sell natural gas for both domestic and export markets. Gathering, processing, and transmission of the gas is undertaken mainly by the Westcoast Energy pipeline system, and distribution is undertaken by several distribution utilities. At present, all large industrial gas users buy their firm gas requirements directly from gas producers, often using gas marketers or brokers to assist in purchasing. Regulation of the gas industry is performed by the British Columbia Utilities Commission, which sets rules for energy supply contracts, and by the National Energy Board, which sets tolls for gathering, processing, and transporting gas. Factors affecting gas pricing are discussed, with reference to both the wellhead price and the cost of gathering, processing, and transportation. Firm gas costs for two hypothetical industrial loads in British Columbia are illustrated. Potential intensive uses of natural gas in the province are outlined, including power generation, liquefaction for export, manufacturing, production of direct reduced iron, and as petrochemical feedstocks. 5 figs., 2 tabs

  1. MULTI-CRITERIA EVALUATION OF THE EXPANSION OF NATURAL GAS DISTRIBUTION NETWORK BY THE URBAN DYNAMICS

    Directory of Open Access Journals (Sweden)

    Vanessa M. Massara

    2010-01-01

    Full Text Available The objective of this work is to analyze the expansion of the infrastructure of natural gas distribution, identifying priorities from large metropolis using the energy planning based on urban design tools like urban dynamics and techniques like AHP (analytic hierarchy process. The methodology proposed uses matrices considering the relations between the concept of urban dynamics, quality of life and the possibilities of natural gas displacing other energy forms. The matrices are made up of information about social and urban development, costs of establishing the infrastructure and projections of the consumption potential in various sectors. Relating the consumption to urban development parameters and the real estate future of the areas in study, the methodology allows indicating for each district, the viability of implementing a gas network. As conclusion, the model presents the integration between the cities profile and the natural gas use, by means of a growth natural gas on districts of São Paulo City as a specific case study.

  2. Natural gas market assessment. Canadian natural gas market mechanisms: Recent experiences and developments

    International Nuclear Information System (INIS)

    1993-11-01

    The increase in natural gas demand and the associated expansions of most of the pipeline systems serving western Canada have reduced the excess deliverability or excess productive capacity that existed at the time of deregulation of the natural gas industry in 1985. Based on an industry survey, the responses of natural gas buyers and sellers to recent supply difficulties are described. Specific production, transportation, and contractual difficulties were encountered in winter 1992/93 as production was stretched to meet record levels of demand during periods of very cold temperatures and as short-term spot prices reached very high levels. Problems at this time included wellhead freezeups, pipeline outages, and inadequate contract terms and conditions. Methods used to maintain gas flows to end users are reviewed, including a discussion of force majeure, spot gas purchases, storage, supply curtailment, and special loan arrangements. In 1992/93, in most instances where the responsibility fell on the end-user to solve the supply problem, the difficulty was shifted to local distribution companies who have traditionally had more experience with such situations. No cases were identified where either a firm or interruptible end-user was forced to curtail gas consumption because of inadequate supply. New market mechanisms are emerging that will enable buyers and sellers of western Canadian gas to avoid many of the problems encountered in 1992/93. These include prearranged backstopping arrangements, short-term spot markets, access to other gas basins, standardized gas contracts, electronic trading, and price risk management tools. 11 figs

  3. The influence of prices formation system for natural gas over the sector development

    International Nuclear Information System (INIS)

    Drummond, P.H.

    1988-01-01

    An analysis of the existing methodologies concerning natural gas valorization in developing countries is presented. The characteristics of natural gas production, transport and distribution in Brazil, with the purpose of suggesting a pricing policy which could effectively permit its development on a national basis is also described. (author)

  4. The determining factors of natural gas demand in domestic sector

    International Nuclear Information System (INIS)

    Cadoret, I.

    1992-01-01

    Natural gas plays an important role in domestic sector. For example, in France, Italy, Germany and United-Kingdom the natural gas share in energy demand of domestic sector is respectively 26%, 44%, 34% and 63%. A study of energy policies, natural gas industry structure and tarification system of this four countries indicates that gas development is linked to the government and petroleum companies policy. Econometric models estimation show by another way that when natural gas is introduced in domestic sector, the demand follows the distribution network. When the market is saturated, the demand changes with energy price and household income. 8 refs., 2 tabs., 5 figs

  5. Natural gas contracts in efficient portfolios

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, R.J.

    1994-12-01

    This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

  6. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  7. On-line gas mixing and multi-channel distribution system

    International Nuclear Information System (INIS)

    Kalmani, S.D.; Mondal, N.K.; Satyanarayana, B.; Verma, P.; Joshi, Avinash

    2009-01-01

    In this presentation, we describe a mass-flow controller based on-line gas mixing unit with the multi-channel distribution system. We highlight different aspects such as requirement, design, calibration, control and operation of this system. This unit has the capability to mix up to four different input gases and distribute over 16 output channels. Output in individual channels is controlled accurately by using capillary-based system. At present, we are using this gas mixing unit for prototype of iron calorimeter (ICAL) detector of India-based Neutrino Observatory (INO).

  8. Natural gas monthly, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  9. Natural gas as public service; Gas natural como servico publico

    Energy Technology Data Exchange (ETDEWEB)

    Gois, Breno Vincius de; Franca, Vladimir da Rocha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The Natural Gas passes through an outbreak of enormous growth in Brazil. Important in several economies in the world and is one of the main components of the energy matrix of various countries, including neighbouring Southern Cone, such as Argentina and Bolivia, he begins to own as a major viable alternatives to replace oil, along with alcohol and biodiesel. When the distribution of the gas flowing, this should be governed by a system of public law, according to the principles governing the administration, is emphasizing the principle of continuity, efficiency, and generally modest, because this is public service, and how to see this be seen on a strong regulation of the Member States of the Federation, which has the power to provide them directly or by concession. (author)

  10. Structure and operation of the natural gas market in France

    International Nuclear Information System (INIS)

    2007-01-01

    The French natural gas market is organized around six main activities: production, transport, methane terminals, storage, distribution and commercialization. This paper describes the facilities related to each activity: gas fields, pipelines network and distribution systems, terminals capacity and underground storage facilities. The selling activity is opened to competition but the French gas market follows a progressive and controlled opening which will be complete in July 2007. (J.S.)

  11. Canadian natural gas and climate change

    International Nuclear Information System (INIS)

    2002-03-01

    The Canadian Gas Association (CGA) has expressed concerns regarding how the goal to reduce greenhouse gas emissions can be met. It also has concerns regarding the possible economic impacts of required measures to reduce emissions to 6 per cent below 1990 levels. The CGA argued that since the initial negotiations of the Kyoto Protocol, Canada's greenhouse gas emissions have increased significantly, meaning that if the agreement were to come into force, Canada would have to reduce emissions by about 29 per cent below the currently-projected 2008-2012 level. The report states that 28 per cent of Canada's energy needs are met by natural gas. Excluding energy use in transportation, natural gas contributes more than 40 per cent to Canada's energy portfolio. More than half of Canadian households rely on pipeline services and distribution companies to deliver natural gas for household use. The manufacturing sector relies on natural gas for more than half of its energy needs. Natural gas is a major energy source for the iron/steel, petroleum refining and chemical manufacturing industries. Natural gas is a cleaner-burning fuel than coal or crude oil, and its use results in fewer environmental impacts than other fossil fuels. Vehicles powered by natural gas produce 20 - 30 per cent less carbon dioxide emissions than vehicles powered by gasoline. Pipelines are also a more efficient way of transporting and distributing natural gas than marine transport, railways or trucks. The CGA recommends that policy development should emphasize the environmental benefits of natural gas and recognize its role as a bridge fuel to a cleaner energy-based economy. It also recommends that policies should be developed to encourage the use of natural gas in electricity generation to lower greenhouse gases and air pollutants such as oxides of nitrogen that cause smog

  12. The development of a natural gas transportation logistics management system

    International Nuclear Information System (INIS)

    Pereira dos Santos, Sidney; Eugenio Leal, Jose; Oliveira, Fabricio

    2011-01-01

    Efficient management of the natural gas business chain - based on pipeline transmission networks and taking into consideration the interaction among the main players (e.g., shippers, suppliers, transmission companies and local distribution companies) - requires the use of decision-making support systems. These support systems maximise resources and mitigate contingencies due to gas supply shortfalls, operational contingencies from scheduled and non-scheduled equipment outages and market demand shortfalls. This study presents a practical use for technologies, such as a thermohydraulic simulation of gas flow through pipelines, a Monte Carlo simulation for compressor station availability studies, an economic risk evaluation related to potential revenue losses and contractual penalties and linear programming for the maximisation of income and the minimisation of contractual penalties. The proposed system allows the optimum availability level to be defined and maintained by the Transporter (by installing reserve capacity) to mitigate losses related to revenue and contractual penalties. It also economically identifies, quantifies and justifies the installation of stand-by compressor units that can mitigate the Transporter's exposure to losses caused by capacity shortfalls as a consequence of scheduled and non-scheduled outages. - Highlights: → We present a DSS to help the decision on investments on spare compressor units of pipelines systems. → The system may be applied to new or existing projects. → The system is able to estimate the revenue losses and the contractual penalties. → An economical evaluation shows the NPV for each configuration of spare units. → The method was applied to the case study of the Bolivia-Brazil gas pipeline.

  13. The development of a natural gas transportation logistics management system

    Energy Technology Data Exchange (ETDEWEB)

    Pereira dos Santos, Sidney [Petroleo Brasileiro S.A.-PETROBRAS, Av. Almirante Barroso, 81, 12 andar, Centro, Rio de Janeiro RJ 20031-004 (Brazil); Eugenio Leal, Jose, E-mail: jel@puc-rio.br [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Industrial Engineering, R. Marques de S. Vicente 225, Gavea. Rio de Janeiro RJ 22451-900 (Brazil); Oliveira, Fabricio [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Industrial Engineering, R. Marques de S. Vicente 225, Gavea. Rio de Janeiro RJ 22451-900 (Brazil)

    2011-09-15

    Efficient management of the natural gas business chain - based on pipeline transmission networks and taking into consideration the interaction among the main players (e.g., shippers, suppliers, transmission companies and local distribution companies) - requires the use of decision-making support systems. These support systems maximise resources and mitigate contingencies due to gas supply shortfalls, operational contingencies from scheduled and non-scheduled equipment outages and market demand shortfalls. This study presents a practical use for technologies, such as a thermohydraulic simulation of gas flow through pipelines, a Monte Carlo simulation for compressor station availability studies, an economic risk evaluation related to potential revenue losses and contractual penalties and linear programming for the maximisation of income and the minimisation of contractual penalties. The proposed system allows the optimum availability level to be defined and maintained by the Transporter (by installing reserve capacity) to mitigate losses related to revenue and contractual penalties. It also economically identifies, quantifies and justifies the installation of stand-by compressor units that can mitigate the Transporter's exposure to losses caused by capacity shortfalls as a consequence of scheduled and non-scheduled outages. - Highlights: > We present a DSS to help the decision on investments on spare compressor units of pipelines systems. > The system may be applied to new or existing projects. > The system is able to estimate the revenue losses and the contractual penalties. > An economical evaluation shows the NPV for each configuration of spare units. > The method was applied to the case study of the Bolivia-Brazil gas pipeline.

  14. 49 CFR 192.11 - Petroleum gas systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Petroleum gas systems. 192.11 Section 192.11... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS General § 192.11 Petroleum gas systems. (a) Each plant that supplies petroleum gas by pipeline to a natural gas distribution system must meet the requirements...

  15. Natural gas - an alternative. Swedish electric power from Norwegian natural gas

    International Nuclear Information System (INIS)

    1986-10-01

    The report describes the possible substitution of electric power by natural gas on the heat source market and how gas can be used for power production. The cost of distribution and means of supply are presented. 1/3 of the electric power produced by nuclear power plants can be replaced by the middle of the nineties. Transport techniques for gas and its total volume as well as transport cost from Norwegian North Sea are discussed

  16. Quick response to growth opportunities makes a winner of Piedmont Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    Diversification became a necessity to Piedmont Natural Gas Co. as it increasingly faced curtailments and restrictions on supplies from its single energy source, Transcontinental Gas Pipeline Corp. Passage of the Natural Gas Policy Act of 1978 marked the beginning of a turnaround in Piedmont's sharply curtailed gas supplies, keeping Piedmont totally involved in both conventional marketing and construction and expansion into diversified operations. Its diversifications include (1) a program of energy-saving conservation services, (2) formation of a propane gas division, and (3) distribution of fuel oil, all of which helped Piedmont become a full-service energy-distribution system.

  17. The golden age of natural gas

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The experts of energy policy agree to predict a brilliant future for natural gas. Among fossil energies, natural gas produces the least quantity of CO 2 . Geological reserves are estimated to 65 years for gas and 43 years for petroleum. Throughout the world, industrial infrastructures of gas production, transport and distribution are being developed, for instance 430000 km of gas pipeline are planned. In western Europe half the increase of gas demand by 2010 will be due to electricity production. Innovative techniques using natural gas are studied in various fields: cogeneration, transport, urban heating and fuel cells. The gas-fed fuel cell is based on a reversed electrolysis: hydrogen produced by the decomposition of natural gas interacts with oxygen and yields electricity. (A.C.)

  18. Natural gas: redistributing the economic surplus

    International Nuclear Information System (INIS)

    Oliveira, A. de; Pinto Junior, H.Q.

    1990-01-01

    The natural gas has a limited role in the Brazilian energy balance. This role in industrial countries and some developing countries is much more important. Historically this contrasting situation can be explained by the limited natural gas reserves Brazil used to have. Since the oil crisis however the Brazilian natural gas reserves increased substantially without a similar increase in the role of natural gas in the energy balance. The existing institutional arrangement generates a struggle for the economic rent generated by natural gas production and consumption that seems to be at the core of this question. Our paper estimates the economic rent generated by natural gas in Brazil and its distribution among producers and consumers: it points toward a new institutional arrangement that could arguably, generate a new role for the natural gas in the Brazilian energy balance. (author)

  19. Natural gas purchasing for cogeneration projects

    International Nuclear Information System (INIS)

    Kubacki, J. Jr.

    1992-01-01

    This paper reports on the primary cost component for most gas-fired cogeneration or on-site power projects, cost of natural gas. Often gas comprises 50 to 65% of total project costs over the life of the project. Thus it is very important to focus on natural gas sourcing, pricing, transportation and storage. This important task should not be blindly delegated to a gas supplier. The end user must develop a gas strategy that results in the most cost-effective burnertip price. Long-term natural gas supplies are usually source from the three major producing regions: Mod-Continent, Gulf Coast, and Western Canada. A well-reasoned gas strategy must include: determination of transportation and distribution options from the project site to potential gas sources (including direct interconnection of the project to interstate pipelines); acquisition of competitive gas bids from suppliers in appropriate regions; negotiation of potential discounts from interstate pipelines and local distribution companies (LDCs); fine-tuning project economics by, for example, using storage to maximize transportation load factor; and pricing mechanisms that meet economic parameters of the project. This paper uses a hypothetical project in the Midwest to examine the major factors in devising a cost-effective natural gas sourcing

  20. Natural gas annual 1992: Supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  1. Gas analysis modeling system forecast for the Energy Modeling Forum North American Natural Gas Market Study

    International Nuclear Information System (INIS)

    Mariner-Volpe, B.; Trapmann, W.

    1989-01-01

    The Gas Analysis Modeling System is a large computer-based model for analyzing the complex US natural gas industry, including production, transportation, and consumption activities. The model was developed and first used in 1982 after the passage of the NGPA, which initiated a phased decontrol of most natural gas prices at the wellhead. The categorization of gas under the NGPA and the contractual nature of the natural gas market, which existed at the time, were primary factors in the development of the basic structure of the model. As laws and regulations concerning the natural gas market have changed, the model has evolved accordingly. Recent increases in competition in the wellhead market have also led to changes in the model. GAMS produces forecasts of natural gas production, consumption, and prices annually through 2010. It is an engineering-economic model that incorporates several different mathematical structures in order to represent the interaction of the key groups involved in the natural gas market. GAMS has separate supply and demand components that are equilibrated for each year of the forecast by means of a detailed transaction network

  2. Stage 1: Expression of interest and consultation document for natural gas distribution in New Brunswick

    International Nuclear Information System (INIS)

    1998-01-01

    The New Brunswick government intends to award a franchise to establish natural gas distribution in the province. To this end, the province wishes to invite bids from qualified entities to establish gas distribution facilities. The province will select the preferred bidder(s) through a two-stage competitive bidding process. This document details the province's policy objectives, questions and issues to be addressed in stage 1 of the process, and the schedule for the process. Appendices include copies of relevant provincial statutes and regulations

  3. Challenges for the future of natural gas

    International Nuclear Information System (INIS)

    Gadonneix, P.

    1997-01-01

    This paper reports on the closure talk from P. Gadonneix, president of Gaz de France (GdF) company, who draws out the perspectives of development of the French national company in the context of an increasing natural gas demand with new competition and with an evolution of the European regulations: perspectives of demand and production, the dependency of Europe, the competition with other energy sources, the European deregulation of natural gas market, the strategy of Gaz de France, the relation with consumers, the development of distribution systems, the promotion of new products, the environmental qualities of natural gas and the development of clean technologies, the construction of new pipelines within the national territory, the partnerships of GdF with other national companies, the socio-economical actions of GdF (employment etc..). (J.S.)

  4. Using natural gas generation to improve power system efficiency in China

    International Nuclear Information System (INIS)

    Hu, Junfeng; Kwok, Gabe; Xuan, Wang; Williams, James H.; Kahrl, Fredrich

    2013-01-01

    China's electricity sector faces the challenge of managing cost increases, improving reliability, and reducing its environmental footprint even as operating conditions become more complex due to increasing renewable penetration, growing peak demand, and falling system load factors. Addressing these challenges will require changes in how power generation is planned, priced, and dispatched in China. This is especially true for natural gas generation, which is likely to play an important role in power systems worldwide as a flexible generation resource. Although natural gas is commonly perceived to be economically uncompetitive with coal in China, these perceptions are based on analysis that fails to account for the different roles that natural gas generation plays in power systems—baseload, load following, and peaking generation. Our analysis shows that natural gas generation is already cost-effective for meeting peak demand in China, resulting in improved capacity factors and heat rates for coal-fired generators and lower system costs. We find that the largest barrier to using natural gas for peaking generation in China is generation pricing, which could be addressed through modest reforms to support low capacity factor generation. - Highlights: • Using gas generation as a “capacity resource” in China could have multiple benefits. • Benefits include lower total costs, improved efficiency for coal generators. • Price reforms needed to support low capacity factor generation in China

  5. 2003 statistics of the natural gas industry in France

    International Nuclear Information System (INIS)

    2004-12-01

    This document synthesizes the main annual results for the French natural gas industry in 2003: 1 - introduction: consumption and supplies; 2 - methodology: production, transport, storage, distribution, definition of gases, information sources, reference documents, energy correspondences; 3 - Main data summarized in maps, graphics and tables: transport networks, storage, compression and production facilities; resources and employment; employment per sector of use; national production and imports; pipelines and distribution systems; personnel of the gas industry; sectoral distribution of gas supply networks; gas cogeneration: consumption, plants; monthly variation of imports and stocks; monthly variation of consumptions and stocks; regional supplies; regional and sectoral supplies; regional use of the national production; main 2003 status of the gas market; 2003 comparison between the inquiry and the provisional status; 2003 energy status. (J.S.)

  6. Obedience to compliance programs and independence for electricity and natural gas system operators. 2009 report

    International Nuclear Information System (INIS)

    2009-12-01

    In France, system operators belong to groups that also conduct business in the energy sector, in fields governed by competition rules. They could therefore be tempted to use their privileged position to their group's benefit, which would disadvantage end consumers. Non-discriminatory access to electricity and gas transmission and distribution networks is at the core of the market opening to competition approach implemented by the European Union since the end of the 1990's. EU and national enactments in force highlight two tools to ensure nondiscrimination: compliance programmes and independence of system operators with regard to their parent companies. Firstly, compliance programs contain measures taken to ensure that discrimination is completely excluded and that their application is subject to appropriate monitoring. Secondly, system operator independence plays a part in preventing discrimination against competitors with other business activities (generation, supply, etc.) within the same group. In application of these enactments, every electricity or natural gas transmission or distribution system operator serving more than 100,000 customers provided CRE, the Energy Regulatory Commission, with their annual reports on the application of their compliance programs. This document is CRE's 2009 report about compliance programmes and independence of electricity and natural gas system operators. Its content can be summarized as follows: 1 - system operator independence serving consumers: Non-discriminatory access to networks is essential for the development of competitive markets, System operator compliance programs and independence act as a guarantee of nondiscrimination, The legal context in which these issues are addressed is set to change in the near future; 2 - A high level of obedience to compliance programs: The continued efforts of system operators prevent discrimination, CR E has assessed distribution system operators by means of a mystery

  7. Interdependency Assessment of Coupled Natural Gas and Power Systems in Energy Market

    Science.gov (United States)

    Yang, Hongzhao; Qiu, Jing; Zhang, Sanhua; Lai, Mingyong; Dong, Zhao Yang

    2015-12-01

    Owing to the technological development of natural gas exploration and the increasing penetration of gas-fired power generation, gas and power systems inevitably interact with each other from both physical and economic points of view. In order to effectively assess the two systems' interdependency, this paper proposes a systematic modeling framework and constructs simulation platforms for coupled gas and power systems in an energy market environment. By applying the proposed approach to the Australian national electricity market (NEM) and gas market, the impacts of six types of market and system factors are quantitatively analyzed, including power transmission limits, gas pipeline contingencies, gas pipeline flow constraints, carbon emission constraints, power load variations, and non-electric gas load variations. The important interdependency and infrastructure weakness for the two systems are well studied and identified. Our work provides a quantitative basis for grid operators and policy makers to support and guide operation and investment decisions for electric power and natural gas industries.

  8. Natural gas monthly, July 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  9. The natural gas and the possibilities of use in Rio de Janeiro State

    International Nuclear Information System (INIS)

    Carvalho, A.G.F. de; Almeida Luercio, C. de

    1990-01-01

    Although the Rio de Janeiro State owns one of Brazilian most important natural gas reserves and is responsible for 40% of country's natural gas production, the option to increase the utilization of this form of energy, in Rio, has been unexpectedly delayed. The warning that soon there will be a lack of electric power has already been given, and Rio's industrial activity, which has been growing above national average, may suffer irretrievable damages from this scarcity. Brazil is not self-sufficient as regards PLG yet, this fuel is heavily subsidized which thwarts competition in the residential market, with presently existing systems for distributing piped gas. It becomes necessary to remove barriers for obtaining resources and for incorporating PETROBRAS parallel distribution system into the State system, thus supplying the conditions for accelerating large scale use of natural gas in Rio de Janeiro. (author)

  10. Natural gas industry in Bulgaria

    International Nuclear Information System (INIS)

    Mashkin, L.

    1994-01-01

    An overview of the Bulgarian natural gas industry is presented. The starting point was the discovery of the indigenous Chiren gas-field in 1967. The first agreement with the ex-USSR for supply of natural gas and construction of main pipelines was signed in 1968. The state gas company BULGARGAZ is responsible for transportation, storage, distribution, processing and marketing of the gas to over 150 industrial companies in the country, as well as for the transportation services to gas importers in neighboring Turkey. The GAZSTROJMONTAZH company accomplish the construction of the local and transit pipelines to Turkey and Greece, as well as of some objects in Iran, Syria, Ukraine and Germany. In the past 20 years, 87890 million m 3 natural gas from Russia are supplied and 846 million m 3 - from domestic sources. The share of natural gas in the overall energy balance is 13.6% for 1992. The restructuring and further development of gas industry require to take into account some factors as: security in supply; investments for technical assurance; pricing policy for natural gas; development of private business. Some administrative problems are also mentioned. 2 tabs., 1 fig

  11. Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security

    Science.gov (United States)

    2013-05-15

    installation of natural gas generation or cogeneration plants to increase their energy security from the typical three days using diesel supplies to weeks-to...better quantify the regional impact of natural gas for energy security. Modeling and simulation could identify those regions and DoD installations that...Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security N. Judson 15 May 2013 Prepared for the

  12. Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH)

    International Nuclear Information System (INIS)

    Nogami, T.; Oya, N.; Ishida, H.; Matsumoto, H.

    2008-01-01

    Recent studies in Japan have suggested that natural gas hydrate (NGH) transportation of natural gas is more economical than liquefied natural gas (LNG) transportation systems for small, medium and remote gas fields. Researchers in Japan have built a 600 kg per day NGH production and pelletizing plant and regasification facility. This paper discussed feasibility studies conducted in southeast Asia to determine the unit's commercialization potential with large natural gas-related businesses including shipping companies and electric power utilities. The total supply chain was compared with the corresponding liquefied natural gas (LNG) and compressed natural gas (CNG) supply chains. The study also examined natural gas reserves, energy policies, the positioning of natural gas supplies, and future forecasts of natural gas demand. A conceptual design for an NGH supply chain in Indonesia was presented. Results of the study have demonstrated that the NGH chain is an appropriate and economically feasible transportation method for many areas in southeast Asia. 8 refs., 10 figs

  13. Short-term natural gas consumption forecasting

    International Nuclear Information System (INIS)

    Potocnik, P.; Govekar, E.; Grabec, I.

    2007-01-01

    Energy forecasting requirements for Slovenia's natural gas market were investigated along with the cycles of natural gas consumption. This paper presented a short-term natural gas forecasting approach where the daily, weekly and yearly gas consumption were analyzed and the information obtained was incorporated into the forecasting model for hourly forecasting for the next day. The natural gas market depends on forecasting in order to optimize the leasing of storage capacities. As such, natural gas distribution companies have an economic incentive to accurately forecast their future gas consumption. The authors proposed a forecasting model with the following properties: two submodels for the winter and summer seasons; input variables including past consumption data, weather data, weather forecasts and basic cycle indexes; and, a hierarchical forecasting structure in which a daily model was used as the basis, with the hourly forecast obtained by modeling the relative daily profile. This proposed method was illustrated by a forecasting example for Slovenia's natural gas market. 11 refs., 11 figs

  14. Short-term outlook for natural gas and natural gas liquids to 2006 : an energy market assessment

    International Nuclear Information System (INIS)

    2005-10-01

    In recent years, natural gas markets in North America have seen a close balance between supply and demand, resulting in high and volatile natural gas prices. The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This is the NEB's first energy market assessment report that presents a combined short-term analysis and outlook of natural gas and natural gas liquids (NGLs), such as ethane, propane and butane. It provides comprehensive information on the complexity of natural gas and NGL industries and highlights recent developments and topical issues. As a major producer of natural gas, western Canada has a correspondingly large natural gas processing capability that was developed specifically to extract NGLs. A world-scale petrochemical industry was developed in Alberta to convert NGLs into even higher valued products such as ethylene. Since NGLs in Canada are sourced mostly from natural gas, changes to the supply and demand for natural gas would impact NGL supply. This report addressed the issue of commodity prices with reference to crude oil, natural gas and NGL prices. Natural gas supply in terms of North American production and natural gas from coal (NGC) was also reviewed along with natural gas demand for residential and commercial heating, industrial use, power generation, and enhanced recovery for oil sand operations. There are about 692 gas plants in Canada that process raw natural gas into marketable gas and NGLs. Most are small field plants that process raw natural gas production to remove impurities such as sulphur, water and other contaminants. This report also discussed this infrastructure, with reference to field plants, straddle plants, pipelines, distribution and storage, including underground NGL storage. 3 tabs., 27 figs., 5 appendices

  15. Operation and planning of coordinated natural gas and electricity infrastructures

    Science.gov (United States)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and

  16. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R.M. [Radian Corporation, Austin, TX (United States)

    1995-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  17. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R M [Radian Corporation, Austin, TX (United States)

    1996-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  18. Opportunities to reduce methane emissions in the natural gas industry

    International Nuclear Information System (INIS)

    Cowgill, R.M.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH 4 ) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH 4 . Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  19. New pre-heating system for natural gas pressure regulating stations

    International Nuclear Information System (INIS)

    Zullo, G.; Vertuani, C.; Borghesani, O.; Vignoli, F.

    1999-01-01

    Costs for running natural gas pressure regulating stations are mainly due to operation and maintenance of a natural gas preheating system, usually equipment with a hot water boiler or an armour-plated electric resistance immersed in a fluid. The article describe a system, considering a natural circulation boiler which uses steam/condensate (at 100 degrees C and 0,5 bar) as a thermal conductor, in thermodynamic balance and in absence of un condensable. This new boiler, already operating with satisfactory results in heating system for industrial buildings, does not require testing, notifications, periodical inspections by the competent authorities, constant monitoring by trained or patented staff. Besides, it allows easier installations procedures and running cost savings. The system, to be considered as static because it has no moving parts, is a good alternative to conventional forced hot water circulation or electric heating system [it

  20. Flow restriction of multicontrolled natural gas; Restritor de fluxo de gas natural microcontrolado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Lauro C.; Reis, Antonio M.; Maldonado, Waldemar; Suzuqui, Moises [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Nucleo de Energia, Automacao e Controle; Scucuglia, Jose W.; Cortez, Marco A.A. [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Curso de Engenharia Eletrica; Teixeira, Marcelo C.M. [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia Eletrica; Carrasco, Benjamim N. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    One of the specific cases of control in the operation of natural gas distribution is of the automatic restriction of the outflow due the violations of standards of draining of the natural gas in the ducts. With the objective to get a device of low cost, with national technology and high technological value aggregate, developed an electronic, microcontrolled, programmable device, and of low cost, that will function connected the sensors and valves of flow control, of form to monitor in real time the outflow of draining of the natural gas in the respective ducts and to restrict of automatic form the outflow, that necessary or always convenient. The developed hardware was conceived using micro controllers of high performance with capacity of reading of sensors of pressure, temperature and measurers of outflow. Had to a serial communication and the storage in memory of mass with 264 capacity of Kbytes is possible the pertinent visualization of graphs and reports to the behavior of the outflow and performance of the system. An internal RTC - Real Clock Teams, added to the hardware a clock and a calendar for acquisition of data in the schedule defined, as well as the possibility of unloading of the data through the telephonic line, using one embedded modem. (author)

  1. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  2. Market development in the natural gas market

    International Nuclear Information System (INIS)

    Kuenneke, R.W.; Arentsen, M.J.; Manders, A.M.P.; Plettenburg, L.A.

    1998-01-01

    Options for the liberalization of the Dutch natural gas market have been investigated. Three models are compared and assessed for the impacts on the economic performance, the national interests and the so-called public tasks. The results of the report can be used to base the proposals for a new Natural Gas Act, which is expected to be sent to the Dutch parliament in the spring of 1999. The three liberalization models are specified according to the different phases in the industrial column of natural gas. Except for transport (limited possibilities) and distribution (monopolistic character and thus not suitable for market development), market development is possible in all the phases of the column. The models are the cooperation model (equal position for the natural gas trade company Gasunie and the natural gas distribution companies, and management of the natural gas infrastructure and the Dutch gas reserves by means of mutual tuning, cooperation and coordination), the EZ-model (price mechanism for the tariffs for natural gas, and access to the natural gas network through negotiated third party access (TPA) with indicative prices and conditions), and the market model (optimal use of market development options to stimulate the economic performance, introduction of price mechanism options, access through regulated TPA with tariffs, based on long-term marginal costs, role of the government limited to a favorable policy with respect to access to the network, competition and security of the interests which arise from the exploitation of the Dutch natural gas fields). 26 refs

  3. European key issues concerning natural gas: Dependence and vulnerability

    International Nuclear Information System (INIS)

    Reymond, Mathias

    2007-01-01

    Due to the high demand for natural gas from emerging countries and because natural gas has become an increasingly valuable resource is electricity production, natural gas demand should increase. This paper re-examines the geopolitical key issues related to natural gas as well as the uneven distribution of natural gas resources on a worldwide scale. This paper proposes to define the significance of liquefied natural gas in gas exchanges and it analyses the problem of European gas vulnerability using several indicators

  4. Natural radioactivity at Podravina gas fields

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    2006-01-01

    In Croatia, natural gas is an important source of energy, where its use exceeds other sources by one third. Composed primarily of the methane, natural gas from Croatian Podravina gas fields, beside other impurities, contains small amounts of radioactive elements. At Gas Treatment Plant (GTP) Molve, technological procedures for purification of natural gas and its distribution are performed. With yearly natural gas production of 3.5 109 m3 GTP Molve is major Croatian energy resource. Its safety and environment impact is matter of concern. Using different radioactivity measuring techniques the exposure of population to ionizing radiation were calculated at Central Natural Gas Station Molve and the underground wells. The measurement techniques included in-situ gamma spectrometric measurements, from which contribution to absorbed dose of the natural radionuclide in soil were calculated. Exposure dose measurements were performed using T.L.-dosimeters, and L.A.R.A. electronic dosimeters as well as field dose rate meter. Comparing used different radioactivity measuring methods, the correlations have been calculated. (authors)

  5. Seismic vulnerability of natural gas pipelines

    International Nuclear Information System (INIS)

    Lanzano, Giovanni; Salzano, Ernesto; Santucci de Magistris, Filippo; Fabbrocino, Giovanni

    2013-01-01

    This work deals with the analysis of the interaction of earthquakes with pipelines transporting and distributing natural gas for industrial and civil use. To this aim, a new large data-set of seismic information classified on the basis of selected seismological, geotechnical and structural parameters is presented and analyzed. Particular attention is devoted to continuous pipelines under strong ground shaking, which is the geotechnical effect due to passage of waves in soil. Results are provided in terms of the likelihood of the loss of containment with respect to Peak Ground Velocity (PGV), a seismic intensity parameter which may be easily retrieved either from local authorities and public databases or from site dependent hazard analysis. Fragility functions and seismic intensity threshold values for the failure and for the loss of containment of gas from pipeline systems are also given. The obtained functions can be easily implemented in existing codes and guidelines for industrial risk assessment, land-use planning, and for the design of public distribution network, with specific reference to Natural—Technological interaction (Na-Tech). -- Highlights: • The seismic vulnerability of natural gas pipelines is analyzed. • A collection of data for pipelines damaged by earthquake is given. • Damage states and risk states for pipelines are defined. • Consequence-based fragility formulations for the loss of containment are given • Seismic threshold values for public authority, risk assessment and gas distribution are shown

  6. Practical consequences of the liberalization of the natural gas market in the Netherlands

    International Nuclear Information System (INIS)

    Koenis, F.T.C.; Rouwhorst, H.; Kop, L.

    2000-01-01

    In four articles a first overview is given of the consequences for the Dutch natural gas industry of the liberalization of the natural gas market in Europe. In the first article attention is paid to the consequences for the organization and operation of the natural gas sector. In article 2 some (new and mainly financial) services that can be offered by natural gas trading companies in a liberalized market are discussed. In the third article technical consequences for the organization and management of the natural gas distribution system are outlined, while in article 4 the subject is the development of an open standard for gas meters

  7. El Paso natural gas nearing completion of system's largest expansion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    El Paso Natural Gas Co.'s largest expansion program in its 64-year history will be completed along its northern system this spring or early summer. According to the company, the three-tiered, $241.5 million expansion program will increase El Paso's gas-transport capacity by 835 MMcfd to 2.5 bcfd of conventional and coal-seam gas from the San Juan basin in northwestern New Mexico. That's enough natural gas, says the company, to supply the needs of a city of more than 800,000 residents. This paper reports that the expansion involves the San Juan Triangle system, the company's northern main line, and the Permian-San Juan crossover line. The company also filed with the Federal Energy Regulatory Commission (FERC) in October 1991 to construct a new $15.2 million compressor station, Rio Vista, south of Bloomfield, N.M. The station would be used to move additional gas to the main line

  8. Pricing of natural gas in Kazakhstan

    International Nuclear Information System (INIS)

    Zhapargaliev, I.K.

    1996-01-01

    Two state companies are in charge of natural gas supply in Kazakhstan. They buy, transport and sell natural gas and have monopolized the industry and provoked increase of gas prices. Ministry of Oil and gas Industry proposed demonopolization. The restructuring that took place caused new distribution of tasks in the gas industry. A more competitive environment was created leading to normalization of the natural gas prices. All economic subjects were granted the right to acquire gas regardless the type of ownership. Measures implemented for reorganization of gas companies contributed to the reduction of gas transport costs and prices by 50% and to decrease of gas prices in the southern regions by 50%. Despite these measures gas prices for household sector are still unchanged and are below the import prices, the main reason being the low average household income

  9. Effect of leaking natural gas on soil and vegetation in urban areas

    NARCIS (Netherlands)

    Hoeks, J.

    1972-01-01

    Leakage of natural gas from the gas distribution system affects the physical, chemical and biological processes in the soil. Particularly the microbial oxidation of methane is then of predominant importance for the composition of the soil gas phase. The rate of methane oxidation was

  10. A techno-economic & environmental analysis of a novel technology utilizing an internal combustion engine as a compact, inexpensive micro-reformer for a distributed gas-to-liquids system

    Science.gov (United States)

    Browne, Joshua B.

    Anthropogenic greenhouse gas emissions (GHG) contribute to global warming, and must be mitigated. With GHG mitigation as an overarching goal, this research aims to study the potential for newfound and abundant sources of natural gas to play a role as part of a GHG mitigation strategy. However, recent work suggests that methane leakage in the current natural gas system may inhibit end-use natural gas as a robust mitigation strategy, but that natural gas as a feedstock for other forms of energy, such as electricity generation or liquid fuels, may support natural-gas based mitigation efforts. Flaring of uneconomic natural gas, or outright loss of natural gas to the atmosphere results in greenhouse gas emissions that could be avoided and which today are very large in aggregate. A central part of this study is to look at a new technology for converting natural gas into methanol at a unit scale that is matched to the size of individual natural gas wells. The goal is to convert stranded or otherwise flared natural gas into a commercially valuable product and thereby avoid any unnecessary emission to the atmosphere. A major part of this study is to contribute to the development of a novel approach for converting natural gas into methanol and to assess the environmental impact (for better or for worse) of this new technology. This Ph. D. research contributes to the development of such a system and provides a comprehensive techno-economic and environmental assessment of this technology. Recognizing the distributed nature of methane leakage associated with the natural gas system, this work is also intended to advance previous research at the Lenfest Center for Sustainable Energy that aims to show that small, modular energy systems can be made economic. This thesis contributes to and analyzes the development of a small-scale gas-to-liquids (GTL) system aimed at addressing flared natural gas from gas and oil wells. This thesis includes system engineering around a design that

  11. Stakeholder Workshop on EPA GHG Data on Petroleum and Natural Gas Systems

    Science.gov (United States)

    This page describes EPA's November 2015 stakeholder workshop on greenhouse gas data on petroleum and natural gas systems from the Greenhouse Gas Reporting Program and U.S. Greenhouse Gas Inventory of Emissions and Sinks.

  12. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Science.gov (United States)

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel...

  13. Overview of use of natural gas on heavy duty vehicles in Brazil; Panorama da utilizacao do gas natural veicular em veiculos pesados no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos; Melo, Tadeu Cavalcante Cordeiro de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Area de Desempenho de Produtos em Motores; Lastres, Luiz Fernando Martins [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Gerencia de Lubrificantes e Produtos Especiais

    2004-07-01

    The use of vehicular natural gas (VNG) was initiated in Brazil in he 80's seeking the replacement of diesel in heavy vehicles due to the oil crisis. In this season PETROBRAS participated, along with other companies, in the development of conversion technologies for replacement part of the diesel by natural gas through systems known as diesel-gas. Were made works to development bank of tests of engines and field tests on some bus companies, verifying if there are technical and economic viability of such conversion. Due to factors such as small mesh distribution of natural gas in Brazil, lack of infrastructure of technical support suitable for conversions and lack of culture in the use of natural gas, the program not progressed and experience was interrupted. Other experiments were conducted in Brazil with the use of engines dedicated to natural gas (Otto cycle) developed and manufactured in the country for use in urban buses. Currently there is a scenario favorable to the return of use of natural gas in weighed vehicles by the following factors: 1) increase the mesh distribution of VNG due to the high growth of the fleet light vehicles to VNG in the country, solving part of the problems of logistics; 2) pressure from environmental agencies by values of emissions of particles and gases ever less pollutants in urban centers; 3) excess supply of natural gas in the domestic market due to new discoveries in Brazil, contracts for the import of natural gas signed with Bolivia and low demand for current industrial consumption of gas; 4) need to replace the import of diesel, which weighs in trade of the country. This paper will be presented some experiences with the technology of diesel-gas and the engine dedicated the VNG in weighed vehicles in Brazil. Also some recommendations will be made to increase and spread the use of these technologies, aiming to increase the replacement of diesel by vehicular natural gas in weighed vehicles. (author)

  14. Distributed gas detection system and method

    Science.gov (United States)

    Challener, William Albert; Palit, Sabarni; Karp, Jason Harris; Kasten, Ansas Matthias; Choudhury, Niloy

    2017-11-21

    A distributed gas detection system includes one or more hollow core fibers disposed in different locations, one or more solid core fibers optically coupled with the one or more hollow core fibers and configured to receive light of one or more wavelengths from a light source, and an interrogator device configured to receive at least some of the light propagating through the one or more solid core fibers and the one or more hollow core fibers. The interrogator device is configured to identify a location of a presence of a gas-of-interest by examining absorption of at least one of the wavelengths of the light at least one of the hollow core fibers.

  15. Who's afraid of natural gas?

    International Nuclear Information System (INIS)

    Patterson, W.

    1999-01-01

    Changes in our electricity systems provoked by natural gas power generation technology are paving the way for large-scale renewables use in the future. Natural gas and gas turbines are now such a cheap and easy option for electricity generation that they appear to cast a pall over renewables. The market share of gas-fired generation continues expanding inexorably. Its cost continues to fall, setting renewables an ever more demanding competitive target. Nevertheless, paradoxical though this may sound, natural gas is actually the natural ally of renewables. Despite the fierce competitive challenge it represents, natural gas may even be the most important single factor shaping a bright future for renewables. (author)

  16. Operation and management of aging gas distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    McNorgan, J.D. (Southern California Gas Co., Los Angeles, CA (United States))

    1993-05-01

    Southern California Gas Company, transports billions of cubic feet of natural gas through large-diameter, high-pressure transmission lines, across hundreds of miles of varying terrain, to satisfy the needs of over four and a half million customers. Operating an aging gas system can be truly expensive. Repair costs are very high. Recent figures experienced by our company show that it cost over $800 to repair a main leak, $400 to replace a service, and over $40 a foot to replace even small sized mains. A hidden cost is the effect of the physical limitations imposed by an aging system. It could be under-sized, or limited to a low pressure, thus restricting the volume of gas that can be delivered. Additionally there is the potential loss of valuable gas through leaks or blow downs when making repairs or replacements, and the damage it could do to the environment. For some years Southern California Gas Company has had on-going special and routine pipe replacement programs. The special pipe replacement program is driven primarily to increase the safety of the system, while at the same time improving reliability of service to the customers and reducing their total costs.

  17. Modeling the transient security constraints of natural gas network in day-ahead power system scheduling

    DEFF Research Database (Denmark)

    Yang, Jingwei; Zhang, Ning; Kang, Chongqing

    2017-01-01

    The rapid deployment of gas-fired generating units makes the power system more vulnerable to failures in the natural gas system. To reduce the risk of gas system failure and to guarantee the security of power system operation, it is necessary to take the security constraints of natural gas...... accurately, they are hard to be embedded into the power system scheduling model, which consists of algebraic equations and inequations. This paper addresses this dilemma by proposing an algebraic transient model of natural gas network which is similar to the branch-node model of power network. Based...... pipelines into account in the day-ahead power generation scheduling model. However, the minute- and hour-level dynamic characteristics of gas systems prevents an accurate decision-making simply with the steady-state gas flow model. Although the partial differential equations depict the dynamics of gas flow...

  18. Making sure natural gas gets to market

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    The role of natural gas in power generation was discussed with reference to price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. 13 figs

  19. Natural gas pricing reform in China: Getting closer to a market system?

    International Nuclear Information System (INIS)

    Paltsev, Sergey; Zhang, Danwei

    2015-01-01

    Recent policy in China targets an increase in the contribution of natural gas to the nation's energy supply. Historically, China's natural gas prices have been highly regulated with a goal to protect consumers. The old pricing regime failed to provide enough incentives for natural gas suppliers, which often resulted in natural gas shortage. A new gas pricing reform was tested in Guangdong and Guangxi provinces in 2011, and introduced nationwide in 2013. The reform is aimed at creating a more market-based pricing mechanism. We show that a substantial progress toward a better predictability and transparency of prices has been made. The prices are now more connected with the international fuel oil and liquid petroleum gas prices. The government's approach for a temporary two-tier pricing when some volumes are still traded at old prices reduced a potential opposition during the new regime implementation. Some limitations of the natural gas pricing remain as it created biased incentives for producers and favors large natural gas suppliers. The pricing reform at its current stage falls short of establishing a complete market mechanism driven by an interaction of supply and demand of natural gas in China. - Highlights: • China's reform of natural gas pricing is in effect nationwide from 2013. • Prices are now connected to international fuel oil and liquid petroleum gas prices. • The reform benefits domestic producers and importers of natural gas. • There are still price distortions between industrial and residential sector. • The reform needs to create a system where both supply and demand are considered.

  20. The multi service cable network along a natural gas network for urban distribution; Reseau cable multiservice associe a un reseau de gaz naturel pour la consommation publique

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, D.; Krsmanovic, Z. [NIS-Energogas (Yugoslavia)

    2000-07-01

    The paper discusses parallel construction and development of natural gas and telecommunications projects in Europe, with an emphasis on the situation in FR Yugoslavia. Deregulation of postal services has created an opportunity for joint construction of multipurpose cable networks and gas distribution systems. Advantages are shown of such joint construction of gas pipeline and cable systems, and the strategy of further development of telecommunications and gas supply projects in FR Yugoslavia is presented. (authors)

  1. Natural gas commoditization - evolution and trends

    International Nuclear Information System (INIS)

    Albon, D.R.

    1998-01-01

    This presentation dealt with issues of deregulation in the natural gas industry. The commoditization process, the effect of deregulation as reflected by changes in the percentage distribution of market participation by profession in NYMEX in 1994 and for the first quarter of 1998, the natural gas supply and demand from 1990 to 1996, and natural gas market activities (i.e. swaps, EFPs, spreads, transportation look-alikes, triggers) were reviewed. An Alberta supply and demand forecast for the winter heating season of 1998-1999 and its impact on prices was also provided. tabs., figs

  2. Natural gas developments in Latin America

    International Nuclear Information System (INIS)

    Faith, P.L.

    1996-01-01

    Natural gas opportunities in Latin America are discussed with reference to the Bolivia to Brazil Gas Pipeline Project. This fully integrated natural gas project extends from reserves development to market consumption and involves cooperation between countries and between the public and private sector. The project's success will depend, it is argued on the thorough integration and cooperation of all stages from reserve exploration, through pipeline construction, and distribution to power generation. (UK)

  3. The energy sector abroad. Part 12. The Czech Republic. Spider in the European natural gas web

    International Nuclear Information System (INIS)

    Holwerda, B.

    1998-01-01

    The natural gas industry in the Czech Republic is one of the oldest in Europe. In the past, natural gas has played a modest role in the Czech energy supply: coal and town gas from coal and lignite were the major energy sources. However, more and more use is made of natural gas, imported from Russia (Gazprom) and Norway. Besides, the Czech natural gas distribution, transportation and storage system occupies a key position in the Central-European natural gas network

  4. Substitution of petroleum liquefied gas for natural gas in a metallurgical industry: a case study; Substituicao de gas liquefeito de petroleo por gas natural em uma siderurgica: um estudo de caso

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Isac Quintao; Miranda, Luciano Lellis; Fullin Junior, Benjamin; Rodrigues, Henrique de Castro; Manella, Roberto [Aperam South America, Timoteo, MG (Brazil). Utilidades e Eficiencia Energetica; Lins, Vanessa de Freitas Cunha [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Quimica

    2011-12-21

    Minas Gerais is a State where there is no production of natural gas. Aiming to increase the consumption of natural gas in Minas Gerais, PETROBRAS increase the network of gas natural distribution in the State of Minas Gerais and the State concessionaire (GASMIG) installed the Project of Natural Gas Valley. The case study is associated to an enterprise that firmed contract for supplying of natural gas. The fuel to be substituted is the Liquefied Petroleum Gas and the results of the substitution were shown. The advantages of the substitution were related to costs, and environmental aspects with the reduction of CO{sub 2} production. The natural gas contains a lower content of impurities and is operated with higher safety than the petroleum liquefied gas. (author)

  5. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  6. Joint Costs in Electricity and Natural Gas Distribution Infrastructures: The Role of Urban Factors

    Directory of Open Access Journals (Sweden)

    Muzeyyen Anil Senyel

    2018-04-01

    Full Text Available This paper analyzes the joint cost structure of electricity and natural gas distribution investments. Assessing the joint costs is critical for urban development and public policy regarding competition at the local level. The paper accounts for the urban and geographic factors at the local level, while the previous literature primarily used company-level data with a few or no site-specific variables in joint cost analyses. An empirical analysis of the multi-utility capital costs suggests that the local urban and geographic conditions affect such costs, with economies of scope present in electricity and natural gas both in terms of total costs and underground investment costs. Hence, the joint service provision makes economic and environmental sense for urban policy makers.

  7. Which future for natural gas in the European-Mediterranean area

    International Nuclear Information System (INIS)

    Giesbert, J.Ch.

    1997-01-01

    In the Mediterranean sea surrounding countries, energy consumption and in particular natural gas, is growing up. However, this development requires the mobilization of important capitals and the creation of multilateral partnerships. These investments must be realized when southern and eastern Mediterranean countries will change for a market economy and when the energy market in the European Union is liberalizing. This paper describes the situation of the development of natural gas uses in the Maghreb countries (power production, development of cogeneration systems, supply of LPG fuels for domestic uses, development of distribution and transportation systems) and the position of European gas companies with respect to this developing market: investments, risks assessment, European Union warranty, liberalization of gas markets in the Maghreb countries and in the European union. (J.S.)

  8. Legal and regulatory possibility of connection between interstate natural gas distribution networks instead of constructing transport pipelines; Possibilidade juridoco-regulatoria da conexao interestadual entre redes de distribuicao de gas natural como alternativa a construcao de gasodutos de transporte

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Gustavo Mano [Andrade, Mano - Advogados, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    According to Revista Brasil Energia (2011a), the local natural gas distribution concessionaire in the State of Sao Paulo Gas Brasiliano Distribuidora - GBD, plans to expand its distribution pipeline network in western Sao Paulo up to the border of the State of Minas Gerais, near the region known as Minas Triangle where a connection with the pipeline network of the State of Minas Gerais' natural gas distribution company, Companhia de Gas de Minas Gerais - GASMIG shall be built in order to supply natural gas to an ammonia plant to be built by PETROBRAS in the City of Uberaba. Still according to the publication, the project described above would be an alternative to the construction of a transportation pipeline that, since the enforcement of the Gas Law - Law No. 11.909/09 (Brasil, 2009), should be subject to concession contracts preceded by a complex, and probably delayed, planning and procurement. However, there is a transportation pipeline project, deriving from the Bolivia-Brazil transportation pipeline near the city of Sao Carlos, in Sao Paulo, crossing the Minas Triangle and finishing in the State of Goias. This project is owned by TGBC Company. The existence of two gas pipeline projects with very similar paths to supply virtually the same regions and based on different regulatory frameworks, one consisting of a connection between the distribution networks of different States and another based on the concept of pipeline transportation of gas under the legal and regulatory federal jurisdiction raises the discussion about the possibility of legal and regulatory interstate connections of distribution pipeline networks as an alternative to planning, allocation and construction of a transportation pipelines. This article aims to examine the legal and regulatory foundations of both alternatives and delineate the limits of performance of States and Federal Government on legislation and regulation concerning the movement of natural gas pipeline through the Country

  9. Technical description of the Swedish natural gas distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ronny [KM Miljoeteknik AB (Sweden)

    1997-06-01

    This description of the Swedish distribution network has been produced to provide information for distribution companies, trade organisations, etc., who have an interest in getting a clear understanding of the technical design and standards, technical directives, etc., which have served as guidance in the development. The technical description covers the piping system from a measuring and regulating station (MR station) up to the consumer`s substation, however, only sections with a maximum operating pressure of 4 bar. By way of introduction, the description contains introductory information on supply channels, consumption patterns and the principal design of the high pressure network in Sweden 10 refs, 10 figs, 1 tab

  10. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  11. Lessons learned from Brazilian natural gas industry reform

    International Nuclear Information System (INIS)

    Mathias, Melissa Cristina; Szklo, Alexandre

    2007-01-01

    Over the past decades many countries have reformed their infrastructure industries. Although these reforms have been broadly similar for the most part, aiming at introducing competition in potentially competitive segments, the contexts in which they have been carried out differ. This is due to the past regulatory experience in each country, the maturity of the industry and/or the number of agents when the reform process started. The Brazilian natural gas reform stands out due to the country's singular conditions. The development of the natural gas industry in Brazil was grounded on stepping up supplies through integration with neighboring nations (particularly Bolivia) and establishing a competitive environment by lowering the barriers hampering the arrival of new investors. However, natural gas is located at the crossroads of two main energy chains: oil and hydroelectricity. This article analyzes the Brazilian natural gas reform, and extracts lessons from this process. The low capillarity of transportation and distribution systems continues to be the main bottleneck of the country's natural gas industry. The challenges of the new legal framework are to encourage investments in networks and guarantee supply, to allow the industry to consolidate and mature, against a backdrop of rapid changes in the world market. (author)

  12. Natural gas vehicles in Europe: Commercialization prospects

    International Nuclear Information System (INIS)

    Vettori, P.; Merigo, F.

    1992-01-01

    This paper tables numerous statistical data to evidence that whereas the use of natural gas as an automotive fuel for private and public vehicles is growing in Asia, North and South America, in Europe this trend is currently being followed only in Italy. However, with the relatively recent expansion of the European Communities' natural gas distribution network, coupled with growing interest in this fuel as a cost effective and environmentally compatible alternative to petroleum, the demand for natural gas automotive fuels is expected to increase even in this continent. The trucking industry in particular should derive significant benefits from the switch to natural gas

  13. Natural gas: An essential source of energy in the Romanian economy

    International Nuclear Information System (INIS)

    Coconea, G.

    1993-01-01

    The Romanian natural gas industry has existed since the early 1900s. The share of natural gas in Romania's current energy consumption is around 40%. The state gas company Romgaz operates ca 150 gas fields and 3,600 producing wells, but only 20% of annual production is being replaced by new discoveries. Declining gas production is caused by such factors as improper well completion, delayed workovers, water encroachment, and sand consolidation. Romgaz also transports imported natural gas from Russia and provides transportation services to natural gas importers in neighboring countries. The gas transmission network comprises ca 11,000 km of pipelines and 82,800 kW of installed compressor capacity. The distribution system supplies gas to over 2.5 million customers over some 15,000 km of pipeline. Future projects include expansion of production and increasing recoverable reserves, modernization of equipment, constructing an interconnecting pipeline with the Ukraine, installing a liquefied natural gas terminal on the Black Sea, rehabilitating the gas transmission grid, and installing supervisory control and data acquisition systems. The gas consumption pattern of 1990 (57% industrial, 31% power generation, 8% households) is expected to change with a substantial increase in household and commercial supplies, as well as replacement of gas-fired generation with hydroelectric and nuclear generation. A governmental restructuring strategy is being implemented to enhance oil and gas production, to improve operational efficiency of the sector, and to address environmental pollution. Components of the strategy are outlined

  14. EBR-II Cover Gas Cleanup System upgrade distributed control and front end computer systems

    International Nuclear Information System (INIS)

    Carlson, R.B.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; gives reasons behind the computer system structure; and then gives a detailed description of the distributed control computer, the front end computer, and how these computers interact with the main control computer. The descriptions cover both hardware and software

  15. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  16. Monitoring of good practices programs and independence for electricity and natural gas system operators. Report 2012

    International Nuclear Information System (INIS)

    2013-09-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 8. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2012. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2012 and audits carried out by the CRE services in these companies in 2012

  17. Monitoring of good practices programs and independence for electricity and natural gas system operators. 2010 report

    International Nuclear Information System (INIS)

    2011-01-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 6. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2010. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2010 and audits carried out by the CRE services in these companies in 2010

  18. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...... constraints in both systems. An iterative method is proposed to deal with the nonlinearity in the proposed model. The models of the natural gas and power system are linearized in every iterative step. Simulation results demonstrate the effectiveness of the approach. Applicability of the proposed method...... is tested in the sample case. Finally, the effect of Power to Gas (P2G) on the daily economic dispatch is also investigated....

  19. The distribution of helium isotopes of natural gas and tectonic environment

    International Nuclear Information System (INIS)

    Sun Mingliang; Tao Mingxin

    1993-01-01

    Based on the 3 He/ 4 He data of the main oil-gas bearing basins in continental China, a systematic study has been made for the first time on the relations between the space distribution of the helium isotopes of natural gas and the tectonic environment. The average value R-bar of 3 He/ 4 He in eastern China bordering on the Pacific Ocean is 2.08 x 10 -6 >Ra, and that is dualistic mixed helium containing mantle source helium. The R-bar of central and western China is 4.96 x 10 -8 , and that is mainly crust source radioactive helium. The R-bar of Huabei and Zhongyuan oil-gas fields is 8.00 x 10 -7 , and that is a kind of transitional helium intercepted between the eastern region and the central western region of China. On the whole, the 3 He/ 4 He values decrease gradually with the distance from the subduction zone of the Western Pacific Ocean. The results show that the space distributions of the helium isotopes is controlled by the tectonic environment, that is the environment of tensile rift, especially in the neighborhood of deep megafractures advantageous to the rise of mantle source helium, so then and there the 3 He/ 4 He value is the highest; In the most stable craton basins, the value is the lowest and the helium is a typical crust source radioactive one. Between the active area (rift) and stable area, there is the transitional helium and its value is 10 -7 , as is the case in Huabei-Zhongyuan oil-gas field

  20. Legislative competence relative to natural gas; Competencia legislativa atinente ao gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Rafael Silva Paes Pires; Silveira Neto, Otacilio dos Santos [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Recursos Humanos da ANP para Habilitacao em Petroleo e Gas Natural, PRH-36

    2004-07-01

    The expansion of the gas industry in our country in the actual days, allied to the constitutional authorization for the private initiative acting in this sector provides the establishment of precise rules to the consequent market consolidation. In spite of the exigencies, one realises that the law no. 9.487/97, often denominated as Oil Law, does not rule in its fullness the specifics situations concerned to the natural gas. Despite the elaboration of the natural gas Law is a target of the governmental politics, overcoming the question pondered, there is not, until now, a detailed study of the legislative competency regimen relative to the natural gas. This very work, notably, gathers relevance in front of the State shape adopted in our country and the federative pact historically built; while aiming the complex distribution of legislative power made to each one of the political entities, there is need to establish the limits of performance to the sort of the coming gas Law, under penalty its arising with an unconstitutionality defect confronting to the federative pact. In the sense of clarifying the probably doubts around the subject and allowing that power comes closer to the people are our considerations proposed for. (author)

  1. Natural gas prices in Italy. Tariffs geographical distribution

    International Nuclear Information System (INIS)

    Marrocchelli, A.

    2000-01-01

    The annual report on services and activity carries at some evaluations of data concerned the natural gas market: total consumption, costs and prices in Italy and comparative evaluations with other european countries [it

  2. 1991 worldwide natural gas industry directory

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book provides information for the natural gas industry, just as other PennWell directories have for the petroleum industry. Comprehensive in scope, each company listing includes address, phone, fax telex and cable numbers, key personnel, subsidiaries, branches and brief descriptions. The directory is organized in major areas of operation and includes sections on: Distribution, Drilling/Exploration/Production, Gas Utilities, Gathering/Transmission, Industry Associations/Organizations, LNG, LPG, Marketing, Processing, Regulatory Agencies, and Service, Supply and Manufacturers. An invaluable reference source for the natural gas professional

  3. Natural gas trends

    International Nuclear Information System (INIS)

    Anderson, A.

    1991-01-01

    This book provides data on many facets of the natural gas industry. Topics include: Canadian, Mexican; US natural gas reserves and production; Mexican and US natural gas consumption; market conditions for natural gas in the US; and Canadian natural gas exports

  4. Sceneries and projections of demands of natural gas in Brazil; Cenario e projecoes das demandas de gas natural no pais

    Energy Technology Data Exchange (ETDEWEB)

    Chianca, Marcos Duilio de Oliveira; Marques, Ziney Dias [SENAI - Servico Nacional de Aprendizagem Industrial, Rio de Janeiro, RJ (Brazil). Sistema FIRJAN

    2004-07-01

    Interest in Natural Gas in Brazil emerged in the second half of the twentieth century, against a background in which the global giants of the petroleum and gas industries stated that reserves within the country were not commercially viable. This scenario changed with the discovery of numerous oil and gas fields and resulted in the participation of numerous foreign companies bidding for exploration and production rights in the new fields established by ANP. Natural Gas has come to assume a new dimension with further recent discoveries in Santos, Espirito Santo, Sergipe and Urucu, with proven reserves in the order of 490 billion m3. This new dimension is reinforced by PETROBRAS's current strategic plan which considers investments in the order of 3.5 Billion U$ dollars for the production, processing and transport of Natural Gas and half a billion dollars for thermoelectric power stations. The use of Natural Gas in industries, in general, and in the generation of electricity will provide a strong push for the country's economy, substituting other sources of energy with the recognized advantages for production and reduced environmental impact. In this new era 24 gas distribution companies, widely distributed throughout Brazil, are also programming new investments to make best the use of Natural Gas for industry, commerce, for the residential sector and throughout all the national territory. (author)

  5. Sceneries and projections of demands of natural gas in Brazil; Cenario e projecoes das demandas de gas natural no pais

    Energy Technology Data Exchange (ETDEWEB)

    Chianca, Marcos Duilio de Oliveira; Marques, Ziney Dias [SENAI - Servico Nacional de Aprendizagem Industrial, Rio de Janeiro, RJ (Brazil). Sistema FIRJAN

    2004-07-01

    Interest in Natural Gas in Brazil emerged in the second half of the twentieth century, against a background in which the global giants of the petroleum and gas industries stated that reserves within the country were not commercially viable. This scenario changed with the discovery of numerous oil and gas fields and resulted in the participation of numerous foreign companies bidding for exploration and production rights in the new fields established by ANP. Natural Gas has come to assume a new dimension with further recent discoveries in Santos, Espirito Santo, Sergipe and Urucu, with proven reserves in the order of 490 billion m3. This new dimension is reinforced by PETROBRAS's current strategic plan which considers investments in the order of 3.5 Billion U$ dollars for the production, processing and transport of Natural Gas and half a billion dollars for thermoelectric power stations. The use of Natural Gas in industries, in general, and in the generation of electricity will provide a strong push for the country's economy, substituting other sources of energy with the recognized advantages for production and reduced environmental impact. In this new era 24 gas distribution companies, widely distributed throughout Brazil, are also programming new investments to make best the use of Natural Gas for industry, commerce, for the residential sector and throughout all the national territory. (author)

  6. Mergers and acquisitions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, D.A.; Brown, M.L.

    1984-04-26

    Three examples of natural gas distribution companies involved in merger activity illustrate how the distribution as well as the transmission side of the industry may be attractive to potential acquiring companies seeking diversification. Although the mergers are a new phenonmenon, the acquiring firms are attracted by the overlapping service areas and the operating efficiency of the regulated distributors. They also see a possible outlet for surplus natural gas. 1 table.

  7. N2 gas station and gas distribution system for TLD personnel monitoring gas based semi-automatic badge readers

    International Nuclear Information System (INIS)

    Chourasiya, G.; Pradhan, S.M.; Kher, R.K.; Bhatt, B.C

    2003-01-01

    Full text: New improvised hot gas based Auto TLD badge reader has several advantages over the earlier contact heating based manual badge reader. It requires constant supply of N 2 gas for its operation; The gas supplied using replaceable individual gas cylinders may have some safety hazards in their handling. It was therefore considered worthwhile to setup a N 2 gas assembly/ station outside the lab area and to bring regulated gas supply through network of tubes with proper regulation to the individual readers. The paper presents detailed description of the gas station and distribution system. The system is quite useful and offers several practical advantages for readout of TLD badges on the semiautomatic badge readers based on gas heating. Important advantage from dosimetric point of view is avoidance of gas flow rate fluctuations and corresponding variations in TL readouts

  8. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  9. Mobile hybrid LiDAR & infrared sensing for natural gas pipeline monitoring, final report.

    Science.gov (United States)

    2016-01-01

    The natural gas distribution system in the U.S. has a total of 1.2 million miles of mains and about 65 million service lines as of 2012 [1]. This distribution system consists of various material types and is subjected to various threats which vary ac...

  10. Methane Emissions from Natural Gas in the Urban Region of Boston, Massachusetts

    Science.gov (United States)

    McKain, K.; Down, A.; Raciti, S. M.; Budney, J.; Hutyra, L.; Floerchinger, C. R.; Herndon, S. C.; Zahniser, M. S.; Nehrkorn, T.; Jackson, R. B.; Phillips, N. G.; Wofsy, S. C.

    2014-12-01

    Methane emissions from the natural gas supply chain must be quantified to assess environmental impacts of natural gas and to develop emission reduction strategies. We report natural gas emission rates for one year in the urban region of Boston, MA, using an atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission rate, 20.6 ± 1.7 (95 % CI) g CH4 m-2 yr-1. Simultaneous observations of atmospheric ethane, compared with the ethane to methane ratio in pipeline gas, demonstrate that natural gas accounted for 58 - 100 % of methane emissions, depending on season. Using government statistics and geospatial data on energy consumption, we estimate the fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end-use, was 2.9 ± 0.3 % in the Boston urban region, compared to 1.1 % inferred by the Massachusetts greenhouse gas inventory.

  11. Natural gas monthly, September 1991. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  12. The Energy Regulatory Commission. The Regulation of Natural Gas in Mexico

    International Nuclear Information System (INIS)

    1995-01-01

    In May of 1995 the Congress approved amendments to the Regulatory Law of Constitutional article 27 on Petroleum. This legal reform fundamentally redefined the petroleum industry and authorizes the private sector to construct, operate, and own natural gas transportation, storage and distribution systems-activities previously reserved to the state. To complement these reforms and to implement the legislative mandate of the Regulatory Law on Petroleum, the Natural Gas Regulation (Reglamento de Gas Natural) was issued in November 1995. The regulation reconciles the interests of the various natural gas industry participants and signifies a Federal Commitment to promote comprehensive development of the industry. In parallel with the development of the substantive legal framework, the law of the Comision Reguladora de Energia (CRE) was also enacted by Congress in October 1995 to strength the institutional framework and implemented the legal changes. This law defines the CRE as an agency of the Energy Ministry with technical, operational, and budgetary autonomy, and responsibility for implementing natural gas industry regulation. (Author)

  13. French natural gas industry statistics; Statistiques de l'industrie gaziere en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    The opening of the French natural gas market is effective since August 2000. In this context, some information, which were published in the past, have become confidential and strategic and can no longer be revealed. The data published in this 2004 edition concern only the years 2001 and 2002 for which data are available. The year 2000 inquiry could not be exploited. A first part presents the natural gas industry in France (consumption, supplies, production, storage, distribution, definition of gases, information sources, energy equivalence, map of transportation networks, storage, compression and production facilities). The statistical data are summarized in the second part in the form of tables: resources and uses in 1999, 2001 and 2002; sectoral use of the network distributed gas since 1972; regional distribution of gas production; domestic production and imports since 1972; sectoral distribution of network gas supplies; pipelines and distribution systems; personnel in the gas industry; gas supplies in 2002; supplies to the residential-tertiary sector in 2002; supplies to the industry in 2002; regional supplies in 2002; share of gas supplies per use in each region; regional distribution of gas supplies for each use. A comparison between the 2002 inquiry results and the provisional status is given in appendix. The 2002 energy status and the 2002 questionnaire are also given in appendixes. (J.S.)

  14. Geography and the costs of urban energy infrastructure: The case of electricity and natural gas capital investments

    Science.gov (United States)

    Senyel, Muzeyyen Anil

    Investments in the urban energy infrastructure for distributing electricity and natural gas are analyzed using (1) property data measuring distribution plant value at the local/tax district level, and (2) system outputs such as sectoral numbers of customers and energy sales, input prices, company-specific characteristics such as average wages and load factor. Socio-economic and site-specific urban and geographic variables, however, often been neglected in past studies. The purpose of this research is to incorporate these site-specific characteristics of electricity and natural gas distribution into investment cost model estimations. These local characteristics include (1) socio-economic variables, such as income and wealth; (2) urban-related variables, such as density, land-use, street pattern, housing pattern; (3) geographic and environmental variables, such as soil, topography, and weather, and (4) company-specific characteristics such as average wages, and load factor. The classical output variables include residential and commercial-industrial customers and sales. In contrast to most previous research, only capital investments at the local level are considered. In addition to aggregate cost modeling, the analysis focuses on the investment costs for the system components: overhead conductors, underground conductors, conduits, poles, transformers, services, street lighting, and station equipment for electricity distribution; and mains, services, regular and industrial measurement and regulation stations for natural gas distribution. The Box-Cox, log-log and additive models are compared to determine the best fitting cost functions. The Box-Cox form turns out to be superior to the other forms at the aggregate level and for network components. However, a linear additive form provides a better fit for end-user related components. The results show that, in addition to output variables and company-specific variables, various site-specific variables are statistically

  15. Exploration of natural gas at sea towards a low point

    International Nuclear Information System (INIS)

    Bakker, P.

    1995-01-01

    Continuing low prices on the world market resulted in a decreased willingness of natural gas producers to invest in offshore projects in spite of improved marginal conditions for the oil and gas companies. Attention is paid to the policy of the Gasunie (Dutch natural gas distribution company) to focus on the exploitation of small natural gas fields to take the burden of the large natural gas field Slochteren in Groningen, Netherlands

  16. [System design of open-path natural gas leakage detection based on Fresnel lens].

    Science.gov (United States)

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui

    2009-03-01

    Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.

  17. Natural gas industry and global warming

    International Nuclear Information System (INIS)

    Staropoli, R.; Darras, M.

    1997-01-01

    Natural gas has a very good potential compared to other fossil fuels as regard to global warming because of its high content of hydrogen, and its versatility in uses. To take full advantage of this potential, further development of gas designed boilers and furnaces, gas catalytic combustion, fuel cells are needed, but progresses in the recent years have been very promising. The natural gas industry' environmental potential is discussed. Regarding methane emission, progresses have been done is Western Europe on the distribution network, and some improvement are underway. It is however important to rationalize the effort by acting on the most emitting subsystem: this can be achieved by cooperation along the whole gas chain. (R.P.)

  18. Urban index modelling for forecasting of channeled natural gas market: an example in Sao Paulo metropolitan region; Modelagem de indicadores urbanos para previsao do mercado de gas natural canalizado: um exemplo na regiao metropolitana de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Massara, Vanessa Meloni; Faga, Murilo Tadeu Werneck; Udaeta, Miguel Edgar Morales [Universidade Sao Paulo (USP), SP (Brazil). Programa Interunidades de Pos Graduacao em Energia]. E-mail: vmassara@iee.usp.br; murfaga@iee.usp.br; udaeta@pea.usp.br

    2006-07-01

    This paper aims to present a systemic model for analysis of the expansion and grow up of the natural gas distribution pipeline in a city. This methodology integrates the understanding of the urban dynamics to the strategies of expansion in the natural gas distribution network, through the grouping of information such as family income, demographic density and construction area, percentage of land use, number of households as well as commercial, service and industrial establishments, number of real state as well as indicative information released by the Urban Plan of the city regarding the increments in the peripheral districts. Relating the gas consumption esteemed by each type of land occupation and the cost for expanding the gas distribution network, the model will indicate, for each neighborhood, the viability of implementing a gas network as well as the places with potential for growing density in the existing gas distribution system. The aim is to propose an integration of aspects of city dynamics and new energy source development, taking the advance of natural gas in Sao Paulo Metropolitan area as a specific case study. Through the analysis of highly industrialized, residential and commercial suburbs of the City of Sao Caetano do Sul, the importance of urban parameters in the decision making process for network expansion is identified. (author)

  19. Obstacles to the penetration of electric generation markets by natural gas

    International Nuclear Information System (INIS)

    Schleede, G.R.

    1992-01-01

    This paper reviews and compares the advantages and disadvantages that electric power generators have in generating electricity from a variety of fuel sources. It then goes on to emphasize the use of natural gas and how it can become more competitive in the electric generation field. The paper is based primarily on experiences by the author during his employment with the New England Electric System (NEES). The author reviews the source of electricity for this utility and describes the percentages of each fuel source. It then goes on to specifically discuss the planned natural gas-fired projects in the utility system. The paper outlines the NEES strategy of diversification with respect to gas suppliers and describes the important considerations it used when planning for electric generation with gas. These include determining pressure requirements needed by the gas distribution system when the gas-generators come on-line; determining the placement of the generators within the overall system (i.e. peak load facilities, base load facilities, etc.); contracting flexibility because of the need to vary the amount of gas taken; and the ability to manage pipeline capacity and gas supplies when they are not needed

  20. Indirect heating of natural gas using vapor chambers; Aquecimento indireto de gas natural com uso de camaras de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Milanez, Fernando H; Mantellil, Marcia H.B.; Borges, Thomaz P.F. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica; Landa, Henrique G. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    Operation safety and reliability are major guidelines in the design of city-gate units. Conventional natural gas heaters operate by a indirect mechanism, where liquid water is used to transfer heat by natural convection between the combustion chamber and the natural gas coil. In this work, the concept of vapor chamber is evaluated as an indirect gas heater. In a vapor chamber, liquid water is in contact with the heat source, and vaporizes. The vapor condenses in contact with the heat sink. A reduced scale model was built and tested in order to compare these two heating concepts where the combustion chamber was replaced by electrical cartridge heaters. This engineering model can operate either as a conventional heater or as a vapor chamber. The comparison between the concepts was done by inducing a controlled power to the cartridges and by measuring the resulting temperature distributions. In the novel design, the heat exchanger efficiency increases, and the thermal inertia decreases, compared to the conventional system. The new sealed concept of the chamber prevents water evaporation losses. (author)

  1. Running on Fumes: A Critical Look at Mexico’s Natural Gas Transportation and Distribution Infrastructure

    Science.gov (United States)

    2011-10-27

    company’s revenues, but PEMEX has also been hampered in its ability to leverage private investment and ownership in developing and improving...PEMEX offers for gas distribution franchises ; the standard for exclusivity ranges from 20 to 75 years or more in much of the world, but in Mexico... vs . Government,” Revue de l’energie 53, no.1 (2002):648. 12 Juan Rosellon and Jonathan Halpern, “Regulatory Reform in Mexico’s Natural Gas Industry

  2. British Columbia natural gas: Core market policy

    International Nuclear Information System (INIS)

    1988-06-01

    The core market for natural gas in British Columbia is defined as all natural gas consumers in the residential, institutional, commercial, and industrial sectors not currently purchasing natural gas directly and not exempted from the core market by the British Columbia Utilities Commission (BCUC). The intent of the definition is to include all customers who must be protected by contracts which ensure long-term security of supply and stable prices. Core market customers are excluded from direct natural gas purchase and will be served by distribution utilities. A customer may apply to BCUC to leave the core market; such an application may be approved if it is demonstrated that the customer has adequate long-term natural gas supplies or alternative fuel supplies to protect him from supply interruptions. The non-core market is defined as all large industrial customers who elect to make their own natural gas supply arrangements and who can demonstrate to the BCUC sufficient long-term natural gas supply protection or alternative fuel capability to ensure security of the industry. Non-core market customers have full and open access to the competitive natural gas market. The British Columbia government will not apply its core market policy to other jurisdictions through Energy Removal Certificates

  3. Regulator preferences and utility prices: evidence from natural gas distribution utilities

    International Nuclear Information System (INIS)

    Klein, C.C.; Sweeney, G.H.

    1999-01-01

    We investigate the determinants of regulators' relative weighting of the social welfare of customer groups and utilities using panel data on natural gas distribution utilities in the US state of Tennessee. In contrast to previous empirical work on cross-sections of electric utilities, our results are statistically robust and consistent with the interest group theory of regulation. Intervention in rate cases, settlement vs. litigation of cases, and prices of alternative energy sources, as well as the size characteristics of customer groups and the firm, are significant determinants of the elasticity-weighted price-cost margin (Ramsey number) for each group. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Natural gas and Brazilian energetic matrix; Gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Ricardo Luchese de [White Martins S.A., Rio de Janeiro, RJ (Brazil)

    1997-07-01

    Recent projection of the market in global scale shows a tendency in natural gas using replacing mostly the fuel oil. Its market share well increase from 21.1% in 1994 to 24.0% in 2010. The annual energetic use will reach 29.23 x 10{sup 9} Gcal in 2010 (8990 million Nm{sup 3} natural gas/day) versus 18.90 x 10{sup 9} Gcal in 1994 (5810 million Nm{sup 3} natural gas/day). For Brazil, its consumption will increase from 8.7 million Nm{sup 3} natural gas/day in 1994 to 35.9 million Nm{sup 3} natural gas/day in 2010. Projects like Brazil-Bolivia natural gas pipeline, will supply 18 million Nm{sup 3} natural gas/day, which expected to start-up before the year 2000. This projects will supply the Brazilian southern regions, that do not consume natural gas at the current moment. Although there are many different kind of natural gas consumption in the industry this paper presents the technical and economical estimate of the injection in the blast furnace operating with coke or charcoal. The process simulation is done assisted by math modeling developed by White Martins/Praxair Inc. (author)

  5. Case study on natural gas application for district heating and cooling in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maues, Jair Arone [Pontificia Universidade Catolica do Rio de Janeiro (IE/PUC-Rio), Rio de Janeiro, RJ (Brazil). Inst. de Energia; Akiyama, Junichi [Mitsui Gas e Energia do Brasil Ltda., Rio de janeiro, RJ (Brazil)

    2012-07-01

    The distributed cogeneration applying natural gas consists in an excellent alternative to use this source, but it is limited by a compatible heat demand that must be found in its application. District heating and cooling solutions can overcome this hurdle, especially in Brazil, a tropical country, where new industrial and commercial enterprises usually install central air conditioning systems. By 2020 natural gas demand shall reach a value of more than 200 MM m{sup 3} per day, accordingly to the Brazilian Energy Research Office (EPE, 2011). An expressive part of it could be consumed in cogeneration systems like the one described in this paper. This project had a special taxes exception rule applied. The chilled water and heated thermal oil produced were not taxed at all. But these two DHC utilities could obtain a different treatment if someone considers this is a tricky way of power and heat trading, which should be taxed as electricity and natural gas normally are. A bolder legislation with respect to the export of energy surplus would facilitate the project and operation of this kind of system, because the basic premise would be to attend the thermal demand with the electrical power installed, maximizing the global efficiency of the installation. An average 8 GW of Brazilian power demand, with roughly 50 MMm{sup 3}/day of natural gas consumption, could be attended by distributed energy gas cogeneration enterprises. If this prediction were totally accomplished it would bring the Brazilian participation of distributed energy in total power generation to values close to 10% in 2020, value already reached in average by the world biggest electricity's consumer countries (WADE, 2006). This also would mean an equivalent investment economy of approximately 11,000 MW in transmission and distribution lines capacity (author)

  6. The emerging role of natural gas on the African economy : the case study of the Nigerian gas industry

    International Nuclear Information System (INIS)

    Ndubuisi, E.N.; Amanetu, M.C.

    2003-01-01

    This paper presents a general overview of the African gas market, gas development, distribution, and utilization in Africa with particular emphasis on investment opportunities in Nigeria. Africa's non-renewable energy sources include fossil fuel such as coal, oil and natural gas. These fuels can be used to generate electricity. Their abundance is required for economic development and their efficient exploitation results in expansion of markets and industrialization, both of which are essential for Africa's social and economic progress. Natural gas is a premium fuel in the industrial, commercial and domestic sectors because of its unique characteristics. In Nigeria, the gas market is relatively untapped in the domestic sector, but much progress has been made in the past decade to develop and use natural gas as an energy feedstock for the cement and fertilizer industries. Some major gas transmission systems have been developed along with export oriented projects. 5 refs., 3 figs

  7. Emissions of CH4 from natural gas production in the United States using aircraft-based observations

    Science.gov (United States)

    Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Ryerson, Thomas; Peischl, Jeff; Trainer, Michael; Rella, Chris; Hardesty, Michael; Crosson, Eric; Montzka, Stephen; Tans, Pieter; Shepson, Paul; Kort, Eric

    2014-05-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches in combination with isotopes and light alkanes to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  8. Tariff proposal of the Commission of energy regulation from February 28, 2008 for the use of public natural gas distribution networks

    International Nuclear Information System (INIS)

    2008-01-01

    With the complete opening of natural gas markets to competition and the legal separation of distribution networks, Gaz de France Reseau Distribution requested the implementation of a new tariff of use of gas distribution networks to the Commission of energy regulation (CRE). A new tariff of networks utilisation has thus been proposed by CRE after a public consultation and the audition of gas suppliers. This tariff foresees a 5.6% increase of the present day tariff by July 1, 2008. The impact on the end-users' gas retail price will be a 1.5% rise of the regulated tariff. (J.S.)

  9. Natural gas, energy with a future

    International Nuclear Information System (INIS)

    Dauger, Jean-Marie

    2010-01-01

    Similar to the trend observed over the last thirty years, the production of electricity will likely account for much of the growth in natural gas consumption worldwide, regardless of the region. However transportation, storage and distribution make up, on the average, 70% of the total costs of producing gas

  10. Liquefied natural gas storage at Ambergate

    Energy Technology Data Exchange (ETDEWEB)

    Higton, C W; Mills, M J

    1970-08-19

    Ambergate works was planned in 1965-1966 and the decision was taken to install 4 ICI lean gas reformers using natural gas as feedstock, fuel, and enrichment. To cover the possible failure of natural gas supplies, petroleum distillate would be used as alternative feedstock and fuel. The choice for alternative enrichment lay between LPG or LNG. Since LNG would provide peak-on-peak storage facilities for either the East Midlands Board or the Gas Council when conversion was completed--and in the meantime would provide an additional source of LNG for local requirements when temporary LNG installations were used during conversion--agreement was reached with the Gas Council for it to build a 5,000-ton storage installation at Ambergate. The installation consists of 3 major sections: (1) the offloading bay and storage tank; (2) the reliquefaction system; and (3) the export system. The offloading bay and storage tank are for the reception and storage of liquefied Algerian natural gas, delivered to Ambergate by road tanker from the Canvey Is. Terminal. The reliquefaction system is to maintain the necessary storage tank conditions by reliquefying the boil-off natural gas. The export system delivers LNG from the storage tank at high pressure through a vaporization section in the national methane grid.

  11. Competition in trade with natural gas

    International Nuclear Information System (INIS)

    1999-01-01

    On 22 June 1998, the European Parliament and the Council of Europe adopted Directive 98/30/EC on common rules for the internal market for natural gas. The Natural Gas Market Directive is aimed at increasing the competition on the gas market and creating an internal market for natural gas. To achieve this, the Directive includes provisions for ensuring that owners of transmission and distribution networks will allow other players access to these networks. The Directive is much more far-reaching and comprehensive than the present Swedish legislation in the field of natural gas. The main task of the committee is to submit a proposal for natural gas legislation that will meet the requirements of the new Directive. According to the committee directives, the work on the new legislation should aim at the regulations serving as a basis for a socio economically efficient market. However, it should also be borne in mind that the Swedish natural gas market is less developed than the markets in most other European countries, and that a lack of equilibrium in the opening of the gas markets should be avoided. Current international deliberations concerning the natural gas network in the Nordic countries and the Baltic Sea region should also be taken into account. Chapter 1 gives more detailed particulars of the points of departure for the work of the committee and the implementation of the work. The report is arranged in the form three main parts, i.e. a background part, a part describing the points of departure, and a proposals part

  12. A state regulator's perspective on the natural gas industry

    International Nuclear Information System (INIS)

    Heintz, F.O.

    1992-01-01

    This paper reviews the history of the natural gas distribution industry and the role of state regulation in controlling pricing and supply. The paper discusses the results of national policies such as the Fuel Use Act and the subsequent Natural Gas Policy Act. It then discusses the resulting market and prices resulting from both regulation and deregulation of the natural gas industry. The paper goes on to discuss the market potential for natural gas and the reliability of this fuel source for future demand

  13. Strategy and use of pipelined natural gas in Brazil: the case of Rio de Janeiro State

    International Nuclear Information System (INIS)

    Rodrigues, M.G.

    1991-01-01

    The systems of energy distribution by pipelined fuel gas in the residential sector of the state of Rio de Janeiro is analyzed. It studies the potential market for the expansion of pipelined gas and its distribution in urban areas, and presents as well commentaries and recommendation on energy policy for the use of natural gas. (author)

  14. Distribution of gas from Canaport LNG

    International Nuclear Information System (INIS)

    Thompson, W.

    2006-01-01

    Construction of the Canaport Liquefied Natural Gas (LNG) project will begin in 2006. Public consultations are currently being held for the 145 km pipeline from Canaport to Bailleyville, Maine. It is expected that both the facility and the pipeline will be operational by 2008. This presentation provided details of the New Brunswick (NB) Department of Energy's (DOE) regulatory oversight of the Canaport Liquefied Natural Gas (LNG) project. The DOE is responsible for ensuring diversity and security of supply; economic efficiency; economic development opportunities and protection of the environment. The Canaport LNG facility will provide an additional 500 to 600 temporary jobs over a 2 to 3 year period, as well as 20 full-time jobs once the plant is operational. Tax revenues, access roads and the construction of a pipeline to Bailleyville, Maine will also have positive impacts on the NB economy. The facility will provide a secure long term supply of natural gas for the region. In order to support its energy goals, the DOE has proposed amendments to provide for the distribution of gas from the plant to NB customers. A proposed LNG franchise to allow for direct distribution of gas from the LNG plant to customers was discussed. Issues concerning the Gas Distribution Act and the New Pipeline Act of 2006 were also examined. It was concluded that public consultations are currently being held for the 145 km pipeline, and that both the facility and the pipeline are expected to be operational by 2008. refs., tabs., figs

  15. Distribution of gas from Canaport LNG

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, W. [New Brunswick Dept. of Energy, Fredericton, NB (Canada)

    2006-07-01

    Construction of the Canaport Liquefied Natural Gas (LNG) project will begin in 2006. Public consultations are currently being held for the 145 km pipeline from Canaport to Bailleyville, Maine. It is expected that both the facility and the pipeline will be operational by 2008. This presentation provided details of the New Brunswick (NB) Department of Energy's (DOE) regulatory oversight of the Canaport Liquefied Natural Gas (LNG) project. The DOE is responsible for ensuring diversity and security of supply; economic efficiency; economic development opportunities and protection of the environment. The Canaport LNG facility will provide an additional 500 to 600 temporary jobs over a 2 to 3 year period, as well as 20 full-time jobs once the plant is operational. Tax revenues, access roads and the construction of a pipeline to Bailleyville, Maine will also have positive impacts on the NB economy. The facility will provide a secure long term supply of natural gas for the region. In order to support its energy goals, the DOE has proposed amendments to provide for the distribution of gas from the plant to NB customers. A proposed LNG franchise to allow for direct distribution of gas from the LNG plant to customers was discussed. Issues concerning the Gas Distribution Act and the New Pipeline Act of 2006 were also examined. It was concluded that public consultations are currently being held for the 145 km pipeline, and that both the facility and the pipeline are expected to be operational by 2008. refs., tabs., figs.

  16. Natural gas measurement process development in PETROBRAS system: new concepts and challenges; Desenvolvimento do processo de medicao de gas natural no sistema PETROBRAS: novos conceitos e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Carlos Alexandre L. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Mercon, Eduardo G. [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Considering the wide increase of natural gas participation in the Brazilian energetic source matrix, this paper describes, comments and analyzes how the natural gas flow measurement process has been structured in PETROBRAS, so that it become a potential factor of this increase. Initially, the work makes a metrological approach of measured volumes, based on volumetric balance of the gas flow in the two principals pipe segments of PETROBRAS gas line network, localized in the Brazilian southeast and northeast systems. This approach runs through the investigation of several parameters that have influence on that balance, considering field installation improvement and normative adjustments, sketching aims and suggesting best practices for its optimization. Further, it will be described PETROBRAS' systems being in use to provide natural gas flow measurement control and management, from available data in transporters' SCADA system to billing, and to integrate the processes of: shipping scheduling; transmission and delivering; real time supervision; and consolidation of these information for invoicing. (author)

  17. Natural gas measurement process development in PETROBRAS system: new concepts and challenges; Desenvolvimento do processo de medicao de gas natural no sistema PETROBRAS: novos conceitos e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Carlos Alexandre L [PETROBRAS, Rio de Janeiro, RJ (Brazil); Mercon, Eduardo G [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Considering the wide increase of natural gas participation in the Brazilian energetic source matrix, this paper describes, comments and analyzes how the natural gas flow measurement process has been structured in PETROBRAS, so that it become a potential factor of this increase. Initially, the work makes a metrological approach of measured volumes, based on volumetric balance of the gas flow in the two principals pipe segments of PETROBRAS gas line network, localized in the Brazilian southeast and northeast systems. This approach runs through the investigation of several parameters that have influence on that balance, considering field installation improvement and normative adjustments, sketching aims and suggesting best practices for its optimization. Further, it will be described PETROBRAS' systems being in use to provide natural gas flow measurement control and management, from available data in transporters' SCADA system to billing, and to integrate the processes of: shipping scheduling; transmission and delivering; real time supervision; and consolidation of these information for invoicing. (author)

  18. Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Shahryar Garmsiri

    2014-04-01

    Full Text Available The potential benefits are examined of the “Power-to-Gas” (P2G scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically, wind farms located in southwestern Ontario, Canada are considered. Infrastructure requirements, wind farm size, pipeline capacity, geographical dispersion, hydrogen production rate, capital and operating costs are used as performance measures. The model takes into account the potential production rate of hydrogen and the rate that it can be injected into the local gas grid. “Straw man” systems are examined, centered on a wind farm size of 100 MW integrating a 16-MW capacity electrolysis system typically producing 4700 kg of hydrogen per day.

  19. The AFG Convention - The future for natural gas

    International Nuclear Information System (INIS)

    Ferrier, Jerome; Lafon, Madeleine; Bouchard, Georges; Figoli, Jean-Michel; Honorat, Augustin; Clodic, Denis; Fauvel, Philippe; Frantz, Ludovic; Rottenberg, Jacques; Stabat, Thibault; Constant, Herve; Ferraris, Patrick; Monserand, David; Padova, Yann; Leeder, Nick

    2017-01-01

    The Association Francaise du Gas (French Gas Association) has held its 'the future of gas' convention in October 2016. After an opening speech, which insisted on the fact that natural gas is now recognized as a low greenhouse gas emission energy source, and a presentation of the gas demand scenario for 2030, two round tables addressed the new utilizations of natural gas (LNG for ships and vehicles, power generation, biomethane, cryogenics, heating systems), and the contributions of new technologies (and more especially digital systems) in the natural gas market and gas utilities

  20. Waste Energy Recovery from Natural Gas Distribution Network: CELSIUS Project Demonstrator in Genoa

    Directory of Open Access Journals (Sweden)

    Davide Borelli

    2015-12-01

    Full Text Available Increasing energy efficiency by the smart recovery of waste energy is the scope of the CELSIUS Project (Combined Efficient Large Scale Integrated Urban Systems. The CELSIUS consortium includes a world-leading partnership of outstanding research, innovation and implementation organizations, and gather competence and excellence from five European cities with complementary baseline positions regarding the sustainable use of energy: Cologne, Genoa, Gothenburg, London, and Rotterdam. Lasting four-years and coordinated by the City of Gothenburg, the project faces with an holistic approach technical, economic, administrative, social, legal and political issues concerning smart district heating and cooling, aiming to establish best practice solutions. This will be done through the implementation of twelve new high-reaching demonstration projects, which cover the most major aspects of innovative urban heating and cooling for a smart city. The Genoa demonstrator was designed in order to recover energy from the pressure drop between the main supply line and the city natural gas network. The potential mechanical energy is converted to electricity by a turboexpander/generator system, which has been integrated in a combined heat and power plant to supply a district heating network. The performed energy analysis assessed natural gas saving and greenhouse gas reduction achieved through the smart systems integration.

  1. Development of a Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Becker, A.B.; Pepper, W.J.

    1995-01-01

    Objective of developing this model (GSAM) is to create a comprehensive, nonproprietary, PC-based model of domestic gas industry activity. The system can assess impacts of various changes in the natural gas system in North America; individual and collective impacts due to changes in technology and economic conditions are explicitly modeled in GSAM. Major gas resources are all modeled, including conventional, tight, Devonian Shale, coalbed methane, and low-quality gas sources. The modeling system assesses all key components of the gas industry, including available resources, exploration, drilling, completion, production, and processing practices. Distribution, storage, and utilization of natural gas in a dynamic market-gased analytical structure is assessed. GSAM is designed to provide METC managers with a tool to project impacts of future research, development, and demonstration benefits

  2. Liquefied Natural Gas for Trucks and Buses

    International Nuclear Information System (INIS)

    James Wegrzyn; Michael Gurevich

    2000-01-01

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems

  3. Combined utilization of biogas and natural gas

    International Nuclear Information System (INIS)

    Jensen, J.; Tafdrup, S.; Christensen, J.

    1997-01-01

    The Danish natural gas network has been established during the past 10 years. Running parallel with this a small but growing production of biogas from centralized biogas plants and landfills has been developed. The annual biogas production is expected to keep growing and increase tenfold in the next 25 year period with a reduction of green house gas emissions as one of the important incentives. The last years' development and expansion of the Danish biogas sector has shown a need for combined utilization of biogas and natural gas. If larger volumes of biogas are present, upgrading and distribution by the natural gas network may be an alternative to combined utilization. (au) 12 refs

  4. Natural gas in Latin America

    International Nuclear Information System (INIS)

    1997-01-01

    Despite having proven reserves equal to that of North America, natural gas has traditionally played a minor role in the energy policies of Latin American countries, being considered secondary to oil. There has, therefore, been a neglect of the sector with a resultant lack of an adequate infrastructure throughout the region, perhaps with the exception of Argentina. However, with a massive increase in energy demand, growing concerns with environmental matters and a need to reduce the massive pollution levels in major cities in the region, natural gas is forecast to play a much greater role in Latin America's energy profile, with final consumption forecast to rise at 5.4% per annum for the next 15 years. This book assesses both the development of the use of natural gas in the power industrial sector and proposals for its growth into the residential, commercial and transport sectors. It analyses the significant investment required and the governments' need to turn to the private sector for investment and innovation. Natural Gas in Latin America analyses the possibilities and pitfalls of investing in the sector and describes the key trends and issues. It analyses all aspects of the gas industry from exploration and production to transportation and distribution to end users. (Author)

  5. To fully exert the important role of natural gas in building a modern energy security system in China: An understanding of China's National l3th Five-Year Plan for Natural Gas Development

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2017-07-01

    Full Text Available Along with the introduction of 13th Five-Year Plans in succession for natural gas development programmed by governments at all levels and much more attention paid to haze governance by relevant departments, natural gas, as one of the major energy sources, has ushered in a strategic opportunity era. In view of this, based upon China's National 13th Five-Year Plan for Natural Gas Development formulated by the National Development and Reform Commission, the developing trend of natural gas sector was predicted in the period of 13th Five-Year Plan in terms of supply side, demand side, pricing system, infrastructure construction, etc. and some feasible proposals were made on the whole industrial chain. In terms of the supply side, natural gas will be of availability, accessibility, assurance, affordability, and accountability in the production and supply chains. In terms of the demand side, air pollution treatment will indirectly stimulate gas consumption increase. Gas power generation will become the dominant. Natural gas as a transportation fuel will bring a good new opportunity. Thus it is believed that as the present natural gas development is restricted by both gas pricing system and infrastructure construction, further reform should be strengthened to break the barriers of systems and mechanisms; and that due to many uncertainties in the natural gas market, the decisive role of market in the resource allocation should be fully exerted to ensure the main force of natural gas in building a dependable energy strategic system in present and future China.

  6. Logistic management system for natural gas transportation by pipelines; Sistema de gestao de logistica de transporte de gas por gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sidney Pereira dos; Castro, Antonio Orestes de Salvo [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Leal, Jose Eugenio [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    2008-07-01

    An efficient management of the natural gas business chain, based on pipeline transmission network and taking into consideration the interaction between the main players such as shippers, suppliers, transmission companies and local distribution companies, requires the use of decision-making support systems to maximize resources and mitigate contingencies due to gas supply shortfalls, operational contingencies from scheduled and non-scheduled equipment outages as well as market demand shortfalls. This work presents a practical utilization of technologies such as thermohydraulic simulation of gas flow through pipelines, Monte Carlo simulation for compressor station availability studies and economic risk evaluation related to potential revenue losses and contractual penalties and linear programming for maximization and minimization objective function. The proposed system allows the definition of the optimum availability level to be maintained by the Transporter, by means of installing redundancy, to mitigate losses related to revenue and contractual penalties. Identifies, quantifies and justifies economically the installation of stand-by compressor units, mitigating Transporter exposure to losses due to capacity shortfalls as consequence of scheduled and non-scheduled outages. (author)

  7. Juridical consequences of liberalization. Part 2. Natural Gas Law and reorganization of the gas utility

    International Nuclear Information System (INIS)

    De Rijke, M.; Kuipers, D.P.; Koster, W.; Geertsma, M.M.

    2000-01-01

    The liberalization of the natural gas market in Europe has all kinds of juridical aspects. Not only with respect to new legislation (Natural Gas Law and Mining Law), but also changes in juridical structures of natural gas companies, caused by privatization or splitting up in a mains management company and a distribution company. In a series of articles lawyers of the Energy Working Group of Houthoff Buruma in The Hague, Netherlands, discuss the developments at the natural gas market. In this first part, attention will be paid to actual developments with respect to the new Natural Gas Law and the Mining Law in the Netherlands

  8. Australia's changing natural gas and pipeline industry

    International Nuclear Information System (INIS)

    Kimber, M.J.

    1998-01-01

    The future is bright for continued development of Australia's natural gas pipeline infrastructure, as well as for privatization and private energy infrastructure growth. Gas demands are growing and the development of open access principles for all natural gas transmission and distribution pipelines heralds a much more market focused industry. Within the next few years gas-on-gas competition will apply to supply, pipelines, and retail marketing. No longer will operators be able to pass on high costs resulting from inefficiencies to their customers. This article describes the changing Australian gas industry, evaluates the drivers for change and looks at ways the industry is responding to new regulatory regimes and the development and use of new pipeline technology

  9. 96/97 statistics of natural gas industry in France

    International Nuclear Information System (INIS)

    1998-01-01

    This documents presents an overview of the gases market in France (natural gas, LPG, methane, etc..). Details about uses, resources, foreign supplies, intervening parties, transportation and storage facilities are given for the natural gas sector. After a presentation of the gas industry conjuncture in 1996 and a general presentation of the French gas industry, the main economical data are presented as tables, diagrams and graphics: combustible gases (resources and uses, domestic production and imports, regional and industrial distribution and consumption..), and gas distribution networks (resources, exchanges, transformations, sectoral and seasonal analysis of sales, installations, industrial consumption by sector and region, pipelines, underground storage facilities, LNG terminal and storage facilities, tanker-ships, personnel). (J.S.)

  10. Earthquake loss estimation for a gas lifeline transportation system in Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Yamin, L.E.; Arambula, S.; Reyes, J.C. [Universidad de los Andes, Bogota (Colombia). Centro de Innovacion y Desarrollo Tecnologico; Belage, S.; Vega, A.; Gil, W. [TransGas de Occidente S.A., Bogota (Colombia)

    2004-07-01

    Methodologies are needed to estimate the seismic risk facing natural gas distribution systems in Colombia in order to establish insurance strategies, risk assessments and emergency plans. This study estimated the maximum probable losses associated with Colombia's 770 km long gas transportation system which stretches from Mariquita to Cali. The pipeline is vulnerable to seismic events, volcanic eruptions, extreme hydrological conditions, and their associated effects such as landslides, liquefaction and avalanches. A geographic information system (GIS) which includes seismic, volcanic, landslide and liquefaction hazards was used to estimate earthquake loss estimates for the natural gas distribution system. Elastic and inelastic finite element methods were used to evaluate the vulnerability of pipelines, bridges, underground crossings and valves. The results were incorporated into the GIS and were used to quantify the probable maximum losses for the system, the most critical associated event, the system's critical zones and the probable damage scenarios. The information was used to define insurance strategies, emergency and contingency plans. It was concluded that due to natural hazards, the natural gas distribution system is at moderate risk despite the low vulnerability of its components. Volcanic eruptions and large earthquakes could produce indirect phenomena such as landslides and liquefaction which could greatly influence the system and which would require adequate risk management. 14 refs., 1 tab., 8 figs.

  11. Natural gas and the environment

    International Nuclear Information System (INIS)

    DeCarufel, A.

    1991-01-01

    The role of various atmospheric pollutants in environmental changes and the global water cycle, carbon cycle, and energy balance is explained. The role of sulfur dioxide and nitrogen oxides in acid deposition is also outlined. The pollutants that contribute to environmental problems include nitrogen oxides and volatile organic compounds, carbon dioxide, and other greenhouse gases. The potential for natural gas utilization to mitigate some of these pollution problems is explored. Natural gas combustion emits less carbon dioxide and nitrogen oxides than combustion of other fossil fuel, and also does not produce sulfur dioxide, particulates, or volatile organics. Other pollution controlling opportunities offered by natural gas include the use of low-polluting burners, natural gas vehicles, and cogeneration systems. 18 figs., 4 tabs

  12. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...

  13. Natural gas : a critical component of Ontario's electricity future

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    This PowerPoint presentation identified natural gas as part of the electricity solution. It reviewed price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. tabs., figs

  14. Emissions of CH4 from natural gas production in the United States using aircraft-based observations (Invited)

    Science.gov (United States)

    Sweeney, C.; Ryerson, T. B.; Karion, A.; Peischl, J.; Petron, G.; Schnell, R. C.; Tsai, T.; Crosson, E.; Rella, C.; Trainer, M.; Frost, G. J.; Hardesty, R. M.; Montzka, S. A.; Dlugokencky, E. J.; Tans, P. P.

    2013-12-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  15. Expert System for natural gas transportation network management; Sistema especialista para gerenciamento de redes de transporte de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonny Carlos da; Porciuncula, Gilson Simoes [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica Lab. de Sistemas Hidraulicos e Pneumaticos

    2003-07-01

    This paper presents a project to integrate expert system and dynamic simulation of natural gas transportation network applying the concept of agents. Natural gas pipeline operation requires the intermittent analysis of hundreds interrelated operational parameters, which represent the network state. The combination of expert system and dynamic simulation is a synergic solution for this kind of problem. With expert system techniques, it is possible to implement rules that describe the relationship between current operational parameters and the network normal operational conditions based on heuristic knowledge. By applying such rules, the system aims to evaluate the real network state and to predict abnormal conditions via dynamic simulation, allowing time analysis of operational situation in advance. At the current stage, the project presents a well defined model. The process of knowledge acquisition and representation has taken place following an incremental approach, considered as development paradigm. The project objectives are to reduce costs, increase the reliability and organize pipeline operation and maintenance information. This work is part of SEGRED project established as partnership among LASHIP/UFSC, SCGAS, TBG and PETROBRAS. The project also received support from FINEP. (author)

  16. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-07-21

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... abandonment of facilities by Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... resources, fisheries, and wetlands; Cultural resources; Vegetation and wildlife; Endangered and threatened...

  17. Gas management of measurement system; Sistema informatizado de programacao e controle integrado de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Niedersberg, Luis Carlos [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Programacao e Controle Integrado; Gomes, Lea Visali [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia Executiva de Logistica de Operacoes

    2008-07-01

    This paper has for objective to present the software developed for control of measurement of natural gas in the Gas Company of the Rio Grande do Sul State - Sulgas. This paper will be presented the previous control system, developed as Microsoft Excel and the new system developed in Company's ERP. This software automated great part of the process, reducing possible mistakes, reducing the reverse-work index and improving the quality of the measurements considerably and of the revenue of the Company. (author)

  18. Natural gas cooling: Part of the solution

    International Nuclear Information System (INIS)

    Jones, D.R.

    1992-01-01

    This paper reviews and compares the efficiencies and performance of a number of gas cooling systems with a comparable electric cooling system. The results show that gas cooling systems compare favorably with the electric equivalents, offering a new dimension to air conditioning and refrigeration systems. The paper goes on to compare the air quality benefits of natural gas to coal or oil-burning fuel systems which are used to generate the electricity for the electric cooling systems. Finally, the paper discusses the regulatory bias that the author feels exists towards the use of natural gas and the need for modification in the existing regulations to provide a 'level-playing field' for the gas cooling industry

  19. Methodology to guide the expansion of natural gas distribution network through the identification of potential demand based on the use of urban land; Metodologia de suporte a expansao da rede de distribuicao de gas natural atraves da identificacao da demanda potencial com base no uso do solo urbano

    Energy Technology Data Exchange (ETDEWEB)

    Bandeira, Maria Ines V.Q.B.; Arruda, Joao Bosco F. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2004-07-01

    The search for sustainability and the largest efficiency in the energy supply has implied in the gradual substitution of the electric power source for the use of the Natural Gas in the residential, automotive, services and industrial sectors. This paper reports a study which aims at the construction of a methodology to support the expansion of the Natural Gas distribution network using concepts of Space Syntax Theory. Through the analysis of the geographical location of urban land use activity system it is expected to define priority roadway routes in terms of potential demand for Natural Gas. A case study is on process in Fortaleza city, in the Northeastern Brazil, which is adequate to such an approach given its disperse density pattern and the present low scale of Natural Gas use in the four above mentioned urban sectors. (author)

  20. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-03-22

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... notice that on March 5, 2010, Northern Natural Gas Company (Northern Natural), 1111 South 103rd Street, Omaha, Nebraska 68124- 1000, filed on behalf of itself and other owners, Southern Natural Gas Company...

  1. Challenges and solutions in natural gas engine development and productions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mahdi; Izanloo, Hossein [Irankhodro Powertrain Co. (IPCO) (Iran)

    2008-07-01

    As an alternative fuel, natural gas is generally accepted for internal combustion engines and some developments have been conducted in order to adopt it for the road vehicles and stationary applications. Foresights shows natural gas vehicles will be a part of the future transportation technology regarding to their mid and long-term benefits. Therefore inherent problems of natural gas engine technology should be overcome to produce a competitive engine. In this paper major problems and their possible solutions in developing and producing natural gas engine for passenger cars are detailed and discussed. Challenging materials are sorted and presented in two categorizes: technical and econo-strategical problems. In the technical section major difficulties faced in components or systems of natural gas engine are analysed in different aspects of design, validation, and production. In addition problems arisen from the fuel characteristics which influence the function and durability of engine are argued. Subjects like freezing in gas regulator, cold start fuel injection, gas leakage, impurities within compressed natural gas, variation in fuel composition, thermo-mechanics of cylinder head and block, wear of valve seat inserts, spark plug erosion, back-fire phenomenon, engine oil quality requirement, low power density and mileage are described. In the econo-strategical discussion, challenges like limited gas distribution infrastructure, lack of specific manufacturing standards and codes, and non-dedicated emission standards are explained. In both part of the paper a comprehensive view is extended to clarify the effect, risk and solutions of each problem. Due to the fact that almost all information and analysis presented in this paper are based on the experience of developing a natural gas engine family, and an extensive literature review, discussions and conclusions could be useful as a guide line for future natural gas engine projects. (orig.)

  2. Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Natural Gas-Based Distributed Generation Projects in China

    Directory of Open Access Journals (Sweden)

    Hansi Liu

    2017-10-01

    Full Text Available In this paper, we used the life-cycle analysis (LCA method to evaluate the energy consumption and greenhouse gas (GHG emissions of natural gas (NG distributed generation (DG projects in China. We took the China Resources Snow Breweries (CRSB NG DG project in Sichuan province of China as a base scenario and compared its life cycle energy consumption and GHG emissions performance against five further scenarios. We found the CRSB DG project (all energy input is NG can reduce GHG emissions by 22%, but increase energy consumption by 12% relative to the scenario, using coal combined with grid electricity as an energy input. The LCA also indicated that the CRSB project can save 24% of energy and reduce GHG emissions by 48% relative to the all-coal scenario. The studied NG-based DG project presents major GHG emissions reduction advantages over the traditional centralized energy system. Moreover, this reduction of energy consumption and GHG emissions can be expanded if the extra electricity from the DG project can be supplied to the public grid. The action of combining renewable energy into the NG DG system can also strengthen the dual merit of energy conservation and GHG emissions reduction. The marginal CO2 abatement cost of the studied project is about 51 USD/ton CO2 equivalent, which is relatively low. Policymakers are recommended to support NG DG technology development and application in China and globally to boost NG utilization and control GHG emissions.

  3. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems

    DEFF Research Database (Denmark)

    Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng

    2018-01-01

    . Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...

  4. 2008 report on the Monitoring of good practices programs and independence for electricity and natural gas system operators

    International Nuclear Information System (INIS)

    2009-01-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 4. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2008. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2008 and audits carried out by the CRE services in these companies in 2008

  5. Natural gas treatment: Simultaneous water and hydrocarbon-dew point-control

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T. (Solvay Catalysts GmbH, Hannover (Germany)); Rennemann, D. (Solvay Catalysts GmbH, Hannover (Germany)); Schulz, T. (Solvay Catalysts GmbH, Hannover (Germany))

    1993-10-01

    Natural gas is a multicomponent mixture of hydrocarbons. The condensation behavior of such mixtures is different from single component systems. The so-called retrograde behavior leads to the observations that saturated vapor (dew point curve) and saturated liquid curve (bubble point curve) are not identical. Between both is a region of saturated phases which even can exist above the critical point. Following this behaviour it is possible that condensation might occur at pressure decrease or at temperature increase, respectively. This phenomenon is undesired in natural gas pipeline networks. Selective removal of higher hydrocarbons by the means of adsorption can change the phase behavior in such a way that condensation does not occur at temperatures and pressures specified for gas distribution. (orig.)

  6. A geographical perspective on the natural gas supply industry in the United Kingdom

    International Nuclear Information System (INIS)

    Chapman, Keith

    2004-11-01

    Natural gas has, over the last 40 years, come to account for a substantial percentage of primary energy consumption (i.e. including inputs to electricity and heat generation) in the United Kingdom (UK). In 2002, this percentage (37.3) was exceeded in only two other European countries, the Netherlands (46.0) and Hungary (43.0) (International Energy Agency, 2003). Although oil has generally attracted greater attention than natural gas, the effects of the latter upon the energy economy of the UK have, in certain respects, been more profound. Most North Sea oil production is exported directly from the UK (69.4 per cent in 2003 (DTI, 2004)) and the balance has been processed within an oil refining system originally established to handle imported oil. By contrast, the availability of natural gas from the North Sea from the mid-1960s transformed the UK gas industry from a producer of secondary energy (i.e. town gas manufactured from coal and oil) to a distributor of primary energy. This transformation had a geographical dimension evident in the contrast between the essentially local distribution systems of the town gas industry and the national system created to deliver natural gas. The development of this system has been accompanied by very significant organisational changes as the gas industry became one of several network utilities transferred from public to private ownership in the UK since the 1980s. This paper reviews these events from a geographical perspective. It is divided into three main sections. The first describes the growth of the natural gas consumption in the UK. The second places this empirical material within a policy framework. The third relates spatial variations in the availability and cost of natural gas to patterns of economic development and welfare. The introduction of natural gas from the North Sea into the UK energy market has clearly had major consequences at the national scale. It rapidly displaced the town gas industry, superimposing a

  7. Productivity improvements in gas distribution

    International Nuclear Information System (INIS)

    Young, M.R.

    1997-01-01

    In 1993, the Hilmer Report resulted in the introduction of the National Competition Policy which, in the case of the gas industry, aims to promote gas-on-gas competition where to date it has been excluded. In response, and to prepare for wide gas industry reform, Gas and Fuel formed three fundamentally different core businesses on 1 July 1996 - Energy Retail, Network, and Contestable Services. In one productivity improvement initiative which is believed to be unique, Gas and Fuel appointed three companies as strategic alliance partners for distribution system maintenance. Gas and Fuel can now concentrate on its core role as asset manager which owns and operates the distribution system while procuring all services from what will become non-regulated businesses. This Paper details this initiative and the benefits which have resulted from overall changes and improvements, and outlines the challenges facing Gas and Fuel in the future. (au)

  8. Worldwide natural gas pipeline situation. Sekai no tennen gas pipeline jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, T [Osaka Gas Co. Ltd., Osaka (Japan)

    1993-03-01

    Constructing natural gas pipelines in wide areas requires investments of a huge amount. Many countries are building natural gas supply infrastructures under public support as nations' basic policy of promoting use of natural gas. This paper describes the present conditions of building pipelines in Western Europe, the U.S.A., Korea and Taiwan. In Western Europe, transporting companies established in line with the national policy own trunk pipelines and storage facilities, and import and distribute natural gas. The U.S.A. has 2300 small and large pipeline companies bearing transportation business. Pipelines extend about 1.9 million kilometers in total, with trunk pipelines accounting for about 440,000 kilometers. The companies are given eminent domain for the right of way. Korea has a plan to build a pipeline network with a distance of 1600 kilometers in around 2000. Taiwan has completed trunk pipelines extending 330 kilometers in two years. In Japan, the industry is preparing draft plans for wide area pipeline construction. 5 figs., 1 tab.

  9. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Fang, Jiakun; Li, Jinghua

    2016-01-01

    Nowadays, the electric power system and natural gas network are becoming increasingly coupled and interdependent. A harmonized integration of natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables in terms of system...... flexibility. This work focuses on the steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. A unified energy flow formulation is developed to describe the nodal balance and branch flow in both systems and it is solved with the Newton......–Raphson method. Both the unification of units and the per-unit system are proposed to simplify the system description and to enhance the computation efficiency. The applicability of the proposed method is demonstrated by analyzing an IEEE-9 test system integrated with a 7-node natural gas network. Later, time...

  10. Discussion paper 'Natural Gas for Sale'

    International Nuclear Information System (INIS)

    1995-04-01

    The information in this report must support a discussion on policy starting points for the structure of natural gas tariffs in the Netherlands. The discussion will be held within EnergieNed (the association for energy distribution companies in the Netherlands) in the light of recent developments in the energy distribution sector in Europe

  11. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation

    Science.gov (United States)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric

    2011-10-01

    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  12. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  13. Partner's interest conflict analysis in distribution of natural gas: a game theory approach; Analise de conflitos de interesse na distribuicao de gas natural em areas urbanas: uma aplicacao da teoria dos jogos

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Bruno de Athayde; Arruda, Joao Bosco Furtado [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Nucleo de Pesquisa em Logistica, Transporte e Desenvolvimento

    2004-07-01

    The use of Natural Gas is nowadays increasing in Brazilian scene and this fact shows the necessity of effective planning tasks in that sector. In the case of Natural Gas Vehicular (NGV) distribution one can face problems of actor's (distributor, retailers, customers and non-users) point of view conflicts and fuel stations expand in most Brazilian urban areas in an uncontrolled way, despising counties regulation on land use. This paper reports a study using a model based in Game Theory concepts to determine some key-variables as the number of fuel stations which must deliver NGV in a given study area. Although some information could not be available the results of simulation shows the usefulness of using such an approach to give solutions to distribution questions in NGV sector. The model was applied to the case of a district in Fortaleza city which is the study area of a project entitled Projeto GASLOG presently on process under the sponsoring of Brazilian Government, PETROBRAS and Brazilian GasEnergy Research Network. (author)

  14. A comparison of cost-based pricing rules for natural gas distribution utilities

    International Nuclear Information System (INIS)

    Klein, C.C.

    1993-01-01

    Partial-equilibrium social welfare deadweight losses under uniform Ramsey pricing, a cost allocation pricing method, and the actual average revenues by customer class for two natural gas distribution utilities are calculated and compared. Marginal cost estimates are derived from a multiple-output translog variable cost function and used, along with three sets of demand elasticities, to generate the Ramsey prices and welfare losses. The actual and cost-allocation prices are taken directly from rate case files. The largest social welfare losses are associated with the cost-allocation rule, as high as 10-25% of revenue, despite suggestions in the literature to the contrary. (Author)

  15. Fuels Containing Methane of Natural Gas in Solution

    Science.gov (United States)

    Sullivan, Thomas A.

    2004-01-01

    While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine

  16. Monitoring of good practices programs and independence for electricity and natural gas system operators. Summary report 2011

    International Nuclear Information System (INIS)

    2012-07-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 7. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2011. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2011 and audits carried out by the CRE services in these companies in 2011. These elements were supplemented and clarified by many exchanges with the operators, in particular during the committee hearings that took place in spring 2012 with each network operator. This report is structured around four cross-cutting themes, supplemented by individual analyses of each operator's situation. The cross-cutting issues address communication and user's awareness of the network operators, the new compliance officer function, TSO certification and, finally, the results of the 'mystery shopper' telephone survey carried out by the CRE. The individual situations analysed were those of the eight DSOs serving over 100,000 customers (ERDF, ES, URM, SRD and Geredis-Deux-Sevres for electricity, GrDF, Regaz-Bordeaux and Reseau GDS for natural gas) and the three TSOs (RTE for electricity and GRTgaz and TIGF for natural gas)

  17. Review of the use of rigid and high-impact PVC pipes in natural gas distribution systems in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Mutter, F; Benjamin, P

    1974-08-01

    Because of a number of instances of stress corrosion cracking or crazing occurring in PVC pipes used in Dutch gas distribution systems, VEG-GASINSTITUUT began an intensive investigation of rigid PVC pipes and high-impact pipes in distribution use under various conditions and with varying service lives. The work led to an investigation of laboratory testing techniques in which the stress-cracking phenomenon found in practice could be duplicated under controllable conditions. Pipes of various materials were examined for their resistance to stress cracking, then this resistance was compared with other long- and short-term physical properties of the material.

  18. Economic evaluation of biogas and natural gas co-firing in gas turbine combined heat and power systems

    International Nuclear Information System (INIS)

    Kang, Jun Young; Kang, Do Won; Kim, Tong Seop; Hur, Kwang Beom

    2014-01-01

    This study investigated the economics of co-firing biogas and natural gas within a small gas turbine combined heat and power (CHP) plant. The thermodynamic performance of the CHP plant was calculated with varying gas mixing ratios, forming the basis for the economic analysis. A cost balance equation was used to calculate the costs of electricity and heat. The methodology was validated, and parametric analyses were used to investigate the influence of gas mixing ratio and heat sales ratio on the costs of electricity and heat. The cost of electricity generation from the CHP plant was compared to that of a central combined cycle power plant, and an economical gas mixing ratio range were suggested for various heat sales ratios. It was revealed that the effect of the heat sales ratio on the cost of electricity becomes greater as the proportion of natural gas is increased. It was also demonstrated that the economic return from the installation of CHP systems is substantially affected by the gas mixing ratio and heat sales ratio. Sensitivity analysis showed that influence of economic factors on the CHP plant is greater when a higher proportion of natural gas is used. - Highlights: • An appropriate method to calculate the costs of electricity (COE) and heat (COH) was established. • Both COE and COH increase with increasing natural gas mixing ratio and decreasing heat sales ratio. • The effect of the heat sales ratio on the COE becomes greater as the mixing ratio increases. • The payback period is considerably dependent on the mixing ratio and heat sales ratio

  19. Alternative ways to transport natural gas; Transporte alternativo de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Moura, N.R.; Campos, F.B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The Brazilian energy matrix has been showing a huge increase in the demand of natural gas due mainly to industries and power plants. Today the Brazilian gas market is supplied with gas produced by PETROBRAS and imported from Bolivia. To increase the Brazilian gas supply, on the short and middle term, PETROBRAS will import LNG (liquefied natural gas) and exploit the new offshore fields discovered on the pre-salt area. The only proven technology available today to bring this offshore gas to the market is the pipeline, but its costs for the pre-salt area are high enough to keep the solution economically attractive. So, PETROBRAS are evaluating and developing alternative ways to transport offshore gas, such as LNG, CNG (Compressed Natural Gas), GTS (Gas-to-Solids or Natural Gas Hydrates) and ANG (Adsorbed Natural Gas). Using information available in the literature, this paper analyses the main concepts of CNG and LNG floating unities. This paper also presents the PETROBRAS R and D results on ANG and GTS aiming at offshore application. (author)

  20. The advance of natural gas market using urban information: case study in Sao Paulo city (Brazil); Ampliacao de mercado para o gas natural utilizando informacoes urbanas: estudo de caso dos distritos paulistanos

    Energy Technology Data Exchange (ETDEWEB)

    Massara, Vanessa M.; Faga, Murilo T.W.; Santos, Edmilson M. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    Considering the importance of the city of Sao Paulo for the Brazilian natural gas market, the aim of this paper is to propose an analytical methodology that integrates the understanding of the urban dynamics to the strategies of expansion in the natural gas distribution network, characterizing the gas consumption possibilities and attractiveness for each of the 96 districts composing the city. The methodology is developed through the grouping of information such as family income, demographic density and construction area, percentage of land use, number of households as well as commercial, service and industrial establishments, number of real state as well as indicative information released by the Urban Plan of the city regarding the increments in the peripheral districts. Relating the gas consumption esteemed by each type of land occupation and the cost for expanding the gas distribution network, the model will indicate, for each neighborhood, the viability of implementing a gas network as well as the places with potential for growing density in the existing gas distribution system. On this paper, examples of essential information that compose the methodology are presented for three districts: Itaquera, Moema and Tatuape, which have different socio-economic and geographical profiles. (author)

  1. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    Science.gov (United States)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  2. Natural gas and electricity convergence

    International Nuclear Information System (INIS)

    Calger, C.

    1998-01-01

    Convergence between the gas and electricity industries was described as a means for creating an increasingly more efficient energy market where prices and fundamental relationships exist between gas and electricity. Convergence creates new opportunities for producers and consumers. Convergence will likely lead to the disaggregation of the electricity and gas industry into segments such as: (1) power generation and production, (2) transmission wires and pipelines, (3) wholesale merchants, (4) distribution wires and pipelines, and (5) retail marketing, services and administration. The de-integration of integrated utilities has already begun in the U.S. energy markets and retail open access is accelerating. This retail competition will create very demanding customers and the changing risk profile will create new issues for stakeholders. The pace of reform for the telecommunications, airlines, natural gas and electricity industries was graphically illustrated to serve as an example of what to expect. The different paths that the industry might take to deregulation (aggressively embrace reform, or defensively blocking it), and the likely consequences of each reaction were also described. A map indicating where U.S. electric and natural gas utility merger and acquisition activities have taken place between 1994-1997, was included. Another map showing the physical asset positions of the Enron grid, one of the largest independent oil and gas companies in the U.S., with increasing international operations, including an electric power transmission and distribution arm, was also provided as an illustration of a fully integrated energy market company of the future. 9 figs

  3. Natural gas marketing II

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing

  4. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  5. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  6. NATURAL GAS TRANSPORTATION

    OpenAIRE

    Stanis³aw Brzeziñski

    2007-01-01

    In the paper, Author presents chosen aspects of natural gas transportation within global market. Natural gas transportation is a technicaly complicated and economicly expensive process; in infrastructure construction and activities costs. The paper also considers last and proposed initiatives in natural gas transportation.

  7. Nonuniform distribution of gas-liquid system in gas-distributing collector

    Energy Technology Data Exchange (ETDEWEB)

    Kasimov, R.Sh.; Abdullayev, E.A.; Eyubov, A.A.; Khudobakhshiyev, M.R.

    1979-01-01

    In the example of studying GS-1 of the field Shatlyk, the effect of nonuniform distribution of the liquid phase is examined (hydrocarbon condensate, water) on production lines of the unit of low temperature separation on the process of field preparation of gas. In particular, the unequal efficiency of single-type equipment operating under comparable conditions is noted: differences in the magnitude of under recuperation of coal of the recuperation heat exchangers, in the values of the integrated effect of Joule-Thomson, the coefficients of removal of low-temperature separators, etc. A consequence of this situation is deterioration in the quality of gas fed to the main pipe line. It is suggested that efforts be concentrated on developing technical designs which guarantee uniform supply of liquid from the field collector to the production lines of the unit for low temperature separation.

  8. Natural gas purchasing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    In recent years, natural gas has gained new momentum because of changes in marketing and regulations. The gas industry has always received an inordinate amount of regulatory control starting at the well head where the gas is produced to the consuming burner tip. Regulations have drastically impacted the availability of gas. Changes in the marketing and regulations have made the natural gas market sensitive at the point of production, the well head. Now, with plentiful supply and ease of transportation to bring the gas from the producing fields to the consumer, natural gas markets are taking advantage of the changed conditions. At the same time, new markets are developing to take advantage of the changes. This section shows consumers, especially the energy planners for large buyers of fuel, the advantages, sources and new methods of securing natural gas supplies. Background on how natural gas is produced and marketed are given. This section lists marketing sources, regulatory agencies and information groups available to help buyers and consumers of this important fuel for US industries and residences. 7 figs., 8 tabs

  9. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  10. Prospects of and challenges to natural gas industry development in China

    Directory of Open Access Journals (Sweden)

    Jia Chengzao

    2014-10-01

    Full Text Available An unprecedented breakthrough has been made over the past decades in natural gas industry, which helps improve energy mix and promote the low-carbon economy in China. With such abundant hydrocarbon resources, China owns two intensive oil and gas producing blocks in the Ordos Basin and Xinjiang province and two other concentrated gas producing blocks in Sichuan and Western South Sea. In addition, arterial gas lines have been connected as a gas grid all over China and natural gas market has become more and more mature and expanded. Thus, a natural gas industry system has come into being. However, with natural gas unevenly scattering all across China, the remnant resources mainly are distributed in the stratigraphic strata, deep strata in superimposed basins or in mature exploration zones, foreland basin thrust belts, marine gas fields, and so on. In reality, the future gas exploration should focus on such domains as the weathered crust karst reservoirs or carbonate and stratigraphic traps, deep clastic gas layers, and unconventional oil and gas plays. Achievements have been made in marine shale gas exploration, CBM gas steady development, and other unconventional natural gas resources. From the perspective of exploration potential, more giant oil and gas fields will be possibly discovered in deep strata or deep sea water, and stratigraphic hydrocarbon reservoirs and tight oil and gas reservoirs will also be the exploration focus. With the increase of exploration depth and degree, the overall oil and gas exploration cost will be significantly rising in general. New discoveries or reserves increase in natural gas exploration will highly depend upon research theory and technology progress, and such development technologies as 3D seismic survey, horizontal drilling and fracturing treatment will be more highlighted. Through enhancing the cost in natural gas exploration and development and strengthening the research of core technologies, natural gas

  11. Natural gas outlook

    International Nuclear Information System (INIS)

    Molyneaux, M.P.

    1998-01-01

    An overview of natural gas markets in Canada and in the United States was provided. The major factors that determine the direction of natural gas prices were depicted graphically. Price volatility has decreased in recent months. As expected, April through November total energy consumption reached historically high levels. Demand for natural gas during the summer of 1997 was not as strong as anticipated. Nuclear energy appears to be on the slippery slope, with natural gas-driven electricity projects to fill the void. Hydroelectricity had a strong showing in 1997. Prospects are less bright for 1998 due to above average temperatures. Canadian natural gas export capacity has increased 5.5 times between 1986 and estimated 1999 levels. Despite this, in 1997, deliveries to the United States were marginally behind expectations. Natural gas consumption, comparative fuel prices, natural gas drilling activity, natural gas storage capacity, actual storage by region, and average weekly spot natural gas prices, for both the U. S. and Canada, were also provided. With regard to Canada, it was suggested that Canadian producers are well positioned for a significant increase in their price realization mostly because of the increase in Canada's export capacity in 1997 (+175 Mmcf/d), 1998 (1,060 Mmcf/d) and potentially in 1999 or 2000, via the Alliance Pipeline project. Nevertheless, with current production projections it appears next to impossible to fill the 10.9 Bcf/d of export capacity that will be potentially in place by the end of 1999. tabs., figs

  12. Hand calculation of safe separation distances between natural gas pipelines and boilers and nuclear facilities in the Hanford site 300 Area

    International Nuclear Information System (INIS)

    Daling, P.M.; Graham, T.M.

    1999-01-01

    The US Department of Energy has undertaken a project to reduce energy expenditures and improve energy system reliability in the 300 Area of the Hanford Site near Richland, Washington. This project replaced the centralized heating system with heating units for individual buildings or groups of buildings, constructed a new natural-gas distribution system to provide a fuel source for many of these units, and constructed a central control building to operate and maintain the system. The individual heating units include steam boilers that are housed in individual annex buildings located in the vicinity of a number of nuclear facilities operated by the Pacific Northwest National Laboratory (PNNL). The described analysis develops the basis for siting the package boilers and natural-gas distribution system used to supply steam to PNNL's 300 Area nuclear facilities. Minimum separation distances that would eliminate or reduce the risks of accidental dispersal of radioactive and hazardous materials in nearby nuclear facilities were calculated based on the effects of four potential fire and explosion (detonation) scenarios involving the boiler and natural-gas distribution system. These minimum separation distances were used to support siting decisions for the boilers and natural-gas pipelines

  13. Technological evaluation of fuel cells using natural gas for distributed power generation; Avaliacao tecnologica da utilizacao de gas natural em celulas a combustivel para geracao distribuida de energia

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Mauricio O. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Engenharia Mecanica; Giannini, Marcio P.; Arouca, Mauricio C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2004-07-01

    The search for sustainable and more rational means of power generation motivates the scientific crew to search for more efficient and cleaner systems. Oil dependence becomes from the kind of development that the humanity had and cannot be dismissed. The question is how to use this source in a more intelligent way. Fuel Cells are electrochemical devices that convert into electric energy the chemical energy from oxi-reduction reactions between a fuel and an oxidant. The current fuel used in a Fuel Cell is hydrogen and oxygen is the oxidant. The great advantage of this device is its efficiency, higher than the one achieved with internal combustion engines. Also Fuel Cells are not limited by Carnot's efficiency. This paper is about the implementation of a distributed generation system using Fuel Cells. Technical aspects are approached together with economical and environmental needs. The already existence of Gas pipelines and the grown production of Natural Gas presented by Brazil turns it into a good market for the implementation of this energy source. The evaluation of this paper shows that is technically possible to use NG in Fuel Cells, mostly in South and Southeast regions, applying the distributed generation of energy concept. The most interesting in a strategic manner is that Brazil already have an indication that it's capable of developing this technology, opening a new market tuning with world's new technological developments. Many research centers develop this technology, not only from the cell composition itself, but also manufacturing techniques. (author)

  14. Indicators of security of natural gas supply in Asia

    International Nuclear Information System (INIS)

    Cabalu, Helen

    2010-01-01

    Natural gas has become an increasingly valuable resource and a global commodity. The demand for it has significantly increased. Japan, Korea and Taiwan heavily rely on liquefied natural gas (LNG) imports for their gas supplies from Malaysia, Brunei, Indonesia, Australia and the Middle East. On the other hand, countries like Thailand and Singapore import gas via trans-border pipelines. Gas supply interruptions, volatile gas prices, transportation and distribution bottlenecks, and a growing reliance on imports over longer distances have renewed interest on gas security in Asia. This paper examines the relative vulnerability to natural gas supply disruptions of seven gas-importing countries in Asia for year 2008. Based on four indicators of security of gas supply, a composite gas supply security index is estimated as an overall indication of gas vulnerability for our sample countries. The results demonstrate that there are differences in the values of the overall indicator of gas vulnerability among countries and the assessment is useful in developing an effective strategy of natural gas supply security in countries in the Asian region. (author)

  15. Optimised operation and management of natural gas distribution systems with the geographic information system GIS; Gasnetze besser verwalten und optimieren mit GIS

    Energy Technology Data Exchange (ETDEWEB)

    Niehoerster, K.

    2001-02-01

    The geographic information system of the natural gas utility Ruhrgas AG is explained. It consists of a great variety of products for acquisition, up-dating and visualization of geographic data, as well as specific software solutions for customized applications. (orig./CB) [German] Das geographische Informationssystem der Ruhrgas AG wird ausfuehrlich beschrieben. Es besteht aus einer Vielzahl von Produkten zur Erfassung, Pflege und Visualisierung von geografischen Daten, sowie aus spezifischen Softwareloesungen fuer Kundenanwendungen. (orig./CB)

  16. The French natural gas industry

    International Nuclear Information System (INIS)

    1999-01-01

    This little folder summarizes in few pages the main economical data of the French natural gas industry: supplies according to the country of origin, length of transport and distribution networks, LNG tanker ship fleet, underground storage capacity, population of LNG-fueled vehicles, cogeneration installations, consumption by sectors and by industrial activities, LPG consumption, supplies, distribution and sales, LPG-fuel for vehicles, CO 2 and NO x releases, equipment of households. (J.S.)

  17. Natural gas in 1946: Petroleum in 1946. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1949-12-31

    Part III of the annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution, changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  18. Natural gas in 1934: Petroleum in 1934. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1937-12-31

    Part V of this annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  19. Natural gas in 1949: Petroleum in 1949. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1952-12-31

    Part III of the annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution, changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  20. Natural gas in 1937: Petroleum in 1937. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1940-12-31

    Part V of this annual report consists of two separate reports, natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  1. Natural gas in 1939: Petroleum in 1939. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1942-12-31

    Part V of this annual report consists of two separate reports, natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  2. Natural gas in 1948: Petroleum in 1948. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1951-12-31

    Part III of the annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution, changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  3. Natural gas in 1943: Petroleum in 1943. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1946-12-31

    Part V of this annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  4. Natural gas in 1940: Petroleum in 1940. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, A R

    1944-12-31

    Part V of this annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  5. Natural gas in 1941: Petroleum in 1941. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, A R

    1945-12-31

    Part V of this annual report consists of two separate reports: Natural gas and petroleum. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  6. The gas market opens out to competition: how will the French system of distributions evolve?; Ouverture a la concurrence du marche du gaz: quelle evolution pour le systeme francais des concessions de distribution?

    Energy Technology Data Exchange (ETDEWEB)

    Carbonnier, R. [Strasbourg-3 Universite, Robert Schuman, 67 (France)]|[Strasbourg-1 Univ. Louis Pasteur, 67 (France)

    1998-10-01

    Th public distribution of natural gas in France is organised around a system of franchises allocated by the communes to a unique designated distributor (Gaz de France in most cases). This system, which was recently eased by a legislative provision, seems to have an uncertain future faced with the opening of competition that is encouraged by the European authorities and with the demands of some local communities which would like to lay a greater role in the future organisational plan for gas. This article looks at the possible evolutions, from the reactivation of franchises to their complete disappearance. (author)

  7. The factors for the competitiveness in the supply of natural gas; Los factores para la competitividad en la oferta del gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Toledo, Carlos; Aguirre Portillo, Alejandro [Facultad de Quimica, UNAM (Mexico)

    1996-07-01

    The environmental restrictions have caused an increasing demand of natural gas on world-wide scale. In this paper the analysis of the present situation of the natural gas in Mexico and throughout the world is presented, taking into account the structure of the production costs of the natural gas in the reservoirs, as well as the transportation and distribution costs destined to the natural gas consumption in specific markets. It is possible to emphasize that at the moment the transportation of this power source is more expensive than the corresponding one of the crude and of the oil-producing products obtained from oil refinement. [Spanish] Las restricciones medioambientales han provocado una creciente demanda de gas natural a escala mundial. En este trabajo se presenta un analisis de la situacion actual del gas natural en Mexico y en el mundo entero, tomando en cuenta la estructura de los costos de produccion del gas natural en los yacimientos, asi como los costos de transporte y distribucion destinados al consumo de gas natural en mercados especificos. Cabe destacar que actualmente el transporte de esta fuente energetica es mas caro que el correspondiente al crudo y a los productos petroliferos obtenidos de la refinacion de aquel.

  8. The legal basis of natural gas distribution technology. 2. rev. ed.

    International Nuclear Information System (INIS)

    Ambos, G.; Bramkamp, F.B.; Rienen, W. van

    1993-01-01

    The body of legal regulations reaches from general power economy laws to technical safety and environmental laws as well as to laws on construction regulations. The legal regulations laid down by the European Community in regard to the creation of a European single market are of increasing significance. The book wants to give basic information on the relevant legal areas and makes it easier to understand the structure and the systematics of the laws on power supply technology. It does so by differentiating three areas: - Survey of the legal regulatory framework: - Depiction of the basis of energy laws and the questions which arise from the practical work of the energy control board: - Survey of the technical safety and emission control laws in regard to natural-gas distribution by public utilities. (orig.) [de

  9. Exploring the Potential Business Case for Synergies Between Natural Gas and Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Doug [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    Natural gas and renewable energy each contribute to economic growth, energy independence, and carbon mitigation, sometimes independently and sometimes collectively. Often, natural gas and renewables are considered competitors in markets, such as those for bulk electricity. This paper attempts to address the question, 'Given near- and long-term needs for abundant, cleaner energy sources and decarbonization, how can more compelling business models be created so that these two domestic forms of energy work in greater concert?' This paper explores revenue opportunities that emerge from systems-level perspectives in 'bulk energy' (large-scale electricity and natural gas production, transmission, and trade) and four 'distribution edge' subsectors: industrial, residential, commercial, and transportation end uses.

  10. Future view on Norwegian natural gas distribution, 2015 - 2025; Framtidsbilde for norsk naturgassdistribusjon, 2015 - 2025

    Energy Technology Data Exchange (ETDEWEB)

    Einang, P M; Hennie, E; Jetlund, A S; Bertelsen, T; Skjelvik, J M

    2005-05-15

    The report shows how the available market for natural gas can realised as LNG and CNG. The necessary investments in infrastructure and cost for the different solutions are also included. The expected price development natural gas and the connection prices for natural gas versus crude oil are shown. The report also shows the environmental benefits possible by choosing natural gas

  11. Annual report on the Monitoring of good practices programs and independence for electricity and natural gas system operators - 2006

    International Nuclear Information System (INIS)

    2007-01-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 2. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2006. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2006 and audits carried out by the CRE services in these companies in 2006

  12. Annual report on the Monitoring of good practices programs and independence for electricity and natural gas system operators - 2007

    International Nuclear Information System (INIS)

    2008-01-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 3. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2007. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2007 and audits carried out by the CRE services in these companies in 2007

  13. Eastern Canada natural gas developments

    International Nuclear Information System (INIS)

    Wall, A.

    2001-01-01

    This power point presentation addressed the following topics regarding development of natural gas in eastern Canada: (1) the 18 Tcf of proven natural gas reserves at Sable Island, (2) Canadian markets benefiting from the Maritimes and Northeast Pipeline (M and NP), (3) a 20 year franchise agreement between Enbridge Gas and the government of New Brunswick, (4) the 25 year provincial franchise agreement by Sempra Atlantic Gas, and (5) Sable Island's influence on central Canada. The Sable Offshore Energy Project (SOEP) is now producing about 540,000 MMBtu/day from 6 fields. Plans for Tier 2 expansion are underway. Firm contracts for the M and NP are scheduled to transport gas from the SOEP to markets in Nova Scotia, New Brunswick, Maine and New Hampshire. Sable gas is also a potential supply for the Quebec market. Gaz Metropolitain and Enbridge have proposed to build the Cartier Pipeline from the Quebec/New Brunswick border to Quebec City. It is unlikely that Sable Island supply will directly serve the Ontario market. Canadian customers for Sable gas and M and NP service include pulp and paper companies, oil refineries, power generators and local distribution companies (LDC), with the majority of demand coming form the electric power industry. tabs., figs

  14. Hydrogen generation from natural gas for the fuel cell systems of tomorrow

    Science.gov (United States)

    Dicks, Andrew L.

    In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.

  15. Natural Gas : Physical Properties and Combustion Features

    OpenAIRE

    Corre, Olivier Le; Loubar, Khaled

    2010-01-01

    The actual composition of natural gas depends primarily on the production field from which it is extracted and limited variations in composition must therefore be accepted. Moreover, at a local distribution level, seasonal adjustments by the local gas distributor may cause significant variations in the gas composition. Consequently, physical properties and energy content are subject to variations and their calculation / estimation is of great importance for technical and economical aspects. I...

  16. Natural gas in 1951: Petroleum in 1951: Logs of wells for 1951. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1954-12-31

    The first part of this report summarises natural gas exploration activity, well drilling, infrastructure changes and improvements, production, distribution, consumption, and leakage during transmission or distribution of natural gas in Ontario. Includes lists of operators licensed to lease, prospect, drill or bore for, produce, and distribute natural gas in the province. The second part summarises oil industry activities, oil production, well drilling, petroleum and refined products imports, and petroleum refining operations. Relevant statistics are provided throughout both parts of the report. Also includes drillers` logs for oil and gas wells completed during the year.

  17. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  18. Natural gas in India

    International Nuclear Information System (INIS)

    Lefevre, Thierry; Todoc, Jessie L.

    1999-11-01

    Contains Executive Summary and Chapters on: Country background; Overview of the energy sector; Natural gas supply; Natural gas infrastructure; Natural gas infrastructure; Natural gas demand; Outlook-government policy reform and industry development, and Appendices on Global and regional energy and gas trends; Overview of India's investment policy, incentives and regulation; The ENRON Dabhol power project. (Author)

  19. Natural gas reburning technology for NOx reduction from MSW combustion systems

    International Nuclear Information System (INIS)

    Penterson, C.A.; Abbasi, H.; Khinkis, M.J.; Wakamura, Y.; Linz, D.G.

    1990-01-01

    A technology for reducing emissions from municipal solid waste combustion systems through advanced combustion techniques is being developed. Pilot testing of natural gas reburning was first performed in the Institute of Gas Technology's pilot-scale furnace under conditions simulating the firing of 1.7 x 10 6 Btu/hr (0.5 MWth) of MSW. Pilot testing then continued in Riley Stoker Corporation's 3 x 10 6 Btu/hr (0.88 MWth), 7 ton/day, pilot-scale MSW combustor using actual MSW in both test series, injection of up to 15% (HHV basis) natural gas reduced NO, by 50--70% while maintaining or improving combustion efficiency as measured by CO and hydrocarbon emissions and temperature stability. This paper will review the test results and discuss the status of the full-scale field demonstration testing that is planned for 1990

  20. Modeling of leak detection system for high pressure transmission system of natural gas

    International Nuclear Information System (INIS)

    Qureshi, S.A.; Paracha, Z.J.; Ali, A.

    2005-01-01

    Gas Industry can be considered as one of the most important industries in the economy of any country. Safe Transportation of Gas is thus considered to be vital because interruption of Supply of Gas to consumers not only causes domestic problems but also loss of revenue to country. Now most of power generation Sector has switched over their system to Natural Gas. So, interruption of supply to this sector can cause a lot of problems. This paper has provided assessment of technology approach and formulated this approach for Leak Detection Model in High Pressure Transmission system for current and future operations, which will improve the efficiency of any transmission company to a great extent. This model can be extremely helpful in conditions of Rupture Emergencies or Leakage because of corrosive conditions of Pipeline to manage the situation of resources in pipeline network. Any exceptional readings or messages should alert the user to the fact that something is wrong with the system. Such a system helps a lot in the safe and efficient management of pipeline network. The data and information provided by the Leak Detection System applications will allow for efficient and safe pipeline operation maximizing profitability over the pipeline's service lifetime. (author)

  1. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Science.gov (United States)

    2013-06-26

    ... Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and...

  2. Quality management system for petroleum and natural gas suppliers; Sistema de gestao da qualidade para os fornecedores da industria do petroleo e gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Oscar Felizzola [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Escola de Engenharia. Lab. de Tecnologia, Gestao de Negocios e Meio Ambiente (LATEC)]|[PETROBRAS, Rio de Janeiro, RJ (Brazil); Costa, Stella Regina R. da [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil)]|[Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2004-07-01

    The subject of this paper is the implementation of a quality management system for suppliers of products and services for the petroleum and natural gas industry that meet the ISO TS 29001:2003 Standard requirements. This technical specification establishes supplementary requirements to ISO 9001:2000 Standard for the product and service suppliers of the petroleum and natural gas industries. It was the result of a partnership between API and ISO TC 67. It intends to become the common and unique reference for the quality management systems requirements for the industry in the world. Therefore, it helps to avoid multiple systems that ask multiple audits for the certification. The generality of the ISO 9001:2000 Standard, reference for the quality management system for any organization , independent of its size, activity and location, not always satisfies all requirements of the specific sectors. (author)

  3. Method for evaluating natural gas demand scenarios (Demangas Project); Metodologia para avaliacao de cenarios de demanda pelo gas natural (Projeto Demangas)

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, Luis Antonio [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Lab. de Sistemas de Transportes; Santos, Gilberto T. dos; Silva, Silvio C. da; Ribeiro, Jose Luis D.; Fogliatto, Flavio S. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Lab. de Otimizacao de Produtos e Processos

    2004-07-01

    This paper presents the methodology developed for the evaluation of the existing and potential market for natural gas in the industrial, automotive, residential and commercial sectors of Rio Grande do Sul. The methodology is based upon a marketing research framework and consists of the definition of the problem; application of qualitative, quantitative and stated-preference enquiries; review of the state-of-the-art and state-of-the-practice; and, also, interviews with specialists. The methodology is consolidated in four software that enable the simulation of different demand scenarios of natural gas up to the year 2010. The development of this methodology comprised the participation of more than 1,000 potential users of natural gas and allowed the state company in charge of distributing natural gas to: structure the problem of forecasting the consumption of natural gas within a new context of competition in the energy industry; help the formulation of the strategic plan of the company with regard to investment strategies and incrementing the number of clients; and propose marketing efforts to promote the adoption of natural gas as an alternative energy source. (author)

  4. Natural gas geochemistry and its origins in Kuqa depression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    According to gas compositional and carbon isotopic measurement of 114 gas samples from the Kuqa depression,accumulation of the natural gases in the depression is dominated by hydrocarbon gases, with high gas dryness(C1/C1-4)at the middle and northern parts of the depression and low one towards east and west sides and southern part.The carbon isotopes of methane and its homologues are relatively enriched in 13 C,and the distributive range ofδ13C 1 ,δ13C 2 andδ13C 3 is-32‰―-36‰,-22‰―-24‰and-20‰―-22‰,respectively.In general,the carbon isotopes of gaseous alkanes become less negative with the increase of carbon numbers.Theδ13C CO2 value is less than-10‰in the Kuqa depression,indicating its organogenic origin.The distributive range of 3 He/ 4 He ratio is within n×10-8 and a decrease in 3 He/ 4 He ratio from north to south in the depression is observed.Based on the geochemical parameters of natural gas above,natural gas in the Kuqa depression is of characteristics of coal-type gas origin.The possible reasons for the partial reversal of stable carbon isotopes of gaseous alkanes involve the mixing of gases from one common source rock with different thermal maturity or from two separated source rock intervals of similar kerogen type,multistages accumulation of natural gas under high-temperature and over-pressure conditions,and sufficiency and diffusion of natural gas.

  5. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  6. Low-level radioactive gas monitor for natural gas operations

    International Nuclear Information System (INIS)

    Armstrong, F.E.

    1969-11-01

    A portable radioactivity detection system for monitoring the tritium content of natural gas under field conditions has been developed. The sensing device employed is a complex proportional counting assembly operated without the use of massive shielding previously employed with such low-level radiation detectors. The practical limit of detection for the system is a tritium content of 10 -9 microcurie per cc of natural gas. All components of the system are packaged in three waterproof cases weighing slightly less than 30 kg each. Power requirement is 500 watts of 120 volt, 60 Hz current. Operation is fully automatic with a printed record produced at predetermined time intervals

  7. The energy system of choice for the east coast : natural gas lessons learned in east coast Canada

    International Nuclear Information System (INIS)

    Rankin, S.

    2001-01-01

    Maritime and Northeast Pipeline is a partnership between Westcoast Energy, Duke Energy, Exxon Mobil, and Emera representing an investment of $2 billion. Maritimes and Northeast Pipeline will play a major role in future resource development off Canada's east coast. Graphs depicting North American annual natural gas demand were presented for Canada, Mexico and the United States. The current energy supply shortage is driven by a growth in power generation. Natural gas is the fuel of choice because of its capital cost, environmental advantages as well as its efficient and proven technology. A map was included which illustrating the locations of North American natural gas supply basins along with their estimated remaining reserves. The presentation also made reference to natural gas price impacts. Natural gas in New England is destined mostly for use in power generation. Maps were included which showed the pipeline distribution to get Maritime and Northeast Pipeline gas to markets in eastern Canada and New England. The challenge will be to maintain a healthy price environment, to continue with successful drilling programs, and to identify transportation routes to take advantage of expanding markets. tabs., figs

  8. Development of technology and systems for air-conditioned and cogenerations using natural gas; Desenvolvimento de tecnologia e sistemas para climatizaco e cogeracao usando gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Carlos Antonio Cabral dos; Varani, Celina Maria Ribeiro [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Energia Solar; Campos, Michel Fabianski [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This preset work deal with a technological project that has as main objective the development of national technology in absorption refrigeration for application in the human thermal comfort with natural gas as energy source in direct fired or through energy recuperation of the combustion gases in cogeneration systems. This project makes part of the REDEGASENERGY and also receive financial support from CT-PETRO founds through FINEP, and also has as partner the local gas distributed company. The focus to be reached is the obtaining of a system of double effect using the solution pair Water-Lithium Bromide as work fluid to the capacity range of five to fifty tons of refrigeration. This range means a important branch on the market for minis-shopping, medical clinics, conveniences shopping, small hotels, motels, etc. The system is compound basically of heat exchangers: vapor generator, absorber, condenser, evaporator and intermediary exchanger. The design of the system is based on the thermodynamic, heat and mass analyses for each component. The concepts of exergy and irreversibility are used for through second thermodynamic law to realize the exegetic analysis and to identify the points of the most thermal lost. The correction on the identified components allows the improvements on the performance of each components and all system. As proposed steps to reach the final objective is established first the development of a single effect system operating in similar conditions of capacity and work fluid that the intended double effect system. (author)

  9. Thermoecological cost of electricity production in the natural gas pressure reduction process

    International Nuclear Information System (INIS)

    Kostowski, Wojciech J.; Usón, Sergio; Stanek, Wojciech; Bargiel, Paweł

    2014-01-01

    The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. - Highlights: • The chain of NG transmission with an exergy recovery expansion plant was analyzed. • New methodology coupling the TEC (thermoecological cost) and thermoeconomics. • Decomposition of the TEC formation process. • Case-study transmission system yields TEC of natural gas = 1.0222. • Expansion plant yields TEC of electricity 2.42 (expanders) and 1.77 (CHP module)

  10. Effect of overpressure on gas hydrate distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    Natural gas hydrate systems can be characterized by high sedimentation rates and/or low permeability sediments, which can lead to pore pressure higher than hydrostatic. This paper discussed a study that examined this effect of overpressure on gas hydrate and free gas distribution in marine sediments. A one-dimensional numerical model that coupled sedimentation, fluid flow, and gas hydrate formation was utilized. In order to quantify the relative importance of sedimentation rates and low permeability sediments, a dimensionless sedimentation-compaction group (scN) was defined, that compared the absolute permeability of the sediments to the sedimentation rate. Higher values of scN mean higher permeability or low sedimentation rate which generally yield hydrostatic pore pressure while lower values of scN normally create pore pressure greater than hydrostatic. The paper discussed non-hydrostatic consolidation in gas hydrate systems, including mass balances; constitutive relationships; normalized variables; and dimensionless groups. A numerical solution to the problem was presented. It was concluded that simulation results demonstrated that decreasing scN not only increased pore pressure above hydrostatic values, but also lowered the lithostatic stress gradient and gas hydrate saturation. This occurred because overpressure resulted in lower effective stress, causing higher porosity and lower bulk density of the sediment. 16 refs., 5 figs., 1 appendix.

  11. Annual survey on the natural gas market: 2008 main results

    International Nuclear Information System (INIS)

    2009-09-01

    This document presents and briefly comments the main data of the natural gas market in France in 2008: gas production, gas transit (entry points receiving gas from various origins and export points to Spain and Switzerland), gas storage, gas distribution, gas sales in the different French regions and to different kinds of customers or industries

  12. First Report of the Select Committee on Energy: Securing natural gas for New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This document reports on the work of the Select Committee on Energy of the Legislative Assembly of New Brunswick, created to examine the proper and expeditious development of natural gas in New Brunswick, in such a way as to make natural gas available in the province to the widest possible extent, and to the maximum benefit of its people. The document outlines the key issues involved, namely the policy on laterals and pipeline access (a fundamental issue), cost of service and incentive regulation, bundled and unbundled services, load balancing, incentives for distribution system expansion, franchises, municipal involvement in gas development, the impact of natural gas industry development on restructuring the electric industry, environmental issues and required changes to legislation. Recommendations with respect to each issue are included.

  13. Natural gas market assessment: Price convergence in North American natural gas markets

    International Nuclear Information System (INIS)

    1995-12-01

    The extent to which Canadian and U.S. natural gas markets have become integrated in the post-deregulation era was assessed. This assessment was accomplished through a statistical analysis of the price movements in Canadian and U.S. gas markets. The analysis pointed to three broad conclusions: (1) on the whole, there has been an increasing degree of integration among North American natural gas markets since price deregulation and the introduction of open access, (2) there is somewhat of a split between eastern and western markets, (3) Alberta's links are stronger with the western U.S. natural gas market than with the market in the eastern U.S. Several factors were cited as contributing to the general increase in market integration, including: (1) increased pipeline capacity and additional pipeline interconnections, coupled with the development of market hubs, (2) improved flexibility of access to pipeline transportation services, (3) improved access to market information and greater trading flexibility which has been facilitated by growing use of electronic bulletin boards and electronic trading systems. The increased market integration was claimed to have benefited both consumers and producers, and to have increased competition in both countries.. 28 refs., 14 figs

  14. Natural Gas Acquisition Program

    Data.gov (United States)

    General Services Administration — The "NGAP" system is a web based application which serves NGAP GSA users for tracking information details for various natural gas supply chain elements like Agency,...

  15. The Ikhil Gas Project: developing the first commercial natural gas project north of the Arctic Circle

    Energy Technology Data Exchange (ETDEWEB)

    Malin, G. [AltaGas Services Inc., AB (Canada)

    2001-07-01

    Development of the Ikhil Natural Gas Project by the Inuvialuit Petroleum Corporation in partnership with Enbridge and AltaGas Services are described in a step-by-step fashion. A minimum of 11 Bcf of recoverable natural gas reserves have been established to date. The Northwest Territories Power Corporation is committed under a 15-year take-or-pay contract to take the gas, and the Town of Inuvik also has a franchise agreement with the project owners for a 15-year period. Challenges faced and overcome in adapting to the regulatory process, the engineering problems that required special solutions (e.g. ice/snow roads, gravel pad to support wellhead and production facilities, reducing temperature of gas to avoid disturbing the permafrost, sand-padding pipeline to supplement high ice/content material), converting a diesel town to a natural gas town, and installing an underground distribution system in ground that is constantly shifting due to permafrost, are some of the examples discussed. Benefits accruing to local people and businesses during construction and the production phases of the project are described, along with details of an assessment and discussion of lessons learned after two years of operation. Overall, the project is considered to have been an engineering success. Financially, it is too early to judge, but it is expected that with economic development in Inuvik taking off, demand for natural gas and electricity will develop and justify the confidence of the developers.

  16. Guidelines For Evaluation Of Natural Gas Projects

    International Nuclear Information System (INIS)

    Farag, H.; El Messirie, A.

    2004-01-01

    This paper is objected to give guidelines for natural gas projects appraisal These guidelines are summarized in modeling of natural gas demand forecast and energy pricing policies for different gas consumers mainly in the manufacturing, mining, transport, trade and agriculture sectors. Analysis of the results is made through sensitivity analysis and decision support system ( DSS )

  17. Natural gas supply, demand and price outlook

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Natural gas consumption in the US grew 15.9 percent between 1986 and 1989. Its share of total primary energy use in the US grew from 22.5 percent to 23.8 percent. Despite unusually warm weather and an economic downturn, natural gas use in the first eight months of 1990 fell only modestly from its 1989 pace - while its market share of US total primary energy use has remained stable. The American Gas Association's Total Energy Resource Analysis energy modeling system (A.G.A.-TERA) projects continued growth in natural gas demand and supply. Natural gas is projected to gain a growing share of total US primary use. Natural gas prices are projected to be sufficient to encourage growth in well completions and reserve additions, yet competitive with electricity, fuel oil and other alternative forms of energy

  18. Challenge and opportunity: developing a gas distribution industry in New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    Pleckaitis, A.J. [Enbridge Gas New Brunswick, Fredericton, NB (Canada)

    2001-07-01

    The largest gas distributor in Canada is Enbridge, which also operates the longest oil pipeline system in the world. In this presentation, the author discussed the challenges facing Enbridge Gas New Brunswick (EGNB). The limited partnership, the 20-year renewable franchise and the business plan was briefly examined. The state of development of EGNB was described with the back-bone distribution system having been completed and the first customers attached. EGNB is in the process of developing the supporting infrastructure. A map of the Eastern region of the country was shown, followed by a map of New Brunswick displaying the work accomplished to date. A brief overview of the business model was provided and the challenges identified. The customer value chain was illustrated, and a graph showed the natural gas price advantage in New Brunswick. Next, the author discussed the situation in Nova Scotia, where the gas distribution franchise was awarded in December 1999 to Sempra Atlantic Gas. Looking to the future, the author mentioned supply and regional strategy. The final thought was for greater cooperation between government and industry. figs.

  19. Regulatory reform in Mexico's natural gas sector

    International Nuclear Information System (INIS)

    1996-01-01

    In recent years Mexico has implemented remarkable structural changes in its economy. However, until recently its large and key energy sector was largely unreformed. This is now changing. In 1995 the Mexican Government introduced legislative changes permitting private sector involvement in natural gas storage, transportation and distribution. Subsequent directives set up a detailed regulatory framework. These developments offer considerable promise, not only for natural gas sector development but also for growth in the closely linked electricity sector. This study analyses the changes which have taken place and the rationale for the regulatory framework which has been established. The study also contains recommendations to assist the Government of Mexico in effectively implementing its natural gas sector reforms and in maximizing the benefits to be realised through the new regulatory framework. (author)

  20. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  1. Natural gas pricing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    Natural gas pricing is the heart and soul of the gas business. Price specifically affects every phase of the industry. Too low a price will result in short supplies as seen in the mid-1970s when natural gas was scarce and in tight supply. To fully understand the pricing of this energy commodity, it is important to understand the total energy picture. In addition, the effect and impact of world and US economies, and economics in general are crucial to understanding natural gas pricing. The purpose of this presentation will be to show the parameters going into US natural gas pricing including the influence of the many outside industry factors like crude oil and coal pricing, market drivers pushing the gas industry, supply/demand parameters, risk management for buyers and sellers, and other elements involved in pricing analysis

  2. Partner's interest conflict analysis in distribution of natural gas: a game theory approach; Analise de conflitos de interesse na distribuicao de gas natural em areas urbanas: uma aplicacao da teoria dos jogos

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Bruno de Athayde; Arruda, Joao Bosco Furtado [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Nucleo de Pesquisa em Logistica, Transporte e Desenvolvimento

    2004-07-01

    The use of Natural Gas is nowadays increasing in Brazilian scene and this fact shows the necessity of effective planning tasks in that sector. In the case of Natural Gas Vehicular (NGV) distribution one can face problems of actor's (distributor, retailers, customers and non-users) point of view conflicts and fuel stations expand in most Brazilian urban areas in an uncontrolled way, despising counties regulation on land use. This paper reports a study using a model based in Game Theory concepts to determine some key-variables as the number of fuel stations which must deliver NGV in a given study area. Although some information could not be available the results of simulation shows the usefulness of using such an approach to give solutions to distribution questions in NGV sector. The model was applied to the case of a district in Fortaleza city which is the study area of a project entitled Projeto GASLOG presently on process under the sponsoring of Brazilian Government, PETROBRAS and Brazilian GasEnergy Research Network. (author)

  3. Dispersion of odorants in natural gas distribution networks

    Science.gov (United States)

    Gross, R.; Fontana, E.; Silva, A.; Quadri, M. B.; Souza, S. M. A. G. U.

    2018-03-01

    A numerical modeling analysis of a pulse train diffusion, representing an odorant injection in a natural gas pipeline, was carried out and compared with experimental data from a real pipeline. The main purpose of this study is to evaluate how the odorant dispersion occurs along the pipe. Due to technical limitations, the odorant is injected in the line as a pulse and it is important to find out the point in the pipeline where the oscillating concentration of odorant fits into a range of values that meet both the legislation and the interests of customers who may have the quality of their products affected by this oscillation. Since the natural gas pipelines do not have strong streamline curvatures and the flow is always turbulent, it is relatively easy to determine the velocity and concentration fields using the Computational Fluid Dynamics techniques. In this study the RANS (Reynolds Average Navier-Stokes) equations with the k - ɛ turbulence model was used to build the mathematical model. Comparisons of the experimental data and numerical results show a strong agreement for the studied cases. Based on the results, it was possible to know the minimum and maximum values of odorant concentration along the pipelines.

  4. Combined natural gas and electricity network pricing

    Energy Technology Data Exchange (ETDEWEB)

    Morais, M.S.; Marangon Lima, J.W. [Universidade Federal de Itajuba, Rua Dr. Daniel de Carvalho, no. 296, Passa Quatro, Minas Gerais, CEP 37460-000 (Brazil)

    2007-04-15

    The introduction of competition to electricity generation and commercialization has been the main focus of many restructuring experiences around the world. The open access to the transmission network and a fair regulated tariff have been the keystones for the development of the electricity market. Parallel to the electricity industry, the natural gas business has great interaction with the electricity market in terms of fuel consumption and energy conversion. Given that the transmission and distribution monopolistic activities are very similar to the natural gas transportation through pipelines, economic regulation related to the natural gas network should be coherent with the transmission counterpart. This paper shows the application of the main wheeling charge methods, such as MW/gas-mile, invested related asset cost (IRAC) and Aumman-Shapley allocation, to both transmission and gas network. Stead-state equations are developed to adequate the various pricing methods. Some examples clarify the results, in terms of investments for thermal generation plants and end consumers, when combined pricing methods are used for transmission and gas networks. The paper also shows that the synergies between gas and electricity industry should be adequately considered, otherwise wrong economic signals are sent to the market players. (author)

  5. Optimal Sizing and Placement of Power-to-Gas Systems in Future Active Distribution Networks

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Bhattarai, Bishnu Prasad; Kouzelis, Konstantinos

    2015-01-01

    Power-to-Gas is recently attracting lots of interest as a new alternative for the regulation of renewable based power system. In cases, where the re-powering of old wind turbines threatens the normal operation of the local distribution network, this becomes especially relevant. However, the design...... -investment cost- and the technical losses in the system under study. The results obtained from the assessed test system show how such non-linear methods could help distribution system operators to obtain a fast and precise perception of what is the best way to integrate the Power-to-Gas facilities...... of medium voltage distribution networks does not normally follow a common pattern, finding a singular and very particular layouts in each case. This fact, makes the placement and dimensioning of such flexible loads a complicated task for the distribution system operator in the future. This paper describes...

  6. Natural gas technology

    International Nuclear Information System (INIS)

    Todaro, J.M.; Herbert, J.H.

    1997-01-01

    This presentation is devoted to a discussion regarding current and planned US fossil energy research and development for fiscal years 1996, 1997 and 1998. The principal focus of research in the immediate future will be: clean coal fuels, natural gas and oil exploration and production, especially reservoir life extension, advanced drilling completion and stimulation systems, advanced diagnostics and imaging systems, environmental compliance in technology development, regulatory streamlining and risk assessment. Program goals to 2010 were summarized as: increasing domestic oil and gas recovery; increasing recoverable reserves; decreasing cumulative industry environmental compliance costs; increasing revenues to the federal government; saving jobs in the U.S

  7. A System Dynamics Analysis of Investment, Technology and Policy that Affect Natural Gas Exploration and Exploitation in China

    Directory of Open Access Journals (Sweden)

    Jianzhong Xiao

    2017-01-01

    Full Text Available Natural gas has an increasing role in Chinese energy transformation. We present a system dynamics model of the natural gas industry in China. A new system dynamics model for natural gas companies based on reserve exploration and well construction as well as investment dynamics is proposed. The contribution of the paper is to analyze the influence of technology, investment and policy factors on the natural gas industry. We found that the dynamics of the main variables, including gas policy, cost of investment, accounting depreciation and exploitation technology, are sensitive to the sustainable development of resources. The simulations and results presented here will be helpful for government to reform policies, and for upstream companies to make decisions.

  8. Natural gas and production of electricity

    International Nuclear Information System (INIS)

    Defago, E.

    2005-01-01

    The forthcoming power supply shortage in Switzerland due to increasing consumption is discussed, as are the possibilities for securing the future supply. Today, the main sources are hydroelectric (roughly 55 %) and nuclear (40 %) power. The share of electricity from natural gas amounts to only 1.4 %. The possibilities of further economic production of hydropower are practically exhausted. Therefore, further electric power has to be either imported or generated from other energy sources (renewable, nuclear, fossil) in the country itself. Due to the low acceptance of nuclear energy and the limited potential of renewable energy sources, natural gas is the most favoured candidate. The advantages of distributed production in cogeneration plants are compared with the centralized production in larger plants using combined cycles. Finally, a project currently under development is presented: an existing thermal power plant fueled with heavy fuel oil shall be refurbished and converted to natural gas as the new fuel

  9. Multi-criteria evaluation of natural gas resources

    International Nuclear Information System (INIS)

    Afgan, Naim H.; Pilavachi, Petros A.; Carvalho, Maria G.

    2007-01-01

    Geologically estimated natural gas resources are 500 Tcm. With the advance in geological science increase of estimated resources is expected. Natural gas reserves in 2000 have been proved to be around 165 Tcm. As it is known the reserves are subject to two constraints, namely: capital invested in the exploration and drilling technologies used to discover new reserves. The natural gas scarcity factor, i.e. ratio between available reserves and natural gas consumption, is around 300 years for the last 50 years. The new discovery of natural gas reserves has given rise to a new energy strategy based on natural gas. Natural gas utilization is constantly increasing in the last 50 years. With new technologies for deep drilling, we have come to know that there are enormous gas resources available at relatively low price. These new discoveries together with high demand for the environment saving have introduced a new energy strategy on the world scale. This paper presents an evaluation of the potential natural gas utilization in energy sector. As the criteria in this analysis resource, economic, environmental, social and technological indicators are used. Among the potential options of gas utilization following systems are considered: Gas turbine power plant, combine cycle plant, CHP power plant, steam turbine gas-fired power plant, fuel cells power plant. Multi-criteria method was used for the assessment of potential options with priority given to the Resource, Economic and Social Indicators. Results obtained are presented in graphical form representing priority list of potential options under specific constraints in the priority of natural gas utilization strategy in energy sector

  10. Leak detection for city gas pipelines based on instantaneous energy distribution characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhigang, Chen [Deijing University of Civil Engineering and Architecture, Beijing, (China)

    2010-07-01

    Many natural gas pipelines are used in our cities. The development of efficient leakage detection systems is fundamental for safety issues avoidance. This paper investigated a new solution to the leak detection problem in city gas pipelines based on instantaneous energy distribution. In a theoretical approach, the Hilbert-Huang transform (HHT) was used to provide the instantaneous energy distribution feature of an unstable pressure signal. The signal noise was eliminated thanks to the instantaneous energy contribution. A leakage detection model with instantaneous energy distribution (IED) was then established. The correlation coefficients of instantaneous energy distribution were through correlation analysis. It was found that in different pipeline states, the instantaneous energy distribution characteristics are different. A strong correlation of IED signal characteristics was found of the two ends of a city gas pipeline in the same operation. The test results demonstrated the reliability and validity of the method.

  11. Spark ignition natural gas engines-A review

    International Nuclear Information System (INIS)

    Cho, Haeng Muk; He, Bang-Quan

    2007-01-01

    Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the operating envelope, fuel economy, emissions, cycle-to-cycle variations in indicated mean effective pressure and strategies to achieve stable combustion of lean burn natural gas engines are highlighted. Stoichiometric natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to those of their gasoline or Diesel counterparts, high boost pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precise air-fuel ratio control strategies should be developed to meet future stringent emission standards

  12. Deregulation, market structure and gas prices in the Canadian Natural Gas Industry

    International Nuclear Information System (INIS)

    Uhler, R.S.

    1992-01-01

    During the course of the development of the natural gas industry in Canada, gas purchase and sales markets have evolved from being relatively free of regulation to being highly regulated and back again. Though pipeline transport charges were regulated, the pipeline companies, or their subsidiaries, owned the gas that they transported and price and other provisions of purchase and sales contracts were freely negotiated with the producers at one end and distributing utilities or industrial users at the other end. The Western Accord of 1985 set the process of deregulation of the Canadian natural gas industry in motion. On November 1, 1986, natural gas prices in interprovincial trade were deregulated in that domestic natural gas prices were to be freely negotiated. Although not stated explicitly, government policy is to permit export prices to be freely negotiated so long as they do not fall below domestic prices. The deregulation process has dramatically changed the relationship between buyers and sellers. Of particular importance is that deregulation has permitted companies to negotiate gas purchase contracts directly with producers with the pipeline company acting solely as a gas transporter. The purpose of this paper is to examine the forces that have led to shorter term contracts and to examine the likely effect of these contract terms on reservoir development investment incentives. 5 refs., 3 figs

  13. Liquefied natural gas projects in Altamira: impacts on the prices of the natural gas; Proyectos de gas natural licuado en Altamira: impactos sobre los precios del gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Perez Cordova, Hugo; Elizalde Baltierra, Alberto [Petroleos Mexicanos (PEMEX), (Mexico)

    2004-06-15

    The possible incorporation of new points of supply of natural gas to the Sistema National de Gasoductos (SNG) through the import of Liquified Natural Gas or (GNL) could cause an important modification in the national balance of supply-demand of the fuel and in its price, if large volumes are received. An analysis is presented of the possible impact that would have in the natural gas national market and in its prices the import of GNL made by the region of Altamira, Tamaulipas. [Spanish] La posible incorporacion de nuevos puntos de oferta de gas natural al Sistema Nacional de Gasoductos (SNG) a traves de la importacion de Gas Natural Licuado (GNL), podria provocar una modificacion importante en el balance oferta-demanda nacional del combustible y en su precio, si se reciben fuertes volumenes. Se presenta un analisis del posible impacto que tendria en el mercado nacional del gas natural y en sus precios la importacion de GNL realizada por la region de Altamira, Tamaulipas.

  14. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    Gas hydrate formation in multi phase mixtures containing an aqueous phase (with dissolved salts), reservoir fluid (crude oil) and natural gas phase was investigated by using a standard rocking cell (RC-5) apparatus. The hydrate formation temperature was reduced in the presence of crude oils...... can contribute to the safe operation of sub sea pipelines in the oil and gas industry....

  15. Mitigation of methane emissions in a pilot-scale biocover system at the av miljø landfill, denmark: system design and gas distribution

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Skov, B.; Cassini, Filippo

    2013-01-01

    -passive biocover system was constructed at the AV Miljø landfill. The biocover is fed by landfill gas pumped out of three leachate wells. An innovative gas distribution system was used to overcome the often observed overloaded hot spot areas resulting from uneven gas distribution to the active methane oxidation......Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi...... layer. Performed screening of methane and carbon dioxide concentration at the surface of the biocover showed homogenous distributions indicating an even gas distribution. This was supported by result from a performed tracer test where the compound HFC-134a was added to the gas inlet over a 12 day period...

  16. The role of measured data in a free natural gas market

    International Nuclear Information System (INIS)

    Ter Horst, G.J.P.; Fransen, T.

    2000-01-01

    As from 2002 medium-scale customers connected to the distribution network of the regional natural gas distribution companies will be able to purchase their gas from third parties. In order to calculate the energy (gas) transmission, distribution and supply costs, it is necessary to measure and record the offtakes of all the customers with freedom of choice on an hourly basis. The Dutch natural gas trading company Gasunie usually carries out these measurements for the present 350 medium-scale customers, but for the 14,000 customers by 2002 a different solution probably must be chosen. This is because most offtakes do not have any provision for measuring consumption on an hourly basis. Following the electricity market, offtake profiles will be prepared for most customers. If the parties cannot reach agreement on those profiles, expensive measuring equipment has to be installed on site. The Standard Online Information Server (Solis) is used in a project to transfer the data measured online from a remote customer to the electricity supplier. Solis will also be used for transferring gas data. The Dutch natural gas research institute Gastec has carried out a definition study into the use of gas consumption profiles for assessing the gas balance. Gastec and KEMA (research institute for the Dutch electric power companies) will jointly further develop this gas consumption model for both the gas and electricity market

  17. Alaska gas pipeline and the global natural gas market

    International Nuclear Information System (INIS)

    Slutz, J.

    2006-01-01

    The global natural gas market was discussed in relation to the Alaska natural gas pipeline project. Natural gas supply forecasts to the year 2025 were presented. Details of the global liquefied natural gas (LNG) market were discussed. Charts were included for United States natural gas production, consumption, and net imports up to the year 2030. The impact of high natural gas prices on the manufacturing sector and the chemicals industry, agricultural, and ethanol industries were discussed. Natural gas costs around the world were also reviewed. The LNG global market was discussed. A chart of world gas reserves was presented, and global LNG facilities were outlined. Issues related to the globalization of the natural gas trade were discussed. Natural gas imports and exports in the global natural gas market were reviewed. A chart of historical annual United States annual LNG imports was presented. tabs., figs

  18. Natural gas in Mexico

    International Nuclear Information System (INIS)

    Ramirez, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which focused on various aspects of the natural gas industry in Mexico. Some of the viewgraphs depicted statistics from 1998 regarding natural gas throughput from various companies in North America, natural gas reserves around the world, and natural gas reserves in Mexico. Other viewgraphs depicted associated and non-associated natural gas production from 1988 to 1998 in million cubic feet per day. The Burgos Basin and the Cantarell Basin gas production from 1997 to 2004 was also depicted. Other viewgraphs were entitled: (1) gas processing infrastructure for 1999, (2) cryogenic plant at Cd. PEMEX, (3) average annual growth of dry natural gas production for 1997-2004 is estimated at 5.2 per cent, (4) gas flows for December 1998, (5) PGPB- interconnect points, (6) U.S. Mexico gas trade for 1994-1998, (7) PGPB's interconnect projects with U.S., and (8) natural gas storage areas. Technological innovations in the industry include more efficient gas turbines which allow for cogeneration, heat recovery steam generators which reduce pollutant emissions by 21 per cent, cold boxes which increase heat transfer efficiency, and lateral reboilers which reduce energy consumption and total costs. A pie chart depicting natural gas demand by sector shows that natural gas for power generation will increase from 16 per cent in 1997 to 31 per cent in 2004. The opportunities for cogeneration projects were also reviewed. The Comision Federal de Electricidad and independent power producers represent the largest opportunity. The 1997-2001 investment program proposes an 85 per cent sulphur dioxide emission reduction compared to 1997 levels. This presentation also noted that during the 1998-2001 period, total ethane production will grow by 58 tbd. 31 figs

  19. Canadian natural gas market: dynamics and pricing

    International Nuclear Information System (INIS)

    2000-01-01

    This publication by the National Energy Board is part of a continuing program of assessing applications for long-term natural gas export licences. The market-based procedure used by the Board is based on the premise that the marketplace will generally operate in a way that will ensure that Canadian requirements for natural gas will be met at fair market prices. The market--based procedure consists of a public hearing and a monitoring component. The monitoring component involves the on-going assessment of Canadian energy markets to provide analyses of major energy commodities on either an individual or integrated commodity basis. This report is the result of the most recent assessment . It identifies factors that affect natural gas prices and describes the functioning of regional markets in Canada. It provides an overview of the energy demand, including recent trends, reviews the North American gas supply and markets, the natural gas pricing dynamics in Canada, and a regional analysis of markets, prices and dynamics in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec and the Atlantic provinces. In general, demand growth outstripped growth in supply, but natural gas producers throughout North America have been responding to the current high price environment with aggressive drilling programs. The Board anticipates that in time, there will be a supply and demand response and accompanying relief in natural gas prices. A review of the annual weighted average border price paid for Alberta gas indicates that domestic gas users paid less than export customers until 1998, at which point the two prices converged, suggesting that Canadians have had access to natural gas at prices no less favourable than export customers. The influence of electronic trading systems such as NYMEX and AECO-C/NIT have had significant impact on the pricing of natural gas. These systems, by providing timely information to market participants. enables them to manage price

  20. Statistics 2005 of the natural gas industry in France

    International Nuclear Information System (INIS)

    2006-11-01

    This document provides and analyses statistical data of the natural gas industry for the year 2005. After a presentation of the consumption and the supplying, it deals with the gas market organization (production, transport, storage, supply and distribution), the information sources and the methods of the analysis and the main data (transport, production, storage, employment, uses). The last part takes stock of the energy in 2005 and the main transport axis of the natural gas in Europe. (A.L.B.)

  1. Small-scale electricity generating facilities from natural gas : a measure to mitigate the greenhouse effect; Microgeneracion de energia con gas natural: una medida efectiva para mitigar el cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A. M.

    2002-07-01

    The forthcoming liberalization of the gas and electricity markets in Europe, in conjunction with the increase of the global energy consumption in the near future are enabling the development of natural gas alternatives to traditional large-scale centralized power plants. They emerged from research suggesting that the use of small-scale electricity generating facilities dispersed throughout the electrical network, provides the electricity system with measurable technical, economic and environmental benefits. In this sense, the distributed generation powered by cogeneration systems offers the biggest measure to mitigate the greenhouse effect due to the carbon dioxide. (Author)

  2. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  3. Annual survey of the natural gas market: 2010 results

    International Nuclear Information System (INIS)

    Welter-Nicol, Cecile

    2011-12-01

    This document presents and briefly comments the main data of the natural gas market in France in 2010: gas production (only 2 pc of supplies), gas transit evolutions since 2007 (entry points receiving gas from various origins and export points to Spain and Switzerland), outlines the increase of imports from Norway, comments gas storage capacities, the evolution of gas distribution in France, the evolution of gas consumption, and gas sales in the different French regions and to different kinds of customers or industries

  4. Natural gas utilization in Santa Cruz thermal-electric power; A utilizacao de gas natural em Santa Cruz

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Mauricio F. de.; Lundeqvist, Carl G; Gomes, Gerson; Almeida, A E

    1994-12-31

    Use of natural gas as an alternative energy source on the thermo electric power plant of Santa Cruz are presented. Economic studies on hydroelectric power plants to use thermal generators during low water supply periods, costs of natural gas as a alternative energy fuel, and the engineer services to the conversion of fuel oil system, are discussed. 5 figs., 6 tabs.

  5. Brazil's insertion in the international LNG (Liquefied Natural Gas) route; A insercao do Brasil na rota internacional de GNL (Gas Natural Liquefeito)

    Energy Technology Data Exchange (ETDEWEB)

    Kueng, Stephan de Carvalho; Bastos, Filipe Sant' Ana [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2008-07-01

    In the late 1990's, PETROBRAS began considering diversifying its energy sources. This included the possibility of importing LNG (Liquefied Natural Gas), making it one additional source for gas supply in Brazil. There is a belief that the imported LNG is the cheapest, quickest and most efficient option in terms of infrastructure compared to other transportation, such as pipelines. This will permit an increase in gas supply, given the growing demand for this energy source in the domestic market. The current international LNG trading market is adjusting itself to the world integration, where short-term (spot) agreements prevail. These agreements have many advantages, such as: lowering fixed trading costs; the possibility to diversify suppliers; minimizing gas supply risk; and facilitating import market supply adjustment. In Brazil, the main objective to import LNG is to supply natural gas (NG) to thermal plants, supplementing the hydroelectric - gas integration of the electric system. For the accomplishment of this project, it is forecasted the construction of LNG offloading terminals, together with the construction of gas distribution networks. Therefore, LNG transportation will guarantee security in supply, permit the diversification of the NG supply source and enable the increased use of NG in the Brazilian energy grid. (author)

  6. Gas source localization and gas distribution mapping with a micro-drone

    International Nuclear Information System (INIS)

    Neumann, Patrick P.

    2013-01-01

    The objective of this Ph.D. thesis is the development and validation of a VTOL-based (Vertical Take Off and Landing) micro-drone for the measurement of gas concentrations, to locate gas emission sources, and to build gas distribution maps. Gas distribution mapping and localization of a static gas source are complex tasks due to the turbulent nature of gas transport under natural conditions and becomes even more challenging when airborne. This is especially so, when using a VTOL-based micro-drone that induces disturbances through its rotors, which heavily affects gas distribution. Besides the adaptation of a micro-drone for gas concentration measurements, a novel method for the determination of the wind vector in real-time is presented. The on-board sensors for the flight control of the micro-drone provide a basis for the wind vector calculation. Furthermore, robot operating software for controlling the micro-drone autonomously is developed and used to validate the algorithms developed within this Ph.D. thesis in simulations and real-world experiments. Three biologically inspired algorithms for locating gas sources are adapted and developed for use with the micro-drone: the surge-cast algorithm (a variant of the silkworm moth algorithm), the zigzag / dung beetle algorithm, and a newly developed algorithm called ''pseudo gradient algorithm''. The latter extracts from two spatially separated measuring positions the information necessary (concentration gradient and mean wind direction) to follow a gas plume to its emission source. The performance of the algorithms is evaluated in simulations and real-world experiments. The distance overhead and the gas source localization success rate are used as main performance criteria for comparing the algorithms. Next, a new method for gas source localization (GSL) based on a particle filter (PF) is presented. Each particle represents a weighted hypothesis of the gas source position. As a first step, the PF-based GSL algorithm

  7. Gas source localization and gas distribution mapping with a micro-drone

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Patrick P.

    2013-07-01

    The objective of this Ph.D. thesis is the development and validation of a VTOL-based (Vertical Take Off and Landing) micro-drone for the measurement of gas concentrations, to locate gas emission sources, and to build gas distribution maps. Gas distribution mapping and localization of a static gas source are complex tasks due to the turbulent nature of gas transport under natural conditions and becomes even more challenging when airborne. This is especially so, when using a VTOL-based micro-drone that induces disturbances through its rotors, which heavily affects gas distribution. Besides the adaptation of a micro-drone for gas concentration measurements, a novel method for the determination of the wind vector in real-time is presented. The on-board sensors for the flight control of the micro-drone provide a basis for the wind vector calculation. Furthermore, robot operating software for controlling the micro-drone autonomously is developed and used to validate the algorithms developed within this Ph.D. thesis in simulations and real-world experiments. Three biologically inspired algorithms for locating gas sources are adapted and developed for use with the micro-drone: the surge-cast algorithm (a variant of the silkworm moth algorithm), the zigzag / dung beetle algorithm, and a newly developed algorithm called ''pseudo gradient algorithm''. The latter extracts from two spatially separated measuring positions the information necessary (concentration gradient and mean wind direction) to follow a gas plume to its emission source. The performance of the algorithms is evaluated in simulations and real-world experiments. The distance overhead and the gas source localization success rate are used as main performance criteria for comparing the algorithms. Next, a new method for gas source localization (GSL) based on a particle filter (PF) is presented. Each particle represents a weighted hypothesis of the gas source position. As a first step, the PF

  8. Gas source localization and gas distribution mapping with a micro-drone

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Patrick P.

    2013-07-01

    The objective of this Ph.D. thesis is the development and validation of a VTOL-based (Vertical Take Off and Landing) micro-drone for the measurement of gas concentrations, to locate gas emission sources, and to build gas distribution maps. Gas distribution mapping and localization of a static gas source are complex tasks due to the turbulent nature of gas transport under natural conditions and becomes even more challenging when airborne. This is especially so, when using a VTOL-based micro-drone that induces disturbances through its rotors, which heavily affects gas distribution. Besides the adaptation of a micro-drone for gas concentration measurements, a novel method for the determination of the wind vector in real-time is presented. The on-board sensors for the flight control of the micro-drone provide a basis for the wind vector calculation. Furthermore, robot operating software for controlling the micro-drone autonomously is developed and used to validate the algorithms developed within this Ph.D. thesis in simulations and real-world experiments. Three biologically inspired algorithms for locating gas sources are adapted and developed for use with the micro-drone: the surge-cast algorithm (a variant of the silkworm moth algorithm), the zigzag / dung beetle algorithm, and a newly developed algorithm called ''pseudo gradient algorithm''. The latter extracts from two spatially separated measuring positions the information necessary (concentration gradient and mean wind direction) to follow a gas plume to its emission source. The performance of the algorithms is evaluated in simulations and real-world experiments. The distance overhead and the gas source localization success rate are used as main performance criteria for comparing the algorithms. Next, a new method for gas source localization (GSL) based on a particle filter (PF) is presented. Each particle represents a weighted hypothesis of the gas source position. As a first step, the PF-based GSL algorithm

  9. Proposal for data acquisition system of gas chromatograph and natural gas transfer custody via web; Proposta para um sistema de aquisicao de dados de cromatografia e medicao fiscal de gas natural via web

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Jose Paulo C.; Guimaraes, Marcelo F.; Zeitoune, Rafael J. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    In this paper, is presented a proposal of a Chromatograph and Transfer Custody Measurement Data Acquisition System through Web, complementary to the SCADA System, responsible for control and monitoring PETROBRAS Gas Pipelines, intended to comply with the requirements of the Gerencias de Qualidade e Medicao (MQD) and Planejamento Integrado da Logistica (PCL) from PETROBRAS Gas e Energia, regarding the evaluation of the quality of the natural gas that is being commercialized, as well as its billing. (author)

  10. Role of natural gas in meeting an electric sector emissions ...

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  11. LNG (Liquefied Natural Gas): the natural gas becoming a world commodity and creating international price references; GNL (Gas Natural Liquefeito): o gas natural se tornando uma commodity mundial e criando referencias de preco internacionais

    Energy Technology Data Exchange (ETDEWEB)

    Demori, Marcio Bastos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Coordenacao de Comercializacao de Gas e GNL; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    The transportation of large quantities of natural gas through long distances has been done more frequently by Liquefied Natural Gas (LNG). The increase of natural gas demand and the distance of major reserves, allied to technological improvements and cost reduction through LNG supply chain, have triggered the expressive increase of LNG world market This paper tries to evaluate the influence that LNG should cause on natural gas world market dynamic, analyzing the tendency of gas to become a world commodity, creating international price references, like oil and its derivates. For this, are shown data as natural gas world reserves, the participation of LNG in natural gas world market and their increase. Furthermore, will be analyzed the interaction between major natural gas reserves and their access to major markets, still considering scheduled LNG projects, the following impacts from their implementation and price arbitrage that should be provoked on natural gas markets. (author)

  12. Report on the incentive regulation regarding the service quality of natural gas network operators and ERDF. Summary report 2011

    International Nuclear Information System (INIS)

    2012-05-01

    The tariffs set by the French Energy Regulation Commission (CRE) for natural gas distribution system operators (DSOs), natural gas transmission system operators (TSOs) as well as for the electricity distribution system operator electricite Reseau Distribution France (ERDF) include an incentive regulation regarding the quality of service. The CRE has defined indicators to monitor the performance of operators in several fields considered relevant to assess the quality of service. Some of these indicators, considered to have specific importance in ensuring that the market operates properly, are subject to a system of financial incentives: bonuses or penalties are given to operators depending on the attainment of objectives set by the CRE. Other indicators, which do not carry financial incentives, complete the mechanism and ensure a broader surveillance of the operators' service quality. A financial incentive may be applied to these indicators at a later date if the CRE deems it necessary. The analyses of the service quality monitoring indicators presented in this report cover the period from 1 July 2010 to 30 June 2011. They were used to inform the work conducted to develop the incentive regulation mechanism for service quality in GrDF's ATRD4 tariff (A Third-party access to natural gas distribution networks, scheduled to enter into effect on 1 July 2012). The conclusions of the report will also be used by the CRE for ERDF as part of the work on TURPE 4 tariff (Tariff for the use of public electricity grids, scheduled to enter into effect during the third quarter of 2013), for natural gas local distribution companies (LDCs) to prepare their ATRD4 tariff (Entry into effect scheduled for 1 July 2013), as well as for GRTgaz and TIGF to define the future ATRT5 tariff (Third-party access to natural gas transmission networks, scheduled to enter into effect on 1 April 2013). Implemented in 2009 with an initial annual follow- up report on gas network operators Gr

  13. On modelling the market for natural gas

    International Nuclear Information System (INIS)

    Mathiesen, Lars

    2001-12-01

    Several features may separately or in combination influence conduct and performance of an industry, e.g. the numbers of sellers or buyers, the degree of economies of scale in production and distribution, the temporal and spatial dimensions, etc. Our main focus is on how to model market power. In particular, we demonstrate the rather different solutions obtained from the price-taking behavior versus the oligopolistic Coumot behavior. We also consider two approaches to model the transportation of natural gas. Finally, there is a brief review of previous modeling efforts of the European natural gas industry. (author)

  14. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1991 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition form 1987 to 1991 are given for each Census Division and each State. Annual historical data are shown at the national level

  15. Natural gas annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1993 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition from 1989 to 1993 are given for each Census Division and each State. Annual historical data are shown at the national level

  16. A report on the futures market in natural gas

    International Nuclear Information System (INIS)

    Davis, R.R.

    1991-01-01

    The New York Mercantile Exchange (NYMEX) natural gas futures contract was introduced on April 3, 1990, offering natural gas producers, marketers, and end users an important new tool to manage price risk. Each NYMEX natural gas contract unit consists of 10,000 million Btu and trades over twelve consecutive months. The NYMEX delivery location is at the Henry Hub in Erath, Louisiana. The contracts are designed to align with certain industry practices, including pipeline nomination deadlines and traditional bid-week pricing. Contract volume has grown to an average daily figure of nearly 1,400 in the first 18 months of contract trading. A peak volume of 8,739 contracts was achieved on June 24, 1991. End-users currently represent under 2% of the futures market. The ratio of open interest to volume is very low, indicating the high concentration of commercial vs investor interest in the natural gas futures market. Gas marketers are the most active users of the futures market, making up over 60% of reportable open interest. Many producers, end-users, and local distribution companies hedge indirectly through marketers. The next largest holders of open interest are producers. A few local distribution companies are also entering the futures market, and interest in this market from all segments of the industry is increasing. 3 figs

  17. Distributed and decentralized state estimation in gas networks as distributed parameter systems.

    Science.gov (United States)

    Ahmadian Behrooz, Hesam; Boozarjomehry, R Bozorgmehry

    2015-09-01

    In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline networks. In the construction of local models, due to the existence of common states and interconnections among the subsystems, the assimilation and prediction steps of the Kalman filter are modified to take the overlapping and external states into account. However, dynamic Riccati equation for each subsystem is constructed based on the local model, which introduces a maximum error of 5% in the estimated standard deviation of the states in the benchmarks studied in this paper. The performance of the proposed methodology has been shown based on the comparison of its accuracy and computational demands against their counterparts in centralized Kalman filter for two viable benchmarks. In a real life network, it is shown that while the accuracy is not significantly decreased, the real-time factor of the state estimation is increased by a factor of 10. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Structure of distribution gas network operation system; Structure du systeme d'exploitation du reseau de distribution du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Dzirba, E. [Institute of Oil and Gas (Poland); Osiadacz, A. [Warsaw Technical Uniwersity (Poland)

    2000-07-01

    Distribution networks have become increasingly complex to manage and potentially labor-intensive to operate safely and efficiently. Remote monitoring enables the operator to continually monitor the performance of the system from a central point(s). Where the system operates outside known parameters, the operator can respond very quickly. Remote control provides the additional functionality of enabling plant to be operated from a central point(s) directly or indirectly via operator. Communication can be through one or a combination of different communication media. The whole system for operation of gas distribution network may be looked at as 5-level general model based on ISO proposals adapted for modern control and management systems. The structure and requirements imposed on such a system are described in this paper. (authors)

  19. Preliminary Experimental Examination Of Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems

    Science.gov (United States)

    Kneafsey, T. J.; Flemings, P. B.; Bryant, S. L.; You, K.; Polito, P. J.

    2013-12-01

    Global climate change will cause warming of the oceans and land. This will affect the occurrence, behavior, and location of subseafloor and subterranean methane hydrate deposits. We suggest that in many natural systems local salinity, elevated by hydrate formation or freshened by hydrate dissociation, may control gas transport through the hydrate stability zone. We are performing experiments and modeling the experiments to explore this behavior for different warming scenarios. Initially, we are exploring hydrate association/dissociation in saline systems with constant water mass. We compare experiments run with saline (3.5 wt. %) water vs. distilled water in a sand mixture at an initial water saturation of ~0.5. We increase the pore fluid (methane) pressure to 1050 psig. We then stepwise cool the sample into the hydrate stability field (~3 degrees C), allowing methane gas to enter as hydrate forms. We measure resistivity and the mass of methane consumed. We are currently running these experiments and we predict our results from equilibrium thermodynamics. In the fresh water case, the modeled final hydrate saturation is 63% and all water is consumed. In the saline case, the modeled final hydrate saturation is 47%, the salinity is 12.4 wt. %, and final water saturation is 13%. The fresh water system is water-limited: all the water is converted to hydrate. In the saline system, pore water salinity is elevated and salt is excluded from the hydrate structure during hydrate formation until the salinity drives the system to three phase equilibrium (liquid, gas, hydrate) and no further hydrate forms. In our laboratory we can impose temperature gradients within the column, and we will use this to investigate equilibrium conditions in large samples subjected to temperature gradients and changing temperature. In these tests, we will quantify the hydrate saturation and salinity over our meter-long sample using spatially distributed temperature sensors, spatially distributed

  20. Natural Gas in the Netherlands. From Cooperation to Competition?

    International Nuclear Information System (INIS)

    Correlje, A.; Van der Linde, C.; Westerwoudt, T.

    2003-01-01

    In eight chapters the authors sketch in detail the history, development and radical changes of the Dutch gas system, which they describe as a n extremely complex phenomenon . From coal mining to the very first discovery of natural gas in 1948, the giant Groningen field in 1959 and the hundreds of smaller fields, from the gas distribution, the gas exports and the Dutch contribution to a European gas market and the fascinating impact on the national economy, readers are guided on a tour through the Dutch energy policy. In an Annex the geological aspects of gas and hydrocarbons are described. Interviews with experts from the gas sector, and with politicians, former ministers, civil servants and bankers illuminate many issues further. As becomes clear from Natural Gas in the Netherlands, the role of the Dutch government has been essential in both the development and the commercial strategy of the gas sector. Public policy was often a compromise between conflicting political objectives like the level of gas prices, the size of the state revenues, the rate of depletion and the development of new reserves. Public policy had to take into account the intervening interests of the various oil companies involved in the exploration and production of gas, struggling to achieve reasonable remuneration. The authors explain how a balance was struck between these conflicting interests in the subsequent periods, while also dealing with the changes in the oil prices, the supply and consumption levels of gas and shifts in environmental perspectives

  1. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts.

    Science.gov (United States)

    McKain, Kathryn; Down, Adrian; Raciti, Steve M; Budney, John; Hutyra, Lucy R; Floerchinger, Cody; Herndon, Scott C; Nehrkorn, Thomas; Zahniser, Mark S; Jackson, Robert B; Phillips, Nathan; Wofsy, Steven C

    2015-02-17

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4 ⋅ m(-2) ⋅ y(-1). Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼ 60-100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.

  2. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  3. Need for a marginal methodology in assessing natural gas system methane emissions in response to incremental consumption.

    Science.gov (United States)

    Mac Kinnon, Michael; Heydarzadeh, Zahra; Doan, Quy; Ngo, Cuong; Reed, Jeff; Brouwer, Jacob

    2018-05-17

    Accurate quantification of methane emissions from the natural gas system is important for establishing greenhouse gas inventories and understanding cause and effect for reducing emissions. Current carbon intensity methods generally assume methane emissions are proportional to gas throughput so that increases in gas consumption yield linear increases in emitted methane. However, emissions sources are diverse and many are not proportional to throughput. Insights into the causal drivers of system methane emissions, and how system-wide changes affect such drivers are required. The development of a novel cause-based methodology to assess marginal methane emissions per unit of fuel consumed is introduced. The carbon intensities of technologies consuming natural gas are critical metrics currently used in policy decisions for reaching environmental goals. For example, the low-carbon fuel standard in California uses carbon intensity to determine incentives provided. Current methods generally assume methane emissions from the natural gas system are completely proportional to throughput. The proposed cause-based marginal emissions method will provide a better understanding of the actual drivers of emissions to support development of more effective mitigation measures. Additionally, increasing the accuracy of carbon intensity calculations supports the development of policies that can maximize the environmental benefits of alternative fuels, including reducing greenhouse gas emissions.

  4. Controlling Methane Emissions in the Natural Gas Sector. A Review of Federal and State Regulatory Frameworks Governing Production, Gathering, Processing, Transmission, and Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Paranhos, Elizabeth [Energy Innovation Partners, Seoul (South Korea); Kozak, Tracy G. [Energy Innovation Partners, Seoul (South Korea); Boyd, William [Univ. of Colorado, Boulder, CO (United States); Bradbury, James [U.S. Department of Energy, Washington, DC (United States); Steinberg, D. C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arent, D. J. [Joint Inst. for Strategic Energy Alaysis, Washington, DC (United States)

    2015-04-23

    This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supply chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.

  5. Natural gas annual 1995

    International Nuclear Information System (INIS)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level

  6. Floating natural gas processing plants. Technical ideal or feasible technology

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, H

    1977-04-01

    Realizability of floating natural gas processing plants is decisively influenced by the economy of the system. Illustrated by the example of the natural gas product LPG (liquefied petroleum gas), a model cost calculation is carried out. It is demonstrated that the increase in the price level during the 1973/1974 energy crisis is an important factor for the realiability in terms of economy of such complicated technical systems. Another aspect which the model calculation revealed is that the economy of floating natural gas processing plants and storage systems can only be estimated in connection with other system components.

  7. PROBLEMS AND PROSPECTS OF SYSTEM MODERNIZATION OF THE ARCTIC NATURAL GAS EXPORT ON THE EUROPEAN MARKET

    Directory of Open Access Journals (Sweden)

    V. S. Selin

    2016-01-01

    Full Text Available A research purpose is the analysis of the European natural gas market environment and the modernization opportunities of the delivery system from Russia in connection with the current geo-economic changes. The main methods are the factorial approaches and the content analysis, which allows allocate and structure this sector’s driving forces.Export of the Russian natural gas on the European market still remains the dominating activity, in terms of the total amounts of deliveries, though over the last ten years its specific weight has been considerably reduced. The situation has sharply become aggravated both in connection with the "Ukrainian" crisis, and that of the European Union policy, which is taking the active measures for the gas supply system diversification. As a result of the conducted research it is proved that the Russian gas transportation system in the Arctic regions requires the strategic upgrade which shall go in two main directions.The first direction is the forming of the new pipeline schemes replacing the unreliable transit routes. The second direction is a rather innovative development of exploration and transportation of the liquefied natural gas which amount exceeds thirty percent in world export and in Russian has not yet reached ten percent.Scientific novelty of the received results consists in system approval of the opportunities of adaptation of Russian export deliveries to the market demand changes. The proposals of increase of the liquefied natural gas exploration in the Arctic regions and formation of the basic centers (special zones have also a practical importance.

  8. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Annual 1991 provides information on the supply and disposition of natural gas to a wide audience including industry, consumers Federal and State agencies, and education institutions. This report, the Natural Gas Annual 1991 Supplement: Company Profiles, presents a detailed profile of selected companies

  9. Geologic distributions of US oil and gas

    International Nuclear Information System (INIS)

    1992-01-01

    This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists' Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail than has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study

  10. Performance analysis of solar energy integrated with natural-gas-to-methanol process

    International Nuclear Information System (INIS)

    Yang, Sheng; Liu, Zhiqiang; Tang, Zhiyong; Wang, Yifan; Chen, Qianqian; Sun, Yuhan

    2017-01-01

    Highlights: • Solar energy integrated with natural-gas-to-methanol process is proposed. • The two processes are modeled and simulated. • Performance analysis of the two processes are conducted. • The proposed process can cut down the greenhouse gas emission. • The proposed process can save natural gas consumption. - Abstract: Methanol is an important platform chemical. Methanol production using natural gas as raw material has short processing route and well developed equipment and technology. However, natural gas reserves are not large in China. Solar energy power generation system integrated with natural-gas-to-methanol (NGTM) process is developed, which may provide a technical routine for methanol production in the future. The solar energy power generation produces electricity for reforming unit and system consumption in solar energy integrated natural-gas-to-methanol system (SGTM). Performance analysis of conventional natural-gas-to-methanol process and solar energy integrated with natural-gas-to-methanol process are presented based on simulation results. Performance analysis was conducted considering carbon efficiency, production cost, solar energy price, natural gas price, and carbon tax. Results indicate that solar energy integrated with natural-gas-to-methanol process is able to cut down the greenhouse gas (GHG) emission. In addition, solar energy can replace natural gas as fuel. This can reduce the consumption of natural gas, which equals to 9.2% of the total consumed natural gas. However, it is not economical considering the current technology readiness level, compared with conventional natural-gas-to-methanol process.

  11. Regulatory aspects of the transportation of natural gas coming from marginal fields; Aspectos regulatorios do transporte de gas natural oriundo de campos marginais

    Energy Technology Data Exchange (ETDEWEB)

    Alpire, Ricardo [Universidade Salvador (UNIFACS), BA (Brazil); Tiryaki, Gisele Ferreira [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2010-07-01

    Natural gas is an energy input that only recently began to have greater weight in the Brazilian energy matrix. The share of natural gas in national energy policies grew significantly between 1998 and 2009, reaching almost 10% of energetic participation in the end of this period. Because of this very dynamic and growing market, it is necessary to revisit the existing legislation to assess its relevance in the face of new conflict situations among experienced agents. This article aims to evaluate the existing legislation for the natural gas sector, particularly as to its effectiveness in regulating the conflicting issues in its distribution of this input in the form of compressed natural gas reserves come from marginal, where the final consumer is not located within the pipeline network of state distributor. Will address the standards in the industry, to the most recent law passed, Gas Law No. 11.909/2009, presented a critical review of the subject. (author)

  12. Canadian natural gas

    International Nuclear Information System (INIS)

    Lucas, D.A.

    1991-01-01

    Canada's natural gas industry enjoys a quiet confidence as it looks ahead to the 1990s. In this paper, the author explains why, despite some critical uncertainties, the optimism endures. Reviewing the current conditions of supply, production, consumption, pipelines, and pipeline expansion plans, the author contends that the New World of the 1990s will belong to natural gas. The author's assessment of natural gas markets proceeds far beyond the borders of Canada. The author examines the determinants of gas prices throughout North America and he identifies the one force that promises to seize almost complete control of gas prices throughout the continent. While the analysis points out the attributes of this new pricing regime, it also names the obstacles that could prevent this emerging mechanism from assuming its anticipated position

  13. Natural gas position in the energy sector of the 21. century

    International Nuclear Information System (INIS)

    Peltier, Th.

    2000-01-01

    Natural gas with its abundant reserves, largely distributed all around the world, and with its low environmental impacts, should assert its position since the beginning of the 21. century. However, the fundamentals of our world are changing more and more rapidly and some short term events can modify this long term optimistic vision of natural gas development. This was the topic debated during a round table of the WOC 9 working committee of the CMG 2000 worldwide gas congress: the long term future of natural gas industry, the population need for a sustainable development, the potentialities of gas resources, the need for large scale interconnected energy networks, the new technologies favourable to the development of natural gas uses, the progressive 'decarbonization' of energy sources, the global warming and the role of R and D, the risks that could threat natural gas development. (J.S.)

  14. Neural control systems for alternatively fuelled vehicles and natural gas fuel injection for DACIA NOVA

    Energy Technology Data Exchange (ETDEWEB)

    Sulatisky, M. [Saskatchewan Research Council, Saskatoon, SK (Canada); Ghelesel, A. [BC Gas International, Vancouver, BC (Canada)

    1999-07-01

    The elements of natural gas vehicle conversion technology are described as background to a discussion of the development of bi-fuel injection system for the Rumanian-manufactured DACIA-NOVA automobile. The bi-fuel injection system mirrors the fueling system installed by the original equipment manufacturer; it can also be easily installed on Ford, General Motors and DaimlerChrysler vehicles as well as on most imports.To meet emission standards after 2000, it is envisaged to install on the DACIA NOVA a neural control system (NCS) and a completely adaptive linear control system (ACLS). Details of natural gas vehicles development and the development of NCS and ACLS are discussed, including short-term and long-term objectives.

  15. Natural gas annual 1997

    International Nuclear Information System (INIS)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs

  16. Natural gas annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  17. Growing natural gas usage

    International Nuclear Information System (INIS)

    Saarni, T.

    1996-01-01

    Finnish natural gas usage topped the 3.3 billion cubic metre mark last year, up 3.6 % on the 1994 figure. Growth has increased now for 12 years in a row. Thanks to offtake by large individual users, the pipeline network has been expanded from South-East Finland to the Greater Helsinki area and central southern Finland. Natural gas plays a much larger role in this region than the 10 % accounted for by natural gas nationally would indicate. The growth in the share of Finland's energy use accounted for by natural gas has served to broaden the country's energy supply base. Natural gas has replaced coal and oil, which has considerably reduced the level of emissions resulting form energy generation

  18. US crude oil, natural gas, and natural gas liquids reserves: 1990 annual report

    International Nuclear Information System (INIS)

    1991-09-01

    The primary focus of this report is to provide an accurate estimate of US proved reserves of crude oil, natural gas, and natural gas liquids. These estimates were considered essential to the development, implementation, and evaluation of natural energy policy and legislation. In the past, the government and the public relied upon industry estimates of proved reserves. These estimates were prepared jointly by the American Petroleum Institute (API) and the American Gas Association (AGA) and published in their annual report, Reserves of Crude Oil, Natural Gas Liquids, and Natural Gas in the United States and Canada. However, API and AGA ceased publication of reserves estimates after their 1979 report. By the mid-1970's, various federal agencies had separately established programs to collect data on, verify, or independently estimate domestic proved reserves of crude oil or natural gas. Each program was narrowly defined to meet the particular needs of the sponsoring agency. In response to recognized need for unified, comprehensive proved reserves estimates, Congress in 1977 required the Department of Energy to prepare such estimates. To meet this requirement, the EIA's reserves program was undertaken to establish a unified, verifiable, comprehensive, and continuing statistical series for proved reserves of crude oil and natural gas. The program was expanded to include proved reserves of natural gas liquids in the 1979 report. 36 refs., 11 figs., 16 tabs

  19. Finland's leading natural gas company

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The ownership structure of Finland's leading natural gas company, Gasum, changed fundamentally in 1999, and the company is now no longer a subsidiary of Fortum Corporation. 'Our new strong and broad ownership base will enable us to develop the natural gas business and pipeline network in Finland in response to the requirements of our Finnish customers', says Antero Jaennes, Gasum's Chairman and CEO, who stresses that Gasum is committed to remaining the leading developer of the Finnish natural gas market and the number-one gas supplier. Natural gas usage in Finland in 1999 totalled 3.9 billion m 3 (38.7 TWh), unchanged from 1998. Natural gas accounted for 11% of Finland's total primary energy need, as it did in 1998. The proportion of natural gas used in district heating rose by 2% to 36%, and moved down 2% in power generation to 10%. Industry's use of natural gas fell 1% to 17%. 75% of natural gas was used in combined heat and power (CHP) generation in industry and district heating. In 2000, Gasum expects to sell 4 billion m 3 of natural gas (40 TWh)

  20. Evaluation of alternatives for reducing the consumption of natural gas fuel at city-gates of Brazilian transport systems; Avaliacao das alternativas de reducao do consumo de gas natural combustivel nos pontos de entrega dos sistemas de transporte brasileiros

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Almir B. [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Augusto, Cristiane R.; Seidl, Peter R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Goncalves, Raquel G. [UNISUAM - Centro Universitario Augusto Motta, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work aims to identify actions that can be implemented to increase the energy efficiency of processes involved in the value chain of natural gas, specifically in the process of heating in existing city-gates of transporting natural gas Brazilians plants. The goal is increase supply of gas in Brazil. The main function of city-gates is to deliver the natural gas in contract terms (flow, pressure, temperature and quality). The main issue related to the consumption of natural gas fuel in city-gates is related to the operation (set-up and control) of natural gas combustion, in other words, depends on how the heating system is adjusted dynamically to burn, efficiently, the exact amount of gas required by this system, depending on temperature, pressure, temperature, quality and flow of natural gas at the 'city-gates'. The main objective of this work is to present a study on alternatives at design, set-up and control of natural gas city-gates (transport) in Brazil, aiming to increase the energy efficiency of this facility, and thus contributing to the growth in supply of natural gas available to the market. (author)

  1. Evaluation of alternatives for reducing the consumption of natural gas fuel at city-gates of Brazilian transport systems; Avaliacao das alternativas de reducao do consumo de gas natural combustivel nos pontos de entrega dos sistemas de transporte brasileiros

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Almir B [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Augusto, Cristiane R; Seidl, Peter R [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Goncalves, Raquel G [UNISUAM - Centro Universitario Augusto Motta, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work aims to identify actions that can be implemented to increase the energy efficiency of processes involved in the value chain of natural gas, specifically in the process of heating in existing city-gates of transporting natural gas Brazilians plants. The goal is increase supply of gas in Brazil. The main function of city-gates is to deliver the natural gas in contract terms (flow, pressure, temperature and quality). The main issue related to the consumption of natural gas fuel in city-gates is related to the operation (set-up and control) of natural gas combustion, in other words, depends on how the heating system is adjusted dynamically to burn, efficiently, the exact amount of gas required by this system, depending on temperature, pressure, temperature, quality and flow of natural gas at the 'city-gates'. The main objective of this work is to present a study on alternatives at design, set-up and control of natural gas city-gates (transport) in Brazil, aiming to increase the energy efficiency of this facility, and thus contributing to the growth in supply of natural gas available to the market. (author)

  2. Compressed natural gas transportation by utilizing FRP composite pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, S.C. [Trans Ocean Gas Inc., St. John' s, NF (Canada)

    2004-07-01

    This paper discussed the Trans Ocean Gas (TOG) method for transporting compressed natural gas (CNG). As demand for natural gas increases and with half of the world's reserves considered stranded, a method to transport natural gas by ship is needed. CNG transportation is widely viewed as a viable method. Transported as CNG, stranded gas reserves can be delivered to existing markets or can create new natural gas markets not applicable to liquefied natural gas (LNG). In contrast to LNG, compressed gas requires no processing to offload. TOG proposes that CNG be transported using fiber reinforced plastic (FRP) pressure vessels which overcome all the deficiencies of proposed steel-based systems. FRP pressure vessels have been proven safe and reliable through critical applications in the national defense, aerospace, and natural gas vehicle industries. They are light-weight, highly reliable, have very safe failure modes, are corrosion resistant, and have excellent low temperature characteristics. Under TOG's scheme, natural gas can be stored at two thirds the density of LNG without costly processing. TOG's proposed design and testing of a CNG system was reviewed in detail. 1 fig.

  3. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  4. Mercury Removal from Natural Gas in Egypt

    International Nuclear Information System (INIS)

    Korkor, H.; AI-Alf, A.; EI-Behairy, S.

    2004-01-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems

  5. Mercury Removal from Natural Gas in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Korkor, H; AI-Alf, A; EI-Behairy, S [EGAS, Cairo (Egypt)

    2004-07-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems.

  6. Natural gas is more than gas power plants

    International Nuclear Information System (INIS)

    Lind, Oddvar

    2000-01-01

    Through the Statpipe gas line at Karmoey, Norway supplies 20% of the natural gas on the European market. The pipeline is 'leaking' a little bit of gas to the local communities at Karmoey and Haugesund. These communities have replaced 65% of their oil consumption with natural gas, which is a fine contribution to a better environment. The supplier of the natural gas, Gasnor ASA in this case, claims an energy efficiency of 90% at the end user because the gas burns directly and the loss in the pipeline is minimal. The efficiency of natural gas utilisation is twice that of the planned gas power stations in West-Norway, subtracting the losses in the electrical network. Gasnor ASA competes with oil suppliers and, if necessary, with electric utilities. The county hospital at Haugesund is quoted as an example. The hospital has two large boilers with dual fuel burners. They have been using natural gas since 1998 because it was worth while both economically and environmentally. The use of natural gas in the transport sector would be very important, but the necessary infrastructure is very little developed. For instance, five diesel-powered ferries on the Boknafjord emit as much NOx as the planned gas power plant at Kaarstoe

  7. The formation of the global natural gas industry: definition, constraints and challenges; A formacao da industria global de gas natural: definicao, condicionantes e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, Melissa Cristina Pinto Pires

    2008-03-15

    This study aims to investigate the real possibilities for the natural gas industry to become a global energy industry. So, it is necessary to define what global energy industry really means. In order to do a comparative analysis between the oil and natural gas industries, it is necessary to define three distinct stages of the evolution of an energy industry, namely internationalization, mundialization and globalization. This study analyzes the evolution of the oil industry trying to identify the main aspects that promoted changes and transformed the oil business into a global industry. Then, the evolution of the natural gas industry is analyzed, looking for similarities between the structural changes in both industries, and trying to determine what is the current stage of the natural gas industry. Despite the increase in the natural gas international trade and the prospects of growth of natural gas demand, there are still some challenges for this industry to effectively become global. Some of the challenges are the need of investments in production infrastructure, transportation and distribution sectors, the access to the main reserves, the uncertainty related to the demand evolution and the possible creation of a natural gas producers cartel, like the Organization of the Petroleum Exporting Countries (OPEC). (author)

  8. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.J.; Levey, R.A.; Hardage, B.A.

    1993-12-31

    The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

  9. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Lenox, Carol; Kaplan, P. Ozge

    2016-01-01

    With advances in natural gas extraction technologies, there is an increase in the availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At higher leakage levels, the additional methane emissions could offset the carbon dioxide emissions reduction benefit of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is required to meet a specific carbon dioxide reduction target across a number of scenarios in which the availability of natural gas changes. Scenarios are run with carbon dioxide emissions and a range of upstream methane emission leakage rates from natural gas production along with upstream methane and carbon dioxide emissions associated with production of coal and oil. While the system carbon dioxide emissions are reduced in most scenarios, total carbon dioxide equivalent emissions show an increase in scenarios in which natural gas prices remain low and, simultaneously, methane emissions from natural gas production are higher. - Highlights: • MARKAL analysis of energy system GHG emissions reduction scenarios. • High methane leakage can eliminate the benefit that natural gas brings over coal. • A robust GHG reduction strategy takes into account upstream emissions for all fuels.

  10. Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model.

    Science.gov (United States)

    Tang, Jiechen; Zhou, Chao; Yuan, Xinyu; Sriboonchitta, Songsak

    2015-01-01

    This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels.

  11. Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model

    Directory of Open Access Journals (Sweden)

    Jiechen Tang

    2015-01-01

    Full Text Available This paper concentrates on estimating the risk of Title Transfer Facility (TTF Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR and conditional value at risk (CVaR. Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels.

  12. Natural gas benefits

    International Nuclear Information System (INIS)

    1999-01-01

    The General Auditor in the Netherlands studied the natural gas policy in the Netherlands, as has been executed in the past decades, in the period 1997-1999. The purpose of the study is to inform the Dutch parliament on the planning and the backgrounds of the natural gas policy and on the policy risks with respect to the benefits for the Dutch State, taking into account the developments in the policy environment. The final conclusion is that the proposed liberalization of the national natural gas market will result in a considerable deprivation of income for the State in case the benefit policy is not adjusted. This report includes a reaction of the Dutch Minister of Economic Affairs and an afterword of the General Auditor. In the appendix an outline is given of the natural gas policy

  13. Natural disasters and the gas pipeline system.

    Science.gov (United States)

    1996-11-01

    Episodic descriptions are provided of the effects of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the Cit of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas' pipeline...

  14. Regulatory reform for natural gas pipelines: The effect on pipeline and distribution company share prices

    Science.gov (United States)

    Jurman, Elisabeth Antonie

    1997-08-01

    The natural gas shortages in the 1970s focused considerable attention on the federal government's role in altering energy consumption. For the natural gas industry these shortages eventually led to the passage of the Natural Gas Policy Act (NGPA) in 1978 as part of the National Energy Plan. A series of events in the decade of the 1980s has brought about the restructuring of interstate natural gas pipelines which have been transformed by regulators and the courts from monopolies into competitive entities. This transformation also changed their relationship with their downstream customers, the LDCs, who no longer had to deal with pipelines as the only merchants of gas. Regulatory reform made it possible for LDCs to buy directly from producers using the pipelines only for delivery of their purchases. This study tests for the existence of monopoly rents by analyzing the daily returns of natural gas pipeline and utility industry stock price data from 1982 to 1990, a period of regulatory reform for the natural gas industry. The study's main objective is to investigate the degree of empirical support for claims that regulatory reforms increase profits in the affected industry, as the normative theory of regulation expects, or decrease profits, as advocates of the positive theory of regulation believe. I also test Norton's theory of risk which predicts that systematic risk will increase for firms undergoing deregulation. Based on a sample of twelve natural gas pipelines, and 25 utilities an event study concept was employed to measure the impact of regulatory event announcements on daily natural gas pipeline or utility industry stock price data using a market model regression equation. The results of this study provide some evidence that regulatory reforms did not increase the profits of pipeline firms, confirming the expectations of those who claim that excess profits result from regulation and will disappear, once that protection is removed and the firms are operating in

  15. Development of Slovenian natural gas distribution for future integration and competition; Developpement du reseau de distribution du gaz Slovene en vue de l'integration et de la concurrence futures

    Energy Technology Data Exchange (ETDEWEB)

    Cimerman, F.; Polpis-Perpar, B. [Javno podjetje Energetika Ljubljana (Slovenia)

    2000-07-01

    The European gas industry is currently facing increased competition in the end consumer market. Therefore, many European countries have begun to transform their gas industries to assure a better position in the competitive environment. The impact of these developments will probably go beyond the national gas market. Harmonization and cost reduction will clearly become even more important determinants than they have been in the past for whole national gas supply chain. New developments in the European gas market, an awareness of our position on the Slovenian natural gas market and our plan to join the European Community have forced us to adopt European regulations and introduce cost reductions in several natural gas activities. Our main goal is to be prepared with regard to regulation and to employ cost management to reduce costs in order to offer a better natural gas price for our end consumers. Our paper is separated in two parts. The first part introduces the current situation with regard to the harmonization of our regulations with European directives. The second part presents our preparation for changes in the gas market in terms of cost reduction. In this paper we will try to present the initial steps which the largest Slovenian natural gas distribution company is taking to deal with future incorporation and competition. (authors)

  16. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  17. Resilience of natural gas networks during conflicts, crises and disruptions.

    Directory of Open Access Journals (Sweden)

    Rui Carvalho

    Full Text Available Human conflict, geopolitical crises, terrorist attacks, and natural disasters can turn large parts of energy distribution networks offline. Europe's current gas supply network is largely dependent on deliveries from Russia and North Africa, creating vulnerabilities to social and political instabilities. During crises, less delivery may mean greater congestion, as the pipeline network is used in ways it has not been designed for. Given the importance of the security of natural gas supply, we develop a model to handle network congestion on various geographical scales. We offer a resilient response strategy to energy shortages and quantify its effectiveness for a variety of relevant scenarios. In essence, Europe's gas supply can be made robust even to major supply disruptions, if a fair distribution strategy is applied.

  18. Preliminary report on the economics of gas production from natural gas hydrates

    International Nuclear Information System (INIS)

    Walsh, M.; Wilson, S.; Patil, S.; Moridis, G.; Boswell, R.; Koh, C.; Sloan, D.

    2008-01-01

    Gas hydrates are solid crystalline compounds in which gas molecules reside inside cages that are formed by hydrogen-bonded water molecules in a crystal lattice. At particularly low temperatures and high pressures, a guest molecule will combine with water to form gas hydrates. Gas hydrates are found in two different settings in which the temperature and pressure conditions are suitable for their existence, notably in Arctic permafrost regions and below the seafloor. Because of the size of this possible future resource, if any of the gas in hydrates can be proven to be economically recoverable, then production from gas hydrates could become an important portion of the world's energy portfolio as demand for natural gas increases along with the technology to compress and distribute natural gas to distant markets. This paper presented a compilation of economic research that was conducted on the resource potential of gas hydrates. The paper reported a preliminary estimate of the price of natural gas that may lead to economically-viable production from North American Arctic region hydrates. The paper also discussed the implications of a recent study on the production of class 3 marine hydrate deposits from the Gulf of Mexico. The state of the art technologies and methods in hydrate reservoir modeling and hydrate reservoir production and petrophysical testing were also discussed. It was concluded that the somewhat optimistic results presented in this report should be interpreted with caution, however, the economically-viable gas production from hydrates was not an unreasonable scenario. 23 refs., 2 tabs., 10 figs

  19. Evaluation of system codes for analyzing naturally circulating gas loop

    International Nuclear Information System (INIS)

    Lee, Jeong Ik; No, Hee Cheon; Hejzlar, Pavel

    2009-01-01

    Steady-state natural circulation data obtained in a 7 m-tall experimental loop with carbon dioxide and nitrogen are presented in this paper. The loop was originally designed to encompass operating range of a prototype gas-cooled fast reactor passive decay heat removal system, but the results and conclusions are applicable to any natural circulation loop operating in regimes having buoyancy and acceleration parameters within the ranges validated in this loop. Natural circulation steady-state data are compared to numerical predictions by two system analysis codes: GAMMA and RELAP5-3D. GAMMA is a computational tool for predicting various transients which can potentially occur in a gas-cooled reactor. The code has a capability of analyzing multi-dimensional multi-component mixtures and includes models for friction, heat transfer, chemical reaction, and multi-component molecular diffusion. Natural circulation data with two gases show that the loop operates in the deteriorated turbulent heat transfer (DTHT) regime which exhibits substantially reduced heat transfer coefficients compared to the forced turbulent flow. The GAMMA code with an original heat transfer package predicted conservative results in terms of peak wall temperature. However, the estimated peak location did not successfully match the data. Even though GAMMA's original heat transfer package included mixed-convection regime, which is a part of the DTHT regime, the results showed that the original heat transfer package could not reproduce the data with sufficient accuracy. After implementing a recently developed correlation and corresponding heat transfer regime map into GAMMA to cover the whole range of the DTHT regime, we obtained better agreement with the data. RELAP5-3D results are discussed in parallel.

  20. Green gas in the natural gas network

    International Nuclear Information System (INIS)

    Bruinsma, B.

    2007-09-01

    The aim of this study is to map the technical, economic and organizational options and limitations of feeding biogas back into the natural gas grid by means of regional co-digestion. Emphasis is put on feeding back into the natural gas grid, analogous to a comparable situation in a number of landfill gas projects. This report first provides insight into the energetic potential of co-digestion. Next several landfill gas projects are examined that feed back into the natural gas grid. After that the political and policy-related issues and preconditions for feeding back biogas from co-digestion are discussed, including the technical and economic aspects. Finally, a picture is painted of the future potential of green gas. [mk] [nl

  1. More natural gas

    International Nuclear Information System (INIS)

    Leprince, P.; Valais, M.

    1993-01-01

    This paper reports that large resources and growing markets are the salient prospects of natural gas for the coming decades. The greater impact of natural gas on the worldwide energy market can become a reality if several scientific disciplines can be mobilized in order to succeed in cutting production costs. Modeling, mechanics of complex fluids, and physical chemistry of interfaces are basic disciplines for understanding and mastering the gas processing technologies

  2. A natural-gas fuel processor for a residential fuel cell system

    Science.gov (United States)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  3. Statistics 2007 of the natural gas industry in France

    International Nuclear Information System (INIS)

    2008-01-01

    This document provides statistical data and an economic analysis of the natural gas industry activity in 2007. It is presented around six main poles: the production, the transport, the methane terminals, the storage, the distribution and the commercialization. The main events of the year 2007 are the importance of Norway in the gas supplying, the decrease of the gas sales and the market opening. (A.L.B.)

  4. Supply chain management and economic valuation of real options in the natural gas and liquefied natural gas industry

    Science.gov (United States)

    Wang, Mulan Xiaofeng

    My dissertation concentrates on several aspects of supply chain management and economic valuation of real options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportations, ocean LNG shipping logistics, and downstream storage. Chapter 1 briefly introduces the natural gas and LNG industries, and the topics studied in this thesis. Chapter 2 studies how to value U.S. natural gas pipeline network transport contracts as real options. It is common for natural gas shippers to value and manage contracts by simple adaptations of financial spread option formulas that do not fully account for the implications of the capacity limits and the network structure that distinguish these contracts. In contrast, we show that these operational features can be fully captured and integrated with financial considerations in a fairly easy and managerially significant manner by a model that combines linear programming and simulation. We derive pathwise estimators for the so called deltas and structurally characterize them. We interpret them in a novel fashion as discounted expectations, under a specific weighing distribution, of the amounts of natural gas to be procured/marketed when optimally using pipeline capacity. Based on the actual prices of traded natural gas futures and basis swaps, we show that an enhanced version of the common approach employed in practice can significantly underestimate the true value of natural gas pipeline network capacity. Our model also exhibits promising financial (delta) hedging performance. Thus, this model emerges as an easy to use and useful tool that natural gas shippers can employ to support their valuation and delta hedging decisions concerning natural gas pipeline network transport capacity contracts. Moreover, the insights that follow from our data analysis have broader significance and implications in terms of the management of real options beyond our specific application. Motivated by current developments

  5. Market prospective of natural gas 2010-2025; Prospectiva del mercado de gas natural 2010-2025

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Bautista, Alejandro; Doniz Gonzalez, Virginia; Navarrete Barbosa, Juan Ignacio [Secretaria de Energia, Mexico, D.F. (Mexico)

    2010-07-01

    The Ministry of Energy, in compliance to Article 109 of the Natural Gas Regulations, publishes the Prospective natural gas market 2010-2025, which contains the most current information about the historical evolution and growth prospects of the domestic market country's natural gas and its role in the international context. This foresight is attached to the lines of action established in the National Energy Strategy, ratified by Congress in April 2010 in regard to strengthening the transportation infrastructure of natural gas, in order to ensure the supply of this fuel, therefore remains congruence with the instruments of power sector planning. The first one concerns the international panorama of natural gas in the different producing and consuming regions around the world. Chapter two provides a current perspective of those actions in the sector within the regulatory framework for natural gas in Mexico. The third chapter details the issues that occurred in the natural gas market during the period 1999-2009 and the fourth chapter discusses the expected evolution of demand and domestic supply of natural gas by 2025. [Spanish] La Secretaria de Energia, en el cumplimiento al Articulo 109 del Reglamento de Gas Natural, publica la Prospectiva del mercado de gas natural 2010-2025, la cual contiene la informacion mas actualizada acerca de la evolucion historica y las expectativas de crecimiento del mercado interno de gas natural del pais y su papel en el contexto internacional. Esta Prospectiva se apega a las lineas de accion establecidas en la Estrategia Nacional de Energia, ratificada por el Congreso en abril de 2010, en lo relativo a fortalecer la infraestructura de transporte de gas natural, con el fin de asegurar el suministro de este combustible, por lo cual se mantiene congruencia con los instrumentos de planeacion del sector energetico. La Prospectiva esta integrada por cuatro capitulos. El primero se refiere al panorama internacional del gas natural en las

  6. Localization of fugitive methane emission from natural gas distribution network of Titas Gas

    Directory of Open Access Journals (Sweden)

    Mandal Pradip C.

    2017-03-01

    Full Text Available The aim of this paper is to localize the fugitive leaks from the above ground facilities of the existing system of Titas Gas (TG after developing mathematical model for fugitive emission. Soap screening techniques and Gasurveyor 500 series instrument were used in this study for detecting potential leaks. Leaked gas was quantified using either Hi-Flow gas sampler or bagging measurements system. The results show that the respective potential gas leaking point of City Gate Station (CGS, commercial Regulating and Metering Station (RMS, industrial RMS, residential RMS and Town Bordering Station (TBS/ District Regulating Station (DRS are scrubber dump valve (average leak rate 217.00 L/min, insulating point (average leak rate 4.04 L/min, tube fitting connector (average leak rate 8.00 L/min, connector (average leak rate 1.55 L/min and pressure relief valve (average leak rate 437.92 L/min. Fugitive methane emission can be reduced by stopping leaks of fittings or components having high KLeak value.

  7. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Science.gov (United States)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  8. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities

  9. Poultry farming buildings. Natural gas heating. Guidebook of installation rules; Batiments d`elevage avicole. Chauffage au gaz. Guide des regles d`installation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The technical and economical performances of a poultry farm are greatly influenced by the mastery of ambient temperature during the first days of husbandry. The natural gas space heating installation must answer these requirements and also respect all safety rules concerning the personnel and the animals. In order to answer the questions of poultry farming professionals, the technical association of the natural gas industry (ATG) in France and the Groupama insurance company have redefined the new version of this brochure which integrates the recent technological advances and defines the minimum quality and safety rules required to achieve a natural gas heating installation. The different topics presented are: the gas supply (aerial fixed reservoirs), the general distribution panel (location, command systems, regulation systems for LPG installations, electrical equipments), the distribution pipes (general supply, indoor pipes, flexible pipes, pipe fittings), the heating systems (power, choice, power supply, fastening, air renewal), the check and sign and the start-up of the installation, the periodical control and maintenance operations. (J.S.)

  10. A program to develop the domestic natural gas industry in Indonesia: Case history of two World Bank projects

    International Nuclear Information System (INIS)

    Klass, D.L.; Khwaja, S.

    1991-01-01

    Indonesia depends heavily on revenues from the export of LNG and oil, the availability of which appears to be decreasing. It is therefore making a strong effort to accelerate development of a domestic natural gas industry. A high priority has been given to the conversion of power plants and city gas systems, including local industries and commercial facilities, from liquid fuels to natural gas. This will release more oil for export, help to meet the objectives of Repelita V, and provide substantial environmental benefits. The World Bank recently provided loans to the Indonesian Government for two projects that are aimed at substituting natural gas for oil and manufactured gas in domestic markets. One project involves expansion of the gas distribution systems of Indonesia's natural gas utility (PGN) in three cities: Jakarta and Bogor in Java, and Medan in Sumatra. The project also includes training programs for PGN staff and an energy pricing policy study to be carried out by Indonesia's Ministry of Mines and Energy. The second project involves expansion of the supply of natural gas for Surabaya and twelve other towns in its vicinity in East Java, and further expansion of Medan's supply system. Technical assistance will be provided to enhance the skills ofPGN and the Ministry of Mines and Energy, and a Gas Technology Unit similar to the Institute of Gas Technology will be established at Indonesia's Research and Development Center for Oil and Gas (LEMIGAS) in Jakarta. 14 refs., 3 figs., 11 tabs

  11. Natural gas supply and demand in Italy

    International Nuclear Information System (INIS)

    Comaschi, C.; Di Giulio, E.; Sormani, E.

    2007-01-01

    This article explores the dynamics between natural gas supply and demand in Italy. In order to supply Italy with increasing volumes of gas, several new pipelines and re gasification plants are expected in the next future, but their implementation is uncertain. Thus, there exist the possibility of natural gas shortage in the future. On the other hand, if all the expected projects will be implemented, situations of oversupply cannot be excluded. A system dynamics model deepens such as issue [it

  12. Metrological and operational performance of measuring systems used in vehicle compressed natural gas filling stations

    Energy Technology Data Exchange (ETDEWEB)

    Velosa, Jhonn F.; Abril, Henry; Garcia, Luis E. [CDT de GAS (Venezuela). Gas Technological Development Center Corporation

    2008-07-01

    Corporation CDT GAS financially supported by the Colombian government through COLCIENCIAS, carried out a study aimed at designing, developing and implementing in Colombia a calibration and metrological verification 'specialized service' for gas meters installed at dispensers of filling stations using compressed natural gas. The results permitted the identification of improving opportunities (in measuring systems, equipment and devices used to deliver natural gas) which are focused on achieving the highest security and reliability of trading processes of CNG for vehicles. In the development of the first stage of the project, metrological type variables were initially considered, but given the importance of the measuring system and its interaction with the various elements involving gas supply to the filling station, the scope of the work done included aspects related to the operational performance, that is, those influencing the security of the users and the metrological performance of the measuring system. The development of the second stage counted on the collaboration of national companies from the sector of CNG for vehicles, which permitted the carrying out of multiple calibrations to the measuring systems installed in the CNG dispensers, thus achieving, in a concrete way, valid and reliable technological information of the implemented procedures. (author)

  13. Deliverability and regional pricing in U.S. natural gas markets

    International Nuclear Information System (INIS)

    Brown, Stephen P.A.; Yuecel, Mine K.

    2008-01-01

    During the 1980s and early 90s, interstate natural gas markets in the United States made a transition away from the regulation that characterized the previous three decades. With abundant supplies and plentiful pipeline capacity, a new order emerged in which freer markets and arbitrage closely linked natural gas price movements throughout the country. After the mid-1990s, however, U.S. natural gas markets tightened and some pipelines were pushed to capacity. We look for the pricing effects of limited arbitrage through causality testing between prices at nodes on the U.S. natural gas transportation system and interchange prices at regional nodes on North American electricity grids. Our tests do reveal limited arbitrage, which is indicative of bottlenecks in the U.S. natural gas pipeline system. (author)

  14. Characterization of industrial waste from a natural gas distribution company and management strategies: a case study of the East Azerbaijan Gas Company (Iran).

    Science.gov (United States)

    Taghipour, Hassan; Aslhashemi, Ahmad; Assadi, Mohammad; Khodaei, Firoz; Mardangahi, Baharak; Mosaferi, Mohammad; Roshani, Babak

    2012-10-01

    Although a fundamental prerequisite for the successful implementation of any waste management plan is the availability of sufficient and accurate data, there are few available studies regarding the characterization and management of gas distribution company waste (GDCW). This study aimed to characterize the industrial waste generated by the East Azerbaijan Gas Distribution Company (EAGDC) and to present environmental management strategies. The EAGDC serves 57 cities and 821 villages with a total population of more than 2.5 million as well as numerous industrial units. The methodology of this study was based on a checklist of data collected from each zone of the company, site visits (observation), and quantity and quality analysis according to the formal data available from different zones. The results indicate that more than 35 different kinds of industrial solid waste are generated in different industrial installations. The most important types of generated waste include empty barrels (including mercaptans, diesel fuel, deionized waters and oil), faulty gas meters and regulators, a variety of industrial oils, sleeves, filter elements and faulty pipes, valves and fittings. The results indicated that, currently, GDCW is generally handled and disposed of with domestic waste, deposited in companies' installation yards and stores or, sometimes, recycled through non-scientific approaches that can create health risks to the public and the environment, even though most of the GDCW was determined to be recyclable or reusable materials. This study concludes that gas distribution companies must pay more attention to source reduction, recycling and reusing of waste to preserve natural resources, landfill space and the environment.

  15. Natural gas utilization study : offshore Newfoundland

    International Nuclear Information System (INIS)

    1998-10-01

    A study was conducted to quantify the natural gas resources of Newfoundland and to identify production and transportation options. The objective was to create a development strategy for natural gas which is growing in global importance as an energy source and as a feedstock for the downstream industry. The growth is driven by general economic expansion and the fact that natural gas is far less polluting than its main fossil fuel alternatives of oil and coal. New use is dominated by the power generation sector. The natural gas industry is also evolving rapidly as new reserves are established and pipelines are being constructed. Proven world reserves of natural gas now stand in excess of 5000 Tcf, 70 per cent of which is in the Russian Federation (CIS) and Middle East regions. Production and consumption, however, is dominated by the industrialized countries of North America and western Europe. This difference between markets and reserves has major implications including the need to develop cost effective long-distance transportation technologies and delivery systems or to relocate downstream industries closer to the reserves. In Newfoundland, the estimated reserves total 61.9 Tcf, including 8.2 Tcf of discovered reserves and 53.7 Tcf of undiscovered reserves. Of the discovered reserves, 4.2 Tcf is on the Labrador Shelf and 4.0 Tcf is in the the Jeanne d'Arc Basin on the Grand Banks. The Hibernia development could play a major role in the development of the natural gas resources of fields within a radius of 50 km around the platform. The general conclusion from the first phase of this study is that Newfoundland's natural gas resources are valuable and potentially capable of supporting significant industrial activities. The undiscovered potential holds significant promise for both the Newfoundland offshore and onshore areas. Phase Two of the study will deal with the development and implementation of a Strategic Plan for Newfoundland's natural gas resources. A series of

  16. Investigations on the gas distribution phenomena inside the containment system of LWRs

    International Nuclear Information System (INIS)

    Manfredini, A.; Oriolo, F.; Villotti, A.

    1994-01-01

    The importance of mixing and distribution phenomena of hydrogen gas in the reactor safety is emphasised in the advanced reactor concepts, that heavily rely upon the passive cooling systems during a typical severe accident sequence. An advanced methodology for evaluating the temporal and spatial distribution of non condensable gases, including the simulation of buoyancy-driven flows and the effects of the various ESFs activation, in a multi-compartment containment system of a LWR is reviewed. The methodology employs an analogy technique with electrical networks to determine the convection flows among the containment compartments and evaluates, inside a single node, the profile of the vertical concentrations of steam and non condensable gases. The application of the proposed models to simulate the gas distribution phenomena occurring in the HDR E11.2, in the FIPLOC-F2 and in the NUPEC M-7-1 tests demonstrates the importance of these models providing information about local details and spatial distribution. The main results from the post-test analysis performed to simulate the thermal-hydraulic responses of the above mentioned experiments are presented and demonstrate the improvements and the reduction of the error band with respect to the experimental data. This methodology allows to perform a realistic prediction of severe accident sequence inside the containment system of the actual and advanced passive generation of LWRs. (author). 14 refs., 11 figs

  17. Natural Gas Multi-Year Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  18. Alternatives for the Santos Basin natural gas insertion in the energetic matrix; Alternativas para a insercao do gas da Bacia de Santos na matriz energetica. Estudo de caso: cidade de Santos

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, Ricardo de Mello [Grupo MKR, Sao Paulo, SP (Brazil). Gerencia de Novos Negocios], e-mail: ricardo@mkr.com.br; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)], e-mail: edsantos@iee.usp.br

    2008-07-01

    The natural gas difficult to penetrate in the residential market and compete with electrical energy is the main objective of this study, which will support that in big cities, where natural gas is already reality or will be the use of natural gas should not be considered competition for other types of energy resources but as a strategically complement of the overall power system. Electricity used as thermal source creates only demand for concessionaires and not consumption, in other words, there is short period of time when demand peaks and the amount of energy consumed by the electric shower is so high that requires a huge infra-structure of generation, transmission and distribution. However, it creates a big idle capacity in periods off-peak. The replacement of electricity to natural gas in water heating is critical factor to make the pipeline network economically feasible and to consolidate the residential market. The use of natural gas only to cooking purposes makes the network very costly and with high idle capacity. This study will discuss how an integrated planning of resources can lead to a better use of energy resources and distribution network of natural gas and electricity. (author)

  19. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  20. Alternative Fuels Data Center: Natural Gas

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on

  1. Ecological impacts of Synthetic Natural Gas from wood (SNG) used in current heating and car systems

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.; Dones, R.

    2007-07-01

    This illustrated poster illustrates how synthetic natural gas (SNG) from wood is a promising option to partially substitute fossil energy carriers. The comprehensive life cycle-based ecological impact of SNG is compared with that of natural gas, fuel oil, petrol/diesel, and wood chips that deliver the same services. The methods used for comparison, including Eco-indicator '99 perspectives, Eco-scarcity '97 (UBP), IPCC (2001), and external costs are discussed. The results indicate best ecological performance of the SNG system if consumption of fossil resources is strongly weighted. The performance of natural gas and wood-based systems are also discussed. The main negative aspects of the SNG system are discussed, as is the better ecological score of wood when highly-efficient particulate matter filters are installed. SNG is quoted as performing better than oil derivatives. External costs for SNG are examined. The authors recommend that SNG should preferably be used in cars, since the reduction of overall ecological impact and external costs when substituting oil-based fuels is higher for cars than for heating systems.

  2. The deregulation of the Canadian natural gas market: a consumer progress report

    International Nuclear Information System (INIS)

    Reid, H.

    1998-01-01

    The report concludes that the Canadian experience with gas deregulation has been a cautious approach to date by regulators and government. From the point of view of the consumer the marketing tactics by some of the new entrant gas resellers in Ontario has caused some consternation and potential problems could arise from further changes in the Ontario natural gas industry such as lack of consumer information and lack of workable competition. The study outlines the evolution of natural gas industry deregulation in Canada, British Columbia and Ontario and how the industrial pressures created by pipeline access and pricing changes were handled by these different jurisdictions. The federally mandated open access regime in the U.S. as well as subsequent state unbundling and aggregation initiatives and specific experiences of California, Ohio and New York are highlighted. There is a case study of the Australian natural gas industry, highlighting the implementation of a Commonwealth framework and the unbundling initiatives in the state of New South Wales. The rest of the report focuses on consumer protection issues surrounding the potential local gas distribution companies' exit from the merchant function and mechanisms for redress suggested by various jurisdictions. Methods for the division of demand side management and the maintenance of system benefits are explored. In light of these risks, predictions of consumer savings are assessed. Section six focuses on the protection of meaningful consumer choice within a more devolved natural gas industry. 43 refs., 2 figs

  3. Modifying the dissolved-in-water type natural gas field simulation model based on the distribution of estimated Young's modulus for the Kujukuri region, Japan

    Directory of Open Access Journals (Sweden)

    T. Nakagawa

    2015-11-01

    Full Text Available A simulation model, which covers the part of Southern-Kanto natural gas field in Chiba prefecture, was developed to perform studies and make predictions of land subsidence. However, because large differences between simulated and measured subsidence occurred in the northern modeled area of the gas field, the model was modified with an estimated Young's modulus distribution. This distribution was estimated by the yield value distribution and the correlation of yield value with Young's modulus. Consequently, the simulated subsidence in the north area was improved to some extent.

  4. Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    2012-11-01

    Full Text Available Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM, tight gas and conventional gas in different structural areas. CBM accumulations are mainly distributed in the marginal area of the Ordos Basin, and are estimated at 3.5 × 1012 m3. Tight gas accumulations exist in the middle part of the Yishan Slope area, previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs. This paper reviews the characteristics of tight gas accumulations: poor physical properties (porosity < 8%, permeability < 0.85 × 10−3 μm2, abnormal pressure and the absence of well-defined gas water contacts. CBM is a self-generation and self-reservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir. Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area. However, the producing area of the two systems may be significantly different.

  5. Natural gas prices

    International Nuclear Information System (INIS)

    Johnson, W.A.

    1990-01-01

    Since the 1970s, many electric utilities and industrial boiler fuel users have invested in dual fuel use capability which has allowed them to choose between natural gas, residual fuel oil, and in some instances, coal as boiler fuels. The immediate reason for this investment was the need for security of supply. Wellhead regulation of natural gas prices had resulted in shortages during the 1970s. Because many industrial users were given lowest priority in pipeline curtailments, these shortages affected most severely boiler fuel consumption of natural gas. In addition, foreign supply disruptions during the 1970s called into question the ready availability of oil. Many boiler fuel users of oil responded by increasing their ability to diversify to other sources of energy. Even though widespread investment in dual fuel use capability by boiler fuel users was initially motivated by a need for security of supply, perhaps the most important consequence of this investment was greater substitutability between natural gas and resid and a more competitive boiler fuel market. By the early 1980s, most boiler fuel users were able to switch from one fuel to another and often did for savings measured in pennies per MMBtu. Boiler fuel consumption became the marginal use of both natural gas and resid, with coal a looming threat on the horizon to both fuels

  6. Experimental energetic analysis of gas natural-powered fuel cell cogeneration plant; Analise energetica experimental de uma planta de co-geracao com celulas a combustivel e gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose G.M.; Lopes, Francisco C.; Silva Junior, Fernando R.; Soares, Guilherme F.W.; Serra, Eduardo T. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Power systems based on fuel cells have been considered for residential and commercial applications in energy Distributed Generation (DG) market as these systems can minimize their acquisition, installation and operation high costs. In this work we present an experimental analysis of a power generation system formed by a 5 kW proton exchange membrane fuel cell unit and a natural gas reformer (fuel processor) for hydrogen production, of the CEPEL's Fuel Cell Laboratory. It was determined the electrical performance of the cogeneration system in function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic reforming provided the system operation in excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economy of the cogeneration power plant. The maximum electrical efficiency achieved was around 38% and in all power range unit operated with average potential per single fuel cell higher than 0.60 V. (author)

  7. Development of Innovating Materials for Distributing Mixtures of Hydrogen and Natural Gas. Study of the Barrier Properties and Durability of Polymer Pipes

    Directory of Open Access Journals (Sweden)

    Klopffer Marie-Hélène

    2015-02-01

    Full Text Available With the growing place taken by hydrogen, a question still remains about its delivery and transport from the production site to the end user by employing the existing extensive natural gas pipelines. Indeed, the key challenge is the significant H2 permeation through polymer infrastructures (PolyEthylene (PE pipes, components such as connecting parts. This high flow rate of H2 through PE has to be taken into account for safety and economic requirements. A 3-year project was launched, the aim of which was to develop and assess material solutions to cope with present problems for hydrogen gas distribution and to sustain higher pressure compared to classical high density polyethylene pipe. This project investigated pure hydrogen gas and mixtures with natural gas (20% of CH4 and 80% of H2 in pipelines with the aim to select engineering polymers which are more innovative than polyethylene and show outstanding properties, in terms of permeation, basic mechanical tests but also more specific characterizations such as long term ageing and behaviour. The adequate benches, equipments and scientific approach for materials testing had been developed and validated. In this context, the paper will focus on the evaluation of the barrier properties of 3 polymers (PE, PA11 and PAHM. Experiments were performed for pure H2 and CH4 and also in the presence of mixtures of hydrogen and natural gas in order to study the possible mixing effects of gases. It will report some round-robin tests that have been carried out. Secondly, by comparing data obtained on film, polymer membrane and on pipe section, the influence of the polymer processing will be studied. Innovative multilayers systems will be proposed and compared on the basis of the results obtained on monolayer systems. Finally, the evolution of the transport properties of the studied polymers with an ageing under representative service conditions will be discussed.

  8. Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system

    Science.gov (United States)

    Gunes, Ersin Fatih

    Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.

  9. Techno-economic process design of a commercial-scale amine-based CO_2 capture system for natural gas combined cycle power plant with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Ali, Usman; Agbonghae, Elvis O.; Hughes, Kevin J.; Ingham, Derek B.; Ma, Lin; Pourkashanian, Mohamed

    2016-01-01

    Highlights: • EGR is a way to enhance the CO_2 content with reduction in design variables and cost. • Both process and economic analyses are essential to reach the optimum design variables. • Commercial-scale NGCC with and without EGR is presented. • Process design of the amine-based CO_2 capture plant is evaluated for with and without EGR. - Abstract: Post-combustion CO_2 capture systems are gaining more importance as a means of reducing escalating greenhouse gas emissions. Moreover, for natural gas-fired power generation systems, exhaust gas recirculation is a method of enhancing the CO_2 concentration in the lean flue gas. The present study reports the design and scale-up of four different cases of an amine-based CO_2 capture system at 90% capture rate with 30 wt.% aqueous solution of MEA. The design results are reported for a natural gas-fired combined cycle system with a gross power output of 650 MW_e without EGR and with EGR at 20%, 35% and 50% EGR percentage. A combined process and economic analysis is implemented to identify the optimum designs for the different amine-based CO_2 capture plants. For an amine-based CO_2 capture plant with a natural gas-fired combined cycle without EGR, an optimum liquid to gas ratio of 0.96 is estimated. Incorporating EGR at 20%, 35% and 50%, results in optimum liquid to gas ratios of 1.22, 1.46 and 1.90, respectively. These results suggest that a natural gas-fired power plant with exhaust gas recirculation will result in lower penalties in terms of the energy consumption and costs incurred on the amine-based CO_2 capture plant.

  10. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    Energy Technology Data Exchange (ETDEWEB)

    Pucker, J.; Jungmeier, G. [JOANNEUM RESEARCH Forschungsgesellschaft mbH, RESOURCES - Institute for Water, Energy and Sustainability, Steyrergasse 17, 8010 Graz (Austria); Zwart, R. [Energy Research Centre of The Netherlands (ECN), Westerduinweg 3, 1755 LE Petten (Netherlands)

    2012-03-15

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO{sub 2}-eq.) - carbon dioxide, methane and nitrous oxide - and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O{sub 2}-blown entrained flow, O{sub 2}-blown circulating fluidised bed and air-steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air-steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO{sub 2}-eq. 32 kg MWh{sup -1} of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O{sub 2}-blown entrained flow and O{sub 2}-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO{sub 2}-eq. 41 to 75 kg MWh{sup -1} of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57-75 kg MWh{sup -1} of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59-2.13 MWh MWh{sup -1} of heat output) than for the reference systems (in 1.37-1.51 MWh MWh{sup -1} of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by

  11. Natural gas 1995: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  12. The perspectives of development of natural gas for vehicles

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This short paper analyses the actions carried out in the world, and in particular in France, to develop and promote the use of natural gas for vehicles (NGV). In France, a protocol of agreement was signed in June 1994 between the French car manufacturers, Gaz de France and the French Association of Natural Gas for Vehicles (AFGNV) in order to develop new kinds of gas fueled vehicles, more optimized engines, to increase the number of gas distribution stations, to ratify the new models of vehicles and the specific parts for these vehicles (composite materials tanks), to carry out R and D work on gas compressors, and to develop public and private fleets of urban buses and public service vehicles. The forthcoming application of the 'Clean Air Law' will support these actions. Significant and similar developments take place also in more than 30 other countries under the same environmental motivation and ambitious programs are planned in the USA, Japan and Argentina for the year 2000. The R and D effort now focusses on the use of LNG instead of compressed natural gas. (J.S.)

  13. Report for 2008 on electricity and natural-gas network operators: obedience to compliance programmes and independence. Report 2008

    International Nuclear Information System (INIS)

    2008-12-01

    In France, system operators belong to groups that also conduct business in the energy sector, in fields governed by competition rules. They could therefore be tempted to use their privileged position to their group's benefit, which would disadvantage end consumers. Non-discriminatory access to electricity and gas transmission and distribution networks is at the core of the market opening to competition approach implemented by the European Union since the end of the 1990's. EU and national enactments in force highlight two tools to ensure nondiscrimination: compliance programmes and independence of system operators with regard to their parent companies. Firstly, compliance programs contain measures taken to ensure that discrimination is completely excluded and that their application is subject to appropriate monitoring. Secondly, system operator independence plays a part in preventing discrimination against competitors with other business activities (generation, supply, etc.) within the same group. In application of these enactments, every electricity or natural gas transmission or distribution system operator serving more than 100,000 customers provided CRE, the Energy Regulatory Commission, with their annual reports on the application of their compliance programs. This document is CRE's 2008 report about compliance programmes and independence of electricity and natural gas system operators. Contents: 1 - Obedience to compliance programmes: Assessment compared with 2007, Demands from CRE; 2 - The independence of system operators: Transmission system operators, Distribution system operators, Comments common to both transmission and distribution system operators

  14. 2003 statistics of the natural gas industry in France; Statistiques 2003 de l'industrie gaziere en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-15

    This document synthesizes the main annual results for the French natural gas industry in 2003: 1 - introduction: consumption and supplies; 2 - methodology: production, transport, storage, distribution, definition of gases, information sources, reference documents, energy correspondences; 3 - Main data summarized in maps, graphics and tables: transport networks, storage, compression and production facilities; resources and employment; employment per sector of use; national production and imports; pipelines and distribution systems; personnel of the gas industry; sectoral distribution of gas supply networks; gas cogeneration: consumption, plants; monthly variation of imports and stocks; monthly variation of consumptions and stocks; regional supplies; regional and sectoral supplies; regional use of the national production; main 2003 status of the gas market; 2003 comparison between the inquiry and the provisional status; 2003 energy status. (J.S.)

  15. A program to develop the domestic natural gas industry in Indonesia: Case history of two World Bank projects

    International Nuclear Information System (INIS)

    Klass, D.L.; Khwaja, S.

    1992-01-01

    Indonesia depends heavily on revenues from the export of LNG and oil, the availability of which appears to be decreasing. It is therefore making a strong effort to accelerate development of a domestic natural gas industry. A high priority has been given to the conversion of power plants and city gas systems, including local industries and commercial facilities, from liquid fuels to natural gas. This will release more oil for export, help to meet the objectives of Repelita V, and provide substantial environmental benefits. The World Bank recently provided loans to the Indonesian Government for two projects that are aimed at substituting natural gas for oil and manufactured gas in domestic markets. One project involves expansion of the gas distribution systems of Indonesia's natural gas utility (PGN) in three cities: Jakarta and Bogor in Java, and Medan in Sumatra. Approximately 350 new industrial, 800 new commercial, and 12,700 new residential natural gas customers are expected from this project. Incremental gas sales are projected to be about 48.1 million CF/d when the project is completed in 1992. The project also includes training programs for PGN staff and an energy pricing policy study to be carried out by Indonesia's Ministry of Mines and Energy. The second project involves expansion of the supply of natural gas for Surabaya and twelve other towns in its vicinity in East Java, and further expansion of Medan's supply system. The gas for Surabaya will be used for about 400 industrial and 150 commercial customers, and 3,600 households. The additional gas supply for Medan will be used for two power plants operated by the state electric utility, PLN. Incremental natural gas sales from this project are projected to be 68 million CF/d when it is

  16. 77 FR 19277 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-03-30

    ... and Export Natural Gas and Liquefied Natural Gas During February 2012 FE Docket Nos. FREEPORT LNG...-LNG QUICKSILVER RESOURCES INC 12-12-NG UNITED ENERGY TRADING CANADA, ULC 12-13-NG ENCANA NATURAL GAS... authority to import and export natural gas and liquefied natural gas. These Orders are summarized in the...

  17. Vehicle-based Methane Mapping Helps Find Natural Gas Leaks and Prioritize Leak Repairs

    Science.gov (United States)

    von Fischer, J. C.; Weller, Z.; Roscioli, J. R.; Lamb, B. K.; Ferrara, T.

    2017-12-01

    Recently, mobile methane sensing platforms have been developed to detect and locate natural gas (NG) leaks in urban distribution systems and to estimate their size. Although this technology has already been used in targeted deployment for prioritization of NG pipeline infrastructure repair and replacement, one open question regarding this technology is how effective the resulting data are for prioritizing infrastructure repair and replacement. To answer this question we explore the accuracy and precision of the natural gas leak location and emission estimates provided by methane sensors placed on Google Street View (GSV) vehicles. We find that the vast majority (75%) of methane emitting sources detected by these mobile platforms are NG leaks and that the location estimates are effective at identifying the general location of leaks. We also show that the emission rate estimates from mobile detection platforms are able to effectively rank NG leaks for prioritizing leak repair. Our findings establish that mobile sensing platforms are an efficient and effective tool for improving the safety and reducing the environmental impacts of low-pressure NG distribution systems by reducing atmospheric methane emissions.

  18. Government policy and access to natural gas service in Canada

    International Nuclear Information System (INIS)

    Plourde, A.; Ryan, D.L.

    1995-01-01

    As part of the Canadian energy policy between the mid-1970's to the mid-1980's, consumers were encouraged to use fuels alternative to oil. The first set of policy issues involved measures to provide consumers with incentives to switch to non-oil-burning equipment, whereas the second set of. policy papers emphasized the expansion of the natural gas distribution system. More than $1 billion have been spent on the gas pipeline expansion project. Consequences of program expenditures in each province were examined. With the exception of Manitoba, it was found that annual net pipeline additions were higher during the program period, indicating that the program policies induced these activities to occur sooner than if the policies were not in place. Kilometres of gas pipeline per individual constructed was highest in Quebec, where construction proceeded mainly between the more densely populated centres. In contrast, in Saskatchewan and Alberta, the program encouraged natural gas pipeline construction in rural areas with lower populations. Without the program, these areas may not have had access to natural gas for a very long time. It was concluded that, in this, and some other instances, public investment had the effect of accelerating developments, or encouraging the completion of projects that otherwise would not have been undertaken. It was suggested that in the future decision-makers consider the costs of changes in activity patterns prior to designing such programs. 2 figs., 1 table

  19. Market evaluation and investment planning in natural gas industry in Brazil: development of the net distribution pipeline; Avaliacao de mercado e planejamento de investimentos na industria de gas natural no Brasil: perspectivas de crescimento da malha de gasodutos de distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Pedro L.; Pamplona, Edson O. [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2008-07-01

    This paper proposes to develop a real options model to decision-making investments in flexible technologies. As a result, finding a closed-form solution, derived from the partial differential equation of the value of flexibility provided by alternative fuels. However, you can present and analysis the results of a practical application using the method to solve real options problems known as binomial model. Initially presents a brief explanation on the method of discounted cash flow, its failures and changes to the real options analysis. In the sequence chart an overview of the natural gas industry on Brazil, emphasizing the need for consistent investments evaluations in the sector. The next section shows the proposed development of mathematical model for assessing the flexibility to choose, obtained by the exchange of fuel for transport of gas pipeline distribution of natural gas. The model takes as the case scenario where the flexible pipeline can carry both natural gas and hydrogen, and the evaluation of the option of exchanging input gives more value to the investment opportunity, and consider the optimum conditions where the option to be exercised. Keywords: Decision Making, Real Options; Natural Gas, Flexible Technology. (author)

  20. Natural gas development and integration for Asian markets

    International Nuclear Information System (INIS)

    Hovdestad, W. R.; Belgrave, J. D. M.

    1995-01-01

    Development schedule, and natural gas resources available to Southeast Asian countries were discussed in view of the area's rapidly growing market for natural gas. As evidence, the increased regional trade and cooperation are evident in the form of organizations like the Association of South East Asian Nations (ASEAN) and Asia Pacific Economic Cooperation (APEC) Forum were cited. Liquid natural gas pipeline grids were about 1/3 complete at the time of writing. Further development and completion of this system was expected to occur over the next 3 decades. Integration of new and existing facilities were seen to be inevitable future developments. The potential for international movement of natural gas from producing countries to consuming countries was assessed and was expected to remain favourable in the long term

  1. The PSO support scheme for natural gas - subsidy to industry or environmental policy

    International Nuclear Information System (INIS)

    Eldegard, Tom

    2006-01-01

    Some aspects of the PSO scheme for natural gas are examined critically. Two central arguments used for justifying the PSO subsidy scheme of natural gas and its distribution are reviewed; these include the 'smallholder argument' and the 'environmental argument'. The 'smallholder argument' claims that since Norway has the natural gas resources, it should also make use of the natural gas in the country, and not simply send the raw material to other countries. The 'environmental argument' states that natural gas compared to other fossil fuels such as coal and fuel oil, is a far cleaner alternative, thus an environmental-friendly alternative entitled to financial support. The arguments are critically examined by the author (ml)

  2. Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Mao, Tianzhi; Sui, Jun; Jin, Hongguang

    2015-01-01

    Co-firing biomass and fossil energy is a cost-effective and reliable way to use renewable energy and offer advantages in flexibility, conversion efficiency and commercial possibility. This study proposes a co-fired CCHP (combined cooling, heating and power) system based on natural gas and biomass gasification gas that contains a down-draft gasifier, ICE (internal combustion engine), absorption chiller and heat exchangers. Thermodynamic models are constructed based on a modifying gasification thermochemical equilibrium model and co-fired ICE model for electricity and heat recovery. The performance analysis for the volumetric mixture ratio of natural gas and product gas indicates that the energy and exergy efficiencies are improved by 9.5% and 13.7%, respectively, for an increasing mixture ratio of 0–1.0. Furthermore, the costs of multi-products, including electricity, chilled water and hot water, based on exergoeconomic analysis are analyzed and discussed based on the influences of the mixture ratio of the two gas fuels, investment cost and biomass cost. - Highlights: • Propose a co-fired CCHP system by natural gas and biomass gasification gas. • Modify biomass gasification and co-fired ICE models. • Present the thermodynamic analysis of the volumetric mixture ratios of two gas fuels. • Energy and exergy efficiencies are improved 9.5% and 13.7%. • Discuss multi-products’ costs influenced by investment and fuel costs.

  3. An integrated transient model for simulating the operation of natural gas transport systems

    NARCIS (Netherlands)

    Pambour, Kwabena Addo; Bolado-Lavin, Ricardo; Dijkema, Gerard P. J.

    This paper presents an integrated transient hydraulic model that describes the dynamic behavior of natural gas transport systems (GTS). The model includes sub models of the most important facilities comprising a GTS, such as pipelines, compressor stations, pressure reduction stations, underground

  4. Natural gas consumption and economic growth: Are we ready to natural gas price liberalization in Iran?

    International Nuclear Information System (INIS)

    Heidari, Hassan; Katircioglu, Salih Turan; Saeidpour, Lesyan

    2013-01-01

    This paper examines the relationship between natural gas consumption and economic growth in Iran within a multivariate production model. We also investigate the effects of natural gas price on its consumption and economic growth using a demand side model. The paper employs bounds test approach to level relationship over the period of 1972–007. We find evidence of bidirectional positive relationship between natural gas consumption and economic growth in short-run and long-run, based on the production model. The findings also suggest that real GDP growth and natural gas have positive and negative impacts on gross fixed capital formation, respectively. Employment, however, was found to have negative but insignificant impact on gross fixed capital formation. Moreover, the estimation results of demand side model suggest that natural gas price has negative and significant impact on natural gas consumption only in the long-run, though there is insignificant impact on economic growth. These results imply that the Iranian government's decision for natural gas price liberalization has the adverse effects on economic growth and policy makers should be cautious in doing this policy. - Highlights: • Iran has been considered as a major natural gas producer in the world. • This paper examines the relationship between gas consumption and growth in Iran. • Positive impact of gas consumption on growth has been obtained. • The paper finds that gas consumption and income reinforce each other in Iran. • Natural gas price has also negative and significant impact on natural gas consumption in Iran

  5. Visibility graph network analysis of natural gas price: The case of North American market

    Science.gov (United States)

    Sun, Mei; Wang, Yaqi; Gao, Cuixia

    2016-11-01

    Fluctuations in prices of natural gas significantly affect global economy. Therefore, the research on the characteristics of natural gas price fluctuations, turning points and its influencing cycle on the subsequent price series is of great significance. Global natural gas trade concentrates on three regional markets: the North American market, the European market and the Asia-Pacific market, with North America having the most developed natural gas financial market. In addition, perfect legal supervision and coordinated regulations make the North American market more open and more competitive. This paper focuses on the North American natural gas market specifically. The Henry Hub natural gas spot price time series is converted to a visibility graph network which provides a new direction for macro analysis of time series, and several indicators are investigated: degree and degree distribution, the average shortest path length and community structure. The internal mechanisms underlying price fluctuations are explored through the indicators. The results show that the natural gas prices visibility graph network (NGP-VGN) is of small-world and scale-free properties simultaneously. After random rearrangement of original price time series, the degree distribution of network becomes exponential distribution, different from the original ones. This means that, the original price time series is of long-range negative correlation fractal characteristic. In addition, nodes with large degree correspond to significant geopolitical or economic events. Communities correspond to time cycles in visibility graph network. The cycles of time series and the impact scope of hubs can be found by community structure partition.

  6. Reference price of natural gas produced in Bacia dos Solimoes; Preco de referencia do gas natural produzido na Bacia do Solimoes

    Energy Technology Data Exchange (ETDEWEB)

    Valim, Leandro S.; Ferreira, Leticia P.; Correia, Irina S.; Guimaraes, Maria Jose de O.C.; Seidl, Peter R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Bispo, Luiz Henrique de Oliveira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Oil and natural gas are exhaustible resources. Thus, exploitation of these energy sources can lead to shortages and even the absence for future generations. In this context, royalties are included as a way to financially compensate future generations through a monthly payment made by the explorer. In Brazil, the control of the royalties and their distribution is charge of the National Agency of Petroleum, Natural Gas and Biofuels (ANP). Its function is to establish reference prices used for the payment of royalties on oil and natural gas. In this study, three methods were used to calculate royalties, using data from Leste do Urucu field, located in Solimoes Basin. The first one is imposed by Resolution ANP No. 40/2009 that uses the calculation of the reference price of natural gas produced in Brazil. The second one is an alternative method of calculating royalties produced by Bispo, 2011, considering the different compositions of the gas produced and injected. And finally, the Resolution ANP RD No. 983/2011 that uses the calculation of the price of gas injected, considering this as the price of gas processed. When performing the calculation of royalties through the proposed methodologies by Bispo, 2011, and the ANP (Resolution No. 40/2009 and RD 983/2011), the results were similar to each other, and the methodology proposed by Resolution No. 40/2009 was the most different from the others. (author)

  7. 77 FR 12274 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-02-29

    ... Authority To Import and Export Natural Gas and Liquefied Natural Gas During January 2012 AGENCY: Office of... LNG, LP 11-98-LNG ENERGY PLUS NATURAL GAS LLC 11-155-NG BROOKFIELD ENERGY MARKETING L.P 12-03-NG WPX... granting authority to import and export natural gas and liquefied natural gas. These Orders are summarized...

  8. Vale do Aco pipeline: pipeline natural gas implementation in ArcelorMittal Monlevade steel work; Gasoduto Vale do Aco: implantacao do gas natural via gasoduto na ArcelorMittal Monlevade

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Eduardo Sergio da Silva; Arantes, Luiz Flavio Mourao; Ribeiro, Vicente Aleixo Pinheiro [ArcelorMittal Monlevade, Joao Monlevade, MG (Brazil)

    2011-12-21

    Since September 2010, ArcelorMittal Monlevade has gained flexibility and an important opportunity to reduce the cost of its energy mix due to the arrival of the Natural Gas (NG) via Steel Valley Pipeline. The proposal of the project included the substitution of the Liquefied Petroleum Gas (LPG), Fuel Oil and Compressed Natural Gas for natural gas via pipeline. To support the investment decision, in addition to domestic economic and technical aspects, the macro economic environment concerning the NG was also taken into account. This paper shows the analysis for adjustment of internal equipment, the structure of the contract, the conceptual project of the gas distribution built inside the main events, the gains achieved, the alternatives for the acquisition of NG and operational flexibility of ArcelorMittal Monlevade in case of interruption of supply of natural gas. (author)

  9. European natural gas

    International Nuclear Information System (INIS)

    Thackeray, Fred

    1999-11-01

    Contains Executive Summary and Chapters on: Main issues; Natural gas consumption and supply: statistics and key features of individual countries; Sectoral natural gas consumption; Indigenous production; Imports; Prices and taxes; The spot market: The interconnector; Forecasts of production and consumption and contracted imports; Progress of markets liberalisation; Effects of environmentalist developments; Transmission networks and storage; Some principal players. (Author)

  10. The use of compressed natural gas as a strategy of development of natural gas industry; Utilizacao do GNC (Gas Natural Comprimido) como estrategia de desenvolvimento da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Jucemara [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Segmento Veicular; Rickmann, Cristiano [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Novos Negocios; Maestri, Juares [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Mercado de Grandes Consumidores

    2008-07-01

    This work emphasizes the Compressed Natural Gas (CNG) as modal of transport, used by the Company of Gas of the State of Rio Grande do Sul - Sulgas, through experience in pioneering project in Brazil: the introduction of the technology of Compressed Natural Gas (CNG) to assist areas where there is not the infrastructure of pipeline for the transport. The article offers a display of the project of expansion of the Natural gas in Rio Grande do Sul, through the supply of CNG to the company Tramontina in Carlos Barbosa's city in the year of 2002. The last aspect focused by this article demonstrates as the use of this transport technology impelled the development of the transport market in the State and it has been used as an important strategy for the development of the market of Natural Gas Vehicle (NGV) in the state. (author)

  11. Buying natural gas in the spot market: risks related to the natural gas industry globalization; Aquisicao de gas natural em bases 'spot': riscos associados a globalizacao da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, Melissa Cristina [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Szklo, Alexandre Salem [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2008-07-01

    The growth of the international natural gas trade during the last decade resulted in the expectation that this product would be traded as a commodity. This expectation created a boom in the investments related to the commercialization of natural gas between borders, especially in the distinct segments of the chain of liquefied natural gas (LNG). Different agents launched themselves into liquefaction and regasification enterprises, and the ordering of ships also showed significant growth. Despite that, the natural gas market still cannot be considered global, and international gas transactions are primarily done within regional markets. This article investigates the challenges posed to the constitution of a global natural gas market. These challenges represent risks to the commercialization of this product in spot bases, for the agents that launch themselves into projects to export or import LNG to be commercialized through short term contracts in the international market for this product. (author)

  12. Economic and financial feasibility analysis of natural gas urban distribution; Analise da viabilidade economica e financeira para o desenvolvimento da rede urbana de distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Guilherme G.; Cunha, Eduardo N.; Teixeira, Clovis C. [Companhia de Gas do Estado do RS (SULGAS), Porto Alegre, RS (Brazil)

    2008-07-01

    SULGAS has developed more judicious systematics investments analysis in the natural gas distribution plants in urban areas . A survey has been made of the variables that influence this type of investment, identifying the most relevant ones. Spread sheet in platform Microsoft Excel and Visual Basic was elaborated that makes possible the deterministic analysis, sensibility, and risk analysis of the projects, through consolidated indicators usable in economic engineering. The great differentiation of this proposal is the possibility/flexibility of the economic impact analysis that each future customer has in the branch where he is linked. The spread sheet presents graphical platforms in which the schematical drawings of the projects are inserted on satellite photos of the region, making possible the projects architectures visualization in parallel with the economic analysis. This graphical platform is tied with the alternatives selected in the economic analysis, being brought up to date the images in accordance with the projects selected in the spread sheet. The risk analysis are carried out through the Monte Carlo simulation, generating investment return probability from each branch, cell, or customer, depending on the criteria defined in the spread sheet. This makes possible the insertion and economic analysis of the factors that can influence the investments in NG distribution system, becoming an important tool in the decision making. (author)

  13. Monitoring of good practices programs and independence for electricity and natural gas system operators in 2015 and 2016. Follow-up report, January 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 10. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the 2015-2016 period. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in 2015-2016 and audits carried out by the CRE services in these companies during the same period

  14. Natural-gas supply-and-demand problems

    International Nuclear Information System (INIS)

    Hatamian, H.

    1998-01-01

    World natural-gas consumption quadrupled in the 30 years from 1966 to 1996, and natural gas now provides 22% of the total world energy demand. The security of natural-gas supply is paramount and rests with the suppliers and the consumers. This paper gives an overview of world natural-gas supply and demand and examines the main supply problems. The most important nonpredictable variables in natural-gas supply are worldwide gas price and political stability, particularly in regions with high reserves. Other important considerations are the cost of development/processing and the transport of natural gas to market, which can be difficult to maintain if pipelines pass through areas of political instability. Another problem is that many countries lack the infrastructure and capital for effective development of their natural-gas industry. Unlike oil, the cost of transportation of natural gas is very high, and, surprisingly, only approximately 16% of the total world production currently is traded internationally

  15. Emerging natural gas markets in the East Asian countries - Challenges for market development and international cooperation

    International Nuclear Information System (INIS)

    Ozaki, Hiroshi

    1997-01-01

    Energy and natural gas demand as well as the natural gas market in East Asia is analyzed. Gas distribution and long distance gas transmission pipelines are considered. International cooperation is outlined for meeting the market challenges in the region. (R.P.)

  16. Oil and natural gas

    International Nuclear Information System (INIS)

    Riddell, C.H.

    1993-01-01

    The natural gas industry and market prospects in Canada are reviewed from a producer's point of view. In the first eight months of 1993, $2.3 billion in new equity was raised for natural gas exploration and production, compared to $900 million in 1991 and $1.2 billion in 1992. The number of wells drilled in the western Canada basin is expected to reach 8,000-9,000 in 1993, up from 5,600 in 1992, and Canadian producers' share of the North American natural gas market will probably reach 20% in 1993, up from 13% in 1986. Potential and proved gas supply in North America is ca 750 trillion ft 3 , of which ca 30% is in Canada. Factors affecting gas producers in Canada are the deregulated nature of the market, low costs for finding gas (finding costs in the western Canada basin are the lowest of any basin in North America), and the coming into balance of gas supply and demand. The former gas surplus has been reduced by expanding markets and by low prices which reduced the incentive to find new reserves. This surplus is largely gone, and prices have started rising although they are still lower than the pre-deregulation prices. Progress is continuing toward an integrated North American gas market in which a number of market hubs allow easy gas trading between producers and consumers. Commodity exchanges for hedging gas prices are beginning operation and electronic trading of gas contracts and pipeline capacity will also become a reality. 4 figs

  17. Evaluation of ecological impacts of synthetic natural gas from wood used in current heating and car systems

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Remo; Dones, Roberto [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2007-06-15

    A promising option to substitute fossil energy carriers by renewables is the production of synthetic natural gas (SNG) from wood, as this results in a flexible energy carrier usable via existing infrastructure in gas boilers or passenger cars. The comprehensive life cycle-based ecological impact of SNG is investigated and compared with standard fuels delivering the same service (natural gas, fuel oil, petrol/diesel, and wood chips). Life cycle impact assessment methodologies and external costs from airborne emissions provide measures of overall damage. The results indicate that the SNG system has the best ecological performance if the consumption of fossil resources is strongly weighted. Otherwise natural gas performs best, as its supply chain is energy-efficient and its use produces relatively low emissions. Wood systems are by far the best in terms of greenhouse gas emissions (GHG), where SNG emits about twice as much as the wood chips system. The main negative aspects of the SNG system are NO{sub x} and particulate emissions and the relatively low total energy conversion efficiency resulting from the additional processing to transform wood to gas. Direct wood combustion has a better ecological score when highly efficient particulate filters are installed. SNG performs better than oil derivatives with all the evaluation methods used. External costs for SNG are the lowest as long as GHG are valued high. SNG should preferably be used in cars, as the reduction of overall ecological impacts and external costs when substituting oil-based fuels is larger for current cars than for heating systems. (author)

  18. “Greenwashing gas: Might a ‘transition fuel’ label legitimize carbon-intensive natural gas development?”

    International Nuclear Information System (INIS)

    Stephenson, Eleanor; Doukas, Alexander; Shaw, Karena

    2012-01-01

    Natural gas is widely considered to be the crucial “bridging fuel” in the transition to the low-carbon energy systems necessary to mitigate climate change. This paper develops a case study of the shale gas industry in British Columbia (BC), Canada to evaluate this assumption. We find that the transition fuel argument for gas development in BC is unsubstantiated by the best available evidence. Emissions factors for shale gas and LNG remain poorly characterized and contested in the academic literature, and context-specific factors have significant impacts on the lifecycle emissions of shale gas but have not been evaluated. Moreover, while the province has attempted to frame natural gas development within its ambitious climate change policy, this framing misrepresents substantive policy on gas production. The “transition fuel” and “climate solution” labels applied to development by the BC provincial government risk legitimizing carbon-intensive gas development. We argue that policy makers in BC and beyond should abandon the “transition fuel” characterization of natural gas. Instead, decision making about natural gas development should proceed through transparent engagement with the best available evidence to ensure that natural gas lives up to its best potential in supporting a transition to a low-carbon energy system. - Highlights: ► Transition fuel discourse may greenwash gas development. ► Gaps in research obscure emissions factors for LNG and shale gas. ► Climate solution label for shale gas and LNG development in BC is unsubstantiated.

  19. Natural gas, the new deal?

    International Nuclear Information System (INIS)

    Encel, Frederic; Boroumand, Raphael H.; Charlez, Philippe; Goutte, Stephane; Lafargue, Francois; Lombardi, Roland; Porcher, Thomas; Rebiere, Noemie; Schalck, Christophe; Sebban, Anne-Sophie; Sylvestre, Stephan

    2016-01-01

    As natural gas is about to become the first energy source in the world, is abundant and easy to transport, this collective publication addresses issues related to shale gas and to natural gas. The first part addresses shale gas. Four articles propose a global overview, comment the situation in the USA which, in eight years of time, reduced their oil dependency by half and became almost self-sufficient as far as gas is concerned, discuss technical and legal issues related to shale gas exploitation, discuss the perspective of evolution of the world gas markets, and notice that shale gas will not be a game changer in Europe. The second part addresses the natural gas. The articles discuss the possible influence of natural gas exploitation by Israel on the Middle-East geopolitical situation, the influence of the emergence of new producers in Africa (Tanzania and Mozambique), the contribution of gas-fuelled power station to the coverage of market risks, and the issue of European energy safety with a focus on the role of Turkey

  20. Cage occupancies of natural gas hydrates encaging methane and ethane

    Energy Technology Data Exchange (ETDEWEB)

    Kida, M.; Hachikubo, A.; Sakagami, H.; Minami, H.; Krylov, A.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Kida, M. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan); Khlystov, O. [Limnological Inst., Irkutsk (Russian Federation). Siberian Branch of the Russian Academy of Sciences; Poort, J. [Ghent Univ., Ghent (Belgium). Renard Centre of Marine Geology; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan)

    2008-07-01

    Natural gas hydrates are crystalline compounds that contain large amounts of natural gas in its structure and are expected to provide natural gas resources in the future. The gas species are trapped in different types of polyhedral cages which consist of hydrogen bonded water molecules. Three main types of crystallographic structures exist, notably structure 1, structure 2 and structure H (sH). The crystallographic structure of natural gas hydrates depends on the encaged gas components. The cage occupancy is the ratio of the number of cages occupied by guest molecules to the number of total cages. It is also important to estimate the amount of natural gas, since it depends on the condition of the hydrate formation such as gas composition. The cages of natural gas hydrates mainly contain methane. However, other heavier hydrocarbons such as ethane (C{sub 2}H{sub 6}), propane (C{sub 3}H{sub 8}), and isobutane (i-C{sub 4}H{sub 1}0) may be encaged together with CH{sub 4}. Little is known about cage occupancies of natural gas hydrates including CH{sub 4} and heavier hydrocarbons. This paper discussed a study that developed cage occupancy estimations of natural gas hydrates encaging heavier hydrocarbons. 13C nuclear magnetic resonance (NMR) measurements were conducted. The assignments of resonance lines were based on 13C chemical shifts obtained by artificial sample measurements. The paper presented the experimental data and discussed the results of the study. The large cages were almost fully occupied with CH{sub 4} and C{sub 2}H{sub 6} molecules, whereas the small cage occupancies of CH{sub 4} were below 0.8. The distribution of CH{sub 4} and C{sub 2}H{sub 6} in each cage were similar to that of synthetic CH{sub 4} + C{sub 2}H{sub 6} hydrate. It was concluded that these results should be useful for optimal estimation of the amount of natural gas in gas hydrates. 18 refs., 1 tab., 3 figs.

  1. SCADA Architecture for Natural Gas plant

    Directory of Open Access Journals (Sweden)

    Turc Traian

    2009-12-01

    Full Text Available The paper describes the Natural Gas Plant SCADA architecture. The main purpose of SCADA system is remote monitoring and controlling of any industrial plant. The SCADA hardware architecture is based on multi-dropping system allowing connecting a large number of different fiels devices. The SCADA Server gathers data from gas plant and stores data to a MtSQL database. The SCADA server is connected to other SCADA client application offers a intuitive and user-friendly HMI. The main benefit of using SCADA is real time displaying of gas plant state. The main contriobution of the authors consists in designing SCADA architecture based on multi-dropping system and Human Machine Interface.

  2. Regulatory applications of the relationships between natural gas usage and weather

    International Nuclear Information System (INIS)

    Gray, J.A.; Patterson, D.L.; Proctor, M.S.; Warren, H.E.

    1997-01-01

    This document provides the basics required for analysis and forecasting of natural gas usage for determining the revenues and revision of rates. The focus is on the Local Distribution Company and its customers. Analysis of gas usage is required in a rate case in order to properly estimate the volumes and revenues that would be recovered from current rate under conditions of normal weather. Normal volumes are also required to evaluate proposed rates. In the context of the Local Distribution Company's procurement of gas supply, forecasting of gas usage is required to determine both the daily usage profile and the peak day requirement

  3. 78 FR 19696 - Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-02

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas and Vacating Prior Authority During December 2012 FE... granting authority to import and export natural gas and liquefied natural gas and vacating prior [[Page...

  4. Techno-economic evaluation of hybrid systems for hydrogen production from biomass and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, N. [Royal Institute of Technology, Stockholm (Sweden). Dept. of Energy Processes

    2001-07-01

    Hydrogen (H{sub 2}) is an alternative energy carrier, which is expected to significantly contribute to globally sustainable energy systems. It is environmentally friendly with high-energy density that makes it an excellent integrating fuel in transportation and power generation systems. This paper presents an assessment of the techno-economic viability of H{sub 2} production technologies based on hybrid systems using gasified biomass and natural gas combined with high temperature electrochemical shift. Assessment of the well-established thermal processes, high-temperature steam electrolysis (HTEL), and the plasma catalytic reforming (PCR) of light hydrocarbons developed at MIT are included for comparison. The results show that the PCR and HTEL processes are as cost-effective as the thermal steam reforming for H{sub 2} production when deployed on a commercial scale. The natural gas steam reforming (NGSR) is still the most favorable choice in energy and financial terms, while gasified biomass (GB) provides the highest production costs due to the intensive capital cost investments. The cost of H{sub 2} storage in the form of compressed gas or liquefied H{sub 2} also contributes significantly to total cost per kg produced H{sub 2}. 9 refs., 7 figs., 2 tabs.

  5. Globalization of the Natural Gas Industry

    International Nuclear Information System (INIS)

    Burns, RJ.

    1996-01-01

    This document deals with the foreseeable evolution of natural gas demand in the next 15 years. Natural gas consumption is growing faster than any other fossil fuel and, according to ENRON, the natural consumption growth will continue. The environmental aspect of natural gas use for power generation is presented, showing that gas use reduces pollution emissions (when compared with coal). On top of that, it appears that the conversion efficiency of gas is much higher than the conversion efficiency of coal steam. Eventually, natural gas resources should meet energy demand for decades. (TEC)

  6. adaptation of natural gas for motor fuels in nigeria transport system

    African Journals Online (AJOL)

    In recent years, as a result of limiting reserve of crude oil and the clamour for the deregulation of the petroleum sector of the nation's economy, there is need to look beyond liquid fuel (gasoline, diesel) as vehicular fuels. The viability of adapting natural gas for motor fuels had been presented. Natural gas as automobile fuel ...

  7. Challenges and opportunities await natural gas industry

    International Nuclear Information System (INIS)

    Mohasseb, S.

    1998-01-01

    During the last two decades, the natural gas industry has gone through drastic changes. On one hand, deregulation and customer choice have been introduced to the industry. On the other hand, technological advances have resulted in substantial growth of available gas resources. In short, deregulation coupled with increased availability of supply has changed the way market participants interact with each other and which avenues they take to become leaders. Many new opportunities for entry into the market have also been created. As a result, the tide of competition has not only turned against the financially strong giants of the past, but it has also turned against new entrants who are fast, flexible and market driven. Natural gas utilities companies have responded by improving their operational efficiencies through process re-engineering, organizational re-alignment, restructuring and strategic alliances or mergers. Deregulation of the electricity industry is expected to increase competitive pressures on the natural gas industry, thus causing even more of a decrease in natural gas prices. In the future, natural gas utilities must be able to improve their effectiveness by accurately forecasting demand and optimizing their own supply and delivery systems in such a way that costs are minimized without compromising the reliability of supply. The new frontier of competitiveness will ensure that structural changes in the industry are characterized by an effective management of the supply-demand relationship and the optimization of risks inherently a part of gas delivery

  8. Natural gas decompression energy recovery: Energy savings potential in Italy

    International Nuclear Information System (INIS)

    Piatti, A.; Piemonte, C.; Rampini, E.; Vatrano, F.; Techint SpA, Milan; ENEA, Rome

    1992-01-01

    This paper surveyed the natural gas distribution systems employed in the Italian civil, industrial and thermoelectric sectors to identify those installations which can make use of gas decompression energy recovery systems (consisting of turbo-expanders or alternative expanders) to economically generate electric power. Estimates were then made of the total amount of potential energy savings. The study considered as eligible for energy savings interventions only those plants with a greater than 5,000 standard cubic meter per hour plant capacity. It was evaluated that, with suitable decompression equipment installed at 50 key installations (33 civil, 15 industrial), about 200 GWh of power could be produced annually, representing potential savings of about 22,000 petroleum equivalent tonnes of energy. A comparative analysis was done on three investment alternatives involving inputs of varying amounts of Government financial assistance

  9. Structure and operation of the natural gas market in France; La structure et le fonctionnement du marche du gaz naturel en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The French natural gas market is organized around six main activities: production, transport, methane terminals, storage, distribution and commercialization. This paper describes the facilities related to each activity: gas fields, pipelines network and distribution systems, terminals capacity and underground storage facilities. The selling activity is opened to competition but the French gas market follows a progressive and controlled opening which will be complete in July 2007. (J.S.)

  10. FSU's natural gas liquids business needs investment

    International Nuclear Information System (INIS)

    Plotnikov, V.S.; Berman, M.; Angerinos, G.F.

    1995-01-01

    Production of natural gas liquids has fallen seriously behind its potential in the former Soviet Union (FSU). Restoration of the gas liquids business thus represents a rich investment opportunity. Capital, however, must come from international sources, which remain uncertain about the FSU's legal, commercial, and political systems. If these hurdles can be overcome, FSU output of liquid petroleum gas alone might double between 1990 and 2010. In the FSU, LPG is produced from associated and nonassociated natural gas, condensate, and refinery streams. It also comes from what is known in the FSU as ShFLU--a mixture of propane, butane, pentane, and hexane produced at gas processing plants in Western Siberia and fractionated elsewhere. The paper reviews FSU production of gas liquids focusing on West Siberia, gives a production outlook, and describes LPG use and business development

  11. Southwest British Columbia natural gas supply and deliverability: Discussion paper

    International Nuclear Information System (INIS)

    1994-02-01

    A review is presented of energy in British Columbia, the role of natural gas, and options available to enhance gas supply security in the province's most densely populated area, the southwest. British Columbia has abundant natural gas supplies, and production exceeds domestic demand. In 1992, natural gas supplied ca 25% of total provincial end-use energy requirements, but this share is expected to rise to 30% by 2015. Although some say that the province's natural gas production and transmission system should serve only domestic needs, this would have significant negative impacts. Domestic gas supply policy allows gas consumers to contract their own supplies, but contract security is required. Provincial guidelines allow demand-side programs to compete with supply sources to ensure that the resource profile is achieved at least cost. In the southwest, natural gas demand is projected to increase from 189 PJ in 1991 to 262 PJ by 2005. Most gas supplied to this region comes from northeast British Columbia through pipelines that are generally fully contracted. Short-term deliverability can be a problem, especially in peak winter demand periods. The gas industry's contingency plans for shortages are outlined and alternatives to enhance deliverability to the southwest are assessed, including storage, expansion of the pipeline system, supply curtailment, and peaking supply contracts. Aspects of provincial natural gas planning are discussed, including security of supply and deliverability, economic and environmental impacts, consumer costs, safety, and the public interest. A least-cost option for enhancing deliverability (underground storage and an additional liquefied natural gas plant) is estimated to cost consumers $3.69/GJ over 20 years. 9 figs., 1 tab

  12. Canadian natural gas winter 2005-06 outlook

    International Nuclear Information System (INIS)

    2005-11-01

    An outline of the Canadian natural gas commodity market was presented along with an outlook for Canadian natural gas supply and prices for the winter heating season of 2005-2006. In Canada, the level of natural gas production is much higher than domestic consumption. In 2004, Canadian natural gas production was 16.9 billion cubic feet per day (Bcf/d), while domestic consumption was much lower at 8.2 Bcf/d. The United States, whose natural gas consumption is higher than production, imported about 16 per cent of its natural gas supply from Canada and 3 per cent from other countries via liquefied natural gas imports. Canadian natural gas exports to the United States in 2004 was 8.7 Bcf/d, representing 51 per cent of Canada's production. In Canada, the most important natural gas commodity markets that determine natural gas commodity prices include the intra-Alberta market and the market at the Dawn, Ontario natural gas hub. A well connected pipeline infrastructure connects the natural gas commodity markets in Canada and the United States, allowing supply and demand fundamentals to be transferred across all markets. As such, the integrated natural gas markets in both countries influence the demand, supply and price of natural gas. Canadian natural gas production doubled from 7 to 16.6 Bcf/d between 1986 and 2001. However, in the past 3 years, production from western Canada has leveled out despite record high drilling activity. This can be attributed to declining conventional reserves and the need to find new natural gas in smaller and lower-quality reservoirs. The combination of steady demand growth with slow supply growth has resulted in high natural gas prices since the beginning of 2004. In particular, hurricane damage in August 2005 disrupted natural gas production in the Gulf of Mexico's offshore producing region, shutting-in nearly 9 Bcf/d at the height of damage. This paper summarized some of the key factors that influence natural gas market and prices, with

  13. The role of natural gas consumption and trade in Tunisia's output

    International Nuclear Information System (INIS)

    Farhani, Sahbi; Shahbaz, Muhammad; Arouri, Mohamed; Teulon, Frédéric

    2014-01-01

    This paper examines the impact of natural gas consumption, real gross fixed capital formation and trade on the real GDP in the case of Tunisia over the period 1980–2010. We use an Autoregressive Distributed Lag (ARDL) bounds testing approach to test for cointegration between the variables. The Toda–Yamamoto approach is then used to test for causality. Our findings indicate the existence of a long-term relationship between the variables. Natural gas consumption, real gross fixed capital formation and trade add in economic growth. Natural gas consumption, real gross fixed capital formation and real trade cause real GDP in Tunisia. These findings open up new insights for policymakers to formulate a comprehensive energy policy to sustain economic growth in the long-term. - Highlights: • We study how gas consumption, fixed capital formation and trade affect GDP in Tunisia. • We use auto-regressive distributed lag bounds testing approach and causality tests. • Gas consumption, real gross fixed capital formation and trade add in economic growth

  14. Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways

    Directory of Open Access Journals (Sweden)

    Azadeh Maroufmashat

    2017-07-01

    Full Text Available Power-to-gas is a promising option for storing interment renewables, nuclear baseload power, and distributed energy and it is a novel concept for the transition to increased renewable content of current fuels with an ultimate goal of transition to a sustainable low-carbon future energy system that interconnects power, transportation sectors and thermal energy demand all together. The aim of this paper is to introduce different Power-to-gas “pathways”, including Power to Hydrogen, Power to Natural Gas End-users, Power to Renewable Content in Petroleum Fuel, Power to Power, Seasonal Energy Storage to Electricity, Power to Zero Emission Transportation, Power to Seasonal Storage for Transportation, Power to Micro grid, Power to Renewable Natural Gas (RNG to Pipeline (“Methanation”, and Power to Renewable Natural Gas (RNG to Seasonal Storage. In order to compare the different pathways, the review of key technologies of Power-to-gas systems are studied and the qualitative efficiency and benefits of each pathway is investigated from the technical points of view. Moreover, different Power-to-gas pathways are discussed as an energy policy option that can be implemented to transition towards a lower carbon economy for Ontario’s energy systems.

  15. A biofuel-based cogeneration plant in a natural gas expansion system: An energetic and economic assessment

    International Nuclear Information System (INIS)

    Badami, Marco; Modica, Stefano; Portoraro, Armando

    2017-01-01

    Highlights: • A Natural Gas Turbo Expander system with a rapeseed oil fueled CHP is studied. • The experimental data of the plant are considered in the analyses. • The energetic index of performance shows the attractiveness of the plant. • Incentives and fuel price volatility effects on economic profitability are analysed. - Abstract: The paper deals with an analysis of the energetic and economic performance of a City Gas Station (CGS) plant, made up of a rapeseed oil cogenerator coupled to a turbo-expansion system for the reduction of natural gas pressure, which is currently in operation in Italy. Although this kind of systems concept is well known, the plant can be considered unusual because the heat needed to pre-heat the gas before its expansion is obtained from a renewable source. The aim of the paper is to analyse the energetic efficiency of the plant and its economic viability, which is affected to a great extent by subsidizing energy policies and by the volatility of vegetable oil prices. All the evaluations have been based on a real set of experimental data.

  16. Natural Gas Regulation

    International Nuclear Information System (INIS)

    1995-01-01

    The regulation of Natural Gas. Natural gas Regulation clarifies and consolidates the legal and institutional framework for development of the industry through six principal elements: 1) Establishment of a vision of the industry. 2) Development of regulatory objectives. 3) Determination of relationships among industry participants. 4) Clear specification of the role of PEMEX in the industry. 5) Definition of the functions of the Regulatory authority. 6) Creation of a transition regime. In parallel with the development of the substantive legal framework, the law of the Comision Reguladora de Energia (CRE) was also enacted by Congress in October 1995 to strength the institutional framework and implement the legal changes. This law defines the CRE as an agency of the Energy Ministry with technical, operational, and budgetary autonomy, and responsibility for implementing natural gas industry regulation. (Author)

  17. The obstacles for the investments in natural gas distribution infrastructure in Brazil; Os obstaculos aos investimentos na rede de distribuicao de gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Edmar Luiz Fagundes de; Bueno, Salua Saud; Selles, Vitor [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Economia

    2004-07-01

    This paper analyses the main obstacles for the expansion of the Brazilian gas distribution pipelines infrastructure. The paper examines the evolution of investments in the gas chain and highlights the existence of an important unbalance between the level of investments in the upstream and transportation segments and the level of investment in the distribution network. It is clear that the level of investments in the distribution segment is not following the pace of expansion of the other segments. Given this conclusion, the paper examines the potential for increasing the level of investment in the distribution segment by augmenting the debt level of distribution companies. By analyzing the main distribution companies' financial statements, the paper shows that they there is room for an expansion in investments through financial leverage. Finally, the paper examines the main financing obstacles that impede the companies to increase their investment level. (author)

  18. Differential accumulation and distribution of natural gas and its main controlling factors in the Sinian Dengying Fm, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shugen Liu

    2015-01-01

    Full Text Available In order to disclose the genetic relationship between the hydrocarbon reservoirs and the transformation mechanism between ancient and modern gas reservoirs in the Sinian Dengying Fm in the Sichuan Basin, by using the drilling data, and geologic, geophysical and geochemical methods together, the differential accumulation and distribution of natural gas and its main controlling factors in this study area were identified following the idea of corroborating macroscopic, mesoscopic and microscopic results each other. The results demonstrate as follows. (1 The crude oil in the paleo-oil reservoirs of the Dengying Fm cracked into gas to form the early overpressure paleo-gas reservoirs 100 Ma. From 100 Ma to 20 Ma, the constant uplifting of the Sichuan Basin coupled with the shift of structural highs and the initial occurrence of Weiyuan anticline caused the adjustment of the early overpressure paleo-gas reservoirs into the late overpressure paleo-gas reservoirs. (2 With the increase of uplifting magnitude since 20 Ma, the formations overlying the Dengying Fm in Weiyuan structure experienced rapid erosion, resulting in decline of the caprock sealing ability and damage to the preservation conditions. Therefore, the natural gas in the Dengying Fm started to leak and dissipate from the eroded window of the Lower Triassic Jialingjiang Fm located on the top of the Weiyuan anticline, which is the beginning of the differential accumulation and dissipation of the natural gas in the Dengying Fm across the Sichuan Basin. During the process of the differential accumulation and dissipation, the gas below the spill point of the structural gas traps in Ziyang, Jinshi and Longnüsi–Moxi–Anpingdian–Gaoshiti areas migrated to the Weiyuan anticline along the unconformity of the Dengying Fm, and dissipated through the eroded window of the Jialingjiang Fm on the top of the Weiyuan anticline, resulting in a transformation of abnormal high pressure of gas reservoir

  19. 77 FR 31838 - Notice of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas...

    Science.gov (United States)

    2012-05-30

    ... Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas During April 2012 AGENCY... International, LLC....... 12-33-NG Phillips 66 Company 12-34-NG Northwest Natural Gas Company 12-41-NG Sequent... authority to import and export natural gas and liquefied natural gas. These Orders are summarized in the...

  20. Natural gas poised to penetrate deeper into electric generation

    International Nuclear Information System (INIS)

    Swanekamp, R.

    1995-01-01

    This article describes how advancements in gas supply, distribution and storage, coupled with new options in combustion equipment, continue to expand the use of natural gas for electric generation. The challenge is to meet the increasing demand while keeping prices competitive with other fuels--and keep a small band of skeptics at bay. To prepare for the projected growth in gas consumption, the natural-gas industry has invented in new infrastructure and technologies. Pipelines have been built; storage facilities have been expanded; and highly precise flow measurement stations have been installed. To mitigate supply and price risk, suppliers are offering short-, mid-, or long-term contracts which include service options and guarantees. In spite of these preparations, not all power producers are comfortable with the potential tidal wave of gas-fired capacity. Reason: It limits the electric-generation resource base to one fuel for future capacity