WorldWideScience

Sample records for natural fracture connectivity

  1. Quantifying Discrete Fracture Network Connectivity in Hydraulic Fracturing Stimulation

    Science.gov (United States)

    Urbancic, T.; Ardakani, E. P.; Baig, A.

    2017-12-01

    Hydraulic fracture stimulations generally result in microseismicity that is associated with the activation or extension of pre-existing microfractures and discontinuities. Microseismic events acquired under 3D downhole sensor coverage provide accurate event locations outlining hydraulic fracture growth. Combined with source characteristics, these events provide a high quality input for seismic moment tensor inversion and eventually constructing the representative discrete fracture network (DFN). In this study, we investigate the strain and stress state, identified fracture orientation, and DFN connectivity and performance for example stages in a multistage perf and plug completion in a North American shale play. We use topology, the familiar concept in many areas of structural geology, to further describe the relationships between the activated fractures and their effectiveness in enhancing permeability. We explore how local perturbations of stress state lead to the activation of different fractures sets and how that effects the DFN interaction and complexity. In particular, we observe that a more heterogeneous stress state shows a higher percentage of sub-horizontal fractures or bedding plane slips. Based on topology, the fractures are evenly distributed from the injection point, with decreasing numbers of connections by distance. The dimensionless measure of connection per branch and connection per line are used for quantifying the DFN connectivity. In order to connect the concept of connectivity back to productive volume and stimulation efficiency, the connectivity is compared with the character of deformation in the reservoir as deduced from the collective behavior of microseismicity using robustly determined source parameters.

  2. Characteristic fracture spacing in primary and secondary recovery for naturally fractured reservoirs

    NARCIS (Netherlands)

    Gong, J.; Rossen, W.R.

    2018-01-01

    If the aperture distribution is broad enough in a naturally fractured reservoir, even one where the fracture network is highly inter-connected, most fractures can be eliminated without significantly affecting the flow through the fracture network. During a waterflood or enhanced-oil-recovery

  3. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  4. Modeling flow in naturally fractured reservoirs : effect of fracture aperture distribution on dominant sub-network for flow

    NARCIS (Netherlands)

    Gong, J.; Rossen, W.R.

    2017-01-01

    Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture

  5. Fracture Mechanics: Inspirations from Nature

    Directory of Open Access Journals (Sweden)

    David Taylor

    2014-10-01

    Full Text Available In Nature there are many examples of materials performing structural functions. Nature requires materials which are stiff and strong to provide support against various forces, including self-weight, the dynamic forces involved in movement, and external loads such as wind or the actions of a predator. These materials and structures have evolved over millions of years; the science of Biomimetics seeks to understand Nature and, as a result, to find inspiration for the creation of better engineering solutions. There has been relatively little fundamental research work in this area from a fracture mechanics point of view. Natural materials are quite brittle and, as a result, they have evolved several interesting strategies for preventing failure by crack propagation. Fatigue is also a major problem for many animals and plants. In this paper, several examples will be given of recent work in the Bioengineering Research Centre at Trinity College Dublin, investigating fracture and fatigue in such diverse materials as bamboo, the legs and wings of insects, and living cells.

  6. RECENT ADVANCES IN NATURALLY FRACTURED RESERVOIR MODELING

    OpenAIRE

    ORDOÑEZ, A; PEÑUELA, G; IDROBO, E. A; MEDINA, C. E

    2001-01-01

    Large amounts of oil reserves are contained in naturally fractured reservoirs. Most of these hydrocarbon volumes have been left behind because of the poor knowledge and/or description methodology of those reservoirs. This lack of knowledge has lead to the nonexistence of good quantitative models for this complicated type of reservoirs. The complexity of naturally fractured reservoirs causes the need for integration of all existing information at all scales (drilling, well logging, seismic, we...

  7. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    Science.gov (United States)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  8. Connectivity, flow and transport in network models of fractured media

    International Nuclear Information System (INIS)

    Robinson, P.C.

    1984-10-01

    In order to evaluate the safety of radioactive waste disposal underground it is important to understand the way in which radioactive material is transported through the rock to the surface. If the rock is fractured the usual models may not be applicable. In this work we look at three aspects of fracture networks: connectivity, flow and transport. These are studied numerically by generating fracture networks in a computer and modelling the processes which occur. Connectivity relates to percolation theory, and critical densities for fracture systems are found in two and three dimensions. The permeability of two-dimensional networks is studied. The way that permeability depends on fracture density, network size and spread of fracture length can be predicted using a cut lattice model. Transport through the fracture network by convection through the fractures and mixing at the intersections is studied. The Fickian dispersion equation does not describe the resulting hydrodynamic dispersion. Extensions to the techniques to three dimensions and to include other processes are discussed. (author)

  9. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-30

    In March, work continued on characterizing probabilities for determining natural fracturing associated with the GGRB for the Upper Cretaceous tight gas plays. Structural complexity, based on potential field data and remote sensing data was completed. A resource estimate for the Frontier and Mesa Verde play was also completed. Further, work was also conducted to determine threshold economics for the play based on limited current production in the plays in the Wamsutter Ridge area. These analyses culminated in a presentation at FETC on 24 March 1999 where quantified natural fracture domains, mapped on a partition basis, which establish ''sweet spot'' probability for natural fracturing, were reviewed. That presentation is reproduced here as Appendix 1. The work plan for the quarter of January 1, 1999--March 31, 1999 comprised five tasks: (1) Evaluation of the GGRB partitions for structural complexity that can be associated with natural fractures, (2) Continued resource analysis of the balance of the partitions to determine areas with higher relative gas richness, (3) Gas field studies, (4) Threshold resource economics to determine which partitions would be the most prospective, and (5) Examination of the area around the Table Rock 4H well.

  10. Natural history of medial clavicle fractures.

    Science.gov (United States)

    Salipas, Andrew; Kimmel, Lara A; Edwards, Elton R; Rakhra, Sandeep; Moaveni, Afshin Kamali

    2016-10-01

    Fractures of the medial third of the clavicle comprise less than 3% of all clavicle fractures. The natural history and optimal management of these rare injuries are unknown. The aim of our study is to describe the demographics, management and outcomes of patients with medial clavicle fractures treated at a Level 1 Trauma Centre. A retrospective review was conducted of patients presenting to our institution between January 2008 and March 2013 with a medial third clavicle fracture. Clinical and radiographic data were recorded including mechanism of injury, fracture pattern and displacement, associated injuries, management and complications. Functional outcomes were assessed using the Glasgow Outcome Scale Extended (GOS-E) scores from the Victorian Orthopaedic Trauma Outcomes Registry (VOTOR). Shoulder outcomes were assessed using two patient reported outcomes scores, the American Shoulder and Elbow Society Score (ASES) and the Subjective Shoulder Value (SSV). Sixty eight medial clavicle fractures in 68 patients were evaluated. The majority of patients were male (n=53), with a median age of 53.5 years (interquartile range (IQR) 37.5-74.5 years). The most common mechanism of injury was motor vehicle accident (n=28). The in-hospital mortality rate was 4.4%. The fracture pattern was almost equally distributed between extra articular (n=35) and intra-articular (n=33). Fifty-five fractures (80.9%) had minimal or no displacement. Associated injuries were predominantly thoracic (n=31). All fractures were initially managed non-operatively, with a broad arm sling. Delayed operative fixation was performed for painful atrophic delayed union in two patients (2.9%). Both patients were under 65 years of age and had a severely displaced fracture of the medial clavicle. One intra-operative vascular complication was seen, with no adverse long-term outcome. Follow-up was obtained in 85.0% of the surviving cohort at an average of three years post injury (range 1-6 years). The mean ASES

  11. An Examination Of Fracture Splitting Parameters Of Crackable Connecting Rods

    Directory of Open Access Journals (Sweden)

    Zafer Özdemir

    2000-06-01

    Full Text Available Fracture splitting method is an innovative processing technique in the field of automobile engine connecting rod (con/rod manufacturing. Compared with traditional method, this technique has remarkable advantages. Manufacturing procedures, equipment and tools investment can be decreased and energy consumption reduced remarkably. Furthermore, product quality and bearing capability can also be improved. It provides a high quality, high accuracy and low cost route for producing connecting rods (con/rods. With the many advantages mentioned above, this method has attracted manufacturers attention and has been utilized in many types of con/rod manufacturing. In this article, the method and the advantages it provides, such as materials, notches for fracture splitting, fracture splitting conditions and fracture splitting equipment are discussed in detail. The paper describes an analysis of examination of fracture splitting parameters and optik-SEM fractography of C70S6 crackable connectıng rod. Force and velocity parameters are investigated. That uniform impact force distrubition starting from the starting notch causes brittle and cleavage failure mode is obtained as a result. This induces to decrease the toughness.

  12. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  13. Natural Connections on Riemannian Product Manifolds

    OpenAIRE

    Gribacheva, Dobrinka

    2011-01-01

    A Riemannian almost product manifold with integrable almost product structure is called a Riemannian product manifold. In the present paper the natural connections on such manifolds are studied, i.e. the linear connections preserving the almost product structure and the Riemannian metric.

  14. Connections with nature and environmental behaviors.

    Science.gov (United States)

    Geng, Liuna; Xu, Jingke; Ye, Lijuan; Zhou, Wenjun; Zhou, Kexin

    2015-01-01

    The influence of environmental attitudes on environmental behaviors has long been discussed. However, few studies have addressed the foundation of such attitudes. In the present study, we explored primitive belief underlying environmental attitudes, i.e., connections with nature, and its relationship with pro-environmental behaviors. Specifically, we used scales, a computerized Implicit Association Test, and a situational simulation experiment to examine both explicit and implicit connections with nature, both deliberate and spontaneous environmental behaviors, and to find correlations between environmental connectedness and environmental behaviors. Results showed that explicit connectedness was positively correlated with deliberate environmental behaviors, while implicit connectedness was positively correlated with spontaneous environmental behaviors. Additionally, explicit and implicit connectedness was independent of each other. In conclusion, the current study confirms the positive role played by connections with nature in promoting environmental behavior, and accordingly suggests means to encourage pro-environmental behavior by enhancing people's connectedness to nature.

  15. Connection to Nature: Children's Affective Attitude toward Nature

    Science.gov (United States)

    Cheng, Judith Chen-Hsuan; Monroe, Martha C.

    2012-01-01

    A connection to nature index was developed and tested to measure children's affective attitude toward the natural environment. The index was employed through a survey that investigates students' attitude toward Lagoon Quest, a mandatory environmental education program for all fourth-grade, public school students in Brevard County, Florida. Factor…

  16. Urban Bird Feeding: Connecting People with Nature.

    Directory of Open Access Journals (Sweden)

    Daniel T C Cox

    Full Text Available At a time of unprecedented biodiversity loss, researchers are increasingly recognizing the broad range of benefits provided to humankind by nature. However, as people live more urbanized lifestyles there is a progressive disengagement with the natural world that diminishes these benefits and discourages positive environmental behaviour. The provision of food for garden birds is an increasing global phenomenon, and provides a readily accessible way for people to counter this trend. Yet despite its popularity, quite why people feed birds remains poorly understood. We explore three loosely defined motivations behind bird feeding: that it provides psychological benefits, is due to a concern about bird welfare, and/or is due to a more general orientation towards nature. We quantitatively surveyed households from urban towns in southern England to explore attitudes and actions towards garden bird feeding. Each household scored three Likert statements relating to each of the three motivations. We found that people who fed birds regularly felt more relaxed and connected to nature when they watched garden birds, and perceived that bird feeding is beneficial for bird welfare while investing time in minimising associated risks. Finally, feeding birds may be an expression of a wider orientation towards nature. Overall, we found that the feelings of being relaxed and connected to nature were the strongest drivers. As urban expansion continues both to threaten species conservation and to change peoples' relationship with the natural world, feeding birds may provide an important tool for engaging people with nature to the benefit of both people and conservation.

  17. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir

    Directory of Open Access Journals (Sweden)

    Zhao Jinzhou

    2014-10-01

    Full Text Available When hydraulic fractures intersect with natural fractures, the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors. Based on the fracture mechanics, the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure. On this basis, a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters, including rock mechanics, in-situ stress distribution, fracture properties, and frac treatment parameters. The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients, and solving the geometrical parameters prior to the iteration fitting flow distribution. With the initiation and propagation criterion as the bases for the propagation of branch fractures, this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation. The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development. If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion, the branch fractures will propagate further with minor curvature radius, thus enlarging the reservoir stimulation area. The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density, validating the accuracy of this model.

  18. On the nature of groundwater flow paths: Observations at fractures and fracture coating at road-cuts

    International Nuclear Information System (INIS)

    Lindberg, A.; Hellmuth, K.-H.

    2001-01-01

    Preliminary investigations were conducted at fractures and their surface coatings exposed along recently quarried road-cuts to the north and east of Helsinki. While (sub)horizontal fractures were usually rare at depths more than a few meters, (sub)vertical fractures were dominating. Fracture fillings/coatings were mostly absent in the formers and generally thin in the latters. Often these fillings/coatings were representative for processes which occurred in the far past at conditions others than present ambient ones. But, on the other hand only a few cases of more intense rock matrix alteration in connection with these processes were observed. Post-glacial weathering has caused at many of the investigated sites surficial oxidation of Fe(II)-rich minerals which has led to mostly thin coatings of fracture surfaces by soft amorphous Fe(III)-oxyhydroxides. Surface coatings were generally homogeneous with fairly even surface structures. It was found that at road-cuts huge areas of undamaged fracture surfaces were accessable to investigations. These can serve for demonstration purposes for the nature of contact surface between groundwater and rock. Despite some oxidation, these exposures give a fairly representative impression of the situation at greater depth where similar fracture types were reported in repository site investigations. (orig.)

  19. Naturally fractured reservoirs-yet an unsolved mystery

    International Nuclear Information System (INIS)

    Zahoor, M.K.

    2013-01-01

    Some of the world's most profitable reservoirs are assumed to be naturally fractured reservoirs (NFR). Effective evaluation, prediction and planning of these reservoirs require an early recognition of the role of natural fractures and then a comprehensive study of factors which affect the flowing performance through these fractures is necessary. As NFRs are the combination of matrix and fractures mediums so their analysis varies from non-fractured reservoirs. Matrix acts as a storage medium while mostly fluid flow takes place from fracture network. Many authors adopted different approaches to understand the flow behavior in such reservoirs. In this paper a broad review about the previous work done in naturally fractured reservoirs area is outlined and a different idea is initiated for the NFR simulation studies. The role of capillary pressure in natural fractures is always been a key factor for accurate recovery estimations. Also recovery through these reservoirs is dependent upon grid block shape while doing NFR simulation. Some authors studied above mentioned factors in combination with other rock properties to understand the flow behavior in such reservoirs but less emphasis was given for checking the effects on recovery estimations by the variations of only fracture capillary pressures and grid block shapes. So there is need to analyze the behavior of NFR for the mentioned conditions. (author)

  20. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  1. Modeling Flow in Naturally Fractured Reservoirs : Effect of Fracture Aperture Distribution on Critical Sub-Network for Flow

    NARCIS (Netherlands)

    Gong, J.; Rossen, W.R.

    2014-01-01

    Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling the flow behavior of fractured formations. The effect of connectivity on flow properties is well documented. We focus here on the influence of fracture aperture distribution. We model a

  2. on GAGD EOR in Naturally Fractured Reservoirs

    Directory of Open Access Journals (Sweden)

    Misagh Delalat

    2013-01-01

    Full Text Available The gas-assisted gravity drainage (GAGD process is designed and practiced based on gravity drainage idea and uses the advantage of density difference between injected CO2 and reservoir oil. In this work, one of Iran western oilfields was selected as a case study and a sector model was simulated based on its rock and fluid properties. The pressure of CO2 gas injection was close to the MMP of the oil, which was measured 1740 psia. Both homogeneous and heterogeneous types of fractures were simulated by creating maps of permeability and porosity. The results showed that homogeneous fractures had the highest value of efficiency, namely 40%; however, in heterogeneous fractures, the efficiency depended on the value of fracture density and the maximum efficiency was around 37%. Also, the effect of injection rate on two different intensities of fracture was studied and the results demonstrated that the model having higher fracture intensity had less limitation in increasing the CO2 injection rate; furthermore, its BHP did not increase intensively at higher injection rates either. In addition, three different types of water influxes were inspected on GAGD performance to simulate active, partial, and weak aquifer. The results showed that strong aquifer had a reverse effect on the influence of GAGD and almost completely disabled the gravity drainage mechanism. Finally, we inventively used a method to weaken the aquifer strength, and thus the gravity drainage revived and efficiency started to increase as if there was no aquifer.

  3. [Internal fixation treatment of multiple rib fractures with absorbable rib-connecting-pins under epidural anesthesia].

    Science.gov (United States)

    Liu, Jinliang; Li, Keyao; Ju, Zhenlong; Bai, Yan

    2011-03-01

    To study the indications, methods and experience of absorbable rib-connecting-pins fixation in the treatment of multiple rib fractures. 52 cases with multiple rib fractures were performed internal fixation with absorbable rib-connecting-pins under epidural anesthesia. All cases were followed up for 1 to 12 months, with an average of 5 months. All fractures were achieved healing in 3 to 6 months after the operation and were not found chest wall deformity. Absorbable rib-connecting-pins fixation is a simple and effective method and worthies recommending to perform operation for the appropriate cases with multiple rib fractures.

  4. Recognizing "Connection to Nature": Perspectives from the Field

    Science.gov (United States)

    Perrin, Jeffrey L.

    2018-01-01

    The researcher conducted 17 semistructured interviews with environmental education professionals working in the field of nature connection to better understand how practitioners define and measure connection to nature. Participants noted the development of a conservation ethic as the most important indication of connection to nature. Practitioners…

  5. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress

    Science.gov (United States)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2017-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture

  6. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Science.gov (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  7. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  8. An Efficient Upscaling Procedure Based on Stokes-Brinkman Model and Discrete Fracture Network Method for Naturally Fractured Carbonate Karst Reservoirs

    KAUST Repository

    Qin, Guan

    2010-01-01

    Naturally-fractured carbonate karst reservoirs are characterized by various-sized solution caves that are connected via fracture networks at multiple scales. These complex geologic features can not be fully resolved in reservoir simulations due to the underlying uncertainty in geologic models and the large computational resource requirement. They also bring in multiple flow physics which adds to the modeling difficulties. It is thus necessary to develop a method to accurately represent the effect of caves, fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling of naturally fractured carbonate karst reservoirs.

  9. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  10. Poromechanical response of naturally fractured sorbing media

    Science.gov (United States)

    Kumar, Hemant

    The injection of CO2 in coal seams has been utilized for enhanced gas recovery and potential CO2 sequestration in unmineable coal seams. It is advantageous because as it enhances the production and significant volumes of CO2 may be stored simultaneously. The key issues for enhanced gas recovery and geologic sequestration of CO2 include (1) Injectivity prediction: The chemical and physical processes initiated by the injection of CO2 in the coal seam leads to permeability/porosity changes (2) Up scaling: Development of full scale coupled reservoir model which may predict the enhanced production, associated permeability changes and quantity of sequestered CO2. (3) Reservoir Stimulation: The coalbeds are often fractured and proppants are placed into the fractures to prevent the permeability reduction but the permeability evolution in such cases is poorly understood. These issues are largely governed by dynamic coupling of adsorption, fluid exchange, transport, water content, stress regime, fracture geometry and physiomechanical changes in coals which are triggered by CO 2 injection. The understanding of complex interactions in coal has been investigated through laboratory experiments and full reservoir scale models are developed to answer key issues. (Abstract shortened by ProQuest.).

  11. IUTAM Symposium on Fracture Phenomena in Nature and Technology

    CERN Document Server

    Carini, Angelo; Gei, Massimiliano; Salvadori, Alberto

    2014-01-01

    This book contains contributions presented at the IUTAM Symposium "Fracture Phenomena in Nature and Technology" held in Brescia, Italy, 1-5 July, 2012.The objective of the Symposium was fracture research, interpreted broadly to include new engineering and structural mechanics treatments of damage development and crack growth, and also large-scale failure processes as exemplified by earthquake or landslide failures, ice shelf break-up, and hydraulic fracturing (natural, or for resource extraction or CO2 sequestration), as well as small-scale rupture phenomena in materials physics including, e.g., inception of shear banding, void growth, adhesion and decohesion in contact and friction, crystal dislocation processes, and atomic/electronic scale treatment of brittle crack tips and fundamental cohesive properties.Special emphasis was given to multiscale fracture description and new scale-bridging formulations capable to substantiate recent experiments and tailored to become the basis for innovative computationa...

  12. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs

    OpenAIRE

    Ucar, Eren

    2018-01-01

    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  13. Connection between tectonic stresses and well fracturing data

    Energy Technology Data Exchange (ETDEWEB)

    Scheidegger, A E [Imperial Oil Res. Lab., Calgary, CA

    1961-01-01

    Theoretical considerations of hydraulic well fracturing normally utilize a model in which the borehole is assumed to be a cylinder of infinite length. This leads to treatment of the induced stress state in two dimensions. The two-dimensional model is obviously an oversimplification. Therefore, a three-dimensional model is proposed in which the well pressure is assumed to be equivalent to a spherical pressure center. The bottom hole pressure during fracturing is determined by 4 variables; i.e., the 3 principal geological stresses and the rock strength. The response to fracturing is determined primarily by the prevailing stress state and to a lesser degree by the rock strength. The fracture condition is formulated and the model is used in the calculation of geological stresses from well data.

  14. Cross-hole fracture connectivity assessed using hydraulic responses during liner installations in crystalline bedrock boreholes

    Science.gov (United States)

    Persaud, Elisha; Levison, Jana; Pehme, Peeter; Novakowski, Kentner; Parker, Beth

    2018-01-01

    In order to continually improve the current understanding of flow and transport in crystalline bedrock environments, developing and improving fracture system characterization techniques is an important area of study. The presented research examines the installation of flexible, impermeable FLUTe™ liners as a means for assessing cross-hole fracture connectivity. FLUTe™ liners are used to generate a new style of hydraulic pulse, with pressure response monitored in a nearby network of open boreholes drilled in gneissic rock of the Canadian Shield in eastern Ontario, Canada. Borehole liners were installed in six existing 10-15 cm diameter boreholes located 10-35 m apart and drilled to depths ranging between 25-45 m. Liner installation tests were completed consecutively with the number of observation wells available for each test ranging between one and six. The collected pressure response data have been analyzed to identify significant groundwater flow paths between source and observation boreholes as well as to estimate inter-well transmissivity and storativity using a conventional type-curve analysis. While the applied solution relies on a number of general assumptions, it has been found that reasonable comparison can be made to previously completed pulse interference and pumping tests. Results of this research indicate areas where method refinement is necessary, but, nonetheless, highlight the potential for use in crystalline bedrock environments. This method may provide value to future site characterization efforts given that it is complementary to, and can be used in conjunction with, other currently employed borehole liner applications, such as the removal of cross-connection at contaminated sites and the assessment of discrete fracture distributions when boreholes are sealed, recreating natural hydraulic gradient conditions.

  15. Connections rigidity effect on probability of fracture in steel moment frames

    Directory of Open Access Journals (Sweden)

    Gholamreza Abdollahzadeh

    2017-08-01

    Full Text Available Connections in steel moment frames are idealized in full pinned and full rigid conditions. Because with this assumption, in spite of real behavior of connection, real story drifts are less anticipated and maybe frame is designed without performance of bracing. There are several methods for modeling actual behavior of semi rigid connections. In this method a connection with certain rigidity is modeled by a rotational spring with corresponding stiffness. This stiffness is achieved by certain formula. In other words, each percent of rigidity corresponds to one rotational spring stiffness. In this research in order to evaluate the real behavior of connection in analysis and designing process and fracture probability one frame including four stories and one bay with three types of connection has been modeled and designed in ETABS. Each model has an individual rigidity which is equal to 10, 75 and 90 percent. With respect to maximum drift and different PGA in roof, probabilities of low, medium, high and complete fracture were calculated. For this purpose, with applying different PGA to modeled frames, amounts of drift in the roof are achieved. Then these values are compared with given values in American code. Finally, investigation showed that when rigidity in frame connections increases, the probability of frame fracture decreases. In other words, fully rigid assumption of connection in analysis process leads to decreasing in real probability of fracture in frames which is a noticeable risk in building designing processes.

  16. Internal fracture heterogeneity in discrete fracture network modelling: Effect of correlation length and textures with connected and disconnected permeability field

    Science.gov (United States)

    Frampton, A.; Hyman, J.; Zou, L.

    2017-12-01

    Analysing flow and transport in sparsely fractured media is important for understanding how crystalline bedrock environments function as barriers to transport of contaminants, with important applications towards subsurface repositories for storage of spent nuclear fuel. Crystalline bedrocks are particularly favourable due to their geological stability, low advective flow and strong hydrogeochemical retention properties, which can delay transport of radionuclides, allowing decay to limit release to the biosphere. There are however many challenges involved in quantifying and modelling subsurface flow and transport in fractured media, largely due to geological complexity and heterogeneity, where the interplay between advective and dispersive flow strongly impacts both inert and reactive transport. A key to modelling transport in a Lagrangian framework involves quantifying pathway travel times and the hydrodynamic control of retention, and both these quantities strongly depend on heterogeneity of the fracture network at different scales. In this contribution, we present recent analysis of flow and transport considering fracture networks with single-fracture heterogeneity described by different multivariate normal distributions. A coherent triad of fields with identical correlation length and variance are created but which greatly differ in structure, corresponding to textures with well-connected low, medium and high permeability structures. Through numerical modelling of multiple scales in a stochastic setting we quantify the relative impact of texture type and correlation length against network topological measures, and identify key thresholds for cases where flow dispersion is controlled by single-fracture heterogeneity versus network-scale heterogeneity. This is achieved by using a recently developed novel numerical discrete fracture network model. Furthermore, we highlight enhanced flow channelling for cases where correlation structure continues across

  17. Experience curve for natural gas production by hydraulic fracturing

    International Nuclear Information System (INIS)

    Fukui, Rokuhei; Greenfield, Carl; Pogue, Katie; Zwaan, Bob van der

    2017-01-01

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50%/yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or “fracking”, as well as new directional drilling techniques, played key roles in this shale gas revolution, by allowing for extraction of natural gas from previously unviable shale resources. Although hydraulic fracturing technology had been around for decades, it only recently became commercially attractive for large-scale implementation. As the production of shale gas rapidly increased in the US over the past decade, the wellhead price of natural gas dropped substantially. In this paper we express the relationship between wellhead price and cumulative natural gas output in terms of an experience curve, and obtain a learning rate of 13% for the industry using hydraulic fracturing technology. This learning rate represents a measure for the know-how and skills accumulated thus far by the US shale gas industry. The use of experience curves for renewable energy options such as solar and wind power has allowed analysts, practitioners, and policy makers to assess potential price reductions, and underlying cost decreases, for these technologies in the future. The reasons for price reductions of hydraulic fracturing are fundamentally different from those behind renewable energy technologies – hence they cannot be directly compared – and hydraulic fracturing may soon reach, or maybe has already attained, a lower bound for further price reductions, for instance as a result of its water requirements or environmental footprint. Yet, understanding learning-by-doing phenomena as expressed by an industry-wide experience curve for shale gas production can be useful for strategic planning in the gas sector, as well as assist environmental policy design, and serve more broadly as input for projections of energy system developments. - Highlights: • Hydraulic

  18. Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation

    Directory of Open Access Journals (Sweden)

    Zhaohui Chong

    2017-07-01

    Full Text Available Hydraulic fracturing is an important method to enhance permeability in oil and gas exploitation projects and weaken hard roofs of coal seams to reduce dynamic disasters, for example, rock burst. It is necessary to fully understand the mechanism of the initiation, propagation, and coalescence of hydraulic fracture network (HFN caused by fluid flow in rock formations. In this study, a coupled hydro-mechanical model was built based on synthetic rock mass (SRM method to investigate the effects of natural fracture (NF density on HFN propagation. Firstly, the geometrical structures of NF obtained from borehole images at the field scale were applied to the model. Secondly, the micro-parameters of the proposed model were validated against the interaction between NF and hydraulic fracture (HF in physical experiments. Finally, a series of numerical simulations were performed to study the mechanism of HFN propagation. In addition, confining pressure ratio (CPR and injection rate were also taken into consideration. The results suggested that the increase of NF density drives the growth of stimulated reservoir volume (SRV, concentration area of injection pressure (CAIP, and the number of cracks caused by NF. The number of tensile cracks caused by rock matrix decrease gradually with the increase of NF density, and the number of shear cracks caused by rock matrix are almost immune to the change of NF density. The propagation orientation of HFN and the breakdown pressure in rock formations are mainly controlled by CPR. Different injection rates would result in a relatively big difference in the gradient of injection pressure, but this difference would be gradually narrowed with the increase of NF density. Natural fracture density is the key factor that influences the percentages of different crack types in HFN, regardless of the value of CPR and injection rate. The proposed model may help predict HFN propagation and optimize fracturing treatment designs in

  19. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems

    Science.gov (United States)

    Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.

    2014-06-01

    This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.

  20. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Genliang; George, S.A.; Lindsey, R.P.

    1997-08-01

    Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

  1. Hydromechanical and Thermomechanical Behaviour of Elastic Fractures during Thermal Stimulation of Naturally Fractured Reservoirs

    Science.gov (United States)

    Jalali, Mohammadreza; Valley, Benoît

    2015-04-01

    During the last two decades, incentives were put in place in order to feed our societies in energy with reduced CO2 emissions. Various policies have been considered to fulfill this strategy such as replacing coal by natural gas in power plants, producing electricity using CO2 free resources, and CO2 sequestration as a remediation for large point-source emitters (e.g. oil sands facilities, coal-fired power plants, and cement kilns). Naturally fractured reservoirs (NFRs) are among those geological structures which play a crucial role in the mentioned energy revolution. The behavior of fractured reservoirs during production processes is completely different than conventional reservoirs because of the dominant effects of fractures on fluid flux, with attendant issues of fracture fabric complexity and lithological heterogeneity. The level of complexity increases when thermal effects are taking place - as during the thermal stimulation of these stress-sensitive reservoirs in order to enhance the gas production in tight shales and/or increase the local conductivity of the fractures during the development of enhanced geothermal systems - where temperature is introduced as another degree of freedom in addition to pressure and displacement (or effective stress). Study of these stress-pressure-temperature effects requires a thermo-hydro-mechanical (THM) coupling approach, which considers the simultaneous variation of effective stress, pore pressure, and temperature and their interactions. In this study, thermal, hydraulic and mechanical behavior of partially open and elastic fractures in a homogeneous, isotropic and low permeable porous rock is studied. In order to compare the hydromechanical (HM) and thermomechanical (TM) characteristics of these fractures, three different injection scenarios, i.e. constant isothermal fluid injection rate, constant cooling without any fluid injection and constant cold fluid injection, are considered. Both thermomechanical and hydromechanical

  2. Direct Imaging of Natural Fractures and Stress Compartments Stimulated by Hydraulic Fracturing

    Science.gov (United States)

    Lacazette, A.; Vermilye, J. M.

    2014-12-01

    This contribution will present results from passive seismic studies of hydraulic fracture treatments in North American and Asian basins. One of the key data types is a comparatively new surface-based seismic imaging product - "Tomographic Fracture Images®" (TFI®). The procedure is an extension of Seismic Emission Tomography (SET), which is well-established and widely used. Conventional microseismic results - microearthquake hypocenter locations, magnitudes, and focal mechanism solutions - are also obtained from the data via a branch of the processing workflow. TFI is accomplished by summing the individual time steps in a multidimensional SET hypervolume over extended periods of time, such as an entire frac stage. The dimensions of a SET hypervolume are the X, Y, and Z coordinates of the voxels, the time step (typically on the order of 100 milliseconds), and the seismic activity value. The resulting summed volume is skeletonized to produce images of the main fracture surfaces, which are known to occupy the maximum activity surfaces of the high activity clouds from theory, field studies, and experiments. The orientation vs. area of the resulting TFIs can be analyzed in detail and compared with independent data sets such as volumetric structural attributes from reflection seismic data and borehole fracture data. We find that the primary effect of hydraulic fracturing is to stimulate preexisting natural fracture networks and faults. The combination of TFIs with hypocenter distributions and microearthquake focal mechanisms provides detailed information on subsurface stress compartmentalization. Faults are directly imaged which allows discrimination of fault planes from auxiliary planes of focal mechanism solutions. Examples that will be shown include simultaneous movement on a thrust fault and tear fault and examples of radically different stress compartments (e.g. extensional vs. wrench faulting) stimulated during a single hydraulic fracture treatment. The figure

  3. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  4. Numerical Simulation of the Propagation of Hydraulic and Natural Fracture Using Dijkstra’s Algorithm

    Directory of Open Access Journals (Sweden)

    Yanfang Wu

    2016-07-01

    Full Text Available Utilization of hydraulic-fracturing technology is dramatically increasing in exploitation of natural gas extraction. However the prediction of the configuration of propagated hydraulic fracture is extremely challenging. This paper presents a numerical method of obtaining the configuration of the propagated hydraulic fracture into discrete natural fracture network system. The method is developed on the basis of weighted fracture which is derived in combination of Dijkstra’s algorithm energy theory and vector method. Numerical results along with experimental data demonstrated that proposed method is capable of predicting the propagated hydraulic fracture configuration reasonably with high computation efficiency. Sensitivity analysis reveals a number of interesting observation results: the shortest path weight value decreases with increasing of fracture density and length, and increases with increasing of the angle between fractures to the maximum principal stress direction. Our method is helpful for evaluating the complexity of the discrete fracture network, to obtain the extension direction of the fracture.

  5. Natural processes as means to create local connection

    DEFF Research Database (Denmark)

    Sjøstedt, Victoria

    2010-01-01

    and practical knowledge about how to apply natural processes to planning. This paper investigates how natural process thinking caters for a connection to the local and the site-specific in a Chinese context of transformation. Natural process thinking as a site-based urban design approach is understood...... and utilized conceptually within the Wuhan project by mapping-techniques and environmental simulation software. The result gives implications concerning method development for architects as how to develop design concepts based on natural process thinking. Furthermore, the result shows that natural processes...

  6. Deformation Behavior between Hydraulic and Natural Fractures Using Fully Coupled Hydromechanical Model with XFEM

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-01-01

    Full Text Available There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.

  7. The nature and quality of the mathematical connections teachers make

    Directory of Open Access Journals (Sweden)

    Michael K. Mhlolo

    2012-05-01

    Full Text Available Current reforms in mathematics education emphasise the need for pedagogy because it offers learners opportunities to develop their proficiency with complex high-level cognitive processes. One has always associated the ability to make mathematical connections, together with the teacher’s role in teaching them, with deep mathematical understanding. This article examines the nature and quality of the mathematical connections that the teachers’ representations of those connections enabled or constrained. The researchers made video recordings of four Grade 11 teachers as they taught a series of five lessons on algebra-related topics. The results showed that the teachers’ representations of mathematical connections were either faulty or superficial in most cases. It compromised the learners’ opportunities for making meaningful mathematical connections. The researchers concluded by suggesting that helping teachers to build their representation repertoires could increase the effectiveness of their instructional practices.

  8. Creating permeable fracture networks for EGS: Engineered systems versus nature

    Energy Technology Data Exchange (ETDEWEB)

    Stephen L Karner

    2005-10-01

    The United States Department of Energy has set long-term national goals for the development of geothermal energy that are significantly accelerated compared to historical development of the resource. To achieve these goals, it is crucial to evaluate the performance of previous and existing efforts to create enhanced geothermal systems (EGS). Two recently developed EGS sites are evaluated from the standpoint of geomechanics. These sites have been established in significantly different tectonic regimes: 1. compressional Cooper Basin (Australia), and 2. extensional Soultz-sous-Fôrets (France). Mohr-Coulomb analyses of the stimulation procedures employed at these sites, coupled with borehole observations, indicate that pre-existing fractures play a significant role in the generation of permeability networks. While pre-existing fabric can be exploited to produce successful results for geothermal energy development, such fracture networks may not be omnipresent. For mostly undeformed reservoirs, it may be necessary to create new fractures using processes that merge existing technologies or use concepts borrowed from natural hydrofracture examples (e.g. dyke swarms).

  9. Characterization of natural colloids sampled from a fractured granite groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Keum, Dong Kwon; Hahn, Pil Soo [Korea Atomic Energy Research Institute, Taejeon (Korea); Vilks, Peter [AECL Whiteshell Laboratories (Canada)

    2000-02-01

    This study was carried out as a part of international joint study of KAERI with AECL. The main purpose of this study is to analyze the physicochemical characteristics and sorption properties of natural colloids sampled from the deep fractured granite groundwater located in the Underground Research Laboratory (URL) of AECL. Physicochemical characteristics such as composition, size distribution, and concentrations of natural colloids was analyzed. This study will be basic data for the analysis of the effect of colloids on the radionuclide migration in a geological medium. This study may provide information for the evaluation of the roles and effects of colloids in the safety and performance assessment of a possible future radioactive waste repository. 20 refs., 8 figs., 8 tabs. (Author)

  10. Political science, public administration, and natural hazards: contributions and connections

    Science.gov (United States)

    Lindquist, E.

    2009-04-01

    The connection between the natural and social sciences has become stronger, and has increasingly been recognized as a vital component in the area of natural hazards research. Moving applied natural hazards research into the public policy or administration realm is not often easy, or effective. An improved understanding of the connection between the natural and social sciences can assist in this process and result in better public policy, acceptance from the public for these policies, and a safer and better educated public. This paper will present initial findings from a larger data set on natural hazards and social science research. Specifically we will review the current contribution of the formal academic disciplines of political science and public administration within recent natural hazards-related scholarship. The general characteristics of the contributions (e.g. coauthored, interdisciplinary, etc.), specific theories and methods being applied, and the types of natural hazards being scrutinized by these related fields will be assessed. In conclusion we will discuss future contributions and areas for potential collaboration between the natural and social sciences in the area of natural hazards research.

  11. Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

  12. Connectivity as a multiple: In, with and as "nature".

    Science.gov (United States)

    Hodgetts, Timothy

    2018-03-01

    Connectivity is a central concept in contemporary geographies of nature, but the concept is often understood and utilised in plural ways. This is problematic because of the separation, rather than the confusion, of these different approaches. While the various understandings of connectivity are rarely considered as working together, the connections between them have significant implications. This paper thus proposes re-thinking connectivity as a "multiple". It develops a taxonomy of existing connectivity concepts from the fields of biogeography and landscape ecology, conservation biology, socio-economic systems theory, political ecology and more-than-human geography. It then considers how these various understandings might be re-thought not as separate concerns, but (following Annemarie Mol) as "more than one, but less than many". The implications of using the connectivity multiple as an analytic for understanding conservation practices are demonstrated through considering the creation of wildlife corridors in conservation practice. The multiple does not just serve to highlight the practical and theoretical linkages between ecological theories, social inequities and affectual relationships in more-than-human worlds. It is also suggestive of a normative approach to environmental management that does not give temporal priority to biological theories, but considers these as always already situated in these social, often unequal, always more-than-human ecologies.

  13. [Internal fixation treatment of multiple rib fractures with absorbable rib-connecting-pins].

    Science.gov (United States)

    Liu, Jinliang; Li, Keyao; He, Jianning

    2011-01-01

    To study the indications, methods, and therapeutic effect of absorbable rib-connecting-pins fixation in the treatment of multiple rib fractures. Between March 2007 and September 2009, 40 patients with multiple rib fractures received internal fixation with absorbable rib-connecting-pins, including 8 one-side flail chest and 1 two-side flail chest. There were 32 males and 8 females with an average age of 39.8 years (range, 25-72 years). The injury was caused by traffic accident in 32 cases, falling from height in 6 cases, and blunt hitting in 2 cases. Preoperatively, imaging data of the chest X-ray or spiral CT three-dimensional (3D) examination showed that all patients had multiple ribs fractures and displacement. The number of fractured ribs was 4-10 (median, 6), and the fracture location ranged from the 2nd to the 10th ribs. Of them, 28 cases were accompanied by hemathorax, pneumothorax or hemopneumothorax; 5 cases by thoracic organ injury; and 10 cases by other part trauma. The time from injury to hospitalization was less than 1 day in 26 cases, 1-3 days in 12 cases, and 3-6 days in 2 cases, and the time from hospitalization to operation was 3 hours to 3 days (mean, 1.2 days). The median fixation rib number was 5 (range, 3-8). The mean operative time, the time in bed, and hospitalization days were 32 minutes (range, 15-50 minutes), 4.5 days (range, 2-7 days), and 11.2 days (range, 5-18 days), respectively. All incisions healed by first intention. No pulmonary infection, pulmonary atelectasis, intrathoracic infection or other complications occurred. All cases were followed up 6-12 months (mean, 8 months). PaO2 [(86.6 +/- 2.2) mmHg (1 mm Hg = 0.133 kPa)] and SpO2 (97.2% +/- 0.6%) at 2 hours after operation were obviously improved when compared with preoperative ones (PaO2 (53.6 + 4.7) mm Hg and SpO2 (86.2% + 1.8%)], showing significant differences (t = 2.971, P = 0.005; t = 2.426, P = 0.020). The chest X-ray films or spiral CT 3D indicated that fracture of rib

  14. Hydraulic fracturing for natural gas: impact on health and environment.

    Science.gov (United States)

    Carpenter, David O

    2016-03-01

    Shale deposits exist in many parts of the world and contain relatively large amounts of natural gas and oil. Recent technological developments in the process of horizontal hydraulic fracturing (hydrofracturing or fracking) have suddenly made it economically feasible to extract natural gas from shale. While natural gas is a much cleaner burning fuel than coal, there are a number of significant threats to human health from the extraction process as currently practiced. There are immediate threats to health resulting from air pollution from volatile organic compounds, which contain carcinogens such as benzene and ethyl-benzene, and which have adverse neurologic and respiratory effects. Hydrogen sulfide, a component of natural gas, is a potent neuro- and respiratory toxin. In addition, levels of formaldehyde are elevated around fracking sites due to truck traffic and conversion of methane to formaldehyde by sunlight. There are major concerns about water contamination because the chemicals used can get into both ground and surface water. Much of the produced water (up to 40% of what is injected) comes back out of the gas well with significant radioactivity because radium in subsurface rock is relatively water soluble. There are significant long-term threats beyond cancer, including exacerbation of climate change due to the release of methane into the atmosphere, and increased earthquake activity due to disruption of subsurface tectonic plates. While fracking for natural gas has significant economic benefits, and while natural gas is theoretically a better fossil fuel as compared to coal and oil, current fracking practices pose significant adverse health effects to workers and near-by residents. The health of the public should not be compromized simply for the economic benefits to the industry.

  15. Origins and nature of non-Fickian transport through fractures

    Science.gov (United States)

    Wang, L.; Cardenas, M. B.

    2014-12-01

    Non-Fickian transport occurs across all scales within fractured and porous geological media. Fundamental understanding and appropriate characterization of non-Fickian transport through fractures is critical for understanding and prediction of the fate of solutes and other scalars. We use both analytical and numerical modeling, including direct numerical simulation and particle tracking random walk, to investigate the origin of non-Fickian transport through both homogeneous and heterogeneous fractures. For the simple homogenous fracture case, i.e., parallel plates, we theoretically derived a formula for dynamic longitudinal dispersion (D) within Poiseuille flow. Using the closed-form expression for the theoretical D, we quantified the time (T) and length (L) scales separating preasymptotic and asymptotic dispersive transport, with T and L proportional to aperture (b) of parallel plates to second and fourth orders, respectively. As for heterogeneous fractures, the fracture roughness and correlation length are closely associated with the T and L, and thus indicate the origin for non-Fickian transport. Modeling solute transport through 2D rough-walled fractures with continuous time random walk with truncated power shows that the degree of deviation from Fickian transport is proportional to fracture roughness. The estimated L for 2D rough-walled fractures is significantly longer than that derived from the formula within Poiseuille flow with equivalent b. Moreover, we artificially generated normally distributed 3D fractures with fixed correlation length but different fracture dimensions. Solute transport through 3D fractures was modeled with a particle tracking random walk algorithm. We found that transport transitions from non-Fickian to Fickian with increasing fracture dimensions, where the estimated L for the studied 3D fractures is related to the correlation length.

  16. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    Science.gov (United States)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  17. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    Science.gov (United States)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  18. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    2005-04-27

    This report describes the work performed during the fourth year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificially fractured cores (AFCs) and X-ray CT scanner to examine the physical mechanisms of bypassing in hydraulically fractured reservoirs (HFR) and naturally fractured reservoirs (NFR) that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. In Chapter 1, we worked with DOE-RMOTC to investigate fracture properties in the Tensleep Formation at Teapot Dome Naval Reserve as part of their CO{sub 2} sequestration project. In Chapter 2, we continue our investigation to determine the primary oil recovery mechanism in a short vertically fractured core. Finally in Chapter 3, we report our numerical modeling efforts to develop compositional simulator with irregular grid blocks.

  19. On fundamentals, logic, and the connection between the natural sciences

    International Nuclear Information System (INIS)

    Loewdin, P.O.

    1995-01-01

    The importance of deductive theories in the modern natural sciences built essentially on experiments is briefly discussed. The logical structure of the deductive theories, their axioms, undefined quantities, and realizations is treated in some detail. In all the natural sciences, there is a striving to explain all the various phenomena in nature in terms of a few basic principles, and this open-quotes reductionismclose quotes leads to a certain amount of unification of these sciences. The chain that goes from biology, over molecular biology, biochemistry, chemistry, and physics to the description of nature in terms of the elementary particles obeying the laws of modern quantum chemistry is reviewed. Since all the measurements of microcosmos involve an observer, who according to the Copenhagen school experiences the outside universe as a projection on his or her mind through his or her senses, some theoreticians may be inclined to reduce the natural sciences to the human mind as the fundamental (undefined) quantity. However, since the observer is a biological structure, one is also back where one started, and it is evident that one can start the reduction or unification of the natural sciences in any point on this circle (or spiral). Hence, there are many descriptions of the natural sciences and their connections that are possible-as illustrated at this symposium. 2 refs., 2 figs

  20. On the evaluation of steam assisted gravity drainage in naturally fractured oil reservoirs

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Tohidi Hosseini

    2017-06-01

    Full Text Available Steam Assisted Gravity Drainage (SAGD as a successful enhanced oil recovery (EOR process has been applied to extract heavy and extra heavy oils. Huge amount of global heavy oil resources exists in carbonate reservoirs which are mostly naturally fractured reservoirs. Unlike clastic reservoirs, few studies were carried out to determine the performance of SAGD in carbonate reservoirs. Even though SAGD is a highly promising technique, several uncertainties and unanswered questions still exist and they should be clarified for expansion of SAGD methods to world wide applications especially in naturally fractured reservoirs. In this communication, the effects of some operational and reservoir parameters on SAGD processes were investigated in a naturally fractured reservoir with oil wet rock using CMG-STARS thermal simulator. The purpose of this study was to investigate the role of fracture properties including fracture orientation, fracture spacing and fracture permeability on the SAGD performance in naturally fractured reservoirs. Moreover, one operational parameter was also studied; one new well configuration, staggered well pair was evaluated. Results indicated that fracture orientation influences steam expansion and oil production from the horizontal well pairs. It was also found that horizontal fractures have unfavorable effects on oil production, while vertical fractures increase the production rate for the horizontal well. Moreover, an increase in fracture spacing results in more oil production, because in higher fracture spacing model, steam will have more time to diffuse into matrices and heat up the entire reservoir. Furthermore, an increase in fracture permeability results in process enhancement and ultimate recovery improvement. Besides, diagonal change in the location of injection wells (staggered model increases the recovery efficiency in long-term production plan.

  1. Multi-Site Application of the Geomechanical Approach for Natural Fracture Exploration

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Billingsley; V. Kuuskraa

    2006-03-31

    In order to predict the nature and distribution of natural fracturing, Advanced Resources Inc. (ARI) incorporated concepts of rock mechanics, geologic history, and local geology into a geomechanical approach for natural fracture prediction within mildly deformed, tight (low-permeability) gas reservoirs. Under the auspices of this project, ARI utilized and refined this approach in tight gas reservoir characterization and exploratory activities in three basins: the Piceance, Wind River and the Anadarko. The primary focus of this report is the knowledge gained on natural fractural prediction along with practical applications for enhancing gas recovery and commerciality. Of importance to tight formation gas production are two broad categories of natural fractures: (1) shear related natural fractures and (2) extensional (opening mode) natural fractures. While arising from different origins this natural fracture type differentiation based on morphology is sometimes inter related. Predicting fracture distribution successfully is largely a function of collecting and understanding the available relevant data in conjunction with a methodology appropriate to the fracture origin. Initially ARI envisioned the geomechanical approach to natural fracture prediction as the use of elastic rock mechanics methods to project the nature and distribution of natural fracturing within mildly deformed, tight (low permeability) gas reservoirs. Technical issues and inconsistencies during the project prompted re-evaluation of these initial assumptions. ARI's philosophy for the geomechanical tools was one of heuristic development through field site testing and iterative enhancements to make it a better tool. The technology and underlying concepts were refined considerably during the course of the project. As with any new tool, there was a substantial learning curve. Through a heuristic approach, addressing these discoveries with additional software and concepts resulted in a stronger set

  2. Chemical Interactions of Hydraulic Fracturing Biocides with Natural Pyrite

    Science.gov (United States)

    Consolazio, Nizette A.

    In conjunction with horizontal drilling, hydraulic fracturing or fracking has enabled the recovery of natural gas from low permeable shale formations. In addition to water, these fracking fluids employ proppants and up to 38 different chemical additives to improve the efficiency of the process. One important class of additives used in hydraulic fracturing is biocides. When applied appropriately, they limit the growth of harmful microorganisms within the well, saving energy producers 4.5 billion dollars each year. However, biocides or their harmful daughter products may return to the surface in produced water, which must then be appropriately stored, treated and disposed of. Little is known about the effect of mineral-fluid interactions on the fate of the biocides employed in hydraulic fracturing. In this study, we employed laboratory experiments to determine changes in the persistence and products of these biocides under controlled environments. While many minerals are present in shale formations, pyrite, FeS2(s) is particularly interesting because of its prevalence and reactivity. The FeII groups on the face of pyrite may be oxidized to form FeIII phases. Both of these surfaces have been shown to be reactive with organic compounds. Chlorinated compounds undergo redox reactions at the pyrite-fluid interface, and sulfur-containing compounds undergo exceptionally strong sorption to both pristine and oxidized pyrite. This mineral may significantly influence the degradation of biocides in the Marcellus Shale. Thus, the overall goal of this study was to understand the effect of pyrite on biocide reactivity in hydraulic fracturing, focusing on the influence of pyrite on specific functional groups. The first specific objective was to demonstrate the effect of pyrite and pyrite reaction products on the degradation of the bromine-containing biocide, DBNPA. On the addition of pyrite to DBNPA, degradation rates of the doubly brominated compound were found to increase

  3. Natural convection and dispersion in a tilted fracture

    International Nuclear Information System (INIS)

    Woods, A.W.; Linz, S.J.

    1992-01-01

    In many geophysical situations, fluid is contained in long narrow fractures embedded within an impermeable medium of different thermal conductivity; and there may be a uniform vertical temperature gradient imposed upon the system. We show that whenever the slot is tilted to the vertical, convection develops in the fluid, even if the background temperature increases with height. Using typical values for the physical properties of a water-filled fracture, we show that the Earth's geothermal gradient produces a convective flow in a fracture; this has an associated dispersion coefficient D T ∼10 2 -10 3 D in fractures about a centimetre wide. We show that this shear dispersion could transport radioactive material, of half-life 10 4 years, tens of metres along the fracture within one half-life; without this dispersion, the material would only diffuse a few metres along the fracture within one half-life. (author)

  4. Analysis of nature of brazed joints fracture under operating conditions

    International Nuclear Information System (INIS)

    Orlov, A.V.; Gura, P.M.

    1985-01-01

    Technique establishing causes leading to brazed joint fracture in pressure boundary components, operating under heavy conditions of high temperature and corrosive medium is described. Some cases of tube brazed joint fractures in a superheater of 12Kh1MF and 08Kh18N10T steels are considered. The attention is paid on using metallography for determination of mechanical or corrosion fracture properties. The diagram is developed permitting to take into account the interrelation between the fracture area in the given zone and its strength

  5. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  6. Study on interaction between induced and natural fractures by extended finite element method

    Science.gov (United States)

    Xu, DanDan; Liu, ZhanLi; Zhuang, Zhuo; Zeng, QingLei; Wang, Tao

    2017-02-01

    Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural fractures, which is an important issue of the enigmatic fracture network formation in fracking. The criteria which control the opening of natural fracture and crossing of hydraulic fracture are tentatively presented. Influence factors on the interaction process are systematically analyzed, which include the approach angle, anisotropy of in-situ stress and fluid pressure profile.

  7. Sedimentological and Stratigraphic Controls on Natural Fracture Distribution in Wajid Group, SW Saudi Arabia

    Science.gov (United States)

    Benaafi, Mohammed; Hariri, Mustafa; Abdullatif, Osman; Makkawi, Mohammed; Korvin, Gabor

    2016-04-01

    The Cambro-Permian Wajid Group, SW Saudi Arabia, is the main groundwater aquifer in Wadi Al-Dawasir and Najran areas. In addition, it has a reservoir potentiality for oil and natural gas in Rub' Al-Khali Basin. Wajid Group divided into four formations, ascending Dibsiyah, Sanamah, Khussyayan and Juwayl. They are mainly sandstone and exposed in an area extend from Wadi Al-Dawasir southward to Najran city and deposited within fluvial, shallow marine and glacial environments. This study aims to investigate the sedimentological and stratigraphic controls on the distribution of natural fractures within Wajid Group outcrops. A scanline sampling method was used to study the natural fracture network within Wajid Group outcrops, where the natural fractures were measured and characterized in 12 locations. Four regional natural fracture sets were observed with mean strikes of 050o, 075o, 345o, and 320o. Seven lithofacies characterized the Wajid Group at these locations and include fine-grained sandstone, coarse to pebbly sandstone, cross-bedded sandstone, massive sandstone, bioturbated sandstone, conglomerate sandstone, and conglomerate lithofacies. We found that the fine-grained and small scale cross-bedded sandstones lithofacies are characterized by high fracture intensity. In contrast, the coarse-grained sandstone and conglomerate lithofacies have low fracture intensity. Therefore, the relative fracture intensity and spacing of natural fractures within Wajid Group in the subsurface can be predicted by using the lithofacies and their depositional environments. In terms of stratigraphy, we found that the bed thickness and the stratigraphic architecture are the main controls on fractures intensity. The outcomes of this study can help to understand and predict the natural fracture distribution within the subsurface fractured sandstone hosting groundwater and hydrocarbon in Wajid and Rub' Al-Khali Basins. Hence, the finding of this study might help to explore and develop the

  8. An Efficient Upscaling Process Based on a Unified Fine-scale Multi-Physics Model for Flow Simulation in Naturally Fracture Carbonate Karst Reservoirs

    KAUST Repository

    Bi, Linfeng

    2009-01-01

    The main challenges in modeling fluid flow through naturally-fractured carbonate karst reservoirs are how to address various flow physics in complex geological architectures due to the presence of vugs and caves which are connected via fracture networks at multiple scales. In this paper, we present a unified multi-physics model that adapts to the complex flow regime through naturally-fractured carbonate karst reservoirs. This approach generalizes Stokes-Brinkman model (Popov et al. 2007). The fracture networks provide the essential connection between the caves in carbonate karst reservoirs. It is thus very important to resolve the flow in fracture network and the interaction between fractures and caves to better understand the complex flow behavior. The idea is to use Stokes-Brinkman model to represent flow through rock matrix, void caves as well as intermediate flows in very high permeability regions and to use an idea similar to discrete fracture network model to represent flow in fracture network. Consequently, various numerical solution strategies can be efficiently applied to greatly improve the computational efficiency in flow simulations. We have applied this unified multi-physics model as a fine-scale flow solver in scale-up computations. Both local and global scale-up are considered. It is found that global scale-up has much more accurate than local scale-up. Global scale-up requires the solution of global flow problems on fine grid, which generally is computationally expensive. The proposed model has the ability to deal with large number of fractures and caves, which facilitate the application of Stokes-Brinkman model in global scale-up computation. The proposed model flexibly adapts to the different flow physics in naturally-fractured carbonate karst reservoirs in a simple and effective way. It certainly extends modeling and predicting capability in efficient development of this important type of reservoir.

  9. Interaction between Hydraulic Fracturing Process and Pre-existing Natural Fractures

    NARCIS (Netherlands)

    Meng, C.

    2010-01-01

    Hydraulic fracturing is employed as a stimulation treatment by the oil and gas industry to enhance the hydro-carbon recoveries. The rationale is that by creating fractures from the wellbore into the surrounding formations, the conductivity between the well and reservoir is significantly increased

  10. Is the permeability of naturally fractured rocks scale dependent?

    Science.gov (United States)

    Azizmohammadi, Siroos; Matthäi, Stephan K.

    2017-09-01

    The equivalent permeability, keq of stratified fractured porous rocks and its anisotropy is important for hydrocarbon reservoir engineering, groundwater hydrology, and subsurface contaminant transport. However, it is difficult to constrain this tensor property as it is strongly influenced by infrequent large fractures. Boreholes miss them and their directional sampling bias affects the collected geostatistical data. Samples taken at any scale smaller than that of interest truncate distributions and this bias leads to an incorrect characterization and property upscaling. To better understand this sampling problem, we have investigated a collection of outcrop-data-based Discrete Fracture and Matrix (DFM) models with mechanically constrained fracture aperture distributions, trying to establish a useful Representative Elementary Volume (REV). Finite-element analysis and flow-based upscaling have been used to determine keq eigenvalues and anisotropy. While our results indicate a convergence toward a scale-invariant keq REV with increasing sample size, keq magnitude can have multi-modal distributions. REV size relates to the length of dilated fracture segments as opposed to overall fracture length. Tensor orientation and degree of anisotropy also converge with sample size. However, the REV for keq anisotropy is larger than that for keq magnitude. Across scales, tensor orientation varies spatially, reflecting inhomogeneity of the fracture patterns. Inhomogeneity is particularly pronounced where the ambient stress selectively activates late- as opposed to early (through-going) fractures. While we cannot detect any increase of keq with sample size as postulated in some earlier studies, our results highlight a strong keq anisotropy that influences scale dependence.

  11. Peak incidence of distal radius fractures due to ice skating on natural ice in The Netherlands

    NARCIS (Netherlands)

    van Lieshout, Arno P. W.; van Manen, Christiaan J.; du Pré, Karel J.; Kleinlugtenbelt, Ydo V.; Poolman, Rudolf W.; Goslings, J. Carel; Kloen, Peter

    2010-01-01

    An increase of distal radius fractures was seen in 2009 when an extended cold spell allowed natural ice skating in Amsterdam. This resulted in overload of our Emergency Departments and operating rooms. This study reports patient and fracture characteristics of these injuries. We also determined

  12. Fracture in Duchenne Muscular Dystrophy: Natural History and Vitamin D Deficiency.

    Science.gov (United States)

    Perera, Nadia; Sampaio, Hugo; Woodhead, Helen; Farrar, Michelle

    2016-08-01

    The present study examined the natural history of fracture and vitamin D levels in Duchenne muscular dystrophy patients, who are vulnerable to osteoporosis and fractures. Retrospective analysis of a cohort of 48 Duchenne muscular dystrophy patients revealed that 43% of patients experienced ≥1 fracture. Fracture probabilities at ages 6, 9, 12, and 15 years were 4%, 9%, 31%, and 60% respectively, accelerating around the time of ambulation loss (mean age 11.8 ± 2.7 years). Chronic corticosteroid therapy was utilized in 69% of patients and was associated with all vertebral fractures. A history of vitamin D deficiency occurred in 84%, and 35% were currently deficient. Despite chronic vitamin D supplementation, 38% remained deficient. These results demonstrate that osteoporosis and fracture remain major concerns in Duchenne muscular dystrophy. Bone health should be optimized well before loss of ambulation, however current levels of vitamin D supplementation may be inadequate given high levels of deficiency. © The Author(s) 2016.

  13. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, S.; Cortis, A.; Birkholzer, J.T.

    2010-04-01

    Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

  14. Fixation of tibial plateau fractures with synthetic bone graft versus natural bone graft: a comparison study.

    LENUS (Irish Health Repository)

    Ong, J C Y

    2012-06-01

    The goal of this study was to determine differences in fracture stability and functional outcome between synthetic bone graft and natural bone graft with internal fixation of tibia plateau metaphyseal defects.

  15. Molecular and Genetic Basis of Hereditary Connective-Tissue Diseases Accompanied by Frequent Fractures

    Directory of Open Access Journals (Sweden)

    G. T. Yakhyaeva

    2016-01-01

    Full Text Available Frequent bone fractures in infancy require the elimination of a large number (> 100 of genetic disorders. The modern diagnostic method of hereditary diseases characterized by debilitating course is a new generation sequencing. The article presents the results of molecular-genetic study conducted in 18 patients with clinical symptoms of connective tissue disorders. 10 (56% patients had mutations in the genes encoding type I collagen chains, leading to the development of osteogenesis imperfecta, 5 (28% — mutations in IV and V type collagen genes that are responsible for the development of Ehlers-Danlos syndrome. 3 (17% patients had mutations in the gene encoding fibrillin-1 protein, deficiency of which is manifested by Marfan syndrome. However, the correlation between patient's phenotype and discovered mutations in the investigated gene is established not in all cases.

  16. Experience curve for natural gas production by hydraulic fracturing

    NARCIS (Netherlands)

    Fukui, R.; Greenfield, C.; Pogue, K.; van der Zwaan, B.

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or ``fracking'', as well as new directional drilling techniques, played key roles in

  17. Permeability of Granite Including Macro-Fracture Naturally Filled with Fine-Grained Minerals

    Science.gov (United States)

    Nara, Yoshitaka; Kato, Masaji; Niri, Ryuhei; Kohno, Masanori; Sato, Toshinori; Fukuda, Daisuke; Sato, Tsutomu; Takahashi, Manabu

    2018-03-01

    Information on the permeability of rock is essential for various geoengineering projects, such as geological disposal of radioactive wastes, hydrocarbon extraction, and natural hazard risk mitigation. It is especially important to investigate how fractures and pores influence the physical and transport properties of rock. Infiltration of groundwater through the damage zone fills fractures in granite with fine-grained minerals. However, the permeability of rock possessing a fracture naturally filled with fine-grained mineral grains has yet to be investigated. In this study, the permeabilities of granite samples, including a macro-fracture filled with clay and a mineral vein, are investigated. The permeability of granite with a fine-grained mineral vein agrees well with that of the intact sample, whereas the permeability of granite possessing a macro-fracture filled with clay is lower than that of the macro-fractured sample. The decrease in the permeability is due to the filling of fine-grained minerals and clay in the macro-fracture. It is concluded that the permeability of granite increases due to the existence of the fractures, but decreases upon filling them with fine-grained minerals.

  18. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

    2010-07-01

    An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

  19. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

    Science.gov (United States)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan

    2017-12-01

    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E - N180°E (N-S), N60°E - N70°E (NE-SW), and N310°E - N320°E (NW-SE), while the dominant dip is 80° -90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E - N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  20. Numerical Modeling of Methane Leakage from a Faulty Natural Gas Well into Fractured Tight Formations.

    Science.gov (United States)

    Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.

  1. Diffusive Imaging of Hydraulically Induced and Natural Fracture Systems

    Science.gov (United States)

    Eftekhari, B.; Marder, M. P.; Patzek, T. W.

    2017-12-01

    Hydraulic fracturing of tight shales continues to provide the US with a major source of energy. Efficiency of gas recovery in shales depends upon the geometry of the resulting network of fractures, the details of which are not yet fully understood. The present research explores how much of the underlying geometry can be deduced from the time dependence of the flow of gas out of the reservoir. We consider both ideal and real gas. In the case of real gas, we calculate production rate for parallel planar hydrofractures embedded in an infinite reservoir. Transport is governed by a nonlinear diffusion equation, which we solve exactly with a scaling curve. The scaling curve production rate declines initially as 1 over square root time, then as an exponential, and finally as 1 over square root of time again at late time. We show that for a given hydraulically fractured well, the onsets of transition between different decline regimes provides a direct estimate of a characteristic spacing of the underlying fracture network. We show that the scaling solution accurately fits the production history of more than 15,000 wells in the Barnett Shale. Almost all of the wells either have not yet transitioned into the late time decline or have been refractured while in exponential decline. However, there are 36 wells which show the late time transition. These allow us to calculate the characteristic spacing, which turns out to have a mode at about 10 m, a minimum at 1.6 m and a maximum at 13.3 m. We estimate that over 30 years these wells will produce on average about 45% more gas because of diffusion from the infinite external reservoir than they would if this contribution is neglected. Finally, we compute the rate at which ideal gas diffuses within an infinite region of rock into a specific absorbing fractal fracture network, which we model using geological constraints and percolation theory. Our solution employs a Brownian walk and the first passage kinetic Monte Carlo algorithm

  2. Simultaneous transport of synthetic colloids and a nonsorbing solute through single saturated natural fractures

    International Nuclear Information System (INIS)

    Reimus, P.W.; Robinson, B.A.; Nuttall, H.E.; Kale, R.

    1994-01-01

    Tracer transport experiments involving colloids that showed little tendency to attach to rock surfaces and a nonsorbing solute (iodide) -were conducted in three different well-characterized natural fractures in tuff. The colloids always arrived earlier in the effluent than the iodide, which we believe is evidence of (1) hydrodynamic chromatography and/or (2) the fact that the colloids experience a smaller effective volume in the fracture because they diffuse too slowly to enter low-velocity regions (dead zones) along the rough fracture walls. The iodide also approached the inlet concentration in the effluent more slowly than the colloids, with the concentration at a given elution volume being greater at higher flow rates. By contrast, the rate of approach of the colloid concentration to the inlet concentration did not vary with flow rate. We attribute this behavior to matrix diffusion of the iodide, with the colloids being too large/nondiffusive to experience this phenomenon. Dispersion of all tracers was greatest in the fracture of widest average aperture and least in the fracture of narrowest aperture, which is consistent with Taylor dispersion theory. The tracer experiments were modeled/interpreted using a three-step approach that involved (1) estimating the aperture distribution in each fracture using surface profiling techniques, (2) predicting the flow field in the fractures using a localized parallel-plate approximation, and (3) predicting tracer transport in the fractures using particle-tracking techniques. Although considered preliminary at this time, the model results were in qualitative agreement with the experiments

  3. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  4. Application of artificial intelligence to characterize naturally fractured zones in Hassi Messaoud Oil Field, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    El Ouahed, Abdelkader Kouider; Mazouzi, Amine [Sonatrach, Rue Djenane Malik, Hydra, Algiers (Algeria); Tiab, Djebbar [Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, 100 East Boyd Street, SEC T310, Norman, OK, 73019 (United States)

    2005-12-15

    In highly heterogeneous reservoirs classical characterization methods often fail to detect the location and orientation of the fractures. Recent applications of Artificial Intelligence to the area of reservoir characterization have made this challenge a possible practice. Such a practice consists of seeking the complex relationship between the fracture index and some geological and geomechanical drivers (facies, porosity, permeability, bed thickness, proximity to faults, slopes and curvatures of the structure) in order to obtain a fracture intensity map using Fuzzy Logic and Neural Network. This paper shows the successful application of Artificial Intelligence tools such as Artificial Neural Network and Fuzzy Logic to characterize naturally fractured reservoirs. A 2D fracture intensity map and fracture network map in a large block of Hassi Messaoud field have been developed using Artificial Neural Network and Fuzzy Logic. This was achieved by first building the geological model of the permeability, porosity and shale volume using stochastic conditional simulation. Then by applying some geomechanical concepts first and second structure directional derivatives, distance to the nearest fault, and bed thickness were calculated throughout the entire area of interest. Two methods were then used to select the appropriate fracture intensity index. In the first method well performance was used as a fracture index. In the second method a Fuzzy Inference System (FIS) was built. Using this FIS, static and dynamic data were coupled to reduce the uncertainty, which resulted in a more reliable Fracture Index. The different geological and geomechanical drivers were ranked with the corresponding fracture index for both methods using a Fuzzy Ranking algorithm. Only important and measurable data were selected to be mapped with the appropriate fracture index using a feed forward Back Propagation Neural Network (BPNN). The neural network was then used to obtain a fracture intensity

  5. Connecting Students to Nature--How Intensity of Nature Experience and Student Age Influence the Success of Outdoor Education Programs

    Science.gov (United States)

    Braun, Tina; Dierkes, Paul

    2017-01-01

    Nature connectedness counts as a crucial predictor of pro-environmental behavior. For counteracting today's environmental issues a successful re-connection of individuals to nature is necessary. Besides the promotion of knowledge transfer the aim of the educational program presented in this study is to connect students to their environment. This…

  6. Permeability evolution due to dissolution of natural shale fractures reactivated by fracking

    Science.gov (United States)

    Kwiatkowski, Kamil; Kwiatkowski, Tomasz; Szymczak, Piotr

    2015-04-01

    Investigation of cores drilled from gas-bearing shale formations reveals a relatively large number of calcite-cemented fractures. During fracking, some of these fractures will be reactivated [1-2] and may become important flow paths in the resulting fracture system. In this communication, we investigate numerically the effect of low-pH reactive fluid on such fractures. The low-pH fluids can either be pumped during the initial fracking stage (as suggested e.g. by Grieser et al., [3]) or injected later, as part of enhanced gas recovery (EGR) processes. In particular, it has been suggested that CO2 injection can be considered as a method of EGR [4], which is attractive as it can potentially be combined with simultaneous CO2 sequestration. However, when mixed with brine, CO2 becomes acidic and thus can be a dissolving agent for the carbonate cement in the fractures. The dissolution of the cement leads to the enhancement of permeability and interconnectivity of the fracture network and, as a result, increases the overall capacity of the reservoir. Importantly, we show that the dissolution of such fractures proceeds in a highly non-homogeneous manner - a positive feedback between fluid transport and mineral dissolution leads to the spontaneous formation of pronounced flow channels, frequently referred to as "wormholes". The wormholes carry the chemically active fluid deeper inside the system, which dramatically speeds up the overall permeability increase. If the low-pH fluids are used during fracking, then the non-uniform dissolution becomes important for retaining the fracture permeability, even in the absence of the proppant. Whereas a uniformly etched fracture will close tightly under the overburden once the fluid pressure is removed, the nonuniform etching will tend to maintain the permeability since the less dissolved regions will act as supports to keep more dissolved regions open. [1] Gale, J. F., Reed, R. M., Holder, J. (2007). Natural fractures in the Barnett

  7. Process connectivity in a naturally prograding river delta

    Science.gov (United States)

    Sendrowski, Alicia; Passalacqua, Paola

    2017-03-01

    River deltas are lowland systems that can display high hydrological connectivity. This connectivity can be structural (morphological connections), functional (control of fluxes), and process connectivity (information flow from system drivers to sinks). In this work, we quantify hydrological process connectivity in Wax Lake Delta, coastal Louisiana, by analyzing couplings among external drivers (discharge, tides, and wind) and water levels recorded at five islands and one channel over summer 2014. We quantify process connections with information theory, a branch of mathematics concerned with the communication of information. We represent process connections as a network; variables serve as network nodes and couplings as network links describing the strength, direction, and time scale of information flow. Comparing process connections at long (105 days) and short (10 days) time scales, we show that tides exhibit daily synchronization with water level, with decreasing strength from downstream to upstream, and that tides transfer information as tides transition from spring to neap. Discharge synchronizes with water level and the time scale of its information transfer compares well to physical travel times through the system, computed with a hydrodynamic model. Information transfer and physical transport show similar spatial patterns, although information transfer time scales are larger than physical travel times. Wind events associated with water level setup lead to increased process connectivity with highly variable information transfer time scales. We discuss the information theory results in the context of the hydrologic behavior of the delta, the role of vegetation as a connector/disconnector on islands, and the applicability of process networks as tools for delta modeling results.

  8. Nature Journaling: Enhancing Students' Connections to the Environment through Writing

    Science.gov (United States)

    Cormell, Janita; Ivey, Toni

    2012-01-01

    Today's youth are increasingly spending more time indoors and less time outside. As a result, many children have a "nature deficit" (Louv 2005) and little awareness of their role in nature. In this article, the first author describes how she shared her passion for nature with her sixth-grade students through nature journaling and how her…

  9. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  10. Production forecasting and economic evaluation of horizontal wells completed in natural fractured reservoirs

    International Nuclear Information System (INIS)

    Evans, R. D.

    1996-01-01

    A technique for optimizing recovery of hydrocarbons from naturally fractured reservoirs using horizontal well technology was proposed. The technique combines inflow performance analysis, production forecasting and economic considerations, and is based on material balance analysis and linear approximations of reservoir fluid properties as functions of reservoir pressure. An economic evaluation model accounting for the time value of cash flow, interest and inflation rates, is part of the package. Examples of using the technique have been demonstrated. The method is also applied to a gas well producing from a horizontal wellbore intersecting discrete natural fractures. 11 refs., 2 tabs,. 10 figs

  11. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    Science.gov (United States)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  12. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Potirakis, S. M. [Department of Electronics, Technological Education Institute (TEI) of Piraeus, 250 Thivon and P. Ralli, Aigaleo, Athens GR-12244 (Greece); Karadimitrakis, A. [Department of Physics, Section of Electronics, Computers, Telecommunications and Control, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece); Eftaxias, K. [Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece)

    2013-06-15

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  13. Natural time analysis of critical phenomena: the case of pre-fracture electromagnetic emissions.

    Science.gov (United States)

    Potirakis, S M; Karadimitrakis, A; Eftaxias, K

    2013-06-01

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  14. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions

    International Nuclear Information System (INIS)

    Potirakis, S. M.; Karadimitrakis, A.; Eftaxias, K.

    2013-01-01

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  15. Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach

    Directory of Open Access Journals (Sweden)

    Ali Shafiei

    2018-02-01

    Full Text Available In this paper, we characterized the natural fracture systems and inferred the state of in situ stress field through an integrated study in a very complex and heterogeneous fractured carbonate reservoir. Relative magnitudes and orientations of the in-situ principal stresses in a naturally fractured carbonate heavy oil field were estimated with a combination of available data (World Stress Map, geological and geotectonic evidence, outcrop studies and techniques (core analysis, borehole image logs and Side View Seismic Location. The estimates made here using various tools and data including routine core analysis and image logs are confirmatory to estimates made by the World Stress Map and geotectonic facts. NE-SW and NW-SE found to be the dominant orientations for maximum and minimum horizontal stresses in the study area. In addition, three dominant orientations were identified for vertical and sub-vertical fractures atop the crestal region of the anticlinal structure. Image logs found useful in recognition and delineation of natural fractures. The results implemented in a real field development and proved practical in optimal well placement, drilling and production practices. Such integrated studies can be instrumental in any E&P projects and related projects such as geological CO2 sequestration site characterization.

  16. IMPACT OF HYDRAULIC FRACTURING ON THE QUALITY OF NATURAL WATERS

    Directory of Open Access Journals (Sweden)

    Wojciech Cel

    2017-03-01

    Full Text Available Poland, due to the estimated shale gas deposits amounting to 346-768 billion m3 has become one of the most attractive regions for shale gas exploration in Europe. Throughout the period 2010-2015, 72 exploratory drillings have been made (as of 4.01.2016 while hydraulic fracturing was carried out 25 times. Employing new drilling and shale gas prospecting technologies raises a question pertaining to their impact on the environment. The number of chemical compounds used (approximately 2000 for the production of new technological fluids may potentially pollute the environment. The fact that the composition of these fluids remains undisclosed hinders the assessment of their impact on the environment and devising optimal methods for managing this type of waste. The presented work indicates the chemical compounds which may infiltrate to groundwater, identified on the basis of technological fluids characteristics, as well as the review of studies pertaining to their impact on potable water carried out in the United States. The study focused on marking heavy metals, calcium, sodium, magnesium, potassium, chlorides and sulphates in the surface waters collected in proximity of Lewino well.

  17. Dimensional threshold for fracture linkage and hooking

    Science.gov (United States)

    Lamarche, Juliette; Chabani, Arezki; Gauthier, Bertrand D. M.

    2018-03-01

    Fracture connectivity in rocks depends on spatial properties of the pattern including length, abundance and orientation. When fractures form a single-strike set, they hardly cross-cut each other and the connectivity is limited. Linkage probability increases with increasing fracture abundance and length as small fractures connect to each other to form longer ones. A process for parallel fracture linkage is the "hooking", where two converging fracture tips mutually deviate and then converge to connect due to the interaction of their crack-tip stresses. Quantifying the processes and conditions for fracture linkage in single-strike fracture sets is crucial to better predicting fluid flow in Naturally Fractured Reservoirs. For 1734 fractures in Permian shales of the Lodève Basin, SE France, we measured geometrical parameters in 2D, characterizing three stages of the hooking process: underlapping, overlapping and linkage. We deciphered the threshold values, shape ratios and limiting conditions to switch from one stage to another one. The hook set up depends on the spacing (S) and fracture length (Lh) with the relation S ≈ 0.15 Lh. Once the hooking is initiated, with the fracture deviation length (L) L ≈ 0.4 Lh, the fractures reaches the linkage stage only when the spacing is reduced to S ≈ 0.02 Lh and the convergence (C) is < 0.1 L. These conditions apply to multi-scale fractures with a shape ratio L/S = 10 and for fracture curvature of 10°-20°.

  18. Groundwater flow through a natural fracture. Flow experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Geology

    1997-09-01

    Groundwater flow and transport play an important role not only for groundwater exploration but also in environmental engineering problems. This report considers how the hydraulic properties of fractures in crystalline rock depend on the fracture aperture geometry. Different numerical models are discussed and a FDM computer code for two- and three- dimensional flow-modelling has been developed. Different relations between the cells in the model are tested and compared with results in the literature. A laboratory experimental work has been done to carry out flow experiments and aperture measurements on the same specimen of a natural fracture. The drilled core sample had fractures parallel to the core axis and was placed inside a biaxial cell during the experiments. The water pressure gradient and the compression stress were varied during the experiments and also a tracer test was done. After the flow experiments, the aperture distribution for a certain compression was measured by injecting an epoxy resin into the fracture. The thickness of the resin layer was then studied in saw cut sections of the sample. The results from the experiments were used to validate numerical and analytical models, based on aperture distribution, for flow and transport simulations. In the disturbed zone around a drift both water and air are present in the fractures. The gas will go to the most wide part of the fracture because the capillarity and the conductivity decrease. The dependence of the effective conductivity on the variance of the conductivity and the effect of extinction of highly conductive cells has also been studied. A discussion of how gas in fractures around a drift can cause a skin effect is modelled and an example is given of what a saturation depending on the magnitude of the flow causes. 25 refs, 17 tabs, 43 figs.

  19. Groundwater flow through a natural fracture. Flow experiments and numerical modelling

    International Nuclear Information System (INIS)

    Larsson, Erik

    1997-09-01

    Groundwater flow and transport play an important role not only for groundwater exploration but also in environmental engineering problems. This report considers how the hydraulic properties of fractures in crystalline rock depend on the fracture aperture geometry. Different numerical models are discussed and a FDM computer code for two- and three- dimensional flow-modelling has been developed. Different relations between the cells in the model are tested and compared with results in the literature. A laboratory experimental work has been done to carry out flow experiments and aperture measurements on the same specimen of a natural fracture. The drilled core sample had fractures parallel to the core axis and was placed inside a biaxial cell during the experiments. The water pressure gradient and the compression stress were varied during the experiments and also a tracer test was done. After the flow experiments, the aperture distribution for a certain compression was measured by injecting an epoxy resin into the fracture. The thickness of the resin layer was then studied in saw cut sections of the sample. The results from the experiments were used to validate numerical and analytical models, based on aperture distribution, for flow and transport simulations. In the disturbed zone around a drift both water and air are present in the fractures. The gas will go to the most wide part of the fracture because the capillarity and the conductivity decrease. The dependence of the effective conductivity on the variance of the conductivity and the effect of extinction of highly conductive cells has also been studied. A discussion of how gas in fractures around a drift can cause a skin effect is modelled and an example is given of what a saturation depending on the magnitude of the flow causes

  20. Investigation of gas-oil gravity drainage in naturally fractured reservoirs using discrete fracture and matrix numerical model

    International Nuclear Information System (INIS)

    Bazr-Afkan, S.

    2012-01-01

    To simulate fluid flow in Naturally Fractured Reservoirs (NFRs), a new Descrete Fracture and Matrix (DFM) simulation technique is developed as a physically more realistic alternative to the dual continuum approach. This Finite-Element Centered Finite-Volume method (FECFVM) has the advantage over earlier FECFVM approaches that it honors saturation dicontinuities that can arise at material interfaces from the interplay of viscous, capillary and gravitational forces. By contrast with an earlier embedded-discontinuity DFEFVM method, the FECFVM achieves this without introducing additional degrees of freedom. It also allows to simulate capillary- and other fracture-matrix exchange processes using a lower dimensional representation of fractures, simplifying model construction and unstructured meshing as well as speeding up computations. A further step-up is obtained by solving the two-phase fluid-flow and saturation transport equations only on 'active elements'. This also diminishes round-off and truncation errors, reducing numerical diffusion during the solution of the transport equation. The FECFVM is verified by comparing IMPES operator-splitting sequential solutions with analytical ones, as well as benchmarking it against commercial reservoir simulators on simple geometries that these can represent. This testing confirms that my 2D FECFVM implementation simulates gravitational segregation, capillary redistribution, capillary barriers, and combinations thereof physically realistically, achieving (at least) first-order solution accuracy. Following this verification, the FECFVM is applied to study Gas-Oil Gravity Drainage (GOGD) process in cross-sectional models of layered NFRs. Here comparisons with dual continua simulations show that these do not capture a range of block-to-block effects, yielding over-optimistic drainage rates. Observations made on individual matrix blocks in the DFM simulations further reveal that their saturation evolution is at odds with the

  1. Oil recovery from naturally fractured reservoirs by steam injection methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reis, J.C.; Miller, M.A.

    1995-05-01

    Oil recovery by steam injection is a proven, successful technology for nonfractured reservoirs, but has received only limited study for fractured reservoirs. Preliminary studies suggest recovery efficiencies in fractured reservoirs may be increased by as much as 50% with the application of steam relative to that of low temperature processes. The key mechanisms enhancing oil production at high temperature are the differential thermal expansion between oil and the pore volume, and the generation of gases within matrix blocks. Other mechanisms may also contribute to increased production. These mechanisms are relatively independent of oil gravity, making steam injection into naturally fractured reservoirs equally attractive to light and heavy oil deposits. The objectives of this research program are to quantify the amount of oil expelled by these recovery mechanisms and to develop a numerical model for predicting oil recovery in naturally fractured reservoirs during steam injection. The experimental study consists of constructing and operating several apparatuses to isolate each of these mechanisms. The first measures thermal expansion and capillary imbibition rates at relatively low temperature, but for various lithologies and matrix block shapes. The second apparatus measures the same parameters, but at high temperatures and for only one shape. A third experimental apparatus measures the maximum gas saturations that could build up within a matrix block. A fourth apparatus measures thermal conductivity and diffusivity of porous media. The numerical study consists of developing transfer functions for oil expulsion from matrix blocks to fractures at high temperatures and incorporating them, along with the energy equation, into a dual porosity thermal reservoir simulator. This simulator can be utilized to make predictions for steam injection processes in naturally-fractured reservoirs. Analytical models for capillary imbibition have also been developed.

  2. The IPBES conceptual framework — connecting nature and people

    CSIR Research Space (South Africa)

    Diaz, S

    2015-06-01

    Full Text Available in the vast majority of cases they do not affect nature directly, but rather through their effects on direct anthropogenic drivers (see below). Institutions encompass all formal and informal interactions among stakeholders and social structures that determine... developed countries, this disproportionally affects the poor and women indirectly affect nature and its benefits to people and quality of life w forest areas as an alternative source of protein, and thus affecting pop health [87]. In many cases, lack...

  3. The IPBES Conceptual Framework - connecting nature and people

    DEFF Research Database (Denmark)

    Díaz, Sandra; Demissew, Sebsebe; Carabias, Julia

    2015-01-01

    , including indigenous and local knowledge. Because the focus on co-construction of integrative knowledge is shared by an increasing number of initiatives worldwide, this framework should be useful beyond IPBES, for the wider research and knowledge-policy communities working on the links between nature...... and people, such as natural, social and engineering scientists, policy-makers at different levels, and decision-makers in different sectors of society....

  4. Unified fluid flow model for pressure transient analysis in naturally fractured media

    International Nuclear Information System (INIS)

    Babak, Petro; Azaiez, Jalel

    2015-01-01

    Naturally fractured reservoirs present special challenges for flow modeling with regards to their internal geometrical structure. The shape and distribution of matrix porous blocks and the geometry of fractures play key roles in the formulation of transient interporosity flow models. Although these models have been formulated for several typical geometries of the fracture networks, they appeared to be very dissimilar for different shapes of matrix blocks, and their analysis presents many technical challenges. The aim of this paper is to derive and analyze a unified approach to transient interporosity flow models for slightly compressible fluids that can be used for any matrix geometry and fracture network. A unified fractional differential transient interporosity flow model is derived using asymptotic analysis for singularly perturbed problems with small parameters arising from the assumption of a much smaller permeability of the matrix blocks compared to that of the fractures. This methodology allowed us to unify existing transient interporosity flow models formulated for different shapes of matrix blocks including bounded matrix blocks, unbounded matrix cylinders with any orthogonal crossection, and matrix slabs. The model is formulated using a fractional order diffusion equation for fluid pressure that involves Caputo derivative of order 1/2 with respect to time. Analysis of the unified fractional derivative model revealed that the surface area-to-volume ratio is the key parameter in the description of the flow through naturally fractured media. Expressions of this parameter are presented for matrix blocks of the same geometrical shape as well as combinations of different shapes with constant and random sizes. Numerical comparisons between the predictions of the unified model and those obtained from existing transient interporosity ones for matrix blocks in the form of slabs, spheres and cylinders are presented for linear, radial and spherical flow types for

  5. Stiffness and strength properties of natural fractures from north ramp drill holes

    International Nuclear Information System (INIS)

    Olsson, W.A.; Price, R.H.; Brown, S.R.

    1994-01-01

    Cores containing natural fractures were obtained from drillholes UE 25 NRG-4 and USW NRG-6 at Yucca Mountain, Nevada. Seven selected fractures were sheared at constant normal stress, either 5 or 10 MPa, in the air-dry condition. Detailed profilometer data were collected from each fracture surface before testing. The tests yielded the normal closure as a function of normal stress, and the shear stress and dilation as a function of shear offset. The constitutive properties resulting from the measurements were: normal stiffness, shear stiffness, shear strength and coefficient of friction, and dilation. Peak friction ranged from 0.89 to 1.11; residual friction ranged from 0.76 to 1.00. The lowest initial dilation angle was found to be 5.29 degrees and the highest was 11.28 degrees. The roughness characteristics of the fracture surfaces agree qualitatively with the simple mathematical model of Brown (1994) derived from fracture data in many other rock types

  6. Distribution and natural history of stress fractures in U.S. Marine recruits

    International Nuclear Information System (INIS)

    Greaney, R.B.; Gerber, F.H.; Laughlin, R.L.; Kmet, J.P.; Metz, C.D.; Kilcheski, T.S.; Rao, B.R.; Silverman, E.D.

    1983-01-01

    In a prospective study of stress injuries of the lower extremities of U.S. Marine recruits, researchers derived a frequency distribution of stress fractures. The most frequently fractured bone was the tibia (73%), while the single most common site was the posterior calcaneal tuberosity (21%). The natural history of stress fractures by scintigraphy and radiography has been outlined, showing the evolutionary changes on either study as a universal progression independent of injury site or type of stress. An identical spectrum of changes should be present within any group undergoing intense new exercise. The frequency distribution of stress fractures should be a function of differing forms and intensities of exercise, therefore, our figures should not be applied to other groups. Researchers used the presence of a scintigraphic abnormality at a symptomatic site as the criterion for diagnosis of stress fracture. Since the distribution of skeletal radiotracer uptake is directly dependent on local metabolic activity, it is expected that a focal alteration in bone metabolism will result in a scintigram approaching 100% sensitivity for the abnormality (9). In the proper clinical setting, the specificity should approximate this figure; however, a focal, nonstress-related bone abnormality which has not manifested any radiographic change, such as early osteomyelitis, could result in a false-positive examination. Specificity cannot, therefore, be accurately determined without an actual determination of the pathologic changes within the bone, necessarily involving biopsy

  7. Naturally fractured tight gas reservoir detection optimization. Annual report, September 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This report is an annual summarization of an ongoing research in the field of modeling and detecting naturally fractured gas reservoirs. The current research is in the Piceance basin of Western Colorado. The aim is to use existing information to determine the most optimal zone or area of fracturing using a unique reaction-transport-mechanical (RTM) numerical basin model. The RTM model will then subsequently help map subsurface lateral and vertical fracture geometries. The base collection techniques include in-situ fracture data, remote sensing, aeromagnetics, 2-D seismic, and regional geologic interpretations. Once identified, high resolution airborne and spaceborne imagery will be used to verify the RTM model by comparing surficial fractures. If this imagery agrees with the model data, then a further investigation using a three-dimensional seismic survey component will be added. This report presents an overview of the Piceance Creek basin and then reviews work in the Parachute and Rulison fields and the results of the RTM models in these fields.

  8. A Framework to Assess Where and How Children Connect to Nature

    Science.gov (United States)

    Giusti, Matteo; Svane, Ulrika; Raymond, Christopher M.; Beery, Thomas H.

    2018-01-01

    The design of the green infrastructure in urban areas largely ignores how people's relation to nature, or human-nature connection (HNC), can be nurtured. One practical reason for this is the lack of a framework to guide the assessment of where people, and more importantly children, experience significant nature situations and establish nature routines. This paper develops such a framework. We employed a mixed-method approach to understand what qualities of nature situations connect children to nature (RQ1), what constitutes children's HNC (RQ2), and how significant nature situations and children's HNC relate to each other over time (RQ3). We first interviewed professionals in the field of connecting children to nature (N = 26), performed inductive thematic analysis of these interviews, and then further examined the inductive findings by surveying specialists (N = 275). We identified 16 qualities of significant nature situations (e.g., “awe,” “engagement of senses,” “involvement of mentors”) and 10 abilities that constitute children's HNC (e.g., “feeling comfortable in natural spaces,” “feeling attached to natural spaces,” “taking care of nature”). We elaborated three principles to answer our research questions: (1) significant nature situations are various and with differing consequences for children's HNC; (2) children's HNC is a complex embodied ability; (3) children's HNC progresses over time through diverse nature routines. Together, these findings form the Assessment framework for Children's Human Nature Situations (ACHUNAS). ACHUNAS is a comprehensive framework that outlines what to quantify or qualify when assessing “child-nature connecting” environments. It guides the assessment of where and how children connect to nature, stimulating both the design of nature-connecting human habitats as well as pedagogical approaches to HNC. PMID:29354088

  9. A Framework to Assess Where and How Children Connect to Nature

    Directory of Open Access Journals (Sweden)

    Matteo Giusti

    2018-01-01

    Full Text Available The design of the green infrastructure in urban areas largely ignores how people's relation to nature, or human-nature connection (HNC, can be nurtured. One practical reason for this is the lack of a framework to guide the assessment of where people, and more importantly children, experience significant nature situations and establish nature routines. This paper develops such a framework. We employed a mixed-method approach to understand what qualities of nature situations connect children to nature (RQ1, what constitutes children's HNC (RQ2, and how significant nature situations and children's HNC relate to each other over time (RQ3. We first interviewed professionals in the field of connecting children to nature (N = 26, performed inductive thematic analysis of these interviews, and then further examined the inductive findings by surveying specialists (N = 275. We identified 16 qualities of significant nature situations (e.g., “awe,” “engagement of senses,” “involvement of mentors” and 10 abilities that constitute children's HNC (e.g., “feeling comfortable in natural spaces,” “feeling attached to natural spaces,” “taking care of nature”. We elaborated three principles to answer our research questions: (1 significant nature situations are various and with differing consequences for children's HNC; (2 children's HNC is a complex embodied ability; (3 children's HNC progresses over time through diverse nature routines. Together, these findings form the Assessment framework for Children's Human Nature Situations (ACHUNAS. ACHUNAS is a comprehensive framework that outlines what to quantify or qualify when assessing “child-nature connecting” environments. It guides the assessment of where and how children connect to nature, stimulating both the design of nature-connecting human habitats as well as pedagogical approaches to HNC.

  10. Significance and estimations of lifetime of natural fracture mineral buffers in the Olkiluoto bedrock

    International Nuclear Information System (INIS)

    Luukkonen, A.; Pitkaenen, P.; Partamies, S.

    2004-03-01

    This study attempts to make scenarios what geochemical effects the future underground excavations in the Olkiluoto bedrock have on naturally occurring fracture mineral buffers. The excavations of underground research facilities, and final repository galleries will cause steep hydraulic gradients in the bedrock fractures. These gradients likely draw surficial waters within the fracture network and activate weathering processes deeper in rock fractures than in the natural undisturbed conditions. The studies are concentrated on the meteoric and seawater infiltration in the rock fractures, and on the selected minerals considered significant buffers against pH/redox variations in groundwater. Two approaches to calculate the scenarios are utilised. The equilibrium geochemical calculations consider variety of problems including several surficial water compositions, mixing cases between surficial water types, and couple buffer mineral assemblages. These equilibrium calculations indicate that meteoric water by far presents the most potential hazard for the Olkiluoto fracture minerals. In the calculated cases, seawater and the contamination of meteoric water with seawater during the water infiltration usually improved the performance of mineral buffers compared to the pure meteoric water cases. Of the Olkiluoto fracture minerals, calcite and pyrite turn out to be the most important buffer minerals against dissolved O 2 and low pH in groundwater. The kinetic geochemical approach concentrated on two meteoric water cases infiltrating into a narrow fracture channel. Calculations consider the possibilities that the infiltrating meteoric water is dissolved carbon containing soil water or almost 'distilled' rain water. Pyrite and calcite are taken into account as the buffering minerals. Several simulations are done by varying the recharge water compositions and the flow rates of water. It turns out that as long as volumetric flow rates within the 500-metre-channel considered are in

  11. The influence of A-segregation on the risk of fracture in a feed water connection piece

    International Nuclear Information System (INIS)

    Nilsson, F.

    1981-11-01

    The inhomogeneities of a reactor tank in form of A-segregation may reduce the fracture toughness of the material. The investigation presents an estimate of the promoting effect of the segregation in a connection piece. A probabilitic model is used and the probability to initiate the growth is found to increase by a facter of 2 to 10. A stability analysis is made by means of the stability criterium. The safeguard against the unstable growth is found to be great. The crack-arrest analysis shows that a prevention of cracks should take place. This analysis is very coarse.(G.B.)

  12. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Science.gov (United States)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  13. Simulation of petroleum recovery in naturally fractured reservoirs: physical process representation

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Hernani P.; Miranda Filho, Daniel N. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2012-07-01

    The naturally fractured reservoir recovery normally involves risk especially in intermediate to oil wet systems because of the simulations poor efficiency results under waterflood displacement. Double-porosity models are generally used in fractured reservoir simulation and have been implemented in the major commercial reservoir simulators. The physical processes acting in petroleum recovery are represented in double-porosity models by matrix-fracture transfer functions, therefore commercial simulators have their own implementations, and as a result different kinetics and final recoveries are attained. In this work, a double porosity simulator was built with Kazemi et al. (1976), Sabathier et al. (1998) and Lu et al. (2008) transfer function implementations and their recovery results have been compared using waterflood displacement in oil-wet or intermediate-wet systems. The results of transfer function comparisons have showed recovery improvements in oil-wet or intermediate-wet systems under different physical processes combination, particularly in fully discontinuous porous medium when concurrent imbibition takes place, coherent with Firoozabadi (2000) experimental results. Furthermore, the implemented transfer functions, related to a double-porosity model, have been compared to double-porosity commercial simulator model, as well a discrete fracture model with refined grid, showing differences between them. Waterflood can be an effective recovery method even in fully discontinuous media for oil-wet or intermediate-wet systems where concurrent imbibition takes place with high enough pressure gradients across the matrix blocks. (author)

  14. A stratified percolation model for saturated and unsaturated flow through natural fractures

    International Nuclear Information System (INIS)

    Pyrak-Nolte, L.J.

    1990-01-01

    The geometry of the asperities of contact between the two surfaces of a fracture and of the adjacent void spaces determines fluid flow through a fracture and the mechanical deformation across a fracture. Heuristically we have developed a stratified continuum percolation model to describe this geometry based on a fractal construction that includes scale invariance and correlation of void apertures. Deformation under stress is analyzed using conservation of rock volume to correct for asperity interpenetration. Single phase flow is analyzed using a critical path along which the principal resistance is a result of laminar flow across the critical neck in this path. Results show that flow decreases with apparent aperture raised to a variable power greater than cubic, as is observed in flow experiments on natural fractures. For two phases, flow of the non-wetting phase is likewise governed by the critical neck along the critical path of largest aperture but flow of the wetting phase is governed by tortuosity. 17 refs., 10 figs

  15. Laboratory studies of groundwater degassing in replicas of natural fractured rock for linear flow geometry

    International Nuclear Information System (INIS)

    Geller, J.T.

    1998-02-01

    Laboratory experiments to simulate two-phase (gas and water) flow in fractured rock evolving from groundwater degassing were conducted in transparent replicas of natural rock fractures. These experiments extend the work by Geller et al. (1995) and Jarsjo and Geller (1996) that tests the hypothesis that groundwater degassing caused observed flow reductions in the Stripa Simulated Drift Experiment (SDE). Understanding degassing effects over a range of gas contents is needed due to the uncertainty in the gas contents of the water at the SDE. The main objectives of this study were to: (1) measure the effect of groundwater degassing on liquid flow rates for lower gas contents than the values used in Geller for linear flow geometry in the same fracture replicas of Geller; (2) provide a data set to develop a predictive model of two-phase flow in fractures for conditions of groundwater degassing; and (3) improve the certainty of experimental gas contents (this effort included modifications to the experimental system used by Geller et al. and separate gas-water equilibration tests). The Stripa site is being considered for a high-level radioactive waste repository

  16. Colloid and radionuclide retention mechanisms in fractured rock under near-natural flow conditions

    International Nuclear Information System (INIS)

    Delos, A.; Schaefer, T.; Geckeis, H.; Guimera, J.; Carrera, J.; Fanghaenel, T.

    2005-01-01

    Full text of publication follows: Experiments in fractured host rock (Grimsel Test Site, GTS, Switzerland) revealed that the colloid relevance for actinide migration is high due to the specific geochemical groundwater conditions [1]. However, even under such conditions it is found that retention of colloids and colloid-borne actinides becomes significant under near-natural groundwater flow rates (1-10 m/a) [2]. Underlying mechanisms of colloid and radionuclide retention are not well understood up to now. The present study co-funded by the NoE ACTINET-6 focuses on (i) the kinetics of actinide-colloid interactions and (ii) the relevance of matrix diffusion as a competition process to other retention mechanisms which affect the actinides behavior in fractured rock systems such as the Grimsel granodiorite. Colloid migration is studied with well defined model colloids as e.g. fluorescence dyed carboxylated polystyrene particles, and natural colloids extracted from bentonite (FEBEX) and from fracture filling material (GTS). In order to study the influence of matrix porosity on actinides migration, those experiments are performed in columns of well defined geometry filled with microporous unmodified silica spheres, porous ceramic material and natural fracture filling material from the GTS. The behaviour of actinides (Pu(IV) and Am(III)) sorbed onto bentonite colloids is investigated in column and batch experiments. All experiments are performed under anoxic conditions. Colloid characterization methods used in this study include the combination of photon correlation spectroscopy (PCS), laser-induced breakdown detection (LIBD), fluorimetry and field flow fractionation (FFF). Experimental results and their application to the parametrisation of reactive colloid transport models are discussed. [1] Geckeis H, Schaefer T, Hauser W, Rabung T, Missana T, Degueldre C, Moeri A, Eikenberg J, Fierz T, Alexander WR (2004) Results of the Colloid and Radionuclide Retention experiment

  17. [Effect of pneumatic compression in connection with ergotherapeutic treatment of Colles' fracture. A clinical controlled trial].

    Science.gov (United States)

    Svensson, B H; Frellsen, M B; Basse, P N; Bliddal, H; Caspers, J; Parby, K

    1993-02-15

    We followed forty women with functional deficits in the wrist and hand after sustaining a Colles' fracture. The women participated in occupational therapy three times a week for three weeks. At the initial evaluation, after three weeks, and at a three month evaluation, we measured the following: range of joint movement, grip strength, hand volume (oedema), pain and ADL. There was significant improvement in most of the parameters measured after three weeks of occupational therapy, with a less significant improvement from three weeks to three months. Seventeen of the forty women received twenty minutes of intermittent pneumatic compression before occupational therapy. These patients showed significant improvement in wrist extension, compared with the control group of twenty-three patients. Occupational therapy is recommended for patients showing a functional deficit after Colles' fracture. Intermittent pneumatic compression is recommended as a supplement to occupational therapy.

  18. Effects of different block size distributions in pressure transient response of naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, G.H. [Islamic Azad University, Mahshahr (Iran, Islamic Republic of). Dept. of Chemical and Petroleum Engineering], E-mail: montazeri_gh@yahoo.com; Tahami, S.A. [Mad Daneshgostar Tabnak Co. (MDT),Tehran (Iran, Islamic Republic of); Moradi, B.; Safari, E. [Iranian Central Oil Fields Co, Tehran (Iran, Islamic Republic of)], E-mail: morady.babak@gmail.com

    2011-07-15

    This paper presents a model for pressure transient and derivative analysis for naturally fractured reservoirs by a formulation of inter porosity flow incorporating variations in matrix block size, which is inversely related to fracture intensity. Geologically realistic Probability Density Functions (PDFs) of matrix block size, such as uniform, bimodal, linear and exponential distributions, are examined and pseudo-steady-state and transient models for inter porosity flow are assumed. The results have been physically interpreted, and, despite results obtained by other authors, it was found that the shape of pressure derivative curves for different PDFs are basically identical within some ranges of block size variability, inter porosity skin, PDFs parameters and matrix storage capacity. This tool can give an insight on the distribution of block sizes and shapes, together with other sources of information such as Logs and geological observations. (author)

  19. Focal species and landscape "naturalness" corridor models offer complementary approaches for connectivity conservation planning

    Science.gov (United States)

    Meade Krosby; Ian Breckheimer; D. John Pierce; Peter H. Singleton; Sonia A. Hall; Karl C. Halupka; William L. Gaines; Robert A. Long; Brad H. McRae; Brian L. Cosentino; Joanne P. Schuett-Hames

    2015-01-01

    Context   The dual threats of habitat fragmentation and climate change have led to a proliferation of approaches for connectivity conservation planning. Corridor analyses have traditionally taken a focal species approach, but the landscape ‘‘naturalness’’ approach of modeling connectivity among areas of low human modification has gained popularity...

  20. Natural fracturing of rocks: application to the Ahnet basin (Algeria); Fracturation naturelle des roches: application au bassin de l`Ahnet (Algerie)

    Energy Technology Data Exchange (ETDEWEB)

    Badsi, M

    1998-07-06

    In the Ahnet basin, the production seems to be unrelated to lithological variations in the reservoirs. In these large anticline structures, located in the central Ahnet basin, the presence of gas has been proven, but only a few production wells have been moderately successful. This inconsistency is probably related to the spatial distribution of fracturing throughout the reservoir. In order to investigate several hypothesis, we used several approach to solve problems posed by the interpreter: namely understanding the deformation process, predicting the fractured zones and building the discrete model of fracture network. This approach combines several methods, including sand box modelling, numerical modelling and Statistics rules, often related with fractal behaviour of faults families, have been used for extrapolating observations from seismic or from wells. The numerical tools and sand box analysis have allowed us to answer to the questions related to the formation of this large anticlines in the Ahnet basin and suggest a probable origin of the variation in the spatial distribution of natural fractures. The deterministic predictions of small-scale faults use probabilistic approaches for spatial interpolation assuming implicitly relationship between detected large faults and unresolved small faults. The statistical modelling is used to carry out analysis of the spatial variation of mean fracture attributes at the global scale (a few kilometers) and a 3D stochastic modelling of the fracture system at the local scale (a few ten of meters). (author) 139 refs.

  1. Regional economic impacts of the unconventional promotion of natural gas (Hydraulic Fracturing). Preliminary study; Regionaloekonomische Auswirkungen der unkonventionellen Erdgasfoerderung (Hydraulic Fracturing). Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Bizer, Kilian; Bossmeyer, Christoph

    2012-07-01

    Actually, there is a controversial public discussion on the exploitation of conventional natural gas by means of hydraulic fracturing (Fracking). The contribution under consideration examines the geologic, toxicological or technical as well as legal points of contact with respect to the different effects for the actor groups. Based on the existing scientific realizations, the regional economic effects of the fracking technology and the subsequent promotion of unconventional natural gas deposits have to be worked out.

  2. Fault-controlled permeability and fluid flow in low-porosity crystalline rocks: an example from naturally fractured geothermal systems in the Southern Andes

    Science.gov (United States)

    Arancibia, G.; Roquer, T.; Sepúlveda, J.; Veloso, E. A.; Morata, D.; Rowland, J. V.

    2017-12-01

    Fault zones can control the location, emplacement, and evolution of economic mineral deposits and geothermal systems by acting as barriers and/or conduits to crustal fluid flow (e.g. magma, gas, oil, hydro-geothermal and groundwater). The nature of the fault control permeability is critical in the case of fluid flow into low porosity/permeability crystalline rocks, since structural permeability provides the main hydraulic conductivity to generate a natural fractured system. However, several processes accompanying the failure of rocks (i.e. episodic permeability given by cycling ruptures, mineral precipitation from fluids in veins, dissolution of minerals in the vicinity of a fracture) promote a complex time-dependent and enhancing/reducing fault-controlled permeability. We propose the Southern Volcanic Zone (Southern Andes, Chile) as a case study to evaluate the role of the structural permeability in low porosity crystalline rocks belonging to the Miocene North Patagonian Batholith. Recently published studies propose a relatively well-constrained first-order role of two active fault systems, the arc-parallel (NS to NNE trending) Liquiñe Ofqui Fault System and the arc-oblique (NW trending) Andean Transverse Fault Zones, in fluid flow at crustal scales. We now propose to examine the Liquiñe ( 39°S) and Maihue ( 40°S) areas as sites of interaction between these fault systems, in order to evaluate a naturally fractured geothermal system. Preliminary results indicate upwelling of thermal water directly from fractured granite or from fluvial deposits overlying granitoids. Measured temperatures of thermal springs suggest a low- to medium-enthalpy system, which could potentially be harnessed for use in geothermal energy applications (e.g. heating, wood dryer and green house), which are much needed in Southern Chile. Future work will aim to examine the nature of structural permeability from the regional to the microscopic scale connecting the paleo- and current- fluid

  3. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Colorado School of Mines; Winterfeld, Philip [Colorado School of Mines; Wu, Yu-Shu [Colorado School of Mines

    2018-02-14

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added to the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.

  4. Genesis of natural hydraulic fractures as an indicator of basin inversion

    Science.gov (United States)

    Meng, Qingfeng; Hooker, John; Cartwright, Joe

    2017-09-01

    Satin spar (fibrous gypsum) veins, which occur in evaporite basins worldwide, provide significant insights into host rock deformation and fluid flow, although the genetic mechanism remains obscure. Satin spar veins in the red marls of the Triassic Mercia Mudstone of the Bristol Channel Basin were characterized in the context of regional and local setting. The vein network in the Keuper Marl (lower Mercia) exhibits a lack of systematic cross-cutting between three distinct vein sets. Two sets of veins are observed in the overlying Tea Green Marl, with one set clearly crossing the other. The gypsum veins commonly contain a blocky median zone of multiple thin bands of host-rock inclusions and alabastrine gypsum crystals, exhibiting crack-seal patterns. Fibrous zones on either side of the median zone consist of pure parallel-aligned gypsum fibres that are oblique to vein walls, indicating a hybrid shear-extensional mode of vein widening. Veins developed within reverse-reactivated faults contain fibre lineations in the median zones and also on vein surfaces, suggesting a minimum of two phases of fault slip. The veins are interpreted to have formed as a result of overpressure in the low-permeability mudstones by tectonic compression during basin inversion, giving rise to the median zone. Growth of gypsum fibres commenced when the initial fractures were completely sealed. The timing of vein formation is suggested to be Miocene, based on cross-cutting relationships with folds formed during the latest phase of basin inversion. Because the fractures initiated in response to fluid overpressures, they provide a useful analog to subsurface hydraulic fracture systems in low-permeability rocks subjected to tectonic compression. The fibrous widening of the veins post-dates their initiation and led to continued propagation and increased connectivity.

  5. A Coupled Model for Natural Convection and Condensation in Heated Subsurface Enclosures Embedded in Fractured Rock

    International Nuclear Information System (INIS)

    Halecky, N.; Birkholzer, J.T.; Webb, S.W.; Peterson, P.F.; Bodvarsson, G.S.

    2006-01-01

    In heated tunnels such as those designated for emplacement of radioactive waste at Yucca Mountain, axial temperature gradients may cause natural convection processes that can significantly influence the moisture conditions in the tunnels and in the surrounding fractured rock. Large-scale convection cells would provide an effective mechanism for axial vapor transport, driving moisture out of the formation away from the heated tunnel section into cool end sections (where no waste is emplaced). To study such processes, we have developed and applied an enhanced version of TOUGH2 (Pruess et al., 1999) adding a new module that solves for natural convection in open cavities. The new TOUGH2 simulator simultaneously handles (1) the flow and energy transport processes in the fractured rock; (2) the flow and energy transport processes in the cavity; and (3) the heat and mass exchange at the rock-cavity interface. The new module is applied to simulate the future thermal-hydrological (TH) conditions within and near a representative waste emplacement tunnel at Yucca Mountain. Particular focus is on the potential for condensation along the emplacement section, a possible result of heat output differences between individual waste packages

  6. Stress analysis and optimization of Nd:YAG pulsed laser processing of notches for fracture splitting of a C70S6 connecting rod

    International Nuclear Information System (INIS)

    Kou, Shuqing; Gao, Yan; Zhao, Yong; Lin, Baojun

    2017-01-01

    The pulsed laser pre-processing of a notch as the fracture initiation source for the splitting process is the key mechanism of an advanced fracture splitting technology for C70S6 connecting rods. This study investigated the stress field of Nd:YAG pulsed laser grooving, which affects the rapid fracture initiation at the notch root and the controlled crack extension in the critical fracture splitting quality, to improve manufacturing quality. Thermal elastic-plastic incremental theory was applied to build the finite element analysis model of the stress field of pulsed laser grooving for fracture splitting based on the Rotary-Gauss body heat source. The corresponding numerical simulation of the stress field was conducted. The changes and distributions of the stress during pulsed laser grooving were examined, the influence rule of the primary technological parameters on the residual stress was analyzed, and the analysis results were validated by the corresponding cutting experiment. Results showed that the residual stress distribution was concentrated in the Heat-affected zone (HAZ) near the fracture splitting notch, which would cause micro-cracks in the HAZ. The stress state of the notch root in the fracture initiation direction was tensile stress, which was beneficial to the fracture initiation and the crack rapid extension in the subsequent fracture splitting process. However, the uneven distribution of the stress could lead to fracture splitting defects, and thus the residual stress should be lowered to a reasonable range. Decreasing the laser pulse power, increasing the processing speed, and lowering the pulse width can lower the residual stress. Along with the actual production, the reasonable main technological parameters were obtained.

  7. Stress analysis and optimization of Nd:YAG pulsed laser processing of notches for fracture splitting of a C70S6 connecting rod

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Shuqing; Gao, Yan; Zhao, Yong; Lin, Baojun [Jilin University, Changchun (China)

    2017-05-15

    The pulsed laser pre-processing of a notch as the fracture initiation source for the splitting process is the key mechanism of an advanced fracture splitting technology for C70S6 connecting rods. This study investigated the stress field of Nd:YAG pulsed laser grooving, which affects the rapid fracture initiation at the notch root and the controlled crack extension in the critical fracture splitting quality, to improve manufacturing quality. Thermal elastic-plastic incremental theory was applied to build the finite element analysis model of the stress field of pulsed laser grooving for fracture splitting based on the Rotary-Gauss body heat source. The corresponding numerical simulation of the stress field was conducted. The changes and distributions of the stress during pulsed laser grooving were examined, the influence rule of the primary technological parameters on the residual stress was analyzed, and the analysis results were validated by the corresponding cutting experiment. Results showed that the residual stress distribution was concentrated in the Heat-affected zone (HAZ) near the fracture splitting notch, which would cause micro-cracks in the HAZ. The stress state of the notch root in the fracture initiation direction was tensile stress, which was beneficial to the fracture initiation and the crack rapid extension in the subsequent fracture splitting process. However, the uneven distribution of the stress could lead to fracture splitting defects, and thus the residual stress should be lowered to a reasonable range. Decreasing the laser pulse power, increasing the processing speed, and lowering the pulse width can lower the residual stress. Along with the actual production, the reasonable main technological parameters were obtained.

  8. Natural environments, nature relatedness and the ecological theater: connecting satellites and sequencing to shinrin-yoku.

    Science.gov (United States)

    Craig, Jeffrey M; Logan, Alan C; Prescott, Susan L

    2016-01-13

    Recent advances in research concerning the public health value of natural environments have been remarkable. The growing interest in this topic (often housed under terms such as green and/or blue space) has been occurring in parallel with the microbiome revolution and an increased use of remote sensing technology in public health. In the context of biodiversity loss, rapid urbanization, and alarming rates of global non-communicable diseases (many associated with chronic, low-grade inflammation), discussions of natural vis-a-vis built environments are not merely fodder for intellectual curiosity. Here, we argue for increased interdisciplinary collaboration with the aim of better understanding the mechanisms-including aerobiological and epigenetic-that might help explain some of the noted positive health outcomes. It is our contention that some of these mechanisms are related to ecodiversity (i.e., the sum of biodiversity and geodiversity, including biotic and abiotic constituents). We also encourage researchers to more closely examine individual nature relatedness and how it might influence many outcomes that are at the interface of lifestyle habits and contact with ecodiversity.

  9. Relations between urban bird and plant communities and human well-being and connection to nature.

    Science.gov (United States)

    Luck, Gary W; Davidson, Penny; Boxall, Dianne; Smallbone, Lisa

    2011-08-01

    By 2050, 70% of the world's population will live in urban areas. In many cases urbanization reduces the richness and abundance of native species. Living in highly modified environments with fewer opportunities to interact directly with a diversity of native species may adversely affect residents' personal well-being and emotional connection to nature. We assessed the personal well-being, neighborhood well-being (a measure of a person's satisfaction with their neighborhood), and level of connection to nature of over 1000 residents in 36 residential neighborhoods in southeastern Australia. We modeled these response variables as a function of natural features of each neighborhood (e.g., species richness and abundance of birds, density of plants, and amount of vegetation cover) and demographic characteristics of surveyed residents. Vegetation cover had the strongest positive relations with personal well-being, whereas residents' level of connection to nature was weakly related to variation in species richness and abundance of birds and density of plants. Demographic characteristics such as age and level of activity explained the greatest proportion of variance in well-being and connection to nature. Nevertheless, when controlling for variation in demographic characteristics (examples were provided above), neighborhood well-being was positively related to a range of natural features, including species richness and abundance of birds, and vegetation cover. Demographic characteristics and how well-being was quantified strongly influenced our results, and we suggest demography and metrics of well-being must be considered when attempting to determine relations between the urban environment and human well-being. © 2011 Society for Conservation Biology.

  10. Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Vidic, Radisav [Univ. of Pittsburgh, PA (United States)

    2015-01-24

    This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desired water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²⁺ and Sr²⁺ in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be

  11. Temporal changes in giant panda habitat connectivity across boundaries of Wolong Nature Reserve, China.

    Science.gov (United States)

    Viña, Andrés; Bearer, Scott; Chen, Xiaodong; He, Guangming; Linderman, Marc; An, Li; Zhang, Hemin; Ouyang, Zhiyun; Liu, Jianguo

    2007-06-01

    Global biodiversity loss is largely driven by human activities such as the conversion of natural to human-dominated landscapes. A popular approach to mitigating land cover change is the designation of protected areas (e.g., nature reserves). Nature reserves are traditionally perceived as strongholds of biodiversity conservation. However, many reserves are affected by land cover changes not only within their boundaries, but also in their surrounding areas. This study analyzed the changes in habitat for the giant panda (Ailuropoda melanoleuca) inside Wolong Nature Reserve, Sichuan, China, and in a 3-km buffer area outside its boundaries, through a time series of classified satellite imagery and field observations. Habitat connectivity between the inside and the outside of the reserve diminished between 1965 and 2001 because panda habitat was steadily lost both inside and outside the reserve. However, habitat connectivity slightly increased between 1997 and 2001 due to the stabilization of some panda habitat inside and outside the reserve. This stabilization most likely occurred as a response to changes in socioeconomic activities (e.g., shifts from agricultural to nonagricultural economies). Recently implemented government policies could further mitigate the impacts of land cover change on panda habitat. The results suggest that Wolong Nature Reserve, and perhaps other nature reserves in other parts of the world, cannot be managed as an isolated entity because habitat connectivity declines with land cover changes outside the reserve even if the area inside the reserve is well protected. The findings and approaches presented in this paper may also have important implications for the management of other nature reserves across the world.

  12. New capillary number definition for displacement of residual nonwetting phase in natural fractures

    NARCIS (Netherlands)

    Alquaimi, B.; Rossen, W.R.

    2017-01-01

    We propose a new capillary number for flow in fractures starting with a force balance on a trapped ganglion in a fracture. The new definition is validated with laboratory experiments using five distinctive model fractures. Capillary desaturation curves were generated experimentally using

  13. Connecting health and natural history: a failed initiative at the American Museum of Natural History, 1909-1922.

    Science.gov (United States)

    Brown, Julie K

    2014-10-01

    In 1909, curator Charles-Edward Winslow established a department of public health in New York City's American Museum of Natural History (AMNH). Winslow introduced public health as a biological science that connected human health-the modern sciences of physiology, hygiene, and urban sanitation-to the natural history of plants and animals. This was the only time an American museum created a curatorial department devoted to public health. The AMNH's Department of Public Health comprised a unique collection of live bacterial cultures-a "Living Museum"-and an innovative plan for 15 exhibits on various aspects of health. I show how Winslow, facing opposition from AMNH colleagues, gathered scientific experts and financial support, and explain the factors that made these developments seem desirable and possible. I finish with a discussion of how the Department of Public Health met an abrupt and "inglorious end" in 1922 despite the success of its collections and exhibitions.

  14. Simulation of Naturally Fractured Reservoirs. State of the Art Simulation des réservoirs naturellement fracturés. État de l’art

    Directory of Open Access Journals (Sweden)

    Lemonnier P.

    2010-04-01

    Full Text Available Naturally fractured reservoirs contain a significant amount of the world oil reserves. The production of this type of reservoirs constitutes a challenge for reservoir engineers. Use of reservoir simulators can help reservoir engineers in the understanding of the main physical mechanisms and in the choice of the best recovery process and its optimization. Significant progress has been made since the first publications on the dual-porosity concept in the sixties. This paper and the preceding one (Part 1 present the current techniques of modeling used in industrial simulators. The optimal way to predict matrix-fracture transfers at the simulator cell scale has no definite answer and various methods are implemented in industrial simulators. This paper focuses on the modeling of physical mechanisms driving flows and interactions/ exchanges within and between fracture and matrix media for a better understanding of proposed flow formula and simulation methods. Typical features of fractured reservoir numerical simulations are also described with an overview of the implementation of geomechanics effects, an application of uncertainty assessment methodology to a fractured gas reservoir and finally a presentation of a history matching methodology for fractured reservoirs. Les réservoirs naturellement fracturés contiennent une partie significative des réserves en huile mondiales. La production de ce type de réservoirs constitue un défi pour les ingénieurs de réservoir. L’utilisation des simulateurs de réservoir peut aider l’ingénieur de réservoir à mieux comprendre les principaux mécanismes physiques, à choisir le procédé de récupération le mieux adapté et à l’optimiser. Des progrès sensibles ont été réalisés depuis les premières publications sur le concept double-milieu dans les années soixante. Cet article et le précédent (Partie 1 présentent les techniques actuelles de modélisation utilisées dans les simulateurs

  15. Assessing Past Fracture Connectivity in Geothermal Reservoirs Using Clumped Isotopes: Proof of Concept in the Blue Mountain Geothermal Field, Nevada USA

    Science.gov (United States)

    Huntington, K. W.; Sumner, K. K.; Camp, E. R.; Cladouhos, T. T.; Uddenberg, M.; Swyer, M.; Garrison, G. H.

    2015-12-01

    Subsurface fluid flow is strongly influenced by faults and fractures, yet the transmissivity of faults and fractures changes through time due to deformation and cement precipitation, making flow paths difficult to predict. Here we assess past fracture connectivity in an active hydrothermal system in the Basin and Range, Nevada, USA, using clumped isotope geochemistry and cold cathodoluminescence (CL) analysis of fracture filling cements from the Blue Mountain geothermal field. Calcite cements were sampled from drill cuttings and two cores at varying distances from faults. CL microscopy of some of the cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements record variations in the composition and source of fluids that moved through the fractures as they opened episodically. CL microscopy, δ13C and δ18O values were used to screen homogeneous samples for clumped isotope analysis. Clumped isotope thermometry of most samples indicates paleofluid temperatures of around 150°C, with several wells peaking at above 200°C. We suggest that the consistency of these temperatures is related to upwelling of fluids in the convective hydrothermal system, and interpret the similarity of the clumped isotope temperatures to modern geothermal fluid temperatures of ~160-180°C as evidence that average reservoir temperatures have changed little since precipitation of the calcite cements. In contrast, two samples, one of which was associated with fault gauge observed in drill logs, record significantly cooler temperatures of 19 and 73°C and anomalous δ13C and δ18Owater values, which point to fault-controlled pathways for downwelling meteoric fluid. Finally, we interpret correspondence of paleofluid temperatures and δ18Owater values constrained by clumped isotope thermometry of calcite from different wells to suggest past connectivity of fractures among wells within the geothermal field. Results show the ability of clumped isotope

  16. Fluid transfers in fractured media: scale effects

    International Nuclear Information System (INIS)

    Bour, Olivier

    1996-01-01

    As there has been a growing interest in the study of fluid circulations in fractured media for the last fifteen years, for example for projects of underground storage of different waste types, or to improve water resources, or for exploitation of underground oil products or geothermal resources, this research thesis first gives a large overview of the modelling and transport properties of fractured media. He presents the main notions related to fluid transfers in fractured media (structures of fracture networks, hydraulic properties of fractured media), and the various adopted approaches (the effective medium theory, the percolation theory, double porosity models, deterministic discrete fracture models, equivalent discontinuous model, fractal models), and outlines the originality of the approach developed in this research: scale change, conceptual hypotheses, methodology, tools). The second part addresses scale rules in fracture networks: presentation of fracture networks (mechanical aspects, statistical analysis), distribution of fracture lengths and of fracture networks, length-position relationship, modelling attempt, lessons learned and consequences in terms of hydraulic and mechanical properties, and of relationship between length distribution and fractal dimension. The third part proposes two articles published by the author and addressing the connectivity properties of fracture networks. The fifth chapter reports the application to natural media. It contains an article on the application of percolation theory to 2D natural fracture networks, and reports information collected on a site [fr

  17. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Science.gov (United States)

    Ripperger, Simon P; Kalko, Elisabeth K V; Rodríguez-Herrera, Bernal; Mayer, Frieder; Tschapka, Marco

    2015-01-01

    Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  18. Enhanced functional connectivity properties of human brains during in-situ nature experience

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2016-07-01

    Full Text Available In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males to a 20 min in-situ sitting exposure in either a nature (n = 16 or urban environment (n = 16 and measured their Electroencephalography (EEG signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with “coherent” experience measured by Perceived Restorativeness Scale (PRS. Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being.

  19. Enhanced functional connectivity properties of human brains during in-situ nature experience.

    Science.gov (United States)

    Chen, Zheng; He, Yujia; Yu, Yuguo

    2016-01-01

    In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males) to a 20 min in-situ sitting exposure in either a nature (n = 16) or urban environment (n = 16) and measured their Electroencephalography (EEG) signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with "coherent" experience measured by Perceived Restorativeness Scale (PRS). Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being.

  20. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Directory of Open Access Journals (Sweden)

    Simon P Ripperger

    Full Text Available Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae, a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  1. Stress fractures of ankle and wrist in childhood: nature and frequency

    International Nuclear Information System (INIS)

    Oestreich, Alan E.; Bhojwani, Nicholas

    2010-01-01

    Stress fractures of many etiologies are found not infrequently in various tarsal bones but are less commonly recognized in carpal bones. To assess the distribution of tarsal and carpal stress fractures. During the last three decades, the senior author collected locations of tarsal and carpal bone stress fracture callus seen on plain radiographs. 527 children with tarsal and carpal stress fractures were identified (88 children had multiple bones involved). The totals were: calcaneus 244, cuboid 188, talus 121, navicular 24, cuneiforms 23, capitate 18, lunate 1, and scaphoid 1. Stress fractures were more frequently seen once we became aware each particular bone could be involved. Tarsal and carpal stress fractures in children are not rare. Careful perusal of these bones is urged in all susceptible children with limping or wrist pain. (orig.)

  2. Stress fractures of ankle and wrist in childhood: nature and frequency

    Energy Technology Data Exchange (ETDEWEB)

    Oestreich, Alan E. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Bhojwani, Nicholas [University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2010-08-15

    Stress fractures of many etiologies are found not infrequently in various tarsal bones but are less commonly recognized in carpal bones. To assess the distribution of tarsal and carpal stress fractures. During the last three decades, the senior author collected locations of tarsal and carpal bone stress fracture callus seen on plain radiographs. 527 children with tarsal and carpal stress fractures were identified (88 children had multiple bones involved). The totals were: calcaneus 244, cuboid 188, talus 121, navicular 24, cuneiforms 23, capitate 18, lunate 1, and scaphoid 1. Stress fractures were more frequently seen once we became aware each particular bone could be involved. Tarsal and carpal stress fractures in children are not rare. Careful perusal of these bones is urged in all susceptible children with limping or wrist pain. (orig.)

  3. Possible origin, nature, extent and tectomic position of joints and fracture in salt formations

    International Nuclear Information System (INIS)

    Weiss, H.M.

    1984-01-01

    The evaluation of about 500 bibliographic references for the safe ultimate storage in salt leds to the following results: fractures in rock salt and potash salt are formed in all types of storage, fractures are less numerous in a vertical storage than in a horizontal storage, nevertheless fissures are found in salt fomations containing liquids or gas undergoing rock pressures, fractures can be created during salt formation. Datation of formations by geologic methods and K-Ar method are considered. Deep formations (about 300m) are liquid and gas-tight, if homogenous and non perturbated. In all German permian formations are found indications of brine accumulation along fractures and tectonic zones

  4. The Multi-Porosity Multi-Permeability and Electrokinetic Natures of Shales and Their Effects in Hydraulic Fracturing of Unconventional Shale Reservoirs

    Science.gov (United States)

    Liu, C.; Hoang, S. K.; Tran, M. H.; Abousleiman, Y. N.

    2013-12-01

    Imaging studies of unconventional shale reservoir rocks have recently revealed the multi-porosity multi-permeability nature of these intricate formations. In particular, the porosity spectrum of shale reservoir rocks often comprises of the nano-porosity in the organic matters, the inter-particle micro-porosity, and the macroscopic porosity of the natural fracture network. Shale is also well-known for its chemically active behaviors, especially shrinking and swelling when exposed to aqueous solutions, as the results of pore fluid exchange with external environment due to the difference in electro-chemical potentials. In this work, the effects of natural fractures and electrokinetic nature of shale on the formation responses during hydraulic fracturing are examined using the dual-poro-chemo-electro-elasticity approach which is a generalization of the classical Biot's poroelastic formulation. The analyses show that the presence of natural fractures can substantially increase the leak-off rate of fracturing fluid into the formation and create a larger region of high pore pressure near the fracture face as shown in Fig.1a. Due to the additional fluid invasion, the naturally fractured shale swells up more and the fracture aperture closes faster compared to an intrinsically low permeability non-fractured shale formation as shown in Fig.1b. Since naturally fractured zones are commonly targeted as pay zones, it is important to account for the faster fracture closing rate in fractured shales in hydraulic fracturing design. Our results also show that the presence of negative fixed charges on the surface of clay minerals creates an osmotic pressure at the interface of the shale and the external fluid as shown in Fig.1c. This additional Donnan-induced pore pressure can result in significant tensile effective stresses and tensile damage in the shale as shown in Fig.1d. The induced tensile damage can exacerbate the problem of proppant embedment resulting in more fracture closure

  5. Fish Distribution in Far Western Queensland, Australia: The Importance of Habitat, Connectivity and Natural Flows

    Directory of Open Access Journals (Sweden)

    Adam Kerezsy

    2014-06-01

    Full Text Available The endorheic Lake Eyre Basin drains 1.2 million square kilometres of arid central Australia, yet provides habitat for only 30 species of freshwater fish due to the scarcity of water and extreme climate. The majority are hardy riverine species that are adapted to the unpredictable flow regimes, and capable of massive population booms following heavy rainfall and the restoration of connectivity between isolated waterholes. The remainder are endemic specialists from isolated springs with very restricted ranges, and many are listed under relevant state and national endangered species legislation and also by the International Union for Conservation of Nature (IUCN. For these spring communities, which are sustained by water from the Great Artesian Basin, survival is contingent on suitable habitat persisting alongside extractive mining, agriculture and the imposition of alien species. For the riverine species, which frequently undertake long migrations into ephemeral systems, preservation of the natural flow regime is paramount, as this reinstates riverine connectivity. In this study, fish were sampled from the Bulloo River in the east to the Mulligan River in the west, along a temporal timeframe and using a standard set of sampling gears. Fish presence was influenced by factors such as natural catchment divides, sampling time, ephemerality and the occurrence of connection flows and flooding. Despite the comparatively low diversity of species, the aquatic systems of this isolated region remain in good ecological condition, and as such they offer excellent opportunities to investigate the ecology of arid water systems. However, the presence of both endangered species (in the springs and invasive and translocated species more widely indicates that active protection and management of this unique area is essential to maintain biodiversity and ecosystem integrity.

  6. Fracture strength of zirconia implant abutments on narrow diameter implants with internal and external implant abutment connections: A study on the titanium resin base concept.

    Science.gov (United States)

    Sailer, Irena; Asgeirsson, Asgeir G; Thoma, Daniel S; Fehmer, Vincent; Aspelund, Thor; Özcan, Mutlu; Pjetursson, Bjarni E

    2018-04-01

    There is limited knowledge regarding the strength of zirconia abutments with internal and external implant abutment connections and zirconia abutments supported by a titanium resin base (Variobase, Straumann) for narrow diameter implants. To compare the fracture strength of narrow diameter abutments with different types of implant abutment connections after chewing simulation. Hundred and twenty identical customized abutments with different materials and implant abutment connections were fabricated for five groups: 1-piece zirconia abutment with internal connection (T1, Cares-abutment-Straumann BL-NC implant, Straumann Switzerland), 1-piece zirconia abutment with external hex connection (T2, Procera abutment-Branemark NP implant, Nobel Biocare, Sweden), 2-piece zirconia abutments with metallic insert for internal connection (T3, Procera abutment-Replace NP implant, Nobel Biocare), 2-piece zirconia abutment on titanium resin base (T4, LavaPlus abutment-VarioBase-Straumann BL-NC implant, 3M ESPE, Germany) and 1-piece titanium abutment with internal connection (C, Cares-abutment-Straumann BL-NC implant, Straumann, Switzerland). All implants had a narrow diameter ranging from 3.3 to 3.5 mm. Sixty un-restored abutments and 60 abutments restored with glass-ceramic crowns were tested. Mean bending moments were compared using ANOVA with p-values adjusted for multiple comparisons using Tukey's procedure. The mean bending moments were 521 ± 33 Ncm (T4), 404 ± 36 Ncm (C), 311 ± 106 Ncm (T1) 265 ± 22 Ncm (T3) and 225 ± 29 (T2) for un-restored abutments and 278 ± 84 Ncm (T4), 302 ± 170 Ncm (C), 190 ± 55 Ncm (T1) 80 ± 102 Ncm (T3) and 125 ± 57 (T2) for restored abutments. For un-restored abutments, C and T4 had similar mean bending moments, significantly higher than those of the three other groups (p internal connection had higher bending moments than zirconia abutments with external connection (T2) (p internal connected zirconia

  7. Coupled deformation and fluid-flow behavior of a natural fracture in the CSM in situ test block

    International Nuclear Information System (INIS)

    Gertsch, L.S.

    1989-01-01

    The primary goal was the evaluation of an in situ block test as a data source for modeling the coupled flow and mechanical behavior of natural rock fractures. The experiments were conducted with the Colorado School of Mines in situ test block, an 8 m 3 (280 ft 3 ) gneiss cube which has been the focus of several previous studies. A single continuous fracture within the block was surrounded with instruments to measure stresses, deformations, and gas conductivity. The setup was subjected to combinations of normal and shear stress by pressurizing the block sides differentially with hydraulic flatjacks. The induced fracture deformation, as measured by two separate sensor systems, did not correlate closely with the fracture conductivity changes or with each other. The test fracture is more complicated physically than two parallel rock faces. Many joints which were not detected by mapping intersect the test fracture and strongly influence its behavior. These invisible joints create sub-blocks which react complexly to changes in applied load. The flow tests reflected the aggregate sub-block dislocations in the flow path. The deformation readings, however, were the movements of discrete points sparsely located among the sub-blocks. High-confidence extrapolation of block test results to large volumes, such as required for nuclear waste repository design, is not feasible currently. Present instrumentation does not sample rock mass behavior in situ at the proper scales. More basically, however, a fundamental gap exists between the nature of jointed rock and our conception of it. Therefore, the near-field rock mass must be discounted as an easily controllable barrier to groundwater flow, until radically different approaches to rock mass testing and modeling are developed

  8. On the critical or geometrical nature of the observed scaling laws associated with the fracture and faulting processes

    Science.gov (United States)

    Potirakis, Stelios M.; Kopanas, John; Antonopoulos, George; Nomicos, Constantinos; Eftaxias, Konstantinos

    2015-04-01

    One of the largest controversial issues of the materials science community is the interpretation of scaling laws associated with the fracture and faulting processes. Especially, an important open question is whether the spatial and temporal complexity of earthquakes and fault structures, above all the interpretation of the observed scaling laws, emerge from geometrical and material built-in heterogeneities or from the critical behavior inherent to the nonlinear equations governing the earthquake dynamics. Crack propagation is the basic mechanism of material's failure. A number of laboratory studies carried out on a wide range of materials have revealed the existence of EMEs during fracture experiments, while these emissions are ranging in a wide frequency spectrum, i.e., from the kHz to the MHz bands. A crucial feature observed on the laboratory scale is that the MHz EME systematically precedes the corresponding kHz one. The aforementioned crucial feature is observed in geophysical scale, as well. The remarkable asynchronous appearance of these two EMEs both on the laboratory and the geophysical scale implies that they refer to different final stages of faulting process. Accumulated laboratory, theoretical and numerical evidence supports the hypothesis that the MHz EME is emitted during the fracture of process of heterogeneous medium surrounding the family of strong entities (asperities) distributed along the fault sustaining the system. The kHz EME is attributed to the family of asperities themselves. We argue in terms of the fracture induced pre-seismic MHz-kHz EMEs that the scaling laws associated with the fracture of heterogeneous materials emerge from the critical behavior inherent to the nonlinear equations governing their dynamics (second-order phase transition), while the scaling laws associated with the fracture of family of asperities have geometric nature, namely, are rooted in the fractal nature of the population of asperities.

  9. Fracture-filling minerals as uranium sinks and sources, a natural analogue study at Palmottu, Finland

    International Nuclear Information System (INIS)

    Cui, D.; Eriksen, T.

    2000-01-01

    The nucleation of a mineral crystal and its growth in groundwater carrying fractures 300 m above the Palmottu uranium deposit provide an impressive example of geochemical selectivity of uranium. Fracture-filling material was collected from a 3 mm thick fracture at depth 74.8-75 m (drillcore R348). SEM and EDS analyses on a thin section of the original fracture-filling show that the fracture filling is heterogeneous, composing mineral crystal particles and very porous clay-rich aggregates. The results of INAA on millimetre-sized single mineral crystals and aggregates selected from grinded fracture-filling show that porous aggregates (composed of clays and micrometer sized mineral particles) contain up to 1000 ppm U, which is higher than the average of the whole fracture-filling (400 ppm) and host rock related millimetre sized mineral particles (18-100 ppm). 233 U/ 238 U isotope exchange proves that a large fraction of the uranium in the fracture-filling is not easily exchanged with uranium in the solution. The amount of 238 U released in the isotope exchange experiment is too high to be explained by reversible U(VI) sorption. Oxidation state analyses show that 30% of the uranium exists as U(IV). Laboratory batch experiment at anoxic conditions proved that pyrite can immobilise U(VI). (orig.)

  10. Connecting Health and Natural History: A Failed Initiative at the American Museum of Natural History, 1909–1922

    Science.gov (United States)

    2014-01-01

    In 1909, curator Charles-Edward Winslow established a department of public health in New York City’s American Museum of Natural History (AMNH). Winslow introduced public health as a biological science that connected human health—the modern sciences of physiology, hygiene, and urban sanitation—to the natural history of plants and animals. This was the only time an American museum created a curatorial department devoted to public health. The AMNH’s Department of Public Health comprised a unique collection of live bacterial cultures—a “Living Museum”—and an innovative plan for 15 exhibits on various aspects of health. I show how Winslow, facing opposition from AMNH colleagues, gathered scientific experts and financial support, and explain the factors that made these developments seem desirable and possible. I finish with a discussion of how the Department of Public Health met an abrupt and “inglorious end” in 1922 despite the success of its collections and exhibitions. PMID:24205997

  11. Theory of Connectivity: Nature and Nurture of Cell Assemblies and Cognitive Computation.

    Science.gov (United States)

    Li, Meng; Liu, Jun; Tsien, Joe Z

    2016-01-01

    Richard Semon and Donald Hebb are among the firsts to put forth the notion of cell assembly-a group of coherently or sequentially-activated neurons-to represent percept, memory, or concept. Despite the rekindled interest in this century-old idea, the concept of cell assembly still remains ill-defined and its operational principle is poorly understood. What is the size of a cell assembly? How should a cell assembly be organized? What is the computational logic underlying Hebbian cell assemblies? How might Nature vs. Nurture interact at the level of a cell assembly? In contrast to the widely assumed randomness within the mature but naïve cell assembly, the Theory of Connectivity postulates that the brain consists of the developmentally pre-programmed cell assemblies known as the functional connectivity motif (FCM). Principal cells within such FCM is organized by the power-of-two-based mathematical principle that guides the construction of specific-to-general combinatorial connectivity patterns in neuronal circuits, giving rise to a full range of specific features, various relational patterns, and generalized knowledge. This pre-configured canonical computation is predicted to be evolutionarily conserved across many circuits, ranging from these encoding memory engrams and imagination to decision-making and motor control. Although the power-of-two-based wiring and computational logic places a mathematical boundary on an individual's cognitive capacity, the fullest intellectual potential can be brought about by optimized nature and nurture. This theory may also open up a new avenue to examining how genetic mutations and various drugs might impair or improve the computational logic of brain circuits.

  12. Theory of Connectivity: Nature and Nurture of Cell Assemblies and Cognitive Computation

    Directory of Open Access Journals (Sweden)

    Meng eLi

    2016-04-01

    Full Text Available Richard Semon and Donald Hebb are among the firsts to put forth the notion of cell assembly – a group of coherently or sequentially-activated neurons– to represent percept, memory, or concept. Despite the rekindled interest in this age-old idea, the concept of cell assembly still remains ill-defined and its operational principle is poorly understood. What is the size of a cell assembly? How should a cell assembly be organized? What is the computational logic underlying Hebbian cell assemblies? How might Nature vs Nurture interact at the level of a cell assembly? In contrast to the widely assumed local randomness within the mature but naïve cell assembly, the recent Theory of Connectivity postulates that the brain consists of the developmentally pre-programmed cell assemblies known as the functional connectivity motif (FCM. Principal cells within such FCM is organized by the power-of-two-based mathematical principle that guides the construction of specific-to-general combinatorial connectivity patterns in neuronal circuits, giving rise to a full range of specific features, various relational patterns, and generalized knowledge. This pre-configured canonical computation is predicted to be evolutionarily conserved across many circuits, ranging from these encoding memory engrams and imagination to decision-making and motor control. Although the power-of-two-based wiring and computational logic places a mathematical boundary on an individual’s cognitive capacity, the fullest intellectual potential can be brought about by optimized nature and nurture. This theory may also open up a new avenue to examining how genetic mutations and various drugs might impair or enhance the computational logic of brain circuits.

  13. NATURE FACILITATES CONNECTION WITH THE PROFOUND SELF: NEEDS, GOALS AND RESOURCE AWARENESS

    Directory of Open Access Journals (Sweden)

    Nicoleta Răban-Motounu

    2014-11-01

    Full Text Available The present study is based on Kaplan and Kaplan’s (1989 theory explaining the restorative effects that nature has on a person’s psychic. According to this theory, nature exerts a “soft fascination” combining the activation of involuntary attention mechanisms with the reflexive awareness, allowing a spontaneous detachment from stress factors and automatic functioning, and also the feeling of compatibility between personal purposes, and the possibilities for action offered by the environment (a sense of meaning. Our objective was to investigate the effects of nature on Self awareness: the immediate, emotional experience; needs awareness and organization; plans for action, and availability of resources, both personal, and external. We conducted an experiment with an experimental group (persons watching a video with life in nature and an active control group (involved in a psychotherapeutic technique focused on confronting and solving personal difficulties by creative means, accompanied by a short psychological analysis. The effects were assessed in terms of “here and now” emotions and available resources according to a self-evaluation scale, and with open-ended questions regarding personal needs and goals. The results showed that, for the experimental group, the relaxation effects and the awareness of long term goals were stronger, while all the other effects were the same as for the control group. The results suggest that indeed, nature helps a person get in contact with her profound Self, allowing the access to both “here and now” basic needs, and also long term goals (inner sources of meaning, the sense of connection between internal tendencies, personal, and external resources, resulting in increased positive emotions, and decreased negative emotions. Nature contemplation may facilitate a meditative state whit all its positive effects.

  14. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature.

    Science.gov (United States)

    Cox, Daniel T C; Gaston, Kevin J

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder.

  15. Advanced Reservoir Characterization and Evaluation of C02 Gravity Drainage in the Naturally Fractured Sprayberry Trend Area

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    1998-04-30

    The objective is to assess the economic feasibility of CO2 flooding of the naturally fractured Straberry Trend Area in west Texas. Research is being conducted in the extensive characterization of the reservoirs, the experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, the analytical and numerical simulation of Spraberry reservoirs, and the experimental investigations on CO2 gravity drainage in Spraberry whole cores.

  16. Hydraulic and mechanical properties of natural fractures in low-permeability rock

    International Nuclear Information System (INIS)

    Pyrack-Nolte, L.J.; Myer, L.R.; Cook, N.G.W.; Witherspoon, P.A.

    1987-01-01

    The results of a comprehensive laboratory study of the mechanical displacement, permeability, and void geometry of single rock fractures in a quartz monzonite are summarized and analyzed. A metal-injection technique was developed that provided quantitative data on the precise geometry of the void spaces between the fracture surfaces and the areas of contact at different stresses. At effective stresses of less than 20 MPa fluid flow was proportional to the mean fracture aperture raised to a power greater than 3. As stress was increased, contact area was increased and void spaces become interconnected by small tortuous channels that constitute the principal impediment to fluid flow. At effective stresses higher than 20 MPa, the mean fracture aperture continued to diminish with increasing stress, but this had little effect on flow because the small tortuous flow channels deformed little with increasing stress

  17. Development of autoradiographic method for measuring sorption of radionuclides on natural fracture surfaces

    International Nuclear Information System (INIS)

    Muuronen, S.

    1983-11-01

    On the basis of positive results about sorption of radionuclides in rock thin sections an autoradiographic method applicable for measurement sorption of radionuclides on rough rock surfaces was developed. There is no method available because 1) a plane film cannot be used because due to the roughness of rock surfaces 2) rock samples used in this investigation cannot be studied with microscopes and 3) autoradiogram cannot be studied fixed on the surface of a rock sample because the colours of the minerals in the sample will interfere with the interpretation. This report discusses experimental work done to find an useful proedure. In the development of the method main emphasis was put on investigation of the following steps: 1) preparation of the sample for equilibration and spiking; 2) properties of the covering paint for the rock surface and 3) testing of autoradiographic methods using different nuclear emulsions. As the result of these experiments promising autoradiograms with gel emulsion for sawed rock surfaces and with stripping film for rough rock surfaces were obtained. The mineralogic disribution of sorbed activity is easily seen in autoradiograms. Much work must still be done to get reliable quantitative information from autoradiograms. For developing of the autoradiographic method sawed plane rock samples of quartz feldspar intergrowth, pegmatite and limestone were used. In addition core samples of tonalite and mica gneiss from Olkiluoto were utilized. The distribution coefficients (Ksub(a)) obtained for cesium were 560 x 10 -4 and 620 x 10 -4 m 3 /m 2 for tonalite and mica gneiss, respectively. The results are little higher but of the same order of magnitude as obtained by the autoradiographic method using rock thin sections and by the batch method using crused samples. The natural fracture surface sorption study is a logical step in determining the scaling factor from laboratory to field studies. Field data will be needed to determine whether laboratory

  18. Modeling of Multicomponent Diffusions and Natural Convection in Unfractured and Fractured Media by Discontinuous Galerkin and Mixed Methods

    KAUST Repository

    Hoteit, Hussein

    2017-12-29

    Computation of the distribution of species in hydrocarbon reservoirs from diffusions (thermal, molecular, and pressure) and natural convection is an important step in reservoir initialization. Current methods, which are mainly based on the conventional finite difference approach, may not be numerically efficient in fractured and other media with complex heterogeneities. In this work, the discontinuous Galerkin (DG) method combined with the mixed finite element (MFE) method is used for the calculation of compositional variation in fractured hydrocarbon reservoirs. The use of unstructured gridding allows efficient computations for fractured media when the crossflow equilibrium concept is invoked. The DG method has less numerical dispersion than the upwind finite difference (FD) methods. The MFE method ensures continuity of fluxes at the interface of the grid elements. We also use the local discontinuous Galerkin (LDG) method instead of the MFE calculate the diffusion fluxes. Results from several numerical examples are presented to demonstrate the efficiency, robustness, and accuracy of the model. Various features of convection and diffusion in homogeneous, layered, and fractured media are also discussed.

  19. Modeling of Multicomponent Diffusions and Natural Convection in Unfractured and Fractured Media by Discontinuous Galerkin and Mixed Methods

    KAUST Repository

    Hoteit, Hussein; Firoozabadi, Abbas

    2017-01-01

    Computation of the distribution of species in hydrocarbon reservoirs from diffusions (thermal, molecular, and pressure) and natural convection is an important step in reservoir initialization. Current methods, which are mainly based on the conventional finite difference approach, may not be numerically efficient in fractured and other media with complex heterogeneities. In this work, the discontinuous Galerkin (DG) method combined with the mixed finite element (MFE) method is used for the calculation of compositional variation in fractured hydrocarbon reservoirs. The use of unstructured gridding allows efficient computations for fractured media when the crossflow equilibrium concept is invoked. The DG method has less numerical dispersion than the upwind finite difference (FD) methods. The MFE method ensures continuity of fluxes at the interface of the grid elements. We also use the local discontinuous Galerkin (LDG) method instead of the MFE calculate the diffusion fluxes. Results from several numerical examples are presented to demonstrate the efficiency, robustness, and accuracy of the model. Various features of convection and diffusion in homogeneous, layered, and fractured media are also discussed.

  20. Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff

    International Nuclear Information System (INIS)

    Wibowo, J.; Amadei, B.; Sture, S.; Robertson, A.B.

    1993-09-01

    Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a tensile fracture of welded tuff from Yucca Mountain. The objective of these tests was to examine the effect of cyclic loading on joint shear behavior under different boundary conditions. The shear tests were performed under either different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN) or constant normal stiffness ranging between 14.8 and 187.5 kips/in (25.9 and 328.1 kn/cm) . Bach test in the two categories consisted of five cycles of forward and reverse shear. Normal compression tests were also performed both before and after each shear experiment to measure changes in joint normal deformability. In order to quantify fracture surface damage during shear, fracture-surface fractal dimensions were obtained from measurements before and after shear

  1. Habit as a Connecting Nature, Mind and Culture in CS Peirce's Semiotic Pragmaticism

    DEFF Research Database (Denmark)

    Brier, Søren

    2017-01-01

    Peirce’s view of science and religion differs from the received view and therefore has interesting consequences for how we see the connections between the two [1]. Peirce was like Karl Popper a fallibilist opposing the logical positivist epistemology of possibility of verification of scientific...... in Newton’s theory of motion was reversible. Time had no arrow. But in Peirce’s cosmogony change is at the basis as Firstness is imbued with the tendency to take habits and time therefore has an arrow and is irreversible and therefore what the laws manifested as the universe develop. This was unthinkable...... published the book Time Reborn [6] where he accepts Peirce’s as well as Prigogine’s views on the nature of time, change and law, which was a big change in foundational conception og physics. In contrast to Smolin and Prigogine Peirce also grounds his philosophical framework in phenomenology. He is inspired...

  2. Whitby Mudstone, flow from matrix to fractures

    Science.gov (United States)

    Houben, Maartje; Hardebol, Nico; Barnhoorn, Auke; Boersma, Quinten; Peach, Colin; Bertotti, Giovanni; Drury, Martyn

    2016-04-01

    Fluid flow from matrix to well in shales would be faster if we account for the duality of the permeable medium considering a high permeable fracture network together with a tight matrix. To investigate how long and how far a gas molecule would have to travel through the matrix until it reaches an open connected fracture we investigated the permeability of the Whitby Mudstone (UK) matrix in combination with mapping the fracture network present in the current outcrops of the Whitby Mudstone at the Yorkshire coast. Matrix permeability was measured perpendicular to the bedding using a pressure step decay method on core samples and permeability values are in the microdarcy range. The natural fracture network present in the pavement shows a connected network with dominant NS and EW strikes, where the NS fractures are the main fracture set with an orthogonal fracture set EW. Fracture spacing relations in the pavements show that the average distance to the nearest fracture varies between 7 cm (EW) and 14 cm (NS), where 90% of the matrix is 30 cm away from the nearest fracture. By making some assumptions like; fracture network at depth is similar to what is exposed in the current pavements and open to flow, fracture network is at hydrostatic pressure at 3 km depth, overpressure between matrix and fractures is 10% and a matrix permeability perpendicular to the bedding of 0.1 microdarcy, we have calculated the time it takes for a gas molecule to travel to the nearest fracture. These input values give travel times up to 8 days for a distance of 14 cm. If the permeability is changed to 1 nanodarcy or 10 microdarcy travel times change to 2.2 years or 2 hours respectively.

  3. The International intraval project. Phase 1 case 2. Radionuclide migration in single natural fractures in granite

    International Nuclear Information System (INIS)

    Skagius, K.

    1992-01-01

    The INTRAVAL study addresses validation of geosphere transport models for use in repository performance assessment by examining various test cases relevant to radioactive waste disposal. This report describes the results from INTRAVAL test case 2 which is based on a set of laboratory experiments studying migration of non-sorbing as well as sorbing tracers in a single fracture in granitic cores. Three project teams have investigated this test case. Models including advection, dispersion, sorption to the fracture surface, matrix diffusion and sorption within the rock matrix were calibrated against the experimental breakthrough curves. Obtained best-fit values of the parameters determining the interaction between tracer and rock were in fair agreement with independently measured data. Models neglecting matrix diffusion and sorption within the rock matrix gave poor fits to the experimental data. These results suggest the need to include matrix diffusion and matrix sorption in the model to represent data for this test case. Furthermore, it was not possible to distinguish between hydrodynamic dispersion and channelling dispersion since equally good fits were obtained with both models. Equally good fits were also obtained with models assuming constant fracture aperture and variable fracture aperture. In the context of performance assessment of repositories in fractured rock, the major outcome from this test case is additional support for the inclusion of matrix diffusion and matrix sorption in the transport models. 17 refs., 14 figs., 3 tabs

  4. An Improved Computing Method for 3D Mechanical Connectivity Rates Based on a Polyhedral Simulation Model of Discrete Fracture Network in Rock Masses

    Science.gov (United States)

    Li, Mingchao; Han, Shuai; Zhou, Sibao; Zhang, Ye

    2018-06-01

    Based on a 3D model of a discrete fracture network (DFN) in a rock mass, an improved projective method for computing the 3D mechanical connectivity rate was proposed. The Monte Carlo simulation method, 2D Poisson process and 3D geological modeling technique were integrated into a polyhedral DFN modeling approach, and the simulation results were verified by numerical tests and graphical inspection. Next, the traditional projective approach for calculating the rock mass connectivity rate was improved using the 3D DFN models by (1) using the polyhedral model to replace the Baecher disk model; (2) taking the real cross section of the rock mass, rather than a part of the cross section, as the test plane; and (3) dynamically searching the joint connectivity rates using different dip directions and dip angles at different elevations to calculate the maximum, minimum and average values of the joint connectivity at each elevation. In a case study, the improved method and traditional method were used to compute the mechanical connectivity rate of the slope of a dam abutment. The results of the two methods were further used to compute the cohesive force of the rock masses. Finally, a comparison showed that the cohesive force derived from the traditional method had a higher error, whereas the cohesive force derived from the improved method was consistent with the suggested values. According to the comparison, the effectivity and validity of the improved method were verified indirectly.

  5. An Efficient Upscaling Procedure Based on Stokes-Brinkman Model and Discrete Fracture Network Method for Naturally Fractured Carbonate Karst Reservoirs

    KAUST Repository

    Qin, Guan; Bi, Linfeng; Popov, Peter; Efendiev, Yalchin; Espedal, Magne

    2010-01-01

    , fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling

  6. Model of mechanical representation of the formation of natural fractures inside a petroleum reservoir; Modele de representation mecanique de la formation des fractures naturelles d'un reservoir petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Picard, D.

    2005-09-15

    The optimisation of the oil production requires a better characterisation of naturally fractured reservoirs. We consider and analyse two spatial distributions. One with systematic joints is arranged in an homogeneous way; joint spacing is linked to individual bedding thickness with propagation frequently interrupted by stratigraphic interfaces (single layer jointing). The second, so-called fracture swarms, consists in fractures clustering, where stratigraphic interfaces seem to play a minor role. The analysis is based on the singularity theory and matched asymptotic expansions method with a fine scale for local perturbations and a global one for general trends. We examine the conditions of fracture propagation that are determined herein using simultaneously two fracture criteria an energy and a stress condition. We consider two modes of loading. Usually, the joint (crack opening mode) and fracture swarm growths are explained by a first order phenomenon involving effective traction orthogonal to fracture plane. Although commonly used, this hypothesis seems unrealistic in many circumstances and may conflict with geological observations. Then, we try to describe fracture growth as a second order phenomena resulting from crack parallel compression. As far as propagation across layer interfaces is concerned, the effect of loading and geometry has been summarised in maps of fracture mechanisms, describing areas of 'step-over', 'straight through propagation' and 'crack arrest'. Fracture criteria, relative size of heterogeneities, contrast of mechanical properties between bed and layer are parameters of the problem. For fracture swarms, we present a discussion bringing out what is reasonable as a loading to justify their morphology. In particular, horizontal effective tension is unable to explain neighbouring joints. Simultaneous propagation of parallel near cracks is explained by finite width cracks growing under the influence of vertical

  7. Physical nature of the fracture of metals. Fizicheskaia priroda razrusheniia metallov

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, V I

    1984-01-01

    The physical concepts of fracture, which is treated as a kinetic, statistical, multistage, and multiscale process, are presented. Microscopic models for crack nucleation and growth based on the physics of defects (dislocations, disclinations, and vacancies) are examined, and the principal stages of the fracture process are discussed. In particular, attention is given to the generation of local superstresses, nucleation and growth of microcracks, nucleation of macrocracks, the structure of the plastic zone at the tip of a macrocrack, and unstable crack growth. Particular cases involving changes in loading conditions, lattice type, or dislocation structure are examined. 177 references.

  8. Inclusion of Topological Measurements into Analytic Estimates of Effective Permeability in Fractured Media

    Science.gov (United States)

    Sævik, P. N.; Nixon, C. W.

    2017-11-01

    We demonstrate how topology-based measures of connectivity can be used to improve analytical estimates of effective permeability in 2-D fracture networks, which is one of the key parameters necessary for fluid flow simulations at the reservoir scale. Existing methods in this field usually compute fracture connectivity using the average fracture length. This approach is valid for ideally shaped, randomly distributed fractures, but is not immediately applicable to natural fracture networks. In particular, natural networks tend to be more connected than randomly positioned fractures of comparable lengths, since natural fractures often terminate in each other. The proposed topological connectivity measure is based on the number of intersections and fracture terminations per sampling area, which for statistically stationary networks can be obtained directly from limited outcrop exposures. To evaluate the method, numerical permeability upscaling was performed on a large number of synthetic and natural fracture networks, with varying topology and geometry. The proposed method was seen to provide much more reliable permeability estimates than the length-based approach, across a wide range of fracture patterns. We summarize our results in a single, explicit formula for the effective permeability.

  9. Physical simulation study on the hydraulic fracture propagation of coalbed methane well

    Science.gov (United States)

    Wu, Caifang; Zhang, Xiaoyang; Wang, Meng; Zhou, Longgang; Jiang, Wei

    2018-03-01

    As the most widely used technique to modify reservoirs in the exploitation of unconventional natural gas, hydraulic fracturing could effectively raise the production of CBM wells. To study the propagation rules of hydraulic fractures, analyze the fracture morphology, and obtain the controlling factors, a physical simulation experiment was conducted with a tri-axial hydraulic fracturing test system. In this experiment, the fracturing sample - including the roof, the floor, and the surrounding rock - was prepared from coal and similar materials, and the whole fracturing process was monitored by an acoustic emission instrument. The results demonstrated that the number of hydraulic fractures in coal is considerably higher than that observed in other parts, and the fracture morphology was complex. Vertical fractures were interwoven with horizontal fractures, forming a connected network. With the injection of fracturing fluid, a new hydraulic fracture was produced and it extended along the preexisting fractures. The fracture propagation was a discontinuous, dynamic process. Furthermore, in-situ stress plays a key role in fracture propagation, causing the fractures to extend in a direction perpendicular to the minimum principal stress. To a certain extent, the different mechanical properties of the coal and the other components inhibited the vertical propagation of hydraulic fractures. Nonetheless, the vertical stress and the interfacial property are the major factors to influence the formation of the "T" shaped and "工" shaped fractures.

  10. Laboratory experiments on heat-drive two-phase flows in natural and artificial rock fractures

    International Nuclear Information System (INIS)

    Kneafsey, Timothy J.; Pruess, Karsten

    1998-01-01

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed but not when vapor-liquid counterflow was hindered by very narrow apertures and when an inadequate working fluid volume was used

  11. Defining the natural fracture network in a shale gas play and its cover succession: The case of the Utica Shale in eastern Canada

    Science.gov (United States)

    Ladevèze, P.; Séjourné, S.; Rivard, C.; Lavoie, D.; Lefebvre, R.; Rouleau, A.

    2018-03-01

    In the St. Lawrence sedimentary platform (eastern Canada), very little data are available between shallow fresh water aquifers and deep geological hydrocarbon reservoir units (here referred to as the intermediate zone). Characterization of this intermediate zone is crucial, as the latter controls aquifer vulnerability to operations carried out at depth. In this paper, the natural fracture networks in shallow aquifers and in the Utica shale gas reservoir are documented in an attempt to indirectly characterize the intermediate zone. This study used structural data from outcrops, shallow observation well logs and deep shale gas well logs to propose a conceptual model of the natural fracture network. Shallow and deep fractures were categorized into three sets of steeply-dipping fractures and into a set of bedding-parallel fractures. Some lithological and structural controls on fracture distribution were identified. The regional geologic history and similarities between the shallow and deep fracture datasets allowed the extrapolation of the fracture network characterization to the intermediate zone. This study thus highlights the benefits of using both datasets simultaneously, while they are generally interpreted separately. Recommendations are also proposed for future environmental assessment studies in which the existence of preferential flow pathways and potential upward fluid migration toward shallow aquifers need to be identified.

  12. Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff: Data analysis

    International Nuclear Information System (INIS)

    Wibowo, J.; Amadei, B.; Sture, S.

    1994-04-01

    Assessing the shear behavior of intact rock ampersand rock fractures is an important issue in the design of a potential nuclear waste repository at Yucca Mountain Nevada. Cyclic direct shear experiments were conducted on replicas of three natural fractures and a laboratory-developed tensile fracture of welded tuff. The tests were carried out under constant normal loads or constant normal stiffnesses with different initial normal load levels. Each test consisted of five cycles of forward and reverse shear motion. Based on the results of the shear tests conducted under constant normal load, the shear behavior of the joint replicas tested under constant normal stiffness was predicted by using the graphical analysis method of Saeb (1989), and Amadei and Saeb (1990). Comparison between the predictions and the actual constant stiffness direct shear experiment results can be found in a report by Wibowo et al. (1993b). Results of the constant normal load shear experiments are analyzed using several constitutive models proposed in the rock mechanics literature for joint shear strength, dilatancy, and joint surface damage. It is shown that some of the existing models have limitations. New constitutive models are proposed and are included in a mathematical analysis tool that can be used to predict joint behavior under various boundary conditions

  13. Supersymmetry with Small mu: Connections between Naturalness, DarkMatter, and (Possibly) Flavor

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Ryuichiro Kitano; Nomura, Yasunori

    2006-06-11

    Weak scale supersymmetric theories often suffer from several naturalness problems: the problems of reproducing the correct scale for electroweak symmetry breaking, the correct abundance for dark matter, and small rates for flavor violating processes. We argue that the first two problems point to particular regions of parameter space in models with weak scale supersymmetry: those with a small {mu} term. This has an interesting implication on direct dark matter detection experiments. We find that, if the signs of the three gaugino mass parameters are all equal, we can obtain a solid lower bound on the spin-independent neutralino-nucleon cross section, {sigma}{sub SI}. In the case that the gaugino masses satisfy the unified mass relations, we obtain {sigma}{sub SI} {approx}> 4 x 10{sup -46} cm{sup 2} (1 x 10{sup -46} cm{sup 2}) for fine-tuning in electroweak symmetry breaking no worse than 10% (5%). We also discuss a possibility that the three problems listed above are all connected to the hierarchy of fermion masses. This occurs if supersymmetry breaking and electroweak symmetry breaking (the Higgs fields) are coupled to matter fields with similar hierarchical structures. The discovery of {mu} {yields} e transition processes in near future experiments is predicted in such a framework.

  14. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Bill; Schechter, David S.

    2002-07-26

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  15. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.S.

    1999-02-03

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This report provides results of the third year of the five-year project for each of the four areas including a status report of field activities leading up to injection of CO2.

  16. Identification of Long Bone Fractures in Radiology Reports Using Natural Language Processing to support Healthcare Quality Improvement.

    Science.gov (United States)

    Grundmeier, Robert W; Masino, Aaron J; Casper, T Charles; Dean, Jonathan M; Bell, Jamie; Enriquez, Rene; Deakyne, Sara; Chamberlain, James M; Alpern, Elizabeth R

    2016-11-09

    Important information to support healthcare quality improvement is often recorded in free text documents such as radiology reports. Natural language processing (NLP) methods may help extract this information, but these methods have rarely been applied outside the research laboratories where they were developed. To implement and validate NLP tools to identify long bone fractures for pediatric emergency medicine quality improvement. Using freely available statistical software packages, we implemented NLP methods to identify long bone fractures from radiology reports. A sample of 1,000 radiology reports was used to construct three candidate classification models. A test set of 500 reports was used to validate the model performance. Blinded manual review of radiology reports by two independent physicians provided the reference standard. Each radiology report was segmented and word stem and bigram features were constructed. Common English "stop words" and rare features were excluded. We used 10-fold cross-validation to select optimal configuration parameters for each model. Accuracy, recall, precision and the F1 score were calculated. The final model was compared to the use of diagnosis codes for the identification of patients with long bone fractures. There were 329 unique word stems and 344 bigrams in the training documents. A support vector machine classifier with Gaussian kernel performed best on the test set with accuracy=0.958, recall=0.969, precision=0.940, and F1 score=0.954. Optimal parameters for this model were cost=4 and gamma=0.005. The three classification models that we tested all performed better than diagnosis codes in terms of accuracy, precision, and F1 score (diagnosis code accuracy=0.932, recall=0.960, precision=0.896, and F1 score=0.927). NLP methods using a corpus of 1,000 training documents accurately identified acute long bone fractures from radiology reports. Strategic use of straightforward NLP methods, implemented with freely available

  17. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels

    Energy Technology Data Exchange (ETDEWEB)

    Martin, May L.; Fenske, Jamey A.; Liu, Grace S.; Sofronis, Petros [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States); Robertson, Ian M., E-mail: ianr@illinois.edu [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States)

    2011-02-15

    Quasi-cleavage, a common feature of hydrogen-induced fracture surfaces, is generally taken as being cleavage-like but not along a known cleavage plane. Despite the frequency with which this surface is observed, the relationship to the underlying microstructure remains unknown. Through a combination of topographical reconstruction of secondary electron microscope fractographs and a transmission electron microscopy study of the microstructure from site-specific locations, it will be shown that the features on quasi-cleavage surfaces are ridges that can be correlated with sub-surface intense and highly localized deformation bands. It will be demonstrated that the fracture surface arises from the growth and coalescence of voids that initiate at and extend along slip band intersections. This mechanism and process is fully consistent with hydrogen enhancing and localizing plastic processes.

  18. Effects of Material Modulus on Fracture Toughness of Human Enamel, a Natural Biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Dhaneshwar; Yoo, Seung Hyun [Ajou University, Suwon (Korea, Republic of)

    2011-06-15

    The enamel, the upper layer of a tooth has remarkable capability of bearing severe loading on the tooth. The fracture behavior is important to understand the mechanism of load bearing and it cold be very useful for developing new materials. Non-destructive evaluation of such materials will also benefit from this knowledge. The graded microstructures of enamel were modeled by finite element analysis software and the J-integrals and the stress intensity factors were evaluated as the fracture parameters. The results show that these parameters are location dependent. Those values increase when measure in the direction of dentine enamel junction. This finding matched well with experiments and implies many useful understanding of biomaterials and applications to new materials

  19. Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toksoz, M. Nafi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Earth, Atmospheric and Planetary Sciences

    2013-04-06

    The objective of this 3-year project is to use various geophysical methods for reservoir and fracture characterization. The targeted field is the Cove Fort-Sulphurdale Geothermal Field in Utah operated by ENEL North America (ENA). Our effort has been focused on 1) understanding the regional and local geological settings around the geothermal field; 2) collecting and assembling various geophysical data sets including heat flow, gravity, magnetotelluric (MT) and seismic surface and body wave data; 3) installing the local temporary seismic network around the geothermal site; 4) imaging the regional and local seismic velocity structure around the geothermal field using seismic travel time tomography; and (5) determining the fracture direction using the shear-wave splitting analysis and focal mechanism analysis. Various geophysical data sets indicate that beneath the Cove Fort-Sulphurdale Geothermal Field, there is a strong anomaly of low seismic velocity, low gravity, high heat flow and high electrical conductivity. These suggest that there is a heat source in the crust beneath the geothermal field. The high-temperature body is on average 150 °C – 200 °C hotter than the surrounding rock. The local seismic velocity and attenuation tomography gives a detailed velocity and attenuation model around the geothermal site, which shows that the major geothermal development target is a high velocity body near surface, composed mainly of monzonite. The major fracture direction points to NNE. The detailed velocity model along with the fracture direction will be helpful for guiding the geothermal development in the Cove Fort area.

  20. The development and nature of femoral head cam lesions following acetabular fractures.

    Science.gov (United States)

    Berber, Onur; Foote, Julian; Sabharwal, Sanjeeve; Datta, Gorav; Bircher, Martin D

    2014-01-01

    The aim of acetabular fracture fixation is to restore joint congruity with restoration of the articular surface. Poor outcomes are seen where this has not been achieved. Letournel reported a collarette osteophyte seen postoperatively in a proportion of patients, which he suggested was an early precursor to the development of osteoarthritis. This is a retrospective study of patients treated at a tertiary referral unit who developed this lesion. The triangular index was measured in 48 of these patients and then correlated with their clinical findings, Oxford Hip Score and the presence of osteoarthritis. Length of follow-up, fracture classification, and joint congruency were also recorded. Results showed a statistically significant relationship between cam lesion size and the development of osteoarthritis (P = 0.008), cam lesion size and length of follow-up (P = 0.01), and between groin pain and postoperative joint congruency (LR = 0.035). These findings suggest that the appearance of a cam lesion is a poor long-term prognostic marker for the development of osteoarthritis in patients with an acetabular fracture.

  1. Larval Behavior and Natural Trace Element Signatures as Indicators of Crustacean Population Connectivity

    OpenAIRE

    Miller, Seth Haylen

    2011-01-01

    In an era of increasing governmental protection of marine resources and accelerating climate change, knowing how benthic populations of marine organisms are connected is of paramount importance. However, little is known about connectivity in the nearshore environment, particularly at ecologically and demographically relevant scales. Because the dispersive larval stage is the key to understanding population connectivity, my dissertation focused on developing a new technique for tracking larvae...

  2. On the Nature of the Intrinsic Connectivity of the Cat Motor Cortex: Evidence for a Recurrent Neural Network Topology

    DEFF Research Database (Denmark)

    Capaday, Charles; Ethier, C; Brizzi, L

    2009-01-01

    and functional significance of the intrinsic horizontal connections between neurons in the motor cortex (MCx) remain to be clarified. To further elucidate the nature of this intracortical connectivity pattern, experiments were done on the MCx of three cats. The anterograde tracer biocytin was ejected......Capaday C, Ethier C, Brizzi L, Sik A, van Vreeswijk C, Gingras D. On the nature of the intrinsic connectivity of the cat motor cortex: evidence for a recurrent neural network topology. J Neurophysiol 102: 2131-2141, 2009. First published July 22, 2009; doi: 10.1152/jn.91319.2008. The details...... iontophoretically in layers II, III, and V. Some 30-50 neurons within a radius of similar to 250 mu m were thus stained. The functional output of the motor cortical point at which biocytin was injected, and of the surrounding points, was identified by microstimulation and electromyographic recordings. The axonal...

  3. AIED 2009 Workshops Proceeedings Volume 10: Natural Language Processing in Support of Learning: Metrics, Feedback and Connectivity

    NARCIS (Netherlands)

    Dessus, Philippe; Trausan-Matu, Stefan; Van Rosmalen, Peter; Wild, Fridolin

    2009-01-01

    Dessus, P., Trausan-Matu, S., Van Rosmalen, P., & Wild, F. (Eds.) (2009). AIED 2009 Workshops Proceedings Volume 10 Natural Language Processing in Support of Learning: Metrics, Feedback and Connectivity. In S. D. Craig & D. Dicheva (Eds.), AIED 2009: 14th International Conference in Artificial

  4. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    Characterisation of fractured rocks and evaluation of fracture connectivity are essential for the study of subsurface flow and transport in fractured rock aquifers. In this study, we use a new method to present fracture networks and analyse the connectivity of the fractures, based on the technique of randomly-generated ...

  5. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    ; they will show a sagittally oriented fracture line at the roof of the acetabulum on axial CT. Lastly, wall fractures should be evaluated with axial CT images. This is because wall fractures have an obliquely oriented fracture line on axial CT images at the roof of the acetabulum, as opposed to the coronal and sagittal fracture lines described with column and transverse fractures, respectively.2 Fractures are organized using the Letournel Classification based on whether the fracture site lies in the anterior or posterior walls and columns of bone. After diagnosis, early surgical intervention is critical in achieving good results.3 The majority of acetabular fractures are repaired by open reduction and internal fixation. Patients with significant osteopenia or communition benefit most from total hip arthroplasty. However, due to the complex nature of these fractures, there is potential for poor outcome regardless of the injury pattern due to contributing factors such as imperfect reduction, osteochondral defects in the acetabulum or femoral head, osteoarthritis, avascular necrosis of the femoral head, sciatic nerve injury and infection.4

  6. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  7. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    Science.gov (United States)

    Wolf, Kristin L.; Noe, Gregory; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  8. Development and experimental evaluation of models for low capillary number two-phase flows in rough walled fractures relevant to natural gradient conditions

    International Nuclear Information System (INIS)

    Glass, R.J.; Yarrington, L.; Nicholl, M.J.

    1997-09-01

    The major results from SNL's Conceptual Model Development and Validation Task (WBS 1.2.5.4.6) as developed through exploration of small scale processes were synthesized in Glass et al. to give guidance to Performance Assessment on improving conceptual models for isothermal flow in unsaturated, fractured rock. There, pressure saturation and relative permeability curves for single fractures were proposed to be a function of both fracture orientation within the gravity field and initial conditions. We refer the reader to Glass et al. for a discussion of the implications of this behavior for Performance Assessment. The scientific research we report here substantiates this proposed behavior. We address the modeling of phase structure within fractures under natural gradient conditions relevant to unsaturated flow through fractures. This phase structure underlies the calculation of effective properties for individual fractures and hence fracture networks as required for Performance Assessment. Standard Percolation (SP) and Invasion Percolation (IP) approaches have been recently proposed to model the underlying phase saturation structures within the individual fractures during conditions of two-phase flow. Subsequent analysis of these structures yields effective two-phase pressure-saturation and relative permeability relations for the fracture. However, both of these approaches yield structures that are at odds with physical reality as we see in experiments and thus effective properties calculated from these structures are in error. Here we develop and evaluate a Modified Invasion Percolation (MIP) approach to better model quasi-static immiscible displacement in fractures. The effects of gravity, contact angle, local aperature field geometry, and local in-plane interfacial curvature between phases are included in the calculation of invasion pressure for individual sites in a discretized aperture field

  9. Plastic fracture toughness of austenitic welding connection for Ver-1000 nuclear reactor piping of 300-350 mm diameter

    International Nuclear Information System (INIS)

    Vasil'chenko, G.S.; Dragunov, Yu.G.; Kabelevskij, M.G.; Kazantsev, A.G.; Kunavin, S.A.; Merinov, G.N.; Sokov, L.M.

    2000-01-01

    The outside welding technology for circular welds in a pearlitic tube using austenitic welding wire materials is developed and applied in manufacturing pipelines of CPP and ECC. Mechanical properties and fracture toughness of austenitic welded joints in pearlitic tubes are determined to substantiate by calculation the practicality of the leakage prior to failure concept. The work is accomplished on experimental tube manufactured by hand arc welding. When manufactured the tube is cut into 5 rings. From the rings the tensile specimens are cut for testing at 20 and 350 deg C as well as Charpy V-notch impact specimens and compact specimens ST-1T. It is shown that the materials of the experimental tube meet the standard requirements. Only axial specimens cut across the weld are not in conformity with the requirements for specific elongation [ru

  10. Sustainably connecting children with nature: an exploratory study of nature play area visitor impacts and their management

    Science.gov (United States)

    Browning, Matthew H.E.M.; Marion, Jeffrey L.; Gregoire, Timothy G.

    2013-01-01

    Parks are developing nature play areas to improve children's health and “connect” them with nature. However, these play areas are often located in protected natural areas where managers must balance recreation with associated environmental impacts. In this exploratory study, we sought to describe these impacts. We also investigated which ages, gender, and play group sizes most frequently caused impact and where impacts most frequently occur. We measured the lineal and aerial extent and severity of impacts at three play areas in the eastern United States. Methods included soil and vegetation loss calculations, qualitative searches and tree and shrub damage classifications. Additionally, we observed 12 h of play at five play areas. Results showed that measurable negative impacts were caused during 33% of the time children play. On average, 76% of groundcover vegetation was lost at recreation sites and 100% was lost at informal trails. In addition, approximately half of all trees and shrubs at sites were damaged. Meanwhile, soil exposure was 25% greater on sites and trails than at controls. Boys and small group sizes more frequently caused impact, and informal recreation sites were most commonly used for play. No statistically significant correlations were found between age or location and impact frequency. Managers interested in developing nature play areas should be aware of, but not deterred by these impacts. The societal benefits of unstructured play in nature may outweigh the environmental costs. Recommended management strategies include selecting impact-resistant sites, improving site resistance, promoting low impact practices, and managing adaptively.

  11. Study of the Fractal and Multifractal Scaling Intervening in the Description of Fracture Experimental Data Reported by the Classical Work: Nature 308, 721–722(1984

    Directory of Open Access Journals (Sweden)

    Liliana Violeta Constantin

    2012-01-01

    Full Text Available Starting from the experimental data referring to the main parameters of the fracture surfaces of some 300-grade maraging steel reported by the classical work published in Nature 308, 721–722(1984, this work studied (a the multifractal scaling by the main parameters of the slit islands of fracture surfaces produced by a uniaxial tensile loading and (b the dependence of the impact energy to fracture and of the fractal dimensional increment on the temperature of the studied steels heat treatment, for the fracture surfaces produced by Charpy impact. The obtained results were analyzed, pointing out the spectral (size distribution of the found slit islands in the frame of some specific clusters (fractal components of the multifractal scaling of representative points of the logarithms of the slit islands areas and perimeters, respectively.

  12. The Process of Hydraulic Fracturing

    Science.gov (United States)

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  13. Connecting to Nature in the Lab through "Earth Song": The Malleability of Implicit and Explicit Attitudes towards Nature

    Czech Academy of Sciences Publication Activity Database

    Chabada, T.; Hampejs, T.; Skalík, J.; Bujnošková, E.; Hlinka, Jaroslav

    2015-01-01

    Roč. 12, č. 3 (2015), s. 113-133 ISSN 1214-813X Grant - others:MUNI(CZ) A/0769/2013 Institutional support: RVO:67985807 Keywords : Environmental attitudes * Connectedness to Nature Scale * New Ecological Paradigm Scale * Implicit Association Test * implicit attitudes * context sensitivity Subject RIV: AN - Psychology

  14. Optimal design of compact and connected nature reserves for multiple species.

    Science.gov (United States)

    Wang, Yicheng; Önal, Hayri

    2016-04-01

    When designing a conservation reserve system for multiple species, spatial attributes of the reserves must be taken into account at species level. The existing optimal reserve design literature considers either one spatial attribute or when multiple attributes are considered the analysis is restricted only to one species. We built a linear integer programing model that incorporates compactness and connectivity of the landscape reserved for multiple species. The model identifies multiple reserves that each serve a subset of target species with a specified coverage probability threshold to ensure the species' long-term survival in the reserve, and each target species is covered (protected) with another probability threshold at the reserve system level. We modeled compactness by minimizing the total distance between selected sites and central sites, and we modeled connectivity of a selected site to its designated central site by selecting at least one of its adjacent sites that has a nearer distance to the central site. We considered structural distance and functional distances that incorporated site quality between sites. We tested the model using randomly generated data on 2 species, one ground species that required structural connectivity and the other an avian species that required functional connectivity. We applied the model to 10 bird species listed as endangered by the state of Illinois (U.S.A.). Spatial coherence and selection cost of the reserves differed substantially depending on the weights assigned to these 2 criteria. The model can be used to design a reserve system for multiple species, especially species whose habitats are far apart in which case multiple disjunct but compact and connected reserves are advantageous. The model can be modified to increase or decrease the distance between reserves to reduce or promote population connectivity. © 2015 Society for Conservation Biology.

  15. Advanced reservoir characterization and evaluation of CO2 gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, P.

    1998-06-01

    The objective of the Spraberry CO{sub 2} pilot project is to determine the technical and economic feasibility of continuous CO{sub 2} injection in the naturally fractured reservoirs of the Spraberry Trend. In order to describe, understand, and model CO{sub 2} flooding in the naturally fractured Spraberry reservoirs, characterization of the fracture system is a must. Additional reservoir characterization was based on horizontal coring in the second year of the project. In addition to characterization of natural fractures, horizontal coring has confirmed a previously developed rock model for describing the Spraberry Trend shaly sands. A better method for identifying Spraberry pay zones has been verified. The authors have completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. The authors have completed extensive imbibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. The authors have also made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. They have completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix.

  16. A multi-scale case study of natural fracture systems in outcrops and boreholes with applications to reservoir modelling

    NARCIS (Netherlands)

    Taal-van Koppen, J.K.J.

    2008-01-01

    Fractured reservoirs are notoriously difficult to characterize because the resolution of seismic data is too low to detect fractures whereas borehole data is detailed but sparse. Therefore, outcrops can be of great support in gaining knowledge of the three-dimensional geometry of fracture networks,

  17. Bending strength and fracture surface topography of natural fiber-reinforced shell for investment casting process

    Directory of Open Access Journals (Sweden)

    Kai Lu

    2016-05-01

    Full Text Available In order to improve the properties of silica sol shell for investment casting process, various contents of cattail fibers were added into the slurry to prepare a fiber-reinforced shell in the present study. The bending strength of fiber-reinforced shell was investigated and the fracture surfaces of shell specimens were observed using SEM. It is found that the bending strength increases with the increase of fiber content, and the bending strength of a green shell with 1.0 wt.% fiber addition increases by 44% compared to the fiber-free shell. The failure of specimens of the fiber-reinforced green shell results from fiber rupture and debonding between the interface of fibers and adhesive under the bending load. The micro-crack propagation in the matrix is inhibited by the micro-holes for ablation of fibers in specimens of the fiber-reinforced shell during the stage of being fired. As a result, the bending strength of specimens of the fired shell had no significant drop. Particularly, the bending strength of specimens of the fired shell reinforced with 0.6wt.% fiber reached the maximum value of 4.6 MPa.

  18. Natural Learning for a Connected World: Education, Technology, and the Human Brain

    Science.gov (United States)

    Caine, Renate N.; Caine, Geoffrey

    2011-01-01

    Why do video games fascinate kids so much that they will spend hours pursuing a difficult skill? Why don't they apply this kind of intensity to their schoolwork? These questions are answered by the authors who pioneered brain/mind learning with the publication of "Making Connections: Teaching and the Human Brain". In their new book, "Natural…

  19. Aspects of modern fracture statistics

    International Nuclear Information System (INIS)

    Tradinik, W.; Pabst, R.F.; Kromp, K.

    1981-01-01

    This contribution begins with introductory general remarks about fracture statistics. Then the fundamentals of the distribution of fracture probability are described. In the following part the application of the Weibull Statistics is justified. In the fourth chapter the microstructure of the material is considered in connection with calculations made in order to determine the fracture probability or risk of fracture. (RW) [de

  20. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    International Nuclear Information System (INIS)

    Liu, X.Y; Zhang, C.Y.; Liu, Q.S.; Birkholzer, J.T.

    2009-01-01

    In many underground nuclear waste repository systems, such as at Yucca Mountain, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of the MPS method is to record multiple-point statistics concerning the connectivity patterns of a fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at the Yucca Mountain waste repository system. First, the MPS method is used to create a fracture network with an original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in the surrounding waste emplacement drifts. Our study shows that connectivity or patterns of fracture networks can be grasped and reconstructed by MPS methods. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify model uncertainty even in complicated coupled THM simulations. It indicates that MPS can potentially characterize and reconstruct natural fracture networks in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

  1. A social science perspective on the forest preserves: Seven virtues for connecting people and nature

    Science.gov (United States)

    Paul H. Gobster

    2015-01-01

    How do people perceive and value urban green space? In what ways do people's perceptions and values of urban nature affect their use and experience of parks, forest preserves, and other green space types? Knowing this information, how can green space planners, managers, and decision makers facilitate a better "fit" between people and nature in urban...

  2. Business Communication and the Natural Environment: Using Traditional and Contemporary Perspectives to Understand the Connections.

    Science.gov (United States)

    Bullis, Connie

    1997-01-01

    Argues that business communication scholarship has not attended to the natural environment. Notes that organizational scholarship has theorized business as it relates to the natural environment but has not thoroughly understood how communication functions in this relationship. Argues that business communication should adopt a Gaian perspective…

  3. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands.

    Science.gov (United States)

    Wolf, Kristin L; Noe, Gregory B; Ahn, Changwoo

    2013-07-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots ( = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Adaptive neighbor connection for PRMs: A natural fit for heterogeneous environments and parallelism

    KAUST Repository

    Ekenna, Chinwe; Jacobs, Sam Ade; Thomas, Shawna; Amato, Nancy M.

    2013-01-01

    Probabilistic Roadmap Methods (PRMs) are widely used motion planning methods that sample robot configurations (nodes) and connect them to form a graph (roadmap) containing feasible trajectories. Many PRM variants propose different strategies for each of the steps and choosing among them is problem dependent. Planning in heterogeneous environments and/or on parallel machines necessitates dividing the problem into regions where these choices have to be made for each one. Hand-selecting the best method for each region becomes infeasible. In particular, there are many ways to select connection candidates, and choosing the appropriate strategy is input dependent. In this paper, we present a general connection framework that adaptively selects a neighbor finding strategy from a candidate set of options. Our framework learns which strategy to use by examining their success rates and costs. It frees the user of the burden of selecting the best strategy and allows the selection to change over time. We perform experiments on rigid bodies of varying geometry and articulated linkages up to 37 degrees of freedom. Our results show that strategy performance is indeed problem/region dependent, and our adaptive method harnesses their strengths. Over all problems studied, our method differs the least from manual selection of the best method, and if one were to manually select a single method across all problems, the performance can be quite poor. Our method is able to adapt to changing sampling density and learns different strategies for each region when the problem is partitioned for parallelism. © 2013 IEEE.

  5. Adaptive neighbor connection for PRMs: A natural fit for heterogeneous environments and parallelism

    KAUST Repository

    Ekenna, Chinwe

    2013-11-01

    Probabilistic Roadmap Methods (PRMs) are widely used motion planning methods that sample robot configurations (nodes) and connect them to form a graph (roadmap) containing feasible trajectories. Many PRM variants propose different strategies for each of the steps and choosing among them is problem dependent. Planning in heterogeneous environments and/or on parallel machines necessitates dividing the problem into regions where these choices have to be made for each one. Hand-selecting the best method for each region becomes infeasible. In particular, there are many ways to select connection candidates, and choosing the appropriate strategy is input dependent. In this paper, we present a general connection framework that adaptively selects a neighbor finding strategy from a candidate set of options. Our framework learns which strategy to use by examining their success rates and costs. It frees the user of the burden of selecting the best strategy and allows the selection to change over time. We perform experiments on rigid bodies of varying geometry and articulated linkages up to 37 degrees of freedom. Our results show that strategy performance is indeed problem/region dependent, and our adaptive method harnesses their strengths. Over all problems studied, our method differs the least from manual selection of the best method, and if one were to manually select a single method across all problems, the performance can be quite poor. Our method is able to adapt to changing sampling density and learns different strategies for each region when the problem is partitioned for parallelism. © 2013 IEEE.

  6. Extending Topological Approaches to Microseismic-Derived 3D Fracture Networks

    Science.gov (United States)

    Urbancic, T.; Bosman, K.; Baig, A.; Ardakani, E. P.

    2017-12-01

    Fracture topology is important for determining the fluid-flow characteristics of a fracture network. In most unconventional petroleum applications, flow through subsurface fracture networks is the primary source of production, as matrix permeability is often in the nanodarcy range. Typical models of reservoir discrete fracture networks (DFNs) are constructed using fracture orientation and average spacing, without consideration of how the connectivity of the fracture network aids the percolation of hydrocarbons back to the wellbore. Topological approaches to DFN characterization have been developed and extensively used in analysis of outcrop data and aerial photography. Such study of the surface expression of fracture networks is straight-forward, and the physical form of the observed fractures is directly reflected in the parameters used to describe the topology. However, this analysis largely ignores the three-dimensional nature of natural fracture networks, which is difficult to define accurately in geological studies. SMTI analysis of microseismic event distributions can produce DFNs, where each event is represented by a penny-shaped crack with radius and orientation determined from the frequency content of the waveforms and assessment of the slip instability of the potential fracture planes, respectively. Analysis of the geometric relationships between a set of fractures can provide details of intersections between fractures, and thus the topological characteristics of the fracture network. Extension of existing 2D topology approaches to 3D fracture networks is non-trivial. In the 2D case, a fracture intersection is a single point (node), and branches connect adjacent nodes along fractures. For the 3D case, intersection "nodes" become lines, and connecting nodes to find branches becomes more complicated. There are several parameters defined in 2D topology to quantify the connectivity of the fracture network. Equivalent quantities must be defined and calibrated

  7. Natural spatial and temporal variations in groundwater chemistry in fractured, sedimentary rocks: scale and implications for solute transport

    International Nuclear Information System (INIS)

    Hoven, Stephen J. van der; Kip Solomon, D.; Moline, Gerilynn R.

    2005-01-01

    Natural tracers (major ions, δ 18 O, and O 2 ) were monitored to evaluate groundwater flow and transport to a depth of 20 m below the surface in fractured sedimentary (primarily shale and limestone) rocks. Large temporal variations in these tracers were noted in the soil zone and the saprolite, and are driven primarily by individual storm events. During nonstorm periods, an upward flow brings water with high TDS, constant δ 18 O, and low dissolved O 2 to the water table. During storm events, low TDS, variable δ 18 O, and high dissolved O 2 water recharges through the unsaturated zone. These oscillating signals are rapidly transmitted along fracture pathways in the saprolite, with changes occurring on spatial scales of several meters and on a time scale of hours. The variations decreased markedly below the boundary between the saprolite and less weathered bedrock. Variations in the bedrock units occurred on time scales of days and spatial scales of at least 20 m. The oscillations of chemical conditions in the shallow groundwater are hypothesized to have significant implications for solute transport. Solutes and colloids that adsorb onto aquifer solids can be released into solution by decreases in ionic strength and pH. The decreases in ionic strength also cause thermodynamic undersaturation of the groundwater with respect to some mineral species and may result in mineral dissolution. Redox conditions are also changing and may result in mineral dissolution/precipitation. The net result of these chemical variations is episodic transport of a wide range of dissolved solutes or suspended particles, a phenomenon rarely considered in contaminant transport studies

  8. Connecting food environments and health through the relational nature of aesthetics: Gaining insight through the community gardening experience

    Science.gov (United States)

    Hale, James; Knapp, Corrine; Bardwell, Lisa; Buchenau, Michael; Marshall, Julie; Sancar, Fahriye; Litt, Jill S

    2011-01-01

    Current environmental and health challenges require us to identify ways to better align aesthetics, ecology, and health. At the local level, community gardens are increasingly praised for their therapeutic qualities. They also provide a lens through which we can explore relational processes that connect people, ecology and health. Using key-informant interview data, this research explores gardeners’ tactile, emotional, and value-driven responses to the gardening experience and how these responses influence health at various ecological levels (n=67 participants, 28 urban gardens). Our findings demonstrate that gardeners’ aesthetic experiences generate meaning that encourages further engagement with activities that may lead to positive health outcomes. Gardeners directly experience nearby nature by ‘getting their hands dirty’ and growing food. They enjoy the way vegetables taste and form emotional connections with the garden. The physical and social qualities of garden participation awaken the senses and stimulate a range of responses that influence interpersonal processes (learning, affirming, expressive experiences) and social relationships that are supportive of positive health-related behaviors and overall health. This research suggests that the relational nature of aesthetics, defined as the most fundamental connection between people and place, can help guide community designers and health planners when designing environment and policy approaches to improve health behaviors. PMID:21596466

  9. Connecting food environments and health through the relational nature of aesthetics: gaining insight through the community gardening experience.

    Science.gov (United States)

    Hale, James; Knapp, Corrine; Bardwell, Lisa; Buchenau, Michael; Marshall, Julie; Sancar, Fahriye; Litt, Jill S

    2011-06-01

    Current environmental and health challenges require us to identify ways to better align aesthetics, ecology, and health. At the local level, community gardens are increasingly praised for their therapeutic qualities. They also provide a lens through which we can explore relational processes that connect people, ecology and health. Using key-informant interview data, this research explores gardeners' tactile, emotional, and value-driven responses to the gardening experience and how these responses influence health at various ecological levels (n = 67 participants, 28 urban gardens). Our findings demonstrate that gardeners' aesthetic experiences generate meaning that encourages further engagement with activities that may lead to positive health outcomes. Gardeners directly experience nearby nature by 'getting their hands dirty' and growing food. They enjoy the way vegetables taste and form emotional connections with the garden. The physical and social qualities of garden participation awaken the senses and stimulate a range of responses that influence interpersonal processes (learning, affirming, expressive experiences) and social relationships that are supportive of positive health-related behaviors and overall health. This research suggests that the relational nature of aesthetics, defined as the most fundamental connection between people and place, can help guide community designers and health planners when designing environment and policy approaches to improve health behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    Science.gov (United States)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  11. 'Becoming human again': Exploring connections between nature and recovery from stress and post-traumatic distress.

    Science.gov (United States)

    Westlund, Stephanie

    2015-01-01

    Many military veterans are seeking ways beyond conventional treatments to manage their stress injuries. An increasing number is turning to nature, including hiking and fishing, farming and gardening, and building relationships with dogs or horses. Many continue to benefit from medication and therapy, but find that nature provides an additional measure of support, relief and healing in their lives. This paper examines reciprocal interactions between humans and nature during post-conflict recovery, with a focus on the experiences of four North American veterans who regard their personal recovery from stressful and traumatic military experiences as intimately tied to their nature experiences. Experience-centered narrative inquiry often sheds light on details and experiences concealed or overlooked by other research paradigms. In-depth interviews about post-military experiences with recovery were conducted with four veterans who suffer from stress and/or post-traumatic distress; these experiences are further illuminated by supporting interviews, and theories and praxis in ecopsychology, cognitive science, neuroscience, biophilia, and ecological intelligence. Through exploring themes of sensory experience, safety, sense of purpose, and renewed relationships, this research gives space to former soldiers' stories of experience and to their individual realizations that their embodied interconnections with nature provide alternative experiences to their military training and combat exposure. The veterans' experiences with nature and recovery are pointing towards an avenue of recovery that is little acknowledged in the mainstream literature and praxis, but deserving of attention.

  12. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  13. The “communication line” suggests occult posterior malleolar fracture associated with a spiral tibial shaft fracture

    International Nuclear Information System (INIS)

    Hou Zhiyong; Zhang Liping; Zhang Qi; Yao Shuangquan; Pan Jinshe; Irgit, Kaan; Zhang Yingze

    2012-01-01

    Objectives: To demonstrate radiographical characteristics of the relationship between distal spiral tibial shaft fractures and associated occult posterior malleolar fractures (PMF) that confirmed by CT and MRI. Materials and methods: X-rays for a ninety-six patients with spiral tibia fracture and associated PMF were reviewed. All patients additionally had an ankle CT. Patients with a negative CT scans underwent an ankle MRI. Radiographic observations included fracture location, characteristics, and a presence of a fracture line between the two injuries. Results: The spiral tibia fracture line was contiguous with PMF in 89 of 96 cases after evaluation with the CT and MRI. The line connecting the two injuries, which occurs between the medial inferior apex of the spiral tibia fracture line and the posterior superior apex of the PMF was identified as the “communication line”. In 47 of the 89 conjunction fractures, the “communication line” was detectable preoperatively and in 12 cases postoperatively by anteroposterior radiograph. By using the CT and MRI scans, we found that no “communication line” was present in only 7 cases. Conclusion: It is important to understand the nature of the association between distal spiral tibial shaft fractures and occult posterior malleolar fractures for optimal stabilization of the fracture and for appropriate rehabilitation. The “communication line” is a useful diagnostic clue for early recognition the occult PMF and alerts a closer evaluation of the lateral view and further CT examination.

  14. Nature, Genetics and the Biophilia Connection: Exploring Linkages with Social Work Values and Practice

    Directory of Open Access Journals (Sweden)

    Fred H. Besthorn

    2003-05-01

    Full Text Available Social work’s notion of environment and its environmental responsibilities has always been narrowly defined. The profession has tended to either neglect natural environmental issues or accept shallow, ecological conceptualizations of nature as something other, quite separate from the human enterprise and/or outside the reach of social work activity. The Biophilia Hypothesis, first articulated by Harvard biologist E.O.Wilson in 1984, offers social work as a fundamentally different view of the person/environment construct and argues for a primary shift in the way the profession views its relationship with the natural world. This article traces the conceptual development of the Biophilic theory and reviews pivotal empirical evidence explicitly arguing for the essential Biophilic premise that humans have acquired, through their long evolutionary history, a strong genetic predisposition for nature and natural settings. It offers key insights and examples for incorporating Biophilia into social work’s values and knowledge base and how it may impact the profession’s practice strategies and techniques.

  15. Fostering Children’s Connection to Nature Through Authentic Situations: The Case of Saving Salamanders at School

    Directory of Open Access Journals (Sweden)

    Stephan Barthel

    2018-06-01

    Full Text Available The aim of this paper is to explore how children learn to form new relationships with nature. It draws on a longitudinal case study of children participating in a stewardship project involving the conservation of salamanders during the school day in Stockholm, Sweden. The qualitative method includes two waves of data collection: when a group of 10-year-old children participated in the project (2015 and 2 years after they participated (2017. We conducted 49 interviews with children as well as using participant observations and questionnaires. We found indications that children developed sympathy for salamanders and increased concern and care for nature, and that such relationships persisted 2 years after participation. Our rich qualitative data suggest that whole situations of sufficient unpredictability triggering free exploration of the area, direct sensory contact and significant experiences of interacting with a species were important for children’s development of affective relationships with the salamander species and with nature in an open-ended sense. Saving the lives of trapped animals enabled direct sensory interaction, feedback, increased understanding, and development of new skills for dynamically exploring further ways of saving species in an interactive process experienced as deeply meaningful, enjoyable and connecting. The behavioral setting instilled a sense of pride and commitment, and the high degree of responsibility given to the children while exploring the habitat during authentic situations enriched children’s enjoyment. The study has implications for the design of education programs that aim to connect children with nature and for a child-sensitive urban policy that supports authentic nature situations in close spatial proximity to preschools and schools.

  16. Guides to Sustainable Connections? Exploring Human-Nature Relationships among Wilderness Travel Leaders

    Science.gov (United States)

    Grimwood, Bryan S. R.; Haberer, Alexa; Legault, Maria

    2015-01-01

    This paper explores and critically interprets the role wilderness travel may play in fostering environmental sustainability. The paper draws upon two qualitative studies that sought to understand human-nature relationships as experienced by different groups of wilderness travel leaders in Canada. According to leaders involved in the studies,…

  17. Connecting Self-Efficacy and Views about the Nature of Science in Undergraduate Research Experiences

    Science.gov (United States)

    Quan, Gina M.; Elby, Andrew

    2016-01-01

    Undergraduate research can support students' more central participation in physics. We analyze markers of two coupled shifts in participation: changes in students' views about the nature of science coupled to shifts in self-efficacy toward physics research. Students in the study worked with faculty and graduate student mentors on research projects…

  18. Environmental education and technology: using a remotely operated vehicle to connect with nature

    Science.gov (United States)

    Mark Gleason; Laurie Harmon; Kwame Boakye-Agyei

    2007-01-01

    One hundred seven young people (12-14 years old) and 183 adults (25-86 years old) used an underwater remotely operated vehicle (ROV) to explore shipwrecks and marine habitats in the Great Lakes and various inland lakes during the summer of 2005. Content analysis of responses regarding the types of impact the ROV had on their perception and experience with the natural...

  19. Creative Connecting: Early Childhood Nature Journaling Sparks Wonder and Develops Ecological Literacy

    Science.gov (United States)

    Johnson, Kelly

    2014-01-01

    While nature journaling with elementary age children has recently increased in popularity, journaling with children of ages 2-6 is often overlooked. This article focuses specifically on why journaling is a valid practice in early childhood and the practitioner application of journaling techniques modified for the young child. Young children have…

  20. NatureLinks: Protected areas, wilderness, and landscape connectivity in South Australia, Australia

    Science.gov (United States)

    Adrian Stokes; Greg Leaman

    2007-01-01

    The South Australian Government has recognized that, despite an extensive protected area system (26 percent of the State), Statewide ecological goals will not be achieved on protected areas alone. The NatureLinks model promotes protected areas acting as “ecological cores” in landscapes managed with conservation objectives. To implement this model, partnerships with...

  1. Connecting Model Species to Nature: Predator-Induced Long-Term Sensitization in "Aplysia Californica"

    Science.gov (United States)

    Mason, Maria J.; Watkins, Amanda J.; Wakabayashi, Jordann; Buechler, Jennifer; Pepino, Christine; Brown, Michelle; Wright, William G.

    2014-01-01

    Previous research on sensitization in "Aplysia" was based entirely on unnatural noxious stimuli, usually electric shock, until our laboratory found that a natural noxious stimulus, a single sublethal lobster attack, causes short-term sensitization. We here extend that finding by demonstrating that multiple lobster attacks induce…

  2. Sealing of rock fractures

    International Nuclear Information System (INIS)

    Pusch, R.; Erlstroem, M.; Boergesson, L.

    1985-12-01

    The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)

  3. Mechanical characterization of natural building stones: observation of the fracture process zone by ESPI

    Science.gov (United States)

    Calvetti, Francesco; Cardani, Giuliana; Meda, Alberto

    1999-09-01

    The cultural heritage of many nations consist of a great variety of structures of high intrinsic value, which are often composed of natural building stones (NBS), as granite, limestone, marble and sandstone. The use of accurate inspection devices, such as laser interferometry, allows us to acquire information regarding the mechanical properties and damage (tensile cracks) of NBS, which represents the first step in the restoration process. In this paper, the potential application of an electronic speckle pattern interferometry (ESPI) is shown, with particular attention to the observed displacement field and the crack penetration during laboratory testing. In ESPI, by superimposing a reflected light to a reference digitized image, an interference phenomenon is produced. By comparing two recorded interference patterns (before and after loading), the corresponding deformation can be evaluated. The application of ESPI in several laboratory tests on NBS is presented in this paper. In particular, during bending tests performed on geometrically similar NBS specimens, it was observed that the size and shape of the localized damage zone do not depend on the specimen size. These results allow for an interpretation of the 'size- effect,' which consists of a reduction of nominal strength as the specimen size increases.

  4. Connecting self-efficacy and views about the nature of science in undergraduate research experiences

    Science.gov (United States)

    Quan, Gina M.; Elby, Andrew

    2016-12-01

    Undergraduate research can support students' more central participation in physics. We analyze markers of two coupled shifts in participation: changes in students' views about the nature of science coupled to shifts in self-efficacy toward physics research. Students in the study worked with faculty and graduate student mentors on research projects while also participating in a seminar where they learned about research and reflected on their experiences. In classroom discussions and in clinical interviews, students described gaining more nuanced views about the nature of science, specifically related to who can participate in research and what participation in research looks like. This shift was coupled to gains in self-efficacy toward their ability to contribute to research; they felt like their contributions as novices mattered. We present two case studies of students who experienced coupled shifts in self-efficacy and views about nature-of-science shifts, and a case study of a student for whom we did not see either shift, to illustrate both the existence of the coupling and the different ways it can play out. After making the case that this coupling occurs, we discuss some potential underlying mechanisms. Finally, we use these results to argue for more nuanced interpretations of self-efficacy measurements.

  5. Constraints to connecting children with nature--Survey of U.S. Fish and Wildlife Service employees sponsored by the National Conservation Training Center, Division of Education Outreach

    Science.gov (United States)

    Ratz, Joan M.; Schuster, Rudy M.

    2011-01-01

    The U.S. Fish and Wildlife Service (FWS) names "connecting people with nature" as one of its top six priorities in the online Service Employee Pocket Guide. The National Conservation Training Center (NCTC) took the initiative to identify issues that impede greater progress in addressing constraints to connecting children with nature. The Division of Education Outreach at NCTC formed a working relation with the Policy Analysis and Science Assistance branch of the U.S. Geological Survey to conduct a study on these issues. To meet the objectives of the study, a survey of a sample of FWS employees was conducted. This report includes the description of how the survey was developed and administered, how the data were analyzed, and a discussion of the survey results. The survey was developed based on published literature and incorporated input from two working groups of professionals focused on the issue of connecting children with nature. Although the objective as stated by the FWS is to connect people with nature, the survey primarily focused on connecting children, rather than all people, with nature. The four primary concepts included on the survey were interpretation of how the FWS defined "connection" as part of its mission, perceived success with outreach, constraints to connecting children with nature, and importance of connecting children with nature. The survey was conducted online using KeySurvey© software. The survey was sent to 604 FWS employees. Responses were received from 320 employees. The respondents represented diversity in regions, tenure, wage/grade level, job series, supervisory status, and involvement with education and outreach activities. The key findings of the survey are as follows: * FWS employees believe they as individuals and the agency are successful now and will be more successful in the future in connecting children with nature. * FWS employees believe that there are many outcomes that are relevant to the FWS objective to connect people

  6. Natural and anthropogenic change in the morphology and connectivity of tidal channels of southwest Bangladesh

    Science.gov (United States)

    Wilson, C.; Goodbred, S. L., Jr.; Wallace Auerbach, L.; Ahmed, K. R.; Small, C.; Sams, S. E.

    2014-12-01

    Over the last century, land use changes in the Ganges-Brahmaputra tidal delta have transformed >5000 km2 of intertidal mangrove forest to densely inhabited, agricultural islands that have been embanked to protect against tides and storm surges (i.e., polders). More recently, the conversion of rice paddies to profitable shrimp aquaculture has become increasingly widespread. Recent field studies documented that poldering in southwest Bangladesh has resulted in an elevation deficit relative to that of the natural mangrove forests and mean high water (MHW). The offset is a function of lost sedimentation, enhanced compaction, and an effective rise in MHW from tidal amplification. The morphologic adjustment of the tidal channel network to these perturbations, however, has gone largely undocumented. One effect has been the shoaling of many channels due to decreases in fluvial discharge and tidal prism. We document a previously unrecognized anthropogenic component: the widespread closure of large conduit tidal channels for land reclamation and shrimp farming. GIS analysis of historical Landsat and Google Earth imagery within six 1000 km2 study areas reveals that the tidal network in the natural Sundarbans mangrove forest has remained relatively constant since the 1970s, while significant changes are observed in human-modified areas. Construction of the original embankments removed >1000 km of primary tidal creeks, and >80 km2 of land has been reclaimed outside of polders through the closure of formerly active tidal channels (decrease in mean channel width from 256±91 m to 25±10 m). Tidal restriction by large sluice gates is prevalent, favoring local channel siltation. Furthermore, severing the intertidal platform and large conduit channels from the tidal network has had serious repercussions, such as increased lateral migration and straightening of the remaining channels. Where banklines have eroded, the adjacent embankments appear to be more vulnerable to failure, as

  7. Training of panellists for the sensory control of bottled natural mineral water in connection with water chemical properties.

    Science.gov (United States)

    Rey-Salgueiro, Ledicia; Gosálbez-García, Aitana; Pérez-Lamela, Concepción; Simal-Gándara, Jesús; Falqué-López, Elena

    2013-11-01

    As bottled mineral water market is increasing in the world (especially in emergent and developed countries), the development of a simple protocol to train a panel to evaluate sensory properties would be a useful tool for natural drinking water industry. A sensory protocol was developed to evaluate bottled natural mineral water (17 still and 10 carbonated trademarks). The tasting questionnaire included 13 attributes for still water plus overall impression and they were sorted by: colour hues, transparency and brightness, odour/aroma and taste/flavour/texture and 2 more for carbonated waters (bubbles and effervescence). The training lasted two months with, at least, 10 sessions, was adequate to evaluate bottled natural mineral water. To confirm the efficiency of the sensory training procedure two sensory groups formed the whole panel. One trained panel (6 persons) and one professional panel (6 sommeliers) and both participated simultaneously in the water tasting evaluation of 3 sample lots. Similar average scores obtained from trained and professional judges, with the same water trademarks, confirmed the usefulness of the training protocol. The differences obtained for trained panel in the first lot confirm the necessity to train always before a sensory procedure. A sensory water wheel is proposed to guide the training in bottled mineral water used for drinking, in connection with their chemical mineral content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Relationships between fractures

    Science.gov (United States)

    Peacock, D. C. P.; Sanderson, D. J.; Rotevatn, A.

    2018-01-01

    Fracture systems comprise many fractures that may be grouped into sets based on their orientation, type and relative age. The fractures are often arranged in a network that involves fracture branches that interact with one another. Interacting fractures are termed geometrically coupled when they share an intersection line and/or kinematically coupled when the displacements, stresses and strains of one fracture influences those of the other. Fracture interactions are characterised in terms of the following. 1) Fracture type: for example, whether they have opening (e.g., joints, veins, dykes), closing (stylolites, compaction bands), shearing (e.g., faults, deformation bands) or mixed-mode displacements. 2) Geometry (e.g., relative orientations) and topology (the arrangement of the fractures, including their connectivity). 3) Chronology: the relative ages of the fractures. 4) Kinematics: the displacement distributions of the interacting fractures. It is also suggested that interaction can be characterised in terms of mechanics, e.g., the effects of the interaction on the stress field. It is insufficient to describe only the components of a fracture network, with fuller understanding coming from determining the interactions between the different components of the network.

  9. Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes

    Science.gov (United States)

    Masaki, Shogo; Hikage, Chiaki; Takada, Masahiro; Spergel, David N.; Sugiyama, Naoshi

    2013-08-01

    measurements as well as for understanding the nature of LRGs such as their formation and assembly histories.

  10. A randomized controlled trial for families with preschool children - promoting healthy eating and active playtime by connecting to nature.

    Science.gov (United States)

    Sobko, Tanja; Tse, Michael; Kaplan, Matthew

    2016-06-13

    Promotion of healthy lifestyles in children focuses predominantly on proper nutrition and physical activity, elements now widely recognised as essential for a healthy life. Systematic reviews have shown that nature-related activities also enhance general well-being as reflected in increased physical activity, a healthier diet, reduced stress and better sleep. Recent research suggests that many young children in Hong Kong between the ages of two and four in Hong Kong are more sedentary than recommended and seldom participate in active play, placing them at risk of becoming overweight or obese. The proposed project aims to investigate whether connecting families to nature positively influences physical activity (i.e., active playtime) and healthy eating routines in children aged 2 to 4. We recently conducted a pilot study in Hong Kong to develop a programme, Play & Grow, based on the most successful evidence-based international preschool interventions. In addition to adopting the healthy eating and physical activity elements of these interventions, this project will additionally include a third novel element of Connectedness to nature: discovering nature through games and awareness of sounds, touch, smells, and temperature. To test the effectiveness of this modified intervention, a randomised controlled trial (RCT) involving 240 families with children aged 2 to 4 will be conducted. Families and children will take part in weekly one-hour activity sessions for 10-weeks. Lifestyle-related habits will be assessed before and immediately after the 10-week intervention, with follow up testing at 6 and 12 months' post intervention. A novel measuring tool created specifically for assessing Connectedness to nature, Nature Relatedness Scale (NRS), will be validated and tested for reliability prior to the RCT. The results of the RCT are intended to be used to understand which components of the intervention are most effective. The objectives of this project will be achieved

  11. A randomized controlled trial for families with preschool children - promoting healthy eating and active playtime by connecting to nature

    Directory of Open Access Journals (Sweden)

    Tanja Sobko

    2016-06-01

    Full Text Available Abstract Background Promotion of healthy lifestyles in children focuses predominantly on proper nutrition and physical activity, elements now widely recognised as essential for a healthy life. Systematic reviews have shown that nature-related activities also enhance general well-being as reflected in increased physical activity, a healthier diet, reduced stress and better sleep. Recent research suggests that many young children in Hong Kong between the ages of two and four in Hong Kong are more sedentary than recommended and seldom participate in active play, placing them at risk of becoming overweight or obese. The proposed project aims to investigate whether connecting families to nature positively influences physical activity (i.e., active playtime and healthy eating routines in children aged 2 to 4. Methods We recently conducted a pilot study in Hong Kong to develop a programme, Play & Grow, based on the most successful evidence-based international preschool interventions. In addition to adopting the healthy eating and physical activity elements of these interventions, this project will additionally include a third novel element of Connectedness to nature: discovering nature through games and awareness of sounds, touch, smells, and temperature. To test the effectiveness of this modified intervention, a randomised controlled trial (RCT involving 240 families with children aged 2 to 4 will be conducted. Families and children will take part in weekly one-hour activity sessions for 10-weeks. Lifestyle-related habits will be assessed before and immediately after the 10-week intervention, with follow up testing at 6 and 12 months’ post intervention. Discussion A novel measuring tool created specifically for assessing Connectedness to nature, Nature Relatedness Scale (NRS, will be validated and tested for reliability prior to the RCT. The results of the RCT are intended to be used to understand which components of the intervention are most

  12. Natural analogue studies in crystalline rock: the influence of water-bearing fractures on radionuclide immobilisation in a granitic rock repository

    International Nuclear Information System (INIS)

    Alexander, W.R.; MacKenzie, A.B.; Scott, R.D.; McKinley, I.G.

    1990-06-01

    Current Swiss concepts for the disposal of radioactive waste involve disposal in deep mined repositories to ensure that only insignificant quantities of radionuclides will ever reach the surface and so enter the biosphere. The rock formations presently considered as potential candidates for hosting radwaste repositories have thus been selected on the basis of their capacity to isolate radionuclides from the biosphere. An important factor in ensuring such containment is a very low solute transport rate through the host formation. However, it is considered likely that, in the formations of interest in the Swiss programme (eg. granites, argillaceous sediments, anhydrite), the rocks will be fractured to some extent even at repository depth. In the instance of the cumulative failure of near-field barriers in the repository, these hydraulically connected fractures in the host formation could be very important far-field routes of migration (and possible sites of retardation) of radionuclides dissolved in the groundwaters. In this context, the so-called 'matrix diffusion' mechanism is potentially very important for radionuclide retardation. This report is the culmination of a programme which has attempted to assess the potential influence of these water-bearing fractures on radionuclide transport in a crystalline rock radwaste repository. 162 refs., 36 figs., 16 tabs

  13. Heavy-oil recovery in naturally fractured reservoirs with varying wettability by steam solvent co-injection

    Energy Technology Data Exchange (ETDEWEB)

    Al Bahlani, A. [Alberta Univ., Edmonton, AB (Canada); Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    Steam injection may not be an efficient oil recovery process in certain circumstances, such as in deep reservoirs, where steam injection may be ineffective because of hot-water flooding due to excessive heat loss. Steam injection may also be ineffective in oil-wet fractured carbonates, where steam channels through fracture zones without effectively sweeping the matrix oil. Steam flooding is one of the many solutions for heavy oil recovery in unconsolidated sandstones that is in commercial production. However, heavy-oil fractured carbonates are more challenging, where the recovery is generally limited only to matrix oil drainage gravity due to unfavorable wettability or thermal expansion if heat is introduced during the process. This paper proposed a new approach to improve steam/hot-water injection and efficiency for heavy-oil fractured carbonate reservoirs. The paper provided background information on oil recovery from fractured carbonates and provided a statement of the problem. Three phases were described, including steam/hot-waterflooding phase (spontaneous imbibition); miscible flooding phase (diffusion); and steam/hot-waterflooding phase (spontaneous imbibition or solvent retention). The paper also discussed core preparation and saturation procedures. It was concluded that efficient oil recovery is possible using alternate injection of steam/hot water and solvent. 43 refs., 1 tab., 13 figs.

  14. Forests in the biogeographical corridors connecting the Fennoscandian shield and the Russian plain: natural features, contemporary status, environmental significance

    Directory of Open Access Journals (Sweden)

    A. N. Gromtsev

    2016-12-01

    Full Text Available The results of long-term research on forests in natural biogeographical corridors (territories with forests, mires, inland lakes and other land categories connecting the largest bodies of water in Northern Europe (Baltic Sea-Gulf of Finland and lakes Ladoga and Onego to the White Sea are reported. These corridors link isolated pieces of the Eurasian taiga biome at the boundary between two of Europe’s physiographic divisions – Fennoscandian Shield and Russian Plain. They facilitate the dispersal and migration of plant and animal species. The straight-line terrestrial stretch between the Gulf of Finland and the White Sea is around 320 km, and it falls into three sections in the southern, middle and northern taiga subzones, respectively. The corridors were characterized and assessed as follows: 1 physiographic (landscape features; 2 key natural characteristics (typological structure, quantitative ratios, spatial arrangement, productivity, etc., present-day condition of forests, including data from forest management inventories of the past decade; 3 overall assessment of the forest cover transformation by human impact; 4 current system of protected areas and protective forests, and its capacity to fulfill the functions of the corridors (sufficiency.

  15. Determination of Fracture System Geometry from Well Testing

    International Nuclear Information System (INIS)

    Doe, T.W.

    1994-01-01

    In this paper, the research and development for the description of the hydraulic geometry of fracture networks are discussed. The studies on fracture networks have developed on the premise that the structural geological information on fracture geometries could be used to develop the realistic models of flow. It has been widely recognized that a relatively small portion of natural fracture networks controls a major portion of groundwater flow. The key to efficient network modeling is to identify that portion of networks. It is the main purpose of this paper to discuss the methods for characterizing the hydraulic geometry of fracture flow systems. The methods described in this paper cover three approaches for defining the hydraulic geometry of fracture networks, that is, the determination of conductive fracture frequency in boreholes, the use of transient pressure and flow responses in single holes, and the use of cross hole test to assess connectivity. The information which can be obtained by each test is shown. Flow logging, well test distribution and conductive fracture frequency are discussed. The transient analysis of single hole well test and the cross hole analysis of well test for fracture network geometry are reported. The data taken by various methods together can provide network characterization. (K.I.)

  16. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  17. Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff: Comparison between predicted and observed shear behavior using a graphical method

    International Nuclear Information System (INIS)

    Wibowo, J.; Amadei, B.; Sture, S.; Robertson, A.B.

    1993-09-01

    Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a laboratory-developed tensile fracture of welded tuff from Yucca Mountain to test the graphical load-displacement analysis method proposed by Saeb (1989) and Amadei and Saeb (1990). Based on the results of shear tests conducted on several joint replicas under different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN), the shear behavior of joint replicas under constant normal stiffness ranging between 14.8 and 187.5 kips/in. (25.9 and 328.1 kN/cm) was predicted by using the graphical method. The predictions were compared to the results of actual shear tests conducted for the same range of constant normal stiffness. In general, a good agreement was found between the predicted and the observed shear behavior

  18. Fracture network topology and characterization of structural permeability

    Science.gov (United States)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with

  19. Urban Environmental Excursions: Designing field trips to demonstrate sustainable connections between natural and engineered systems in urban environments

    Science.gov (United States)

    Lemke, L. D.

    2012-12-01

    Field trips are a proven and effective instructional tool to connect students with the world around them. In most communities, opportunities abound to allow students to make connections between concepts introduced in classroom or lab activities and the urban environment that surrounds them. Potential destinations include solid and liquid waste disposal sites, brownfield redevelopment sites, hazardous waste sites, industrial complexes, or sites with ongoing environmental restoration efforts. Each of these locations presents opportunities to explore sustainable aspects of anthropogenic activities in relation to the natural systems that they seek to modify or exploit. Early planning is essential, however, because it can sometimes take several months lead time to arrange for a large group tour of industrial or municipal sites. Several practices may be employed to design effective learning experiences for students when visiting such sites. These include: 1) choose local sites to keep trips relevant and practical; 2) balance sites of environmental concern with those where significant progress is being made in environmental restoration or stewardship; 3) connect sites with a pertinent theme (e.g., air quality, water quality, economic development, environmental justice, etc.); 4) develop a sense of location among student participants by providing a map showing the relationship between campus and the field sites; 5) prepare a guidebook containing one-page descriptions of each stop along with a list of questions to stimulate discussion and promote active engagement among all participants; 6) employ expert guides to maximize students' access to authoritative information; 7) tie each field experience to your curriculum; and 8) model active learning by asking genuine questions and engaging in open discussions with experts and student participants. In this presentation, urban field trip design will be illustrated with examples from trips run in conjunction with freshman

  20. Numerical investigation on turbulent natural convection in partially connected cylindrical enclosures for analysing SFR safety under core meltdown scenario

    International Nuclear Information System (INIS)

    David, Dijo K.; Mangarjuna Rao, P.; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    Under the unlikely event of severe core meltdown accident in pool type SFR, the molten core materials may rupture the grid plate which supports the fuel subassemblies and it can get relocated in to the lower pool. These debris may eventually settle on the debris collector (i.e., core catcher) installed above the bottom wall of the lower pool. The bed thus formed generates heat due to radioactive decay which has to be passively removed for maintaining the structural integrity of main vessel. By means of natural convection, the heat generated in the debris bed will be transferred to the top pool where the heat sink (i.e., Decay heat exchanger (DHX)) is installed. Heat transfer to the DHX (which is a part of safety grade decay heat removal system) can take place through the opening created in the grid plate which connects the two liquid pools (i.e., the top pool and the lower pool). Heat transfer can also take place through the lateral wall of the lower cylindrical pool to the side pool and eventually to the top pool, and thus to the DHX. This study numerically investigates the effectiveness of heat transfer between lower pool and top pool during PARR by considering them as partially connected cylindrical enclosures. The governing equations have been numerically solved using finite volume method in cylindrical co-ordinates using SIMPLE algorithm. Turbulence has been modeled using k-ω model and the model is validated against benchmark problems of natural convection found in literature. The effect of parameters such as the heat generation rate in the bed and the size of the grid plate opening are evaluated. Also PAHR in SFR pool is modeled using an axi-symmetric model to fund out the influence of grid plate opening on heat removal from core catcher. The results obtained are useful for improving the cooling capability of in-vessel tray type core catcher for handling the whole core meltdown scenarios in SFR. (author)

  1. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.S.

    1997-12-01

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding in the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

  2. Hydraulic Parameter Generation Technique Using a Discrete Fracture Network with Bedrock Heterogeneity in Korea

    Directory of Open Access Journals (Sweden)

    Jae-Yeol Cheong

    2017-12-01

    Full Text Available In instances of damage to engineered barriers containing nuclear waste material, surrounding bedrock is a natural barrier that retards radionuclide movement by way of adsorption and delay due to groundwater flow through highly tortuous fractured rock pathways. At the Gyeongju nuclear waste disposal site, groundwater mainly flows through granitic and sedimentary rock fractures. Therefore, to understand the nuclide migration path, it is necessary to understand discrete fracture networks based on heterogeneous fracture orientations, densities, and size characteristics. In this study, detailed heterogeneous fracture distribution, including the density and orientation of the fractures, was considered for a region that has undergone long periods of change from various geological activities at and around the Gyeongju site. A site-scale discrete fracture network (DFN model was constructed taking into account: (i regional fracture heterogeneity constrained by a multiple linear regression analysis of fracture intensity on faults and electrical resistivity; and (ii the connectivity of conductive fractures having fracture hydraulic parameters, using transient flow simulation. Geometric and hydraulic heterogeneity of the DFN was upscaled into equivalent porous media for flow and transport simulation for a large-scale model.

  3. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation

  4. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  5. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Ha [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. such properties of fractures stimulate a synthetic study on (1) analyses of fracture systems, and (2) characterization of groundwater flow and sorption processes in fractured rocks to establish a preliminary model for assessing suitable sites for industrial facilities. The analyses of fracture systems cover (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach is performed to determine various potential hazards which may result from the Quaternary or the Holocene tectonic movements. In addition, stepwise and careful integration of various data obtained from field works and laboratory experiments are carried out to analyze groundwater flow in fractures rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of conductive fractures using electrical conductivity, temperature, and flow logs, (4) identification of hydraulic connections between fractures using televiewer logs with tracer tests within specific zones. The results obtained from these processes allow a qualitative interpretation of groundwater flow patterns

  6. Dawsonite and other carbonate veins in the Cretaceous Izumi Group, SW Japan: a natural support for fracture self-sealing in mud-stone cap-rock in CGS?

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Yasuko; Funatsu, Takahiro; Fujii, Takashi [Institute for Geo-Resources and environment, GSJ, AISI, 1-1-1 Higashi, Central 7, Tsukuba, ibaraki 305-8567 (Japan); Take, Shuji [Kishiwada Nature Club, c/o Kishiwada City Natural History Museum, Sakai-Machi 5-6, Kishiwada, Osaka 596-0072 (Japan)

    2013-07-01

    Dawsonite-bearing carbonate veins are abundant in a compact mud-stone layer of the lower part of the Izumi Group, SW Japan. The mode of occurrence of the veins probably indicates fracturing and mineral sealing associated with upwelling of CO{sub 2}-rich fluid evolved in the reservoir beneath. The carbonate veins studied here can be a natural support to fracturing and healing of mud-stone cap-rock in the CO{sub 2} geological storage. (authors)

  7. Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: Insights from geothermal wells

    OpenAIRE

    Vidal , Jeanne; Genter , Albert

    2018-01-01

    International audience; Since the 1980′s, more than 15 geothermal wells have been drilled in the Upper Rhine Graben (URG), representing more than 60 km of drill length. Although some early concepts were related to purely matrix-porosity reservoirs or Hot Dry Rock systems, most projects in the URG are currently exploiting the geothermal resources that are trapped in fracture networks at the base of the sedimentary cover and in the granitic basement. Lessons-learnt from the European EGS referen...

  8. Topology of Functional Connectivity and Hub Dynamics in the Beta Band As Temporal Prior for Natural Vision in the Human Brain.

    Science.gov (United States)

    Betti, Viviana; Corbetta, Maurizio; de Pasquale, Francesco; Wens, Vincent; Della Penna, Stefania

    2018-04-11

    Networks hubs represent points of convergence for the integration of information across many different nodes and systems. Although a great deal is known on the topology of hub regions in the human brain, little is known about their temporal dynamics. Here, we examine the static and dynamic centrality of hub regions when measured in the absence of a task (rest) or during the observation of natural or synthetic visual stimuli. We used Magnetoencephalography (MEG) in humans (both sexes) to measure static and transient regional and network-level interaction in α- and β-band limited power (BLP) in three conditions: visual fixation (rest), viewing of movie clips (natural vision), and time-scrambled versions of the same clips (scrambled vision). Compared with rest, we observed in both movie conditions a robust decrement of α-BLP connectivity. Moreover, both movie conditions caused a significant reorganization of connections in the α band, especially between networks. In contrast, β-BLP connectivity was remarkably similar between rest and natural vision. Not only the topology did not change, but the joint dynamics of hubs in a core network during natural vision was predicted by similar fluctuations in the resting state. We interpret these findings by suggesting that slow-varying fluctuations of integration occurring in higher-order regions in the β band may be a mechanism to anticipate and predict slow-varying temporal patterns of the visual environment. SIGNIFICANCE STATEMENT A fundamental question in neuroscience concerns the function of spontaneous brain connectivity. Here, we tested the hypothesis that topology of intrinsic brain connectivity and its dynamics might predict those observed during natural vision. Using MEG, we tracked the static and time-varying brain functional connectivity when observers were either fixating or watching different movie clips. The spatial distribution of connections and the dynamics of centrality of a set of regions were similar

  9. Influence of connection type on the biomechanical behavior of distal extension mandibular removable partial dentures supported by implants and natural teeth.

    Science.gov (United States)

    Xiao, Wei; Li, Zhiyong; Shen, Shiqian; Chen, Shaowu; Chen, Sulin; Wang, Jiawei

    2016-02-01

    Few studies are performed to evaluate the influence of connection type on the stress distribution of distal extension mandibular removable partial dentures (RPDs) supported by both implants and natural teeth. In this study, five three-dimensional finite element models were prepared to simulate mandibular bilateral partially edentulous arches. Four were RPDs supported by both implants and natural teeth, and the other one was RPDs supported only by natural teeth. The maximum equivalent (EQV) stress values of bone around implants, the abutments, and the mucosa displacements of the related supporting structures were measured. It was found that a non-rigid telescopic coping was more favorable to protect the implant than a rigid telescopic coping. Compared with other connection types, the easy resilient attachment (ERA) system seemed to be effective to associate implant without complications. However, the results obtained in the present study should be cautiously interpreted in the clinic.

  10. Observations of joint persistence and connectivity across boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, B.B.; Karasaki, K.

    1996-01-01

    Observations of joint persistence and connectivity are made by comparison of digital borehole wall images of fractures, fluid conductivity logs and hydraulic injections test results. The fractures were found to be generally impersistent across vertical boreholes about 8 m apart. Many hydraulic connections were found in the same volume of rock. Direct connections through single fractures seem to be rare and connectivity appears to be controlled by fracture networks, even over small volumes.

  11. Blast fracturing of bedrock to enhance recovery of contaminated groundwater

    International Nuclear Information System (INIS)

    Holzman, L.R.; Harvey, E.M.; McKee, R.C.E.; Katsabanis, T.

    1992-01-01

    Petroleum hydrocarbons releasd from a pipeline at a site in southern Ontario had contaminated a fractured dolostone bedrock aquifer. To remediate the site, contaminated groundwater was pumped from the downgradient edge of the hydrocarbon plume and injected into an upgradient area after treatment. Contaminant flow pathways in the fractured bedrock aquifer were found to be complex and erratic. It was anticipated that contaminated groundwater could escape the influence of a line of closely spaced recovery wells. In order to capture the migrating contaminants effectively, improve communication between recovery wells, and optimize pumping efficiencies, a rubble zone was created by drilling and blasting the rock. Using 140 blastholes, the bedrock was fractured to a depth of 4 m over a distance of 200 m. Similarly, an additional 80 blastholes were used to blast fracture 100 m of bedrock to a depth of 4 m in the recharge area to enhance injection of treated water to the aquifer. Various blasthole spacings and explosive loadings and patterns were tested to fracture the rock effectively while minimizing the impact on the nearby pipeline and neighboring residences. Vibrations were carefully monitored using several seismographs. Pump tests conducted before and after the blast indicated the hydraulic connection between the naturally occurring fractures had greatly improved. Monitoring conducted after startup of the pump-treat-and-inject system has confirmed the fracturing provides effective capture and injection of the groundwater. 3 refs., 3 figs., 1 tab

  12. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Bill; Schechter, David S.

    2001-11-19

    The goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. The four areas have been completed and reported in the previous annual reports. This report provides the results of the final year of the project including two SPE papers (SPE 71605 and SPE 71635) presented in the 2001 SPE Annual Meeting in New Orleans, two simulation works, analysis of logging observation wells (LOW) and progress of CO{sub 2} injection.

  13. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  14. Determination and maintenance of DE minimis risk for migration of residual tritium (3H) from the 1969 Project Rulison nuclear test to nearby hydraulically fractured natural gas wells.

    Science.gov (United States)

    Daniels, Jeffrey I; Chapman, Jenny B

    2013-05-01

    The Project Rulison underground nuclear test was a proof-of-concept experiment that was conducted under the Plowshare Program in 1969 in the Williams Fork Formation of the Piceance Basin in west-central Colorado. Today, commercial production of natural gas is possible from low permeability, natural gas bearing formations like that of the Williams Fork Formation using modern hydraulic fracturing techniques. With natural gas exploration and production active in the Project Rulison area, this human health risk assessment was performed in order to add a human health perspective for site stewardship. Tritium (H) is the radionuclide of concern with respect to potential induced migration from the test cavity leading to subsequent exposure during gas-flaring activities. This analysis assumes gas flaring would occur for up to 30 d and produce atmospheric H activity concentrations either as low as 2.2 × 10 Bq m (6 × 10 pCi m) from the minimum detectable activity concentration in produced water or as high as 20.7 Bq m (560 pCi m), which equals the highest atmospheric measurement reported during gas-flaring operations conducted at the time of Project Rulison. The lifetime morbidity (fatal and nonfatal) cancer risks calculated for adults (residents and workers) and children (residents) from inhalation and dermal exposures to such activity concentrations are all below 1 × 10 and considered de minimis. The implications for monitoring production water for conforming health-protective, risk-based action levels also are examined.

  15. Rock deformation in hydrothermal systems: the nature of fractures in plutons and their host rocks. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Norton, D.

    1981-11-01

    The purpose of this program is to accumulate the types of field data which are important for the analysis of magma-hydrothermal systems. The structural effects of thermal processes were identified in order to distinguish the thermally induced deformations from the deformations that occurred subsequent to complete cooling of the system. Mapping techniques were developed to record the structural data on the ground from local domains characteristic of larger areas in the magma chamber, and in the air from low-angle oblique aerial photography of the entire region. The ground system is complete and preliminary testing is currently being carried out to verify the method. The results indicate that granitic crystalline rocks have no structural resistance to thermal perturbations. If nuclear wastes are to be stored in granite, precautionary buffers would have to be incorporated into the system. A total of 30 fossil magma chambers have been studied over the past 2 years. An extensive set of fracture imagery has been collected, together with information related to the geological history of the plutons. Fossil magma chambers in Arizona, Utah, California, Washington, Montana, and British Columbia have been studied.

  16. Field and numerical descriptions of fracture geometries and terminations in chalk containing chert layers and inclusions; implications for groundwater flow in Danish chalk aquifers

    Science.gov (United States)

    Seyum, S.

    2017-12-01

    This study is a description of the fracture distribution in laterally discontinuous chalk and chert layers, with an investigation on how fracture lengths and apertures vary as a function of applied stresses, material properties, and interface properties. Natural fractures intersect laterally extensive, discontinuous, chalk-chert material interfaces in 62 million-year old to 72 million-year old Chalk Group formations exposed at Stevns Klint, Denmark. Approximately one-third of Denmark's fresh water use is from chalk and limestone regional aquifers of the Chalk Group formations, where rock permeability is dominantly a function of open fracture connectivities. Fractured, centimeter- to decimeter-thick chert layers and inclusions (101 GPa elastic stiffness) are interlayered with fractured, meter-thick chalk layers (100 GPa elastic stiffness). Fractures are observed to terminate against and cross chalk-chert interfaces, affecting the vertical flow of water and pollutants between aquifers. The discontinuous and variably thin nature of chert layers at Stevns Klint effectively merges adjacent fracture-confining layers of chalk along discrete position intervals, resulting in lateral variability of fracture spacing. Finite element numerical models are designed to describe fracture interactions with stiff, chert inclusions of various shapes, thicknesses, widths, orientations, and interface friction and fracture toughness values. The models are two-dimensional with isotropic, continuous material in plane strain and uniformly applied remote principal stresses. These characteristics are chosen based on interpretations of the petrophysics of chalk and chert, the burial history of the rock, and the scale of investigation near fracture tips relative to grain sizes. The result are value ranges for relative stiffness contrasts, applied stresses, and material interface conditions that would cause fractures to cross, terminate at, or form along chalk-chert interfaces, with emphasis on

  17. Seismic characterization of fracture properties

    International Nuclear Information System (INIS)

    Myer, L.R.; Hopkins, D.; Cook, N.G.W.; Pyrak-Nolte, L.J.

    1990-01-01

    The purpose of this paper is to show that there is a relationship, both empirical and theoretical, between the measured seismic response, the mechanical stiffness (also referred to as specific stiffness) of fractures and their hydraulic conductivity. Laboratory measurements of the mechanical stiffness, hydraulic conductivity and seismic properties of natural fractures are summarized. A theoretical model for the amplitude and group time delay for compressional and shear waves transmitted across a single fracture is presented. Predictions based on this model are compared with laboratory measurements. Finally, the results for a single fracture are extended to multiple parallel fractures. 13 refs., 6 figs

  18. A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth

    Science.gov (United States)

    Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.

    2017-12-01

    The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.

  19. Rib Fractures

    Science.gov (United States)

    ... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  20. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  1. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1985-01-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. The authors have compared the flux and mechanical transported behavior of these networks to the behavior of equivalent continua. In this way they were able to determine whether a given fracture network could be modeled as an equivalent porous media in both flux and advective transport studies. They have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. This model has been constructed which assumes fractures are randomly located discs. This model uses a semi-analytical solution for flow such that it is relatively easy to use the model as a tool for stochastic analysis. 13 references, 12 figures

  2. Explaining Emotional Attachment to a Protected Area by Visitors' Perceived Importance of Seeing Wildlife, Behavioral Connections with Nature and Sociodemographics

    NARCIS (Netherlands)

    Huigen, Paulus P.P.; Haartsen, Tialda; Folmer, Akke

    2013-01-01

    Recently, the interest in understanding emotional bonds with protected nature areas has been growing. The role of wildlife in emotional bonds with places has until now not been the focus of many studies. The aim of our paper is to explore relations between the perceived importance of seeing wildlife

  3. THE NATURE OF CONNECTION BETWEEN CHILD’S ATTACHMENT TO THE MOTHER AND THE EXPERIENCE OF FAMILY WELL-BEING IN ADULTHOOD

    OpenAIRE

    L. M. Samoshkina; G. S. Alexeeva

    2015-01-01

    Background. Attachment to mother is viewed as the primary sample of bonding with a close person, thus its quality has an impact on the relationships with a partner. Objectives. A research of the nature of connection between child’s attachment to mother and the experience of the family well-being in adulthood is presented. Method. The empirical research was carried out by internet survey with the help of the following methods: “Satisfaction with marriage” by Stolin V., Butenko G., Roma...

  4. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  5. Legal and regulatory possibility of connection between interstate natural gas distribution networks instead of constructing transport pipelines; Possibilidade juridoco-regulatoria da conexao interestadual entre redes de distribuicao de gas natural como alternativa a construcao de gasodutos de transporte

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Gustavo Mano [Andrade, Mano - Advogados, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    According to Revista Brasil Energia (2011a), the local natural gas distribution concessionaire in the State of Sao Paulo Gas Brasiliano Distribuidora - GBD, plans to expand its distribution pipeline network in western Sao Paulo up to the border of the State of Minas Gerais, near the region known as Minas Triangle where a connection with the pipeline network of the State of Minas Gerais' natural gas distribution company, Companhia de Gas de Minas Gerais - GASMIG shall be built in order to supply natural gas to an ammonia plant to be built by PETROBRAS in the City of Uberaba. Still according to the publication, the project described above would be an alternative to the construction of a transportation pipeline that, since the enforcement of the Gas Law - Law No. 11.909/09 (Brasil, 2009), should be subject to concession contracts preceded by a complex, and probably delayed, planning and procurement. However, there is a transportation pipeline project, deriving from the Bolivia-Brazil transportation pipeline near the city of Sao Carlos, in Sao Paulo, crossing the Minas Triangle and finishing in the State of Goias. This project is owned by TGBC Company. The existence of two gas pipeline projects with very similar paths to supply virtually the same regions and based on different regulatory frameworks, one consisting of a connection between the distribution networks of different States and another based on the concept of pipeline transportation of gas under the legal and regulatory federal jurisdiction raises the discussion about the possibility of legal and regulatory interstate connections of distribution pipeline networks as an alternative to planning, allocation and construction of a transportation pipelines. This article aims to examine the legal and regulatory foundations of both alternatives and delineate the limits of performance of States and Federal Government on legislation and regulation concerning the movement of natural gas pipeline through the Country

  6. Particle Swarms in Fractures: Open Versus Partially Closed Systems

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2014-12-01

    In the field, fractures may be isolated or connected to fluid reservoirs anywhere along the perimeter of a fracture. These boundaries affect fluid circulation, flow paths and communication with external reservoirs. The transport of drop like collections of colloidal-sized particles (particle swarms) in open and partially closed systems was studied. A uniform aperture synthetic fracture was constructed using two blocks (100 x 100 x 50 mm) of transparent acrylic placed parallel to each other. The fracture was fully submerged a tank filled with 100cSt silicone oil. Fracture apertures were varied from 5-80 mm. Partially closed systems were created by sealing the sides of the fracture with plastic film. The four boundary conditions study were: (Case 1) open, (Case 2) closed on the sides, (Case 3) closed on the bottom, and (Case 4) closed on both the sides and bottom of the fracture. A 15 μL dilute suspension of soda-lime glass particles in oil (2% by mass) were released into the fracture. Particle swarms were illuminated using a green (525 nm) LED array and imaged with a CCD camera. The presence of the additional boundaries modified the speed of the particle swarms (see figure). In Case 1, enhanced swarm transport was observed for a range of apertures, traveling faster than either very small or very large apertures. In Case 2, swarm velocities were enhanced over a larger range of fracture apertures than in any of the other cases. Case 3 shifted the enhanced transport regime to lower apertures and also reduced swarm speed when compared to Case 2. Finally, Case 4 eliminated the enhanced transport regime entirely. Communication between the fluid in the fracture and an external fluid reservoir resulted in enhanced swarm transport in Cases 1-3. The non-rigid nature of a swarm enables drag from the fracture walls to modify the swarm geometry. The particles composing a swarm reorganize in response to the fracture, elongating the swarm and maintaining its density. Unlike a

  7. Distinct Element Method modelling of fold-related fractures in a multilayer sequence

    Science.gov (United States)

    Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard

    2017-04-01

    Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.

  8. Fracture-fault network characterization of pavement imagery of the Whitby Mudstone, Yorkshire

    Science.gov (United States)

    Boersma, Quinten; Hardebol, Nico; Houben, Maartje; Barnhoorn, Auke; Drury, Martyn

    2015-04-01

    Natural fractures play an important role in the hydrocarbon production from tight reservoirs. The need for fracture network pathways by fraccing matters particularly for shale gas prospects, due to their micro- to nano-darcies matrix permeabilities. The study of natural fractures from outcrops helps to better understand network connectivity and possibility of reactivating pre-existing planes of weakness, induced by hydraulic stimulation. Microseismicity also show that natural fractures are reactivated during fraccing in tight gas reservoirs and influence the success of the stimulation. An accurate understanding of natural fracture networks can help in predicting the development of fracture networks. In this research we analyze an outcrop analogue, the Whitby Mustone Formation (WMF), in terms of its horizontal fracture network. The WMF is the time equivalent of the Posidonia Shale Formation (PSF), which on itself is the main shale gas prospect in the Dutch subsurface. The fracture network of the WMF is characterized by a system of steep dipping joints with two dominant directions with N-S and E-W strike. The network was digitized from bird-view imagery of the pavement with a spatial extent of ~100 m at sub-cm resolution. The imagery is interpreted in terms of orientation and length distributions, intensity and fractal dimensions. Samples from the field were analyzed for rock strength and sample mineralogy. The results indicate that the fracture networks greatly differ per bed. Observed differences are for example; the geometry of the fracture network, its cumulative length distribution law, the fracture intensity, the fracture length vs its orientation and the fractal dimension. All these parameters greatly influence fracture network connectivity, the probability that longer fractures exist within the pavement and whether the network is more prone to clustering or scattering. Apart from the differences, the networks display a fairly similar orthogonal arrangement

  9. Comparison of the effects of artificial and natural barriers on large African carnivores: implications for interspecific relationships and connectivity.

    Science.gov (United States)

    Cozzi, Gabriele; Broekhuis, Femke; McNutt, J Weldon; Schmid, Bernhard

    2013-05-01

    1. Physical barriers contribute to habitat fragmentation, influence species distribution and ranging behaviour, and impact long-term population viability. Barrier permeability varies among species and can potentially impact the competitive balance within animal communities by differentially affecting co-occurring species. The influence of barriers on the spatial distribution of species within whole communities has nonetheless received little attention. 2. During a 4-year period, we studied the influence of a fence and rivers, two landscape features that potentially act as barriers on space use and ranging behaviour of lions Panthera leo, spotted hyenas Crocuta crocuta, African wild dogs Lycaon pictus and cheetahs Acinonyx jubatus in Northern Botswana. We compared the tendencies of these species to cross the barriers using data generated from GPS-radio collars fitted to a total of 35 individuals. Barrier permeability was inferred by calculating the number of times animals crossed a barrier vs. the number of times they did not cross. Finally, based on our results, we produced a map of connectivity for the broader landscape system. 3. Permeability varied significantly between fence and rivers and among species. The fence represented an obstacle for lions (permeability = 7.2%), while it was considerably more permeable for hyenas (35.6%) and wild dogs and cheetahs (≥ 50%). In contrast, the rivers and associated floodplains were relatively permeable to lions (14.4%) while they represented a nearly impassable obstacle for the other species (habitat patch on one side of the fence, which might provide a potential refuge for other species. For instance, the competitively inferior wild dogs used this refuge significantly more intensively than the side of the fence with a high presence of lions. 5. We showed that the influence of a barrier on the distribution of animals could potentially result in a broad-scale modification of community structure and ecology within a guild

  10. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  11. Pressure and pressure derivative analysis for vertical gas and oil wells in stress sensitive homogeneous and naturally fractured formations without type-curve matching

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Cantillo, Jose Humberto; Montealegre M, Matilde

    2007-01-01

    Currently, rock mechanics plays an important role in the oil industry. Effects of reservoir subsidence, compaction and dilation are being taken into account in modern reservoir management of complex systems. On the other hand, pressure well tests run in stress sensitive formations ought to be interpreted with non conventional techniques. During the last three decades, several studies relating transient pressure analysis for characterization of stress sensitive reservoirs have been introduced in the literature. Some of them deal with type curves and/or automated history matching. However, due to the nature of the problem, it does not exist a definitive study focused on the adequate characterization of reservoirs which permeability changes as fluid withdrawal advances; in this paper, the permeability modulus concept introduced by Pedroso (1986) is token as the starting basis. A great number of type curves were generated to study the behavior of the above mentioned formations under stress influence. It was found that permeability modulus, therefore permeability changes, can be correlated with the slope of the pressure derivative trend during the radial flow regime when the reservoir suffers compaction. It is also worth to mention that the time of which the minimum characteristic point of a naturally fractured formation (or the inflection point of o semi-log plot) found on the pressure derivative plot is practically the same for formations without stress influence. This contributes to the extension of the TDS technique, Tiab (1993), so a new methodology to characterize this kind of reservoirs is proposed here. This was verified by the solution of synthetic problems

  12. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    OpenAIRE

    Huang Bo; Cheng Hao; He Yidong; Fu Yanming

    2017-01-01

    The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc.), high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the ...

  13. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.S.

    1998-07-01

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the second year of the five-year project for each of the four areas. In the first area, the author has completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. In the second area, the author has completed extensive inhibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. In the third area, the author has made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. In the fourth area, the author has completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix. The final three years of this project involves implementation of the CO{sub 2} pilot. Up to twelve new wells are planned in the pilot area; water injection wells to contain the CO{sub 2}, three production wells to monitor performance of CO{sub 2}, CO{sub 2} injection wells including one horizontal injection well and logging observation wells to monitor CO{sub 2} flood fronts. Results of drilling

  14. Effect of natural aging on the microstructural regions, mechanical properties, corrosion resistance and fracture in welded joints on API5L X52 steel pipeline

    Directory of Open Access Journals (Sweden)

    Vargas-Arista, Benjamín

    2014-09-01

    Full Text Available A characterization study was done to analyze how microstructural regions affect the mechanical properties, corrosion and fractography of the Heat Affected Zone (HAZ, weld bead and base metal for pipe naturally aged for 21 years at 30 °C. Results showed that microstructures exhibited damage and consequently decrease in properties, resulting in over-aged due to service. SEM analysis showed that base metal presented coarse ferrite grain. Tensile test indicated that microstructures showed discontinuous yield. Higher tensile strength was obtained for weld bead, which exhibited a lower impact energy in comparison to that of HAZ and base metal associated with brittle fracture by trans-granular cleavage. The degradation of properties was associated with the coarsening of nano-carbides observed through TEM images analysis, which was confirmed by SEM fractography of tensile and impact fracture surfaces. The weld bead reached the largest void density and highest susceptibility to corrosion in H2S media when compared to those of the HAZ and base metal.Se realizó un estudio de caracterización para analizar cómo la microestructura afecta a las propiedades mecánicas, corrosión y fractura de la zona afectada por calor (ZAC, soldadura y metal base para tubería envejecida naturalmente durante 21 años a 30 °C. Los resultados indicaron que las microestructuras presentaron daño y consecuentemente reducción en propiedades mecánicas, como consecuencia del envejecimiento por servicio. El estudio mediante MEB mostró que el metal base presenta grano ferrítico grueso. La prueba de tensión indicó que las microestructuras mostraron fluencia discontinua. La mayor resistencia a la tracción se presentó en la soldadura, la cual alcanzó menor energía de impacto en comparación con la ZAC y metal base asociado con fractura frágil por clivaje transgranular. La degradación de las propriedades está en relación con el engrosamiento de nanocarburos observados a

  15. Fatigue and insufficiency fractures

    International Nuclear Information System (INIS)

    Lodwick, G.S.; Rosenthal, D.I.; Kattapuram, S.V.; Hudson, T.M.

    1987-01-01

    The incidence of stress fracture is increasing. In our younger society this is due largely to a preocupation with physical conditioning, but in our elderly population it is due to improved recognition and better methods of detection and diagnosis. Stress fracture of the elderly is an insufficiency fracture which occurs in the spine, the pelvis, the sacrum and other bones afflicted with disorders which cause osteopenia. Stress fracture is frequently misdiagnosed as a malignant lesion of bone resulting in biopsy. Scintiscanning provides the greatest frequency of detection, while computed tomography often provides the definitive diagnosis. With increased interest and experience a better insight into the disease has been achieved, and what was once thought of as a simple manifestation of mechanical stress is now known to be an orderly, complex pattern of physiological changes in bone which conform to a model by Frost. The diffuse nature of these changes can be recognized by scintigraphy, radiography and magnetic resonance imaging. 27 refs.; 8 figs

  16. Ontology of fractures

    Science.gov (United States)

    Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.

    2009-03-01

    Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.

  17. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity

    Energy Technology Data Exchange (ETDEWEB)

    Scolozzi, Rocco, E-mail: rocco.scolozzi@fmach.it [Sustainable Agro-ecosystems and Bioresources Department, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all& #x27; Adige, (Italy); Geneletti, Davide, E-mail: geneletti@ing.unitn.it [Department of Civil and Environmental Engineering, University of Trento, Trento (Italy)

    2012-09-15

    Habitat loss and fragmentation are often concurrent to land conversion and urbanization. Simple application of GIS-based landscape pattern indicators may be not sufficient to support meaningful biodiversity impact assessment. A review of the literature reveals that habitat definition and habitat fragmentation are frequently inadequately considered in environmental assessment, notwithstanding the increasing number of tools and approaches reported in the landscape ecology literature. This paper presents an approach for assessing impacts on habitats on a local scale, where availability of species data is often limited, developed for an alpine valley in northern Italy. The perspective of the methodology is multiple scale and species-oriented, and provides both qualitative and quantitative definitions of impact significance. A qualitative decision model is used to assess ecological values in order to support land-use decisions at the local level. Building on recent studies in the same region, the methodology integrates various approaches, such as landscape graphs, object-oriented rule-based habitat assessment and expert knowledge. The results provide insights into future habitat loss and fragmentation caused by land-use changes, and aim at supporting decision-making in planning and suggesting possible ecological compensation. - Highlights: Black-Right-Pointing-Pointer Many environmental assessments inadequately consider habitat loss and fragmentation. Black-Right-Pointing-Pointer Species-perspective for defining habitat quality and connectivity is claimed. Black-Right-Pointing-Pointer Species-based tools are difficult to be applied with limited availability of data. Black-Right-Pointing-Pointer We propose a species-oriented and multiple scale-based qualitative approach. Black-Right-Pointing-Pointer Advantages include being species-oriented and providing value-based information.

  18. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity

    International Nuclear Information System (INIS)

    Scolozzi, Rocco; Geneletti, Davide

    2012-01-01

    Habitat loss and fragmentation are often concurrent to land conversion and urbanization. Simple application of GIS-based landscape pattern indicators may be not sufficient to support meaningful biodiversity impact assessment. A review of the literature reveals that habitat definition and habitat fragmentation are frequently inadequately considered in environmental assessment, notwithstanding the increasing number of tools and approaches reported in the landscape ecology literature. This paper presents an approach for assessing impacts on habitats on a local scale, where availability of species data is often limited, developed for an alpine valley in northern Italy. The perspective of the methodology is multiple scale and species-oriented, and provides both qualitative and quantitative definitions of impact significance. A qualitative decision model is used to assess ecological values in order to support land-use decisions at the local level. Building on recent studies in the same region, the methodology integrates various approaches, such as landscape graphs, object-oriented rule-based habitat assessment and expert knowledge. The results provide insights into future habitat loss and fragmentation caused by land-use changes, and aim at supporting decision-making in planning and suggesting possible ecological compensation. - Highlights: ► Many environmental assessments inadequately consider habitat loss and fragmentation. ► Species-perspective for defining habitat quality and connectivity is claimed. ► Species-based tools are difficult to be applied with limited availability of data. ► We propose a species-oriented and multiple scale-based qualitative approach. ► Advantages include being species-oriented and providing value-based information.

  19. Tropospheric chemistry of natural hydrocarbons, aldehydes, and peroxy radicals: Their connections to sulfuric acid production and climate effects

    International Nuclear Information System (INIS)

    Gaffney, J.S.; Marley, N.A.

    1993-05-01

    Recent work has shown that natural hydrocarbon emissions can significantly affect the levels of urban and regional tropospheric ozone. We report on the reactivities of these biogenic trace gases, particularly isoprene, focusing on their importance in the production of aldehydes and peroxy radicals, leading to increased levels of hydrogen over regional forests. Hydrogen peroxide can lead to the wet oxidation of sulfur dioxide to acidic sulfate in aerosols, fogs, and clouds. In turn, acidic sulfate can act to as a light scattering aerosol and a source of cloud condensation nuclei (CCN), potentially leading to global cooling. Aerosol sulfate and other dissolved organic and inorganic compounds can also play important roles as a greenhouse species in the lower troposphere

  20. Mass transport in fracture media: impact of the random function model assumed for fractures conductivity

    International Nuclear Information System (INIS)

    Capilla, J. E.; Rodrigo, J.; Gomez Hernandez, J. J.

    2003-01-01

    Characterizing the uncertainty of flow and mass transport models requires the definition of stochastic models to describe hydrodynamic parameters. Porosity and hydraulic conductivity (K) are two of these parameters that exhibit a high degree of spatial variability. K is usually the parameter whose variability influence to a more extended degree solutes movement. In fracture media, it is critical to properly characterize K in the most altered zones where flow and solutes migration tends to be concentrated. However, K measurements use to be scarce and sparse. This fact calls to consider stochastic models that allow quantifying the uncertainty of flow and mass transport predictions. This paper presents a convective transport problem solved in a 3D block of fractured crystalline rock. the case study is defined based on data from a real geological formation. As the scarcity of K data in fractures does not allow supporting classical multi Gaussian assumptions for K in fractures, the non multi Gaussian hypothesis has been explored, comparing mass transport results for alternative Gaussian and non-Gaussian assumptions. The latter hypothesis allows reproducing high spatial connectivity for extreme values of K. This feature is present in nature, might lead to reproduce faster solute pathways, and therefore should be modeled in order to obtain reasonably safe prediction of contaminants migration in a geological formation. The results obtained for the two alternative hypotheses show a remarkable impact of the K random function model in solutes movement. (Author) 9 refs

  1. Mandible Fractures.

    Science.gov (United States)

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.

  2. Gendered Connections

    DEFF Research Database (Denmark)

    Jensen, Steffen Bo

    2009-01-01

    This article explores the gendered nature of urban politics in Cape Town by focusing on a group of female, township politicians. Employing the Deleuzian concept of `wild connectivity', it argues that these politically entrepreneurial women were able to negotiate a highly volatile urban landscape...... by drawing on and operationalizing violent, male networks — from struggle activists' networks, to vigilante groups and gangs, to the police. The fact that they were women helped them to tap into and exploit these networks. At the same time, they were restricted by their sex, as their ability to navigate...... space also drew on quite traditional notions of female respectability. Furthermore, the article argues, the form of wild connectivity to an extent was a function of the political transition, which destabilized formal structures of gendered authority. It remains a question whether this form...

  3. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing.

    Directory of Open Access Journals (Sweden)

    Arvind Murali Mohan

    Full Text Available Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.

  4. Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas-Pereira, M.B.L.; Nath, B.N.; Borole, D.V.; Gupta, S.M.

    Volcanic glasses associated with pumice, micro nodules and palagonite like lithic fragments were recovered from a volcanic terrain in a fracture zone defined as Rodriguez Triple Junction trace in the Central Indian Basin. Morphologically, the tephra...

  5. On the nature of the calcareous substrate of a ferromanganese crust from the Vityaz Fracture Zone, Central Indian Ridge: Inferences on palaeoceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Banerjee, R.; Mergulhao, L.

    A 15-cm-thick carbonate substrate encrusted with ferromanganese oxides from the Vityaz Fracture Zone, Central Indian Ridge was analysed to reconstruct the palaeoceanography of the region. Based on the calcareous nannoplankton assemblage, an early...

  6. Well Test Analysis of Naturally Fractured Vuggy Reservoirs with an Analytical Triple Porosity – Double Permeability Model and a Global Optimization Method

    Directory of Open Access Journals (Sweden)

    Gómez Susana

    2014-07-01

    Full Text Available The aim of this work is to study the automatic characterization of Naturally Fractured Vuggy Reservoirs via well test analysis, using a triple porosity-dual permeability model. The inter-porosity flow parameters, the storativity ratios, as well as the permeability ratio, the wellbore storage effect, the skin and the total permeability will be identified as parameters of the model. In this work, we will perform the well test interpretation in Laplace space, using numerical algorithms to transfer the discrete real data given in fully dimensional time to Laplace space. The well test interpretation problem in Laplace space has been posed as a nonlinear least squares optimization problem with box constraints and a linear inequality constraint, which is usually solved using local Newton type methods with a trust region. However, local methods as the one used in our work called TRON or the well-known Levenberg-Marquardt method, are often not able to find an optimal solution with a good fit of the data. Also well test analysis with the triple porosity-double permeability model, like most inverse problems, can yield multiple solutions with good match to the data. To deal with these specific characteristics, we will use a global optimization algorithm called the Tunneling Method (TM. In the design of the algorithm, we take into account issues of the problem like the fact that the parameter estimation has to be done with high precision, the presence of noise in the measurements and the need to solve the problem computationally fast. We demonstrate that the use of the TM in this study, showed to be an efficient and robust alternative to solve the well test characterization, as several optimal solutions, with very good match to the data were obtained.

  7. Hydraulic properties of fracture networks

    International Nuclear Information System (INIS)

    Dreuzy, J.R. de

    1999-12-01

    Fractured medium are studied in the general framework of oil and water supply and more recently for the underground storage of high level nuclear wastes. As fractures are generally far more permeable than the embedding medium, flow is highly channeled in a complex network of fractures. The complexity of the network comes from the broad distributions of fracture length and permeability at the fracture scale and appears through the increase of the equivalent permeability at the network scale. The goal of this thesis is to develop models of fracture networks consistent with both local-scale and global-scale observations. Bidimensional models of fracture networks display a wide variety of flow structures ranging from the sole permeable fracture to the equivalent homogeneous medium. The type of the relevant structure depends not only on the density and the length and aperture distributions but also on the observation scale. In several models, a crossover scale separates complex structures highly channeled from more distributed and homogeneous-like flow patterns at larger scales. These models, built on local characteristics and validated by global properties, have been settled in steady state. They have also been compared to natural well test data obtained in Ploemeur (Morbihan) in transient state. The good agreement between models and data reinforces the relevance of the models. Once validated and calibrated, the models are used to estimate the global tendencies of the main flow properties and the risk associated with the relative lack of data on natural fractures media. (author)

  8. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  9. Cosmic Connections

    CERN Document Server

    Ellis, Jonathan Richard

    2003-01-01

    A National Research Council study on connecting quarks with the cosmos has recently posed a number of the more important open questions at the interface between particle physics and cosmology. These questions include the nature of dark matter and dark energy, how the Universe began, modifications to gravity, the effects of neutrinos on the Universe, how cosmic accelerators work, and whether there are new states of matter at high density and pressure. These questions are discussed in the context of the talks presented at this Summer Institute.

  10. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  11. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  12. Eggshell membrane: A possible new natural therapeutic for joint and connective tissue disorders. Results from two open-label human clinical studies

    Directory of Open Access Journals (Sweden)

    Kevin J Ruff

    2009-05-01

    Full Text Available Kevin J Ruff1, Dale P DeVore2, Michael D Leu3, Mark A Robinson41ESM Technologies, LLC, Carthage, MO, USA; 2Membrell, LLC, Carthage, MO, USA; 3Private Practice, Jenks, OK, USA; 4Robinson Family Health Center, Carthage, MO, USABackground: Natural Eggshell Membrane (NEM® is a novel dietary supplement that contains naturally occurring glycosaminoglycans and proteins essential for maintaining healthy joint and connective tissues. Two single center, open-label human clinical studies were conducted to evaluate the efficacy and safety of NEM® as a treatment for pain and inflexibility associated with joint and connective tissue disorders. Methods: Eleven (single-arm trial and 28 (double-arm trial patients received oral NEM® 500 mg once daily for four weeks. The primary outcome measure was to evaluate the change in general pain associated with the treatment joints/areas (both studies. In the single-arm trial, range of motion (ROM and related ROM-associated pain was also evaluated. The primary treatment response endpoints were at seven and 30 days. Both clinical assessments were performed on the intent-to-treat (ITT population within each study.Results: Single-arm trial: Supplementation with NEM® produced a significant treatment response at seven days for flexibility (27.8% increase; P = 0.038 and at 30 days for general pain (72.5% reduction; P = 0.007, flexibility (43.7% increase; P = 0.006, and ROM-associated pain (75.9% reduction; P = 0.021. Double-arm trial: Supplementation with NEM® produced a significant treatment response for pain at seven days for both treatment arms (X: 18.4% reduction; P = 0.021. Y: 31.3% reduction; P = 0.014. There was no clinically meaningful difference between treatment arms at seven days, so the Y arm crossed over to the X formulation for the remainder of the study. The significant treatment response continued through 30 days for pain (30.2% reduction; P = 0.0001. There were no adverse events reported during either

  13. Isolated rib fractures in geriatric patients

    OpenAIRE

    Elmistekawy, Elsayed M.; Hammad, Abd Almohsen M.

    2007-01-01

    Introduction: The goal of this study was to investigate the short-term outcomes in patients older than 60 years with isolated rib fractures and admitted to emergency hospital. Materials and Methods: This study included patients who were 60 years old or more and sustained blunt chest injury and had isolated rib fractures. The following data were obtained from the medical records: age, gender, number of fracture ribs, side of fracture ribs, mechanism and nature of injury, preexisting medical...

  14. Assessing alternative conceptual models of fracture flow

    International Nuclear Information System (INIS)

    Ho, C.K.

    1995-01-01

    The numerical code TOUGH2 was used to assess alternative conceptual models of fracture flow. The models that were considered included the equivalent continuum model (ECM) and the dual permeability (DK) model. A one-dimensional, layered, unsaturated domain was studied with a saturated bottom boundary and a constant infiltration at the top boundary. Two different infiltration rates were used in the studies. In addition, the connection areas between the fracture and matrix elements in the dual permeability model were varied. Results showed that the two conceptual models of fracture flow produced different saturation and velocity profiles-even under steady-state conditions. The magnitudes of the discrepancies were sensitive to two parameters that affected the flux between the fractures and matrix in the dual permeability model: (1) the fracture-matrix connection areas and (2) the capillary pressure gradients between the fracture and matrix elements

  15. Legal aspects of the hydraulic fracturing method

    Directory of Open Access Journals (Sweden)

    Marta Duraj

    2011-12-01

    Full Text Available In recent months the possibility of extracting shale gas by way of the hydraulic fracturing method in Poland as well as across EU territory has been widely discussed. The European Parliament is to decide whether to ban this method. There are various legal, ecological and economical aspects influencing European legislators. It is hard not to notice how strongly the anti- and pro- hydraulic fracturing lobbies are connected with business. At the moment there are no specific regulations that relate directly to this extraction method, neither in the EU as a whole nor in Poland. However, in Poland a new Geological and Mining Act is supposed to come into force on 1st January 2012, which will regulate natural gas extraction with a view to ensure proper extraction of shale gas in the near future. This article is aimed at showing Polish regulations, both planned and currently in force, as well as the relevant EU law in respect of shale gas extraction. The author would like to emphasize the need to create one coherent legislative regime which would enable entrepreneurs to commence extraction by way of hydraulic fracturing without creating a danger for the environment.

  16. natural

    Directory of Open Access Journals (Sweden)

    Elías Gómez Macías

    2006-01-01

    Full Text Available Partiendo de óxido de magnesio comercial se preparó una suspensión acuosa, la cual se secó y calcinó para conferirle estabilidad térmica. El material, tanto fresco como usado, se caracterizó mediante DRX, área superficial BET y SEM-EPMA. El catalizador mostró una matriz de MgO tipo periclasa con CaO en la superficie. Las pruebas de actividad catalítica se efectuaron en lecho fijo empacado con partículas obtenidas mediante prensado, trituración y clasificación del material. El flujo de reactivos consistió en mezclas gas natural-aire por debajo del límite inferior de inflamabilidad. Para diferentes flujos y temperaturas de entrada de la mezcla reactiva, se midieron las concentraciones de CH4, CO2 y CO en los gases de combustión con un analizador de gases tipo infrarrojo no dispersivo (NDIR. Para alcanzar conversión total de metano se requirió aumentar la temperatura de entrada al lecho a medida que se incrementó el flujo de gases reaccionantes. Los resultados obtenidos permiten desarrollar un sistema de combustión catalítica de bajo costo con un material térmicamente estable, que promueva la alta eficiencia en la combustión de gas natural y elimine los problemas de estabilidad, seguridad y de impacto ambiental negativo inherentes a los procesos de combustión térmica convencional.

  17. AN ACTIVE FRACTURE MODEL FOR UNSATURATED FLOW AND TRANSPORT

    International Nuclear Information System (INIS)

    HUI-HAI LIU, GUDMUNDUR S. BODVARSSON AND CHRISTINE DOUGHTY

    1999-01-01

    Fracture/matrix (F/M) interaction is a key factor affecting flow and transport in unsaturated fractured rocks. In classic continuum approaches (Warren and Root, 1963), it is assumed that flow occurs through all the connected fractures and is uniformly distributed over the entire fracture area, which generally gives a relatively large F/M interaction. However, fractures seem to have limited interaction with the surrounding matrix at Yucca Mountain, Nevada, as suggested by geochemical nonequilibrium between the perched water (resulting mainly from fracture flow) and pore water in the rock matrix. Because of the importance of the F/M interaction and related issues, there is a critical need to develop new approaches to accurately consider the interaction reduction inferred from field data at the Yucca Mountain site. Motivated by this consideration, they have developed an active fracture model based on the hypothesis that not all connected fractures actively conduct water in unsaturated fractured rocks

  18. Model to predict the flow of tracers in naturally fractured geothermal reservoirs; Modelo para predecir el flujo de trazadores en yacimientos geotermicos naturalmente fracturados

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Sabag, Jetzabeth

    1988-02-01

    The proposed model has been developed to study the flow of tracers through naturally fractured geothermal reservoirs. The idealized system of the reservoir is made up of two regions: A movable region, where diffusion and convection mechanisms are present and a stagnant or immovable region where the diffusion and adsorption mechanisms are considered: in both regions the loss of mass by radioactive decay is considered. The solutions of the basic flow equations are in the Laplace space and for its numerical inversion the Stehfest algorithm was used. In spite of the numerical dispersion that these solutions involve, a well defined tendency to infer the system behavior under different flow conditions was found. It was found that, for practical purposes, the size of the matrix blocks does not have an influence on the concentration response, and the solution is reduced to the one presented by Tang and associates. Under these conditions, the system behavior can be described by two non-dimensional parameters: The Peclet number in fractures, P{sub e1}, and a parameter. The tracer response for the peak solution was also derived. An analytical solution limit was found for the case in which {alpha} tends to zero, which corresponds to the case of a homogenous system. It was verified that this limit solution is valid, for {alpha}<0.01. For the case of continuous injection, this solution is reduced to the one presented by Coasts and Smith. For the peak solution, it was found that the irruption time corresponding to the maximum concentration is directly related to the non-dimensional group. Therefore, it is possible to obtain the value of P{sub e1} for a given X{sub D}, or vice versa. A group of graphs of non-dimensional concentration in the fracture versus non-dimensional time, was developed. It was found that if P{sub e1} remains constant whereas {alpha} changes, the limit solution is the envelope of a family of curves in a graph of C{sub D} versus t{sub D}. In this figure P

  19. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  20. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  1. Facial Fractures.

    Science.gov (United States)

    Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M

    2016-02-01

    After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.

  2. Pisiform fractures

    International Nuclear Information System (INIS)

    Fleege, M.A.; Jebson, P.J.; Renfrew, D.L.; El-Khoury, G.Y.; Steyers, C.M. Jr.

    1991-01-01

    Fractures of the pisiform are often missed due to improper radiographic evaluation and a tendency to focus on other, more obvious injuries. Delayed diagnosis may result in disabling sequelae. A high index of clinical suspicion and appropriate radiographic examination will establish the correct diagnosis. Ten patients with pisiform fracture are presented. The anatomy, mechanism of injury, clinical presentation, radiographic features, and evaluation of this injury are discussed. (orig.)

  3. Stress fractures

    International Nuclear Information System (INIS)

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  4. Growth Kinematics of Opening-Mode Fractures

    Science.gov (United States)

    Eichhubl, P.; Alzayer, Y.; Laubach, S.; Fall, A.

    2014-12-01

    Fracture aperture is a primary control on flow in fractured reservoirs of low matrix permeability including unconventional oil and gas reservoirs and most geothermal systems. Guided by principles of linear elastic fracture mechanics, fracture aperture is generally assumed to be a linear function of fracture length and elastic material properties. Natural opening-mode fractures with significant preserved aperture are observed in core and outcrop indicative of fracture opening strain accommodated by permanent solution-precipitation creep. Fracture opening may thus be decoupled from length growth if the material effectively weakens after initial elastic fracture growth by either non-elastic deformation processes or changes in elastic properties. To investigate the kinematics of fracture length and aperture growth, we reconstructed the opening history of three opening-mode fractures that are bridged by crack-seal quartz cement in Travis Peak Sandstone of the SFOT-1 well, East Texas. Similar crack-seal cement bridges had been interpreted to form by repeated incremental fracture opening and subsequent precipitation of quartz cement. We imaged crack-seal cement textures for bridges sampled at varying distance from the tips using scanning electron microscope cathodoluminescence, and determined the number and thickness of crack-seal cement increments as a function of position along the fracture length and height. Observed trends in increment number and thickness are consistent with an initial stage of fast fracture propagation relative to aperture growth, followed by a stage of slow propagation and pronounced aperture growth. Consistent with fluid inclusion observations indicative of fracture opening and propagation occurring over 30-40 m.y., we interpret the second phase of pronounced aperture growth to result from fracture opening strain accommodated by solution-precipitation creep and concurrent slow, possibly subcritical, fracture propagation. Similar deformation

  5. Analysis of Dynamic Fracture Compliance Based on Poroelastic Theory - Part II: Results of Numerical and Experimental Tests

    Science.gov (United States)

    Wang, Ding; Ding, Pin-bo; Ba, Jing

    2018-03-01

    In Part I, a dynamic fracture compliance model (DFCM) was derived based on the poroelastic theory. The normal compliance of fractures is frequency-dependent and closely associated with the connectivity of porous media. In this paper, we first compare the DFCM with previous fractured media theories in the literature in a full frequency range. Furthermore, experimental tests are performed on synthetic rock specimens, and the DFCM is compared with the experimental data in the ultrasonic frequency band. Synthetic rock specimens saturated with water have more realistic mineral compositions and pore structures relative to previous works in comparison with natural reservoir rocks. The fracture/pore geometrical and physical parameters can be controlled to replicate approximately those of natural rocks. P- and S-wave anisotropy characteristics with different fracture and pore properties are calculated and numerical results are compared with experimental data. Although the measurement frequency is relatively high, the results of DFCM are appropriate for explaining the experimental data. The characteristic frequency of fluid pressure equilibration calculated based on the specimen parameters is not substantially less than the measurement frequency. In the dynamic fracture model, the wave-induced fluid flow behavior is an important factor for the fracture-wave interaction process, which differs from the models at the high-frequency limits, for instance, Hudson's un-relaxed model.

  6. Scaphoid Fracture

    Directory of Open Access Journals (Sweden)

    Esther Kim, BS

    2018-04-01

    Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re

  7. Laboratory studies of radionuclide transport in fractured Climax granite

    International Nuclear Information System (INIS)

    Failor, R.; Isherwood, D.; Raber, E.; Vandergraaf, T.

    1982-06-01

    This report documents our laboratory studies of radionuclide transport in fractured granite cores. To simulate natural conditions, our laboratory studies used naturally fractured cores and natural ground water from the Climax Granite Stock at the Nevada Test Site. For comparison, additional tests used artificially fractured granite cores or distilled water. Relative to the flow of tritiated water, 85 Sr and /sup 95m/Tc showed little or no retardation, whereas 137 Cs was retarded. After the transport runs the cores retained varying amounts of the injected radionuclides along the fracture. Autoradiography revealed some correlation between sorption and the fracture fill material. Strontium and cesium retention increased when the change was made from natural ground water to distilled water. Artificial fractures retained less 137 Cs than most natural fractures. Estimated fracture apertures from 18 to 60 μm and hydraulic conductivities from 1.7 to 26 x 10 -3 m/s were calculated from the core measurements

  8. Ambient Seismic Imaging of Hydraulically Active Fractures at km Depths

    Science.gov (United States)

    Malin, P. E.; Sicking, C.

    2017-12-01

    Streaming Depth Images of ambient seismic signals using numerous, densely-distributed, receivers have revealed their connection to hydraulically active fractures at 0.5 to 5 km depths. Key for this type of imaging is very high-fold stacking over both multiple receives and periods of a few hours. Also important is suppression of waveforms from fixed, repeating sources such as pumps, generators, and traffic. A typical surface-based ambient SDI survey would use a 3D seismic receiver grid. It would have 1,000 to 4,000 uniformly distributed receivers at a density of 50/km2over the target. If acquired by borehole receivers buried 100 m deep, the density can be dropped by an order of magnitude. We show examples of the acquisition and signal processing scenarios used to produce the ambient images. (Sicking et al., SEG Interpretation, Nov 2017.) While the fracture-fluid source connection of SDI has been verified by drilling and various types of hydraulic tests, the precise nature of the signal's origin is not clear. At the current level of observation, the signals do not have identifiable phases, but can be focused using P wave velocities. Suggested sources are resonances of pressures fluctuations in the fractures, or small, continuous, slips on fractures surfaces. In either case, it appears that the driving mechanism is tectonic strain in an inherently unstable crust. Solid earth tides may enhance these strains. We illustrate the value of the ambient SDI method in its industrial application by showing case histories from energy industry and carbon-capture-sequestration projects. These include ambient images taken before, during, and after hydraulic treatments in un-conventional reservoirs. The results show not only locations of active fractures, but also their time responses to stimulation and production. Time-lapse ambient imaging can forecast and track events such as well interferences and production changes that can result from nearby treatments.

  9. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. First annual technical progress report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.S.

    1996-12-17

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

  10. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1984-10-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. We have compared the flux and mechanical transport behavior of these networks to the behavior of equivalent continua. In this way we are able to determine whether a given fracture network can be modeled as an equivalent porous media in both flux and advective transport studies. We have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. Transport studies have shown that the ratio between flux and velocity is not necessarily constant when the direction of flow is changed in systems which do behave like a porous media for flux. Thus the conditions under which porous media analysis can be used in transport studies are more restrictive than the condition for flux studies. We have examined systems which do not behave like porous media and have shown how the in situ behavior varies as a function of scale of observation. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. 13 references, 12 figures

  11. Analysis of the hydraulic data from the MI fracture zone at the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Davey, A.; Karasaki, K.; Long, J.C.S.; Landsfeld, M.; Mensch, A.; Martel, S.J.

    1989-10-01

    One of the major problems in analyzing flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to overcome some of this problem, Lawrence Berkeley Laboratory (LBL) has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model the authors represent the discontinuous nature of the problem through flow on a partially filled lattice. A key component in constructing an equivalent discontinuum model from this lattice is removing some of the conductive elements such that the system is partially connected in the same manner as the fracture network. This is done through a statistical inverse technique called simulated annealing. The fracture network model is annealed by continually modifying a base model, or template such that the modified systems behave more and more like the observed system. In order to see how the simulated annealing algorithm works, the authors have developed a series of synthetic real cases. In these cases, the real system is completely known so that the results of annealing to steady state data can be evaluated absolutely. The effect of the starting configuration has been studied by varying the percent of conducting elements in the initial configuration. Results have shown that the final configurations converge to about the same percentage of conducting elements. An example using Nagra field data from the Migration Experiment (MI) at Grimsel Rock Laboratory in Switzerland is also analyzed. 24 refs., 33 figs., 3 tabs

  12. Naturally fractured reservoirs: Optimized E and P strategies using a reaction-transport-mechanical simulator in an integrated approach. Annual report, 1996--1997

    Energy Technology Data Exchange (ETDEWEB)

    Hoak, T.; Jenkins, R. [Science Applications International Corp., McLean, VA (United States); Ortoleva, P.; Ozkan, G.; Shebl, M.; Sibo, W.; Tuncay, K. [Laboratory for Computational Geodynamics (United States); Sundberg, K. [Phillips Petroleum Company (United States)

    1998-07-01

    The methodology and results of this project are being tested using the Andector-Goldsmith Field in the Permian Basin, West Texas. The study area includes the Central Basin Platform and the Midland Basin. The Andector-Goldsmith Field lies at the juncture of these two zones in the greater West Texas Permian Basin. Although the modeling is being conducted in this area, the results have widespread applicability to other fractured carbonate and other reservoirs throughout the world.

  13. Trochanteric fractures

    International Nuclear Information System (INIS)

    Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.

    1988-01-01

    Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)

  14. Fracture Blisters

    Directory of Open Access Journals (Sweden)

    Uebbing, Claire M

    2011-02-01

    Full Text Available Fracture blisters are a relatively uncommon complication of fractures in locations of the body, such as the ankle, wrist elbow and foot, where skin adheres tightly to bone with little subcutaneous fat cushioning. The blister that results resembles that of a second degree burn.These blisters significantly alter treatment, making it difficult to splint or cast and often overlying ideal surgical incision sites. Review of the literature reveals no consensus on management; however, most authors agree on early treatment prior to blister formation or delay until blister resolution before attempting surgical correction or stabilization. [West J Emerg Med. 2011;12(1;131-133.

  15. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  16. Connecting the Pioneers, Current Leaders and the Nature and History of Space Weather with K-12 Classrooms and the General Public

    Science.gov (United States)

    Ng, C.; Thompson, B. J.; Cline, T.; Lewis, E.; Barbier, B.; Odenwald, S.; Spadaccini, J.; James, N.; Stephenson, B.; Davis, H. B.; Major, E. R.; Space Weather Living History

    2011-12-01

    The Space Weather Living History program will explore and share the breakthrough new science and captivating stories of space environments and space weather by interviewing space physics pioneers and leaders active from the International Geophysical Year (IGY) to the present. Our multi-mission project will capture, document and preserve the living history of space weather utilizing original historical materials (primary sources). The resulting products will allow us to tell the stories of those involved in interactive new media to address important STEM needs, inspire the next generation of explorers, and feature women as role models. The project is divided into several stages, and the first stage, which began in mid-2011, focuses on resource gathering. The goal is to capture not just anecdotes, but the careful analogies and insights of researchers and historians associated with the programs and events. The Space Weather Living History Program has a Scientific Advisory Board, and with the Board's input our team will determine the chronology, key researchers, events, missions and discoveries for interviews. Education activities will be designed to utilize autobiographies, newspapers, interviews, research reports, journal articles, conference proceedings, dissertations, websites, diaries, letters, and artworks. With the help of a multimedia firm, we will use some of these materials to develop an interactive timeline on the web, and as a downloadable application in a kiosk and on tablet computers. In summary, our project augments the existing historical records with education technologies, connect the pioneers, current leaders and the nature and history of space weather with K-12 classrooms and the general public, covering all areas of studies in Heliophysics. The project is supported by NASA award NNX11AJ61G.

  17. Intra-operative 3D imaging system for robot-assisted fracture manipulation.

    Science.gov (United States)

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-01-01

    Reduction is a crucial step in the treatment of broken bones. Achieving precise anatomical alignment of bone fragments is essential for a good fast healing process. Percutaneous techniques are associated with faster recovery time and lower infection risk. However, deducing intra-operatively the desired reduction position is quite challenging due to the currently available technology. The 2D nature of this technology (i.e. the image intensifier) doesn't provide enough information to the surgeon regarding the fracture alignment and rotation, which is actually a three-dimensional problem. This paper describes the design and development of a 3D imaging system for the intra-operative virtual reduction of joint fractures. The proposed imaging system is able to receive and segment CT scan data of the fracture, to generate the 3D models of the bone fragments, and display them on a GUI. A commercial optical tracker was included into the system to track the actual pose of the bone fragments in the physical space, and generate the corresponding pose relations in the virtual environment of the imaging system. The surgeon virtually reduces the fracture in the 3D virtual environment, and a robotic manipulator connected to the fracture through an orthopedic pin executes the physical reductions accordingly. The system is here evaluated through fracture reduction experiments, demonstrating a reduction accuracy of 1.04 ± 0.69 mm (translational RMSE) and 0.89 ± 0.71 ° (rotational RMSE).

  18. Elbow Fractures

    Science.gov (United States)

    ... is also an important factor when treating elbow fractures. Casts are used more frequently in children, as their risk of developing elbow stiffness is small; however, in an adult, elbow stiffness is much more likely. Rehabilitation directed by your doctor is often used to ...

  19. Wrist Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields ...

  20. Shoulder Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Shoulder Fractures Email to a friend * required fields ...

  1. Fracture mechanics and microstructures

    International Nuclear Information System (INIS)

    Gee, M.G.; Morrell, R.

    1986-01-01

    The influence of microstructure on defects in ceramics, and the consequences of their presence for the application of fracture mechanics theories are reviewed. The complexities of microstructures, especially the multiphase nature, the crystallographic anisotropy and the resultant anisotropic physical properties, and the variation of microstructure and surface finish from point to point in real components, all lead to considerable uncertainties in the actual performance of any particular component. It is concluded that although the concepts of fracture mechanics have been and will continue to be most useful for the qualitative explanation of fracture phenomena, the usefulness as a predictive tool with respect to most existing types of material is limited by the interrelation between material microstructure and mechanical properties. At present, the only method of eliminating components with unsatisfactory mechanical properties is to proof-test them, despite the fact that proof-testing itself is limited in ability to cope with changes to the component in service. The aim of the manufacturer must be to improve quality and consistency within individual components, from component to component, and from batch to batch. The aim of the fracture specialist must be to study longer-term properties to improve the accuracy of behaviour predictions with a stronger data base. Materials development needs to concentrate on obtaining defect-free materials that can be translated into more-reliable products, using our present understanding of the influence of microstructure on strength and toughness

  2. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  3. Fracture behavior of human molars.

    Science.gov (United States)

    Keown, Amanda J; Lee, James J-W; Bush, Mark B

    2012-12-01

    Despite the durability of human teeth, which are able to withstand repeated loading while maintaining form and function, they are still susceptible to fracture. We focus here on longitudinal fracture in molar teeth-channel-like cracks that run along the enamel sidewall of the tooth between the gum line (cemento-enamel junction-CEJ) and the occlusal surface. Such fractures can often be painful and necessitate costly restorative work. The following study describes fracture experiments made on molar teeth of humans in which the molars are placed under axial compressive load using a hard indenting plate in order to induce longitudinal cracks in the enamel. Observed damage modes include fractures originating in the occlusal region ('radial-median cracks') and fractures emanating from the margin of the enamel in the region of the CEJ ('margin cracks'), as well as 'spalling' of enamel (the linking of longitudinal cracks). The loading conditions that govern fracture behavior in enamel are reported and observations made of the evolution of fracture as the load is increased. Relatively low loads were required to induce observable crack initiation-approximately 100 N for radial-median cracks and 200 N for margin cracks-both of which are less than the reported maximum biting force on a single molar tooth of several hundred Newtons. Unstable crack growth was observed to take place soon after and occurred at loads lower than those calculated by the current fracture models. Multiple cracks were observed on a single cusp, their interactions influencing crack growth behavior. The majority of the teeth tested in this study were noted to exhibit margin cracks prior to compression testing, which were apparently formed during the functional lifetime of the tooth. Such teeth were still able to withstand additional loading prior to catastrophic fracture, highlighting the remarkable damage containment capabilities of the natural tooth structure.

  4. Interstate Connections - CEHC [ds619

    Data.gov (United States)

    California Natural Resource Agency — The California Department of Transportation (Caltrans) and California Department of Fish and Game (CDFG) commissioned the California Essential Habitat Connectivity...

  5. Study of phenomena of tracer transport and dispersion in fractured media

    International Nuclear Information System (INIS)

    Ippolito, Irene

    1993-01-01

    The objective of this research thesis is to present some transport phenomena according to two different approaches: firstly, the study of flows and tracing in a natural crack within a granitic site, and secondly, the study of flows of different geometries in model cracks, mainly by using techniques of tracer dispersion. The author first presents some properties of fractured media and elements of the theory of the phenomenon of dispersion. She notably discusses the reversibility of the Taylor dispersion which is the prevailing mechanism for simply connected geometries such as in the case of a flow between two continuous solid surfaces limiting a fracture. In the next chapters, the author reports the analysis of characteristics of local structures (mouths, roughnesses) of a single fracture by using echo dispersion. She reports experiments as well as Monte Carlo simulations performed on well defined geometries. In a parallel way, some characteristics measurements (rate-pressure, distribution of flows and tracing in transmission) and mechanical measurements of fracture deformation have been performed on a natural fracture in a granitic site [fr

  6. Intelligent fracture creation for shale gas development

    KAUST Repository

    Douglas, Craig C.

    2011-05-14

    Shale gas represents a major fraction of the proven reserves of natural gas in the United States and a collection of other countries. Higher gas prices and the need for cleaner fuels provides motivation for commercializing shale gas deposits even though the cost is substantially higher than traditional gas deposits. Recent advances in horizontal drilling and multistage hydraulic fracturing, which dramatically lower costs of developing shale gas fields, are key to renewed interest in shale gas deposits. Hydraulically induced fractures are quite complex in shale gas reservoirs. Massive, multistage, multiple cluster treatments lead to fractures that interact with existing fractures (whether natural or induced earlier). A dynamic approach to the fracturing process so that the resulting network of reservoirs is known during the drilling and fracturing process is economically enticing. The process needs to be automatic and done in faster than real-time in order to be useful to the drilling crews.

  7. Connecting Grammaticalisation

    DEFF Research Database (Denmark)

    Nørgård-Sørensen, Jens; Heltoft, Lars; Schøsler, Lene

    morphological, topological and constructional paradigms often connect to form complex paradigms. The book introduces the concept of connecting grammaticalisation to describe the formation, restructuring and dismantling of such complex paradigms. Drawing primarily on data from Germanic, Romance and Slavic...

  8. Quantifying the Effects of Spatial Uncertainty in Fracture Permeability on CO2 Leakage through Columbia River Basalt Flow Interiors

    Science.gov (United States)

    Gierzynski, A.; Pollyea, R.

    2016-12-01

    , this research shows that even where fracture networks are sufficiently connected, CO2 flux is often inhibited by a cell of lower permeability, analogous to an obstruction or asperity in a natural fracture. This impresses the importance of considering spatial uncertainty in fracture apertures when modeling CO2 leakage through a caprock.

  9. THE NATURE OF CONNECTION BETWEEN CHILD’S ATTACHMENT TO THE MOTHER AND THE EXPERIENCE OF FAMILY WELL-BEING IN ADULTHOOD

    Directory of Open Access Journals (Sweden)

    L. M. Samoshkina

    2015-04-01

    Full Text Available Background. Attachment to mother is viewed as the primary sample of bonding with a close person, thus its quality has an impact on the relationships with a partner. Objectives. A research of the nature of connection between child’s attachment to mother and the experience of the family well-being in adulthood is presented. Method. The empirical research was carried out by internet survey with the help of the following methods: “Satisfaction with marriage” by Stolin V., Butenko G., Romanova T.; “Experience of close relationship” by Brennan K. and Freiley P. adapted by Kazantseva T.; “Role expectations and claims in marriage” by Volkova A.; “Communication in the family” by Alyoshina Yu., Gozman L., Dubovski M.; and the author’s survey revealing the type of child’s attachment to mother in adulthood. Fisher criterion F was used for the comparison of different samples; Pearson’s correlation coef?cient was used for the determination of correlation between the type of attachment to mother and components of psychological well-being. Sample. In the course of the research 39 couples living in registered marriage were surveyed, which constitutes 78 respondents aged 23-42. Results. The type of attachment to mother in person’s childhood determines the possibility of displaying avoidance of closeness to the partner, anxiety caused by the loss of closeness as well as peculiarities of communication, role expectations and claims in a couple. Conclusions. People with an indifferent type of attachment often avoid intimacy with a partner, perform well in the sphere of emotional and psychological support of a partner and even exhibit a higher degree of mutual understanding with the partner. People with neurotic type of attachment may experience anxiety about the loss of intimacy with a partner, but this anxiety can make them constantly work on themselves, both in physical terms – with an external attachment or on a psychological level

  10. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  11. Fracture mechanics

    International Nuclear Information System (INIS)

    Miannay, D.P.

    1995-01-01

    This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped

  12. Acidization of shales with calcite cemented fractures

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between

  13. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    Science.gov (United States)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  14. Deep fracturation of granitic rock mass

    International Nuclear Information System (INIS)

    Bles, J.L.; Blanchin, R.; Bonijoly, D.; Dutartre, P.; Feybesse, J.L.; Gros, Y.; Landry, J.; Martin, P.

    1986-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground, in various feasibility studies dealing with radioactive wastes disposal. The Mont Blanc road tunnel, the EDF Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater [fr

  15. Fracture toughness of irradiated beryllium

    International Nuclear Information System (INIS)

    Beeston, J.M.

    1978-01-01

    The fracture toughness of nuclear grade hot-pressed beryllium upon irradiation to fluences of 3.5 to 5.0 x 10 21 n/cm 2 , E greater than 1 MeV, was determined. Procedures and data relating to a round-robin test contributing to a standard ASTM method for unirradiated beryllium are discussed in connection with the testing of irradiated specimens. A porous grade of beryllium was also irradiated and tested, thereby enabling some discrimination between the models for describing the fracture toughness behavior of porous beryllium. The fracture toughness of unirradiated 2 percent BeO nuclear grade beryllium was 12.0 MPa m/sup 1 / 2 /, which was reduced 60 percent upon irradiation at 339 K and testing at 295 K. The fracture toughness of a porous grade of beryllium was 13.1 MPa m/sup 1 / 2 /, which was reduced 68 percent upon irradiation and testing at the same conditions. Reasons for the reduction in fracture toughness upon irradiation are discussed

  16. Fracture peculiarities in ceramic tungsten at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1981-01-01

    Stress-strain diagrams and results of metallographic analyses are presented for the ceramic tungsten samples tested for fracture toughness under conditions of eccentric tension at different temperatures (20...1600 deg C) in vacuum. The tungsten fracture is shown to be of brittle nature within the whole temperature range studied, but the fracture process has its own peculiarities at different test temperatures

  17. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  18. Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre

    2008-07-01

    A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints

  19. Making Connections

    Science.gov (United States)

    Pien, Cheng Lu; Dongsheng, Zhao

    2011-01-01

    Effective teaching includes enabling learners to make connections within mathematics. It is easy to accord with this statement, but how often is it a reality in the mathematics classroom? This article describes an approach in "connecting equivalent" fractions and whole number operations. The authors illustrate how a teacher can combine a common…

  20. Fracturing of subterranean formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O.M.; Kidwell, A.L.

    1968-03-19

    This method of propping fractured formations results in high conductivities. In the method, certain naturally occurring crystals are used as propping agents. Suitable crystals include garnet, corundum, zircon, rutile, high-temperature quartz, and other minerals which have Moh's hardness values of about 6 or greater and weather out as individual crystals of about 40 mesh or larger. These are said to result in permeabilities significantly higher than those obtained with ordinary quartz sand, metallic shot, glass beads, plastic particles, walnut hulls, or similar materials. (10 claims)

  1. Contribution to the tectonic characterization of fractured reservoirs, I: photo-elasticimetric modelling of the stress perturbations near faults and the associated fracture network: application to oil reserves, II mechanisms for the 3D joint organization in a natural reservoir analogue (flat-lying Devonian Old Red Sandstones of Caitness in North Scotland); Contribution a la caracterisation tectonique des reservoirs fractures, I: modelisation photoelecticimetrique des perturbations de contrainte au voisinage des failles et de la fracturation associee: application petroliere, II: mecanismes de developpement en 3D des diaclases dans un analogue de reservoir, le Devonien tabulaire du caithness (Ecosse)

    Energy Technology Data Exchange (ETDEWEB)

    Auzias, V

    1995-10-27

    In order to understand joint network organisation in oil reservoirs, as a first step we have adapted to technique (the photo-elasticimetry) to study stress fields in 2D. This method allows to determine the principal stress trajectories near faults, as well as the associated joint network organisation. Natural joint networks perturbed near faults are modeled and the parameters that control stress perturbation are proposed. With the aim of extrapolating joint data from a well to the entire reservoir our modelling is based on both 3 D seismic data and local joint data. The second part of our research was dedicated to studying joint propagation mechanisms in a natural reservoir analogue (flat-lying Devonian Old Red Sandstones of Caitness in North Scotland). Several exposure observation at different scales and in 3D (horizontal and cliff sections) allow to reconstitute the fracturing geometry from centimeter to kilometer scale and to link these to the regional tectonic history. This study shows that it is possible to differentiate three types of joints major joints, `classic` joints and micro-joints, each with different vertical persistence. New concepts on the 3D joint organisation have been deduced from field quantitative data, which can be applied to reservoir fracture modeling. In particular the non-coexistence phenomenon in a single bed of two regional joint sets with close strikes. Some joint development mechanisms are discussed: interaction between joints and sedimentary interfaces, joint distribution near faults, origin of en echelon arrays associated with joints. (author) 142 refs.

  2. Proximal femoral fractures.

    Science.gov (United States)

    Webb, Lawrence X

    2002-01-01

    Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.

  3. Instability in dynamic fracture

    Science.gov (United States)

    Fineberg, J.; Marder, M.

    1999-05-01

    The fracture of brittle amorphous materials is an especially challenging problem, because the way a large object shatters is intimately tied to details of cohesion at microscopic scales. This subject has been plagued by conceptual puzzles, and to make matters worse, experiments seemed to contradict the most firmly established theories. In this review, we will show that the theory and experiments fit within a coherent picture where dynamic instabilities of a crack tip play a crucial role. To accomplish this task, we first summarize the central results of linear elastic dynamic fracture mechanics, an elegant and powerful description of crack motion from the continuum perspective. We point out that this theory is unable to make predictions without additional input, information that must come either from experiment, or from other types of theories. We then proceed to discuss some of the most important experimental observations, and the methods that were used to obtain the them. Once the flux of energy to a crack tip passes a critical value, the crack becomes unstable, and it propagates in increasingly complicated ways. As a result, the crack cannot travel as quickly as theory had supposed, fracture surfaces become rough, it begins to branch and radiate sound, and the energy cost for crack motion increases considerably. All these phenomena are perfectly consistent with the continuum theory, but are not described by it. Therefore, we close the review with an account of theoretical and numerical work that attempts to explain the instabilities. Currently, the experimental understanding of crack tip instabilities in brittle amorphous materials is fairly detailed. We also have a detailed theoretical understanding of crack tip instabilities in crystals, reproducing qualitatively many features of the experiments, while numerical work is beginning to make the missing connections between experiment and theory.

  4. About Connections

    Directory of Open Access Journals (Sweden)

    Kathleen S Rockland

    2015-05-01

    Full Text Available Despite the attention attracted by connectomics, one can lose sight of the very real questions concerning What are connections? In the neuroimaging community, structural connectivity is ground truth and underlying constraint on functional or effective connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as pairwise, point x projecting to point y (or: to points y and z, or more recently, in graph theoretical terms, as nodes or regions and the interconnecting edges. This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis.

  5. Upscaling permeability for three-dimensional fractured porous rocks with the multiple boundary method

    Science.gov (United States)

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas

    2018-02-01

    Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.

  6. Profile and procedures for fractures among 1323 fracture patients from the 2010 Yushu earthquake, China.

    Science.gov (United States)

    Kang, Peng; Tang, Bihan; Liu, Yuan; Liu, Xu; Shen, Yan; Liu, Zhipeng; Yang, Hongyang; Zhang, Lulu

    2016-11-01

    The injuries caused by earthquakes are often complex and of various patterns. Our study included all fracture inpatients from the Yushu earthquake (1323 in total), to learn more about the incidence and distribution of fractures during earthquakes. A retrospective study of the clinical characteristics of hospitalized fracture patients after the 2010 Yushu earthquake was conducted from December 20 to 25, 2010.We reviewed medical records of hospitalized patients who had been evacuated from the Yushu earthquake area between April 14 and June 15, 2010, from 57 hospitals, and also reviewed more than 100 documents assembled from daily medical rescue and disease prevention reports submitted by the frontline rescue organizations. In total, 78.0% of fracture patients were admitted to the hospital within 3 days after the earthquake. There were 1323 patients who presented with 1539 fractures. The most common fracture occurred in the lower limbs, followed by spinal, pelvic, and shoulder-upper limb fractures. The end of the thoracic vertebra and the lumbar vertebra were the high-risk sites for vertebral fractures. A total of 38 patients became paraplegic. A 2-level spatial clustering was detected among the 193 patients presenting with 2 fractures. Analysis profiles of the injuries and clinical features of patients with earthquake-related fractures will positively impact rescue efforts and the treatment of fracture injuries caused by possible future natural disasters. We should assemble orthopedic-related medications and surgical equipment, and allocate them promptly after a major earthquake. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Internet Connectivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Internet Connectivity. BSNL, SIFY, HCL in Guwahati; only BSNL elsewhere in NE (local player in Shillong). Service poor; All vendors lease BW from BSNL.

  8. Mathematics Connection

    African Journals Online (AJOL)

    MATHEMATICS CONNECTION aims at providing a forum topromote the development of Mathematics Education in Ghana. Articles that seekto enhance the teaching and/or learning of mathematics at all levels of theeducational system are welcome.

  9. HR Connect

    Data.gov (United States)

    US Agency for International Development — HR Connect is the USAID HR personnel system which allows HR professionals to process HR actions related to employee's personal and position information. This system...

  10. Positive approach: Implications for the relation between number theory and geometry, including connection to Santilli mathematics, from Fibonacci reconstitution of natural numbers and of prime numbers

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Stein E., E-mail: stein.johansen@svt.ntnu.no [Institute for Basic Research, Division of Physics, Palm Harbor, Florida, USA and Norwegian University of Science and Technology, Department of Social Anthropology, Trondheim (Norway)

    2014-12-10

    The paper recapitulates some key elements in previously published results concerning exact and complete reconstitution of the field of natural numbers, both as ordinal and as cardinal numbers, from systematic unfoldment of the Fibonacci algorithm. By this natural numbers emerge as Fibonacci 'atoms' and 'molecules' consistent with the notion of Zeckendorf sums. Here, the sub-set of prime numbers appears not as the primary numbers, but as an epistructure from a deeper Fibonacci constitution, and is thus targeted from a 'positive approach'. In the Fibonacci reconstitution of number theory natural numbers show a double geometrical aspect: partly as extension in space and partly as position in a successive structuring of space. More specifically, the natural numbers are shown to be distributed by a concise 5:3 code structured from the Fibonacci algorithm via Pascal's triangle. The paper discusses possible implications for the more general relation between number theory and geometry, as well as more specifically in relation to hadronic mathematics, initiated by R.M. Santilli, and also briefly to some other recent science linking number theory more directly to geometry and natural systems.

  11. Positive approach: Implications for the relation between number theory and geometry, including connection to Santilli mathematics, from Fibonacci reconstitution of natural numbers and of prime numbers

    International Nuclear Information System (INIS)

    Johansen, Stein E.

    2014-01-01

    The paper recapitulates some key elements in previously published results concerning exact and complete reconstitution of the field of natural numbers, both as ordinal and as cardinal numbers, from systematic unfoldment of the Fibonacci algorithm. By this natural numbers emerge as Fibonacci 'atoms' and 'molecules' consistent with the notion of Zeckendorf sums. Here, the sub-set of prime numbers appears not as the primary numbers, but as an epistructure from a deeper Fibonacci constitution, and is thus targeted from a 'positive approach'. In the Fibonacci reconstitution of number theory natural numbers show a double geometrical aspect: partly as extension in space and partly as position in a successive structuring of space. More specifically, the natural numbers are shown to be distributed by a concise 5:3 code structured from the Fibonacci algorithm via Pascal's triangle. The paper discusses possible implications for the more general relation between number theory and geometry, as well as more specifically in relation to hadronic mathematics, initiated by R.M. Santilli, and also briefly to some other recent science linking number theory more directly to geometry and natural systems

  12. Traumatic thoracolumbar spine fractures

    NARCIS (Netherlands)

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  13. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...

  14. Flow and fracture of alloys in the fusion environment

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1982-01-01

    The present paper examines both ductile and brittle fracture models of steels and assesses the impact of the fusion reactor environment on the fracture processes. In particular, the connections between plastic flow properties and fracture modes are reviewed for both ductile and brittle crack propagation. Highly radiation-hardened materials exhibit extreme flow location resulting in channel fracture. Physical models for this phenomon are developed and an estimate for the associated fracture toughness is given. The impact of radiation-hardening and ductility loss on fatigue crack growth is examined. Next, models describing the chemical effects on fatigue and fracture are briefly discussed. Finally, fracture design criteria are proposed for first wall structures in fusion reactors. (orig.)

  15. Assessment of fracture risk

    International Nuclear Information System (INIS)

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  16. Humeral Shaft Fracture: Intramedullary Nailing.

    Science.gov (United States)

    Konda, Sanjit R; Saleh, Hesham; Fisher, Nina; Egol, Kenneth A

    2017-08-01

    This video demonstrates the technique of intramedullary nailing for a humeral shaft fracture. The patient is a 30-year-old man who sustained a gunshot wound to his right arm. The patient was indicated for humeral nailing given the comminuted nature of the diaphysis and to allow for minimal skin incisions. Other relative indications include soft-tissue compromise about the arm precluding a large surgical exposure. This video presents a case of a comminuted humeral shaft fracture treated with an intramedullary nail. Anatomic reduction and stable fixation was obtained with this technique. This case demonstrates a soft-tissue sparing technique of humeral shaft fixation using a humeral intramedullary nail. The technique is easy to perform and has significant benefits in minimizing surgical exposure, decreasing operative time, and decreasing blood loss. In the correct clinical setting, humeral nailing provides an expeditious form of fixation that restores length, alignment, and rotation of the fracture humeral diaphysis.

  17. Deep fracturation of granitic rock mass. Fracturation profonde des massifs rocheux granitiques

    Energy Technology Data Exchange (ETDEWEB)

    Bles, J L; Blanchin, R; Bonijoly, D; Dutartre, P; Feybesse, J L; Gros, Y; Landry, J; Martin, P

    1986-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground, in various feasibility studies dealing with radioactive wastes disposal. The Mont Blanc road tunnel, the EDF Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater.

  18. Hydraulic Fracturing

    Science.gov (United States)

    EPA works with states and other key stakeholders, through sound scientific research and regulation; to help ensure that natural gas extraction from shale formations, also called fracking or hydrofracking, does not harm public health and the environment.

  19. Establishing Connectivity

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    Global law settings are characterised by a structural pre-eminence of connectivity norms, a type of norm which differs from coherency or possibility norms. The centrality of connectivity norms emerges from the function of global law, which is to increase the probability of transfers of condensed ...... and human rights can be understood as serving a constitutionalising function aimed at stabilising and facilitating connectivity. This allows for an understanding of colonialism and contemporary global governance as functional, but not as normative, equivalents.......Global law settings are characterised by a structural pre-eminence of connectivity norms, a type of norm which differs from coherency or possibility norms. The centrality of connectivity norms emerges from the function of global law, which is to increase the probability of transfers of condensed...... social components, such as economic capital and products, religious doctrines and scientific knowledge, from one legally structured context to another within world society. This was the case from colonialism and colonial law to contemporary global supply chains and human rights. Both colonial law...

  20. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  1. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  2. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.

  3. Fracture propagation in sandstone and slate – Laboratory experiments, acoustic emissions and fracture mechanics

    Directory of Open Access Journals (Sweden)

    Ferdinand Stoeckhert

    2015-06-01

    Full Text Available Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of 13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.

  4. The fracture zone project - final report

    International Nuclear Information System (INIS)

    Andersson, Peter

    1993-09-01

    This report summarizes the work and the experiences gained during the fracture zone project at the Finnsjoen study site. The project is probably the biggest effort, so far, to characterize a major fracture zone in crystalline bedrock. The project was running between 1984-1990 involving a large number of geological, geohydrological, geochemical, and geomechanical investigation. The methods used for identification and characterization are reviewed and discussed in terms of applicability and possible improvements for future investigations. The discussion is exemplified with results from the investigation within the project. Flow and transport properties of the zone determined from hydraulic tests and tracer tests are discussed. A large number of numerical modelling efforts performed within the fracture zone project, the INTRAVAL project, and the SKB91-study are summarized and reviewed. Finally, occurrence of similar zones and the relevance of major low angle fracture zones in connection to the siting of an underground repository is addressed

  5. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    2014-03-18

    Mar 18, 2014 ... In this study, we use a new method to present fracture networks and analyse the connectivity of the .... bounded aquifers are currently the most common targets for water supply ... a conceptual model that integrates all of the available data ...... Integrated multi-scale characterization of ground-water flow and.

  6. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  7. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  8. Connectivity in river deltas

    Science.gov (United States)

    Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.

    2016-12-01

    Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.

  9. History of the treatment of scapula fractures.

    Science.gov (United States)

    Bartonícek, Jan; Cronier, Patrick

    2010-01-01

    The history of treatment of scapula fractures is closely connected with the history of the French surgery. Paré (Les œuvres d´Ambroise Paré, conseiller, et premier chirurgien du Roy, Gabriel Buon, Paris, p VCV, 1579), Petit (Traité des maladies des os. Tome second, Charles-Etienne Hochereau, Paris, pp 122–138, 1723), Du Verney (Traité des maladies des os. Tome I, de Burre, Paris, pp 220–231, 1751) and Desault (Œuvres chirurgicales, ou tableau de la doctrine et de la pratique dans le traitement des maladies externes par Xav. Bichat, Desault, Méquignon, Devilliers, Deroi, Paris, pp 98–106, 1798) were the first to point out the existence of these fractures. The first drawing of a scapula fracture was presented by Vogt (Dissertatio de ambarum scapularum dextroeque simul claviculae fractura rara, Dissertatione Universitae Vitembergensi, Wittenberg, 1799). This author was also the first to describe the scapula fracture associated with ipsilateral fracture of the clavicle. The first radiograph of scapula fracture (glenoid fossa fracture) was published by Struthers (Edinburgh Med J 4(3):147–149, 1910). The first internal fixation of scapula fracture using plate was done by Lambotte (1910) who was followed by Lane (The operative treatment of fractures, Medical Publishing Co, London, pp 99–101, 1914) and later by Lenormant (Sur l´ostéosynthèse dans certains fractures de l´omoplate Bulletins et mémoires de la Société de chirgie de Paris, pp 1501–1502, 1923), Dujarier (Fracture du col chirgical de l´omoplate. Ostéosynthèse par plaque en T. Bonne réduction. Bulletin et mémoires de la Société de chirurgie de Paris, pp 1492–1493, 1923) and Basset (Ostéosynthèse d´une fracture de l´omoplate. Bulletin et mémoires de la Société nationale de chirurgie. p 193, 1924). Dupont and Evrard (J Chir (Paris) 39:528–534, 1932) presented the first detailed description of the surgical approach along the lateral border of the scapula including two

  10. Making connections

    NARCIS (Netherlands)

    Marion Duimel

    2007-01-01

    Original title: Verbinding maken; senioren en internet. More and more older people are finding their way to the Internet. Many people aged over 50 who have only recently gone online say that a new world has opened up for them. By connecting to the Internet they have the feeling that they

  11. CMS Connect

    Science.gov (United States)

    Balcas, J.; Bockelman, B.; Gardner, R., Jr.; Hurtado Anampa, K.; Jayatilaka, B.; Aftab Khan, F.; Lannon, K.; Larson, K.; Letts, J.; Marra Da Silva, J.; Mascheroni, M.; Mason, D.; Perez-Calero Yzquierdo, A.; Tiradani, A.

    2017-10-01

    The CMS experiment collects and analyzes large amounts of data coming from high energy particle collisions produced by the Large Hadron Collider (LHC) at CERN. This involves a huge amount of real and simulated data processing that needs to be handled in batch-oriented platforms. The CMS Global Pool of computing resources provide +100K dedicated CPU cores and another 50K to 100K CPU cores from opportunistic resources for these kind of tasks and even though production and event processing analysis workflows are already managed by existing tools, there is still a lack of support to submit final stage condor-like analysis jobs familiar to Tier-3 or local Computing Facilities users into these distributed resources in an integrated (with other CMS services) and friendly way. CMS Connect is a set of computing tools and services designed to augment existing services in the CMS Physics community focusing on these kind of condor analysis jobs. It is based on the CI-Connect platform developed by the Open Science Grid and uses the CMS GlideInWMS infrastructure to transparently plug CMS global grid resources into a virtual pool accessed via a single submission machine. This paper describes the specific developments and deployment of CMS Connect beyond the CI-Connect platform in order to integrate the service with CMS specific needs, including specific Site submission, accounting of jobs and automated reporting to standard CMS monitoring resources in an effortless way to their users.

  12. Confocal μ-XRF, μ-XAFS, and μ-XRD Studies of Sediment from a Nuclear Waste Disposal Natural Analogue Site and Fractured Granite Following a Radiotracer Migration Experiment

    International Nuclear Information System (INIS)

    Denecke, Melissa A.; Brendebach, Boris; Rothe, Joerg; Simon, Rolf; Janssens, Koen; Nolf, Wout de; Vekemans, Bart; Falkenberg, Gerald; Somogyi, Andrea; Noseck, Ulrich

    2007-01-01

    Combined μ-XRF, μ-XAFS, and μ-XRD investigations of a uranium-rich tertiary sediment, from a nuclear repository natural analogue site, and a fractured granite bore core section after a column tracer experiment using a Np(V) containing cocktail have been performed. Most μ-XRF/μ-XAFS measurements are recorded in a confocal geometry to provide added depth information. The U-rich sediment results show uranium to be present as a tetravalent phosphate and that U(IV) is associated with As(V). Arsenic present is either As(V) or As(0). The As(0) forms thin coatings on the surface of pyrite nodules. A hypothesis for the mechanism of uranium immobilization is proposed, where arsenopyrite acted as reductant of ground water dissolved U(VI) leading to precipitation of less soluble U(IV) and thereby forming As(V). Results for the granite sample show the immobilized Np to be tetravalent and associated with facture material

  13. Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland

    Science.gov (United States)

    Watkins, Hannah; Healy, David; Bond, Clare E.; Butler, Robert W. H.

    2018-03-01

    Understanding fracture network variation is fundamental in characterising fractured reservoirs. Simple relationships between fractures, stress and strain are commonly assumed in fold-thrust structures, inferring relatively homogeneous fracture patterns. In reality fractures are more complex, commonly appearing as heterogeneous networks at outcrop. We use the Achnashellach Culmination (NW Scotland) as an outcrop analogue to a folded tight sandstone reservoir in a thrust belt. We present fracture data is collected from four fold-thrust structures to determine how fracture connectivity, orientation, permeability anisotropy and fill vary at different structural positions. We use a 3D model of the field area, constructed using field observations and bedding data, and geomechanically restored using Move software, to determine how factors such as fold curvature and strain influence fracture variation. Fracture patterns in the Torridon Group are consistent and predictable in high strain forelimbs, however in low strain backlimbs fracture patterns are inconsistent. Heterogeneities in fracture connectivity and orientation in low strain regions do not correspond to fluctuations in strain or fold curvature. We infer that where strain is low, other factors such as lithology have a greater control on fracture formation. Despite unpredictable fracture attributes in low strain regions, fractured reservoir quality would be highest here because fractures in high strain forelimbs are infilled with quartz. Heterogeneities in fracture attribute data on fold backlimbs mean that fractured reservoir quality and reservoir potential is difficult to predict.

  14. Fracture mechanical materials characterisation

    International Nuclear Information System (INIS)

    Wallin, K.; Planman, T.; Nevalainen, M.

    1998-01-01

    The experimental fracture mechanics development has been focused on the determination of reliable lower-bound fracture toughness estimates from small and miniature specimens, in particular considering the statistical aspects and loading rate effects of fracture mechanical material properties. Additionally, materials aspects in fracture assessment of surface cracks, with emphasis on the transferability of fracture toughness data to structures with surface flaws have been investigated. Further a modified crack-arrest fracture toughness test method, to increase the effectiveness of testing, has been developed. (orig.)

  15. Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.

    2018-03-01

    Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in

  16. Permeability and Dispersion Coefficients in Rocks with Fracture Network - 12140

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.K.; Htway, M.Z. [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, S.P. [Korea Atomic Energy Research Institute, P.O.Box 150, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01

    Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures a three-fracture system is chosen in which two are parallel and the third one connects the two at different angles. Specifically the micro-cell boundary-value problems(defined through multiple scale analysis) are solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is shown that the permeability depends significantly on the pattern of the fracture distribution and the dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects the flow field) and the direction of the gradient of solute concentration on the macro-scale. From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a fracture network the following conclusions are drawn. 1. The permeability of fractured medium depends on the primary orientation of the fracture network and is influenced by the connecting fractures in the medium. 2. The cross permeability, e.g., permeability in the direction normal to the direction of the external pressure gradient is rather insensitive to the orientation of the fracture network. 3. Calculation of permeability is most efficiently achieved with optimal discretization across individual fractures and is rather insensitive to the discretization along the fracture.. 4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macro-scale concentration gradient and the direction of the flow (pressure gradient). Hence both features must be considered when investigating solute transport in a fractured medium. (authors)

  17. Physical Aspects in Upscaling of Fractured Reservoirs and Improved Oil Recovery Prediction

    NARCIS (Netherlands)

    Salimi, H.

    2010-01-01

    This thesis is concerned with upscaled models for waterflooded naturally fractured reservoirs (NFRs). Naturally fractured petroleum reservoirs provide over 20% of the world’s oil reserves and production. From the fluid-flow point of view, a fractured reservoir is defined as a reservoir in which a

  18. Percolation Theory and Modern Hydraulic Fracturing

    Science.gov (United States)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  19. Fractures (Broken Bones): First Aid

    Science.gov (United States)

    First aid Fractures (broken bones) Fractures (broken bones): First aid By Mayo Clinic Staff A fracture is a ... 10, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-fractures/basics/ART-20056641 . Mayo Clinic ...

  20. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    Science.gov (United States)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  1. Fracture toughness correlations

    International Nuclear Information System (INIS)

    Wallin, Kim

    1986-09-01

    In this study existing fracture parameter correlations are reviewed. Their applicability and reliability are discussed in detail. A new K IC -CVN-correlation, based on a theoretical brittle fracture model, is presented

  2. Rib fracture - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000539.htm Rib fracture - aftercare To use the sharing features on this page, please enable JavaScript. A rib fracture is a crack or break in one or ...

  3. Sprains, Strains and Fractures

    Science.gov (United States)

    ... fractures. Many fractures and sprains occur during sports. Football players are particularly vulnerable to foot and ankle ... feet and ankles and take a complete medical history. He or she will also order tests, including ...

  4. Infant skull fracture (image)

    Science.gov (United States)

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...

  5. Ankle fracture - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000548.htm Ankle fracture - aftercare To use the sharing features on this page, please enable JavaScript. An ankle fracture is a break in 1 or more ankle ...

  6. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    Directory of Open Access Journals (Sweden)

    Huang Bo

    2017-01-01

    Full Text Available The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc., high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the fracturing success rate. 4 out of 12 fracturing wells in the field have failed to add enough proppants due to fluid loss. In order to increase the success rate and efficiency of hydraulic fracturing for deep volcanic reservoir, based on theoretical and experimental method, the mechanism of fracturing fluid leak-off is deeply studied. We propose a dualistic proppant scheme and employ the fluid loss reducer to control the fluid leak-off in macro-fractures and micro-fractures respectively. The proposed technique remarkably improved the success rate in deep volcanic rock fracturing. It bears important theoretical value and practical significance to improve the hydraulic fracturing design for deep volcanic reservoir.

  7. Atraumatic First Rib Fracture

    OpenAIRE

    Koray Aydogdu

    2014-01-01

    Rib fractures are usually seen after a trauma, while atraumatic spontaneous rib fractures are quite rare. A first rib fracture identified in our 17 years old female patient who had not a history of trauma except lifting a heavy weight was examined in details in terms of the potential complications and followed-up for a long time. We presented our experience on this case with atraumatic first rib fracture that has different views for the etiology in light of the literature.

  8. Methodology to predict the initiation of multiple transverse fractures from horizontal wellbores

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, D. G.; Yang, Z.; Rahman, S. S. [Univ. of New South Wales (Australia)

    2001-10-01

    The criterion based on Drucker and Prager which is designed to predict the pressure required to initiate secondary multiple transverse fractures in close proximity to primary fractures is discussed. Results based on this criterion compare favorably with those measured during a series of laboratory-scale hydraulic fracture interaction tests. It is concluded that the multiple fracture criterion and laboratory results demonstrate that transversely fractured horizontal wellbores have a limited capacity to resist the initiation of multiple fractures from adjacent perforations, or intersecting induced and natural fractures. 23 refs., 1 tab., 9 figs.

  9. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    Science.gov (United States)

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  10. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.O.; Collier, H.A.; Owen, T.E. [and others

    1997-06-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  11. Metatarsal stress fractures - aftercare

    Science.gov (United States)

    ... Metatarsal stress fracture. In: Safran MR, Zachazewski J, Stone DA, eds. Instructions for Sports Medicine Patients . 2nd ed. Elsevier Saunders; 2012:648-652. Smith MS. Metatarsal fractures. In: Eiff PM, Hatch R, eds. Fracture Management for Primary Care . 3rd ed. ...

  12. Obesity and fracture risk

    OpenAIRE

    Gonnelli, Stefano; Caffarelli, Carla; Nuti, Ranuccio

    2014-01-01

    Obesity and osteoporosis are two common diseases with an increasing prevalence and a high impact on morbidity and mortality. Obese women have always been considered protected against osteoporosis and osteoporotic fractures. However, several recent studies have challenged the widespread belief that obesity is protective against fracture and have suggested that obesity is a risk factor for certain fractures.

  13. Imaging of insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)

    2009-09-15

    This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.

  14. Development of a fixation device for robot assisted fracture reduction of femoral shaft fractures: a biomechanical study.

    Science.gov (United States)

    Weber-Spickschen, T S; Oszwald, M; Westphal, R; Krettek, C; Wahl, F; Gosling, T

    2010-01-01

    Robot assisted fracture reduction of femoral shaft fractures provides precise alignment while reducing the amount of intraoperative imaging. The connection between the robot and the fracture fragment should allow conventional intramedullary nailing, be minimally invasive and provide interim fracture stability. In our study we tested three different reduction tools: a conventional External Fixator, a Reposition-Plate and a Three-Point-Device with two variations (a 40 degrees and a 90 degrees version). We measured relative movements between the tools and the bone fragments in all translation and rotation planes. The Three-Point-Device 90 degrees showed the smallest average relative displacement and was the only device able to withstand the maximum applied load of 70 Nm without failure of any bone fragment. The Three-Point-Device 90 degrees complies with all the stipulated requirements and is a suitable interface for robot assisted fracture reduction of femoral shaft fractures.

  15. Essential Connectivity Areas - CEHC, (Raster) [ds620

    Data.gov (United States)

    California Natural Resource Agency — The California Department of Transportation (Caltrans) and California Department of Fish and Game (CDFG) commissioned the California Essential Habitat Connectivity...

  16. Fluid transport in reaction induced fractures

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    fractures. This provides new information on how much reaction induced fracturing might accelerate a volume expanding process. Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., ``Reaction induced fracturing during replacement processes,'' Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., ``Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage,'' Annu. Rev. Earth Planet. Sci. 2011. 39:545 - 76. Rudge, J. F., Kelemen, P. B., and Spiegelman, M., ``A simple model of reaction induced cracking applied to serpentinization and carbonation of peridotite,'' Earth Planet. Sc. Lett. 291, Issues 1-4, 2010, pp. 215 - 227. Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., ``Controls on rock weathering rates by reaction-induced hierarchial fracturing,'' Earth Planet. Sc. Lett. 275, 2008, pp. 364 - 369. Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. ``Fracture initiation during volume increasing reactions in rocks and applications for CO2 sequestration'', Earth Planet. Sc. Lett. 389C, 2014, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. Ulven, O. I., Jamtveit, B., and Malthe-Sørenssen, A., ``Reaction-driven fracturing of porous rock'', J. Geophys. Res. Solid Earth 119, 2014, doi:10.1002/2014JB011102.

  17. Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development

    Directory of Open Access Journals (Sweden)

    Nianyin Li

    2015-09-01

    Full Text Available How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry. To solve this problem, domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume (SRV fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tight-gas carbonate reservoir, which has achieved a good stimulation effect in the pilot tests. To determine what reservoir conditions are suitable to carry out volume acid fracturing, this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas, and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate. Then, this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance, natural fracture, horizontal principal stress difference, orientation of in-situ stress and natural fracture, and gives the solution for the limitation. The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production; the incremental or stimulation response is closely related with reservoir fracturing performance, the degree of development of natural fracture, the small intersection angle between hydraulic fracture and natural fracture, the large horizontal principal stress difference is easy to form a narrow fracture zone, and it is disadvantageous to create fracture network, but the degradable fiber diversion technology may largely weaken the disadvantage. The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate

  18. Characterization of fracture networks for fluid flow analysis

    International Nuclear Information System (INIS)

    Long, J.C.S.; Billaux, D.; Hestir, K.; Majer, E.L.; Peterson, J.; Karasaki, K.; Nihei, K.; Gentier, S.; Cox, L.

    1989-06-01

    The analysis of fluid flow through fractured rocks is difficult because the only way to assign hydraulic parameters to fractures is to perform hydraulic tests. However, the interpretation of such tests, or ''inversion'' of the data, requires at least that we know the geometric pattern formed by the fractures. Combining a statistical approach with geophysical data may be extremely helpful in defining the fracture geometry. Cross-hole geophysics, either seismic or radar, can provide tomograms which are pixel maps of the velocity or attenuation anomalies in the rock. These anomalies are often due to fracture zones. Therefore, tomograms can be used to identify fracture zones and provide information about the structure within the fracture zones. This structural information can be used as the basis for simulating the degree of fracturing within the zones. Well tests can then be used to further refine the model. Because the fracture network is only partially connected, the resulting geometry of the flow paths may have fractal properties. We are studying the behavior of well tests under such geometry. Through understanding of this behavior, it may be possible to use inverse techniques to refine the a priori assignment of fractures and their conductances such that we obtain the best fit to a series of well test results simultaneously. The methodology described here is under development and currently being applied to several field sites. 4 refs., 14 figs

  19. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  20. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    Science.gov (United States)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize

  1. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  2. Mechanics of Hydraulic Fractures

    Science.gov (United States)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  3. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  4. Fire passage on geomorphic fractures in Cerrado: effect on vegetation

    OpenAIRE

    Otacílio Antunes Santana; José Marcelo Imaña Encinas; Flávio Luiz de Souza Silveira

    2017-01-01

    Geomorphic fracture is a natural geologic formation that sometimes forms a deep fissure in the rock with the establishment of soil and vegetation. The objective of this work was to analyze vegetation within geomorphic fractures under the effect of wildfire passage. The biometric variables evaluated before and after fire passage were: diameter, height, leaf area index, timber volume, grass biomass, number of trees and shrubs and of species. Results (in fractures) were compared to adjacent area...

  5. Places Connected:

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    This paper argues that development assistance contributed to the globalization of the 20th century by financing truly global networks of people. By focusing on the networks financed by development assistance bound by the national histories of Denmark and Japan, I illustrate how the people who...... experiences of place, however, when it is often the same people who experience many different places? Along with many other so-called donors in the 1950s, Denmark and Japan chose to invest in the education of own and other nationals involved in development and thereby financed personal connections between...... individuals throughout the world. Development assistance , where there are two or three links only between a Bangladeshi farmer, a street child in Sao Paolo and the President of the United States, the Queen of Denmark, or a suburban house wife in Japan, who has never left the Osaka area, but mothered a United...

  6. Site characterization and validation - validation drift fracture data, stage 4

    International Nuclear Information System (INIS)

    Bursey, G.; Gale, J.; MacLeod, R.; Straahle, A.; Tiren, S.

    1991-08-01

    This report describes the mapping procedures and the data collected during fracture mapping in the validation drift. Fracture characteristics examined include orientation, trace length, termination mode, and fracture minerals. These data have been compared and analysed together with fracture data from the D-boreholes to determine the adequacy of the borehole mapping procedures and to assess the nature and degree of orientation bias in the borehole data. The analysis of the validation drift data also includes a series of corrections to account for orientation, truncation, and censoring biases. This analysis has identified at least 4 geologically significant fracture sets in the rock mass defined by the validation drift. An analysis of the fracture orientations in both the good rock and the H-zone has defined groups of 7 clusters and 4 clusters, respectively. Subsequent analysis of the fracture patterns in five consecutive sections along the validation drift further identified heterogeneity through the rock mass, with respect to fracture orientations. These results are in stark contrast to the results form the D-borehole analysis, where a strong orientation bias resulted in a consistent pattern of measured fracture orientations through the rock. In the validation drift, fractures in the good rock also display a greater mean variance in length than those in the H-zone. These results provide strong support for a distinction being made between fractures in the good rock and the H-zone, and possibly between different areas of the good rock itself, for discrete modelling purposes. (au) (20 refs.)

  7. Ballistic fractures: indirect fracture to bone.

    Science.gov (United States)

    Dougherty, Paul J; Sherman, Don; Dau, Nathan; Bir, Cynthia

    2011-11-01

    Two mechanisms of injury, the temporary cavity and the sonic wave, have been proposed to produce indirect fractures as a projectile passes nearby in tissue. The purpose of this study is to evaluate the temporal relationship of pressure waves using strain gauge technology and high-speed video to elucidate whether the sonic wave, the temporary cavity, or both are responsible for the formation of indirect fractures. Twenty-eight fresh frozen cadaveric diaphyseal tibia (2) and femurs (26) were implanted into ordnance gelatin blocks. Shots were fired using 9- and 5.56-mm bullets traversing through the gelatin only, passing close to the edge of the bone, but not touching, to produce an indirect fracture. High-speed video of the impact event was collected at 20,000 frames/s. Acquisition of the strain data were synchronized with the video at 20,000 Hz. The exact time of fracture was determined by analyzing and comparing the strain gauge output and video. Twenty-eight shots were fired, 2 with 9-mm bullets and 26 with 5.56-mm bullets. Eight indirect fractures that occurred were of a simple (oblique or wedge) pattern. Comparison of the average distance of the projectile from the bone was 9.68 mm (range, 3-20 mm) for fractured specimens and 15.15 mm (range, 7-28 mm) for nonfractured specimens (Student's t test, p = 0.036). In this study, indirect fractures were produced after passage of the projectile. Thus, the temporary cavity, not the sonic wave, was responsible for the indirect fractures.

  8. SIZE SCALING RELATIONSHIPS IN FRACTURE NETWORKS

    International Nuclear Information System (INIS)

    Wilson, Thomas H.

    2000-01-01

    The research conducted under DOE grant DE-FG26-98FT40385 provides a detailed assessment of size scaling issues in natural fracture and active fault networks that extend over scales from several tens of kilometers to less than a tenth of a meter. This study incorporates analysis of data obtained from several sources, including: natural fracture patterns photographed in the Appalachian field area, natural fracture patterns presented by other workers in the published literature, patterns of active faulting in Japan mapping at a scale of 1:100,000, and lineament patterns interpreted from satellite-based radar imagery obtained over the Appalachian field area. The complexity of these patterns is always found to vary with scale. In general,but not always, patterns become less complex with scale. This tendency may reverse as can be inferred from the complexity of high-resolution radar images (8 meter pixel size) which are characterized by patterns that are less complex than those observed over smaller areas on the ground surface. Model studies reveal that changes in the complexity of a fracture pattern can be associated with dominant spacings between the fractures comprising the pattern or roughly to the rock areas bounded by fractures of a certain scale. While the results do not offer a magic number (the fractal dimension) to characterize fracture networks at all scales, the modeling and analysis provide results that can be interpreted directly in terms of the physical properties of the natural fracture or active fault complex. These breaks roughly define the size of fracture bounded regions at different scales. The larger more extensive sets of fractures will intersect and enclose regions of a certain size, whereas smaller less extensive sets will do the same--i.e. subdivide the rock into even smaller regions. The interpretation varies depending on the number of sets that are present, but the scale breaks in the logN/logr plots serve as a guide to interpreting the

  9. Fracture-related fluid flow in sandstone reservoirs - Insights from outcrop analogues of South-eastern Utah

    NARCIS (Netherlands)

    Ogata, K.; Senger, K.; Braathen, A.; Tveranger, J.; Petrie, E.; Evans, J.P.

    2012-01-01

    Fault- And fold-related fractures influence the fluid circulation in the subsurface, thus being of high importance for CO2 storage site assessment, especially in terms of reservoir connectivity and leakage. In this context, discrete regions of concentrated sub-parallel fracturing known as fracture

  10. Laboratory investigation of shale rock to identify fracture propagation in vertical direction to bedding

    Science.gov (United States)

    Peng, Tan; Yan, Jin; Bing, Hou; Yingcao, Zhou; Ruxin, Zhang; Zhi, Chang; Meng, Fan

    2018-06-01

    Affected by beddings and natural fractures, fracture geometry in the vertical plane is complex in shale formation, which differs from a simple fracture in homogeneous sandstone reservoirs. However, the propagation mechanism of a hydraulic fracture in the vertical plane has not been well understood. In this paper, a true tri-axial pressure machine was deployed for shale horizontal well fracturing simulation experiments of shale outcrops. The effects of multiple factors on hydraulic fracture vertical propagation were studied. The results revealed that hydraulic fracture initiation and propagation displayed four basic patterns in the vertical plane of laminated shale formation. A hydraulic fracture would cross the beddings under the high vertical stress difference between a vertical stress and horizontal minimum stress of 12 MPa, while a hydraulic fracture propagates along the beddings under a low vertical stress difference of 3 MPa. Four kinds of fracture geometry, including a single main fracture, a nonplanar fracture, a complex fracture, and a complex fracture network, were observed due to the combined effects of flow rate and viscosity. Due to the influence of binding strength (or cementing strength) on the fracture communication effects between a hydraulic fracture and the beddings, the opening region of the beddings takes the shape of an ellipse.

  11. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    Science.gov (United States)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  12. Sedimentary facies control on mechanical and fracture stratigraphy in turbidites

    NARCIS (Netherlands)

    Ogata, Kei; Storti, Fabrizio; Balsamo, Fabrizio; Tinterri, Roberto; Bedogni, Enrico; Fetter, Marcos; Gomes, Leonardo; Hatushika, Raphael

    2017-01-01

    Natural fracture networks exert a first-order control on the exploitation of resources such as aquifers, hydrocarbons, and geothermal reservoirs, and on environmental issues like underground gas storage and waste disposal. Fractures and the mechanical stratigraphy of layered sequences have been

  13. HEALING OF ARTICULAR AND PERIARTICULAR METACARPAL AND PHALANGEAL FRACTURES

    Directory of Open Access Journals (Sweden)

    Aleksandar Kruščić

    2003-12-01

    Full Text Available Background. Primary treatment of 779 closed epiphysial, diaphyseal, comminutive, oblique and periarticular fractures of metacarpals and phalanges was carried out with painless reposition and fixation with a plaster splint. In 435 cases, fracture slides occurred after one week. For correction, the ligamentotaxis metod with aluminium (Alu- splint and Softcast plaster was used. This method allows the retaining of a good position of fractured fragments after reposition by neutralization of the pathologic action of kinetic vectors on these fragments. Our goal in using this method is to stabilize the fractured fragments individually with consideration of soft tissues.Methods. In local (in the fracture or Oberst analgesia, a correct size Alu-splint is placed over the wad-protected skin on the volar or dorsal side of the hand. The Alu-splint is fixed with Urgopore proximally and distally from the fracture. Then, correction using the reduction technique over the Alu-splinting is done. Such correction is followed by X-ray control and if the fragments are in good position, the construction is fixed with plaster. One week later, X-ray control verifies the position of broken parts.Results. In the year 2000, 740 outpatients with a total of 779 (100% metacarpal and phalangeal fractures were treated. There were 569 (73% men and 210 (27% women. The incidence in men was highest in the 10–19 years age group with 143 fractures. In the 50–59 years group, the incidence was equal in men and women (69 fractures. The highest prevalence of fracture slides was in the group of proximal phalanx fractures (190 fractures or 44%. X-ray control after one week showed 435 (56% fracture slides in immobilization with plaster. This high percentage is due to a severe damage to skeletal connective tissue. 321 (41% fractures were re-repositioned with ligamentotaxis, 172 (22% fracture slides were treated using other methods (e.g. surgery. 385 (49% fractures treated with

  14. [Anatomy of fractures of the inferior scapular angle].

    Science.gov (United States)

    Bartoníček, J; Tuček, M; Malík, J

    2018-01-01

    The aim of this study is to describe the anatomy of fractures of the inferior angle and the adjacent part of the scapular body, based on 3D CT reconstructions. In a series of 375 scapular fractures, we identified a total of 20 fractures of the inferior angle of the scapular body (13 men, 7 women), with a mean patient age of 50 years (range 3373). In all fractures, 3D CT reconstructions were obtained, allowing an objective evaluation of the fracture pattern with a focus on the size and shape of the inferior angle fragment, propagation of the fracture line to the lateral and medial borders of the infraspinous part of the scapular body, fragment displacement and any additional fracture of the ipsilateral scapula and the shoulder girdle. We identified a total of 5 types of fracture involving the distal half of the infraspinous part of the scapular body. The first type, recorded in 5 cases, affected only the apex of the inferior angle, with a small part of the adjacent medial border. The second type, occurring in 4 cases, involved fractures separating the entire inferior angle. The third type, represented by 4 cases, was characterized by a fracture line starting medially close above the inferior angle and passing proximolaterally. The separated fragment had a shape of a big drop, carrying also the distal half of the lateral pillar in addition to the inferior angle. In the fourth type identified in 5 fractures, the separated fragment was formed both by the inferior angle and a variable part of the medial border. The fifth type, being by its nature a transition to the fracture of the infraspinous part of the body, was recorded in 2 cases, with the same V-shaped fragment. Fractures of the inferior angle and the adjacent part of the scapular body are groups of fractures differing from other infraspinous fractures of the scapular body. Although these fractures are highly variable in terms of shape, they have the same course of fracture line and the manner of displacement

  15. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  16. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  17. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  18. Atraumatic First Rib Fracture

    Directory of Open Access Journals (Sweden)

    Koray Aydogdu

    2014-12-01

    Full Text Available Rib fractures are usually seen after a trauma, while atraumatic spontaneous rib fractures are quite rare. A first rib fracture identified in our 17 years old female patient who had not a history of trauma except lifting a heavy weight was examined in details in terms of the potential complications and followed-up for a long time. We presented our experience on this case with atraumatic first rib fracture that has different views for the etiology in light of the literature.

  19. Fracture mechanics safety approaches

    International Nuclear Information System (INIS)

    Roos, E.; Schuler, X.; Eisele, U.

    2004-01-01

    Component integrity assessments require the knowledge of reliable fracture toughness parameters characterising the initiation of the failure process in the whole relevant temperature range. From a large number of fracture mechanics tests a statistically based procedure was derived allowing to quantify the initiation of fracture toughness as a function of temperature as a closed function as well as the temperature dependence of the cleavage instability parameters. Alternatively to the direct experimental determination one also can use a correlation between fracture toughness and notch impact energy. (orig.)

  20. Scaphoid fractures in children

    Directory of Open Access Journals (Sweden)

    Gajdobranski Đorđe

    2014-01-01

    Full Text Available Introduction. Scaphoid fractures are rare in childhood. Diagnosis is very difficult to establish because carpal bones are not fully ossified. In suspected cases comparative or delayed radiography is used, as well as computerized tomography, magnetic resonance imaging, ultrasound and bone scintigraphy. Majority of scaphoid fractures are treated conservatively with good results. In case of delayed fracture healing various types of treatment are available. Objective. To determine the mechanism of injury, clinical healing process, types and outcome of treatment of scaphoid fractures in children. Methods. We retrospectively analyzed patients with traumatic closed fracture of the scaphoid bone over a ten-year period (2002-2011. The outcome of the treatment of “acute” scaphoid fracture was evaluated using the Mayo Wrist Score. Results. There were in total 34 patients, of mean age 13.8 years, with traumatic closed fracture of the scaphoid bone, whose bone growth was not finished yet. Most common injury mechanism was fall on outstretched arm - 76% of patients. During the examined period 31 children with “acute” fracture underwent conservative treatment, with average immobilization period of 51 days. Six patients were lost to follow-up. In the remaining 25 patients, after completed rehabilitation, functional results determined by the Mayo Wrist Score were excellent. Conclusion. Conservative therapy of “acute” scaphoid fractures is an acceptable treatment option for pediatric patients with excellent functional results.

  1. Pathological fractures in children

    Science.gov (United States)

    De Mattos, C. B. R.; Binitie, O.; Dormans, J. P.

    2012-01-01

    Pathological fractures in children can occur as a result of a variety of conditions, ranging from metabolic diseases and infection to tumours. Fractures through benign and malignant bone tumours should be recognised and managed appropriately by the treating orthopaedic surgeon. The most common benign bone tumours that cause pathological fractures in children are unicameral bone cysts, aneurysmal bone cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological fractures through a primary bone malignancy are rare, these should be recognised quickly in order to achieve better outcomes. A thorough history, physical examination and review of plain radiographs are crucial to determine the cause and guide treatment. In most benign cases the fracture will heal and the lesion can be addressed at the time of the fracture, or after the fracture is healed. A step-wise and multidisciplinary approach is necessary in caring for paediatric patients with malignancies. Pathological fractures do not have to be treated by amputation; these fractures can heal and limb salvage can be performed when indicated. PMID:23610658

  2. Study of deep fracturation of granitic rock mass. Documentary study

    International Nuclear Information System (INIS)

    Bles, J.L.; Landry, J.

    1984-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground. The Mt Blanc road tunnel, the EDF's Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied because detailed structural and geological studies have been realized these last 20 years. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater

  3. Microfracture spacing distributions and the evolution of fracture patterns in sandstones

    Science.gov (United States)

    Hooker, J. N.; Laubach, S. E.; Marrett, R.

    2018-03-01

    Natural fracture patterns in sandstone were sampled using scanning electron microscope-based cathodoluminescence (SEM-CL) imaging. All fractures are opening-mode and are fully or partially sealed by quartz cement. Most sampled fractures are too small to be height-restricted by sedimentary layers. At very low strains ( 100) datasets show spacings that are best fit by log-normal size distributions, compared to exponential, power law, or normal distributions. The clustering of fractures suggests that the locations of natural factures are not determined by a random process. To investigate natural fracture localization, we reconstructed the opening history of a cluster of fractures within the Huizachal Group in northeastern Mexico, using fluid inclusions from synkinematic cements and thermal-history constraints. The largest fracture, which is the only fracture in the cluster visible to the naked eye, among 101 present, opened relatively late in the sequence. This result suggests that the growth of sets of fractures is a self-organized process, in which small, initially isolated fractures grow and progressively interact, with preferential growth of a subset of fractures developing at the expense of growth of the rest. Size-dependent sealing of fractures within sets suggests that synkinematic cementation may contribute to fracture clustering.

  4. Fracture of the styloid process associated with the mandible fracture

    Directory of Open Access Journals (Sweden)

    K N Dubey

    2013-01-01

    Full Text Available Fracture of the styloid process (SP of temporal bone is an uncommon injuries. Fracture of the SP can be associated with the facial injuries including mandible fracture. However, injury to the SP may be concealed and missed diagnosis may lead to the improper or various unnecessary treatments. A rare case of SP fracture associated with the ipsilateral mandibular fracture and also the diagnostic and management considerations of the SP fracture are discussed.

  5. Modeling of flow through fractured tuff at Fran Ridge

    International Nuclear Information System (INIS)

    Eaton, R.R.; Ho, C.K.; Glass, R.J.; Nicholl, M.J.; Arnold, B.W.

    1996-01-01

    Numerical studies have modeled an infiltration experiment at Fran Ridge, using the TOUGH2 code, to aid in the selection of computational models for waste repository performance assessment. This study investigates the capabilities of TOUGH2 to simulate transient flows through highly fractured tuff, and provides a possible means of calibrating hydrologic parameters such as effective fracture aperture and fracture-matrix connectivity. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The field experiments involved the infiltration of dyed ponded water in highly fractured tuff. The infiltration observed in the experiment was subsequently modeled using Fran Ridge fracture frequencies, obtained during post-experiment site excavation. Comparison of the TOUGH2 results obtained using the two conceptual models gives insight into their relative strengths and weaknesses

  6. Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction

    Science.gov (United States)

    Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.

    2017-12-01

    We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.

  7. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    Science.gov (United States)

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  8. Pediatric elbow fractures: a new angle on an old topic

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Kathleen H.; Anton, Christopher G. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Zingula, Shannon N. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Salisbury, Shelia R. [Cincinnati Children' s Hospital Medical Center, Biostatistics and Epidemiology, Cincinnati, OH (United States); Tamai, Junichi [Cincinnati Children' s Hospital Medical Center, Department of Pediatric Orthopedics, Cincinnati, OH (United States)

    2016-01-15

    historically described. The relatively high frequency of olecranon fractures detected on follow-up speaks to their potentially occult nature. Careful attention to these areas is warranted in children with initially normal radiographs. (orig.)

  9. Estimating the hydraulic conductivity of two-dimensional fracture networks

    Science.gov (United States)

    Leung, C. T.; Zimmerman, R. W.

    2010-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our

  10. Laboratory testing of cement grouting of fractures in welded tuff

    International Nuclear Information System (INIS)

    Sharpe, C.J.; Daemen, J.J.

    1991-03-01

    Fractures in the rock mass surrounding a repository and its shafts, access drifts, emplacement rooms and holes, and exploratory or in-situ testing holes, may provide preferential flowpaths for the flow of groundwater or air, potentially containing radionuclides. Such cracks may have to be sealed. The likelihood that extensive or at least local grouting will be required as part of repository sealing has been noted in numerous publications addressing high level waste repository closing. The objective of this work is to determine the effectiveness of fracture sealing (grouting) in welded tuff. Experimental work includes measurement of intact and fracture permeability under various normal stresses and injection pressures. Grout is injected into the fractures. The effectiveness of grouting is evaluated in terms of grout penetration and permeability reduction, compared prior to and after grouting. Analysis of the results include the effect of normal stress, injection pressure, fracture roughness, grout rheology, grout bonding, and the radial extent of grout penetration. Laboratory experiments have been performed on seventeen tuff cylinders with three types of fractures: (1) tension induced cracks, (2) natural fractures, and (3) sawcuts. Prior to grouting, the hydraulic conductivity of the intact rock and of the fractures is measured under a range of normal stresses. The surface topography of the fracture is mapped, and the results are used to determine aperture distributions across the fractures. 72 refs., 76 figs., 25 tabs

  11. One for all? : connectedness to nature, inclusion of nature, environmental identity, and implicit association with nature

    NARCIS (Netherlands)

    Brügger, A; Kaiser, F.G.; Roczen, N.

    2011-01-01

    Pleasurable experiences in nature are suspected to promote a personal connection with nature, and subsequently, nature conservation in individuals. Using an Internet-based survey employing a convenience sample of the general population (N = 1,309), we developed a connection-with-nature instrument

  12. [Trochanteric femoral fractures].

    Science.gov (United States)

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (pfractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (pfractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (pTrochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (pfractures were treated with a proximal femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1

  13. Geometry, mechanics and transmissivity of rock fractures

    International Nuclear Information System (INIS)

    Lanaro, F.

    2001-04-01

    This thesis work investigates methods and tools for characterising, testing and modelling the behaviour of rock fractures. Using a 3D-laser-scanning technique, the topography of the surfaces and their position with respect to one another are measured. From the fracture topography, fracture roughness, angularity and aperture are quantified; the major features used for characterisation. The standard deviations for the asperity heights, surface slopes and aperture are determined. These statistical parameters usually increase/decrease according to power laws of the sampling size, and sometimes reach a sill beyond which they become constant. Also the number of contact spots with a certain area decreases according to a power-law function of the area. These power-law relations reveal the self affine fractal nature of roughness and aperture. Roughness is 'persistent' while aperture varies between 'persistent' and 'anti-persistent' probably depending on the degree of match of the fracture walls. The fractal models for roughness, aperture and contact area are used to develop a constitutive model, based on contact mechanics, for describing the fracture normal and shear deformability. The experimental testing results of normal deformability are simulated well by the model whereas fracture shear deformability is not as well modelled. The model predicts well fracture dilation but is too stiff compared to rock samples. A mathematical description of the aperture pattern during shearing is also formulated. The mean value and covariance of the aperture in shearing is calculated and verifies reported observations. The aperture map of samples is inserted in a numerical program for flow calculation. The 'integral transform method' is used for solving the Reynolds' equation; it transforms the fracture transmissivity pattern into a frequency-based function. This closely resembles the power laws that describe fractals. This function can be described directly from the fractal properties of

  14. Hydrothermal fluid flow within a tectonically active rift-ridge transform junction: Tjörnes Fracture Zone, Iceland

    Science.gov (United States)

    Lupi, M.; Geiger, S.; Graham, C. M.

    2010-05-01

    We investigate the regional fluid flow dynamics in a highly faulted transform area, the Tjörnes Fracture Zone in northern Iceland which is characterized by steep geothermal gradients, hydrothermal activity, and strong seismicity. We simulate fluid flow within the Tjörnes Fracture Zone using a high-resolution model that was based on the available geological and geophysical data and has the aim to represent the complex geological structures and the thermodynamical processes that drive the regional fluid flow in a physically realistic way. Our results show that convective heat flow and mixing of cold and saline seawater with deep hydrothermal fluids controls the large-scale fluid flow. The distribution of faults has a strong influence on the local hydrodynamics by focusing flow around clusters of faults. This explains the nature of isolated upflow zones of hot hydrothermal fluids which are observed in the Tjörnes Fracture Zone. An important emergent characteristic of the regional fluid flow in the Tjörnes Fracture Zone are two separate flow systems: one in the sedimentary basins, comprising more vigorous convection, and one in the crystalline basement, which is dominated by conduction. These two flow systems yield fundamental insight into the connection between regional hydrothermal fluid flow and seismicity because they form the basis of a toggle switch mechanism that is thought to have caused the hydrogeochemical anomalies recorded at Húsavik before and after the 5.8 M earthquake in September 2002.

  15. Hand fracture - aftercare

    Science.gov (United States)

    ... an orthopedic surgeon if: Your metacarpal bones are broken and shifted out of place Your fingers do not line up correctly Your fracture nearly went through the skin Your fracture went through the skin Your pain is severe or becoming worse Self-care at Home You may have pain and swelling for 1 ...

  16. TIBIAL SHAFT FRACTURES.

    Science.gov (United States)

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  17. Physeal Fractures in Foals.

    Science.gov (United States)

    Levine, David G; Aitken, Maia R

    2017-08-01

    Physeal fractures are common musculoskeletal injuries in foals and should be included as a differential diagnosis for the lame or nonweightbearing foal. Careful evaluation of the patient, including precise radiographic assessment, is paramount in determining the options for treatment. Prognosis mostly depends on the patient's age, weight, and fracture location and configuration. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Analysis of PITFL injuries in rotationally unstable ankle fractures.

    Science.gov (United States)

    Warner, Stephen J; Garner, Matthew R; Schottel, Patrick C; Hinds, Richard M; Loftus, Michael L; Lorich, Dean G

    2015-04-01

    Reduction and stabilization of the syndesmosis in unstable ankle fractures is important for ankle mortise congruity and restoration of normal tibiotalar contact forces. Of the syndesmotic ligaments, the posterior inferior tibiofibular ligament (PITFL) provides the most strength for maintaining syndesmotic stability, and previous work has demonstrated the significance of restoring PITFL function when it remains attached to a posterior malleolus fracture fragment. However, little is known regarding the nature of a PITFL injury in the absence of a posterior malleolus fracture. The goal of this study was to describe the PITFL injury pattern based on magnetic resonance imaging (MRI) and intraoperative observation. A prospective database of all operatively treated ankle fractures by a single surgeon was used to identify all supination-external rotation (SER) types III and IV ankle fracture patients with complete preoperative orthogonal ankle radiographs and MRI. All patients with a posterior malleolus fracture were excluded. Using a combination of preoperative imaging and intraoperative findings, we analyzed the nature of injuries to the PITFL. In total, 185 SER III and IV operatively treated ankle fractures with complete imaging were initially identified. Analysis of the preoperative imaging and operative reports revealed 34% (63/185) had a posterior malleolus fracture and were excluded. From the remaining 122 ankle fractures, the PITFL was delaminated from the posterior malleolus in 97% (119/122) of cases. A smaller proportion (3%; 3/122) had an intrasubstance PITFL rupture. Accurate and stable syndesmotic reduction is a significant component of restoring the ankle mortise after unstable ankle fractures. In our large cohort of rotationally unstable ankle fractures without posterior malleolus fractures, we found that most PITFL injuries occur as a delamination off the posterior malleolus. This predictable PITFL injury pattern may be used to guide new methods for

  19. Comparison of implant component fractures in external and internal type: A 12-year retrospective study.

    Science.gov (United States)

    Yi, Yuseung; Koak, Jai-Young; Kim, Seong-Kyun; Lee, Shin-Jae; Heo, Seong-Joo

    2018-04-01

    The aim of this study was to compare the fracture of implant component behavior of external and internal type of implants to suggest directions for successful implant treatment. Data were collected from the clinical records of all patients who received WARANTEC implants at Seoul National University Dental Hospital from February 2002 to January 2014 for 12 years. Total number of implants was 1,289 and an average of 3.2 implants was installed per patient. Information about abutment connection type, implant locations, platform sizes was collected with presence of implant component fractures and their managements. SPSS statistics software (version 24.0, IBM) was used for the statistical analysis. Overall fracture was significantly more frequent in internal type. The most frequently fractured component was abutment in internal type implants, and screw fracture occurred most frequently in external type. Analyzing by fractured components, screw fracture was the most frequent in the maxillary anterior region and the most abutment fracture occurred in the maxillary posterior region and screw fractures occurred more frequently in NP (narrow platform) and abutment fractures occurred more frequently in RP (regular platform). In external type, screw fracture occurred most frequently, especially in the maxillary anterior region, and in internal type, abutment fracture occurred frequently in the posterior region. placement of an external type implant rather than an internal type is recommended for the posterior region where abutment fractures frequently occur.

  20. Surgical menopause and nonvertebral fracture risk among older US women.

    Science.gov (United States)

    Vesco, Kimberly K; Marshall, Lynn M; Nelson, Heidi D; Humphrey, Linda; Rizzo, Joanne; Pedula, Kathryn L; Cauley, Jane A; Ensrud, Kristine E; Hochberg, Marc C; Antoniucci, Diana; Hillier, Teresa A

    2012-05-01

    The aim of this study was to determine whether older postmenopausal women with a history of bilateral oophorectomy before natural menopause (surgical menopause) have a higher risk of nonvertebral postmenopausal fracture than women with natural menopause. We used 21 years of prospectively collected incident fracture data from the ongoing Study of Osteoporotic Fractures, a cohort study of community-dwelling women without previous bilateral hip fracture who were 65 years or older at enrollment, to determine the risk of hip, wrist, and any nonvertebral fracture. χ(2) and t tests were used to compare the two groups on important characteristics. Multivariable Cox proportional hazards regression models stratified by baseline oral estrogen use status were used to estimate the risk of fracture. Baseline characteristics differed significantly among the 6,616 women within the Study of Osteoporotic Fractures who underwent either surgical (1,157) or natural (5,459) menopause, including mean age at menopause (44.3 ± 7.4 vs 48.9 ± 4.9 y, P menopause, even among women who had never used oral estrogen (hip fracture: hazard ratio [HR], 0.87; 95% CI, 0.63-1.21; wrist fracture: HR, 1.10; 95% CI, 0.78-1.57; any nonvertebral fracture: HR, 1.11; 95% CI, 0.93-1.32). These data provide some reassurance that the long-term risk of nonvertebral fracture is not substantially increased for postmenopausal women who experienced premenopausal bilateral oophorectomy, compared with postmenopausal women with intact ovaries, even in the absence of postmenopausal estrogen therapy.

  1. Treatment of midfacial fractures

    International Nuclear Information System (INIS)

    Schubert, J.

    2007-01-01

    Fractures of the midface constitute half of all traumas involving facial bones. Computed tomography is very useful in primary diagnosis. Isolated fractures of the nasal bone and lateral midfacial structures may be diagnosed sufficiently by conventional X-rays. An exact description of the fracture lines along the midfacial buttresses is essential for treatment planning. For good aesthetics and function these have to be reconstructed accurately, which can be checked with X-rays. The treatment of midfacial fractures has been revolutionized over the last two decades. A stable three-dimensional reconstruction of the facial shape is now possible and the duration of treatment has shortened remarkably. The frequently occurring isolated fractures in the lateral part of the midface may be treated easily and effectively by semisurgical methods such as the Gillies procedure or hook-repositioning. (orig.)

  2. Dating fractures in infants

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, K.E., E-mail: kath.halliday@nuh.nhs.uk [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Broderick, N J; Somers, J M [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Hawkes, R [Department of Radiology, Paul O' Gorman Building, Bristol (United Kingdom)

    2011-11-15

    Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.

  3. Dating fractures in infants

    International Nuclear Information System (INIS)

    Halliday, K.E.; Broderick, N.J.; Somers, J.M.; Hawkes, R.

    2011-01-01

    Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.

  4. Tibial Plateau Fractures

    DEFF Research Database (Denmark)

    Elsøe, Rasmus

    This PhD thesis reported an incidence of tibial plateau fractures of 10.3/100,000/year in a complete Danish regional population. The results reported that patients treated for a lateral tibial plateau fracture with bone tamp reduction and percutaneous screw fixation achieved a satisfactory level...... with only the subgroup Sport significantly below the age matched reference population. The thesis reports a level of health related quality of life (Eq5d) and disability (KOOS) significantly below established reference populations for patients with bicondylar tibial plateau fracture treated with a ring...... fixator, both during treatment and at 19 months following injury. In general, the thesis demonstrates that the treatment of tibial plateau fractures are challenging and that some disabilities following these fractures must be expected. Moreover, the need for further research in the area, both with regard...

  5. Fracturing formations in wells

    Energy Technology Data Exchange (ETDEWEB)

    Daroza, R A

    1964-05-15

    This well stimulation method comprises introducing through the well bore a low-penetrating, dilatant fluid, and subjecting the fluid to sufficient pressure to produce fractures in the formation. The fluid is permitted to remain in contact with the formation so as to become diluted by the formation fluids, and thereby lose its properties of dilatancy. Also, a penetrating fluid, containing a propping agent suspended therein, in introduced into contact with the fractures at a pressure substantially reduced with respect to that pressure which would have been required, prior to the fracturing operation performed using the low-penetrating dilatant fluid. The propping agent is deposited within the fractures, and thereafter, fluid production is resumed from the fractured formation. (2 claims)

  6. Immigration, social cohesion, and naturalization

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    social trust do not connect with issues of naturalization at all. Other conceptions of social cohesion are either politically controversial, problematic as part of the justification of stricter naturalization requirements, or in fact justify less demanding naturalization requirements....

  7. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing

    Science.gov (United States)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi

    2017-04-01

    Multiple lines of evidence indicate that, during a hydraulic fracture stimulation, the permeability of the unfractured matrix far from the main, induced tensile fracture increases by one to two orders of magnitude. This permeability enhancement is associated with pervasive shear failure in a large region surrounding the main induced fracture. We have performed low-pressure gas sorption, mercury intrusion, and nuclear magnetic resonance measurements along with high-resolution scanning electron microscope imaging on several preserved and unpreserved shale samples from North American basins before and after inducing failure in confined compressive strength tests. We have observed that the pore structure in intact samples exhibits multiscale behavior, with sub-micron-scale pores in organic matter connected in isolated, micron-scale clusters which themselves are connected to each other through a network of microcracks. The organic-hosted pore networks are poorly connected due to a significant number of dead-end pores within the organic matter. Following shear failure, we often observe an increase in pore volume in the sub-micron range, which appears to be related to the formation of microcracks that propagate along grain boundaries and other planes of mechanical strength contrast. This is consistent with other experimental and field evidence. In some cases these microcracks cross or terminate in organic matter, intersecting the organic-hosted pores. The induced microcrack networks typically have low connectivity and do not appreciably increase the connectivity of the overall pore network. However, in other cases the shear deformation results in an overall pore volume decrease; samples which exhibit this behavior tend to have more clay minerals. Our interpretation of these phenomena is as follows. As organic matter is converted to hydrocarbons, organic-hosted pores develop, and the hydrocarbons contained in these pores are overpressured. The disconnected nature of these

  8. On the theory of transport in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1982-10-01

    This report aims at developing a systematic theory of the role of fractures in the transport of radionuclides by groundwater, through fractured rocks from a deep-lying nuclear waste repository to the biosphere. Fractures are grouped into four 'irreducible' types: joints, nodes, shear zones and fracture zones, and the physical characteristics which influence radionuclide transport are expressed in mathematical terms. The question of radioactivity retention is then studied for various fracture types, using idealized geometries to model natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein. (author)

  9. On the theory of transport of fluids in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1983-01-01

    A systematic theory is developed of the role of fractures in the transport of radionuclides by groundwater through fractured rocks from the nuclear waste repository to be built in deep geologic formations to the biosphere. Fractures are grouped into four ''irreducible'' types: joints, nodes, shear zones, and fracture zones, and their geometrical and sorption characteristics, having bearings on radionuclide transport, are expressed in mathematical terms. The question of radioactivity retention in various fracture types is then carefully studied using idealized geometries to mimic natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein

  10. Fracture resistance of welded panel specimen with perpendicular crack in tensile

    International Nuclear Information System (INIS)

    Gochev, Todor; Adziev, Todor

    1998-01-01

    Defects caused by natural crack in welded joints of high-strength low-alloy (HSLA) steels are very often. Perpendicular crack in welded joints and its heat treatment after the welding has also an influence on the fracture resistance. The fracture resistance of welded joints by crack in tense panel specimens was investigated by crack mouse opening displesment (CMOD), the parameter of fracture mechanic. Crack propagation was analysed by using a metallographic analysis of fractured specimens after the test. (Author)

  11. Mechanical property evaluation of natural fiber coir composite

    International Nuclear Information System (INIS)

    Harish, S.; Michael, D. Peter; Bensely, A.; Lal, D. Mohan; Rajadurai, A.

    2009-01-01

    The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber-reinforced plastics. Although glass and other synthetic fiber-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of coir, a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, coir composites are developed and their mechanical properties are evaluated. Scanning electron micrographs obtained from fractured surfaces were used for a qualitative evaluation of the interfacial properties of coir/epoxy and compared with glass fiber/epoxy. These results indicate that coir can be used as a potential reinforcing material for making low load bearing thermoplastic composites

  12. Computed tomograms of blowout fracture

    International Nuclear Information System (INIS)

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo.

    1985-01-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author)

  13. Computed tomograms of blowout fracture

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo

    1985-02-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author).

  14. Fracture healing using degradable magnesium fixation plates and screws.

    Science.gov (United States)

    Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Noorani, Sabrina; Costello, Bernard J; Sfeir, Charles

    2015-02-01

    Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery. Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry. Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation. Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Discrete fracture modelling of the Finnsjoen rock mass: Phase 2

    International Nuclear Information System (INIS)

    Geier, J.E.; Axelsson, C.L.; Haessler, L.; Benabderrahmane, A.

    1992-04-01

    A discrete fracture network (DFN) model of the Finnsjoen site was derived from field data, and used to predict block-scale flow and transport properties. The DFN model was based on a compound Poisson process, with stochastic fracture zones, and individual fracture concentrated around the fracture zones. This formulation was used to represent the multitude of fracture zones at the site which could be observed on lineament maps and in boreholes, but were not the focus of detailed characterization efforts. Due to a shortage of data for fracture geometry at depth, distributions of fracture orientation and size were assumed to be uniform throughout the site. Transmissivity within individual fracture planes was assumed to vary according to a fractal model. Constant-head packer tests were simulated with the model, and the observed transient responses were compared with actual tests in terms of distributions of interpreted transmissivity and flow dimension, to partially validate the model. Both simulated and actual tests showed a range of flow dimension from sublinear to spherical, indicating local variations in the connectivity of the fracture population. A methodology was developed for estimation of an effective stochastic continuum from the DFN model, but this was only partly demonstrated. Directional conductivities for 40 m block were estimated using the DFN model. These show extremely poor correlation with results of multiple packer tests in the same blocks, indicating possible limitation of small-scale packer tests for predicting block-scale properties. Estimates are given of effective flow porosity and flow wetted surface, based on the block-scale flow fields calculated by the DFN model, and probabilistic models for the relationships among local fracture transmissivity, void space, and specific surface. The database for constructing these models is extremely limited. A review is given of the existing database for single fracture hydrologic properties. (127 refs

  16. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    OpenAIRE

    Sim, Bo Kyun; Kim, Bongju; Kim, Min Jeong; Jeong, Guk Hyun; Ju, Kyung Won; Shin, Yoo Jin; Kim, Man Yong; Lee, Jong-Ho

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access ...

  17. FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns

    Science.gov (United States)

    Healy, David; Rizzo, Roberto; Farrell, Natalie; Watkins, Hannah; Cornwell, David; Gomez-Rivas, Enrique; Timms, Nick

    2017-04-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying crack and fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The methods presented are inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. New features in this release include multi-scale analyses based on a wavelet method to look for scale transitions, support for multi-colour traces in the input file processed as separate fracture sets, and combining fracture traces

  18. Radiological diagnosis of fractures

    International Nuclear Information System (INIS)

    Finlay, D.B.L.; Allen, M.J.

    1984-01-01

    This book is about radiology of fractures. While it contains sections of clinical features it is not intended that readers should rely entirely upon these for the diagnosis and management of the injured patient. As in the diagnosis and treatment of all medical problems, fracture management must be carried out in a logical step-by-step fashion - namely, history, examination, investigation, differential diagnosis, diagnosis and then treatment. Each section deals with a specific anatomical area and begins with line drawings of the normal radiographs demonstrating the anatomy. Accessory views that may be requested, and the indications for these, are included. Any radiological pitfalls for the area in general are then described. The fractures in adults are then examined in turn, their radiological features described, and any pitfalls in their diagnosis discussed. A brief note of important clinical findings is included. A brief mention is made of pediatric fractures which are of significance and their differences to the adult pattern indicated. Although fractures can be classified into types with different characteristics, in life every fracture is individual. Fractures by and large follow common patterns, but many have variations

  19. Spontaneous rib fractures.

    Science.gov (United States)

    Katrancioglu, Ozgur; Akkas, Yucel; Arslan, Sulhattin; Sahin, Ekber

    2015-07-01

    Other than trauma, rib fracture can occur spontaneously due to a severe cough or sneeze. In this study, patients with spontaneous rib fractures were analyzed according to age, sex, underlying pathology, treatment, and complications. Twelve patients who presented between February 2009 and February 2011 with spontaneous rib fracture were reviewed retrospectively. The patients' data were evaluated according to anamnesis, physical examination, and chest radiographs. The ages of the patients ranged from 34 to 77 years (mean 55.91 ± 12.20 years), and 7 (58.4%) were male. All patients had severe cough and chest pain. The fractures were most frequently between 4th and 9th ribs; multiple rib fractures were detected in 5 (41.7%) patients. Eight (66.7%) patients had chronic obstructive pulmonary disease, 2 (16.7%) had bronchial asthma, and 2 (16.7%) had osteoporosis. Bone densitometry revealed a high risk of bone fracture in all patients. Patients with chronic obstructive pulmonary disease or bronchial asthma had been treated with high-dose steroids for over a year. Spontaneous rib fracture due to severe cough may occur in patients with osteoporosis, chronic obstructive pulmonary disease, or bronchial asthma, receiving long-term steroid therapy. If these patients have severe chest pain, chest radiography should be performed to check for bone lesions. © The Author(s) 2015.

  20. Why ductile fracture mechanics

    International Nuclear Information System (INIS)

    Ritchie, R.O.

    1983-01-01

    Until recently, the engineering application of fracture mechanics has been specific to a description of macroscopic fracture behavior in components and structural parts which remain nominally elastic under loading. While this approach, termed linear elastic fracture mechanics, has been found to be invaluable for the continuum analysis of crack growth in brittle and high strength materials, it is clearly inappropriate for characterizing failure in lower strength ductile alloys where extensive inelastic deformation precedes and accompanies crack initiation and subsequent propagation. Accordingly, much effort has been devoted in recent years toward the development of nonlinear or ductile fracture mechanics methodology to characterize fracture behavior under elastic/plastic conditions; an effort which has been principally motivated by problems in nuclear industry. In this paper, the concepts of ductile (elastic/plastic) fracture mechanics are introduced and applied to the problem of both stationary and nonstationary cracks. Specifically, the limitations inherent in this approach are defined, together with a description of the microstructural considerations and applications relevant to the failure of ductile materials by fracture, fatigue, and creep

  1. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  2. Chance Fracture Secondary to a Healed Kyphotic Compression Osteoporotic Fracture

    Directory of Open Access Journals (Sweden)

    Teh KK

    2009-11-01

    Full Text Available Chance fracture is an unstable vertebral fracture, which usually results from a high velocity injury. An elderly lady with a previously healed osteoporotic fracture of the T12 and L1 vertebra which resulted in a severe kyphotic deformity subsequently sustained a Chance fracture of the adjacent L2 vertebrae after a minor fall. The previously fracture left her with a deformity which resulted in significant sagittal imbalance therefore predisposing her to this fracture. This case highlights the importance of aggressive treatment of osteoporotic fractures in order to prevent significant sagittal imbalance from resultant (i.e. kyphotic deformity.

  3. Aftershocks and triggering processes in rock fracture

    Science.gov (United States)

    Davidsen, J.; Kwiatek, G.; Goebel, T.; Stanchits, S. A.; Dresen, G.

    2017-12-01

    One of the hallmarks of our understanding of seismicity in nature is the importance of triggering processes, which makes the forecasting of seismic activity feasible. These triggering processes by which one earthquake induces (dynamic or static) stress changes leading to potentially multiple other earthquakes are at the core relaxation processes. A specic example of triggering are aftershocks following a large earthquake, which have been observed to follow certain empirical relationships such as the Omori-Utsu relation. Such an empirical relation should arise from the underlying microscopic dynamics of the involved physical processes but the exact connection remains to be established. Simple explanations have been proposed but their general applicability is unclear. Many explanations involve the picture of an earthquake as a purely frictional sliding event. Here, we present experimental evidence that these empirical relationships are not limited to frictional processes but also arise in fracture zone formation and are mostly related to compaction-type events. Our analysis is based on tri-axial compression experiments under constant displacement rate on sandstone and granite samples using spatially located acoustic emission events and their focal mechanisms. More importantly, we show that event-event triggering plays an important role in the presence of large-scale or macrocopic imperfections while such triggering is basically absent if no signicant imperfections are present. We also show that spatial localization and an increase in activity rates close to failure do not necessarily imply triggering behavior associated with aftershocks. Only if a macroscopic crack is formed and its propagation remains subcritical do we observe significant triggering.

  4. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    In the present paper we consider the allocation of cost in connection networks. Agents have connection demands in form of pairs of locations they want to be connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection demands...

  5. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  6. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  7. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  8. Structural-Diagenetic Controls on Fracture Opening in Tight Gas Sandstone Reservoirs, Alberta Foothills

    Science.gov (United States)

    Ukar, Estibalitz; Eichhubl, Peter; Fall, Andras; Hooker, John

    2013-04-01

    In tight gas reservoirs, understanding the characteristics, orientation and distribution of natural open fractures, and how these relate to the structural and stratigraphic setting are important for exploration and production. Outcrops provide the opportunity to sample fracture characteristics that would otherwise be unknown due to the limitations of sampling by cores and well logs. However, fractures in exhumed outcrops may not be representative of fractures in the reservoir because of differences in burial and exhumation history. Appropriate outcrop analogs of producing reservoirs with comparable geologic history, structural setting, fracture networks, and diagenetic attributes are desirable but rare. The Jurassic to Lower Cretaceous Nikanassin Formation from the Alberta Foothills produces gas at commercial rates where it contains a network of open fractures. Fractures from outcrops have the same diagenetic attributes as those observed in cores fractures relative to fold cores, hinges and limbs, 2) compare the distribution and attributes of fractures in outcrop vs. core samples, 3) estimate the timing of fracture formation relative to the evolution of the fold-and-thrust belt, and 4) estimate the degradation of fracture porosity due to postkinematic cementation. Cathodoluminescence images of cemented fractures in both outcrop and core samples reveal several generations of quartz and ankerite cement that is synkinematic and postkinematic relative to fracture opening. Crack-seal textures in synkinematic quartz are ubiquitous, and well-developed cement bridges abundant. Fracture porosity may be preserved in fractures wider than ~100 microns. 1-D scanlines in outcrop and core samples indicate fractures are most abundant within small parasitic folds within larger, tight, mesoscopic folds. Fracture intensity is lower away from parasitic folds; intensity progressively decreases from the faulted cores of mesoscopic folds to their forelimbs, with lowest intensities within

  9. Experimental assessment of the sealing effectiveness of rock fracture grouting

    International Nuclear Information System (INIS)

    Schaffer, A.; Daemen, J.J.K.

    1987-03-01

    The objective of this investigation is to determine the effectiveness of cement grouts as sealants of fractures in rock. Laboratory experiments have been conducted on seven 15-cm granite cubes containing saw cuts, three 23-cm diameter andesite cores containing induced tension cracks, and one 15-cm diameter marble core containing a natural fracture. Prior to grouting, the hydraulic conductivity of the fractures is determined under a range of normal stresses, applied in loading and unloading cycles, from 0 to 14 MPa (2000 psi). Grout is injected through an axial borehole, at a pressure of 1.2 to 8.3 MPa (180 to 1200 psi), pressure selected to provide a likely groutable fracture aperture, while the fracture is stressed at a constant normal stress. The fracture permeability is measured after grouting. Flow tests on the ungrouted samples confirm the inverse relation between normal stress and fracture permeability. The equivalent aperture determined by these tests is a reliable indicator of groutability. Postgrouting permeability measurements as performed here, and frequently in practice, can be misleading, since incomplete grouting of fractures can result in major apparent reductions in permeability. The apparent permeability reduction is caused by grouting of a small area of a highly preferential flowpath directly adjacent to the hole used for grouting and for permeability testing. Experimental results confirm claims in the literature that ordinary portland cement inadequately penetrates fine fractures

  10. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    Science.gov (United States)

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

  11. DISSECTING HABITAT CONNECTIVITY

    Science.gov (United States)

    abstractConnectivity is increasingly recognized as an important element of a successful reserve design. Connectivity matters in reserve design to the extent that it promotes or hinders the viability of target populations. While conceptually straightforward, connectivity i...

  12. Mixed Connective Tissue Disease

    Science.gov (United States)

    Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...

  13. Undifferentiated Connective Tissue Disease

    Science.gov (United States)

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... by Barbara Goldstein, MD (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  14. Vertebral Compression Fractures

    Science.gov (United States)

    ... and monitored to avoid putting pressure on the ribs that can cause new fractures. Surgical Procedures • When there is severe incapacitating pain • When healing is delayed or when bone fragments ...

  15. Paediatric talus fracture.

    LENUS (Irish Health Repository)

    Byrne, Ann-Maria

    2012-01-01

    Paediatric talus fractures are rare injuries resulting from axial loading of the talus against the anterior tibia with the foot in dorsiflexion. Skeletally immature bone is less brittle, with higher elastic resistance than adult bone, thus the paediatric talus can sustain higher forces before fractures occur. However, displaced paediatric talus fractures and those associated with high-energy trauma have been associated with complications including avascular necrosis, arthrosis, delayed union, neurapraxia and the need for revision surgery. The authors present the rare case of a talar neck fracture in a skeletally immature young girl, initially missed on radiological review. However, clinical suspicion on the part of the emergency physician, repeat examination and further radiographic imaging revealed this rare paediatric injury.

  16. Elevated temperature fracture mechanics

    International Nuclear Information System (INIS)

    Tomkins, B.

    1979-01-01

    The application of fracture mechanics concepts to cracks at elevated temperatures is examined. Particular consideration is given to the characterisation of crack tip stress-strain fields and parameters controlling crack extension under static and cyclic loads. (author)

  17. Stress fractures in athletes

    International Nuclear Information System (INIS)

    Kirschberger, R.; Henning, A.; Graff, K.H.

    1984-01-01

    The early exclusion of the presence of a stress fracture may be decisive for the success of an athlete. Scintigraphy with a bone-seeking radiopharmaceutical is suitable for the early detection of stress lesions. Of 30 athletes, fractures were demonstrated in 17 whereas in 6 they were excluded. We found most fractures in the tarsal bones such as os naviculare pedis, ossa cuneiformia and talus. The type of sport engaged in appears to be an important factor in determining the location of the fracture. Scintiphotos were taken in several views using region of interest techniques and two phase-scintigraphy. This method is considered to be useful for localization and follow-up of skeletal stress lesions as well as for differential diagnosis. (orig.) [de

  18. Stress fractures in athletes

    Energy Technology Data Exchange (ETDEWEB)

    Kirschberger, R; Henning, A; Graff, K H

    1984-12-01

    The early exclusion of the presence of a stress fracture may be decisive for the success of an athlete. Scintigraphy with a bone-seeking radiopharmaceutical is suitable for the early detection of stress lesions. Of 30 athletes, fractures were demonstrated in 17 whereas in 6 they were excluded. We found most fractures in the tarsal bones such as os naviculare pedis, ossa cuneiformia and talus. The type of sport engaged in appears to be an important factor in determining the location of the fracture. Scintiphotos were taken in several views using region of interest techniques and two phase-scintigraphy. This method is considered to be useful for localization and follow-up of skeletal stress lesions as well as for differential diagnosis.

  19. New Ways in Teaching Connected Speech. New Ways Series

    Science.gov (United States)

    Brown, James Dean, Ed.

    2012-01-01

    Connected speech is based on a set of rules used to modify pronunciations so that words connect and flow more smoothly in natural speech (hafta versus have to). Native speakers of English tend to feel that connected speech is friendlier, more natural, more sympathetic, and more personal. Is there any reason why learners of English would prefer to…

  20. Hydraulic fracturing in shales: the spark that created an oil and gas boom

    Science.gov (United States)

    Olson, J. E.

    2017-12-01

    In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better

  1. Vapor Transport Through Fractures and Other High-Permeability Paths: Its Role in the Drift Scale Test at Yucca Mountain, Nevada

    Science.gov (United States)

    Mukhopadhyay, S.; Tsang, Y. W.

    2001-12-01

    Heating unsaturated fractured tuff sets off a series of complicated thermal-hydrological (TH) processes, which result in large-scale redistribution of moisture in the host rock. Moisture redistribution arises from boiling of water near heat sources, transport of vapor away from those heat sources, condensation of that vapor in cooler rock, and subsequent gravity drainage of condensate through fractures. Vapor transport through high-permeability paths, which include both the fractures in the rock and other conduits, contributes to the evolution of these TH processes in two ways. First, the highly permeable natural fractures provide easy passage for vapor away from the heat sources. Second, these fractures and other highly permeable conduits allow vapor (and the associated energy) to escape the rock through open boundaries of the test domain. The overall impact of vapor transport on the evolution of the TH processes can be more easily understood in the context of the Drift Scale Test (DST), the largest ever in situ heater test in unsaturated fractured tuff. The DST, in which a large volume of rock has been heated for four years now, is located in the middle nonlithophysal (Tptpmn) stratigraphic unit of Yucca Mountain, Nevada. The fractured tuff in Tptpmn contains many well-connected fractures. In the DST, heating is provided by nine cannister heaters placed in a five-meter-diameter Heated Drift (HD) and fifty wing heaters installed orthogonal to the axis of the HD. The test has many instrumentation boreholes, some of which are not sealed by packers or grout and may provide passage for vapor and energy. Of these conduits, the boreholes housing the wing heaters are most important for vapor transport because of their proximity to heat sources. While part of the vapor generated by heating moves away from the heat sources through the fractures and condenses elsewhere in the rock, the rest of the vapor, under gas-pressure difference, enters the HD by way of the high

  2. Osteoporotic fractures in older adults

    OpenAIRE

    Colón-Emeric, Cathleen S.; Saag, Kenneth G.

    2006-01-01

    Osteoporotic fractures are emerging as a major public health problem in the aging population. Fractures result in increased morbidity, mortality and h