WorldWideScience

Sample records for natural fibers biopolymers

  1. Natural fibers

    Science.gov (United States)

    Craig M. Clemons; Daniel F. Caulfield

    2005-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...

  2. Quercetin as natural stabilizing agent for bio-polymer

    Energy Technology Data Exchange (ETDEWEB)

    Morici, Elisabetta [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, 90128 Palermo (Italy); Arrigo, Rossella; Dintcheva, Nadka Tzankova [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, 90128 Palermo (Italy)

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  3. Quercetin as natural stabilizing agent for bio-polymer

    Science.gov (United States)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  4. Electrospinning of oriented and nonoriented ultrafine fibers of biopolymers

    Science.gov (United States)

    Vu, David

    2005-07-01

    Chitosan has long been known as a biocompatible and biodegradable material suitable for tissue engineering applications. Unfortunately, conventional chitosan solutions cannot be used for electrospinning due to their high conductivity, viscosity and surface tension. We have developed a method to produce clear chitosan solutions with conductivities, surface tension and viscosities that facilitate their processing into micron and submicron fibers via electrospinning. Acetic acid, carbon dioxide and organic solvents are key ingredients in preparing the chitosan solutions. Oriented and non oriented chitosan fibers were produced with the ultimate goal of designing a suitable tissue engineering scaffold. Circularly oriented, continuous, and aligned nanofibers were produced via this technique in the form of a thin membrane or fibrous "mat". Chitosan fiber diameters ranged from 5 micrometers down to 100 nanometers. The structure and mechanical properties of oriented and randomly aligned chitosan fiber deposits could potentially be exploited for cartilage tissue engineering. Ultrafine fibers of starch acetate (SA) also were prepared by the electrospinning process. In this study, solvent mixtures based on DMF, DMSO, pyrindine, acetic acid, acetone, THF, DMC, chloroform were used. A two-solvent formulation was used to study the effect of viscosity, surface tension, and conductivity to the fiber diameter. Also, water and ethanol were used to decrease the boiling point of the solvent, and to make bundled fibers. Several techniques such as scanning electron microscopy, conductmetry, viscometry, and tensiometry were used in this study. The results showed that the combined effects of viscosity, surface tension, and conductivity are of great importance in controlling the diameter of the fibers. We were able to produce SA fibers that was less than 40 nm in diameter. The dependence of fiber diameter on flow-rate, electric field and solvents also was investigated. A rotating disk and a

  5. Fiber plucking: large emergent contractility in stiff biopolymer networks

    Science.gov (United States)

    Ronceray, Pierre; Broedersz, Chase; Lenz, Martin

    The mechanical properties of the cell depend crucially on the tension of its cytoskeleton. Contractile stresses in this fiber network originate from the forces exerted by active motor proteins. Importantly, experimentally observed cell-scale stresses are much larger than would be expected from linear elastic transmission of the molecular forces. We have recently proposed a mechanism for this nonlinear stress amplification, involving extended filament buckling in the network. We propose here an alternate mechanism: when active forces are exerted transversely on a filament, they induce a nonlinear tension in the plucked fiber. The resulting contractile response in the far-field can overwhelm dramatically the linear stress prediction. Importantly, such a plucking force amplification relies on the surrounding network to be stiff and only moderately stressed. These conditions compete with those required to observe amplification due to fiber buckling. Fiber networks thus provide several distinct pathways for living systems to amplify their molecular forces. Their relative importance in biological relevant situations could be assessed using experimentally testable scaling laws.

  6. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    Directory of Open Access Journals (Sweden)

    Udeni Gunathilake T.M. Sampath

    2016-12-01

    Full Text Available Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen, synthetic biopolymers (poly(lactic acid, poly(lactic-co-glycolic acid and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  7. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    International Nuclear Information System (INIS)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu; Tjiu, Weng Weei; Liu Tianxi

    2012-01-01

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  8. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Tjiu, Weng Weei [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Liu Tianxi, E-mail: txliu@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2012-06-15

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  9. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine.

    Science.gov (United States)

    Stoppel, Whitney L; Ghezzi, Chiara E; McNamara, Stephanie L; Black, Lauren D; Kaplan, David L

    2015-03-01

    Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.

  10. Natural Fiber Composites: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-03-07

    The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

  11. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.

    Science.gov (United States)

    Sheikhi, Amir; Yang, Han; Alam, Md Nur; van de Ven, Theo G M

    2016-07-20

    Nanoparticles, as one of the key materials in nanotechnology and nanomedicine, have gained significant importance during the past decade. While metal-based nanoparticles are associated with synthetic and environmental hassles, cellulose introduces a green, sustainable alternative for nanoparticle synthesis. Here, we present the chemical synthesis and separation procedures to produce new classes of hairy nanoparticles (bearing both amorphous and crystalline regions) and biopolymers based on wood fibers. Through periodate oxidation of soft wood pulp, the glucose ring of cellulose is opened at the C2-C3 bond to form 2,3-dialdehyde groups. Further heating of the partially oxidized fibers (e.g., T = 80 °C) results in three products, namely fibrous oxidized cellulose, sterically stabilized nanocrystalline cellulose (SNCC), and dissolved dialdehyde modified cellulose (DAMC), which are well separated by intermittent centrifugation and co-solvent addition. The partially oxidized fibers (without heating) were used as a highly reactive intermediate to react with chlorite for converting almost all aldehyde to carboxyl groups. Co-solvent precipitation and centrifugation resulted in electrosterically stabilized nanocrystalline cellulose (ENCC) and dicarboxylated cellulose (DCC). The aldehyde content of SNCC and consequently surface charge of ENCC (carboxyl content) were precisely controlled by controlling the periodate oxidation reaction time, resulting in highly stable nanoparticles bearing more than 7 mmol functional groups per gram of nanoparticles (e.g., as compared to conventional NCC bearing AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) attested to the rod-like morphology. Conductometric titration, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), electrokinetic-sonic-amplitude (ESA) and acoustic attenuation spectroscopy shed light on the superior properties of these

  12. Dimensional stability of natural fibers

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J.; Larsen, L. Scott

    2013-01-01

    One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.

  13. Natural Minerals Coated by Biopolymer Chitosan: Synthesis, Physicochemical, and Adsorption Properties

    Science.gov (United States)

    Budnyak, T. M.; Yanovska, E. S.; Kichkiruk, O. Yu.; Sternik, D.; Tertykh, V. A.

    2016-11-01

    Natural minerals are widely used in treatment technologies as mineral fertilizer, food additive in animal husbandry, and cosmetics because they combine valuable ion-exchanging and adsorption properties together with unique physicochemical and medical properties. Saponite (saponite clay) of the Ukrainian Podillya refers to the class of bentonites, a subclass of layered magnesium silicate montmorillonite. Clinoptilolits are aluminosilicates with carcase structure. In our work, we have coated biopolymer chitosan on the surfaces of natural minerals of Ukrainian origin — Podilsky saponite and Sokyrnitsky clinoptilolite. Chitosan mineral composites have been obtained by crosslinking of adsorbed biopolymer on saponite and clinoptilolite surface with glutaraldehyde. The obtained composites have been characterized by the physicochemical methods such as thermogravimetric/differential thermal analyses (DTA, DTG, TG), differential scanning calorimetry, mass analysis, nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between the silica and chitosan molecule. The adsorption of microquantities of cations Cu(II), Zn(II), Fe(III), Cd(II), and Pb(II) by the obtained composites and the initial natural minerals has been studied from aqueous solutions. The sorption capacities and kinetic adsorption characteristics of the adsorbents were estimated. It was found that the obtained results have shown that the ability of chitosan to coordinate heavy metal ions Zn(II), Cu(II), Cd(II), and Fe(III) is less or equal to the ability to retain ions of these metals in the pores of minerals without forming chemical bonds.

  14. Review of natural fiber composites

    Science.gov (United States)

    Rohan, T.; Tushar, B.; T, Mahesha G.

    2018-02-01

    Development of new alternative materials to the existing traditional metals, alloys and synthetic materials is the new buzz in recent research activities at the academic and industrial level taking place all over the world. Earning carbon credits by minimizing the atmospheric pollution is getting an increase in attention by industries. One small step to conserve the atmosphere around us is to use natural resources in making fully bio degradable or partially bio degradable composite materials. Such prepared alternative materials can find applications in interior housing, automotive, marine, domestic, and other applications. Composites made by using appropriate natural fibers as reinforcements is a possibility that ensures such a reality as they can be well received in multiple disciplines of engineering. Results published from various research activities illustrates that natural fiber composites can successfully be adapted for non-structural, moderate load bearing indoor applications. Further, the few deficiencies in the natural fibers can be overcome by subjecting them to morphological changes by various physical or chemical treatment methods. The overall objective of this paper is to provide a comprehensive overview of the property profiles of Natural Fiber Composites.

  15. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Directory of Open Access Journals (Sweden)

    Arantzazu eValdés

    2014-02-01

    Full Text Available The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  16. Natural additives and agricultural wastes in biopolymer formulations for food packaging.

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  17. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  18. Physical-biopolymer characterization of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) blended with natural rubber latex

    Energy Technology Data Exchange (ETDEWEB)

    Kuntanoo, K., E-mail: thip-kk@hotmail.com [Graduate School of Khon Kaen University, Khon Kaen, 40002 Thailand (Thailand); Promkotra, S., E-mail: sarunya@kku.ac.th [Department of Geotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Kaewkannetra, P., E-mail: paknar@kku.ac.th [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand)

    2015-03-30

    A biopolymer of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is blended with bio-based materials, natural rubber latex, to improve their microstructures. The various ratios between PHBV and natural rubber latex are examined to develop their mechanical properties. In general, physical properties of PHBV are hard, brittle and low flexible while natural rubber (NR) is presented itself as high elastic materials. Concentrations of the PHBV solution are constituted at 1%, 2% and 3% (w/v). The mixtures of their PHBV solutions to natural rubber latex are produced the blended films in three different ratios of 4:6, 5:5 and 6:4, respectively. They are characterized by appearance analyses which are the scanning electron microscope (SEM), universal testing machine (UTM) and differential scanning calorimetry (DSC). The SEM photomicrographs of the blended films and the controlled PHBV can provide the void distribution in the range of 12-14% and 19-21%, respectively. For mechanical properties of the blended films, the various elastic moduli of 1%, 2% and 3% (w/v) PHBV are the average of 773, 956 and 1,007 kPa, respectively. The tensile strengths of the blends increase with the increased concentrations of PHBV, similarly trend to the elastic modulus. The crystallization and melting behavior of unmixed PHBV and the blends are determined by DSC. Melting transition temperatures (T{sub m}) of the unmixed PHBV are stated two melting peak at 154°C and 173°C. Besides, the melting peaks of the blends alter in the range of 152-156°C and 168-171°C, respectively. According to morphology of the blends, the void distribution decreases twice compared to the unmixed PHBV. The results of mechanical properties and thermal analysis indicate that the blended PHBV can be developed their properties by more resilient and wide range of temperature than usual.

  19. Physical-biopolymer characterization of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) blended with natural rubber latex

    Science.gov (United States)

    Kuntanoo, K.; Promkotra, S.; Kaewkannetra, P.

    2015-03-01

    A biopolymer of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is blended with bio-based materials, natural rubber latex, to improve their microstructures. The various ratios between PHBV and natural rubber latex are examined to develop their mechanical properties. In general, physical properties of PHBV are hard, brittle and low flexible while natural rubber (NR) is presented itself as high elastic materials. Concentrations of the PHBV solution are constituted at 1%, 2% and 3% (w/v). The mixtures of their PHBV solutions to natural rubber latex are produced the blended films in three different ratios of 4:6, 5:5 and 6:4, respectively. They are characterized by appearance analyses which are the scanning electron microscope (SEM), universal testing machine (UTM) and differential scanning calorimetry (DSC). The SEM photomicrographs of the blended films and the controlled PHBV can provide the void distribution in the range of 12-14% and 19-21%, respectively. For mechanical properties of the blended films, the various elastic moduli of 1%, 2% and 3% (w/v) PHBV are the average of 773, 956 and 1,007 kPa, respectively. The tensile strengths of the blends increase with the increased concentrations of PHBV, similarly trend to the elastic modulus. The crystallization and melting behavior of unmixed PHBV and the blends are determined by DSC. Melting transition temperatures (Tm) of the unmixed PHBV are stated two melting peak at 154°C and 173°C. Besides, the melting peaks of the blends alter in the range of 152-156°C and 168-171°C, respectively. According to morphology of the blends, the void distribution decreases twice compared to the unmixed PHBV. The results of mechanical properties and thermal analysis indicate that the blended PHBV can be developed their properties by more resilient and wide range of temperature than usual.

  20. Facile synthesis of palladium nanocatalyst using gum kondagogu (Cochlospermum gossypium): a natural biopolymer.

    Science.gov (United States)

    Rastogi, Lori; Beedu, Sashidhar Rao; Kora, Aruna Jyothi

    2015-12-01

    Palladium nanoparticles (Pd NPs) were synthesised by using gum kondagogu (GK), a non-toxic ecofriendly biopolymer. GK acted as both reducing and stabilising agent for the synthesis of Pd NPs. Various reaction parameters, such as concentration of gum, Pd chloride and reaction pH were standardised for the stable synthesis of GK reduced stabilised Pd NPs (GK-Pd NPs). The nanoparticles have been characterised using ultraviolet-visible spectroscopy, transmission electron microscopy and X-ray diffraction. Physical characterisation revealed that the gum synthesised Pd NPs were in the size range of 6.5 ± 2.3 nm and crystallised in face centred cubic (FCC) symmetry. Fourier transform infrared spectroscopy implicated the role of carboxyl, amine and hydroxyl groups in the synthesis. The synthesised Pd NPs were found to be highly stable in nature. The synthesised nanoparticles were found to function as an effective green catalyst (k = 0.182 min⁻¹) in the reduction of 4-nitrophenol by sodium borohydride, which was evident from the colour change of bright yellow (nitrophenolate; λ(max) - 400 nm) to colourless (4-AP; λ(max) - 294 nm) solution. The overall objectives of the current communication were: (i) to synthesize the Pd NPs using a green reducing/capping agent; GK and (ii) to determine the catalytic performance of the synthesised Pd NPs.

  1. Electrospun fish protein fibers as a biopolymer-based carrier – implications for oral protein delivery

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2014-01-01

    Purpose: Protein-based electrospun fibers have emerged as novel nanostructured materials for tissue engineering and drug delivery due to their unique structural characteristics, biocompatibility and biodegradability. The aim of this study was to explore the use of electrospun fibers based on fish...... sarcoplasmic proteins as an oral delivery platform for biopharmaceuticals, using insulin as a model protein. Methods: Fish sarcoplasmic proteins (FSP) were isolated from fresh cod and electrospun into nanomicrofibers using insulin as a model payload. The morphology of FSP fibers was characterized using...... was significantly enhanced when administered encapsulated in FSP fibers. The TEER was decreased after 4 h incubation, and no negative effect on cell viability was observed at any time. Conclusion: In this work we present electrospun FSP fibers as a novel oral drug delivery system for biopharmaceuticals...

  2. Tribology of natural fiber polymer composites

    CERN Document Server

    Chand, N

    2008-01-01

    Environmental concerns are driving demand for bio-degradable materials such as plant-based natural fiber reinforced polymer composites. These composites are fast replacing conventional materials in many applications, especially in automobiles, where tribology (friction, lubrication and wear) is important. This book covers the availability and processing of natural fiber polymer composites and their structural, thermal, mechanical and, in particular, tribological properties.Chapter 1 discusses sources of natural fibers, their extraction and surface modification. It also reviews the ther

  3. Natural fiber-reinforced polymer composites

    International Nuclear Information System (INIS)

    Taj, S.; Khan, S.; Munawar, M.A.

    2007-01-01

    Natural fibers have been used to reinforce materials for over 3,000 years. More recently they have been employed in combination with plastics. Many types of natural fi fibers have been investigated for use in plastics including Flax, hemp, jute, straw, wood fiber, rice husks, wheat, barley, oats, rye, cane (sugar and bamboo), grass reeds, kenaf, ramie, oil palm empty fruit bunch, sisal, coir, water hyacinth, pennywort, kapok, paper-mulberry, raphia, banana fiber, pineapple leaf fiber and papyrus. Natural fibers have the advantage that they are renewable resources and have marketing appeal. The Asian markets have been using natural fibers for many years e.g., jute is a common reinforcement in India. Natural fibers are increasingly used in automotive and packaging materials. Pakistan is an agricultural country and it is the main stay of Pakistan's economy. Thousands of tons of different crops are produced but most of their wastes do not have any useful utilization. Agricultural wastes include wheat husk, rice husk, and their straw, hemp fiber and shells of various dry fruits. These agricultural wastes can be used to prepare fiber reinforced polymer composites for commercial use. This report examines the different types of fibers available and the current status of research. Many references to the latest work on properties, processing and application have been cited in this review. (author)

  4. Influence of Temperature on Mechanical Properties of Jute/Biopolymer Composites

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Laursen, Louise Løcke; Løgstrup Andersen, Tom

    2013-01-01

    Biopolymers and natural fibers are receiving wide attention for the potential to have good performance composites with low environmental impact. A current limitation of most biopolymers is however their change in mechanical properties at elevated temperatures. This study investigates the mechanical...... properties of two biomass-based polymers, polylactic acid (PLA) and cellulose acetate (CA), as a function of ambient temperature in the range from 5 to 80C. Tests were done for neat polymers and for jute fiber/biopolymer composites. Micromechanical models were applied to back-calculate the reinforcement...

  5. Effect of Laccase-Mediated Biopolymer Grafting on Kraft Pulp Fibers for Enhancing Paper’s Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Lourdes Ballinas-Casarrubias

    2017-11-01

    Full Text Available High-resistance paper was manufactured by laccase-grafting of carboxymethyl cellulose (CMC and chitosan (CPX on Kraft pulp fiber. The reaction was mediated in the presence of laccase by one of the following polyphenols in the presence of air: gallic acid (GA, vanillic acid (VA and catechol (1,2–DHB. Enzyme was added at constant loading (24 kg ton−1, 1% pulp consistency, 0.005% CMC, pH = 6.3 ± 0.5 and 2 mM of mediator. CPX content was assessed at two levels (0% and 0.005%. Treated pulps were analyzed by different mechanical tests (ring crush, mullen, corrugating medium test (CMT flat crush of corrugating medium test and tension. An improvement in these parameters was obtained by biopolymer coupling and selected mediator. When using GA, three parameters increased more than 40%, while ring crush increased 120%. For the case of VA, properties were enhanced from 74% to 88% when CPX was added. For 1,2–DHB, there was not found a statistically significant difference between the results in the presence of CPX. Scanning electron microscopy, confocal microscopy, FTIR and 13C NMR were used in all papers in order to evaluate grafting. Hence, it was possible to correlate polymerization with an improvement of paper’s mechanical properties.

  6. Optical fibers and RF a natural combination

    CERN Document Server

    Romeiser, Malcolm

    2004-01-01

    The optical fiber industry has experienced a period of consolidation and reorganization and is now poised for a new surge in growth. To take advantage of that growth, and to respond to the demand to use fiber more efficiently, designers need a better understanding of fiber optics. Taking the approach that optical fibers are an extension of RF-based communications, the author explains basic optical concepts, applications, and systems; the nature and performance characteristics of optical fibers; and optical sources, connectors and splices. Subsequent chapters explore current applications of fib

  7. Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers

    Science.gov (United States)

    2016-01-06

    process of dragline silk and move into studying the dopes spiders use to spin egg cases (tubuliform and aciniform) and wrap prey (aciniform). We... drops dramatically at a pH = 4 leading to rapid fiber formation. When the dope is close to the spinneret, decreasing the pH below 4 can accelerate the...Weber, W.S., Mou, Q., Yarger, J.L., Lewis, R.V., “Mechanical and Physical Properties of Recombinant Spider Silk Films Using Organic and Aqueous

  8. Textile composites based on natural fibers

    CSIR Research Space (South Africa)

    Li, Yan

    2009-04-01

    Full Text Available . studied the fracture toughness of natural fibers reinforced castor oil polyurethane composites by conducting compact tension test [40]. Short sisal fiber, coconut fiber and sisal fabrics were used to make the composites. Alkaline was selected to treat... very high extensibility. A strain value of 164% was observed for the neat Ecoflex. Upon ramie textile reinforcement in Ecoflex, high strength and high stiffness composite material could be resulted. Sorption behavior of water, naphthenic oil...

  9. Natural Fiber or Glass Reinforced Polypropylene Composites?

    Science.gov (United States)

    Lorenzi, W.; Di Landro, L.; Casiraghi, A.; Pagano, M. R.

    2008-08-01

    Problems related to the recycle of conventional composite materials are becoming always more relevant for many industrial fields. Natural fiber composites (NFC) have recently gained much attention due to their low cost, environmental gains (eco-compatibility), easy disposal, reduction in volatile organic emissions, and their potential to compete with glass fiber composites (GFC). Interest in natural fibers is not only based over ecological aspects. NFC have good mechanical performances in relation to their low specific weight and low price. A characterization of mechanical properties, dynamic behavior, and moisture absorption is presented.

  10. Natural Fiber Filament Wound Composites: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed Ansari Suriyati

    2017-01-01

    Full Text Available In recent development, natural fibers have attracted the interest of engineers, researchers, professionals and scientists all over the world as an alternative reinforcement for fiber reinforced polymer composites. This is due to its superior properties such as high specific strength, low weight, low cost, fairly good mechanical properties, non-abrasive, eco-friendly and bio-degradable characteristics. In this point of view, natural fiber-polymer composites (NFPCs are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residue from the industrial and agricultural processes are still underutilized as low-value energy sources. This is a comprehensive review discussing about natural fiber reinforced composite produced by filament winding technique.

  11. Preformed amide-containing biopolymer for improving the environmental performance of synthesized urea–formaldehyde in agro-fiber composites

    Science.gov (United States)

    Altaf H. Basta; Houssni El-Saied; Jerrold E. Winandy; Ronald Sabo

    2011-01-01

    Investigations have continued for production high performance agro-based composites using environmentally acceptable approaches. This study examines the role of adding amide-containing biopolymers during synthesis of urea–formaldehyde (UF) on properties of adhesive produced, especially its adhesion potential. The environmental performance of UF-resin synthesized in the...

  12. Sound Absorption of Arenga Pinnata Natural Fiber

    OpenAIRE

    Lindawati Ismail; Mohd. Imran Ghazali; Shahruddin Mahzan; Ahmad Mujahid Ahmad Zaidi

    2010-01-01

    Arenga pinnata is an abundantly natural fiber that can be used for sound proof material. However, the scientific data of acoustics properties of Arenga pinnata was not available yet. In this study the sound absorption of pure arenga pinnata was measured. The thickness of Arenga pinnata was varied in 10 mm, 20 mm, 30mm, and 40mm. This work was carried out to investigate the potential of using Arenga pinnata fiber as raw material for sound absorbing material. Impedance Tube Method was used to m...

  13. Characterization of natural fibers and their application in bone grafting substitutes.

    Science.gov (United States)

    Chandramohan, D; Marimuthu, K

    2011-01-01

    In the last decades, researchers have developed new materials to improve the quality of human life. Owing to the frequent occurrence of bone fractures, it is important to develop plate materials for the fixation of fractured bones. These plate materials have to be lightweight, compatible with human tissues and ought to allow stiffness. Natural fibers have the advantage that they are renewable resources and have marketing appeal. The Asian markets have been supplying natural fibers for many years, e.g., sisal, banana and roselle are common reinforcement in India. In this research, the fabrication of plate material from powdered natural fibers like sisal (Agave sisalana), banana (Musa sapientum) and roselle (Hibiscus sabdariffa), with bio-epoxy resin Grade 3554A and Hardner 3554B, using moulding method, is described. The present work deals with the prediction of flexural rigidity of the NFRP composite which is compared with that obtained using the ANSYS solution. They are found to be in good agreement. In this work, microstructure is scanned by the scanning electron microscope. The objective of this research was to utilize the advantages offered by renewable resources for the development of biocomposite materials based on biopolymers and natural fibers. In the future, this plate material externally coated with calcium phosphate and hydroxyapatite (hybrid) composite can be used for inside fixation and also external fixation of fractured bones.

  14. Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance.

    Science.gov (United States)

    McClements, David Julian; Gumus, Cansu Ekin

    2016-08-01

    There is increasing consumer pressure for commercial products that are more natural, sustainable, and environmentally friendly, including foods, cosmetics, detergents, and personal care products. Industry has responded by trying to identify natural alternatives to synthetic functional ingredients within these products. The focus of this review article is on the replacement of synthetic surfactants with natural emulsifiers, such as amphiphilic proteins, polysaccharides, biosurfactants, phospholipids, and bioparticles. In particular, the physicochemical basis of emulsion formation and stabilization by natural emulsifiers is discussed, and the benefits and limitations of different natural emulsifiers are compared. Surface-active polysaccharides typically have to be used at relatively high levels to produce small droplets, but the droplets formed are highly resistant to environmental changes. Conversely, surface-active proteins are typically utilized at low levels, but the droplets formed are highly sensitive to changes in pH, ionic strength, and temperature. Certain phospholipids are capable of producing small oil droplets during homogenization, but again the droplets formed are highly sensitive to changes in environmental conditions. Biosurfactants (saponins) can be utilized at low levels to form fine oil droplets that remain stable over a range of environmental conditions. Some nature-derived nanoparticles (e.g., cellulose, chitosan, and starch) are effective at stabilizing emulsions containing relatively large oil droplets. Future research is encouraged to identify, isolate, purify, and characterize new types of natural emulsifier, and to test their efficacy in food, cosmetic, detergent, personal care, and other products. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. NATURAL FIBER REINFORCED POLYURETHANE RIGID FOAM

    OpenAIRE

    Seydibeyoglu, M.Ozgur; Demiroğlu, Sibel; Erdoğan, Fatma; Akın, Ecem; Ayvalık, Aynur; Karavana, Hüseyin Ata

    2017-01-01

    The main objective of this study was to prepare polyurethane foam reinforced with local Turkish natural resources. In this work, olive kernel and nutshell fibers were used for reinforcing the polyurethane foam. In order to characterize reinforced polyurethane samples, mechanical, chemical, thermal, and morphological methods were used. Mechanical properties of polyurethane foam were measured by compression test. With compression test, it was observed that compressive strength of polyurethane f...

  16. 2nd International Conference on Natural Fibers

    CERN Document Server

    Rana, Sohel

    2016-01-01

    This book collects selected high quality articles submitted to the 2nd International Conference on Natural Fibers (ICNF2015). A wide range of topics is covered related to various aspects of natural fibres such as agriculture, extraction and processing, surface modification and functionalization, advanced structures, nano fibres, composites and nanocomposites, design and product development, applications, market potential, and environmental impact. Divided into separate sections on these various topics, the book presents the latest high quality research work addressing different approaches and techniques to improve processing, performance, functionalities and cost-effectiveness of natural fibre and natural based products, in order to promote their applications in various advanced technical sectors. This book is a useful source of information for materials scientists, teachers and students from various disciplines as well as for R& D staff in industries using natural fibre based materials. .

  17. Performance of Lightweight Natural-Fiber Reinforced Concrete

    OpenAIRE

    Hardjasaputra Harianto; Ng Gino; Urgessa Girum; Lesmana Gabriella; Sidharta Steven

    2017-01-01

    Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC). Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material beca...

  18. Finite Element Analysis of a Natural Fiber (Maize) Composite Beam

    OpenAIRE

    Bavan, D. Saravana; Kumar, G. C. Mohan

    2013-01-01

    Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize) composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with meth...

  19. Development of natural fiber reinforced polylactide-based biocomposites

    Science.gov (United States)

    Arias Herrera, Andrea Marcela

    Polylactide or PLA is a biodegradable polymer that can be produced from renewable resources. This aliphatic polyester exhibits good mechanical properties similar to those of polyethylene terephthalate (PET). Since 2003, bio-based high molecular weight PLA is produced on an industrial scale and commercialized under amorphous and semicrystalline grades for various applications. Enhancement of PLA crystallization kinetics is crucial for the competitiveness of this biopolymer as a commodity material able to replace petroleum-based plastics. On the other hand, the combination of natural fibers with polymer matrices made from renewable resources, to produce fully biobased and biodegradable polymer composite materials, has been a strong trend in research activities during the last decade. Nevertheless, the differences related to the chemical structure, clearly observed in the marked hydrophilic/hydrophobic character of the fibers and the thermoplastic matrix, respectively, represent a major drawback for promoting strong fiber/matrix interactions. The aim of the present study was to investigate the intrinsic fiber/matrix interactions of PLAbased natural fiber composites prepared by melt-compounding. Short flax fibers presenting a nominal length of ˜1 mm were selected as reinforcement and biocomposites containing low to moderate fiber loading were processed by melt-mixing. Fiber bundle breakage during processing led to important reductions in length and diameter. The mean aspect ratio was decreased by about 50%. Quiescent crystallization kinetics of PLA and biocomposite systems was examined under isothermal and non-isothermal conditions. The nucleating nature of the flax fibers was demonstrated and PLA crystallization was effectively accelerated as the natural reinforcement content increased. Such improvement was controlled by the temperature at which crystallization took place, the liquid-to-solid transition being thermodynamically promoted by the degree of supercooling

  20. Use of Natural Antimicrobial Peptides and Bacterial Biopolymers for Cultured Pearl Production.

    Science.gov (United States)

    Simon-Colin, Christelle; Gueguen, Yannick; Bachere, Evelyne; Kouzayha, Achraf; Saulnier, Denis; Gayet, Nicolas; Guezennec, Jean

    2015-06-11

    Cultured pearls are the product of grafting and rearing of Pinctada margaritifera pearl oysters in their natural environment. Nucleus rejections and oyster mortality appear to result from bacterial infections or from an inappropriate grafting practice. To reduce the impact of bacterial infections, synthetic antibiotics have been applied during the grafting practice. However, the use of such antibiotics presents a number of problems associated with their incomplete biodegradability, limited efficacy in some cases, and an increased risk of selecting for antimicrobial resistant bacteria. We investigated the application of a marine antimicrobial peptide, tachyplesin, which is present in the Japanese horseshoe crab Tachypleus tridentatus, in combination with two marine bacterial exopolymers as alternative treatment agents. In field studies, the combination treatment resulted in a significant reduction in graft failures vs. untreated controls. The combination of tachyplesin (73 mg/L) with two bacterial exopolysaccharides (0.5% w/w) acting as filming agents, reduces graft-associated bacterial contamination. The survival data were similar to that reported for antibiotic treatments. These data suggest that non-antibiotic treatments of pearl oysters may provide an effective means of improving oyster survival following grafting procedures.

  1. Studies on Properties of Short Fiber Reinforced Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    M.H.R. Ghoreishy

    2008-12-01

    Full Text Available Natural rubber/fiber composites were prepared in a laboratory mixer using new and waste short nylon fiber by a one-step mixing process. Fiber loading and bonding agent effects on the microstructure and mechanical properties of the composites were studied. The cure characteristics of composites were investigated by using rheometer. Cure and scorching times of the composites decreased while maximum torques increased with increasing fiber loading. The mechanical properties of the composites improved with increasing the short fibers. The adhesion between the fiber and the rubber was enhanced by the addition of a dry bonding system consisting of resorcinol, hexamethylene tetramine and hydrated silica (HRH.

  2. Mechanical property evaluation of natural fiber coir composite

    International Nuclear Information System (INIS)

    Harish, S.; Michael, D. Peter; Bensely, A.; Lal, D. Mohan; Rajadurai, A.

    2009-01-01

    The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber-reinforced plastics. Although glass and other synthetic fiber-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of coir, a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, coir composites are developed and their mechanical properties are evaluated. Scanning electron micrographs obtained from fractured surfaces were used for a qualitative evaluation of the interfacial properties of coir/epoxy and compared with glass fiber/epoxy. These results indicate that coir can be used as a potential reinforcing material for making low load bearing thermoplastic composites

  3. Characterization of polymer concrete with natural fibers

    Science.gov (United States)

    Barbuta, M.; Serbanoiu, A. A.; Teodorescu, R.; Rosca, B.; Mitroi, R.; Bejan, G.

    2017-09-01

    In the study are presented the experimental results obtained for polymer concrete prepared with epoxy resin, aggregates, fly ash as filler and two types of fibers: wool and hemp. The influence of type and dosage of fibers were studied. The density and mechanical characteristics were determined: compressive strength, flexural strength and split tensile strength. For both types of fibers, with increasing the fiber dosage the density decreases. The studied dosages had not an important influence on mechanical strengths. The fibers improved especially the tensile strength and the compressive strength presented generally smaller values than the control mix.

  4. Natural fiber reinforced composites with moringa and vnyl ester matrix

    OpenAIRE

    Sundara, Babu Jagannathan

    2015-01-01

    In this research work an attempt is carried out for producing a Natural Plant Based fiber Reinforced Composites using the Moringa Resins and Vinyl Ester by utilizing the wastage of natural plant based fiber as Reinforcement material and Matrix material as Natural Resin and Vinyl Ester. The objective of the work is Utilization of Natural Plant Based Bio- degardable wastage into an alternative materials in the industrial applications by analyzing, Various Manufacturing and testing. Initially th...

  5. Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films.

    Science.gov (United States)

    Iturriaga, L; Olabarrieta, I; de Marañón, I Martínez

    2012-08-01

    The antimicrobial activity of twelve natural extracts was tested against two fish spoilage bacteria (Pseudomonas fluorescens and Aeromonas hydrophila/caviae) and Listeria innocua, in order to assess their potential utilization in the preservation and safety of minimally processed fish products. After a screening of the active extracts by agar diffusion and vapour diffusion methods, oregano and thyme essential oils and citrus extract were selected. The minimum inhibitory concentration (MIC) of the selected extracts was determined by disc diffusion method against target bacteria and at two temperatures: bacteria's optimal growth temperature (30 °C or 37 °C) and refrigeration temperature (4 °C). Due to its better solubility, lack of odour and greater inhibitory effect obtained against L. innocua at refrigerated temperature, citrus extract was selected and incorporated at 1% (v/v) into different biopolymer film forming solutions (gelatin, methyl cellulose and their blend 50:50 w/w). The antimicrobial activity of the developed films was then evaluated, just after preparation of the films and after one month of storage at 43±3% relative humidity and 24±3 °C. Regardless of the biopolymer matrix, all the developed films showed antimicrobial activity against the target bacteria. The most sensitive bacterium towards active films was L. innocua while P. fluorescens appeared as the most resistant one, in accordance with the previously performed antimicrobial tests for pure extracts. The differences in activity of the films between the tested two temperatures were not significant except for L. innocua, for which three times higher inhibition diameters were observed at refrigerated temperature. The inhibitory effectiveness of the films against the tested strains was maintained regardless of the biopolymer matrix for at least one month. Therefore, these edible films show potential for their future use in fresh fish fillets preservation. Copyright © 2012 Elsevier B.V. All

  6. Natural fiber reinforced polystyrene composites: Effect of fiber loading, fiber dimensions and surface modification on mechanical properties

    International Nuclear Information System (INIS)

    Singha, A.S.; Rana, Raj K.

    2012-01-01

    Highlights: ► Preparation of Agave fiber reinforced polystyrene composites. ► Effect of fiber content, fiber dimensions and surface treatment on the mechanical properties of composites. ► Composites with 20% by weight fiber content exhibited optimum mechanical properties. ► Composites reinforced with MMA grafted fibers exhibited better mechanical strength as compared to raw fibers. ► SEM of fractured surfaces of samples showed better interface in particle reinforced composites. -- Abstract: Natural fibers have been found to be excellent reinforcing materials for preparing polymer matrix based composites. In the present study both raw and surface modified Agave fiber reinforced polystyrene matrix based composites were prepared in order to explore the effect of reinforcement on the mechanical properties of the matrix. The surface modification of Agave fiber was carried out by graft copolymerization of methyl methacrylate (MMA) onto it in the presence of ceric ammonium nitrate (CAN) as initiator. For preparing these composites different fiber contents of both raw and grafted fibers (10–30% by weight) have been used. It has been found that 20% fiber content gives optimum mechanical properties. The effect of different fiber dimensions (particle, short and long fibers) on the mechanical properties of the composites has also been investigated. It has been found that particle reinforcement gives better mechanical properties than short and long fiber reinforcement. The composites thus prepared have been characterized by Fourier transform infra red (FT-IR) spectroscopy, Scanning electron microscopy (SEM) and TGA/DTA techniques. Further the surface modified fiber reinforced composites have been found to be thermally more stable than that of raw fiber reinforced composites.

  7. Melt rheological properties of natural fiber-reinforced polypropylene

    Science.gov (United States)

    Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield

    2000-01-01

    The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 s–1...

  8. Accelerated weathering of natural fiber-filled polyethylene composites

    Science.gov (United States)

    Thomas Lundin; Steven M. Cramer; Robert H. Falk; Colin. Felton

    2004-01-01

    The resistance of natural fiber-filled high-density polyethylene composite specimens to ultraviolet- (UV) and moisture-induced degradation was evaluated by measuring changes to flexural properties. High-density polyethylene (HDPE) served as the polymer matrix for four formulations: two formulations without fiber filler and two formulations one containing wood flour and...

  9. A novel use of bio-based natural fibers, polymers, and rubbers for composite materials

    Science.gov (United States)

    Modi, Sunny Jitendra

    The composites, materials, and packaging industries are searching for alternative materials to attain environmental sustainability. Bio-plastics are highly desired and current microbially-derived bio-plastics, such as PHA (poly-(hydroxy alkanoate)), PHB (poly-(hydroxybutyrate)), and PHBV (poly-(beta-hydroxy butyrate-co-valerate)) could be engineered to have similar properties to conventional thermoplastics. Poly-(hydroxybutyrate) (PHB) is a bio-degradable aliphatic polyester that is produced by a wide range of microorganisms. Basic PHB has relatively high glass transition and melting temperatures. To improve flexibility for potential packaging applications, PHB is synthesized with various co-polymers such as Poly-(3-hydroxyvalerate) (HV) to decrease the glass and melting temperatures and, since there is improved melt stability at lower processing temperatures, broaden the processing window. However, previous work has shown that this polymer is too brittle, temperature-sensitive, and hydrophilic to meet packaging material physical requirements. Therefore, the proposed work focuses on addressing the needs for bio-derived and bio-degradable materials by creating a range of composite materials using natural fibers as reinforcement agents in bio-polymers and bio- plastic-rubber matrices. The new materials should possess properties lacking in PHBV and broaden the processing capabilities, elasticity, and improve the mechanical properties. The first approach was to create novel composites using poly-(beta-hydroxy butyrate-co-valerate) (PHBV) combined with fibers from invasive plants such as common reed (Phragmites australis), reed canary grass (Phalaris arundinacea), and water celery ( Vallisneria americana). The composites were manufactured using traditional processing techniques of extrusion compounding followed by injection molding of ASTM type I parts. The effects of each bio-fiber at 2, 5, and 10% loading on the mechanical, morphological, rheological, and thermal

  10. Performance of Lightweight Natural-Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Hardjasaputra Harianto

    2017-01-01

    Full Text Available Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC. Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material because the fibers are derived from waste. These wastes, which are available in large quantities in Asia, have to be extracted from the husk of coconut fruits and must pass a mechanical process before being added to a concrete mixture. The Super Lightweight Concrete was made by mixing concrete paste with foam agent that can reduce the overall weight of concrete up to 60% with compressive strength up to 6 MPa. The Super Lightweight Concrete is intended to be used for non-structural walls, as alternative conventional construction materials such as brick walls. The influence of coconut fibers content in increasing the flexural tensile strength of Super Lightweight Concrete was studied in this research. The fiber content studied include 0%, 0.1%, 0.175%, and 0.25% by weight of cement content. Sixteen specimens of SLNFRC mini beams of 60 mm x 60 mm x 300 mm were tested to failure to investigate their flexural strengths. The optimum percent fibers yielding higher tensile strength was found to be 0.175%

  11. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    Science.gov (United States)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  12. Characterization of a Material Based on Short Natural Fique Fibers

    OpenAIRE

    Navacerrada Saturio, Maria Angeles; Diaz Sanchidrian, Cesar; Fernández, Patricia

    2014-01-01

    Fique is a biodegradable natural fiber derived from the Colombian Agavaceae family, originating in tropical America and traditionally used for the manufacture of packaging and cordages. Today, however, new uses are being developed. To meet the need for new good-quality, sustainable, low-cost construction materials for social housing, construction materials have been produced that combine different kinds of natural fibers, including fique, to improve their strength and physical properties. To ...

  13. Finite Element Analysis of a Natural Fiber (Maize Composite Beam

    Directory of Open Access Journals (Sweden)

    D. Saravana Bavan

    2013-01-01

    Full Text Available Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with methyl ethyl ketone peroxide (MEKP as a catalyst and Cobalt Octoate as a promoter. The material was modeled and resembled as a structural beam using suitable assumption and analyzed by means of finite element method using ANSYS software for determining the deflection and stress properties. Morphological analysis and X-ray diffraction (XRD analysis for the fiber were examined by means of scanning electron microscope (SEM and X-ray diffractometer. From the results, it has been found that the finite element values are acceptable with proper assumptions, and the prepared natural fiber composite beam material can be used for structural engineering applications.

  14. Biopolymer colloids for controlling and templating inorganic synthesis

    Directory of Open Access Journals (Sweden)

    Laura C. Preiss

    2014-11-01

    Full Text Available Biopolymers and biopolymer colloids can act as controlling agents and templates not only in many processes in nature, but also in a wide range of synthetic approaches. Inorganic materials can be either synthesized ex situ and later incorporated into a biopolymer structuring matrix or grown in situ in the presence of biopolymers. In this review, we focus mainly on the latter case and distinguish between the following possibilities: (i biopolymers as controlling agents of nucleation and growth of inorganic materials; (ii biopolymers as supports, either as molecular supports or as carrier particles acting as cores of core–shell structures; and (iii so-called “soft templates”, which include on one hand stabilized droplets, micelles, and vesicles, and on the other hand continuous scaffolds generated by gelling biopolymers.

  15. A Natural Based Method for Hydrophobic Treatment of Natural Fiber Material.

    Science.gov (United States)

    Kick, Thomas; Grethe, Thomas; Mahltig, Boris

    2017-06-01

    A treatment for hydrophobic functionalization of natural fiber materials is developed. This hydrophobic treatment is based mainly on natural products. As hydrophobic component the natural Tung Oil is used, which is originally a compound used for wood conservation purposes. The application on textile is done in a padding process under presence of an oxidative agent. For the current investigations a fiber felt from linen was used. The hydrophobic effect is determined by the concentration of Tung Oil and the duration of a thermal drying process. The hydrophobic effect is investigated by capillary rise tests and contact angle measurements. Scanning electron microscopy SEM is used to investigate the surface topography of the fiber material and the deposited hydrophobic material. Altogether, an interesting and promising method for hydrophobisation of natural fibers is developed, which could especially be used as part of a production process of a fiber reinforced composite material, mainly based on natural products.

  16. Extraction of cellulose microcrystalline from galam wood for biopolymer

    Science.gov (United States)

    Ismail, Ika; Sa'adiyah, Devy; Rahajeng, Putri; Suprayitno, Abdi; Andiana, Rocky

    2018-04-01

    Consumption of plastic raw materials tends to increase, but until now the meet of the consumption of plastic raw are still low, even some are still imported. Nowadays, Indonesia's plastic needs are supported by petrochemicals where raw materials are still dependent abroad and petropolymer raw materials are derived from petroleum which will soon be depleted due to rising petroleum needs. Therefore, various studies have been conducted to develop natural fiber-based polymers that are biodegradable and abundant in nature. It is because the natural polymer production process is very efficient and very environmentally friendly. There have been many studies of biopolymers especially natural fiber-based polymers from plants, due to plants containing cellulose, hemicellulose and lignin. However, cellulose is the only one who has crystalline structures. Cellulose has a high crystality compared to amorphous lignin and hemicellulose. In this study, extracted cellulose as biopolymer and amplifier on composite. The cellulose is extracted from galam wood from East Kalimantan. Cellulose extraction will be obtained in nano / micro form through chemical and mechanical treatment processes. The chemical treatment of cellulose extraction is alkalinization process using NaOH solution, bleaching using NaClO2 and acid hydrolysis using sulfuric acid. After chemical treatment, ultrasonic mechanical treatment is made to make cellulose fibers into micro or nano size. Besides, cellulose results will be characterized. Characterization was performed to analyze molecules of cellulose compounds extracted from plants using Fourier Transformation Infra Red (FTIR) testing. XRD testing to analyze cellulose crystallinity. Scanning Electron Microscope (SEM) test to analyze morphology and fiber size.

  17. Engineering Properties of Treated Natural Hemp Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Xiangming Zhou

    2017-06-01

    Full Text Available In recent years, the construction industry has seen a significant rise in the use of natural fibers, for producing building materials. Research has shown that treated hemp fiber-reinforced concrete (THFRC can provide a low-cost building material for residential and low-rise buildings, while achieving sustainable construction and meeting future environmental targets. This study involved enhancing the mechanical properties of hemp fiber-reinforced concrete through the Ca(OH2 solution pretreatment of fibers. Both untreated (UHFRC and treated (THFRC hemp fiber-reinforced concrete were tested containing 15-mm length fiber, at a volume fraction of 1%. From the mechanical strength tests, it was observed that the 28-day tensile and compressive strength of THFRC was 16.9 and 10% higher, respectively, than UHFRC. Based on the critical stress intensity factor (KICs and critical strain energy release rate (GICs, the fracture toughness of THFRC at 28 days was also found to be 7–13% higher than UHFRC. Additionally, based on the determined brittleness number (Q and modulus of elasticity, the THFRC was found to be 11% less brittle and 10.8% more ductile. Furthermore, qualitative analysis supported many of the mechanical strength findings through favorable surface roughness observed on treated fibers and resistance to fiber pull-out.

  18. Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers

    Science.gov (United States)

    Zheng, Yingying; Cai, Chao; Zhang, Fuming; Monty, Jonathan; Linhardt, Robert J.; Simmons, Trevor J.

    2016-02-01

    Natural cotton was dissolved in a room-temperature ionic liquid 1-ethyl-3-methyl acetate and wet-jet electrospun to obtain nanoscale cotton fibers with a substantially reduced diameter—and therefore an increased surface area—relative to natural cotton fibers. The resulting nano-cotton fibers were esterified with trityl-3-mercaptopropionic acid, which after selective de-tritylation afforded nano-cotton fibers containing reactive thiol functionality. Silver nanoparticles that were covalently attached to these sulfhydryl groups were assembled next. The microstructure of the resulting nanocomposite was characterized, and the antibacterial activity of the resulting nano-cotton Ag-nanoparticle composite was also studied. This nanocomposite showed significant activity against both Gram-negative and Gram-positive bacteria.

  19. Functionalization, Compatibilization and Properties of Polyolefin Composites with Natural Fibers

    Directory of Open Access Journals (Sweden)

    Vera Alvarez

    2010-11-01

    Full Text Available The article is focused on analyzing the effect of functionalization and reactive processing on the morphological, thermal, rheological and mechanical properties of composites of isotactic polypropylene (PP, polystyrene (PS, poly(ethylene-vinyl acetate (EVA, with cellulose fibers, hemp or oat as natural fillers. Both polymers and fibers were modified with bi-functional monomers (glycidyl methacrylate, GMA; maleic anhydride, MA capable of facilitating chemical reactions between the components during melt mixing. Polyolefin copolymers containing reactive groups (PP-g-GMA, SEBS-g-MA, PS-co-MA, etc. were used as compatibilizers. Optical and SEM microscopy, FTIR, RX, DSC, TGA, DMTA, rheological and mechanical tests were employed for the composites characterization. The properties of binary and ternary systems have been analyzed as a function of both fiber and compatibilizer content. All compatibilized systems showed enhanced fiber dispersion and interfacial adhesion. The phase behavior and the thermal stability of the composites were affected by the chemical modification of the fibers. Marked changes in the overall crystallization processes and crystal morphology of PP composites were observed owing to the nucleating effect of the fibers. The tensile mechanical behavior of the compatibilized composites generally resulted in a higher stiffness, depending on the fiber amount and the structure and concentration of compatibilizer.

  20. Biopolymer chitin: extraction and characterization

    International Nuclear Information System (INIS)

    Andrade, Sania M.B. de; Ladchumananandasivam, Rasiah

    2011-01-01

    The biopolymers are materials made from renewable sources such as soybean, corn, cane sugar, cellulose and chitin. Chitin is the most abundant biopolymer found in nature, after cellulose. The chemical structure of chitin is distinguished by the hydroxyl group, of structure from cellulose, located at position C-2, which in the chitin is replaced by acetamine group. The objective of this study was to develop the chitin from exoskeletons of Litopenaeus vannamei shrimp, which are discarded as waste, causing pollutions, environmental problems and thus obtain better utilization of these raw materials. It also, show the extraction process and deacetylation of chitosan. The extraction of chitin followed steps of demineralization, desproteinization and deodorization. Chitin and chitosan were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and the thermals properties were analyzed by thermogravimetry (TG/DTG). (author)

  1. Effect of Different Purification Techniques on the Characteristics of Heteropolysaccharide-Protein Biopolymer from Durian (Durio zibethinus Seed

    Directory of Open Access Journals (Sweden)

    Hamed Mirhosseini

    2012-09-01

    Full Text Available Natural biopolymers from plant sources contain many impurities (e.g., fat, protein, fiber, natural pigment and endogenous enzymes, therefore, an efficient purification process is recommended to minimize these impurities and consequently improve the functional properties of the biopolymer. The main objective of the present study was to investigate the effect of different purification techniques on the yield, protein content, solubility, water- and oil-holding capacity of a heteropolysaccharide-protein biopolymer obtained from durian seed. Four different purification methods using different chemicals and solvents (i.e., A (isopropanol and ethanol, B (isopropanol and acetone, C (saturated barium hydroxide, and D (Fehling solution] to liberate the purified biopolymer from its crude form were compared. In most cases, the purification process significantly (p < 0.05 improved the physicochemical properties of heteropolysaccharide-protein biopolymer from durian fruit seed. The present work showed that the precipitation using isopropanol and acetone (Method B resulted in the highest purification yield among all the tested purification techniques. The precipitation using saturated barium hydroxide (Method C led to induce the highest solubility and relatively high capacity of water absorption. The current study reveals that the precipitation using Fehling solution (Method D most efficiently eliminates the protein fraction, thus providing more pure biopolymer suitable for biological applications.

  2. Immunomodulatory effects in workers exposed to naturally occurring asbestos fibers.

    Science.gov (United States)

    Ledda, Caterina; Costa, Chiara; Matera, Serena; Puglisi, Beatrice; Costanzo, Valentina; Bracci, Massimo; Fenga, Concettina; Rapisarda, Venerando; Loreto, Carla

    2017-05-01

    Natural asbestiform fibers are defined 'naturally occurring asbestos' (NOA) and refer to the mineral as a natural component of soils or rocks. The release of NOA fibers into the air from rocks or soils by routine human activities or natural weathering processes represents a risk for human beings. Fluoro-edenite (FE) is a NOA fiber detected in the benmoreitic lava in the area of Biancavilla, South-west slope of Mt. Etna. The aim of the present study was to investigate FE immunotoxicity pathways in a group of 38 occupationally exposed construction workers, in order to find any biological markers of its effect. Subjects underwent respiratory function tests and HRCT total chest scanning. Serum IL-1β, IL-6, IL-8 and TNF-α were measured. The presence of PPs was significantly greater in subjects exposed than in the control (25 vs. 2). In subjects exposed to FE, IL-1β and TNF-α values were significantly higher than the controls. The previously observed increase of IL-1β and IL-18 showed a probable involvement of the proteic complex defined inflammosome by FE fibers.

  3. Bioflocculation of Basic Dye onto Isolated Microbial Biopolymers

    Directory of Open Access Journals (Sweden)

    M. Elkady

    2017-10-01

    Full Text Available Three purified biopolymers isolated from Bacillus velezensis (40B, Bacillus mojavensis (32A and Pseudomonas (38A strains were evaluated for dye decolourization as bioflocculants. The decolourization capacity of the three polymers was inspected using C.I 28 basic yellow dye as hazardous pollutant. The chemical compositions of these purified biopolymers were considered by HPLC and FTIR spectrum. The decolourization efficiency of the three purified biopolymers was determined using both real dye polluted wastewater (discharged from AKSA EGYPT acrylic fibres industry and simulated synthetic wastewater. The maximum decolourization efficiencies of the purified biopolymers of the three studied strains (40B, (32A and (38A were 91, 89 and 88 %, respectively. The equilibrium of dye sorption process onto biopolymers was described using Langmuir isotherm equation. However, its kinetics follows the pseudo second order model. The thermodynamic examination investigated the exothermic and spontaneous nature of the decolourization process using the purified biopolymers.

  4. Characterization of natural fiber from agricultural-industrial residues

    International Nuclear Information System (INIS)

    Prado, Karen S.; Spinace, Marcia A.S.

    2011-01-01

    Natural fibers show great potential for application in polymer composites. However, instead of the production of inputs for this purpose, an alternative that can also minimize solid waste generation is the use of agro-industrial waste for this purpose, such as waste-fiber textiles, rice husks residues and pineapple crowns. In this work the characterization of these three residues and evaluate their properties in order to direct the application of polymer composites. Was analyzed the moisture, density, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis of the fibers. The results show that the use of these wastes is feasible both from an environmental standpoint and because its properties suitable for this application. (author)

  5. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery

    Science.gov (United States)

    Brooks, Amanda

    2015-11-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug’s local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  6. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Amanda E Brooks

    2015-11-01

    Full Text Available Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1 deliver sensitive biologic molecules, (2 promote intimate contact between the mucosa and the drug, and (3 prolong the drug’s local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  7. Pressure variation assisted fiber extraction and development of high performance natural fiber composites and nanocomposites

    Science.gov (United States)

    Markevicius, Gediminas

    It is believed, that due to the large surface areas provided by the nano scale materials, various composite properties could be enhanced when such particles are incorporated into a polymer matrix. There is also a trend of utilizing natural resources or reusing and recycling materials that are already available for the fabrication of the new composite materials. Cellulose is the most abundant natural polymer on the planet, and therefore it is not surprising to be of interest for composite fabrication. Basic structures of cellulose, comprised of long polysaccharide chains, are the building blocks of cellulose nano fibers. Nano fibers are further bound into micro fibrils and macro fibers. Theoretically pure cellulose nano fibers have tremendous strengths, and therefore are some of the most sought after nano particles. The fiber extraction however is a complex task. The ultrasound, which creates pressure variation in the medium, was employed to extract nano-size cellulose particles from microcrystalline cellulose (MCC). The length and the intensity of the cavitations were evaluated. Electron microscopy studies revealed that cellulose nanoparticles were successfully obtained from the MCC after ultrasound treatment of just 30 minutes. Structure of the fractionated cellulose was also analyzed with the help of X-ray diffraction, and its thermal properties were evaluated with the help of differential scanning calorimetry (DSC). Ultrasound treatment performed on the wheat straw, kenaf, and miscanthus particles altered fiber structure as a result of the cavitation. The micro fibers were generated from these materials after they were subjected to NaOH treatment followed by the ultrasound processing. The potential of larger than nano-sized natural fibers to be used for composite fabrication was also explored. The agricultural byproducts, such as wheat or rice straw, as well as other fast growing crops as miscanthus or kenaf, are comprised of three basic polymers. Just like in

  8. Obtention of gelatin biopolymers by ionizing radiation

    International Nuclear Information System (INIS)

    Takinami, Patricia Yoko Inamura

    2014-01-01

    The gelatin (Gel) is a biocompatible and biodegradable biopolymer, which naturally forms semi-solid colloids or hydrogels in aqueous solutions. As a hydrophilic polymer, the Gel has structural and physico-mechanical properties that distinguish it from synthetic hydrophilic polymers. The study of these properties led to the development of the present work. Thus, Gel-based films and hydrogels were developed using ionizing radiation technology by different techniques: irradiation with 60 Co, electron beam (EB) and/or pulsed EB. The Gel based-films enriched with different additives, such as glycerol (GLY), polyvinyl alcohol (PVA), butylated hydroxytoluene (BHT), acrylamide and/or vegetal fiber, were irradiated with doses from 10 to 60 kGy, depending on the additive; some parameters like mechanical properties, color, and water absorption were analyzed. In the radio-induced synthesis of GEL nanohydrogels, polyethylene glycol (PEG) and the mixture (MIX) of additives, PEG and GEL, the size, molar mass and surface morphology of the nanohydrogels were analyzed. There was a significant increase of gel fraction with increase of the radiation dose for the GEL/fiber samples. The GEL based-films with 10% PVA irradiated at 20 kGy showed the highest puncture strength. The addition of antioxidant BHT affected on some GEL based-films properties on applied conditions. Regarding the nanohydrogels, there was a decrease of hydrodynamic radius of MIX irradiated with 60 Co from 68 ± 25 nm (2 kGy) to 35 ± 4 nm (5 kGy). The radiation proved to be a convenient tool in the modification of polymeric materials for both, GEL films and hydrogels. (author)

  9. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures

    Science.gov (United States)

    López-Alba, Elías; Díaz, Francisco

    2018-01-01

    The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack) made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen) and PLA (polylactic acid) matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets) were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA) as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack) seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD-PE matrix. PMID

  10. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures.

    Science.gov (United States)

    López-Alba, Elías; Schmeer, Sebastian; Díaz, Francisco

    2018-03-13

    The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack) made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen) and PLA (polylactic acid) matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets) were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA) as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack) seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD-PE matrix.

  11. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2018-03-01

    Full Text Available The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen and PLA (polylactic acid matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD

  12. 3D-Printed Biopolymers for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2014-01-01

    Full Text Available 3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.

  13. Coating applications to natural fiber composites to improve their physical, surface and water absorption characters

    Science.gov (United States)

    Natural (organic) fibers are used in reinforced composites and natural fiber composites (NFCs). These fibers have advantages over synthetic composites such as high mechanical properties, lower densities and biodegradablity. However, one major disadvantage of NFCs is their hydrophilicity. In this stu...

  14. Impact test on natural fiber reinforced polymer composite materials

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2013-06-01

    Full Text Available In this research, natural fibers like Sisal (Agave sisalana, Banana (Musa sepientum & Roselle (Hibiscus sabdariffa , Sisal and banana (hybrid , Roselle and banana (hybrid and Roselle and sisal (hybrid are fabricated with bio epoxy resin using molding method. In this work, impact strength of Sisal and banana (hybrid, Roselle and banana (hybridand Roselle and sisal (hybrid composite at dry and wet conditions were studied. Impact test were conducted izod impact testing machine. In this work micro structure of the specimens are scanned by the Scanning Electron Microscope.

  15. Natural fiber composite design and characterization for limit stress prediction in multiaxial stress state

    OpenAIRE

    Christopher C. Ihueze; Christian E. Okafor; Chris I. Okoye

    2015-01-01

    This paper focuses on the design of natural fiber composites and analysis of multiaxial stresses in relation to yield limit stresses of composites loaded off the fibers axis. ASTM D638-10 standard for tensile test was used to design and compose composites of plantain fiber reinforced polyester (PFRP). While the rule of mixtures was used in the evaluation of properties of composites in the fiber direction the evaluation of properties perpendicular or transverse to the fiber direction was done ...

  16. Highly filled formaldehyde-free natural fiber polypropylene composites

    Science.gov (United States)

    Anand R. Sanadi; Daniel F. Caulfield

    2000-01-01

    Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 50% by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...

  17. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks.

    Science.gov (United States)

    Reddy, Narendra; Yang, Yiqi

    2009-07-01

    Natural cellulose fibers have been obtained from the bark of cotton stalks and the fibers have been used to develop composites. Cotton stalks are rich in cellulose and account for up to 3 times the quantity of cotton fiber produced per acre. Currently, cotton stalks have limited use and are mostly burned on the ground. Natural cellulose fibers obtained from cotton stalks are composed of approximately 79% cellulose and 13.7% lignin. The fibers have breaking tenacity of 2.9 g per denier and breaking elongation of 3% and modulus of 144 g per denier, between that of cotton and linen. Polypropylene composites reinforced with cotton stalk fibers have flexural, tensile and impact resistance properties similar to jute fiber reinforced polypropylene composites. Utilizing cotton stalks as a source for natural cellulose fibers provides an opportunity to increase the income from cotton crops and make cotton crops more competitive to the biofuel crops.

  18. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers

    International Nuclear Information System (INIS)

    Tzounis, Lazaros; Debnath, Subhas; Rooj, Sandip; Fischer, Dieter; Mäder, Edith; Das, Amit; Stamm, Manfred; Heinrich, Gert

    2014-01-01

    A simple and facile method for depositing multiwall carbon nanotubes (MWCNTs) onto the surface of naturally occurring short jute fibers (JFs) is reported. Hierarchical multi-scale structures were formed with CNT-networks uniformly distributed and fully covering the JFs (JF–CNT), as depicted by the scanning electron microscopy (SEM) micrographs. The impact of these hybrid fillers on the mechanical properties of a natural rubber (NR) matrix was systematically investigated. Pristine JFs were cut initially to an average length of 2.0 mm and exposed to an alkali treatment (a-JFs) to remove impurities existing in the raw jute. MWCNTs were treated under mild acidic conditions to generate carboxylic acid moieties. Afterward, MWCNTs were dispersed in an aqueous media and short a-JFs were allowed to react with them. Raman spectroscopy confirmed the chemical interaction between CNTs and JFs. The JF–CNT exposed quite hydrophobic behavior as revealed by the water contact angle measurements, improving the wettability of the non-polar NR. Consequently, the composite interfacial adhesion strength was significantly enhanced while a micro-scale “mechanical interlocking” mechanism was observed from the interphase-section transmission electron microscopy (TEM) images. SEM analysis of the composite fracture surfaces demonstrated the interfacial strength of NR/a-JF and NR/JF–CNT composites, at different fiber loadings. It can be presumed that the CNT-coating effectively compatibillized the composite structure acting as a macromolecular coupling agent. A detailed analysis of stress-strain and dynamic mechanical spectra confirmed the high mechanical performance of the hierarchical composites, consisting mainly of materials arising from natural resources. - Highlights: • Natural rubber (NR) composites reinforced with CNT-modified short jute fibers. • MWCNTs deposited to the surface of jute fibers via non-covalent interactions. • Hierarchical reinforcement structure with

  19. Acid leaching of natural chrysotile asbestos to mesoporous silica fibers

    Science.gov (United States)

    Maletaškić, Jelena; Stanković, Nadežda; Daneu, Nina; Babić, Biljana; Stoiljković, Milovan; Yoshida, Katsumi; Matović, Branko

    2017-10-01

    Nanofibrous silica with a high surface area was produced from chrysotile by the acid-leaching method. Natural mineral chrysotile asbestos from Stragari, Korlace in Serbia was used as the starting material. The fibers were modified by chemical treatment with 1 M HCl and the mineral dissolution was monitored by transmission electron microscopy, X-ray powder diffraction, inductively coupled plasma spectrometry and low-temperature nitrogen adsorption techniques to highlight the effects of the leaching process. The results showed that the applied concentration of acid solution and processing time of 4 h were sufficient to effectively remove the magnesium hydroxide layer and transform the crystal structure of the hazardous starting chrysotile to porous SiO2 nanofibers. With prolonged acid leaching, the specific surface area, S BET, calculated by BET equation, was increased from 147 up to 435 m2 g- 1, with micropores representing a significant part of the specific surface.

  20. Experimental Study of Fiber Length and Orientation in Injection Molded Natural Fiber/Starch Acetate Composites

    DEFF Research Database (Denmark)

    Peltola, Heidi; Madsen, Bo; Joffe, Roberts

    2011-01-01

    Composite compounds based on triethyl citrate plasticized starch acetate and hemp and flax fibers were prepared by melt processing. Plasticizer contents from 20 to 35 wt% and fiber contents of 10 and 40 wt% were used. The compounded composites were injection molded to tensile test specimens...... was noticed. A reduction of fiber length along the increasing fiber content and the decreasing plasticizer content was also detected. This reduction originated from the increasing shear forces during compounding, which again depended on the increased viscosity of the material. Hemp fibers were shown to remain...... longer and fibrillate more than flax fibers, leading to higher aspect ratio. Thus, the reinforcement efficiency of hemp fibers by the processing was improved, in contrast with flax fibers. In addition, the analysis of fiber dispersion and orientation showed a good dispersion of fibers in the matrix...

  1. Properties of high-quality long natural cellulose fibers from rice straw.

    Science.gov (United States)

    Reddy, Narendra; Yang, Yiqi

    2006-10-18

    This paper reports the structure and properties of novel long natural cellulose fibers obtained from rice straw. Rice straw fibers have 64% cellulose with 63% crystalline cellulose, strength of 3.5 g/denier (450 MPa), elongation of 2.2%, and modulus of 200 g/denier (26 GPa), similar to that of linen fibers. The rice straw fibers reported here have better properties than any other natural cellulose fiber obtained from an agricultural byproduct. With a worldwide annual availability of 580 million tons, rice straw is an annually renewable, abundant, and cheap source for natural cellulose fibers. Using rice straw for high-value fibrous applications will help to add value to the rice crops, provide a sustainable resource for fibers, and also benefit the environment.

  2. Opportunities and threats to natural fibers in technical applications

    CSIR Research Space (South Africa)

    Anandjiwala, RD

    2013-06-01

    Full Text Available fibers offer competitive specific tensile strength and stiffness, in some cases even better than glass fibers but fairly comparable to synthetic fibers, such as nylon, carbon and aramid (Figure 1). Besides, they offer other advantages, such as improved...

  3. A note on the effect of the fiber curvature on the micromechanical behavior of natural fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    M. A. Escalante-Solis

    2015-12-01

    Full Text Available To better understand the role of the fiber curvature on the tensile properties of short-natural-fiber reinforced composites, a photoelastic model and a finite element analysis were performed in a well characterized henequen fiber-high density polyethylene composite material. It was hypothesized that the angle of orientation of the inclusion and the principal material orientation with respect to the applied load was very important in the reinforcement mechanics. From the photoelastic and finite element analysis it was found that the stress distribution around the fiber inclusion was different on the concave side from that observed on the convex side and an efficient length of stress transfer was estimated to be approximately equal to one third the average fiber length. This approach was used to predict the short-natural-fiber reinforced composite mechanical properties using probabilistic functions modifications of the rule of mixtures models developed by Fukuda-Chow and the Fukuda-Kawata. Recognizing the inherent flexibility that curves the natural fibers during processing, the consideration of a length of one third of the average length l should improve the accuracy of the calculations of the mechanical properties using theoretical models.

  4. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    International Nuclear Information System (INIS)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-01-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products

  5. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications

    Directory of Open Access Journals (Sweden)

    Layth Mohammed

    2015-01-01

    Full Text Available Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

  6. Numerical Investigation of Characteristic of Anisotropic Thermal Conductivity of Natural Fiber Bundle with Numbered Lumens

    Directory of Open Access Journals (Sweden)

    Guan-Yu Zheng

    2014-01-01

    Full Text Available Natural fiber bundle like hemp fiber bundle usually includes many small lumens embedded in solid region; thus, it can present lower thermal conduction than that of conventional fibers. In the paper, characteristic of anisotropic transverse thermal conductivity of unidirectional natural hemp fiber bundle was numerically studied to determine the dependence of overall thermal property of the fiber bundle on that of the solid region phase. In order to efficiently predict its thermal property, the fiber bundle was embedded into an imaginary matrix to form a unit composite cell consisting of the matrix and the fiber bundle. Equally, another unit composite cell including an equivalent solid fiber was established to present the homogenization of the fiber bundle. Next, finite element thermal analysis implemented by ABAQUS was conducted in the two established composite cells by applying proper thermal boundary conditions along the boundary of unit cell, and influences of the solid region phase and the equivalent solid fiber on the composites were investigated, respectively. Subsequently, an optional relationship of thermal conductivities of the natural fiber bundle and the solid region was obtained by curve fitting technique. Finally, numerical results from the obtained fitted curves were compared with the analytic Hasselman-Johnson’s results and others to verify the present numerical model.

  7. Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers

    Science.gov (United States)

    Gupta, G.; Gupta, A.; Dhanola, A.; Raturi, A.

    2016-09-01

    Now-a-days, the natural fibers and fillers from renewable natural resources offer the potential to act as a reinforcing material for polymer composite material alternative to the use of synthetic fiber like as; glass, carbon and other man-made fibers. Among various natural fibers and fillers like banana, wheat straw, rice husk, wood powder, sisal, jute, hemp etc. are the most widely used natural fibers and fillers due to its advantages like easy availability, low density, low production cost and reasonable physical and mechanical properties This research work presents the effect of natural fillers loading with 5%, 10% and 15% on mechanical behavior of polyester based hybrid composites. The result of test depicted that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single glass fibre composites.

  8. Biopolymer gels containing fructooligosaccharides.

    Science.gov (United States)

    Silva, Karen Cristina Guedes; Sato, Ana Carla Kawazoe

    2017-11-01

    The influence of the addition of fructooligosaccharide (FOS) in an external gelated alginate/gelatin biopolymer matrix, was evaluated in order to produce biopolymeric structures with functional effects. Solutions were characterized regarding their rheological properties, macrogels regarding their microstructure and mechanical properties and microgels were characterized in relation to their particle size distribution and morphology. Close relationship was found between the microstructure, rheological and mechanical properties of the biopolymeric systems. An increased viscosity and accentuated elastic and pseudoplastic behavior were associated to denser microstructures. The FOS addition caused changes in the evaluated properties, resulting in more cohesive structures, with smaller pores and higher viscosity, compared to alginate-gelatin gels. The addition of 3% FOS to biopolymeric system provided an optimal condition, allowing the formation of stronger gels, with smaller pores and beads with smaller sizes, indicating the potential use of these functional systems as texture modifiers or encapsulation systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Preparation and characterization of long natural cellulose fibers from wheat straw.

    Science.gov (United States)

    Reddy, Narendra; Yang, Yiqi

    2007-10-17

    Long natural cellulose fibers with properties suitable for textile and composite applications have been obtained from wheat straw. This study aims to understand the potential of using wheat straw as a source for long natural cellulose fibers for textile, composite and other fibrous applications. The presence of wax on the outer layer of the straw and a unique zip-like structure that locks individual fibers makes it difficult to obtain fibers from wheat straw using the common methods of fiber extraction. A novel pretreatment with detergent and mechanical force followed by an alkaline treatment was used to obtain high quality fiber bundles. The structure and properties of the fibers are reported in comparison to common cellulose fibers, cotton, linen, and kenaf. Wheat straw fibers have coarser (wider width) single cells and lower crystallinity than cotton, linen, and kenaf. The breaking tenacity (force at break) of wheat straw fibers is similar to kenaf but lower than that of cotton and linen, % breaking elongation is similar to linen and kenaf but lower than cotton, and Young's modulus of the fibers is similar to cotton but lower than that of linen and kenaf.

  10. Extraction and characterization of natural cellulose fibers from maize tassel

    CSIR Research Space (South Africa)

    Maepa, CE

    2015-04-01

    Full Text Available treatment. FT-IR spectroscopic analysis of maize tassel fibers confirmed that this chemical treatment also shows the way to partial elimination of hemicelluloses and lignin from the structure of the maize tassel fibers. X-ray diffraction results indicated...

  11. swelling characteristics and tensile properties of natural fiber rei

    African Journals Online (AJOL)

    USER

    1.0 INTRODUCTION. Composite materials comprising polymer matrices reinforced with fibers usually of glass fiber, Kevlar and carbon have gained considerable applications in automotive, aerospace, marine and construction industries (1). Glass reinforced plastic was originally developed in the United. Kingdom during the ...

  12. Invited review nonmulberry silk biopolymers.

    Science.gov (United States)

    Kundu, S C; Kundu, Banani; Talukdar, Sarmistha; Bano, Subia; Nayak, Sunita; Kundu, Joydip; Mandal, Biman B; Bhardwaj, Nandana; Botlagunta, Mahendran; Dash, Biraja C; Acharya, Chitrangada; Ghosh, Ananta K

    2012-06-01

    The silk produced by silkworms are biopolymers and can be classified into two types--mulberry and nonmulberry. Mulberry silk of silkworm Bombyx mori has been extensively explored and used for century old textiles and sutures. But for the last few decades it is being extensively exploited for biomedical applications. However, the transformation of nonmulberry silk from being a textile commodity to biomaterials is relatively new. Within a very short period of time, the combination of load bearing capability and tensile strength of nonmulberry silk has been equally envisioned for bone, cartilage, adipose, and other tissue regeneration. Adding to its advantage is its diverse morphology, including macro to nano architectures with controllable degradation and biocompatibility yields novel natural material systems in vitro. Its follow on applications involve sustained release of model compounds and anticancer drugs. Its 3D cancer models provide compatible microenvironment systems for better understanding of the cancer progression mechanism and screening of anticancer compounds. Diversely designed nonmulberry matrices thus provide an array of new cutting age technologies, which is unattainable with the current synthetic materials that lack biodegradability and biocompatibility. Scientific exploration of nonmulberry silk in tissue engineering, regenerative medicine, and biotechnological applications promises advancement of sericulture industries in India and China, largest nonmulberry silk producers of the world. This review discusses the prospective biomedical applications of nonmulberry silk proteins as natural biomaterials. Copyright © 2012 Wiley Periodicals, Inc.

  13. Development and Characterization of Polymer Eco-Composites Based on Natural Rubber Reinforced with Natural Fibers

    Directory of Open Access Journals (Sweden)

    Maria-Daniela Stelescu

    2017-07-01

    Full Text Available Natural rubber composites filled with short natural fibers (flax and sawdust were prepared by blending procedure and the elastomer cross-linking was carried out using benzoyl peroxide. The microbial degradation of composites was carried out by incubating with Aspergillus niger recognized for the ability to grow and degrade a broad range of substrates. The extent of biodegradation was evaluated by weight loss and cross-linking degree study of composites after 2 months incubation in pure shake culture conditions. Scanning electron microscopy (SEM and Fourier transform infrared spectroscopy (FT-IR have proved to be precious and valuable instruments for morphological as well as structural characterization of the composites before and after incubation with Aspergillus niger.

  14. Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen.

    Science.gov (United States)

    Reddy, Narendra; Yang, Yiqi

    2007-08-01

    We report the production and characteristics of natural cellulose fibers obtained from the leaves and stems of switchgrass. In this paper, the composition, structure and properties of fibers obtained from the leaves and stem of switchgrass have been studied in comparison to the common natural cellulose fibers, such as cotton, linen and kenaf. The leaves and stems of switchgrass have tensile properties intriguingly similar to that of linen and cotton, respectively. Fibers were obtained from the leaves and stems of switchgrass using a simple alkaline extraction and the structure and properties of the fibers were studied. Fibers obtained from switchgrass leaves have crystallinity of 51%, breaking tenacity of 5.5 g per denier (715 MPa) and breaking elongation of 2.2% whereas the corresponding values for fibers obtained from switchgrass stems are 46%, 2.7 g per denier and 6.8%, respectively. Switchgrass is a relatively easy to grow and high yield biomass crop that can be source to partially substitute the natural and synthetic fibers currently in use. We hope that this research will stimulate interests in using switchgrass as a novel fiber crop in addition to being promoted as a potential source for biofuels. (c) 2007 Wiley Periodicals, Inc.

  15. Reactive processing of textile-natural fiber reinforced anionic polyamide-6 composites

    International Nuclear Information System (INIS)

    Kan, Ze; Chen, Peng; Liu, Zhengying; Feng, Jianmin; Yang, Mingbo

    2015-01-01

    Nowadays natural fiber, used in reinforced composites, is widely concerned. However, no natural fiber reinforced reactive thermoplastic polymer grades had been prepared so far. Through our studies, it was demonstrated that there was a severe retardation and discoloration occurred in the reactive processing between anionic polyamide-6 (APA-6) and natural fiber, which result in incomplete polymerization when put together. In order to solve the problem, two methods were adopted in this paper, which are fiber pretreatment and usage of a new-style initiator called caprolactam magnesium bromide. The former is to remove sizing agent and impurities on the surface of fiber, and the latter is to weaken the side reactions between APA-6 and natural fiber by the nature of its lower reactivity and weaker alkaline. In cooperation with both methods, the severe retardation and discoloration had been improved significantly, so that the polymerization of APA-6 in natural fiber was occurred smoothly. Following textile-natural fiber reinforced APA-6 composites with an average thickness of 2.5 mm and a fiber volume content of 50% was prepared by vacuum assisted resin transfer molding (VARTM). The soxhlet extraction, dilute solution viscometry and differential scanning calorimeter (DSC) measurements respectively suggested the degree of conversion, viscosity-average molar mass and crystallization of composites was up to 94%, 11.3×104 and 50%. Remarkable improvement of mechanical properties were achieved through dynamic mechanical analysis (DMA), tensile and three-point bending test. Favorable interfacial adhesion and wettability were revealed by scanning electron microscopy (SEM) observation. Therefore, all of the above good performance make this new-style and environmentally friendly composites have broad application prospects

  16. Reactive processing of textile-natural fiber reinforced anionic polyamide-6 composites

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Ze; Chen, Peng; Liu, Zhengying; Feng, Jianmin; Yang, Mingbo [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan (China)

    2015-05-22

    Nowadays natural fiber, used in reinforced composites, is widely concerned. However, no natural fiber reinforced reactive thermoplastic polymer grades had been prepared so far. Through our studies, it was demonstrated that there was a severe retardation and discoloration occurred in the reactive processing between anionic polyamide-6 (APA-6) and natural fiber, which result in incomplete polymerization when put together. In order to solve the problem, two methods were adopted in this paper, which are fiber pretreatment and usage of a new-style initiator called caprolactam magnesium bromide. The former is to remove sizing agent and impurities on the surface of fiber, and the latter is to weaken the side reactions between APA-6 and natural fiber by the nature of its lower reactivity and weaker alkaline. In cooperation with both methods, the severe retardation and discoloration had been improved significantly, so that the polymerization of APA-6 in natural fiber was occurred smoothly. Following textile-natural fiber reinforced APA-6 composites with an average thickness of 2.5 mm and a fiber volume content of 50% was prepared by vacuum assisted resin transfer molding (VARTM). The soxhlet extraction, dilute solution viscometry and differential scanning calorimeter (DSC) measurements respectively suggested the degree of conversion, viscosity-average molar mass and crystallization of composites was up to 94%, 11.3×104 and 50%. Remarkable improvement of mechanical properties were achieved through dynamic mechanical analysis (DMA), tensile and three-point bending test. Favorable interfacial adhesion and wettability were revealed by scanning electron microscopy (SEM) observation. Therefore, all of the above good performance make this new-style and environmentally friendly composites have broad application prospects.

  17. Analytical Hierarchy Process for Natural Fiber Composites Automotive Armrest Thermoset Matrix Selection

    OpenAIRE

    Rosli M.U; Jamalludin Mohd Riduan; Khor C.Y.; Ishak Muhammad Ikman; Jahidi H.; Yeop Wasir Norsyahadah; Faizal Wan Mohd; Wan Draman Wan Nur A’tiqah; Lailina NM; Ismail Ras Izzati

    2017-01-01

    The automotive industry is currently shifting to a ‘green’ outlook since that the popularity of natural fibers in composites plastics is accelerating in many areas and particularly the automotive industry. Nowadays, consumers are looking for vehicles more environmentally friendly and lighter in weight. For this reason, the engineers are now focusing to substitute the metal parts on utilizing the natural fiber composites. Selecting the right material in product development is a crucial decisio...

  18. Preliminary Studies on the Use of Natural Fibers in Sustainable Concrete

    International Nuclear Information System (INIS)

    Awad, E.; Mabsout, M.; Hamad, B.; Khatib, H.

    2011-01-01

    The paper reports on preliminary tests performed to produce a sustainable 'green' concrete material using natural fibers such as industrial hemp, palm, and banana leaves fibers. Such material would increse the service life and reduce the life cost of the structure, and would have a positive effect on social life and social economy. The demand for the agricultural fibers for concrete production would be a major incentive to Lebanese farmers to benefit from the social impact on the habitat level of living. In the preliminary program reported in this paper, cubes and standard flexural beams were tested to evaluate the structural and physical performance of concrete mixes prepared with different volumetric ratios of added fibers and diffeent proportions of aggregates. Test results indicated that the case of natural fibers resulted in reducing the coarse aggregate quantity without affecting the flexural performance of concrete. However, no clear trend was determined in the cubes compressive strength test results.(author)

  19. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  20. Manufacturing and Structural Feasibility of Natural Fiber Reinforced Polymeric Structural Insulated Panels for Panelized Construction

    Directory of Open Access Journals (Sweden)

    Nasim Uddin

    2011-01-01

    Full Text Available Natural fibers are emerging in the fields of automobile and aerospace industries to replace the parts such as body panels, seats, and other parts subjected to higher bending strength. In the construction industries, they have the potential to replace the wood and oriented strand boards (OSB laminates in the structural insulated panels (SIPs. They possess numerous advantages over traditional OSB SIPs such as being environmental friendly, recyclable, energy efficient, inherently flood resistant, and having higher strength and wind resistance. This paper mainly focuses on the manufacturing feasibility and structural characterization of natural fiber reinforced structural insulated panels (NSIPs using natural fiber reinforced polymeric (NFRP laminates as skin. To account for the use of natural fibers, the pretreatments are required on natural fibers prior to use in NFRP laminates, and, to address this issue properly, the natural fibers were given bleaching pretreatments. To this end, flexure test and low-velocity impact (LVI tests were carried out on NSIPs in order to evaluate the response of NSIPs under sudden impact loading and uniform bending conditions typical of residential construction. The paper also includes a comparison of mechanical properties of NSIPs with OSB SIPs and G/PP SIPs. The results showed significant increase in the mechanical properties of resulting NSIP panels mainly a 53% increase in load-carrying capacity compared to OSB SIPs. The bending modulus of NSIPs is 190% higher than OSB SIPs and 70% weight reduction compared to OSB SIPs.

  1. Biopolymers to improve physical properties and leaching characteristics of mortar and concrete: A review

    Science.gov (United States)

    Olivia, M.; Jingga, H.; Toni, N.; Wibisono, G.

    2018-04-01

    The invention of environmentally friendly, high performance, and green material such as biopolymers marked an emerging trend for sustainable construction over the past decades. Biopolymer comprises of natural monomers and synthesized by plants or other organisms. The sustainable, biodegradable, and renewable biopolymers were used in concrete mixes to improve their physical and mechanical properties and durability. The aim of this paper is to provide a brief an overview of the impact of biopolymer addition into concrete and mortar mixes. Many studies on the influence of biopolymer on the properties of concrete and mortar by adding biopolymers at a certain proportion (usually less than one wt.%) to the concrete or mortar mixes, and the heavy metal leaching, rheological, and mechanical properties of the mixes were conducted. Biopolymers included in this review are chitosan (CH), xanthan gum (XG), guar gum (GG), lignosulphonate (LS), and cellulose ethers (CE). Data from previous studies showed that the addition of certain types of biopolymer into concrete and mortar mixes improve workability, water retention, and compressive strength by up to 30 percent. Chitosan strengthens heavy metal encapsulation in the mortar and neutralizes the negative impact of heavy metal on the mortar properties and environment. To sum up, the use of biopolymers improve physical properties and leaching characteristics of mortar and concrete.

  2. Proton conduction in biopolymer exopolysaccharide succinoglycan

    Science.gov (United States)

    Kweon, Jin Jung; Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui; Jung, Seunho; Kwon, Chanho

    2014-07-01

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame 1H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  3. Proton conduction in biopolymer exopolysaccharide succinoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Jin Jung [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Jung, Seunho [Department of Bioscience and Biotechnology and UBITA, Konkuk University, Seoul 143-701 (Korea, Republic of); Kwon, Chanho [Naraebio Research Laboratories, 177 Dangha-ri, Bongdam-eup, Hawseong-si 445-892 (Korea, Republic of)

    2014-07-07

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame {sup 1}H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  4. Effect of Fungal Deterioration on Physical and Mechanical Properties of Hemp and Flax Natural Fiber Composites.

    Science.gov (United States)

    Crawford, Bryn; Pakpour, Sepideh; Kazemian, Negin; Klironomos, John; Stoeffler, Karen; Rho, Denis; Denault, Johanne; Milani, Abbas S

    2017-10-31

    The development and application of bio-sourced composites have been gaining wide attention, yet their deterioration due to the growth of ubiquitous microorganisms during storage/manufacturing/in-service phases is still not fully understood for optimum material selection and design purposes. In this study, samples of non-woven flax fibers, hemp fibers, and mats made of co-mingled randomly-oriented flax or hemp fiber (50%) and polypropylene fiber (50%) were subjected to 28 days of exposure to (i) no water-no fungi, (ii) water only and (iii) water along with the Chaetomium globosum fungus. Biocomposite samples were measured for weight loss over time, to observe the rate of fungal growth and the respiration of cellulose components in the fibers. Tensile testing was conducted to measure mechanical properties of the composite samples under different configurations. Scanning electron microscopy was employed to visualize fungal hyphal growth on the natural fibers, as well as to observe the fracture planes and failure modes of the biocomposite samples. Results showed that fungal growth significantly affects the dry mass as well as the tensile elastic modulus of the tested natural fiber mats and composites, and the effect depends on both the type and the length scale of fibers, as well as the exposure condition and time.

  5. Effect of Fungal Deterioration on Physical and Mechanical Properties of Hemp and Flax Natural Fiber Composites

    Directory of Open Access Journals (Sweden)

    Bryn Crawford

    2017-10-01

    Full Text Available The development and application of bio-sourced composites have been gaining wide attention, yet their deterioration due to the growth of ubiquitous microorganisms during storage/manufacturing/in-service phases is still not fully understood for optimum material selection and design purposes. In this study, samples of non-woven flax fibers, hemp fibers, and mats made of co-mingled randomly-oriented flax or hemp fiber (50% and polypropylene fiber (50% were subjected to 28 days of exposure to (i no water-no fungi, (ii water only and (iii water along with the Chaetomium globosum fungus. Biocomposite samples were measured for weight loss over time, to observe the rate of fungal growth and the respiration of cellulose components in the fibers. Tensile testing was conducted to measure mechanical properties of the composite samples under different configurations. Scanning electron microscopy was employed to visualize fungal hyphal growth on the natural fibers, as well as to observe the fracture planes and failure modes of the biocomposite samples. Results showed that fungal growth significantly affects the dry mass as well as the tensile elastic modulus of the tested natural fiber mats and composites, and the effect depends on both the type and the length scale of fibers, as well as the exposure condition and time.

  6. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2018-02-01

    Full Text Available Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was given.

  7. The Immobilisation of Krom and Stronsium Waste Using Natural Fiber Reinforced Cement

    International Nuclear Information System (INIS)

    Susetyo Haria Putero; Nunung Prabaningrum; Widya Rosita

    2007-01-01

    Cementation of hazardous liquid waste is one of the methods to minimize its detrimental effect on the environmental quality and human health. This research purpose was to study the effect of natural fiber composition and temperature on quality of the cement block reinforced by coconut (Cocos nucifera) fiber and bamboo (Bambusa vulgaris) fiber. This research was pursued by adsorbing stronsium waste and krom using zeolite. Thirteen percent volume of zeolite was mixed with 0.3 of water/cement ratio. Composition of natural fiber was varied by 0.00v/o, 0.05v/o, 0.10v/o, 0.25v/o, 0.50v/o, 0.75v/o and 1.00v/o. The cement blocks produced were heated at 0℃, 50℃, 100℃, 150℃, 200℃ and 250℃ for 10 minutes and then determined their compressive strength and leaching rate. The optimum composition of natural fiber causing increasing of mechanical strength has been founded at 0.50% v/o of fiber. On that composition the axial force resistance of fiber is higher than the radial one. The hydration reaction completely works when cement block is heated until certain temperature that results in the increasing of its compressive strength. However, the compressive strength of cement block heated up to 250℃ is still beyond the standard. Based on its compressive strength, the bamboo (Bambusa vulgaris) fiber is more feasible than coconut (Cocos nucifera) fiber for reinforcing cement block. Heating just influences on the physics properties of cement block. But, the ability of block cement to immobilize a matter is affected by properties of matters. (author)

  8. Biocompatibility of plasma nanostructured biopolymers

    Czech Academy of Sciences Publication Activity Database

    Kasálková-Slepičková, N.; Slepička, P.; Bačáková, Lucie; Sajdl, P.; Švorčík, V.

    2013-01-01

    Roč. 307, Jul 15 (2013), s. 642-646 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : biopolymer * plasma treatment * biocompatibility Subject RIV: JJ - Other Materials Impact factor: 1.186, year: 2013

  9. Nanostructure features of microalgae biopolymer

    Czech Academy of Sciences Publication Activity Database

    Cybulska, J.; Halaj, M.; Cepák, Vladislav; Lukavský, Jaromír; Capek, P.

    2016-01-01

    Roč. 68, 7-8 (2016), s. 629-636 ISSN 0038-9056 R&D Projects: GA TA ČR TE01020080; GA TA ČR TA03011027 Institutional support: RVO:67985939 Keywords : Dictyosphaerium * biopolymer s * alga Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.837, year: 2016

  10. Nanostructure features of microalgae biopolymer

    Czech Academy of Sciences Publication Activity Database

    Cybulska, J.; Halaj, M.; Cepák, Vladislav; Lukavský, Jaromír; Capek, P.

    2016-01-01

    Roč. 68, 7-8 (2016), s. 629-636 ISSN 0038-9056 R&D Projects: GA TA ČR TE01020080; GA TA ČR TA03011027 Institutional support: RVO:67985939 Keywords : Dictyosphaerium * biopolymers * alga Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.837, year: 2016

  11. Semi-conducting material obtained from natural fiber modified with PAni

    International Nuclear Information System (INIS)

    Rocha, Eli V. da; Silva Junior, Fernando Gomes; Oliveira, Geiza E.; Pinto, Jose Carlos

    2009-01-01

    The surface of natural Brazilian Amazonic fibers (curaua, Ananas erectifolius) was modified with polyaniline nanoparticles, through in-situ preparation of polyaniline nanoparticles in presence of the curaua fibers. As it was shown here, this modification allowed a very significant increase of the electrical conductivity of the fibers (about 2.500 times). The modified materials were also characterized by FTIR (Fourier Transform Infrared Spectroscopy), AFM (Atomic Force Microscopy) and SAXS (Small Angle X-ray Scattering) and the obtained results were used to explain some of the chemical and morphological aspects of the materials. (author)

  12. Preconcentration of Cr(III from Natural Water by Modified Nano Polyacrylonitrile Fiber by Methanolamine

    Directory of Open Access Journals (Sweden)

    Ali Moghimi

    2011-01-01

    Full Text Available Modified nano polyacrylonitrile fiber (PANF was prepared by adding acrylic fibers to methanolamine (MMA with different concentration solutions. The stability of a chemically modified nano polyacrylonitrile fiber especially in concentrated hydrochloric acid which was then used as a recycling and pre-concentration reagent for further uses of modified nano polyacrylonitrile fiber. The application of this modified nano polyacrylonitrile fiber for sorption of a series of metal ions was performed by using different controlling factors such as the pH of metal ion solution and the equilibration shaking time by the static technique. Cr(III was found to exhibit the highest affinity towards extraction by these modified nano polyacrylonitrile fiber phases. The pronounced selectivity was also confirmed from the determined distribution coefficient (Kd of all the metal ions, showing the highest value reported for Cr(III to occur by modified nano polyacrylonitrile fiber. The modified nano polyacrylonitrile fiber for selective extraction of Cr(III were successfully accomplished in aqueous solution as well as preconcentration of low concentration of Cr(III (60 pg mL-1 from natural tap water with a preconcentration factor of 100 for Cr(III and then off-line Cr(III in water samples were determined by flame atomic absorption.

  13. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation.

    Science.gov (United States)

    Liu, Gongping; Li, Nanwen; Miller, Stephen J; Kim, Danny; Yi, Shouliang; Labreche, Ying; Koros, William J

    2016-10-24

    New rigid polyimides with bulky CF 3 groups were synthesized and engineered into high-performance hollow fiber membranes. The enhanced rotational barrier provided by properly positioned CF 3 side groups prohibited fiber transition layer collapse during cross-linking, thereby greatly improving CO 2 /CH 4 separation performance compared to conventional materials for aggressive natural gas feeds. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hindrances to precise recovery of cellular forces in fibrous biopolymer networks

    Science.gov (United States)

    Zhang, Yunsong; Feng, Jingchen; Heizler, Shay I.; Levine, Herbert

    2018-03-01

    How cells move through the three-dimensional extracellular matrix (ECM) is of increasing interest in attempts to understand important biological processes such as cancer metastasis. Just as in motion on flat surfaces, it is expected that experimental measurements of cell-generated forces will provide valuable information for uncovering the mechanisms of cell migration. However, the recovery of forces in fibrous biopolymer networks may suffer from large errors. Here, within the framework of lattice-based models, we explore possible issues in force recovery by solving the inverse problem: how can one determine the forces cells exert to their surroundings from the deformation of the ECM? Our results indicate that irregular cell traction patterns, the uncertainty of local fiber stiffness, the non-affine nature of ECM deformations and inadequate knowledge of network topology will all prevent the precise force determination. At the end, we discuss possible ways of overcoming these difficulties.

  15. Analytical Hierarchy Process for Natural Fiber Composites Automotive Armrest Thermoset Matrix Selection

    Directory of Open Access Journals (Sweden)

    Rosli M.U

    2017-01-01

    Full Text Available The automotive industry is currently shifting to a ‘green’ outlook since that the popularity of natural fibers in composites plastics is accelerating in many areas and particularly the automotive industry. Nowadays, consumers are looking for vehicles more environmentally friendly and lighter in weight. For this reason, the engineers are now focusing to substitute the metal parts on utilizing the natural fiber composites. Selecting the right material in product development is a crucial decision. Imprecise decision can cause the product to be remanufactured and not in optimized condition. One of the methods that can be employed is Analytical Hierarchy Process (AHP. This paper illustrates the implementation of AHP method in order to select the most appropriate thermoset matrix for natural fiber composites automotive armrest. The selection is based on the weight reduction as the major aim of the study.

  16. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Naheed Saba

    2014-08-01

    Full Text Available The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.

  17. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  18. Bio composites from polypropylene/ clay/eva polymers and kenaf natural fiber

    International Nuclear Information System (INIS)

    Siti Hasnah Kamarudin; Khalina Abdan; Bernard Maringgal; Wan Mohd Zin Wan Yunus

    2009-01-01

    Full text: There is an increasing need to investigate more environmental friendly, sustainable materials to replace existing materials as industry attempts to lessen dependence on petroleum based fuels and products. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. In this experiment, mixing process of polymer/nano clay composites from polypropylene, organo clay and ethylene vinyl acetate were prepared using a Brabender twin screw compounder. The composites sheets were then laminated with kenaf fibers and subjected to hot and cold press machine to form a bio composite. The mechanical properties such as flexural and impact strength are compare favourably between polymers reinforced kenaf fiber and polymers without kenaf fiber. In addition, various analysis techniques were used to characterize the dispersion and the properties of nano composites, using scanning electron micrograph (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). These results suggest that kenaf fibers are a viable alternative to inorganic mineral-based reinforcing fibers as long as the right processing conditions are used and they are used in applications where the higher water absorption is not critical. (author)

  19. Natural fiber composite design and characterization for limit stress prediction in multiaxial stress state

    Directory of Open Access Journals (Sweden)

    Christopher C. Ihueze

    2015-07-01

    Full Text Available This paper focuses on the design of natural fiber composites and analysis of multiaxial stresses in relation to yield limit stresses of composites loaded off the fibers axis. ASTM D638-10 standard for tensile test was used to design and compose composites of plantain fiber reinforced polyester (PFRP. While the rule of mixtures was used in the evaluation of properties of composites in the fiber direction the evaluation of properties perpendicular or transverse to the fiber direction was done based on the value of the orthogonal stresses evaluated using ANSYS finite element software, the application of the Brintrup equation and Halpin–Tai equation. The yield strength for the plantain empty fruit bunch fiber reinforced polyester resin (PEFBFRP was estimated as 33.69 MPa while the yield strength of plantain pseudo stem fiber reinforced polyester resin (PPSFRP was estimated as 29.24 MPa. Above all, the PEFBFRP with average light absorbance peak of 45.47 was found to have better mechanical properties than the PPSFRP with average light absorbance peak of 45.77.

  20. Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition

    Science.gov (United States)

    Nascimento, Lucio Fabio Cassiano; Holanda, Luane Isquerdo Ferreira; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Lima, Édio Pereira

    2017-10-01

    Epoxy matrix composites reinforced with up to 30 vol pct of continuous and aligned natural mallow fibers were for the first time ballistic tested as personal armor against class III-A 9 mm FMJ ammunition. The ballistic efficiency of these composites was assessed by measuring the dissipated energy and residual velocity after the bullet perforation. The results were compared to those in similar tests of aramid fabric (Kevlar™) commonly used in vests for personal protections. Visual inspection and scanning electron microscopy analysis of impact-fractured samples revealed failure mechanisms associated with fiber pullout and rupture as well as epoxy cracking. As compared to Kevlar™, the mallow fiber composite displayed practically the same ballistic efficiency. However, there is a reduction in both weight and cost, which makes the mallow fiber composites a promising material for personal ballistic protection.

  1. Fiber

    Science.gov (United States)

    ... for the treatment of diverticulosis , diabetes , and heart disease . ... fiber is found in oat bran, barley, nuts, seeds, beans, lentils, peas, ... heart disease. Insoluble fiber is found in foods such as ...

  2. Comparing Various Type of Natural Fibers as Filler in TPU: Mechanical Properties, Morphological and Oil Absorption Behavior

    Directory of Open Access Journals (Sweden)

    Ahad Nor Azwin

    2017-01-01

    Full Text Available The idea of using natural fibers as filler in various polymers has been extensively studied. Various types of natural fibers and polymers have been identified and it can be varied according to the particular application and the two main composite materials will have advantages and disadvantages of each. However, natural fibers are usually selected as filler because it is readily available and environmentally friendly, inexpensive, non-toxic, biodegradable and still have good characteristics for a variety of uses. In this study, four types of natural fiber have been used which; coconut shell, coconut fiber, corn cob, and pineapple skin, as fillers in thermoplastic polyurethane (TPU. The mixing process conducted through melt mixing techniques. The percentage of TPU and natural fibers are 100/0, 95/5, 90/10 and 85/15. Different type of fiber will affect the mechanical properties of the composites and have been studied through tensile testing. It showed that the result for pineapple fiber at 5% was the highest and can also be related to the characterizations of this composite that have been studied via the SEM morphology. Swelling testing is also having been done to prove the absorbency ability by natural fiber composites in cooking oil and engine oil. Then it concluded that the pineapple fiber absorbed large amount of both oil compared to others.

  3. Fiber

    Science.gov (United States)

    ... not getting enough fiber. According to the 2010 Dietary Guidelines, teen girls (14 to 18 years) should get 25 grams of fiber per day and teen boys (14 to 18 years) should get 31 grams of fiber per day. The best sources are fresh fruits and vegetables, nuts and legumes, ...

  4. On the suppression of superconducting phase formation in YBCO materials by templated synthesis in the presence of a sulfated biopolymer

    International Nuclear Information System (INIS)

    Smith, Elliott; Schnepp, Zoe; Wimbush, Stuart C.; Hall, Simon R.

    2008-01-01

    The use of biopolymers as templates to control superconductor crystallization is a recent phenomenon and is generating a lot of interest both from the superconductor community and in materials chemistry circles. This work represents a critical finding in the use of such biopolymers, in particular the contraindicatory nature of sulfur when attempting to affect a morphologically controlled synthesis. Synthesis of superconducting nanoparticles was attempted using carrageenan as a morphological template. Reactive sulfate groups on the biopolymer prevent this, producing instead significant quantities of barium sulfate nanotapes. By substituting the biopolymer for structurally analogous, non-sulfated agar, we show that superconducting nanoparticles could be successfully synthesized

  5. Continuous microcellular foaming of polylactic acid/natural fiber composites

    Science.gov (United States)

    Diaz-Acosta, Carlos A.

    Poly(lactic acid) (PLA), a biodegradable thermoplastic derived from renewable resources, stands out as a substitute to petroleum-based plastics. In spite of its excellent properties, commercial applications are limited because PLA is more expensive and more brittle than traditional petroleum-based resins. PLA can be blended with cellulosic fibers to reduce material cost. However, the lowered cost comes at the expense of flexibility and impact strength, which can be enhanced through the production of microcellular structures in the composite. Microcellular foaming uses inert gases (e.g., carbon dioxide) as physical blowing agents to make cellular structures with bubble sizes of less than 10 microm and cell-population densities (number of bubbles per unit volume) greater than 109 cells/cm³. These unique characteristics result in a significant increase in toughness and elongation at break (ductility) compared with unfoamed parts because the presence of small bubbles can blunt the crack-tips increasing the energy needed to propagate the crack. Microcellular foams have been produced through a two step batch process. First, large amounts of gas are dissolved in the solid plastic under high pressure (sorption process) to form a single-phase solution. Second, a thermodynamic instability (sudden drop in solubility) triggers cell nucleation and growth as the gas diffuses out of the plastic. Batch production of microcellular PLA has addressed some of the drawbacks of PLA. Unfortunately, the batch foaming process is not likely to be implemented in the industrial production of foams because it is not cost-effective. This study investigated the continuous microcellular foaming process of PLA and PLA/wood-fiber composites. The effects of the processing temperature and material compositions on the melt viscosity, pressure drop rate, and cell-population density were examined in order to understand the nucleation mechanisms in neat and filled PLA foams. The results indicated that

  6. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2017-11-01

    Full Text Available The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF, namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm−1, which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  7. Interaction of low-temperature plasma with knitted fabric based on natural cellulose fibers

    Science.gov (United States)

    Azanova, A. A.; Borodaev, I. A.; Shakhirov, A. A.; Sysoev, V. A.; Zheltukhin, V. S.

    2017-11-01

    The influence of low-temperature plasma on a knitted fabric of natural cellulose fibers is considered. It is shown that the plasma ion energy is sufficient for the waxy layer destruction. It was determined that the ion bombardment and the paraffin vaporization lead to disintegration of the natural waxy fiber layer and cause the defects in paraffin layer. The local ruptures of carbon chains of alkane molecules of the paraffin layer are caused by the lowenergy plasma ions bombardment and the ions recombination. The alkyl radicals which react with the plasma gas particles and with each other were identified. As a result of reactions of radicals, the hydrophilic functional groups was evaluated by IR spectroscopy and secondary ion mass spectrometry. All these changes facilitate the penetration of the working solutions in the fiber. Plasma effect leads to an increase in the hydrophilic properties of the material and can replace the liquid processes of preparing knitted fabrics for dyeing.

  8. Fabrication, functionalization, and application of electrospun biopolymer nanofibers.

    Science.gov (United States)

    Kriegel, Christina; Arecchi, Alessandra; Arrechi, Alessandra; Kit, Kevin; McClements, D J; Weiss, Jochen

    2008-09-01

    manufacturing with a particular emphasis on the use of biopolymers. We will review typical fabrication set-ups, discuss the influence of process conditions on nanofiber properties, and then review previous studies that describe the production of biopolymer-based nanofibers. Finally we briefly discuss emerging methods to further functionalize fibers and discuss potential applications in the area of food science and technology.

  9. Effects of weathering on color loss of natural fiber : thermoplastic composites

    Science.gov (United States)

    Robert H. Falk; Colin. Felton; Thomas. Lundin

    2000-01-01

    The technology currently exists to manufacture natural fiber-thermoplastic composites from recycled materials. Development of commodity building products from these composites would open huge markets for waste-based materials in the United States. To date, the construction industry has only accepted wood-thermoplastic composite lumber and only for limited applications...

  10. Effects of weathering on color loss of natural fiber thermoplastic composites

    Science.gov (United States)

    R.H. Falk; C. Felton; T. Lundin

    2001-01-01

    The technology currently exists to manufacture natural fiber thermoplastic composites from recycled materials. Development of commodity-building products from these composites would open up huge markets for waste-based materials in the US. To date, the construction industry has only accepted wood thermoplastic composite lumber (and only for limited applications). In...

  11. Indoor release of asbestiform fibers from naturally contaminated water and related health risk.

    Science.gov (United States)

    Roccaro, Paolo; Vagliasindi, Federico G A

    2018-07-01

    This study investigates the occurrence of airborne asbestiform fibers released in indoor ambient due to the use of asbestos naturally contaminated water. Some experiments employed a laboratory physical model using an ultrasonic humidifier charged with contaminated groundwater. Other experiments were carried out at full scale to assess the release of asbestiform fibers during showering. Obtained results show that the concentration of the airborne asbestiform fibers released in the bathroom during showering is higher than the limit value set by the European and Italian Regulations, while the concentration of fibers released by the humidifier is much lower. However, it is noteworthy that the use of the humidifier at high exposure time results in similar health risk. Strong correlations were found between the concentration of the airborne asbestiform fibers and a novel surrogate parameter (i.e. the exposure-specific-water-consumption). These correlations can be used to monitor the asbestiform fibers concentration at varying operating conditions and therefore, to control the resulting health risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The Determination of the Optimal Material Proportion in Natural Fiber-Cement Composites Using Design of Mixture Experiments

    OpenAIRE

    Aramphongphun Chuckaphun; Ungtawondee Kampanart; Chaysuwan Duangrudee

    2016-01-01

    This research aims to determine the optimal material proportion in a natural fiber-cement composite as an alternative to an asbestos fibercement composite while the materials cost is minimized and the properties still comply with Thai Industrial Standard (TIS) for applications of profile sheet roof tiles. Two experimental sets were studied in this research. First, a three-component mixture of (i) virgin natural fiber, (ii) synthetic fiber and (iii) cement was studied while the proportion of c...

  13. The characterization of the adsorption of cadmium from aqueous solution using natural fibers treated with nanoparticles

    Science.gov (United States)

    Rediske, Nicole M.

    The objective of this research was to characterize natural carbon fibers from coconut husks, both bare and impregnated with metallic nanoparticles, in removing cadmium from aqueous media. The adsorbent load, kinetics, isotherm parameters, removal efficiencies, desorption capacity and possible contaminant removal mechanisms were evaluated. It was found that the fibers treated with metallic nanoparticles performed better than the bare fibers in removing cadmium from water. The ideal conditions were found to be neutral pH with low initial cadmium concentrations. Through the kinetic analyses, the adsorption process was first thought to be pseudo first order with two separate adsorption mechanisms apparent. Upon further analysis, it was seen that the first mechanism does not follow the pseudo first order kinetics model. An increase in calcium and magnesium concentrations was observed as the cadmium concentrations decreases. This increase corresponds with first mechanism. This suggests the cadmium removal in the first mechanism is due to ion exchange. The second mechanism's rate constant was consistently lower than the first mechanisms rate constant by an order of magnitude. This led to the hypothesis that the second mechanism is controlled by van de Waals forces, specifically ion-induced dipole interactions, and physical adsorption. It was also found that the cadmium does not effectively desorb from the wasted fibers in DI water. Keywords: Adsorption; kinetics; pseudo first order; cadmium; metallic nanoparticles; natural fibers; removal efficiencies; ion exchange.

  14. Lithium ion conducting biopolymer electrolyte based on pectin doped with Lithium nitrate

    Science.gov (United States)

    Manjuladevi, R.; Selvin, P. Christopher; Selvasekarapandian, S.; Shilpa, R.; Moniha, V.

    2018-04-01

    The Biopolymer electrolyte based on pectin doped with lithium nitrate of different concentrations have been prepared by solution casting technique. The decrease in crystalline nature of the biopolymer has been identified by XRD analyses. The complex formation between the polymer and the salt has been revealed using FTIR analysis. The ionic conductivity has been explored using A.C. impedance spectroscopy which reveals that the biopolymer containing 30 wt% Pectin: 70wt%LiNO3 has highest ionic conductivity of 3.97 × 10-3 Scm-1.

  15. Dispersability of Carbon Nanotubes in Biopolymer-Based Fluids

    Directory of Open Access Journals (Sweden)

    Franco Tardani

    2015-01-01

    Full Text Available In this review the dispersability of carbon nanotubes in aqueous solutions containing proteins, or nucleic acids, is discussed. Data reported previously are complemented by unpublished ones. In the mentioned nanotube-based systems several different phases are observed, depending on the type and concentration of biopolymer, as well as the amount of dispersed nanotubes. The phase behavior depends on how much biopolymers are adsorbing, and, naturally, on the molecular details of the adsorbents. Proper modulation of nanotube/biopolymer interactions helps switching between repulsive and attractive regimes. Dispersion or phase separation take place, respectively, and the formation of liquid crystalline phases or gels may prevail with respect to dispersions. We report on systems containing ss-DNA- and lysozyme-stabilized nanotubes, representative of different organization modes. In the former case, ss-DNA rolls around CNTs and ensures complete coverage. Conversely, proteins randomly and non-cooperatively adsorb onto nanotubes. The two functionalization mechanisms are significantly different. A fine-tuning of temperature, added polymer, pH, and/or ionic strength conditions induces the formation of a given supra-molecular organization mode. The biopolymer physico-chemical properties are relevant to induce the formation of different phases made of carbon nanotubes.

  16. Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate

    DEFF Research Database (Denmark)

    d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu

    2016-01-01

    between glucuronic acids in xylans and lignin alcohols. By means of synthesized complex LCC model substrates we provide kinetic data suggesting a preference of fungal GEs for esters of bulky arylalkyl alcohols such as ester LCCs. Furthermore, using natural corn fiber substrate we report the first examples...... of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase...

  17. Electrical properties of conducting loads produced from polyaniline deposited in natural fibers and nanoclays

    International Nuclear Information System (INIS)

    Kosenhoski, Dirlaine; Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla; Pachekoski, Wagner M.

    2015-01-01

    Conducting polymers are known for their excellent magnetic and electrical properties, but they still are an expensive and limited choice to their use as a conducting load for composite materials. An alternative to optimize the electrical conductivity of polymeric composites is the deposition of a conducting polymer on materials already used as loads, as the deposition on natural fibers or the encapsulation of polymeric chains in the voids of host structures. In this work, bananastem fiber and montmorillonite nanoclay (MMT) were used as host structures for polyaniline synthesis in order to produce conducting loads. Samples were characterized by FT-IR and X-Rays Diffraction in order to confirm the formation of polyanilina / bananastem fibers or polyanilina / nanoclays loads. Influence on the electrical properties of the composites were evaluated by Electrochemical Impedance Spectroscopy (EIS), showing the maintenance of the electric conductivity of polyaniline and its potential use as a load for the formation of conducting composites. (author)

  18. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization.

    Science.gov (United States)

    Thomas, Martin George; Abraham, Eldho; Jyotishkumar, P; Maria, Hanna J; Pothen, Laly A; Thomas, Sabu

    2015-11-01

    Nanocellulose fibers having an average diameter of 50nm were isolated from raw jute fibers by steam explosion process. The isolation of nanocellulose from jute fibers by this extraction process is proved by SEM, XRD, FTIR, birefringence and TEM characterizations. This nanocellulose was used as the reinforcing agent in natural rubber (NR) latex along with crosslinking agents to prepare crosslinked nanocomposite films. The effects of nanocellulose loading on the morphology and mechanics of the nanocomposites have been carefully analyzed. Significant improvements in the Young's modulus and tensile strength of the nanocomposite were observed because of the reinforcing ability of the nanocellulose in the rubber matrix. A mechanism is suggested for the formation of the Zn-cellulose complex. The three-dimensional network of cellulose nanofibers (cellulose/cellulose network and Zn/cellulose network) in the NR matrix plays a major role in improving the properties of the crosslinked nanocomposites. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Combination of natural fiber Boehmeria nivea (ramie) with matrix epoxide for bullet proof vest body armor

    Energy Technology Data Exchange (ETDEWEB)

    Anggoro, Didi Dwi, E-mail: anggorophd@gmail.com; Kristiana, Nunung, E-mail: nuna.c631@gmail.com [Master of Chemical Engineering, Faculty of Engineering, Diponegoro University Jln. Prof. Sudharto, Tembalang, Semarang, 50239 (Indonesia)

    2015-12-29

    Ballistic protection equipment, such as a bulletproof vest, is a soldier’s most important means of preserving life and survivability in extreme combat conditions. The bulletproof vests are designed to protect the user’s chest from injury without disturbing the ability to perform his duties. Aromatic polyamide or aramid fibers known under the trade name Kevlar, Trawon and so is synthetic fiber materials commonly used in the manufacture of bulletproof vests. This synthetic fibers have high tensile strength and ductility. Kevlar is expensive and imported material. In this study, will introduce local natural raw materials, ramie fiber (Boehmeria nivea) which is cheaper and environmentally friendly. It has enough tenacity and tensile strength as a bulletproof vest. This experiment uses two panels, there are Panel A as front surface of Panel B. Panel A is a combination of ramie and epoxide matrix, while panel B is only ramie. From several variations of experimental combinations between Panel A and Panel B, optimal combination obtained with 16 layers of panel A and 31-34 layers of panel B which is able to protect againts cal. 7.65 mm × 17 mm (.32 ACP) bullet fired through pistol .32 Pindad from a distance of 20 meters. Panel with a size of 20 cm × 20 cm has a total thickness between 12,922 to13,745 mm and a total weight between 506,26 to 520,926gram. Scanning electron microscopy (SEM) observations indicated that the porosity and surface area of the ramie fiber is smooth, fiber surfaces showed topography with micropores. SEM also showed well-arranged structure of fibers bonding. Energy Dispersive X-ray (EDX) analysis indicated 100 % carbon contents in ramie fiber. Test result indicates that panel from composite ramie-epoxide can reach the level 1of International Standard of NIJ - 010104. Compared to panel from polyester fiber, the panel from composite ramie-epoxide (0,50-0,52 kg) is lighter weight than panel polyester fiber (1,642 kg)

  20. Combination of natural fiber Boehmeria nivea (ramie) with matrix epoxide for bullet proof vest body armor

    International Nuclear Information System (INIS)

    Anggoro, Didi Dwi; Kristiana, Nunung

    2015-01-01

    Ballistic protection equipment, such as a bulletproof vest, is a soldier’s most important means of preserving life and survivability in extreme combat conditions. The bulletproof vests are designed to protect the user’s chest from injury without disturbing the ability to perform his duties. Aromatic polyamide or aramid fibers known under the trade name Kevlar, Trawon and so is synthetic fiber materials commonly used in the manufacture of bulletproof vests. This synthetic fibers have high tensile strength and ductility. Kevlar is expensive and imported material. In this study, will introduce local natural raw materials, ramie fiber (Boehmeria nivea) which is cheaper and environmentally friendly. It has enough tenacity and tensile strength as a bulletproof vest. This experiment uses two panels, there are Panel A as front surface of Panel B. Panel A is a combination of ramie and epoxide matrix, while panel B is only ramie. From several variations of experimental combinations between Panel A and Panel B, optimal combination obtained with 16 layers of panel A and 31-34 layers of panel B which is able to protect againts cal. 7.65 mm × 17 mm (.32 ACP) bullet fired through pistol .32 Pindad from a distance of 20 meters. Panel with a size of 20 cm × 20 cm has a total thickness between 12,922 to13,745 mm and a total weight between 506,26 to 520,926gram. Scanning electron microscopy (SEM) observations indicated that the porosity and surface area of the ramie fiber is smooth, fiber surfaces showed topography with micropores. SEM also showed well-arranged structure of fibers bonding. Energy Dispersive X-ray (EDX) analysis indicated 100 % carbon contents in ramie fiber. Test result indicates that panel from composite ramie-epoxide can reach the level 1of International Standard of NIJ - 010104. Compared to panel from polyester fiber, the panel from composite ramie-epoxide (0,50-0,52 kg) is lighter weight than panel polyester fiber (1,642 kg)

  1. Soil Improvement Using MICP and Biopolymers: A Review

    Science.gov (United States)

    Sohail Ashraf, Muhammad; Baharom Azahar, Syed; Zulaikha Yusof, Nur

    2017-08-01

    Ground improvement techniques provide strong natural platforms for construction activities and save the need for designing more resistant structures which would have been necessary on weak ground. This paper discusses the biogeotechnical techniques for improving the resistance of unsaturated sand dunes against surficial erosion by natural processes of wave actions and storm surges. Mechanism of microbially induced calcite precipitation (MICP) and its optimization by utilizing sea water and minimal urea usage is discussed. Common factors affecting the MICP process are briefly discussed. Biomineralization using biopolymers is also described along with the soil strengthening mechanisms. Geotechnical applications of some commonly available biopolymers are described briefly. Advantages and limitations in both these mineralization methods are analyzed and some research opportunities are pointed out for future research.

  2. A Review of Natural Fiber Reinforced Poly(Vinyl Alcohol Based Composites: Application and Opportunity

    Directory of Open Access Journals (Sweden)

    Boon Khoon Tan

    2015-11-01

    Full Text Available Natural fibers are fine examples of renewable resources that play an important role in the composites industry, which produces superior strength comparable to synthetic fibers. Poly(vinyl alcohol (PVA composites in particular have attracted enormous interest in view of their satisfactory performance, properties and biodegradability. Their performance in many applications such as consumer, biomedical, and agriculture is well defined and promising. This paper reviews the utilization of natural fibers from macro to nanoscale as reinforcement in PVA composites. An overview on the properties, processing methods, biodegradability, and applications of these composites is presented. The advantages arising from chemical and physical modifications of fibers or composites are discussed in terms of improved properties and performance. In addition, proper arrangement of nanocellulose in composites helps to prevent agglomeration and results in a better dispersion. The limitations and challenges of the composites and future works of these bio-composites are also discussed. This review concludes that PVA composites have potential for use in numerous applications. However, issues on technological feasibility, environmental effectiveness, and economic affordability should be considered.

  3. Natural tooth pontic with splinting of periodontally weakened teeth using fiber-reinforced composite resin

    Directory of Open Access Journals (Sweden)

    Gauri Srinidhi

    2014-01-01

    Full Text Available Replacement of missing anterior teeth due to periodontal reasons is challenging due to the poor support of abutment teeth. This prevents the use of fixed partial dentures (FPDs. Fiber-reinforced splinting provides a viable alternative to the dentist while choosing a treatment plan in replacing missing anterior teeth in periodontally compromised patients as opposed to conventional modalities like FPDs or removable partial dentures. Replacing missing teeth using either patient′s own tooth or a denture tooth as pontic can be done by splinting adjacent teeth with fiber reinforced composite. The splinting has an additional advantage of stabilizing adjacent mobile teeth. This case report details the case selection, procedure with follow-up of a case where the natural extracted tooth of the patient was used as pontic to replace a missing anterior tooth. The splinting was done with fiber reinforced composite resin. Fiber-reinforced composite resin splinting of patient′s extracted natural tooth is economical, fast, and easy to use chairside technique with the added benefit of periodontal stabilization.

  4. Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy.

    Science.gov (United States)

    Maynez-Rojas, M A; Casanova-González, E; Ruvalcaba-Sil, J L

    2017-05-05

    Understanding dye chemistry and dye processes is an important issue for studies of cultural heritage collections and science conservation. Fiber Optics Reflectance Spectroscopy (FORS) is a powerful technique, which allows preliminary dye identification, causing no damage or mechanical stress on the artworks subjected to analysis. Some information related to specific light scattering and absorption can be obtained in the UV-visible and infrared range (300-1400nm) and it is possible to discriminate the kind of support fiber in the near infrared region (1000-2500nm). The main spectral features of natural dye fibers samples, such as reflection maxima, inflection points and reflection minima, can be used in the differentiation of various red natural dyes. In this work, a set of dyed references were manufactured following Mexican recipes with red dyes (cochineal and brazilwood) in order to determine the characteristic FORS spectral features of fresh and aged dyed fibers for their identification in historical pieces. Based on these results, twenty-nine indigenous textiles belonging to the National Commission for the Development of Indigenous People of Mexico were studied. Cochineal and brazilwood were successfully identified by FORS in several pieces, as well as the mixture of cochineal and indigo for purple color. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy

    Science.gov (United States)

    Maynez-Rojas, M. A.; Casanova-González, E.; Ruvalcaba-Sil, J. L.

    2017-05-01

    Understanding dye chemistry and dye processes is an important issue for studies of cultural heritage collections and science conservation. Fiber Optics Reflectance Spectroscopy (FORS) is a powerful technique, which allows preliminary dye identification, causing no damage or mechanical stress on the artworks subjected to analysis. Some information related to specific light scattering and absorption can be obtained in the UV-visible and infrared range (300-1400 nm) and it is possible to discriminate the kind of support fiber in the near infrared region (1000-2500 nm). The main spectral features of natural dye fibers samples, such as reflection maxima, inflection points and reflection minima, can be used in the differentiation of various red natural dyes. In this work, a set of dyed references were manufactured following Mexican recipes with red dyes (cochineal and brazilwood) in order to determine the characteristic FORS spectral features of fresh and aged dyed fibers for their identification in historical pieces. Based on these results, twenty-nine indigenous textiles belonging to the National Commission for the Development of Indigenous People of Mexico were studied. Cochineal and brazilwood were successfully identified by FORS in several pieces, as well as the mixture of cochineal and indigo for purple color.

  6. Preparation and characterization of regenerated cellulose membranes from natural cotton fiber

    Directory of Open Access Journals (Sweden)

    Yanjuan CAO

    2015-06-01

    Full Text Available A series of organic solutions with different cellulose concentrations are prepared by dissolving natural cotton fibers in lithium chloride/dimethyl acetamide (LiCl/DMAC solvent system after the activation of cotton fibers. Under different coagulating bath, the regenerated cellulose membranes are formed in two kinds of coagulation baths, and two coating methods including high-speed spin technique (KW-4A spin coating machine and low-speed scraping (AFA-Ⅱ Film Applicator are selected in this paper. The macromolecular structure, mechanical properties, crystallinity, thermal stability and wetting property of the regenerated cellulose membrane are characterized by Scanning Electron Microscope(SEM, Fourier Transform Infrared Spectroscopy (FT-IR,X-ray diffraction (XRD, Thermogravimetric analysis (TG and contacting angle tester. The effects of mass fraction, coagulation bath type, membrane forming process on the regenerated membrane properties are investigated. Experimental results show that the performance of regenerated cellulose membrane is relatively excellent under the condition of using the KW-4A high-speed spin method, water coagulation bath, and when mass fraction of cellulose is 3.5%. The crystallinity of the regenerated cellulose membrane changes a lot compared with natural cotton fibers. The variation trend of thermal stability is similar with that of cotton fiber. But thermal stability is reduced to some degree, while the wetting ability is improved obviously.

  7. The Effects of Environmental Exposure on the Optical, Physical, and Chemical Properties of Manufactured Fibers of Natural Origin.

    Science.gov (United States)

    Brinsko, Kelly M; Sparenga, Sebastian; King, Meggan

    2016-09-01

    Manufactured fibers derived from natural origins include viscose rayon, azlon, and polylactic acid (PLA). A 2-year study was conducted to document any changes these fibers undergo as a result of exposure to various environmental conditions. Fabric swatches representing each fiber type were exposed to freshwater, saltwater, heat, cold, ultraviolet light, or composter conditions. Fibers from the swatches were periodically analyzed using polarized light microscopy and Fourier transform infrared microspectroscopy. Fiber solubility and melting-point behavior were measured every 6 months. Except for the complete degradation of viscose rayon in the composter, saltwater, and freshwater environs, no changes in the optical properties, infrared spectra, solubility, or melting points of the remaining fibers in any of the environments were observed. However, microscopic morphological changes were observed in fibers from two azlon swatches submerged in freshwater and saltwater, two PLA swatches exposed to ultraviolet light, and two viscose rayon swatches exposed to ultraviolet light. © 2016 American Academy of Forensic Sciences.

  8. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    Science.gov (United States)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  9. Ultrasonic Determination of the Elastic Constants of Epoxy-natural Fiber Composites

    Science.gov (United States)

    Valencia, C. A. Meza; Pazos-Ospina, J. F.; Franco, E. E.; Ealo, Joao L.; Collazos-Burbano, D. A.; Garcia, G. F. Casanova

    This paper shows the applications ultrasonic through-transmission technique to determine the elastic constants of two polymer-natural fiber composite materials with potential industrial application and economic and environmental advantages. The transversely isotropic coconut-epoxy and fique-epoxy samples were analyzed using an experimental setup which allows the sample to be rotated with respect to transducers faces and measures the time-of-flight at different angles of incidence. Then, the elastic properties of the material were obtained by fitting the experimental data to the Christoffel equation. Results show a good agreement between the measured elastic constants and the values predicted by an analytical model. The velocities as a function of the incidence angle are reported and the effect of the natural fiber on the stiffness of the composite is discussed.

  10. Dielectric Behaviour of Some Woven Fabrics on the Basis of Natural Cellulosic Fibers

    Directory of Open Access Journals (Sweden)

    Florin St. C. Mustata

    2014-01-01

    Full Text Available The electrical permittivity of the weaves obtained from natural cellulosic yarns or mixed with synthetic fibers was established with capacitor method. The highest value of relative electrical permittivity in case of the woven fabric from natural cellulosic fibers has been observed at the weave made of pure hemp (13.55 and the lowest at the weave obtained from the pure jute—weave packing (1.87. Electrical permittivity value of the pure jute weave packing is comparable to that of the permittivity for the glass thread, when the work conditions are as follows: temperature 25°C and air humidity 35%. The relative electrical permittivity of the weave is depending on the degree of crimping yarns especially in the weft direction, technological density in direction of the warp and weft, and surface mass of the weave.

  11. The Determination of the Optimal Material Proportion in Natural Fiber-Cement Composites Using Design of Mixture Experiments

    Directory of Open Access Journals (Sweden)

    Aramphongphun Chuckaphun

    2016-01-01

    Full Text Available This research aims to determine the optimal material proportion in a natural fiber-cement composite as an alternative to an asbestos fibercement composite while the materials cost is minimized and the properties still comply with Thai Industrial Standard (TIS for applications of profile sheet roof tiles. Two experimental sets were studied in this research. First, a three-component mixture of (i virgin natural fiber, (ii synthetic fiber and (iii cement was studied while the proportion of calcium carbonate was kept constant. Second, an additional material, recycled natural fiber from recycled paper, was used in the mixture. The four-component mixture was then studied. Constrained mixture design was applied to design the two experimental sets above. The experimental data were then analyzed to build the mixture model. In addition, the cost of each material was used to build the materials cost model. These two mathematical models were then employed to optimize the material proportion of the natural fiber-cement composites. In the three-component mixture, it was found that the optimal material proportion was as follows: 3.14% virgin natural fiber, 1.20% synthetic fiber and 75.67% cement while the materials cost was reduced by 12%. In the four-component mixture, it was found that the optimal material proportion was as follows: 3.00% virgin natural fiber, 0.50% recycled natural fiber, 1.08% synthetic fiber, and 75.42% cement. The materials cost was reduced by 14%. The confirmation runs of 30 experiments were also analyzed statistically to verify the results.

  12. Design of a light weight fabric from natural cellulosic fibers with improved moisture related properties

    Science.gov (United States)

    Kucukali Ozturk, M.; Berkalp, O. B.; Nergis, B.

    2017-10-01

    This paper investigated moisture related comfort properties of woven fabrics from natural cellulosic fibers, namely cotton, linen, and Crailar. The comfort properties of the fabrics were measured in accordance with the relevant standards, and the results were comparatively discussed. In addition to that, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) together with Analytic Hierarchy Process (AHP) was employed to determine the most preferable fabric based on comfort properties.

  13. Genotoxicity of clays with potential use in biopolymers for food packaging

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Mortensen, Alicja; Hadrup, Niels

    Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements....... Biopolymers that are strengthened using reinforcing nano-scale fillers may improve the packaging quality by increasing barrier function and heat-resistance. Toxicological data on clays containing a nano-fraction and organo-modified clays remain very limited. The aim of this study is to investigate...... the genotoxic potential of clays that can be used in biopolymers for food contact materials. Two clays were tested in the comet assay using Caco-2 cells (a human colon cancer cell line); a natural montmorillonite (Cloisite®Na+) and an organo-modified montmorillonite (Cloisite®30B). Both clays were tested...

  14. PROPERTIES OF PREPARATIONS FUNCTIONAL BIOPOLYMERS OF A FISH ORIGIN

    Directory of Open Access Journals (Sweden)

    L. V. Antipova

    2014-01-01

    Full Text Available Development of theoretical and practical bases of technology of biocompatible materials of a domestic production on the basis of the natural polymeric systems allocated from raw materials of an animal, fish and a phytogenesis is actual in interests of development of science, health care, ecology. Now practically there are no domestic materials on the basis of products of modification of biopolymers for production of biocompatible materials with adjustable physical and chemical and biological properties. In this regard the special importance is gained by works on studying of functional properties of natural biopolymers, in particular collagen, elastin, hyaluronic acid. Interest of researchers to biopolymers of the proteinaceous nature is quite reasonable as they possess sufficient permeability, a big specific surface and sorption capacity, possibility of receiving convenient in technological forms, a low immunogenicity, possibility of regulation лизиса. Data on possible ways of use are presented in article secondary the collagenic wastes - skins of fishes of internal reservoirs of Russia. Innovative processing methods of processing of secondary raw materials with receiving functional biopolymers of a wide range of application are developed. With application of modern methods of researches their characteristics and property are defined. On a complex of organoleptic, physical and chemical indicators, indexes of biological activity the received preparations hyaluronic acid and collagen can find broad application in medicine, cosmetology. The resource-saving technology of receiving tanning semi-finished products easily giving in to further processing for the purpose of receiving leather haberdashery and textile production is developed. Thus, scientific new approaches in processing of skins of pond fishes on the basis of their deep processing are proved.

  15. A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics

    Science.gov (United States)

    Zhou, Qianlong; Jia, Chunyang; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan

    2016-09-01

    At present, the topic of building high-performance, miniaturized and mechanically flexible energy storage modules which can be directly integrated into textile based wearable electronics is a hotspot in the wearable technology field. In this paper, we reported a highly flexible fiber-shaped electrode fabricated through a one-step convenient hydrothermal process. The prepared graphene hydrogels/multi-walled carbon nanotubes-cotton thread derived from natural cotton thread is electrochemically active and mechanically strong. Fiber-shaped supercapacitor based on the prepared fiber electrodes and polyvinyl alcohol-H3PO4 gel electrolyte exhibits good capacitive performance (97.73 μF cm-1 at scan rate of 2 mV s-1), long cycle life (95.51% capacitance retention after 8000 charge-discharge cycles) and considerable stability (90.75% capacitance retention after 500 continuous bending cycles). Due to its good mechanical and electrochemical properties, the graphene hydrogels/multi-walled carbon nanotubes-cotton thread based all-solid fiber-shaped supercapacitor can be directly knitted into fabrics and maintain its original capacitive performance. Such a low-cost textile thread based versatile energy storage device may hold great potential for future wearable electronics applications.

  16. Brazilian natural fiber (jute as raw material for activated carbon production

    Directory of Open Access Journals (Sweden)

    CARLA F.S. ROMBALDO

    2014-12-01

    Full Text Available Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g–1. The thermal analysis indicates that above 600°C there is no significant mass loss.

  17. Biopolymer chitin: extraction and characterization; Biopolimero quitina: extracao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The biopolymers are materials made from renewable sources such as soybean, corn, cane sugar, cellulose and chitin. Chitin is the most abundant biopolymer found in nature, after cellulose. The chemical structure of chitin is distinguished by the hydroxyl group, of structure from cellulose, located at position C-2, which in the chitin is replaced by acetamine group. The objective of this study was to develop the chitin from exoskeletons of Litopenaeus vannamei shrimp, which are discarded as waste, causing pollutions, environmental problems and thus obtain better utilization of these raw materials. It also, show the extraction process and deacetylation of chitosan. The extraction of chitin followed steps of demineralization, desproteinization and deodorization. Chitin and chitosan were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and the thermals properties were analyzed by thermogravimetry (TG/DTG). (author)

  18. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    Science.gov (United States)

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I

  19. Autonomous valve for detection of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Noeth, Nadine-Nicole; Fetz, Stefanie

    2009-01-01

    We present a polymer microvalve that allows the detection of biopolymer degradation without the need of external energy. The valve is based on a polymer container filled with a colored marker solution and closed by a thin lid. This structure is covered by a film of poly(L-lactide) and degradation...... of the biopolymer triggers the release of the color which is detected visually. The autonomous valve has potential for the fast testing of biopolymer degradation under various environmental conditions or by specific enzymes....

  20. Theme--Achieving 2020. Goal 3: All Students Are Conversationally Literate in Agriculture, Food, Fiber, and Natural Resource Systems.

    Science.gov (United States)

    Trexler, Cary, Ed.

    2000-01-01

    Nine theme articles focus on the need for students to be conversationally literate about agriculture, food, fiber, and natural resources systems. Discusses the definition of conversational literacy, the human and institutional resources needed, and exemplary models for promoting literacy. (JOW)

  1. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.

    2010-05-19

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2 partial pressures. The cross-linked membrane material shows high intrinsic separation performance for CO2 and CH4 (selectivity ∼49, CO2 permeability ∼161 barrer, with a feed at 65 psia, 35 °C, and 10% CO2). Cross-linked asymmetric hollow-fiber membranes made from the material show good resistance to CO2-induced plasticization. Carbon dioxide partial pressures as high as ∼400 psia were employed, and the membrane was shown to be promisingly stable under these aggressive conditions. The performance of the membrane was also analyzed using the dual-mode sorption/transport model. © 2010 American Chemical Society.

  2. Genotoxicity of clays with potential use in biopolymers for food packaging

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Mortensen, Alicja; Hadrup, Niels

    Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements. Biopoly......Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements....... Biopolymers that are strengthened using reinforcing nano-scale fillers may improve the packaging quality by increasing barrier function and heat-resistance. Toxicological data on clays containing a nano-fraction and organo-modified clays remain very limited. The aim of this study is to investigate...... the genotoxic potential of clays that can be used in biopolymers for food contact materials. Two clays were tested in the comet assay using Caco-2 cells (a human colon cancer cell line); a natural montmorillonite (Cloisite®Na+) and an organo-modified montmorillonite (Cloisite®30B). Both clays were tested...

  3. Electrochemistry of organic, bioactive compounds and biopolymers

    Czech Academy of Sciences Publication Activity Database

    Fojta, Miroslav; Navrátil, Tomáš

    2015-01-01

    Roč. 146, č. 5 (2015), s. 721-721 ISSN 0026-9247 Institutional support: RVO:68081707 ; RVO:61388955 Keywords : electrochemistry * biopolymers Subject RIV: CG - Electrochemistry Impact factor: 1.131, year: 2015

  4. System for measuring radioactivity of labelled biopolymers

    International Nuclear Information System (INIS)

    Gross, V.

    1980-01-01

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to said containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs

  5. Population genetic structure in natural and reintroduced beaver (Castor fiber populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Kautenburger, R.

    2008-12-01

    Full Text Available Castor fiber Linnaeus, 1758 is the only indigenous species of the genus Castor in Europe and Asia. Due to extensive hunting until the beginning of the 20th century, the distribution of the formerly widespread Eurasian beaver was dramatically reduced. Only a few populations remained and these were in isolated locations, such as the region of the German Elbe River. The loss of genetic diversity in small or captive populations throughgenetic drift and inbreeding is a severe conservation problem. However, the reintroduction of beaver populations from several regions in Europe has shown high viability and populations today are growing fast. In the present study we analysed the population genetic structure of a natural and two reintroduced beaver populations in Germany and Austria. Furthermore, we studied the genetic differentiation between two beaver species, C. fiber and the American beaver (C. canadensis, using RAPD (Random Amplified Polymorphic DNA as a genetic marker. The reintroduced beaver populations of different origins and the autochthonous population of the Elbe River showed a similar low genetic heterogeneity. There was an overall high genetic similarity in the species C. fiber, and no evidence was found for a clear subspecific structure in the populations studied.

  6. Corrosion Protection Performance of Polyester-Melamine Coating with Natural Wood Fiber Using EIS Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, PyongHwa; Shon, MinYoung [Pukyong National University, Busan (Korea, Republic of); Jo, DuHwan [POSCO, Gwangyang (Korea, Republic of)

    2016-04-15

    In the present study, polyester-melamine coating systems with natural wood fiber (NWF) were prepared and the effects of NWF on the corrosion protectiveness of the polyester-melamine coating were examined using EIS analysis. From the results, higher average surface roughness was observed with increase of NWF content. Water diffusivity and water uptake into the polyester-melamine coatings with NWF were much higher than that into the pure polyester-melamine coating. The decrease in the impedance modulus |Z| was associated with the localized corrosion on carbon steel, confirming that corrosion protection of the polyester-melamine coatings with NWF well agrees with its water transport behavior.

  7. Immediate tooth replacement using fiber-reinforced composite and natural tooth pontic.

    Science.gov (United States)

    Kermanshah, Hamid; Motevasselian, Fariba

    2010-01-01

    The loss and replacement of anterior maxillary teeth poses several challenges. In patients refusing implant surgery, when minimal tooth reduction is desired, a fiber-reinforced composite fixed-partial denture may be used as a conservative alternative to a conventional fixed-partial denture for replacement of a single missing tooth. This article describes a clinical technique and six-year follow-up. The patient presented with a missing maxillary central incisor due to localized juvenile periodontitis. The abutment teeth were clinically stable. The advantage of supragingival margins and minimal tooth structure removal made the bonded bridge with a natural tooth pontic a viable procedure for this compromised restorative situation.

  8. Formatting biopolymers using adjustable nanoconfinement

    Science.gov (United States)

    Berard, Daniel; Shayegan, Marjan; Michaud, Francois; Henkin, Gil; Scott, Shane; Leslie, Sabrina

    Sensitive visualization and conformational control of long, delicate biopolymers present critical challenges to emerging biotechnologies and biophysical studies. Next-generation nanofluidic manipulation platforms strive to maintain the structural integrity of genomic DNA prior to analysis but can face challenges in device clogging, molecular breakage, and single-label detection. We address these challenges by integrating the Convex Lens-induced Confinement (CLiC) technique with a suite of nanotopographies embedded within thin-glass nanofluidic chambers. We gently load DNA polymers into open-face nanogrooves in linear, concentric circular, and ring array formats and perform imaging with single-fluorophore sensitivity. We use ring-shaped nanogrooves to access and visualize confinement-enhanced self-ligation of long DNA polymers. We use concentric circular nanogrooves to enable hour-long observations of polymers at constant confinement in a geometry which eliminates the confinement gradient which causes drift and can alter molecular conformations and interactions. Taken together, this work opens doors to myriad biophysical studies and biotechnologies which operate on the nanoscale.

  9. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2015-02-01

    Full Text Available This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  10. Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers

    Directory of Open Access Journals (Sweden)

    Miguel A. Hidalgo-Salazar

    2015-01-01

    Full Text Available This study shows the effect of the incorporation of natural fique fibers in a matrix formed by low-density polyethylene and aluminum (LDPE-Al obtained in the recycling process of long-life Tetra Pak packaging. The reinforcement content was 10, 20, and 30% fibers, manufactured by hot-press compression molding of composite boards (LDPE-Al/fique. From the thermogravimetric analysis (TGA it was determined that the proportions of the LDPE-Al were 75 : 25 w/w. Likewise, it was found that the aluminum particles increased the rigidity of the LDPE-Al, reducing the impact strength compared to LDPE recycled from Tetra Pak without aluminum; besides this, the crystallinity in the LDPE-Al increased with the presence of aluminum, which was observed by differential scanning calorimetry (DSC. The maximum strength and Young’s modulus to tensile and flexural properties increased with the incorporation of the fibers, this increase being a direct function of the amount of reinforcement contained in the material. Finally, a reduction in the density of the compound by the generation of voids at the interface between the LDPE-Al and fique fibers was identified, and there was also a greater water absorption due to weak interphase fiber-matrix and the hydrophilic fibers contained in the material.

  11. Remote monitoring of a natural gas pipeline using fiber optic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cauchi, Sam; Morison, William Donald [Fiber Optic Systems Technology Inc. (FOX-TEK), Bedford, Nova Scotia (Canada)

    2009-07-01

    The pipeline network referred to herein transports natural gas from the NE part of British Columbia through Western Canada into the US Mid-West. Across over 2000 km of the operator's large diameter transmission pipeline system are numerous river crossings and other geotechnical hazards that are continuously identified and risk ranked using a variety of methods, including in line inspection and geotechnical surveys. One particular section of the operator's mainline near Edmonton, Alberta, where railway tracks have recently been installed overtop this vital natural gas transport pipeline, will be the focus of this paper. In order to protect the pipeline from soil stresses to be imposed by heavy cyclic loading during construction of the railway tracks and when trains begin passing overtop, protective concrete structures were constructed around the pipeline within the vicinity of the tracks. While these structures assist in maintaining the integrity of the pipeline in the presence of heavy loading forces, they simultaneously prevent any subsequent access to the pipeline for general inspection and repair. As a result, prior to the construction of the protective concrete structures, the operator made multiple modifications to the pipeline's integrity system within the area of the proposed tracks. This included the enhancement of the cathodic protection to further prevent external corrosion, and the installation of fiber optic strain gauges at multiple sites to ensure that strain levels remain within tolerable limits under the inaccessible area. Background information on operator's pipeline and the layout of the protective concrete structures and railways will be presented in addition to field data obtained using the fiber optic strain monitoring system. An introduction to fiber optic strain gauges will be given, followed by a discussion on the design and installation of the sensors themselves. The particular method used to analyze the strain data is

  12. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    Energy Technology Data Exchange (ETDEWEB)

    Zorla, Eyüp; Ipbüker, Cagatay [University of Tartu, Institute of Physics (Estonia); Biland, Alex [US Basalt Corp., Houston (United States); Kiisk, Madis [University of Tartu, Institute of Physics (Estonia); Kovaljov, Sergei [OÜ Basaltest, Tartu (Estonia); Tkaczyk, Alan H. [University of Tartu, Institute of Physics (Estonia); Gulik, Volodymyr, E-mail: volodymyr.gulik@gmail.com [Institute for Safety Problems of Nuclear Power Plants, Lysogirska 12, of. 201, 03028 Kyiv (Ukraine)

    2017-03-15

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  13. Physical and mechanical properties of composites based on a linear low-density polyethylene (LLDPE) and natural fiber waste

    Science.gov (United States)

    Nestore, O.; Kajaks, J.; Vancovicha, I.; Reihmane, S.

    2013-01-01

    The influence of the content and fiber length of textile waste (cotton, flax, and hemp) on the deformation and strength properties (in tension and bending) of a linear low-density polyethylene (LLDPE) was investigated. It was found that the tensile strength increased for all composites containing hemp fibers of up to 30 wt.%. The elongation at break rapidly decreased when the filler content was raised to 10 wt.%, but thereafter changed insignificantly. The flexural strength and modulus increased considerably with filler content in the composites. On the contrary, their deformability, as expected, decreased. The influence of hemp fibers on the physicalmechanical properties of the LLDPE was somewhat more pronounced. The optimum content of fibers in the composites (30 wt.%) was significantly smaller than that usually obtained (40-50 wt.% natural fibers) for other polyolefin composites, for example, with low-density polyethylene and polypropylene matrices. The highest values of strength parameters, both in tension and bending, were reached for systems with a fiber length of up to 1 mm. The melt flow index decreased considerably with increasing fiber content in the LLDPE matrix (from 4.4 dg/min for LLDPE to 0.05-0.14 dg/min for systems containing 30 wt.% fibers). Nevertheless, processing of the composites was possible by traditional methods, for example, extrusion.

  14. Preliminary Design and Experimental Investigation of a Novel Pneumatic Conveying Method to Disperse Natural Fibers in Thermoset Polymers

    Directory of Open Access Journals (Sweden)

    Mahi Fahimian

    2016-07-01

    Full Text Available Natural fibers can be attractive reinforcing materials in thermosetting polymers due to their low density and high specific mechanical properties. Although the research effort in this area has grown substantially over the last 20 years, manufacturing technologies to make use of short natural fibers in high volume fraction composites; are still limited. Natural fibers, after retting and preprocessing, are discontinuous and easily form entangled bundles. Dispersion and mixing these short fibers with resin to manufacture high quality, high volume fraction composites presents a significant challenge. In this paper, a novel pneumatic design for dispersion of natural fibers in their original discontinuous form is described. In this design, compressed air is used to create vacuum to feed and convey fibres while breaking down fibre clumps and dispersing them in an aerosolized resin stream. Model composite materials, made using proof-of-concept prototype equipment, were imaged with both optical and X-ray tomography to evaluate fibre and resin dispersion. The images indicated that the system was capable of providing an intimate mixture of resin and detangled fibres for two different resin viscosities. The new pneumatic process could serve as the basis of a system to produce well-dispersed high-volume fraction composites containing discontinuous natural fibres drawn directly from a loosely packed source.

  15. Investigation on wear characteristic of biopolymer gear

    Science.gov (United States)

    Ghazali, Wafiuddin Bin Md; Daing Idris, Daing Mohamad Nafiz Bin; Sofian, Azizul Helmi Bin; Basrawi, Mohamad Firdaus bin; Khalil Ibrahim, Thamir

    2017-10-01

    Polymer is widely used in many mechanical components such as gear. With the world going to a more green and sustainable environment, polymers which are bio based are being recognized as a replacement for conventional polymers based on fossil fuel. The use of biopolymer in mechanical components especially gear have not been fully explored yet. This research focuses on biopolymer for spur gear and whether the conventional method to investigate wear characteristic is applicable. The spur gears are produced by injection moulding and tested on several speeds using a custom test equipment. The wear formation such as tooth fracture, tooth deformation, debris and weight loss was observed on the biopolymer spur gear. It was noted that the biopolymer gear wear mechanism was similar with other type of polymer spur gears. It also undergoes stages of wear which are; running in, linear and rapid. It can be said that the wear mechanism of biopolymer spur gear is comparable to fossil fuel based polymer spur gear, thus it can be considered to replace polymer gears in suitable applications.

  16. Preconcentration of Cr(III) from Natural Water by Modified Nano Polyacrylonitrile Fiber by Methanolamine

    OpenAIRE

    Moghimi, Ali

    2011-01-01

    Modified nano polyacrylonitrile fiber (PANF) was prepared by adding acrylic fibers to methanolamine (MMA) with different concentration solutions. The stability of a chemically modified nano polyacrylonitrile fiber especially in concentrated hydrochloric acid which was then used as a recycling and pre-concentration reagent for further uses of modified nano polyacrylonitrile fiber. The application of this modified nano polyacrylonitrile fiber for sorption of a series of metal ions was performed...

  17. Natural Fiber Cut Machine Semi-Automatic Linear Motion System for Empty Fiber Bunches: Re-designing for Local Use

    Science.gov (United States)

    Asfarizal; Kasim, Anwar; Gunawarman; Santosa

    2017-12-01

    Empty Palm bunches of fiber is local ingredient in Indonesia that easy to obtain. Empty Palm bunches of fiber can be obtained from the palm oil industry such as in West Pasaman. The character of the empty Palm bunches of fiber that is strong and pliable has high-potential for particle board. To transform the large quantities of fiber become particles in size 0-10 mm requires a specially designed cut machine. Therefore, the machine is designed in two-stage system that is mechanical system, structure and cutting knife. Components that have been made, assembled and then tested to reveal the ability of the machine to cut. The results showed that the straight back and forth motion cut machine is able to cut out the empty oil palm bunches of fiber with a length 0-1 cm, 2 cm, 8 cm and the surface of the cut is not stringy. The cutting capacity is at a length of 2 cm in the result 24.4 (kg/h) and 8 cm obtained results of up to 84 (kg/h)

  18. Chitin and chitosan: biopolymers for wound management.

    Science.gov (United States)

    Singh, Rita; Shitiz, Kirti; Singh, Antaryami

    2017-12-01

    Chitin and chitosan are biopolymers with excellent bioactive properties, such as biodegradability, non-toxicity, biocompatibility, haemostatic activity and antimicrobial activity. A wide variety of biomedical applications for chitin and chitin derivatives have been reported, including wound-healing applications. They are reported to promote rapid dermal regeneration and accelerate wound healing. A number of dressing materials based on chitin and chitosan have been developed for the treatment of wounds. Chitin and chitosan with beneficial intrinsic properties and high potential for wound healing are attractive biopolymers for wound management. This review presents an overview of properties, biomedical applications and the role of these biopolymers in wound care. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  19. Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate.

    Science.gov (United States)

    d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard

    2016-02-10

    Lignin-carbohydrate complexes (LCCs) are in part responsible for the recalcitrance of lignocellulosics in relation to industrial utilization of biomass for biofuels. Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 have been proposed to be able to degrade ester LCCs between glucuronic acids in xylans and lignin alcohols. By means of synthesized complex LCC model substrates we provide kinetic data suggesting a preference of fungal GEs for esters of bulky arylalkyl alcohols such as ester LCCs. Furthermore, using natural corn fiber substrate we report the first examples of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase/hemicellulase preparations. These results emphasize the potential of GEs for delignification of biomass thereby improving the overall yield of fermentable sugars for biofuel production. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The concept of sustainable prefab modular housing made of natural fiber reinforced polymer (NFRP)

    Science.gov (United States)

    Setyowati, E.; Pandelaki, E. E.

    2018-03-01

    This research aims to formulate the concept of public housing based on research results on natural fiber reinforced polymer (FRP) material which has been done in the road map of research. Research output is the public housing design and specifications of FRP made of water hyacinths and coconut fiber. Method used is descriptive review of the concept based on references and material test which consists of density, water absorption, modulus of rupture (MOR), tensile strength, absorption coefficient and Sound Transmission Loss (STL). The entire tests of material were carried out in the laboratory of materials and construction, while the acoustic tests carried out using the impedance tubes method. The test results concluded that the FRP material may have a density between 0.2481 – 0.2777 g/cm3, the absorption coefficient is average of 0.450 – 0.900, the Modulus of Elasticity is between 4061 – 15193 kg/cm2, while the average of sound transmission loss is 52 – 59 dB. Furthermore, that the concept of public housing must be able to be the embryo of the concept of environment-friendly and low emissions housing.

  1. Epoxy Resins Toughened with Surface Modified Epoxidized Natural Rubber Fibers by One-Step Electrospinning.

    Science.gov (United States)

    Kim, Joo Ran; Kim, Jung J

    2017-04-27

    Epoxidized natural rubber fibers (ERFs) are developed through one-step electrospinning and directly deposited into epoxy resins without collecting and distributing of fibers. The shape of ERFs shows rough surface due to different evaporation rate of solvent mixture consisting of chloroform and dichloromethane and the average diameter of ERFs is 6.2 µm. The increase of ERFs loading from 0 to 20 wt % into the epoxy resin increases the fracture strain significantly from 1.2% to 13% and toughness from 0.3 MPa to 1.9 MPa by a factor of 7. However, the tensile strength and Young's modulus decrease about 34% from 58 MPa to 34 MPa and from 1.4 GPa to 0.9 GPa, respectively. Due to the crosslinking reactions between oxirane groups of ERFs and amine groups in the resin, surface roughness and the high aspect ratio of ERFs, ERFs result in more effective toughening effect with the minimum loss of tensile properties in epoxy resins.

  2. Epoxy Resins Toughened with Surface Modified Epoxidized Natural Rubber Fibers by One-Step Electrospinning

    Directory of Open Access Journals (Sweden)

    Joo Ran Kim

    2017-04-01

    Full Text Available Epoxidized natural rubber fibers (ERFs are developed through one-step electrospinning and directly deposited into epoxy resins without collecting and distributing of fibers. The shape of ERFs shows rough surface due to different evaporation rate of solvent mixture consisting of chloroform and dichloromethane and the average diameter of ERFs is 6.2 µm. The increase of ERFs loading from 0 to 20 wt % into the epoxy resin increases the fracture strain significantly from 1.2% to 13% and toughness from 0.3 MPa to 1.9 MPa by a factor of 7. However, the tensile strength and Young’s modulus decrease about 34% from 58 MPa to 34 MPa and from 1.4 GPa to 0.9 GPa, respectively. Due to the crosslinking reactions between oxirane groups of ERFs and amine groups in the resin, surface roughness and the high aspect ratio of ERFs, ERFs result in more effective toughening effect with the minimum loss of tensile properties in epoxy resins.

  3. Fabrication of biopolymer cantilevers using nanoimprint lithography

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Feidenhans'l, Nikolaj Agentoft; Fisker-Bødker, Nis

    2011-01-01

    The biodegradable polymer poly(l-lactide) (PLLA) was introduced for the fabrication of micromechanical devices. For this purpose, thin biopolymer films with thickness around 10 μm were spin-coated on silicon substrates. Patterning of microcantilevers is achieved by nanoimprint lithography. A major...... challenge was the high adhesion between PLLA and silicon stamp. Optimized stamp fabrication and the deposition of a 125 nm thick fluorocarbon anti-stiction coating on the PLLA allowed the fabrication of biopolymer cantilevers. Resonance frequency measurements were used to estimate the Young’s modulus...

  4. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Directory of Open Access Journals (Sweden)

    Jian Pu

    2013-01-01

    Full Text Available In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA and biopolymer solution extracted from cultivated activated sludge (ASBP. The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE method (R2=0.989 for BSA, 0.985 for ASBP.

  5. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    Science.gov (United States)

    Wang, Bei

    The focus of this work was to understand the fundamental dispersion mechanism of cellulose based nanofibers in bionanocomposites. The cellulose nanofibers were extracted from soybean pod and hemp fibers by chemo-mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 to 100 nm and lengths of thousands of nanometers which results in very high aspect ratio. In combination with a suitable matrix polymer, cellulose nanofiber networks show considerable potential as an effective reinforcement for high quality specialty applications of bio-based nanocomposites. Cellulose fibrils have a high density of --OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. The use of nanofibers has been mostly restricted to water soluble polymers. This thesis is focused on synthesizing the nanocomposite using a solid phase matrix polypropylene (PP) or polyethylene (PE) by hot compression and poly (vinyl alcohol) (PVA) in an aqueous phase by film casting. The mechanical properties of nanofiber reinforced PVA film demonstrated a 4-5 fold increase in tensile strength, as compared to the untreated fiber-blend-PVA film. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. Inverse gas chromatography (IGC) was used to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of cellulose nanofibers and the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Poly (lactic acid) (PLA) and polyhydroxybutyrate (PHB) based nanocomposites using cellulose nanofibers were prepared by extrusion, injection molding and hot compression. The IGC results indicated that styrene maleic anhydride coated and ethylene

  6. Obtention of gelatin biopolymers by ionizing radiation; Obtencao de biopolimeros de gelatina por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Takinami, Patricia Yoko Inamura

    2014-07-01

    The gelatin (Gel) is a biocompatible and biodegradable biopolymer, which naturally forms semi-solid colloids or hydrogels in aqueous solutions. As a hydrophilic polymer, the Gel has structural and physico-mechanical properties that distinguish it from synthetic hydrophilic polymers. The study of these properties led to the development of the present work. Thus, Gel-based films and hydrogels were developed using ionizing radiation technology by different techniques: irradiation with {sup 60}Co, electron beam (EB) and/or pulsed EB. The Gel based-films enriched with different additives, such as glycerol (GLY), polyvinyl alcohol (PVA), butylated hydroxytoluene (BHT), acrylamide and/or vegetal fiber, were irradiated with doses from 10 to 60 kGy, depending on the additive; some parameters like mechanical properties, color, and water absorption were analyzed. In the radio-induced synthesis of GEL nanohydrogels, polyethylene glycol (PEG) and the mixture (MIX) of additives, PEG and GEL, the size, molar mass and surface morphology of the nanohydrogels were analyzed. There was a significant increase of gel fraction with increase of the radiation dose for the GEL/fiber samples. The GEL based-films with 10% PVA irradiated at 20 kGy showed the highest puncture strength. The addition of antioxidant BHT affected on some GEL based-films properties on applied conditions. Regarding the nanohydrogels, there was a decrease of hydrodynamic radius of MIX irradiated with {sup 60}Co from 68 ± 25 nm (2 kGy) to 35 ± 4 nm (5 kGy). The radiation proved to be a convenient tool in the modification of polymeric materials for both, GEL films and hydrogels. (author)

  7. An Evaluation of Mechanical Properties on Kenaf Natural Fiber/Polyester Composite Structures as Table Tennis Blade

    Science.gov (United States)

    Amin, M. H. M.; Arifin, A. M. T.; Hassan, M. F.; Haq, R. H. A.; Rahman, M. N. A.; Ismail, A. E.; Rahim, M. Z.; Ibrahim, M. R.; Yunos, M. Z.; Ismail, R.

    2017-10-01

    Nowadays, natural fibers getting attention from researchers and industries to optimize the use it, with combination of polymers as composite structure, due to environmental awareness. Furthermore, it show a few advantage, such as biodegradability, light in weight and non-toxic characteristic. In this study, kenaf natural fibers was used as reinforcement material, with combination of polyester as matrix material, known as polymer matrix composites. The main purpose of this study is to analysis the mechanical properties of kenaf natural fiber/polyester composite structure, in order to know the suitability of kenaf natural fibers as replacement material for table tennis blade structure, instead of using wood. The structural panel of composite laminates has been produced using hand lay-up technique. The experimental works are performed in tension, impact (Charpy) and shear condition. The characteristic of different condition on kenaf composite structure was studied. Based on the result, it found the properties of kenaf composite structure, and it will used as a benchmark, to compare with initial properties of table tennis blade made by wood. In addition, the strength and a weakness of that particular materials and lamination structure will be identified.

  8. Natural and synthetic prion structure from X-ray fiber diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wille, Holger; Bian, Wen; McDonald, Michele; Kendall, Amy; Colby, David W.; Bloch, Lillian; Ollesch, Julian; Borovinskiy, Alexander L.; Cohen, Fred E.; Prusiner, Stanley B.; Stubbs, Gerald; (Vanderbilt); (UCSF)

    2009-10-21

    A conformational isoform of the mammalian prion protein (PrP{sup Sc}) is the sole component of the infectious pathogen that causes the prion diseases. We have obtained X-ray fiber diffraction patterns from infectious prions that show cross-{beta} diffraction: meridional intensity at 4.8 {angstrom} resolution, indicating the presence of {beta} strands running approximately at right angles to the filament axis and characteristic of amyloid structure. Some of the patterns also indicated the presence of a repeating unit along the fiber axis, corresponding to four {beta}-strands. We found that recombinant (rec) PrP amyloid differs substantially from highly infectious brain-derived prions, both in structure as demonstrated by the diffraction data, and in heterogeneity as shown by electron microscopy. In addition to the strong 4.8 {angstrom} meridional reflection, the recPrP amyloid diffraction is characterized by strong equatorial intensity at approximately 10.5 {angstrom}, absent from brain-derived prions, and indicating the presence of stacked {beta}-sheets. Synthetic prions recovered from transgenic mice inoculated with recPrP amyloid displayed structural characteristics and homogeneity similar to those of naturally occurring prions. The relationship between the structural differences and prion infectivity is uncertain, but might be explained by any of several hypotheses: only a minority of recPrP amyloid possesses a replication-competent conformation, the majority of recPrP amyloid has to undergo a conformational maturation to acquire replication competency, or inhibitory forms of recPrP amyloid interfere with replication during the initial transmission.

  9. Dietary fiber intake and endogenous serum hormone levels in naturally postmenopausal Mexican American women: the Multiethnic Cohort Study.

    Science.gov (United States)

    Monroe, Kristine R; Murphy, Suzanne P; Henderson, Brian E; Kolonel, Laurence N; Stanczyk, Frank Z; Adlercreutz, Herman; Pike, Malcolm C

    2007-01-01

    This study investigated dietary fiber intake in association with serum estrogen levels in naturally postmenopausal Latina women with a wide range of fiber intake. Estrone (E1), estradiol (E2), and sex-hormone-binding globulin (SHBG) were measured in 242 women. Associations between estrogen levels and intake of dietary fiber, including insoluble and soluble fractions, quantified from a food frequency questionnaire, were examined. The biomarker enterolactone was also measured. After adjustment for age, weight, and other nondietary factors, dietary fiber intake was inversely associated with E1 and E2; there was a 22% and 17% decrease (2Ptrend=0.023 and 0.045) among subjects in the highest quintile of intake compared with the lowest. Fitting dietary fiber together with soluble and insoluble nonstarch polysaccharides (NSP) showed a much greater decrease in E1 and E2 (47% and 41%, respectively) while increased soluble NSP intake showed increases in E1 and E2 (64% and 69%, respectively). Two foods, avocado and grapefruit, showed significant positive associations with E1 (2Ptrend=0.029 and 0.015, respectively). This study suggests that different components of dietary fiber may have very significant different effects on serum estrogen levels. The suggestive findings relating increased estrogen levels to avocado and grapefruit intakes need confirmation.

  10. Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas.

    Science.gov (United States)

    Chen, Grace; Koros, William J; Jones, Christopher W

    2016-04-20

    Zeolite NaY and metal organic frameworks MIL-53(Al) and UiO-66(Zr) are spun with cellulose acetate (CA) polymer to create hybrid porous composite fibers for the selective adsorption of sulfur odorant compounds from pipeline natural gas. Odorant removal is desirable to limit corrosion associated with sulfur oxide production, thereby increasing lifetime in gas turbines used for electricity generation. In line with these goals, the performance of the hybrid fibers is evaluated on the basis of sulfur sorption capacity and selectivity, as well as fiber stability and regenerability, compared to their polymer-free sorbent counterparts. The capacities of the powder sorbents are also measured using various desorption temperatures to evaluate the potential for lower temperature, energy, and cost-efficient system operation. Both NaY/CA and UiO-66(Zr)/CA hybrid fibers are prepared with high sorbent loadings, and both have high capacities and selectivities for t-butyl mercaptan (TBM) odorant sorption from a model natural gas (NG), while being stable to multiple regeneration cycles. The different advantages and disadvantages of both types of fibers relative are discussed, with both offering the potential advantages of low pressure drop, rapid heat and mass transfer, and low energy requirements over traditional sulfur removal technologies such as hydrodesulfurization (HDS) or adsorption in a pellet packed beds.

  11. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions.

    Science.gov (United States)

    Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru

    2018-04-04

    Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.

  12. Response to fire, thermal insulation and acoustic performance of rigid polyurethane agglomerates with addition of natural fiber

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Rizzo

    2015-03-01

    Full Text Available This paper aims to reuse rigid polyurethane waste in the preparation of composites with the addition of banana fibers and cellulose in order to qualify the acoustic performance, thermal insulation and reaction to fire the material with the addition of 7% of polysulfone. Agglomerated with 100% of polyurethane and either with 20% of banana fiber or 20% of cellulose were characterized in the sound transmission loss, thermal conductivity and reaction to fire, take into account variations in the granulometry of the solid polyurethane and type of pressing. Natural fiber composites had lower thermal conductivity, higher acoustic insulation in medium frequencies and the addition of polysulfone delayed the total time of firing the material.

  13. In vitro binding of steroid hormones by natural and purified fibers

    International Nuclear Information System (INIS)

    Shultz, T.D.; Howie, B.J.

    1986-01-01

    The in vitro binding of estrone, estradiol-17β, estriol, testosterone, dihydrotestosterone, and estrone-3-glucuronide by wheat, oat and corn brans, oat hulls, cellulose, lignin, and cholestyramine resin was measured. Steroid binding was carried out by mixing 50 mg of binding substance with varying substrate quantities (0.037 μCi; 0.50-2.51 pmol/incubation) of 3 H-estrone, 3 H-estradiol-17β, 3 H-estriol, 3 H-estrone-3-glucuronide, 4 H-testosterone, and 370 C for 1 hr with shaking. Following centrifugation of the reaction mixture, a 1 ml aliquot was analyzed for radioactivity. The extent of steroid sequestration was characteristic and reproducible for each hormone. Cholestyramine bound an average of 90% of all the steroids tested, whereas cellulose bound the least (12%). Of the other substances tested, lignin bound 87%; wheat and oat grans, 45% each; corn bran, 44%; and oat hulls, 32% of the unconjugated hormones. The conjugated steroid was less likely to bind than the unconjugated steroids. Lignin appeared to be an important component in the interaction with steroid hormones. The results support the hydrophobic of nature of adsorption and suggest that the components of the fiber in diet should be considered separately when evaluating in vivo metabolic effects. Implications include the possible modification of hormone-dependent cancer risk through dietary intervention

  14. Acoustic properties of polymer foam composites blended with different percentage loadings of natural fiber

    Science.gov (United States)

    Azahari, M. Shafiq M.; Rus, Anika Zafiah M.; Kormin, Shaharuddin; Taufiq Zaliran, M.

    2017-09-01

    This study investigates the acoustic properties of polymer foam composites (FC) filled with natural fiber. The FC were produced based on crosslinking of polyol, with flexible isocyanates and wood filler. The percentages of wood filler loading are 10, 15, and 20 wt% ratio of polyol. The FC also has a thickness of 10, 20 and 30 mm. The acoustic properties of the FC were determined by using Impedance Tube test, Optical Microscope (OM) and Mettler Toledo Density Kit test. The results revealed that FC20 with 30 mm in thickness gives the highest sound absorption coefficient (α) with 0.970 and 0.999, at low and high frequency respectively. FC20 also shows smallest pores structures size with 134.86 μm and biggest density with 868.5 kg/m3 which helps in absorbing sound. In this study, FC with different percentage loading of wood filler and different foam thickness shows the ability to contribute the absorption coefficient of polymeric foam at different frequency levels. Lastly, this type of FC is suitable for any type of sound absorption applications material.

  15. Overview of biopolymers as carriers of antiphlogistic agents for treatment of diverse ocular inflammations.

    Science.gov (United States)

    Sharma, Anil Kumar; Arya, Amit; Sahoo, Pravat Kumar; Majumdar, Dipak Kanti

    2016-10-01

    Inflammation of the eye is a usual clinical condition that can implicate any part of the eye. The nomenclature of variety of such inflammations is based on the ocular part involved. These diseases may jeopardize normal functioning of the eye on progression. In general, corticosteroids, antihistamines, mast cell stabilizers and non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammatory diseases/disorders of the eye. There have been several attempts via different approaches of drug delivery to overcome the low ocular bioavailability resulting from shorter ocular residence time. The features like safety, ease of elimination and ability to sustain drug release have led to application of biopolymers in ocular therapeutics. Numerous polymers of natural origin such as gelatin, collagen, chitosan, albumin, hyaluronic acid, alginates etc. have been successfully employed for preparation of different ocular dosage forms. Chitosan is the most explored biopolymer amongst natural biopolymers because of its inherent characteristics. The emergence of synthetic biopolymers (like PVP, PACA, PCL, POE, polyanhydrides, PLA, PGA and PLGA) has also added new dimensions to the drug delivery strategies meant for treatment of ophthalmic inflammations. The current review is an endeavor to describe the utility of a variety of biomaterials/polymers based drug delivery systems as carrier for anti-inflammatory drugs in ophthalmic therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent

    Science.gov (United States)

    A.R. Sanadi; D.F. Caulfield

    2000-01-01

    The interest in lignocellulosic fiber composites has been growing in recent years because of their high specific properties. In this work, a new technique was used to prepare specimen to observe the transcrystalline zones in kenaf fiber-polypropylene composites. A maleated polypropylene (MAPP) coupling agent was used to improve the stress-transfer efficiency in the...

  17. Naturally Compatible: Starch Acetate/Cellulosic Fiber Composites. I. Processing and Properties

    DEFF Research Database (Denmark)

    Nättinen, Kalle; Hyvärinen, Sari; Joffe, Roberts

    2010-01-01

    Composite compounds based on hemp and flax fibers in triethyl citrate plasticized starch acetate were prepared by melt processing. For better properties and processability, compounds with plasticizer contents in the range 20-35 wt% were screened. Composites were prepared with fiber contents up...

  18. Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser.

    Science.gov (United States)

    Ning, Qiu-Yi; Liu, Hao; Zheng, Xu-Wu; Yu, Wei; Luo, Ai-Ping; Huang, Xu-Guang; Luo, Zhi-Chao; Xu, Wen-Cheng; Xu, Shan-Hui; Yang, Zhong-Min

    2014-05-19

    The vector nature of multi-soliton dynamic patterns was investigated in a passively mode-locked figure-eight fiber laser based on the nonlinear amplifying loop mirror (NALM). By properly adjusting the cavity parameters such as the pump power level and intra-cavity polarization controllers (PCs), in addition to the fundamental vector soliton, various vector multi-soliton regimes were observed, such as the random static distribution of vector multiple solitons, vector soliton cluster, vector soliton flow, and the state of vector multiple solitons occupying the whole cavity. Both the polarization-locked vector solitons (PLVSs) and the polarization-rotating vector solitons (PRVSs) were observed for fundamental soliton and each type of multi-soliton patterns. The obtained results further reveal the fundamental physics of multi-soliton patterns and demonstrate that the figure-eight fiber lasers are indeed a good platform for investigating the vector nature of different soliton types.

  19. Gastrointestinal side effects of orlistat may be prevented by concomitant prescription of natural fibers (psyllium mucilloid).

    Science.gov (United States)

    Cavaliere, H; Floriano, I; Medeiros-Neto, G

    2001-07-01

    This placebo-controlled open study was designed to test the hypothesis that most of the gastrointestinal (GI) side events induced by treatment of obese patients with orlistat (a gastrointestinal lipase inhibitor) could be prevented or ameliorated by concomitant use of natural fibers (psyllium mucilloid). Two groups of obese women (BMI>27 kg/m(2)) were treated with orlistat 120 mg three times a day. One group (A, n=30) was randomized to receive orlistat and, approximately 6.0 g of orange-flavored psyllium mucilloid dissolved in water and the other group (B, n=30) received orlistat and orange-flavored placebo. At the end of 30 days and 2 weeks of washout, group A switched to placebo and group B received psyllium while continuing orlistat three times a day. Sixty professional women, more than 21-y-old with a body mass index (BMI) between 27.3 and 48.0 kg/m(2), who were not receiving any other medication. Assessments included weekly visits to attending physician, filling a form in which GI events were recorded, monthly measurements of body weight, blood pressure and serum lipids. The frequency and severity of GI events were evaluated by a score system, based on information provided by the patients. Both groups A and B significantly lost (Ppsyllium plus orlistat group (group A) the mean +/-s.e.m. of the scores reflecting GI events was 13.0+/-1.8, the placebo plus orlistat group (B) had a value of 35.9+/-2.7 (Ppsyllium plus orlistat a mean score of 8.9+/-1.5 (PPsyllium hydrophilic mucilloid concomitantly prescribed to obese patients receiving 120 mg of orlistat three times a day is an effective and safe adjunct therapy that is helpful in controlling the GI side effects of this pancreatic lipase inhibitor.

  20. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2013-01-01

    Full Text Available There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin, protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin. The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed.

  1. The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.

    Directory of Open Access Journals (Sweden)

    Singh Harvin Kaur A/P Gurchran

    2014-07-01

    Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.

  2. Significance of collective motions in biopolymers and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Go, Nobuhiro [Kyoto Univ. (Japan)

    1996-05-01

    Importance of collective variable description of conformational dynamics of biopolymers and the vital role that neutron inelastic scattering phenomena would play in its experimental determination are discussed. (author)

  3. Effects of Thermal and Humidity Aging on the Interfacial Adhesion of Polyketone Fiber Reinforced Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Han Ki Lee

    2016-01-01

    Full Text Available Polyketone fiber is considered as a reinforcement of the mechanical rubber goods (MRG such as tires, automobile hoses, and belts because of its high strength and modulus. In order to apply it to those purposes, the high adhesion of fiber/rubber interface and good sustainability to aging conditions are very important. In this study, polyketone fiber reinforced natural rubber composites were prepared and they were subjected to thermal and humidity aging, to assess the changes of the interfacial adhesion and material properties. Also, the effect of adhesive primer treatment, based on the resorcinol formaldehyde resin and latex (RFL, of polyketone fiber for high interfacial adhesion was evaluated. Morphological and property changes of the rubber composites were analyzed by using various instrumental analyses. As a result, the rubber composite was aged largely by thermal aging at high temperature rather than humidity aging condition. Interfacial adhesion of the polyketone/NR composites was improved by the primer treatment and its effect was maintained in aging conditions.

  4. Neutron scattering studies of the dynamics of biopolymer-water systems using pulsed-source spectrometers

    International Nuclear Information System (INIS)

    Middendorf, H.D.; Miller, A.

    1994-01-01

    Energy-resolving neutron scattering techniques provide spatiotemporal data suitable for testing and refining analytical models or computer simulations of a variety of dynamical processes in biomolecular systems. This paper reviews experimental work on hydrated biopolymers at ISIS, the UK Pulsed Neutron Facility. Following an outline of basic concepts and a summary of the new instrumental capabilities, the progress made is illustrated by results from recent experiments in two areas: quasi- elastic scattering from highly hydrated polysaccharide gels (agarose and hyaluronate), and inelastic scattering from vibrational modes of slightly hydrated collagen fibers

  5. Natural porous and nano fiber chitin structure from Gammarus argaeus (Gammaridae Crustacea)

    Science.gov (United States)

    Kaya, Murat; Tozak, Kabil Özcan; Baran, Talat; Sezen, Göksal; Sargin, Idris

    2013-01-01

    Chitin and its derivatives are commercially important biopolymers due to their applications in medicine, agriculture, water treatment, cosmetics and various biotechnological areas. Since chitin and its derivatives exhibit different chemical and physical properties depending on the source and isolation method, there is a growing demand for new chitin sources other than crab and shrimp worldwide. In this study Gammarus, a Crustacea, was investigated as a novel chitin source. Gammarus, which belongs to the family Gammaridae Crustacea, lives in the bottom of aquatic ecosystems. More than 200 species are known worldwide. One of these species, G. argaeus was investigated for chitin isolation. The alpha chitin isolated from G. argaeus was characterized by using analysis techniques such as infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). All these analyses confirmed that the isolated chitin from G. argaeus was in the alpha form. Furthermore, we described that dry weight of this species contained 11-12 % chitin. SEM examination of the isolated α-chitin revealed that it was composed of nanofibrils (15-55 nm) and pores (about 150 nm). PMID:26966425

  6. Biopolymer plugging effect. Laboratory-pressurized pumping flow studies

    Energy Technology Data Exchange (ETDEWEB)

    Khachatoorian, Robert; Petrisor, Ioana G.; Kwan, Chang-Chin; Yen, Teh Fu [Environmental Engineering Program, Department of Civil and Environmental Engineering, School of Engineering, University of Southern California, Kap. 210, 3620 S. Vermont Avenue, Los Angeles, CA 90089-2531 (United States)

    2003-05-01

    The use of biopolymers and their producing microorganisms to form a wide range of impervious barriers, as well as for enhancement of oil recovery (EOR) is already well documented. Both of these important applications of biopolymers are based on their plugging characteristics. Flow systems are essential to examine the plugging effect of biopolymers under different conditions, in order to select suitable biopolymers for a particular application. In the present study, the plugging effect of a number of biopolymers, namely xanthan, polyhydroxybutyrate (PHB), guar gum, polyglutamic acid (PGA) and chitosan, has been investigated in a laboratory-pressurized pumping flow system. The present work is also targeted to study the correlation, if any, between biopolymer structure and plugging effect. The experimental system included a horizontally mounted sand-pack column and provided a constant flow, using a transducer and recording the pressure difference. Thus, the permeability ratio could be evaluated for each biopolymer as models in the field. All of the biopolymers studied have shown positive plugging effects by reducing the permeability of sand over the 11-day experimental period. The best plugging effect was obtained for PHB, which can reach more than a billion-fold permeability reduction, followed by chitosan and PGA, with a million-fold reduction of permeability. These biopolymers can be successfully used alone or in combination in field applications for stabilizing underground contamination to stop the plumes of subsurface pollutants, as well as for improving oil recovery from the field. Our results show that the plugging effect is influenced by the structure of biopolymers. This study will lead to a new method for characterizing the biopolymers used for plugging.

  7. Biopolymers and its aplication on environment

    Directory of Open Access Journals (Sweden)

    Sonia Ospina

    2015-07-01

    Full Text Available The use of disposable packaging has made the world million tons of non-biodegradable waste generated . For many years we used non-biodegradable , petroleum plastic packaging . Belatedly we have realized that to continue this rate of contamination, soon ocasionaremos irreparable damage to the environment . It is therefore all efforts on seeking alternatives to the use of non-biodegradable packaging, are of great importance , in order to restore the damaged environment so far, and prevent deterioration onwards. In this regard , research in different areas of biotechnology has allowed the production of biodegradable packaging produced from microbial biopolymers.

  8. Biopolymer based nanocomposites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Botta, L.; Scaffaro, R.; Mistretta, M. C.; La Mantia, F. P. [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, UdR INSTM di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-05-18

    In this work, biopolymer based nanocomposites filled with graphene nanoplatelets (GnP) were prepared by melt compounding in a batch mixer. The polymer used as matrix was a commercial biodegradable polymer-blend of PLA and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), rheological and mechanical measurements. Moreover, the effect of the GnP amount on the investigated properties was evaluated. The results indicated that the incorporation of GnP increased the stiffness of the biopolymeric matrix.

  9. Searching for Natural Conductive Fibrous Structures via a Green Sustainable Approach Based on Jute Fibers and Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Diana P. Ferreira

    2018-01-01

    Full Text Available This paper provides new insights regarding jute fibers functionalization with silver nanoparticles (Ag NPs with improved conductivity values and highlights the sustainability of the processes involved. These NPs were applied onto jute fabrics by two different sustainable methods: ultraviolet (UV photoreduction and by using polyethylene glycol (PEG as a reducing agent and stabilizer. Field Emission Scanning Electron Microscopy (FESEM images demonstrated that the Ag NPs were incorporated on the jute fibers surface by the two different approaches, with sizes ranging from 70 to 100 nm. Diffuse reflectance spectra revealed the plasmon absorption band, corresponding to the formation of metallic Ag NPs, in all samples under study. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR was used to characterize the obtained samples, demonstrating NPs adsorption to the surface of the fibers. The resistivity value obtained by the two-point probe method of the jute fabric without functionalization is about 1.5 × 107 Ω·m, whereas, after NPs functionalization, it decreased almost 15,000 times, reaching a value of 1.0 × 103 Ω·m. Further research work is being undertaken for improving these values, however, 1000 Ω·m of resistivity (conductivity = 0.001 S/m is already a very reasonable value when compared with those obtained with other developed systems based on natural fibers. In summary, this work shows that the use of very simple methodologies enabled the functionalization of jute fibers with reasonable values of conductivity. This achievement has a huge potential for use in smart textile composites.

  10. Improvement of Thermo-Mechanical Properties of Short Natural Fiber Reinforced Recycled Polypropylene Composites through Double Step Grafting Process

    Science.gov (United States)

    Saputra, O. A.; Rini, K. S.; Susanti, T. D.; Mustofa, R. E.; Prameswari, M. D.; Pramono, E.

    2017-07-01

    This study focused on the effect of a compatibilizer addition, maleic anhydrides (MAH) on mechanical, thermal and water absorption properties of oil palm empty fruit bunches (EFB) fiber reinforced recycled polypropylene (rPP) biocomposites. The double steps grafting process were conducted by incorporated MAH on both rPP and EFB to improve the surface adhesion between these materials, to result in a good mechanical properties as well as biocompatibility to nature. The chemical test was carried out using FTIR (Fourier Transform Infra-Red) spectroscopy technique to evaluated grafting process. The mechanical test was investigated and found that the addition of 10 phr MAH to both rPP and EFB improved mechanical strength of the biocomposites higher than another formulas. In this study, thermal properties of biocomposites also characterized. Water absorption (WA) analysis showed the presence of EFB fiber increased the water uptake of the material.

  11. An investigation of the retention of some radioelements on natural fibers

    International Nuclear Information System (INIS)

    Sanad, W.; El-Naggar, I.; Souka, N.

    1993-01-01

    The retention of radio-Eu, Go, Cs and Sr, at the tracer level, on raw fibers produced from hemp, linen and Jute plants was investigated. The study was conducted from different media including: sea and tap waters, sodium chloride and nitric acid solutions of different Ph. The percentage retention and elution, on prolonged contact, varied from one element to another depending on conditions. Extraction chromatography columns, using these fibers as supporting material were also experimented. Results were discussed together with possible applications. 7 tabs

  12. Sugar and polyol solutions as effective solvent for biopolymers

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2016-01-01

    Ternary mixtures of biopolymers, sugars or polyols and water can be treated as a pseudo binary system with respect to melting of the biopolymer. Sugar and polyol solutions can be treated as an effective solvent, characterized by the density of hydroxyl groups available for intermolecular hydrogen

  13. Moisture sorption in mixtures of biopolymer, disaccharides and water

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2013-01-01

    The moisture sorption of ternary mixtures of biopolymer, sugar and water is investigated by means of the Free-Volume-Flory-Huggins (FVFH) theory. The earlier FVFH theory developed for binary mixtures of biopolymer/water and sugar/water has to be modified to account for two effects: 1) the change in

  14. Phylogenetic Investigation of the Aliphatic, Non-hydrolyzable Biopolymer Algaenan, with a Focus on Green Algae

    OpenAIRE

    Kodner, Robin B.; Summons, Roger E.; Knoll, Andrew Herbert

    2009-01-01

    Algaenan, an aliphatic biopolymer found in various microalgae, has been implicated as the source of a sizable proportion of the aliphatic refractory organic matter in sedimentary rocks. Because of its recalcitrant nature, algaenan is thought to be preserved selectively in the formation of kerogen and microfossils. Its taxonomic distribution in organisms has not been studied in detail or in a phylogenetic context. Here, we evaluate the distribution and phylogenetic relationships of algaenan-pr...

  15. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    Science.gov (United States)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  16. Effect of liquid epoxidized natural rubber (LENR) on mechanical properties and morphology of natural rubber/high density polyethylene/mengkuang fiber (NR/HDPE/MK) bio-composite

    Science.gov (United States)

    Piah, Mohd Razi Mat; Baharum, Azizah

    2016-11-01

    The use of mengkuang fiber (MK) fibers in NR/HDPE (40/60) blend was studied via surface modification of fiber. The MK fiber was pre-washed with 5%wt/v sodium hydroxide solution prior to treatment with liquid epoxidized natural rubber (LENR). The concentration of LENR were varied from 5%-20%wt in toluene. The effects of LENR concentrations were studied in terms of mechanical properties and morphology formed. Melt-blending was performed using an internal mixer (Haake Rheomix 600). The processing parameters identified were 135°C temperature, 45 rpm rotor speed, 12 minutes processing time and at 20%wt MK fiber loading. The optimum LENR treatment concentration was obtained at 5%wt with tensile strength, tensile modulus, and impact strength of 10.3 MPa, 414.2 MPa and 14.4 kJ/m2 respectively. The tensile modulus of LENR-treated MK fiber filled NR/HDPE bio-composite has shown enhancement up to 16.7% higher than untreated MK fiber. The tensile and impact strength were decreased with increasing LENR concentration due to the broken of MK fibers to smaller particles and adhered to each other. FESEM micrographs confirmed the formation of fiber-fiber agglomeration in NR/HDPE blends. The optical microscope analysis shows MK fibers is shorter than original fiber lengths after NaOH-LENR surface modification. The internal bonding forces of MK fiber seems to be weaker than external force exerted on it, therefore, the MK fiber has broken to smaller particles and reduced the mechanical properties of NR/HDPE/MK(20%) bio-composite.

  17. Characterization of Thermally Cross-Linkable Hollow Fiber Membranes for Natural Gas Separation

    KAUST Repository

    Chen, Chien-Chiang

    2013-01-23

    The performance of thermally cross-linkable hollow fiber membranes for CO2/CH4 separation and the membrane stability against CO2 plasticization was investigated. The fiber membranes were thermally cross-linked at various conditions. Cross-linking temperature was found to have a significant effect, while shorter soak time and the presence of trace oxidizer (O2 or N2O) had a negligible effect. The cross-linked fibers were tested using high CO2 content feeds (50-70% CO2) at a variety of feed pressures (up to 1000 psia), temperatures, and permeate pressures (up to 100 psia) to evaluate membrane performance under various realistic operating conditions. The results demonstrated that cross-linking improves membrane selectivity and effectively eliminates swelling-induced hydrocarbon loss at high pressures. Excellent stability under aggressive feeds (with CO2 partial pressure up to 700 psia) suggests that cross-linked hollow fiber membranes have great potential for use in diverse aggressive applications, even beyond the CO2/CH4 example explored in this work. © 2012 American Chemical Society.

  18. Mechanic and Acoustic Properties of the Sound-Absorbing Material Made from Natural Fiber and Polyester

    Directory of Open Access Journals (Sweden)

    Limin Peng

    2015-01-01

    Full Text Available A sound-absorbing composite material made of wood fiber and polyester fiber was produced using polyester foam technology and wood-based composite technology. This study investigated the physical and mechanical properties and the effects of the airflow resistivity of the materials and the depth of the cavities behind on sound-absorbing performance of the composite material. The results showed that the composite of best physical and mechanical properties and sound absorption was made with a 150°C hot-pressing temperature, 10 min hot-press time, 3 : 1 the ratio of wood fiber to polyester fiber, foaming agent content of 8%, and the nominal density of 0.2 g/cm3; the composite material yielded superior sound absorption property with the airflow resistivity of 1.98 × 105 Pa·s/m2; the acoustic absorption peak moved to lower frequencies when length of the cavities was increased.

  19. THE NATURE COMPOSITE OF VETIVER FIBER AND THE WASTE OF POWDER SAWN AS AN SOUND ABSORPTION MATERIALS

    Directory of Open Access Journals (Sweden)

    Purwanto Purwanto

    2017-04-01

    Full Text Available The increasing use of composites in all fields is engineered materials that many people do to obtain the new alternative materials, one of the materials such as natural vetiver fiber (SAW which is strong and lightweight and powder sawn (SGK, which is waste material. In this research, manufacturing the composite of  SAW and SGK then testing acoustic/absorption power by measuring the absorption coefficient of the sound and the observation of microstructure. The method used in the study is an experiment in the laboratory to make composites based on the ratio of the weight fraction between SAW and SGK from 1: 5, 2: 5, 3: 5, 4: 5 and 5: 5. Having formed the composites, then the specimen has made by an acoustic test that compatible to ASTM E-1050-98 standard with B & K 4206 Small Tube Set test instrument. Furthermore, to determine the composition of fibers in the composites, there do the micro observation. From the results of the show the composites produced the sound absorption ability for the low frequency (1000 Hz with an absorption coefficient (α of 0.25 occurred in comparative fraction of 2: 5 (SAW20, SGK50. While at high frequency (5000 Hz has a value of coefficient (α of 0.41 occurred in the ratio of 1: 5 (SAW10, SGK50. The number of composition number fiber influence the composite tensile strength and micro observations occurred in the composition ratio of 5: 5 its highest strength.

  20. Advanced Coatings from Natural-Based Polymers for Metals

    National Research Council Canada - National Science Library

    Sugama, Toshifumi

    2000-01-01

    ... natural polysaccharide biopolymers originating from pectin, starch, and chitosan as renewable agricultural and marine resources, and on assessing their potential as the corrosion-preventing water-based...

  1. Bacillus and biopolymer: Prospects and challenges

    Directory of Open Access Journals (Sweden)

    Swati Mohapatra

    2017-12-01

    Full Text Available The microbially derived polyhydroxyalkanoates biopolymers could impact the global climate scenario by replacing the conventional non-degradable, petrochemical-based polymer. The biogenesis, characterization and properties of PHAs by Bacillus species using renewable substrates have been elaborated by many for their wide applications. On the other hand Bacillus species are advantageous over other bacteria due to their abundance even in extreme ecological conditions, higher growth rates even on cheap substrates, higher PHAs production ability, and the ease of extracting the PHAs. Bacillus species possess hydrolytic enzymes that can be exploited for economical PHAs production. This review summarizes the recent trends in both non-growth and growth associated PHAs production by Bacillus species which may provide direction leading to future research towards this growing quest for biodegradable plastics, one more critical step ahead towards sustainable development.

  2. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection.

    Science.gov (United States)

    Jeong, Y; Baek, S; Dupriez, P; Maran, J-N; Sahu, J K; Nilsson, J; Lee, B

    2008-11-24

    We investigate the thermal characteristics of a polymer-clad fiber laser under natural convection when it is strongly pumped up to the damage point of the fiber. For this, we utilize a temperature sensing technique based on a fiber Bragg grating sensor array. We have measured the longitudinal temperature distribution of a 2.4-m length ytterbium-sensitized erbium-doped fiber laser that was end-pumped at approximately 975 nm. The measured temperature distribution decreases exponentially, approximately, decaying away from the pump-launch end. We attribute this to the heat dissipation of absorbed pump power. The maximum temperature difference between the fiber ends was approximately 190 K at the maximum pump power of 60.8 W. From this, we estimate that the core temperature reached approximately 236 degrees C.

  3. Overview of biopolymers as carriers of antiphlogistic agents for treatment of diverse ocular inflammations

    International Nuclear Information System (INIS)

    Sharma, Anil Kumar; Arya, Amit; Sahoo, Pravat Kumar; Majumdar, Dipak Kanti

    2016-01-01

    Inflammation of the eye is a usual clinical condition that can implicate any part of the eye. The nomenclature of variety of such inflammations is based on the ocular part involved. These diseases may jeopardize normal functioning of the eye on progression. In general, corticosteroids, antihistamines, mast cell stabilizers and non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammatory diseases/disorders of the eye. There have been several attempts via different approaches of drug delivery to overcome the low ocular bioavailability resulting from shorter ocular residence time. The features like safety, ease of elimination and ability to sustain drug release have led to application of biopolymers in ocular therapeutics. Numerous polymers of natural origin such as gelatin, collagen, chitosan, albumin, hyaluronic acid, alginates etc. have been successfully employed for preparation of different ocular dosage forms. Chitosan is the most explored biopolymer amongst natural biopolymers because of its inherent characteristics. The emergence of synthetic biopolymers (like PVP, PACA, PCL, POE, polyanhydrides, PLA, PGA and PLGA) has also added new dimensions to the drug delivery strategies meant for treatment of ophthalmic inflammations. The current review is an endeavor to describe the utility of a variety of biomaterials/polymers based drug delivery systems as carrier for anti-inflammatory drugs in ophthalmic therapeutics. - Highlights: • Numerous eye inflammations pose troubles in vision functions. • Low bioavailability by conventional drug delivery systems due to eye constraints • Drug carriers ensuring improved bioavailability to the eye are need of the hour. • Chitosan - most explored amongst all biomaterials for ocular delivery. • Emergence of novel synthetic carriers in ophthalmology

  4. Overview of biopolymers as carriers of antiphlogistic agents for treatment of diverse ocular inflammations

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anil Kumar, E-mail: sharmarahul2004@gmail.com [Delhi Institute of Pharmaceutical Sciences and Research, Formerly College of Pharmacy, University of Delhi, Pushp Vihar, Sector III, New Delhi 110017,India (India); Arya, Amit; Sahoo, Pravat Kumar [Delhi Institute of Pharmaceutical Sciences and Research, Formerly College of Pharmacy, University of Delhi, Pushp Vihar, Sector III, New Delhi 110017,India (India); Majumdar, Dipak Kanti [School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Gurgaon 122103 (India)

    2016-10-01

    Inflammation of the eye is a usual clinical condition that can implicate any part of the eye. The nomenclature of variety of such inflammations is based on the ocular part involved. These diseases may jeopardize normal functioning of the eye on progression. In general, corticosteroids, antihistamines, mast cell stabilizers and non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammatory diseases/disorders of the eye. There have been several attempts via different approaches of drug delivery to overcome the low ocular bioavailability resulting from shorter ocular residence time. The features like safety, ease of elimination and ability to sustain drug release have led to application of biopolymers in ocular therapeutics. Numerous polymers of natural origin such as gelatin, collagen, chitosan, albumin, hyaluronic acid, alginates etc. have been successfully employed for preparation of different ocular dosage forms. Chitosan is the most explored biopolymer amongst natural biopolymers because of its inherent characteristics. The emergence of synthetic biopolymers (like PVP, PACA, PCL, POE, polyanhydrides, PLA, PGA and PLGA) has also added new dimensions to the drug delivery strategies meant for treatment of ophthalmic inflammations. The current review is an endeavor to describe the utility of a variety of biomaterials/polymers based drug delivery systems as carrier for anti-inflammatory drugs in ophthalmic therapeutics. - Highlights: • Numerous eye inflammations pose troubles in vision functions. • Low bioavailability by conventional drug delivery systems due to eye constraints • Drug carriers ensuring improved bioavailability to the eye are need of the hour. • Chitosan - most explored amongst all biomaterials for ocular delivery. • Emergence of novel synthetic carriers in ophthalmology.

  5. Extraction of natural weight shift and foot rolling in gait based on hetero-core optical fiber load sensor

    Science.gov (United States)

    Otsuka, Yudai; Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro

    2016-03-01

    Gait in daily activity affects human health because it may cause physical problems such as asymmetric pelvis, flat foot and bowlegs. Monitoring natural weight shift and foot rolling on plantar has been employed in order for researchers to analyze gait characteristics. Conventional gait monitoring systems have been developed using camera, acceleration sensor, gyro sensor and electrical load sensors. They have some problems such as limited measurement place, temperature dependence and electric leakage. On the other hand, a hetero-core optical fiber sensor has many advantages such as high sensitivity for macro-bending, light weight sensor element, independency on temperature fluctuations, and no electric contact. This paper describes extraction of natural weight shift and foot rolling for gait evaluation by using a sensitive shoe, in the insole of which hetero-core optical load sensors are embedded for detecting plantar pressure. Plantar pressure of three subjects who wear the sensitive shoe and walk on the treadmill was monitored. As a result, weight shift and foot rolling for three subjects were extracted using the proposed sensitive shoe in terms of centroid movement and positions. Additionally, these extracted data are compared to that of electric load sensor to ensure consistency. For these results, it was successfully demonstrated that hetero-core optical fiber load sensor performed in unconstraint gait monitoring as well as electric load sensor.

  6. Biopolymers used in the manufacture of food packaging

    Directory of Open Access Journals (Sweden)

    Mónica Lucia Hernández Silva

    2009-08-01

    Full Text Available This work includes various biopolymers used in the production of food packaging such as: polysaccharides, proteins, lipids, etc. It begins with the definition and classification of polymers with a special emphasis on the process of degradation of these as an alternative solution to the environmental problem caused by the indiscriminate use of plastics. It also sets out the different types of biopolymers used in the production of containers are given on the advantages and disadvantages of such materials, as well as some trends and innovations in the use of biopolymers.

  7. Thermal Behavior of Tacca leontopetaloides Starch-Based Biopolymer

    Directory of Open Access Journals (Sweden)

    Nurul Shuhada Mohd Makhtar

    2013-01-01

    Full Text Available Starch is used whenever there is a need for natural elastic properties combined with low cost of production. However, the hydrophilic properties in structural starch will decrease the thermal performance of formulated starch polymer. Therefore, the effect of glycerol, palm olein, and crude palm oil (CPO, as plasticizers, on the thermal behavior of Tacca leontopetaloides starch incorporated with natural rubber in biopolymer production was investigated in this paper. Four different formulations were performed and represented by TPE1, TPE2, TPE3, and TPE4. The compositions were produced by using two-roll mill compounding. The sheets obtained were cut into small sizes prior to thermal testing. The addition of glycerol shows higher enthalpy of diffusion in which made the material easily can be degraded, leaving to an amount of 6.6% of residue. Blending of CPO with starch (TPE3 had a higher thermal resistance towards high temperature up to 310°C and the thermal behavior of TPE2 only gave a moderate performance compared with other TPEs.

  8. SU-F-T-166: On the Nature of the Background Visible Light Observed in Fiber Optic Dosimetry of Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Kassaee, A; Finlay, J [University of Pennsylvania, Philadelphia, PA (United States); Taleei, R [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: The nature of the background visible light observed during fiber optic dosimetry of proton beams, whether it is due to Cherenkov radiation or not, has been debated in the literature recently. In this work, experimentally and by means of Monte Carlo simulations, we shed light on this problem and investigated the nature of the background visible light observed in fiber optics irradiated with proton beams. Methods: A bare silica fiber optics was embedded in tissue-mimicking phantoms and irradiated with clinical proton beams with energies of 100–225 MeV at Roberts Proton Therapy Center. Luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze in detail the emission spectrum of the fiber tip across the visible range of 400–700 nm. Monte Carlo simulation was performed by using FLUKA Monte Carlo code to simulate Cherenkov light and ionizing radiation dose deposition in the fiber. Results: The experimental spectra of the irradiated silica fiber shows two distinct peaks at 450 and 650 nm, whose spectral shape is different from that of Cherenkov radiation. We believe that the nature of these peaks are connected to the point defects of silica including oxygen-deficiency center (ODC) and non-bridging oxygen hole center (NBOHC). Monte Carlo simulations confirmed the experimental observations that Cherenkov radiation cannot be solely responsible for such a signal. Conclusion: We showed that Cherenkov radiation is not the dominant visible signal observed in bare fiber optics irradiated with proton beams. We observed two distinct peaks at 450 and 650 nm whose nature is connected with the point defects of silica fiber including oxygen-deficiency center and non-bridging oxygen hole center.

  9. Dynamic Mechanical Properties of Bio-Polymer Graphite Thin Films

    Science.gov (United States)

    Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Munirah Abdullah, Nur; Abdullah, M. F. L.

    2017-08-01

    Waste cooking oil is used as the main substances in producing graphite biopolymer thin films. Biopolymer is produce from the reaction of bio-monomer and cross linker with the ratio of 2:1 and addition of graphite with an increment of 2% through a slip casting method. The morphological surface properties of the samples are observed by using Scanning Electron Microscope (SEM). It is shown that the graphite particle is well mixed and homogenously dispersed in biopolymer matrix. Meanwhile, the mechanical response of materials by monitoring the change in the material properties in terms of frequency and temperature of the samples were determined using Dynamic Mechanical Analysis (DMA). The calculated cross-linked density of biopolymer composites revealed the increment of graphite particle loading at 8% gives highest results with 260.012 x 103 M/m3.

  10. New technologies from the bioworld: selection of biopolymer-producing microalgae

    Directory of Open Access Journals (Sweden)

    Roberta Guimarães Martins

    Full Text Available Abstract Microalgae are studied because of their biotechnological potential. The growth of microalgae aims at obtaining natural compounds. Due to the large amount of accumulated polymer waste, one of the solutions is the use of biodegradable polymers. The objective of this work was to select biopolymer-producing microalgae and to study the cell growth phase in which maximum production occurs. Microalgae Cyanobium sp., Nostoc ellipsosporum, Spirulina sp. LEB 18 and Synechococcus nidulans were studied. The growth was carried out in closed 2 L photobioreactors kept in a chamber thermostated at 30 °C with an illuminance of 41.6 μmolphotons.m-2.s-1 and a 12 h light/dark photoperiod. The biopolymers were extracted at times of 5, 10, 15, 20 and 25 d. The microalgae that had the highest yields were Nostoc ellipsosporum and Spirulina sp. LEB 18 with crude biopolymer efficiency of 19.27 and 20.62% in 10 and 15 d, respectively, at the maximum cell growth phase.

  11. Radiotracer experiments with biopolymers and bio-compatible polymers

    International Nuclear Information System (INIS)

    Nayak, D.

    2007-01-01

    The applications of biopolymer and biocompatible polymer employing radiotracers have been reviewed. Two different aspects have been studied. Environmentally benign methodologies for the removal, immobilization, separation or speciation of heavy, toxic elements and clinically important radionuclides have been developed using biopolymer and bio-compatible polymer as well. The complex formation ability of a bio-compatible polymer, polyvinylpyrrolidone (PVP), with clinically important radionuclides have been tested which have tremendous importance in radiopharmaceutical sciences. (author)

  12. Natural fiber templated TiO2 microtubes via a double soaking sol-gel route and their photocatalytic performance

    Science.gov (United States)

    Yang, Li; Li, Xu; Wang, Ziru; Shen, Yun; Liu, Ming

    2017-10-01

    TiO2 microtubes with a yam-like surface were prepared for the first time through a simple and efficient double soaking sol-gel route by utilizing Platanus acerifolia seed fibers as bio-templates. The physicochemical properties of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer Emmett Teller (BET) surface analysis and Ultraviolet-visible absorption spectroscopy (UV-vis). The results showed that the obtained TiO2 microtubes had an anatase phase and were composed of a smooth internal wall and a rough yam-like external wall with an average diameter of 24 μm and the wall thickness of 2 μm. The surface area and pore volume of the as-prepared TiO2 microtubes reached 128.271 m2/g and 0.149 cm3/g, respectively. The UV-vis analysis displayed a favorable extension of light absorption capacity of TiO2 microtubes. The synthetic mechanism was preliminarily discussed as well. The moisture in the natural fiber templates facilitated the mild hydrolysis of titanium sol, leaving a prime layer on the surface of the fibers, and subsequently assisted in the successful preparation of TiO2 microtubes with a yam-like surface without requiring specific control of hydrolysis. Photocatalytic experiments indicated that the as-obtained TiO2 microtubes exhibited a higher efficiency than commercial P25 in the degradation of tetracycline hydrochloride.

  13. Biolubricant induced phase inversion and superhydrophobicity in rubber-toughened biopolymer/organoclay nanocomposites

    Science.gov (United States)

    Bayer, Ilker S.; Steele, Adam; Martorana, Philip; Loth, Eric; Robinson, Scott J.; Stevenson, Darren

    2009-08-01

    We present a simple technique to fabricate rubber-toughened biopolymer/organoclay nanocomposite coatings with highly water repellent surface wetting characteristics and strong adhesion to metal surfaces. The technique combines the principles of phase inversion and atomization of multicomponent polymer/organoclay suspensions containing a biolubricant as the nonsolvent. The biolubricant was a blend of cyclomethicone/dimethiconol oil with fruit kernel oils. The ternary system of cellulose nitrate/solvent/biolubricant was blended with rubber dispersed organoclay nanofluids. Natural, synthetic, and fluoroacrylic latex rubbers were used for the purpose. Self-cleaning superhydrophobic coatings were obtained from synthetic and fluoroacrylic rubbers whereas natural rubber containing formulations resulted in sticky superhydrophobic coatings.

  14. Performance of natural curaua fiber-reinforced polyester composites under 7.62 mm bullet impact as a stand-alone ballistic armor

    Directory of Open Access Journals (Sweden)

    Fábio de Oliveira Braga

    2017-10-01

    Full Text Available A multilayered armor system (MAS is intended to personal protection against high kinetic energy ammunition. MAS layers are composed of materials such as a front ceramic and a back composite that must show both high impact resistance and low weight, usually conflicting characteristics. Synthetic fiber fabrics, such as Kevlar™ and Dyneema™, are the favorite materials to back the front ceramic, due to their high strength, high modulus and relatively low weight. Recently, composites reinforced with natural fibers have been considered as MAS second layer owing to their good performance associated with other advantages as being cheaper and environmentally friendly. Among the natural fibers, those extracted from the leaves of the Ananas erectifolius plant, known as curaua, stand out due to its exceptional high strength and high modulus. Thus, the objective of the present work is to evaluate the performance of curaua fiber-reinforced polyester composites subjected to ballistic impact of high energy 7.62 mm ammunition. Composites reinforced with 0, 10, 20 and 30 vol.% of curaua fibers were produced and stand-alone tested as armor target to evaluate the absorbed energy. Analysis of variance (Anova and Tukey's honest significant difference test (HSD made it possible to compare the results to Kevlar™ laminates. Among the tested materials, the 30 vol.% fiber composites were found to be the best alternative to Kevlar™. Keywords: Composite, Natural fiber, Curaua fiber, Ballistic test

  15. Experimental data on the properties of natural fiber particle reinforced polymer composite material

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2017-08-01

    Full Text Available This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  16. Experimental data on the properties of natural fiber particle reinforced polymer composite material.

    Science.gov (United States)

    Chandramohan, D; Presin Kumar, A John

    2017-08-01

    This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  17. Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas

    KAUST Repository

    Omole, Imona C.

    2011-03-01

    The performance of defect-free cross-linkable polyimide asymmetric hollow fiber membranes was characterized using an aggressive feed stream containing up to 1000ppm toluene. The membrane was shown to be stable against toluene-induced plasticization compared with analogs made from Matrimid®, a commercial polyimide. Permeation and sorption analysis suggest that the introduction of toluene vapors in the feed subjects the membrane to antiplasticization, as the permeance decreases significantly (to less than 30%) under the most aggressive conditions tested. Separation efficiencies reflected by permselectivities were less affected. The effect of the toluene on the membrane was shown to be reversible when the toluene was removed. © 2010 Elsevier B.V.

  18. Functionalization of a Natural Biopolymer with Aliphatic Polyamines ...

    African Journals Online (AJOL)

    NICO

    applied to remove metal ions from aqueous solutions16–18 due to the strong chelation properties of the amine functional groups to transitional metal ions,19 and that the modified biosorbents are usually chemically stable and highly reactive.16 Polyamines have been used to functionalize silica, polystyrene,20 cellulose,21.

  19. Functionalization of a Natural Biopolymer with Aliphatic Polyamines ...

    African Journals Online (AJOL)

    Chemical modification was performed using four aliphatic polyamines: ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and tetraethylenepentamine (TEPA). The modified bark was characterized and then investigated to determine its efficiency in removing VO2+ from aqueous solutions.

  20. Customizable Biopolymers for Heavy Metal Remediation

    Science.gov (United States)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen, Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen*, Wilfred

    2005-10-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create `artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  1. Formatting and ligating biopolymers using adjustable nanoconfinement

    Science.gov (United States)

    Berard, Daniel J.; Shayegan, Marjan; Michaud, Francois; Henkin, Gil; Scott, Shane; Leslie, Sabrina

    2016-07-01

    Sensitive visualization and conformational control of long, delicate biopolymers present critical challenges to emerging biotechnologies and biophysical studies. Next-generation nanofluidic manipulation platforms strive to maintain the structural integrity of genomic DNA prior to analysis but can face challenges in device clogging, molecular breakage, and single-label detection. We address these challenges by integrating the Convex Lens-induced Confinement (CLiC) technique with a suite of nanotopographies embedded within thin-glass nanofluidic chambers. We gently load DNA polymers into open-face nanogrooves in linear, concentric circular, and ring array formats and perform imaging with single-fluorophore sensitivity. We use ring-shaped nanogrooves to access and visualize confinement-enhanced self-ligation of long DNA polymers. We use concentric circular nanogrooves to enable hour-long observations of polymers at constant confinement in a geometry which eliminates the confinement gradient which causes drift and can alter molecular conformations and interactions. Taken together, this work opens doors to myriad biophysical studies and biotechnologies which operate on the nanoscale.

  2. Modelling of proton and metal exchange in the alginate biopolymer.

    Science.gov (United States)

    De Stefano, Concetta; Gianguzza, Antonio; Piazzese, Daniela; Sammartano, Silvio

    2005-10-01

    Acid-base behaviour of a commercial sodium alginate extracted from brown seaweed (Macrocystis pyrifera) has been investigated at different ionic strengths (0.1titration calorimetric data were expressed as a function of the dissociation degree (alpha) using different models (Henderson-Hasselbalch modified, Högfeldt three parameters and linear equations). The dependence on ionic strength of the protonation constants was taken into account by a modified specific interaction theory model. Differences among different media were explained in terms of the interaction between polyanion and metal cations of the supporting electrolytes. Quantitative information on the proton-binding capacity, together with the stabilities of different species formed, is reported. Protonation thermodynamic parameters, at alpha=0.5, are log K H=3.686+/-0.005, DeltaG 0=-21.04+/-0.03 kJ mol(-1), DeltaH 0=4.8+/-0.2 kJ mol(-1) and TDeltaS 0=35.7+/-0.3 kJ mol(-1), at infinite dilution. Protonation enthalpies indicate that the main contribution to proton binding arises from the entropy term. A strict correlation between DeltaG and TDeltaS was found, TDeltaS=-9.5-1.73 DeltaG. Results are reported in light of building up a chemical complexation model of general validity to explain the binding ability of naturally occurring polycarboxylate polymers and biopolymers. Speciation profiles of alginate in the presence of sodium and magnesium ions, naturally occurring cations in natural waters, are also reported.

  3. Strategies to improve the mechanical properties of starch-based materials: plasticization and natural fibers reinforcement

    Directory of Open Access Journals (Sweden)

    A. Lopez-Gil

    2014-01-01

    Full Text Available Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP and polyethylene-terphthalate (PET, and a biodegradable polymer, polylactic acid (PLA.

  4. Smart Natural Fiber Reinforced Plastic (NFRP) Composites Based On Recycled Polypropylene in The Presence Kaolin

    Science.gov (United States)

    Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Lestari, W. A.

    2017-07-01

    Composites contain double filler material which act as reinforcement and flame retardants of recycled polypropylene (rPP)/kaolin(Kao)/palm oil empty bunch fiber (PEBF) have been succesfully prepared. The composites were synthesized through reactively solution method, using coupling agent PP-g-AA and compatibilizer DVB. The effect of double filler [Kao/PEBF] were investigated flexural strength (FS), inflammability, and morphology. Mechanical testing result in accordance to ASTM D790, the FS of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was 48% higher than that of rPP matrix. Moreover, flexural modulus (FM) was significantly improved by 56% as compared to that of rPP matrix. The scanning electron images (SEM) shown good dispersion of [Ka/PEBF] and good filler-matrix interaction. The inflammability testing result which is tested using ASTM D635, showed that the flame resistance of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was improve by increasing of time to ignition (TTI) about 857% and burning rate (BR) decreasing to 66% compared to the raw material rPP matrix. In the same time, the addition of 20% (w/w) PEBF as a second filler to form rPP/DVB/PP-g-AA/Kao+ZB/PEBF composites (F5) is able to increase: the FS by 17.5%, the FM by 19%, the TTI by 7.6% and the BR by 3.7% compared to the composite without PEBF (F2).

  5. STUDY OF RASPBERRY EXTRACT APPLICATIONS AS TEXTILE COLORANT ON NATURAL FIBERS

    Directory of Open Access Journals (Sweden)

    COMAN Diana

    2014-05-01

    Full Text Available The present study deals with the biomordant assisted application of natural extracts obtained from red raspberry (Rubus idaeus L. fruits onto two different cellulosic supports – flax and bamboo. The study relies on the improvement of multifunctionalities such as colour fastness, washing and rubbing fastness, due to the synergism provided by the co-assistance of both a biomordant, and the complex resulted by inclusion of the pigment molecule, in the cavity of MCT-β-CD; it is well known that natural dye molecule have a good selectivity binding to the hydrophobic monochloro-triazynil-cyclodextrin’s (MCT-β-CD cavity to form inclusion complexes. An investigation system provided the characterization of the composites: FT-IR spectroscopy stressed the main chemical bonds created between MCT-β-CD as host molecule and guest molecule represented by natural colorant molecule; Brunauer-Emmett-Teller (BET Surface Area Analysis completes the analysis, proving the positive contribution of MCT-β-cyclodextrin grafting. Dyeing fastness and colour modifications were conclusive for this research. Samples of bamboo knitting are less colorful than those of the flax fabric in terms of high absorption capacity and stability / durability of natural dye applied by inclusion within cyclodextrin’s inner. The results of analysis revealed improvement of washing and rubbing fastness (1-1.5 points. Colour modifications noticed due to the colorant deposition were quantified from up to 3 points.

  6. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds

    Directory of Open Access Journals (Sweden)

    Vanesa Andreu

    2015-08-01

    Full Text Available A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies. The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about

  7. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds.

    Science.gov (United States)

    Andreu, Vanesa; Mendoza, Gracia; Arruebo, Manuel; Irusta, Silvia

    2015-08-11

    A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients' quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or

  8. Distinct Difference in Absorption Pattern in Pigs of Betaine Provided as a Supplement or Present Naturally in Cereal Dietary Fiber

    DEFF Research Database (Denmark)

    Hedemann, Mette Skou; Theil, Peter Kappel; Lærke, Helle Nygaard

    2015-01-01

    high-fiber breads differing in amount and source of dietary fiber (two experiments, n = 6 pigs each). Plasma betaine peaked after 30 min when betaine was fed as a supplement, whereas it peaked after 120–180 min when high-fiber breads were fed. Plasma betaine showed no diet × time interaction after...

  9. All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers

    Directory of Open Access Journals (Sweden)

    Cynthia G. Flores-Hernández

    2014-03-01

    Full Text Available The performance as reinforcement of a fibrillar protein such as feather keratin fiber over a biopolymeric matrix composed of polysaccharides was evaluated in this paper. Three different kinds of keratin reinforcement were used: short and long biofibers and rachis particles. These were added separately at 5, 10, 15 and 20 wt% to the chitosan-starch matrix and the composites were processed by a casting/solvent evaporation method. The morphological characteristics, mechanical and thermal properties of the matrix and composites were studied by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and dynamic mechanical analysis. The thermal results indicated that the addition of keratin enhanced the thermal stability of the composites compared to pure matrix. This was corroborated with dynamic mechanical analysis as the results revealed that the storage modulus of the composites increased with respect to the pure matrix. The morphology, evaluated by scanning electron microscopy, indicated a uniform dispersion of keratin in the chitosan-starch matrix as a result of good compatibility between these biopolymers, also corroborated by FTIR. These results demonstrate that chicken feathers can be useful to obtain novel keratin reinforcements and develop new green composites providing better properties, than the original biopolymer matrix.

  10. Conformon-driven biopolymer shape changes in cell modeling.

    Science.gov (United States)

    Ji, Sungchul; Ciobanu, Gabriel

    2003-07-01

    Conceptual models of the atom preceded the mathematical model of the hydrogen atom in physics in the second decade of the 20th century. The computer modeling of the living cell in the 21st century may follow a similar course of development. A conceptual model of the cell called the Bhopalator was formulated in the mid-1980s, along with its twin theories known as the conformon theory of molecular machines and the cell language theory of biopolymer interactions [Ann. N.Y. Acad. Sci. 227 (1974) 211; BioSystems 44 (1997) 17; Ann. N.Y. Acad. Sci. 870 (1999a) 411; BioSystems 54 (2000) 107; Semiotica 138 (1-4) (2002a) 15; Fundamenta Informaticae 49 (2002b) 147]. The conformon theory accounts for the reversible actions of individual biopolymers coupled to irreversible chemical reactions, while the cell language theory provides a theoretical framework for understanding the complex networks of dynamic interactions among biopolymers in the cell. These two theories are reviewed and further elaborated for the benefit of both computational biologists and computer scientists who are interested in modeling the living cell and its functions. One of the critical components of the mechanisms of cell communication and cell computing has been postulated to be space- and time-organized teleonomic (i.e. goal-directed) shape changes of biopolymers that are driven by exergonic (free energy-releasing) chemical reactions. The generalized Franck-Condon principle is suggested to be essential in resolving the apparent paradox arising when one attempts to couple endergonic (free energy-requiring) biopolymer shape changes to the exergonic chemical reactions that are catalyzed by biopolymer shape changes themselves. Conformons, defined as sequence-specific mechanical strains of biopolymers first invoked three decades ago to account for energy coupling in mitochondria, have been identified as shape changers, the agents that cause shape changes in biopolymers. Given a set of space- and time

  11. Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment.

    Science.gov (United States)

    Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio

    2016-06-13

    During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy.

  12. Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment

    Directory of Open Access Journals (Sweden)

    Carmen Galan-Marin

    2016-06-01

    Full Text Available During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW, concrete block masonry walls (CW, and stabilized soil block masonry walls (SW stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy.

  13. Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment

    Science.gov (United States)

    Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio

    2016-01-01

    During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy. PMID:28773586

  14. Effect of sugarcane biopolymer gel injected in rabbit vocal fold

    Directory of Open Access Journals (Sweden)

    Rodrigo Augusto de Souza Leão

    2014-06-01

    Full Text Available INTRODUCTION: Alterations in the vocal folds that involve volume reduction and glottal closure failure result in exaggerated air escape during speech. For such situations, the use of implants or grafts of different materials has been proposed. OBJECTIVE: To define the effect of sugarcane biopolymer gel when implanted in the vocal folds of rabbits. METHODS: This was an experimental study. The vocal folds of rabbits injected with sugarcane biopolymer and saline solution were histologically evaluated after 21 and 90 days. RESULTS: Mild to moderate inflammation and increased volume were observed in all vocal folds injected with biopolymer, when compared to controls. There were no cases of necrosis or calcification. DISCUSSION: This study showed higher inflammatory reaction in cases than in controls and biopolymer biointegration to the vocal fold. This fibrogenic response with absence of epithelial repercussions suggests that the biopolymer in its gel form can be bioactive and preserve the normal vibratory function of the epithelium. CONCLUSION: We show that in spite of producing an inflammatory reaction in vocal fold tissues, the material remained in vocal fold throughout the study period.

  15. Separation of no-carrier-added 66,67Ga from bulk cobalt by a biopolymer

    International Nuclear Information System (INIS)

    Banerjee, Anupam; Nayak, Dalia; Lahiri, Susanta

    2007-01-01

    Heavy ion activation of natural cobalt foil with 80.5MeV 12 C results in the formation of no-carrier-added 66,67 As radionuclides, along with their corresponding decay products, 66,67 Ge and 66,67 Ga in the matrix. Attempt has been made to separate the no-carrier-added gallium radionuclides from the target matrix cobalt using a biopolymer, Fe doped calcium alginate (Fe-CA) beads. A complete separation was achieved by adsorbing 66,67 Ga and lesser amount of bulk Co at pH3 followed by washing the beads with 0.4M NaNO. (author)

  16. Eco-Friendly Extraction of Biopolymer Chitin and Carotenoids from Shrimp Waste

    Science.gov (United States)

    Prameela, K.; Venkatesh, K.; Divya vani, K.; Sudesh Kumar, E.; Mohan, CH Murali

    2017-08-01

    Astaxanthin a nutraceutical and chitin a natural biopolymer present in shrimp waste. In current chemical extraction methods HCl and NaOH are used for extraction and these chemicals are introduced into aquatic ecosystems are spoiling aquatic flora and fauna, pollute the environment and destroy astaxanthin. Lactobacillus species were isolated from gut of Solenocera melantho and characterized phenotypically and genotypically. Initial screening experiments have shown to be an effective and identified as Lactobacillus plantaram based on morphological, biochemical characteristics and molecular analysis. Efficiency of fermentation has shown with good yield of astaxanthin and recovery of chitin. Hence this alternative microbial process is having advantage than existing hazardous, non-economical chemical process.

  17. Preparation of Non-Woven Fiber Mats by Mixture of PVC and Epoxidized Natural Rubber

    International Nuclear Information System (INIS)

    Muhammad Hariz Othman; Mahathir Mohamed; Dahlan Mohd

    2014-01-01

    Eletrospun non-woven fibre mats prepared from ENR modified PVC were successfully fabricated at ambient temperature by electro spinning method. Liquid epoxidized natural rubber (LENR) was used because it is easier to handle compared to dried ENR. PVC was mixed with LENR based on 3 different ratios (9:1, 8:2 and 7:3). The effect of ENR on electrospinnibality of PVC was investigated.The morphologies and thermal properties of the electro span fibre mats were characterized and assessed using scanning calorimetry (DSC). The polymer solution concentration 16 aut % formed a diameter of the fibres were mainly affected by the addition of natural rubber and weight ratio of the solution. The diameter of the fibres also decreased with increasing amount of LENR in the solution. Thermal degradation involved two-step degradation with the first degradation representing the dehydro chlorination of PVC to form polyene and followed by the decomposition of LENR and the polyene.Addition of LENR into the sample caused the T g of electro spun fibre mats of PVC/LENR to shift toward lower temperature. (author)

  18. Some geomechanical properties of a biopolymer treated medium sand

    Directory of Open Access Journals (Sweden)

    Wiszniewski Mateusz

    2017-09-01

    Full Text Available Some geomechanical properties of a biopolymer treated medium sand. This paper presents a laboratory assessment of geomechanical properties of sandy soil improved by biopolymer application. Additives (biosubstance consist of polysaccharides and water. Biosubstance used in the project was xanthan gum, which comes from bacteria Xanthomonas campestris. Triaxial shear compression tests and unconfined compression tests were carried out for investigation purposes. Amount of the biopolymer used in the samples was 0.5, 1.0 and 1.5%, on dry weight basis. It is thought that such application, which is a relatively new technique, could be used as a ground improvement and water seepage barrier, required to strengthen and protect some geotechnical works including foundation, underground structures and waste disposals. The results indicate that behavior of the soil changes rapidly based on the amount of biosubstance. Shear strength parameters have shown a significant increase, which gives a chance for further development and possible applications.

  19. Biopolymer-based thermoplastic mixture for producing solid biodegradable shaped bodies and its photo degradation stability

    Science.gov (United States)

    Sulong, Nurulsaidatulsyida; Rus, Anika Zafiah M.

    2013-12-01

    In recent years, biopolymers with controllable lifetimes have become increasingly important for many applications in the areas of agriculture, biomedical implants and drug release, forestry, wild life conservation and waste management. Natural oils are considered to be the most important class of renewable sources. They can be obtained from naturally occurring plants, such as sunflower, cotton, linseed and palm oil. In Malaysia, palm oil is an inexpensive and commodity material. Biopolymer produced from palm oil (Bio-VOP) is a naturally occurring biodegradable polymer and readily available from agriculture. For packaging use however, Bio-VOP is not thermoplastic and its granular form is unsuitable for most uses in the plastics industry, mainly due to processing difficulties during extrusion or injection moulding. Thus, research workers have developed several methods to blend Bio-VOP appropriately for industrial uses. In particular, injections moulding processes, graft copolymerisation, and preparation of blends with thermoplastic polymers have been studied to produce solid biodegradable shaped bodies. HDPE was chosen as commercial thermoplastic materials and was added with 10% Bio-VOP for the preparation of solid biodegradable shaped bodies named as HD-VOP. The UV light exposure of HD-VOP at 12 minutes upon gives the highest strength of this material that is 17.6 MPa. The morphological structure of HD-VOP shows dwi structure surface fracture which is brittle and ductile properties.

  20. The surface properties of biopolymer-coated fruit: A review

    Directory of Open Access Journals (Sweden)

    Diana Cristina Moncayo Martinez

    2013-09-01

    Full Text Available Environmental conservation concerns have led to research and development regarding biodegradable materials from biopolymers, leading to new formulations for edible films and coatings for preserving the quality of fresh fruit and vegetables. Determining fruit skin surface properties for a given coating solution has led to predicting coating efficiency. Wetting was studied by considering spreading, adhesion and cohesion and measuring the contact angle, thus optimising the coating formulation in terms of biopolymer, plasticiser, surfactant, antimicrobial and antioxidant concentration. This work reviews the equations for determining fruit surface properties by using polar and dispersive interaction calculations and by determining the contact angle.

  1. Liquid crystalline biopolymers: A new arena for liquid crystal research

    International Nuclear Information System (INIS)

    Rizvi, Tasneem Zahra

    2001-07-01

    This paper gives a brief introduction to liquid crystals on the basis of biopolymers and reviews literature on liquid crystalline behaviour of biopolymers both in vitro and in vivo in relation to their implications in the fields of biology, medicine and material science. Knowledge in the field of biological liquid crystals is crucial for understanding complex phenomena at supramolecular level which will give information about processes involved in biological organization and function. The understanding of the interaction of theses crystals with electric, magnetic, optical and thermal fields will uncover mechanisms of near quantum-energy detection capabilities of biosystems

  2. Models of the solvent-accessible surface of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E.

    1996-09-01

    Many biopolymers such as proteins, DNA, and RNA have been studied because they have important biomedical roles and may be good targets for therapeutic action in treating diseases. This report describes how plastic models of the solvent-accessible surface of biopolymers were made. Computer files containing sets of triangles were calculated, then used on a stereolithography machine to make the models. Small (2 in.) models were made to test whether the computer calculations were done correctly. Also, files of the type (.stl) required by any ISO 9001 rapid prototyping machine were written onto a CD-ROM for distribution to American companies.

  3. Ways to Boost Fiber

    Science.gov (United States)

    ... not enough fluid, you may experience nausea or constipation. Before you reach for the fiber supplements, consider this: fiber is found naturally in nutritious foods. Studies have found the same benefits, such as a ...

  4. Distinct difference in absorption pattern in pigs of betaine provided as a supplement or present naturally in cereal dietary fiber.

    Science.gov (United States)

    Hedemann, Mette Skou; Theil, Peter Kappel; Lærke, Helle Nygaard; Bach Knudsen, Knud Erik

    2015-03-18

    The net absorption of betaine and choline was determined for 4 h after the first meal of the day in three experiments with porto-arterial catheterized pigs in which betaine was added as a supplement to a low-betaine diet (n=4 pigs) and compared to the net absorption of betaine and choline from high-fiber breads differing in amount and source of dietary fiber (two experiments, n=6 pigs each). Plasma betaine peaked after 30 min when betaine was fed as a supplement, whereas it peaked after 120-180 min when high-fiber breads were fed. Plasma betaine showed no diet×time interaction after feeding with high-fiber breads, indicating that the absorption kinetic did not differ between fiber sources. The net absorption of choline was not affected by the experimental diets. In conclusion, betaine in cereal sources has to be liberated from the matrix prior to absorption, causing delayed absorption.

  5. Development of Seaweed-based Biopolymers for Edible Films and Lectins

    Science.gov (United States)

    Praseptiangga, D.

    2017-04-01

    Marine macroalgae (seaweeds) as one of important groups of biopolymers play an important role in human life. Biopolymers have been studied regarding their film-forming properties to produce edible films intended as food packaging and active ingredient carriers. Edible film, a thin layer or which is an integral part of food and can be eaten together with, have been used to avoid food quality deterioration due to physico-chemical changes, texture changes, or chemical reactions. Film-forming materials can be utilized individually or as mixed composite blends. Proteins and polysaccharides used for their mechanical and structural properties, and hydrophobic substances (lipids, essential oils, and emulsifiers) to provide good moisture barrier properties. In addition, bioactive substances from marine natural products, including seaweeds, have been explored for being used in the fields of medicine, food science, pharmaceutical science, biochemistry, and glycobiology. Among them, lectins or carbohydrate-binding proteins from seaweeds have recently been remarked. Lectins (hemagglutinins) are widely distributed in nature and also good candidates in such prospecting of seaweeds. They are useful as convenient tools to discriminate differences in carbohydrate structures and reveal various biological activities through binding and interacting to carbohydrates, suggesting that they are promising candidates for medicinal and clinical application.

  6. Mechanical response of biopolymer double networks

    Science.gov (United States)

    Carroll, Joshua; Das, Moumita

    We investigate a double network model of articular cartilage (AC) and characterize its equilibrium mechanical response. AC has very few cells and the extracellular matrix mainly determines its mechanical response. This matrix can be thought of as a double polymer network made of collagen and aggrecan. The collagen fibers are stiff and resist tension and compression forces, while aggrecans are flexible and control swelling and hydration. We construct a microscopic model made of two interconnected disordered polymer networks, with fiber elasticity chosen to qualitatively mimic the experimental system. We study the collective mechanical response of this double network as a function of the concentration and stiffness of the individual components as well as the strength of the connection between them using rigidity percolation theory. Our results may provide a better understanding of mechanisms underlying the mechanical resilience of AC, and more broadly may also lead to new perspectives on the mechanical response of multicomponent soft materials. This work was partially supported by a Cottrell College Science Award.

  7. Synthesis of silver nanoparticles using aqueous extracts of Heterotheca inuloides as reducing agent and natural fibers as templates: Agave lechuguilla and silk.

    Science.gov (United States)

    Morales-Luckie, Raúl A; Lopezfuentes-Ruiz, Aldo Adrián; Olea-Mejía, Oscar F; Liliana, Argueta-Figueroa; Sanchez-Mendieta, Víctor; Brostow, Witold; Hinestroza, Juan P

    2016-12-01

    Silver nanoparticles (Ag NPs) were synthesized using a one-pot green methodology with aqueous extract of Heterotheca inuloides as a reducing agent, and the support of natural fibers: Agave lechuguilla and silk. UV-Vis spectroscopy, X-Ray photoelectron spectroscopy XPS and transmission electron microscopy TEM were used to characterize the resulting bionanocomposite fibers. The average size of the Ag NPs was 16nm and they exhibited low polydispersity. XPS studies revealed the presence of only metallic Ag in the nanoparticles embedded in Agave. lechuguilla fibers. Significant antibacterial activities against gram-negative Escherichia coli and gram-positive Staphylococcus aureus were determined. AgO as well as metallic Ag phases were detected when silk threads were used as a substrates hinting at the active role of substrate during the nucleation and growth of Ag NPs. These bionanocomposites have excellent mechanical properties in tension which in addition to the antibacterial properties indicate the potential use of these modified natural fibers in surgical and biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biopolymer composites for engineering food structures to control product functionality

    NARCIS (Netherlands)

    Scholten, E.; Moschakis, T.; Biliaderis, C.G.

    2014-01-01

    There is an increasing need for food systems with tailored properties using essential ingredients. This review provides an overview of how interactions between different ingredients, such as proteins, polysaccharides and lipids can be used to design different biopolymer composites, and how isotropic

  9. Biopolymer-based material used in optical image correlation

    Czech Academy of Sciences Publication Activity Database

    Mysliwiec, J.; Kochalska, Anna; Miniewicz, A.

    2008-01-01

    Roč. 47, č. 11 (2008), s. 1902-1906 ISSN 0003-6935 Institutional research plan: CEZ:AV0Z40500505 Keywords : biopolymer * DNA * optical correlation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.763, year: 2008

  10. Anti-Microbial Biopolymer Hydrogel Scaffolds for Stem Cell Encapsulation

    NARCIS (Netherlands)

    Kuhn, Philipp T.; Rozenbaum, Rene T.; Perrels, Estelle; Sharma, Prashant K.; van Rijn, Patrick

    Biopolymer hydrogels are an attractive class of materials for wound dressings and other biomedical applications because of their ease of use and availability from biomass. Here, we present a hydrogel formation approach based on alginate and chitosan. Alginate is conventionally cross-linked using

  11. Biopolymers produced from gelatin and other sustainable resources using polyphenols

    Science.gov (United States)

    Several researchers have recently demonstrated the feasibility of producing biopolymers from the reaction of polyphenolics with gelatin in combination with other proteins (e.g. whey) or with carbohydrates (e.g. chitosan and pectin). These combinations would take advantage of the unique properties o...

  12. Micromechanical sensors for the measurement of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Gammelgaard, Lene; Jensen, M P

    2011-01-01

    We present microcantilever-based sensors for the characterization of biopolymer degradation by enzymes. Thin films of Poly(L-lactide) (PLLA) were spray-coated onto SU-8 cantilevers with well-known material properties and dimensions. The micromechanical sensors were immersed in solutions...

  13. In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad A.; Ullah, Aman, E-mail: amanullah@ualberta.ca

    2014-08-15

    Graphical abstract: - Highlights: • In-situ chemical modification of keratin based material was carried out. • Characterization techniques such as SEM, FTIR, XRD, and DSC were employed. • TGA data was elaborated for its complete thermal and kinetic study. • Sorption of As(III) using modified material was experimentally studied. • Thermodynamics and Isotherm study was made for elucidation of adsorption data. - Abstract: Chemical modification of chicken feathers (CF) and their subsequent role in arsenic removal from water is presented in this paper. The ground CF were chemically treated with four selective dopants such as poly (ethylene glycol) (PEG) diglycidyl ether, poly (N-isopropylacrylamide) (PNIPAM), allyl alcohol (AA) and TrisilanolCyclohexyl POSS. After modification, the solubilized keratin was regenerated by precipitation at acidic pH. The structural changes and properties of modified biopolymer were compared with untreated CF and confirmed by different characterization techniques such as SEM, FTIR, XRD, and DSC. The TGA data was used to discuss thermal decomposition and kinetic behavior of modified biopolymer exhaustively. The modified biopolymers were further investigated as biosorbents for their application in As(III) removal from water. The AA and POSS supported biosorbents executed high removal capacity for As(III) up to 11.5 × 10{sup −2}and 11.0 × 10{sup −2} mg/g from 100 ml arsenic polluted water solution respectively. Thermodynamic parameters such as ΔG{sup 0}, ΔH{sup 0}, ΔS{sup 0} were also evaluated with the finding that overall sorption process was endothermic and spontaneous in nature. Based on linear and non-linear regression analysis, Freundlich Isotherm model showed good fit for obtained sorption data apart from high linear regression values supporting Langmuir isotherm model in sorption of As(III)

  14. Upshot of natural graphite inclusion on the performance of porous conducting carbon fiber paper in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kaushal, Shweta; Negi, Praveen; Sahu, A. K.; Dhakate, S. R.

    2017-09-01

    Porous conducting carbon fiber paper (PCCFP) is one of the vital component of the gas diffusion layer (GDL) in a fuel cell. This PCCFP serves as the most suitable substrate for the GDL due to its electrical conductivity, mechanical properties, and porosity. In this approach, carbon fiber composite papers were developed by incorporating different fractions of natural graphite (NG) in the matrix phase, i.e. Phenolic resin, and using the combined process of paper making and carbon-carbon composite formation technique. These prepared samples were then heat treated at 1800 °C in an inert atmosphere. The effect of natural graphite incorporation was ascertained by characterizing porous carbon paper by various techniques i.e. X-ray diffraction, Raman spectroscopy, Scanning electron microscopy, electrical and mechanical properties, and I-V performance in a unit fuel cell assembly. The inclusion of NG certainly enhance the properties of the carbon matrix as well as improving the conductive path of carbon fibers. In this study addition of 1 wt.% of natural graphite demonstrated a significant improvement in the electrical conductivity and performance of PCCFP and resulted in the improvement of power density from 361-563 mW cm-2. This paper reports that the uniform dispersion of NG was able to generate a maximum number of macrosize pores in the carbon paper that strengthened the flexural modulus from 4 to 12 GPa without compromising the porosity required for the GDL.

  15. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes.

    Science.gov (United States)

    Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V

    2015-12-21

    The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered.

  16. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan

    International Nuclear Information System (INIS)

    Leung, Thomas Chun-Yiu; Wong, Chung Kai; Xie Yong

    2010-01-01

    There is a growing need in developing a reliable and eco-friendly methodology for the synthesis of metallic nanoparticles, which may be applied for many nanotechnological applications. Natural compounds such as biopolymers are one of the resources which could be used for this purpose. The present study involves the development of a simple, ecological and user-friendly method in synthesizing silver nanoparticles by using carboxymethylated-curdlan or fucoidan as reducing and stabilizing agents. Reduction of silver ions by these biopolymers occurred when heating at 100 deg. C, led to the formation of silver nanoparticles in the range of 40-80 nm in dimensions. The silver nanoparticles were formed readily within 10-15 min. Morphological observation and characterization of the silver nanoparticles were performed by using dynamic light scattering (DLS), high-resolution transmission electron microscopy (HRTEM), and UV-vis absorption spectrophotometer. The size of silver nanoparticles can be controlled by using different concentrations of carboxymethylated-curdlan, fucoidan or silver nitrate. This way of silver nanoparticles preparation is easy, fast, user-friendly and suitable for large-scale production.

  17. Film forming microbial biopolymers for commercial applications--a review.

    Science.gov (United States)

    Vijayendra, S V N; Shamala, T R

    2014-12-01

    Microorganisms synthesize intracellular, structural and extracellular polymers also referred to as biopolymers for their function and survival. These biopolymers play specific roles as energy reserve materials, protective agents, aid in cell functioning, the establishment of symbiosis, osmotic adaptation and support the microbial genera to function, adapt, multiply and survive efficiently under changing environmental conditions. Viscosifying, gelling and film forming properties of these have been exploited for specific significant applications in food and allied industries. Intensive research activities and recent achievements in relevant and important research fields of global interest regarding film forming microbial biopolymers is the subject of this review. Microbial polymers such as pullulan, kefiran, bacterial cellulose (BC), gellan and levan are placed under the category of exopolysaccharides (EPS) and have several other functional properties including film formation, which can be used for various applications in food and allied industries. In addition to EPS, innumerable bacterial genera are found to synthesis carbon energy reserves in their cells known as polyhydroxyalkanoates (PHAs), microbial polyesters, which can be extruded into films with excellent moisture and oxygen barrier properties. Blow moldable biopolymers like PHA along with polylactic acid (PLA) synthesized chemically in vitro using lactic acid (LA), which is produced by LA bacteria through fermentation, are projected as biodegradable polymers of the future for packaging applications. Designing and creating of new property based on requirements through controlled synthesis can lead to improvement in properties of existing polysaccharides and create novel biopolymers of great commercial interest and value for wider applications. Incorporation of antimicrobials such as bacteriocins or silver and copper nanoparticles can enhance the functionality of polymer films especially in food packaging

  18. Optical characteristics of biopolymer films from gelatin, mannan, and glucomannan

    Science.gov (United States)

    Nikolova, Kr.; Panchev, I.; Sainov, S.; Pavlova, K.

    2006-05-01

    This study investigates the optical characteristics of biopolymer films from gelatin, mannan and glucomannan. Glucomannan was produced from the yeast strain Sporobolomyces salmonicolor, isolated from lichem samples from the region of the Bulgarian Base on Jirings for Island, Antarctica. Transmission spectra of gelatin, mannan and glucomarinan in the visible, NIR and JR region of the electromagnetic spectrum have been taken. The refraction indices of biopolymer water solutions studied and of the films obtained from them for two wavelengths have been measured. The dispersion coefficients of Sellmeier of the film and the liquid phase of the given polymers have been calculated. The temperature dependence of refraction index of the given polymers has been studied by means of Refractometer Abbe.

  19. Production of biopolymers by Pseudomonas aeruginosa isolated from marine source

    Directory of Open Access Journals (Sweden)

    Nazia Jamil

    2008-06-01

    Full Text Available Two bacterial strains, Pseudomonas aeruginosa CMG607w and CMG1421 produce commercially important biopolymers. CMG607w isolated from the sediments of Lyari outfall to Arabian Sea synthesize the mcl-polyhydroxyalkanoates from various carbon sources. The production of PHAs was directly proportional to the incubation periods. Other strain CMG1421, a dry soil isolate, produced high viscous water absorbing extracellular acidic polysaccharide when it was grown aerobically in the minimal medium containing glucose or fructose or sucrose as sole source of carbon. The biopolymer had the ability to absorb water 400 times more than its dry weight. This property was superior to that of currently used non-degradable synthetic water absorbents. It acted as salt filter and had rheological and stabilizing activity as well.

  20. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  1. Chitosan: A potential biopolymer for wound management.

    Science.gov (United States)

    Bano, Ijaz; Arshad, Muhammad; Yasin, Tariq; Ghauri, Muhammad Afzal; Younus, Muhammad

    2017-09-01

    It has been seen that slow healing and non-healing wounds conditions are treatable but still challenging to humans. Wound dressing usually seeks for biocompatible and biodegradable recipe. Natural polysaccharides like chitosan have been examined for its antimicrobial and healing properties on the basis of its variation in molecular weight and degree of deacetylation. Chitosan adopts some vital characteristics for treatment of various kinds of wounds which include its bonding nature, antifungal, bactericidal and permeability to oxygen. Chitosan therefore has been modified into various forms for the treatment of wounds and burns. The purpose of this review article is to understand the exploitation of chitosan and its derivatives as wound dressings. This article will also provide a concise insight on the properties of chitosan necessary for skin healing and regeneration, particularly highlighting the emerging role of chitosan films as next generation skin substitutes for the treatment of full thickness wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nitrogen efficiency in wheat yield through the biopolymer hydrogel

    Directory of Open Access Journals (Sweden)

    Ângela T. W De Mamann

    Full Text Available ABSTRACT Nitrogen use efficiency in wheat biomass and grain yields can be favored by the biopolymer hydrogel. The objective of the study was to analyze the use of the biopolymer hydrogel applied to the seed in the optimization of fertilizer-N on wheat biomass and grain yields, under different conditions of agricultural year and succession systems of high and reduced release of residual-N. In the study, two experiments were conducted, with different farming systems, soybean/wheat and maize/wheat, one to quantify the biomass yield rate and the other to determine grain yield. The experiments were conducted in the years 2014 and 2015, in a randomized block design with four replicates in a 4 x 4 factorial scheme, corresponding to hydrogel doses (0, 30, 60 and 120 kg ha-1 added in the groove along with the seed and N fertilizer rates (0, 30, 60 and 120 kg ha-1, applied as top-dressing. It is possible to improve the fertilizer-N efficiency by wheat using the biopolymer hydrogel for the production of biomass and grains. The highest wheat yield per kilogram of N supplied is obtained with 30 and 60 kg ha-1 of hydrogel, regardless of the year and succession system.

  3. Biodegradation study of some food packaging biopolymers based on PVA

    Directory of Open Access Journals (Sweden)

    Elena Elisabeta Tanase

    2016-03-01

    Full Text Available Abstract Polymers are a common choice as protective materials since they combine flexibility, variable sizes and shapes, relatively light weight, stability, resistance to breaking, barrier properties and perceived high-quality image with cost-effectiveness. Currently, mainly non-biodegradable petroleum-based synthetic polymers are used as packaging materials for foods, because of their availability, low cost and functionality. However, biopolymers can be made from renewable resources without the environmental issues of petroleum-based polymers and with the additional advantage of being available from renewable sources or as by-products or waste-products from the food and agriculture industries. The aim of this study was to test some food packaging biopolymers based on PVA. In this respect, some biopolymers for food packaging applications were subjected to biodegradation tests by covering the tested samples with soil. The samples were incubated in known temperature and humidity conditions. The experiment lasted 45 days, after that the samples were washed, weighed and the biodegradation degree was calculated. The obtained results shows that PVA is a promising material for food packaging usage, as it is made from renewable resources and it is environmentally friendly.

  4. Researches on the development of new composite materials complete / partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste

    Science.gov (United States)

    Todor, M. P.; Bulei, C.; Heput, T.; Kiss, I.

    2018-01-01

    The objective of the research is to develop new fully / partially biodegradable composite materials by using new natural fibers and those recovered from various wastes. Thus, the research aims to obtain some composites with matrix of various types of polymeric materials and the reinforcement phase of textile materials (of different natures, morphologies and composites) so that the resulting products to be (bio)degradable. The textile inserts used as raffle are ecological, non-toxic and biodegradable and they contain (divided or in combination) bast fibers (flax, hemp, jute) and other vegetable fibers (cotton, wool) as plain yarn or fabric, which can replace fibers of glass commonly used in polymeric composites. The main activities described in this article are carried out during the first phase of the research (phase I - initiation of research) and they are oriented towards the choice of types of textile inserts from which the composites will be obtained (the materials needed for the raffle), the choice of the types of polymers (the necessary materials for matrices) and choosing the variants of composites with different types and proportions of the constituent content (proposals and working variants) and choosing the right method for obtaining samples of composite materials (realization technology). The purpose of the research is to obtain composite materials with high structural, thermo-mechanical and / or tribological performances, according to ecological norms and international requirements in order to replace the existing classical materials, setting up current, innovative and high performance solutions, for applications in top areas such as automotive industry and not only.

  5. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    Science.gov (United States)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  6. Sensory evaluation and nutritional value of balady flat bread supplemented with banana peels as a natural source of dietary fiber

    Directory of Open Access Journals (Sweden)

    Nareman S. Eshak

    2016-12-01

    Full Text Available The aim of this study was to evaluate the effect of two different concentrations of banana peels BP (5% and 10% as a partial replacement for wheat flour on physicochemical and sensory properties of Egyptian balady flat bread. The peel powder (0.50 mm size from banana was prepared from their dried peel. The bread was prepared by replacing 5% and 10% of wheat flour with a banana peel. The bread prepared was designated as B1 and B2 respectively. They were tested for moisture, ash, protein, fat, crude fiber as per the standard methods. The physicochemical and sensory parameters of these two test bread were compared with a control bread 100% wheat flour designated as B0. Results showed that BP flour was owing 11.20% crude fiber which is higher than the wheat flour 1.21%. Also, BP flour has high potassium, calcium, sodium, iron and manganese compared with wheat flour. The protein and fiber content of B2 and B1 bread were higher (12.52% and 11.79% protein and 2.18% and 1.97% fiber as compared to the control bread (10.79 protein and 1.42% fiber. B1 and B2 had the highest K, Na, Ca, Fe, Mg and Zn content compared with control bread. The water holding capacity (WHC and oil holding capacity (OHC of bread with BP flour were higher as compared to the bread control. The bread prepared by replacing 5% and 10% of BP (B2 is found to be sensorially acceptable. Our results showed that the nutritionally and sensory accepted bread can be prepared by replacing at most 10% of flour.

  7. Fiber reinforced engineering plastics

    Science.gov (United States)

    Daniel F. Caulfield; Rodney E. Jacobson; Karl D. Sears; John H. Underwood

    2001-01-01

    Although natural fiber reinforced commodity thermoplastics have a wide range of nonstructural applications in the automotive and decking industries, there have been few reports of cellulosic fiber-reinforced engineering thermoplastics. The commonly held belief has been that the only thermoplastics amenable to natural-fibre reinforcement are limited to low-melting (...

  8. Characterization of polyethylene glycol plasticized carboxymethyl cellulose-ammonium fluoride solid biopolymer electrolytes

    Science.gov (United States)

    Ramlli, M. A.; Maksud, M. A.; Isa, M. I. N.

    2017-03-01

    An attempt to increase the ionic conductivity of solid biopolymer electrolyte (SBE) from carboxyl methylcellulose (CMC) doped with 9 wt. % of ammonium fluoride (AF) has been made by the plasticizing with polyethylene glycol (PEG). Electrochemical Impedance Spectroscopy (EIS) was used to investigate the ionic conductivity of the CMC-AF-PEG SBEs. The study shows that the highest conductivity achieved is 6.62×10-7 S cm-1 at room temperature for SBE with 25 % wt. PEG. X-Ray Diffraction (XRD) study proved that the highest conductive SBE has the highest amorphous nature which contributes to the high conductivity of the SBE. The interaction of CMC and AF was enhanced by the addition of PEG at C-O band in the CMC.

  9. Improvements in or relating to systems for measuring radioactivity of labelled biopolymers

    International Nuclear Information System (INIS)

    Gross, V.N.

    1980-01-01

    A system for measuring radioactivity of labelled biopolymers, comprises a set of containers for containing aqueous solutions of biological samples containing biopolymers; an electric drive for setting the set of containers in stepwise motion: means for acid precipitation of biopolymers arranged to provide feeding of preset volumes of a coprecipitator and a suspension of diatomite in an acid solution to the containers: means for removal of suspensions, filtering, suspending the precipitate, dissolving the biopolymers and consecutively feeding the mixture and a scintillator to a detection chamber, and a measuring cell arranged in the detection chamber. The sequence of operations is controlled automatically. (author)

  10. Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products

    International Nuclear Information System (INIS)

    Benítez-Guerrero, Mónica; López-Beceiro, Jorge; Sánchez-Jiménez, Pedro E.; Pascual-Cosp, José

    2014-01-01

    Highlights: • Thermal decomposition of sisal fibers has been discussed. • Decompositions of lignocellulosic components and sisal are compared by TXRD and TG-FTIR. • Hot washing reduces the temperature range in which sisal decomposition occurs. • Sisal cellulose decomposition goes by an alternative route to levoglucosan generation. - Abstract: This paper presents in a comprehensive way the thermal behavior of natural and hot-washed sisal fibers, based on the fundamental components of lignocellulosic materials: cellulose, xylan and lignin. The research highlights the influence exerted on the thermal stability of sisal fibers by other constituents such as non-cellulosic polysaccharides (NCP) and mineral matter. Thermal changes were investigated by thermal X-ray diffraction (TXRD), analyzing the crystallinity index (%Ic) of cellulosic samples, and by simultaneous thermogravimetric and differential thermal analysis coupled with Fourier-transformed infrared spectrometry (TG/DTA-FTIR), which allowed to examine the evolution of the main volatile compounds evolved during the degradation under inert and oxidizing atmospheres. The work demonstrates the potential of this technique to elucidate different steps during the thermal decomposition of sisal, providing extensible results to other lignocellulosic fibers, through the analysis of the evolution of CO 2 , CO, H 2 O, CH 4 , acetic acid, formic acid, methanol, formaldehyde and 2-butanone, and comparing it with the volatile products from pyrolysis of the biomass components. The hydroxyacetaldehyde detected during pyrolysis of sisal is indicative of an alternative route to that of levoglucosan, generated during cellulose pyrolysis. Hot-washing at 75 °C mostly extracts non-cellulosic components of low decomposition temperature, and reduces the range of temperature in which sisal decomposition occurs, causing a retard in the pyrolysis stage and increasing Tb NCP and Tb CEL , temperatures at the maximum mass loss rate of

  11. Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon

    Directory of Open Access Journals (Sweden)

    Changlei Xia

    2015-12-01

    Full Text Available Kenaf fiber—polyester composites incorporated with powdered activated carbon (PAC were prepared using the vacuum-assisted resin transfer molding (VARTM process. The product demonstrates the electromagnetic interference (EMI shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET specific surface area analysis. A higher BET value was obtained with a higher PAC loading. The transmission energies of the composites were measured by exposing the samples to the irradiation of electromagnetic waves with a variable frequency from 8 GHz to 12 GHz. As the PAC content increased from 0% to 10.0%, 20.5% and 28.9%, the EMI shielding effectiveness increased from 41.4% to 76.0%, 87.9% and 93.0%, respectively. Additionally, the EMI absorption increased from 21.2% to 31.7%, 44.7% and 64.0%, respectively. The ratio of EMI absorption/shielding of the composite at 28.9% of PAC loading was increased significantly by 37.1% as compared with the control sample. It was indicated that the incorporation of PAC into the composites was very effective for absorbing electromagnetic waves, which resulted in a decrease in secondary electromagnetic pollution.

  12. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    Directory of Open Access Journals (Sweden)

    Chithra Karunakaran

    Full Text Available Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  13. Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography.

    Science.gov (United States)

    Wu, Yunli; Hu, Bin

    2009-11-06

    A simple, selective, sensitive and inexpensive method of hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) combined with high performance liquid chromatography (HPLC)-ultraviolet (UV) detection was developed for the determination of four acidic phytohormones (salicylic acid (SA), indole-3-acetic acid (IAA), (+/-) abscisic acid (ABA) and (+/-) jasmonic acid (JA)) in natural coconut juice. To the best of our knowledge, this is the first report on the use of liquid phase microextraction (LPME) as a sample pretreatment technique for the simultaneous analysis of several phytohormones. Using phenetole to fill the pores of hollow fiber as the organic phase, 0.1molL(-1) NaOH solution in the lumen of hollow fiber as the acceptor phase and 1molL(-1) HCl as the donor phase, a simultaneous preconcentration of four target phytohormones was realized. The acceptor phase was finally withdrawn into the microsyringe and directly injected into HPLC for the separation and quantification of the target phytohormones. The factors affecting the extraction efficiency of four phytohormones by HF-LLLME were optimized with orthogonal design experiment, and the data was analyzed by Statistical Product and Service Solutions (SPSS) software. Under the optimized conditions, the enrichment factors for SA, IAA, ABA and JA were 243, 215, 52 and 48, with the detection limits (S/N=3) of 4.6, 1.3, 0.9ngmL(-1) and 8.8 microg mL(-1), respectively. The relative standard deviations (RSDs, n=7) were 7.9, 4.9, 6.8% at 50ngmL(-1) level for SA, IAA, ABA and 8.4% at 500 microg mL(-1) for JA, respectively. To evaluate the accuracy of the method, the developed method was applied for the simultaneous analysis of several phytohormones in five natural coconut juice samples, and the recoveries for the spiked samples were in the range of 88.3-119.1%.

  14. Biopolymer nanostructures induced by plasma irradiation and metal sputtering

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Juřík, P.; Malinský, Petr; Macková, Anna; Kasálková-Slepičková, N.; Švorčík, V.

    2014-01-01

    Roč. 332, 7-10 (2014), s. 7-10 ISSN 0168-583X. [21st International Conference on Ion Beam Analysis (IBA). Seattle, 23.06.2013-28.06.2013] R&D Projects: GA ČR ga13-06609S; GA ČR(CZ) GAP108/10/1106 Institutional support: RVO:61389005 Keywords : Biopolymer * plasma * surface morphology * RBS * Ripple pattern Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  15. ENCAPSULATION OF ANTITUBERCULAR DRUGS BY BIOPOLYMERS AND POLYELECTROLYTE MULTILAYERS

    Directory of Open Access Journals (Sweden)

    B. H. Mussabayeva

    2017-01-01

    Full Text Available The problem of drug-resistant tuberculosis treatment is complex and urgent: the standardof treatment includes the oral administration of six names of antibiotics, i.e. up totwenty tablets a day by the patient. This causes severe side effects, including those appeareddue to the formation of toxic products of drug interactions in the body. Therefore, itis important that some drugs dissolve in a stomach, and others – in the intestine, which willlead to increased bioavailability, reduced dosage and toxicity. The development of targeteddelivery systems for drugs with controlled release, targeted delivery and minimization ofside effects are of interest. One of the promising methods is polyelectrolytic multilayersand the technology of creating such layers by a step-by-step adsorption of heterogeneouslycharged polyelectrolytes.The aim of this article is the microencapsulation of anti-tuberculousdrugs into biopolymers coated with polyelectrolytic multilayers, and the solubilitystudy of microcapsules at pH values simulating various parts of the gastrointestinal tract.Materials and methods. Drugs as isoniazide, pyrazinamide, moxifloxacin, and biopolymers:gellan, pectin and sodium alginate, chitosan and dextran sulfate, as well as EudragitS are used to prepare microcapsules. The obtained microcapsules are studied by a methodof scanning electron microscopy. Quantitative determination of the effectiveness of the inclusionof drugs in microcapsules was carried out using pharmacopoeial methods.Results and discussion. The inclusion efficiency rises with an increase of biopolymer concentration. The inclusion efficiency increases in the row isoniazide

  16. Dietary Fiber

    Science.gov (United States)

    ... label as soluble fiber or insoluble fiber. Both types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and vegetables Dietary fiber adds bulk to ...

  17. Chemical composition and molecular structure of polysaccharide-protein biopolymer from Durio zibethinus seed: extraction and purification process

    Directory of Open Access Journals (Sweden)

    Amid Bahareh

    2012-10-01

    Full Text Available Abstract Background The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS was applied to analyze the molecular weight (Mw, number average molecular weight (Mn, and polydispersity index (Mw/Mn. Results The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%, glucose (37.1-45.1%, arabinose (0.58-3.41%, and xylose (0.3-3.21%. The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0, palmitoleic acid (C16:1, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2, and linolenic acid (C18:2. The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%, lysine (6.04-8.36%, aspartic acid (6.10-7.19%, glycine (6.07-7.42%, alanine (5.24-6.14%, glutamic acid (5.57-7.09%, valine (4.5-5.50%, proline (3.87-4.81%, serine (4.39-5.18%, threonine (3.44-6.50%, isoleucine (3.30-4.07%, and phenylalanine (3.11-9.04%. Conclusion The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

  18. Integrated bioconversion of syngas into bioethanol and biopolymers.

    Science.gov (United States)

    Lagoa-Costa, Borja; Abubackar, Haris Nalakath; Fernández-Romasanta, María; Kennes, Christian; Veiga, María C

    2017-09-01

    Syngas bioconversion is a promising method for bioethanol production, but some VFA remains at the end of fermentation. A two-stage process was set-up, including syngas fermentation as first stage under strict anaerobic conditions using C. autoethanogenum as inoculum, with syngas (CO/CO 2 /H 2 /N 2 , 30/10/20/40) as gaseous substrate. The second stage consisted in various fed-batch assays using a highly enriched PHA accumulating biomass as inoculum, where the potential for biopolymer production from the remaining acetic acid at the end of the syngas fermentation was evaluated. All of the acetic acid was consumed and accumulated as biopolymer, while ethanol and 2,3-butanediol remained basically unused. It can be concluded that a high C/N ratio in the effluent from the syngas fermentation stage was responsible for non-consumption of alcohols. A maximum PHA content of 24% was reached at the end of the assay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Can Plant-Based Natural Flax Replace Basalt and E-Glass for Fiber-Reinforced Polymer Tubular Energy Absorbers? A Comparative Study on Quasi-Static Axial Crushing

    Directory of Open Access Journals (Sweden)

    Libo Yan

    2017-12-01

    Full Text Available Using plant-based natural fibers to substitute glass fibers as reinforcement of composite materials is of particular interest due to their economic, technical, and environmental significance. One potential application of plant-based natural fiber reinforced polymer (FRP composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt, and glass FRP (GFRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam filler and the type of fiber materials on the crashworthiness characteristics, and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt, and GFRP tubes in quasi-static axial crushing were analyzed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study, therefore, indicated that flax fiber has the great potential to be suitable replacement of basalt and glass fibers for crushable energy absorber application.

  20. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  1. Bacterial polyhydroxybutyrate for electrospun fiber production.

    Science.gov (United States)

    Acevedo, Francisca; Villegas, Pamela; Urtuvia, Viviana; Hermosilla, Jeyson; Navia, Rodrigo; Seeger, Michael

    2018-01-01

    Nano- and microfibers obtained by electrospinning have attracted great attention due to its versatility and potential for applications in diverse technological fields. Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by microorganisms such as the bacterium Burkholderia xenovorans LB400. In particular, LB400 cells are capable to synthesize poly(3-hydroxybutyrate) (PHB) from glucose. The aim of this study was to produce and characterize electrospun fibers obtained from bacterial PHBs. Bacterial strain LB400 was grown in M9 minimal medium using xylose and mannitol (10gL -1 ) as the sole carbon sources and NH 4 Cl (1gL -1 ) as the sole nitrogen source. Biopolymer-based films obtained were used to produce fibers by electrospinning. Diameter and morphology of the microfibers were analyzed by scanning electron microscopy (SEM) and their thermogravimetric properties were investigated. Bead-free fibers using both PHBs were obtained with diameters of less than 3μm. The surface morphology of the microfibers based on PHBs obtained from both carbon sources was different, even though their thermogravimetric properties are similar. The results indicate that the carbon source may determine the fiber structure and properties. Further studies should be performed to analyze the physicochemical and mechanical properties of these PHB-based microfibers, which may open up novel applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (Cocus nucifera L.) fibers.

    Science.gov (United States)

    Kozan, J V B; Silva, R P; Serrano, S H P; Lima, A W O; Angnes, L

    2007-05-22

    A novel unmediated hydrogen peroxide biosensor based on the incorporation of fibrous tissue of coconut fruit in carbon paste matrix is presented. Cyclic voltammetry and amperometry were utilized to characterize the main electrochemical parameters and the performance of this new biosensor under different preparation and operation conditions. The resulting H2O2-sensitive biosensors respond rapidly (7 s to attain 90% of the signal), was operated at -0.15 V, presented linear response between 2.0x10(-4) and 3.4x10(-3) mol L(-1), the detection limit was estimated as 4.0x10(-5) mol L(-1). Its operation potential was situated between -0.2 and 0.1 V and the best pH was determined as 5.2. Electrodes containing 5% (w/w) of coconut fiber presented the best signal and their lifetime was extended to 3 months. The apparent Michaelis-Menten constant KM(app) and Vmax were estimated to be 8.90 mmol L(-1) and 6.92 mmol L(-1) microA(-1), respectively. The results obtained for determination of hydrogen peroxide in four pharmaceutical products (antiseptic solution, contact lenses cleaning solution, hair coloring cream and antiseptic dental rinse solution) were in agreement with those obtained by the spectrophotometric method. An additional advantage of these biosensors is the capacity to measure hydrogen peroxide even in samples with relatively low pH. To demonstrate the enzymatic activity of the coconut tissue, a very simple way was created during this work. Coconut fibers were immersed in H2O2 solution between two glass slides. Sequential images were taken to show the rapid generation of O2, attesting the high activity of the enzymes.

  3. A natural fiber complex reduces body weight in the overweight and obese: a double-blind, randomized, placebo-controlled study.

    Science.gov (United States)

    Grube, Barbara; Chong, Pee-Win; Lau, Kai-Zhia; Orzechowski, Hans-Dieter

    2013-01-01

    A proprietary natural fiber complex (Litramine IQP G-002AS) derived from Opuntia ficus-indica, and standardized on lipophilic activity, was previously shown in preclinical and human studies to reduce dietary fat absorption through gastrointestinal (GI) fat binding. Here, we investigated the efficacy and safety of IQP G-002AS in body weight reduction. One hundred twenty-five overweight and obese adults participated in the study. Subjects were advised on physical activity, and received nutritional counseling, including hypocaloric diet plans (30% energy from fat and 500 kcal deficit/day). After a 2-week placebo run-in phase, subjects were randomized to receive either 3 g/day of IQP G-002AS (IQ) or a placebo. The primary endpoint was change in body weight from baseline; secondary endpoints included additional obesity measures and safety parameters. One hundred twenty-three subjects completed the 12-week treatment phase (intention-to-treat (ITT) population: 30 male and 93 female; mean BMI: 29.6 ± 2.8 kg/m(2) and age: 45.4 ± 11.3 years). The mean body weight change from baseline was 3.8 ± 1.8 kg in IQ vs. 1.4 ± 2.6 kg in placebo (P fiber complex Litramine IQP G-002AS is effective in promoting weight loss. Copyright © 2012 The Obesity Society.

  4. The effect of gamma-radiation on biodegradability of natural FIBER/PP-HMSPP foams: A study of thermal stability and biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elizabeth C.L.; Scagliusi, Sandra R.; Lugao, Ademar B., E-mail: eclcardo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This research was carried out to evaluate how gamma-radiation affected PP/HMSPP structural foams reinforced with sugarcane bagasse, in terms of thermal properties, biodegradability and infrared spectrum. Polymers are used in various applications and in different industrial areas providing enormous quantities of wastes in environment, contributing with 20 to 30% of total volume of solid residues. Besides, shortage of plastics resins obtained from oil and natural gas is addressing research and development toward alternative materials; environmental concerning in litter reduction is being directed to renewable polymers for manufacturing of polymeric foams. Biodegradable polymers, a new generation of polymers produced from various natural resources, environmentally safe and friendly, can contribute for pollution reduction, at a low cost. High density structural foams are specially used in civil construction, in replacement of metals, woods and concrete, but contribute for environmental pollution, due to components nature. In this study, it was incorporated sugarcane bagasse in PP/HMSPP polymeric matrix blends. Gamma radiation applied at 50, 100, 150, 200 and 500 kGy doses showed effective for biodegradability induction. TGA analyses pointed toward stability around 205 deg C; decomposition of both cellulose and hemicellulose took place at 310 deg C and above, whereas the degradation of reinforced fibers composites took place above 430 deg C. Infrared spectrum of foams were studied using FTIR, showing no sensitivity to the presence of C = C and C =O functional groups. (author)

  5. The effect of gamma-radiation on biodegradability of natural FIBER/PP-HMSPP foams: A study of thermal stability and biodegradability

    International Nuclear Information System (INIS)

    Cardoso, Elizabeth C.L.; Scagliusi, Sandra R.; Lugao, Ademar B.

    2015-01-01

    This research was carried out to evaluate how gamma-radiation affected PP/HMSPP structural foams reinforced with sugarcane bagasse, in terms of thermal properties, biodegradability and infrared spectrum. Polymers are used in various applications and in different industrial areas providing enormous quantities of wastes in environment, contributing with 20 to 30% of total volume of solid residues. Besides, shortage of plastics resins obtained from oil and natural gas is addressing research and development toward alternative materials; environmental concerning in litter reduction is being directed to renewable polymers for manufacturing of polymeric foams. Biodegradable polymers, a new generation of polymers produced from various natural resources, environmentally safe and friendly, can contribute for pollution reduction, at a low cost. High density structural foams are specially used in civil construction, in replacement of metals, woods and concrete, but contribute for environmental pollution, due to components nature. In this study, it was incorporated sugarcane bagasse in PP/HMSPP polymeric matrix blends. Gamma radiation applied at 50, 100, 150, 200 and 500 kGy doses showed effective for biodegradability induction. TGA analyses pointed toward stability around 205 deg C; decomposition of both cellulose and hemicellulose took place at 310 deg C and above, whereas the degradation of reinforced fibers composites took place above 430 deg C. Infrared spectrum of foams were studied using FTIR, showing no sensitivity to the presence of C = C and C =O functional groups. (author)

  6. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering

    Directory of Open Access Journals (Sweden)

    Ilhan Chang

    2016-03-01

    Full Text Available Soil treatment and improvement is commonly performed in the field of geotechnical engineering. Methods and materials to achieve this such as soil stabilization and mixing with cementitious binders have been utilized in engineered soil applications since the beginning of human civilization. Demand for environment-friendly and sustainable alternatives is currently rising. Since cement, the most commonly applied and effective soil treatment material, is responsible for heavy greenhouse gas emissions, alternatives such as geosynthetics, chemical polymers, geopolymers, microbial induction, and biopolymers are being actively studied. This study provides an overall review of the recent applications of biopolymers in geotechnical engineering. Biopolymers are microbially induced polymers that are high-tensile, innocuous, and eco-friendly. Soil–biopolymer interactions and related soil strengthening mechanisms are discussed in the context of recent experimental and microscopic studies. In addition, the economic feasibility of biopolymer implementation in the field is analyzed in comparison to ordinary cement, from environmental perspectives. Findings from this study demonstrate that biopolymers have strong potential to replace cement as a soil treatment material within the context of environment-friendly construction and development. Moreover, continuing research is suggested to ensure performance in terms of practical implementation, reliability, and durability of in situ biopolymer applications for geotechnical engineering purposes.

  7. Time domain NMR and conductivity study of apple pectin biopolymers

    International Nuclear Information System (INIS)

    Mattos, Ritamara I.; Souto, Sergio; Tambelli, Caio E.

    2015-01-01

    This communication presents results of 1 H nuclear magnetic resonance of continuous distributions of spin-spin relaxation time (T 2 ) and A.C. conductivity of apple pectin biopolymers plasticized with glycerol and containing acetic acid. The continuous distributions reveals up to three components of spin-spin relaxation times (T 2 ). The two short T 2 components were associated with protons of pectin polymer chain and the longer T 2 can be attributed with the protons of the glycerol. The conductivity values increase with glycerol concentration with maximum at 7.9 x 10 -4 S cm -1 for sample with 3.0 g of glycerol at 83 deg C. The behavior of activation energy and T 2 continuous distribution indicate an increase of proton mobility due the structural changes caused by glycerol addition. (author)

  8. Evaluation of the Morphology and Biocompatibility of Natural Silk Fibers/Agar Blend Scaffolds for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Luong Thu-Hien

    2018-01-01

    Full Text Available This study was aimed to develop a tissue engineering scaffold by incorporation of Bombyx mori silk fiber (BMSF and agar. This promised the improvement in enhancing their advantageous properties as well as limiting their defects without occurring chemical reactions or crosslink formation. The morphology and chemical structure of scaffolds were observed using scanning electron microscope (SEM observation and Fourier transform infrared (FT-IR spectra. The SEM results show that scaffolds containing BMSF have microporous structures, which are suitable for cell adhesion. Agar scaffolds, by contrast, had much more flat morphology. FT-IR spectra confirm that no modifications to BMSF happened in scaffolds, which indicates that there was no chemical reaction or crosslink formation between silk and agar in this process. Furthermore, the biocompatibility of scaffolds was performed in the mouse’s subcutaneous part of the dorsal region for 15 days, followed by Haematoxylin and Eosin (H&E staining. H&E staining results demonstrate that scaffolds had good biocompatibility and there was no sign of the body rejection in all of samples. The results from animal study show that SA scaffolds have the most stable structure for cell adhesion compared with those single materials.

  9. Thermal properties of Fiber ropes

    DEFF Research Database (Denmark)

    Bossolini, Elena; Nielsen, Ole Wennerberg; Oland, Espen

    There is a trend within the oil and gas market to shift from steel wire ropes to fiber ropes for lifting, hoisting and mooring applications. The cost of fiber ropes is about 2-3 times that of steel wire ropes, but the natural buoyancy of fiber ropes reduces the overall weight resulting in smaller...

  10. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  11. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers.

    Science.gov (United States)

    Philibert, Tuyishime; Lee, Byong H; Fabien, Nsanzabera

    2017-04-01

    The natural biopolymer chitin and its deacetylated product chitosan are found abundantly in nature as structural building blocks and are used in all sectors of human activities like materials science, nutrition, health care, and energy. Far from being fully recognized, these polymers are able to open opportunities for completely novel applications due to their exceptional properties which an economic value is intrinsically entrapped. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal and insect sources. Significant efforts have been devoted to commercialize chitosan extracted from fungal and insect sources to completely replace crustacean-derived chitosan. However, the traditional chitin extraction processes are laden with many disadvantages. The present review discusses the potential bioextraction of chitosan from fungal, insect, and crustacean as well as its superior physico-chemical properties. The different aspects of fungal, insects, and crustacean chitosan extraction methods and various parameters having an effect on the yield of chitin and chitosan are discussed in detail. In addition, this review also deals with essential attributes of chitosan for high value-added applications in different fields and highlighted new perspectives on the production of chitin and deacetylated chitosan from different sources with the concomitant reduction of the environmental impact.

  12. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  13. Relevant insight of surface characterization techniques to study covalent grafting of a biopolymer to titanium implant and its acidic resistance

    Science.gov (United States)

    D'Almeida, Mélanie; Amalric, Julien; Brunon, Céline; Grosgogeat, Brigitte; Toury, Bérangère

    2015-02-01

    Peri-implant bacterial infections are the main cause of complications in dentistry. Our group has previously proposed the attachment of chitosan on titanium implants via a covalent bond to improve its antibacterial properties while maintaining its biocompatibility. A better knowledge of the coating preparation process allows a better understanding of the bioactive coating in biological conditions. In this work, several relevant characterization techniques were used to assess an implant device during its production phase and its resistance in natural media at different pH. The titanium surface was functionalized with 3-aminopropyltriethoxysilane (APTES) followed by grafting of an organic coupling agent; succinic anhydride, able to form two covalent links, with the substrate through a Ti-O-Si bond and the biopolymer through a peptide bond. Each step of the coating synthesis as well as the presence confirmation of the biopolymer on titanium after saliva immersion was followed by FTIR-ATR, SEM, EDS, 3D profilometry, XPS and ToF-SIMS analyses. Results allowed to highlight the efficiency of each step of the process, and to propose a mechanism occurring during the chitosan coating degradation in saliva media at pH 5 and at pH 3.

  14. Solid-State (13)C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles.

    Science.gov (United States)

    Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E

    2016-01-11

    Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.

  15. Hydrogels from Biopolymer Hybrid for Biomedical, Food, and Functional Food Applications

    Directory of Open Access Journals (Sweden)

    Robert C. Spiro

    2012-04-01

    Full Text Available Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer strengthens the stability of resultant hydrogels and enriches its functionalities by bringing in new functional groups or optimizing the micro-environmental conditions for certain biological and biochemical processes. This article presents approaches that have been used by our groups to synthesize biopolymer hybrid hydrogels for effective uses for immunotherapy, tissue regeneration, food and functional food applications. The research has achieved some challenging results, such as stabilizing physical structure, increasing mucoadhesiveness, and the creation of an artificial extracellular matrix to aid in guiding tissue differentiation.

  16. About possible mechanisms of current transfer in the bio-polymer - semiconductor heterostructure

    International Nuclear Information System (INIS)

    Pavlov, A.A.; Dosmailov, M.A.; Karibaeva, M.K.; Kenshinbaev, N.K.; Kokanbaev, M.; Uristembekov, B.B.; Tynyshtykbaev, K.B.

    2003-01-01

    Earlier by the bio-polymer films deposition on silicon the bio-polymer - semiconductor heterostructures were created. The influence of silicon surface atoms on self-organization processes in these bio-molecules were studied. Particularly the silicon - bio-cholesterol aqueous solution and the silicon - bio-chlorophyll aqueous solution spectral photo-sensitivity were considered. In this case the of photo-response broadening in the spectral photo-sensitivity short-wave part of these systems have been observed. The similar broadening is explained by both the passivation of surface recombination centers by OH-groups and the anti-reflecting properties of aqueous solutions. Besides it is possible the additional charge carriers generation caused by quasi-inter-zone transfers in the bio-polymers depending on electron-conformation properties of macromolecules. In the paper the possible mechanisms of current transfer in the bio-polymer - semiconductor heterostructure are discussed

  17. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T.; Gelperin, Alan [Princeton, NJ; Staii, Cristian [Madison, WI

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  18. Analysis of the gamma radiation effects in the composite of polyurethane derived from castor oil and natural fibers; Analise dos efeitos da radiacao gama no composito de poliuretano derivado de mamona com serragem

    Energy Technology Data Exchange (ETDEWEB)

    Kienen, Victor D.; Todt, Matheus L.; Capellari, Giovanni S.; Azevedo, Elaine C. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Neto, Salvador C. [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil)

    2015-07-01

    Composite of Polyurethane derived from castor oil and natural fibers are obtained from renewable raw material, low cost, and for not assaulting nature. This paper analyzes the effects of gamma radiation on composite polyurethane derived from castor with sawdust irradiated with gamma radiation of 25 kGy . It was held from 3 tips bending tests and micrograph by scanning electron microscopy. The results indicate that gamma radiation decreases the breakdown voltage and the micrograph of the fracture indicates brittle fracture occurred. (author)

  19. Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses

    OpenAIRE

    Manuel Guillermo Rojas Cortés; Bibiana Margarita Vallejo Díaz; Jairo Ernesto Perilla Perilla

    2008-01-01

    Biopolymers have been widely studied for use in pharmaceutical applications. They have been used for modifying drug release, orientating a drug towards its therapeutic target, penetrating physiological barriers (tissues and cells) and protecting unstable therapeutic agents against physiological conditions which are present in a less invasive administration routes. The importance of biopolymers in designing new biomedical devices must thus be stressed, es-pecially when a pharmaceutical substan...

  20. Massive calculations of electrostatic potentials and structure maps of biopolymers in a distributed computing environment

    International Nuclear Information System (INIS)

    Akishina, T.P.; Ivanov, V.V.; Stepanenko, V.A.

    2013-01-01

    Among the key factors determining the processes of transcription and translation are the distributions of the electrostatic potentials of DNA, RNA and proteins. Calculations of electrostatic distributions and structure maps of biopolymers on computers are time consuming and require large computational resources. We developed the procedures for organization of massive calculations of electrostatic potentials and structure maps for biopolymers in a distributed computing environment (several thousands of cores).

  1. The Effect of Modification Methods on the Performance Characteristics of Composites Based on a Linear Low-Density Polyethylene and Natural Hemp Fibers

    Science.gov (United States)

    Kajaks, J.; Zelca, Z.; Kukle, S.

    2015-11-01

    Influence of the content of hemp fibers (harvested in 2012) and their modification methods (treatment with boiling water, sodium hydroxide, and acetic anhydride) and addition of an interfacial modifier, maleated polyethylene (MAPE), on the performance characteristics (tensile strength, modulus, elongation at break, microhardness, and water resistance) of composites based on a linear low-density polyethylene (LLDPE) was investigated. The results obtained are compared with data found earlier for the same type of hemp fibers, but harvested in 2011. It is shown that optimum content of untreated hemp fibers in the LLDPE matrix is 30 wt.% and optimum length of the fibers is less than 1 mm. An increase in the content of hemp fibers (to 30 wt.%) raised the tensile strength and modulus of the composites, but reduced their elasticity and deformation ability. Simultaneously, the microhardness of the composite materials grew. Pretreating the fibers with sodium hydroxide improved the mechanical properties of the composites only slightly, but treating with acetic anhydride allowed us to elevate the content of the fibers up to 40 and 50 wt.%. The best results were achieved by addition of 50 wt.% MAPE, when the tensile modulus increased by about 47% and the tensile strength by 27% as compared with those of composites with fibers pretreated by other methods. To estimate the processing possibilities of the composites, the melt flow index (MFI) was determined. It is established that the pretreatment of the fibers significantly affects the numerical values of MFI. For example, upon treatment with acetic anhydride, a sufficiently high fluidity of the composites was retained even at a 50 wt.% content of fibers. The lowest fluidity was observed for composites with alkali-pretreated hemp fibers. The surface microhardness decreased upon their chemical pretreatment. The highest microhardness showed composites with 30 wt.% untreated fibers. The chemical pretreatment considerably raised the

  2. On fiber rejection loss in flotation deinking

    Science.gov (United States)

    J.Y. Zhu; Freya Tan

    2005-04-01

    Reducing fiber rejection loss in flotation deinking is very important to conserve natural resources and reduce the cost of secondary fibers in paper recycling. This study examined two aspects of the problem, fiber consistency in the rejection stream and rate of Froth (or wet stream) rejection. Flotation experiments were conducted using both nylon and wood fibers in...

  3. A Biogeotechnical approach to Stabilize Soft Marine Soil with a Microbial Organic Material called Biopolymer

    Science.gov (United States)

    Chang, I.; Cho, G. C.; Kwon, Y. M.; Im, J.

    2017-12-01

    The importance and demands of offshore and coastal area development are increasing due to shortage of usable land and to have access to valuable marine resources. However, most coastal soils are soft sediments, mainly composed with fines (silt and clay) and having high water and organic contents, which induce complicated mechanical- and geochemical- behaviors and even be insufficient in Geotechnical engineering aspects. At least, soil stabilization procedures are required for those soft sediments, regardless of the purpose of usage on the site. One of the most common soft soil stabilization method is using ordinary cement as a soil strengthening binder. However, the use of cement in marine environments is reported to occur environmental concerns such as pH increase and accompanying marine ecosystem disturbance. Therefore, a new environmentally-friendly treatment material for coastal and offshore soils. In this study, a biopolymer material produced by microbes is introduced to enhance the physical behavior of a soft tidal flat sediment by considering the biopolymer rheology, soil mineralogy, and chemical properties of marine water. Biopolymer material used in this study forms inter-particle bonds between particles which is promoted through cation-bridges where the cations are provided from marine water. Moreover, biopolymer treatment renders unique stress-strain relationship of soft soils. The mechanical stiffness (M) instantly increase with the presence of biopolymer, while time-dependent settlement behavior (consolidation) shows a big delay due to the viscous biopolymer hydrogels in pore spaces.

  4. Mixing behaviour of WPI-pectin-complexes in meat dispersions: impact of biopolymer ratios.

    Science.gov (United States)

    Zeeb, Benjamin; Schöck, Vanessa; Schmid, Nicole; Majer, Lisa; Herrmann, Kurt; Hinrichs, Jörg; Weiss, Jochen

    2017-01-25

    Particulated complexes composed of oppositely charged biopolymers were incorporated into highly concentrated protein matrices as potential fat replacers and structuring agents. A multistep procedure was therefore utilized to generate process-stable complexes, which were subsequently embedded into emulsion-type sausages, whereas macro- and microstructural properties were then assessed. Firstly, stock WPI and sugar beet pectin solutions were mixed under neutral conditions (pH 7) at various biopolymer ratios r (2 : 1, 5 : 1, 8 : 1). Secondly, the pH of the biopolymer mixture was decreased to 3.5 to promote associative complexation. Thirdly, electrostatically attracted biopolymer particles were subjected to a heat treatment (ϑ = 85 °C, 20 min) to enhance their stability against superimposed stresses. Finally, fat-reduced emulsion-type sausages were fabricated containing stable WPI-pectin complexes. The results revealed that the heat treatment increased the pH-stability of the biopolymer complexes. In addition, textural and sensorial analysis demonstrated that the meat products became increasingly soft as the biopolymer ratio r increased. This effect was attributed to thermodynamic incompatibility between meat proteins and beet pectin. The results obtained from this study might have important implications for the fabrication of processed meat products with reduced fat levels.

  5. Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes.

    Science.gov (United States)

    Liew, Chiam-Wen; Ramesh, S

    2015-06-25

    Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Packaging related properties of commercially available biopolymers – An overview of the status quo

    Directory of Open Access Journals (Sweden)

    V. Jost

    2018-05-01

    Full Text Available Several commercially available thermoplastic biopolymers were processed in a continuous extrusion line. The molecular weight, crystallinity, and mechanical and permeation properties of the cast films were determined in order to evaluate the status quo of biopolymers currently commercially available. The biopolymers that were evaluated were polylactic acid (PLA, several polyhydroxyalkanoates (PHAs (Poly(3-hydroxybutyrate (PHB, poly(3-hydroxybutyrate-co-4-hydroxybutyrate (PHBHB, poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV, thermoplastic starch (TPS, polybutylene adipate terephthalate (PBAT, polybutylene succinate (PBS, polycaprolactone (PCL and biobased polyethylene (BioPE. Due to its potential for biobased production, thermoplastic polyurethane elastomer (TPU was also analysed. Mechanical analysis showed the PLA and PHA films had high strength and extremely low elongation at break. These were also the materials with the highest molecular weights. Films made of TPU, PCL, TPS, PBAT and BioPE had a significantly lower Young’s modulus and significantly higher elongation at break; these films had comparatively low molecular weights. Permeation measurements showed that PHA films, and particularly PHBV, had the lowest oxygen and water vapour permeability of the biopolymers that were analysed. The biopolymers BioPE, TPS, PCL, TPU and PBAT were highly permeable to oxygen, and had comparatively low molecular weight. The biopolymers TPU, PBS, PBAT, PCL and TPS were highly permeable to water vapour.

  7. natural

    Directory of Open Access Journals (Sweden)

    Elías Gómez Macías

    2006-01-01

    Full Text Available Partiendo de óxido de magnesio comercial se preparó una suspensión acuosa, la cual se secó y calcinó para conferirle estabilidad térmica. El material, tanto fresco como usado, se caracterizó mediante DRX, área superficial BET y SEM-EPMA. El catalizador mostró una matriz de MgO tipo periclasa con CaO en la superficie. Las pruebas de actividad catalítica se efectuaron en lecho fijo empacado con partículas obtenidas mediante prensado, trituración y clasificación del material. El flujo de reactivos consistió en mezclas gas natural-aire por debajo del límite inferior de inflamabilidad. Para diferentes flujos y temperaturas de entrada de la mezcla reactiva, se midieron las concentraciones de CH4, CO2 y CO en los gases de combustión con un analizador de gases tipo infrarrojo no dispersivo (NDIR. Para alcanzar conversión total de metano se requirió aumentar la temperatura de entrada al lecho a medida que se incrementó el flujo de gases reaccionantes. Los resultados obtenidos permiten desarrollar un sistema de combustión catalítica de bajo costo con un material térmicamente estable, que promueva la alta eficiencia en la combustión de gas natural y elimine los problemas de estabilidad, seguridad y de impacto ambiental negativo inherentes a los procesos de combustión térmica convencional.

  8. The influence of Rice Husk Fiber on The Properties of Epoxidized Natural Rubber/Rice Husk Compounds

    Directory of Open Access Journals (Sweden)

    Dahham Omar S.

    2016-01-01

    Full Text Available In this work, curing characteristics, tensile and physical properties of epoxidized natural rubber/rice husk (ENR-50/RH compounds were investigated. Different RH loading (10, 20, 30, 40 and 50 Phr and size (fine size at 100-300 μm and coarse size at 5-10 mm were prepared and used. Results indicated that the scorch time (t2 and cure time (t90 became shorter with increasing RH content. In contrast, minimum torque (ML and maximum torque (MH increased with increasing RH content in the rubber compounds. Hardness and crosslink density showed improvement with increasing RH content. Tensile strength (Ts and elongation at break (Eb decreased slightly as RH content increased. However, the fine size of RH recorded better overall properties compared to the RH coarse size at same loading the rubber compound.

  9. Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization.

    Directory of Open Access Journals (Sweden)

    Bertrand Jóźwiak

    Full Text Available The paper proposes a fractional generalization of the Maxwell and Kelvin-Voigt rheological models for a description of dynamic behavior of biopolymer materials. It was found that the rheological models of Maxwell-type do not work in the case of modeling of viscoelastic solids, and the model which significantly better describes the nature of changes in rheological properties of such media is the modified fractional Kelvin-Voigt model with two built-in springpots (MFKVM2. The proposed model was used to describe the experimental data from the oscillatory and creep tests of 3% (w/v kuzu starch pastes, and to determine the values of their rheological parameters as a function of pasting time. These parameters provide a lot of additional information about structure and viscoelastic properties of the medium in comparison to the classical analysis of dynamic curves G' and G" and shear creep compliance J(t. It allowed for a comprehensive description of a wide range of properties of kuzu starch pastes, depending on the conditions of pasting process.

  10. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    Science.gov (United States)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  11. Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization.

    Science.gov (United States)

    Jóźwiak, Bertrand; Orczykowska, Magdalena; Dziubiński, Marek

    2015-01-01

    The paper proposes a fractional generalization of the Maxwell and Kelvin-Voigt rheological models for a description of dynamic behavior of biopolymer materials. It was found that the rheological models of Maxwell-type do not work in the case of modeling of viscoelastic solids, and the model which significantly better describes the nature of changes in rheological properties of such media is the modified fractional Kelvin-Voigt model with two built-in springpots (MFKVM2). The proposed model was used to describe the experimental data from the oscillatory and creep tests of 3% (w/v) kuzu starch pastes, and to determine the values of their rheological parameters as a function of pasting time. These parameters provide a lot of additional information about structure and viscoelastic properties of the medium in comparison to the classical analysis of dynamic curves G' and G" and shear creep compliance J(t). It allowed for a comprehensive description of a wide range of properties of kuzu starch pastes, depending on the conditions of pasting process.

  12. An optically transparent, flexible, patterned and conductive silk biopolymer film (Conference Presentation)

    Science.gov (United States)

    Umar, Muhammad; Min, Kyungtaek; Kim, Sunghwan

    2017-02-01

    Transparent, flexible, and conducting films are of great interest for wearable electronics. For better biotic/abiotic interface, the films to integrate the electronics components requires the patterned surface conductors with optical transparency, smoothness, good electrical conductivity, along with the biofriendly traits of films. We focus on silk fibroin, a natural biopolymer extracted from the Bombyx mori cocoons, for this bioelectronics applications. Here we report an optically transparent, flexible, and patterned surface conductor on a silk film by burying a silver nanowires (AgNW) network below the surface of the silk film. The conducting silk film reveals high optical transparency of 80% and the excellent electronic conductivity of 15 Ω/sq, along with smooth surface. The integration of light emitting diode (LED) chip on the patterned electrodes confirms that the current can flow through the transparent and patterned electrodes on the silk film, and this result shows an application for integration of functional electronic/opto-electronic devices. Additionally, we fabricate a transparent and flexible radio frequency (RF) antenna and resistor on a silk film and apply these as a food sensor by monitoring the increasing resistance by the flow of gases from the spoiled food.

  13. Influence of a biopolymer admixture on corrosion behaviour of steel rebars in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Roux, S.; Bur, N.; Feugeas, F. [LGECO - LISS, INSA de Strasbourg, 24 bd de la Victoire, 67 084 Strasbourg Cedex (France); Ferrari, G. [TNO Science and Industry, Bevesierweg, 1781 CA Den Helder (Netherlands); Tribollet, B. [UPR15 du CNRS, LISE, Universite Pierre et Marie Curie, 4 place Jussieu, 75 252 Paris Cedex 05 (France)

    2010-12-15

    Among the multitude of concrete structure pathologies, corrosion of rebars is one of the most important problems of concrete durability. In the context of sustainable development, it appears of primary importance to develop new means to protect the rebars against corrosion. This study aims to develop a new eco-friendly and corrosion-inhibiting admixture based on EPS 180 exopolysaccharides, biopolymers used in coatings already studied for the corrosion inhibition on steel in seawater. C15 rebars embedded in CEMI and CEMV cement paste containing EPS 180 were immersed in natural seawater and their electrochemical behaviour was studied using open circuit potential measurements and electrochemical impedance spectroscopy. These tests highlight the decrease of the cathodic reaction kinetics due to the EPS 180 action at the rebars surface, and the absence of effect on the passive layer. Capillary imbibition tests carried out on cement paste and mortars showed that although limiting the imbibition kinetics for cement pastes, the EPS 180 did not influence the water imbibition of mortars. Tests comparing capillary imbibition of soaked cement pastes and mortars with EPS 180 solution and the same samples containing the EPS 180 admixture highlight that the corrosion inhibition induced by EPS 180 admixture is more due to the modification of the cement - rebars interface than to the clogging of the cement porous network. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  15. Ranitidine Loaded Biopolymer Floats: Designing, Characterization, and Evaluation

    Directory of Open Access Journals (Sweden)

    Abdul Karim

    2017-01-01

    Full Text Available The float formulation is a strategy to improve the bioavailability of drugs by gastroretentive drug delivery system (GRDDS. A drug delivery model based on swellable and reswellable low density biopolymers has been designed to evaluate its drug release profile using ranitidine (RNT as a model drug and formulations have been prepared utilizing 32 factorial designs. The drug release (DR data has been subjected to various kinetic models to investigate the DR mechanism. A reduction in rate has been observed by expanding the amounts of PSG and LSG parts, while an expansion has been noted by increasing the concentration of tragacanth (TG and citric acid (CA with an increment in floating time. The stearic acid (SA has been used to decrease the lag time because a decrease in density of system was observed. The kinetic analysis showed that the optimized formulation (S4F3 followed zero-order kinetics and power law was found to be best fitted due to its minimum lag time and maximum floating ability. The resemblance of observed and predicted values indicated the validity of derived equations for evaluating the effect of independent variables while kinetic study demonstrated that the applied models are feasible for evaluating and developing float for RNT.

  16. Interfacial rheological properties of self-assembling biopolymer microcapsules.

    Science.gov (United States)

    Xie, Kaili; de Loubens, Clément; Dubreuil, Frédéric; Gunes, Deniz Z; Jaeger, Marc; Léonetti, Marc

    2017-09-20

    Tuning the mechanical properties of microcapsules through a cost-efficient route of fabrication is still a challenge. The traditional method of layer-by-layer assembly of microcapsules allows building a tailored composite multi-layer membrane but is technically complex as it requires numerous steps. The objective of this article is to characterize the interfacial rheological properties of self-assembling biopolymer microcapsules that were obtained in one single facile step. This thorough study provides new insights into the mechanics of these weakly cohesive membranes. Firstly, suspensions of water-in-oil microcapsules were formed in microfluidic junctions by self-assembly of two oppositely charged polyelectrolytes, namely chitosan (water soluble) and phosphatidic fatty acid (oil soluble). In this way, composite membranes of tunable thickness (between 40 and 900 nm measured by AFM) were formed at water/oil interfaces in a single step by changing the composition. Secondly, microcapsules were mechanically characterized by stretching them up to break-up in an extensional flow chamber which extends the relevance and convenience of the hydrodynamic method to weakly cohesive membranes. Finally, we show that the design of microcapsules can be 'engineered' in an extensive way since they present a wealth of interfacial rheological properties in terms of elasticity, plasticity and yield stress whose magnitudes can be controlled by the composition. These behaviors are explained by the variation of the membrane thickness with the physico-chemical parameters of the process.

  17. Bioinspired vesicle restraint and mobilization using a biopolymer scaffold.

    Science.gov (United States)

    Zhu, Chao; Lee, Jae-Ho; Raghavan, Srinivasa R; Payne, Gregory F

    2006-03-28

    Biology employs vesicles to package molecules (e.g., neurotransmitters) for their targeted delivery in response to specific spatiotemporal stimuli. Biology is also capable of employing localized stimuli to exert an additional control on vesicle trafficking; intact vesicles can be restrained (or mobilized) by association with (or release from) a cytoskeletal scaffold. We mimic these capabilities by tethering vesicles to a biopolymer scaffold that can undergo (i) stimuli-responsive network formation (for vesicle restraint) and (ii) enzyme-catalyzed network cleavage (for vesicle mobilization). Specifically, we use the aminopolysaccharide chitosan as our scaffold and graft a small number of hydrophobic moieties onto its backbone. These grafted hydrophobes can insert into the bilayer to tether vesicles to the scaffold. Under acidic conditions, the vesicles are not restrained by the hydrophobically modified chitosan (hm-chitosan) because this scaffold is soluble. Increasing the pH to neutral or basic conditions allows chitosan to form interpolymer associations that yield a strong, insoluble restraining network. Enzymatic hydrolysis of this scaffold by chitosanase cleaves the network and mobilizes intact vesicles. Potentially, this approach will provide a controllable means to store and liberate vesicle-based reagents/therapeutics for microfluidic/medical applications.

  18. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications.

    Science.gov (United States)

    Pangon, Autchara; Saesoo, Somsak; Saengkrit, Nattika; Ruktanonchai, Uracha; Intasanta, Varol

    2016-06-25

    Biomimetic nanofibrous scaffolds derived from natural biopolymers for bone tissue engineering applications require good mechanical and biological performances including biomineralization. The present work proposes the utility of chitin whisker (CTWK) to enhance mechanical properties of chitosan/poly(vinyl alcohol) (CS/PVA) nanofibers and to offer osteoblast cell growth with hydroxyapatite (HA) mineralization. By using diacid as a solvent, electrospun CS/PVA nanofibrous membranes containing CTWK can be easily obtained. The dimension stability of nanofibrous CS/PVA/CTWK bionanocomposite is further controlled by exposing to glutaraldehyde vapor. The nanofibrous membranes obtained allow mineralization of HA in concentrated simulated body fluid resulting in an improvement of Young's modulus and tensile strength. The CTWK combined with HA in bionanocomposite is a key to promote osteoblast cell adhesion and proliferation. The present work, for the first time, demonstrates the use of CTWKs for bionanocomposite fibers of chitosan and its hydroxyapatite biomineralization with the function in osteoblast cell culture. These hydroxyapatite-hybridized CS/PVA/CTWK bionanocomposite fibers (CS/PVA/CTWK-HA) offer a great potential for bone tissue engineering applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  20. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  1. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    Science.gov (United States)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  2. Anti-tumor Effects of Exo- and Endo-biopolymers Produced from Submerged Cultures of Three Different Mushrooms.

    Science.gov (United States)

    Jeong, Yong-Tae; Yang, Byung-Keun; Li, Chun-Ru; Song, Chi-Hyun

    2008-06-01

    The anti-tumor effects of exo- (EX) and endo-biopolymers (EN) produced from submerged mycelial cultures of Ganoderma applanatum (GA), Collybia confluens (CC), and Pleurotus eryngii (PE) were studied using Sarcoma 180 bearing mice. Solid tumor growth was inhibited most effectively when 40 mg/kg body weight (BW) of GA-EX or PE-EN was administered to the intraperitoneal (i.p.) cavity of BALB/c mice. The spleen and liver indexes were increased in mice following i.p. administration of GA-EX and PE-EN fractions. GA-EX and PE-EN reduced the tumor formation by 30.7% and 29.4%, respectively. GA-EX and PE-EN increased the natural killer (NK) cell activity of splenocytes by 41.3% and 28.9%, respectively.

  3. Characterization of electrospun lignin based carbon fibers

    Science.gov (United States)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 - 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  4. Monomers of cutin biopolymer: sorption and esterification on montmorillonite surfaces

    Science.gov (United States)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2013-04-01

    One of the important precursors for soil organic matter is plant cuticle, a thin layer of predominantly lipids that cover all primary aerial surfaces of vascular plants. In most plant species cutin biopolymer is the major component of the cuticle (30-85% weight). Therefore cutin is the third most abundant plant biopolymer (after lignin and cellulose). Cutin is an insoluble, high molecular weight bio-polyester, which is constructed of inter-esterified cross linked hydroxy-fatty acids and hydroxyepoxy-fatty acids. The most common building blocks of the cutin are derivatives of palmitic acid, among them 9(10),16 dihydroxy palmitic acid (diHPA) is the main component. These fatty acids and their esters are commonly found in major organo-mineral soil fraction-humin. Hence, the complexes of cutin monomers with minerals may serve as model of humin. Both cutin and humin act as adsorption efficient domains for organic contaminants. However, only scarce information is available about the interactions of cutin with soil mineral surfaces, in particular with common soil mineral montmorillonite. The main hypothesize of the study is that adsorbed cutin monomers will be reconstituted on montmorillonite surface due to esterification and oligomerization, and that interactions of cutin monomers with montmorillonite will be affected by the type of exchangeable cation. Cutin monomers were obtained from the fruits of tomato (Lycopersicon esculentum). Adsorption of monomers was measured for crude Wyoming montmorillonites and montmorillonites saturated with Fe3+ and Ca2+. To understand the mechanism of monomer-clay interactions and to evaluate esterification on the clay surface, XRD and FTIR analyses of the montmorillonite-monomers complexes were performed. Our results demonstrated that the interactions of cutin monomers with montmorillonite are affected by the type of exchangeable cation. Isotherms of adsorption of cutin monomers on montmorillonites were fitted by a dual mode model of

  5. pH-induced contrast in viscoelasticity imaging of biopolymers

    International Nuclear Information System (INIS)

    Yapp, R D; Insana, M F

    2009-01-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  6. Microstructure and mechanical behavior of cross-linked biopolymer networks

    NARCIS (Netherlands)

    Zagar, Goran

    2014-01-01

    Fiber-achtige netwerken zijn alom tegenwoordig. Vilt en papier zijn voorbeelden waar we de netwerk structuur eenvoudig herkennen; rubber is een netwerk op moleculaire schaal, maar in ons eigen lichaam vinden we biopolymere netwerken in zacht weefsel alsook in het cytoskelet binnenin cellen. Het

  7. Electrospun Chitosan-Gelatin Biopolymer Composite Nanofibers for Horseradish Peroxidase Immobilization in a Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Siriwan Teepoo

    2017-10-01

    Full Text Available A biosensor based on chitosan-gelatin composite biopolymers nanofibers is found to be effective for the immobilization of horseradish peroxidase to detect hydrogen peroxide. The biopolymer nanofibers were fabricated by an electrospining technique. Upon optimization of synthesis parameters, biopolymers nanofibers, an average of 80 nm in diameter, were obtained and were then modified on the working electrode surface. The effects of the concentration of enzyme, pH, and concentration of the buffer and the working potential on the current response of the nanofibers-modified electrode toward hydrogen peroxide were optimized to obtain the maximal current response. The results found that horseradish peroxidase immobilization on chitosan-gelatin composite biopolymer nanofibers had advantages of fast response, excellent reproducibility, high stability, and showed a linear response to hydrogen peroxide in the concentration range from 0.1 to 1.7 mM with a detection limit of 0.05 mM and exhibited high sensitivity of 44 µA∙mM−1∙cm−2. The developed system was evaluated for analysis of disinfectant samples and showed good agreement between the results obtained by the titration method without significant differences at the 0.05 significance level. The proposed strategy based on chitosan-gelatin composite biopolymer nanofibers for the immobilization of enzymes can be extended for the development of other enzyme-based biosensors.

  8. Characterization of biopolymers and soy protein isolate-high-methoxyl pectin complex

    Directory of Open Access Journals (Sweden)

    Mírian Luisa Faria Freitas

    Full Text Available Abstract This study aimed at characterizing the soy protein isolate and high-methoxyl pectin biopolymers individually, and the complexes formed by both at different proportions and pHs in order to find the most suitable pH and biopolymer ratios to food application as stabilizers. The biopolymers were evaluated through solubility, charges, turbidimetry, and optical microscopy analyses; the systems with the pair of biopolymers were analyzed through turbidimetry and optical microscopy. High-methoxyl pectin showed high solubility at all pHs investigated. The soy protein isolate showed low solubility at pH 4.5, which is close to its isoelectric point, and complete solubility at pH 11.0. The formation of complexes suggested an attractive interaction between the biopolymers, with high absorbance reading values and images of complexes from optical microscopy. These complexes were present in systems with pHs below the soy protein isolate's isoelectric point, with positive charges; the high-methoxyl pectin, however, had negative ones.

  9. Valorisation of CO2-rich off-gases to biopolymers through biotechnological process.

    Science.gov (United States)

    Garcia-Gonzalez, Linsey; De Wever, Heleen

    2017-11-01

    As one of the key enabling technologies, industrial biotechnology has a high potential to tackle harmful CO2 emissions and to turn CO2 into a valuable commodity. So far, experimental work mainly focused on the bioconversion of pure CO2 to chemicals and plastics and little is known about the tolerance of the bioprocesses to the presence of impurities. This work is the first to investigate the impact of real CO2-rich off-gases on autotrophic production of polyhydroxybutyrate. To this end, two-phase heterotrophic-autotrophic fermentation experiments were set up, consisting of heterothrophic cell mass growth using glucose as substrate followed by autotrophic biopolymer production using either pure synthetic CO2 or industrial off-gases sampled at two point sources. The use of real off-gases did not affect the bacterial performance. High biopolymer content (up to 73%) and productivities (up to 0.227 g/lh) were obtained. Characterisation of the polymers showed that all biopolymers had similar properties, independent of the CO2 source. Moreover, the CO2-derived biopolymers' properties were comparable to commercial ones and biopolymers reported in literature, which are all produced from organic carbon sources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Effect on tomato plant and fruit of the application of biopolymer-oregano essential oil coatings.

    Science.gov (United States)

    Perdones, Ángela; Tur, Núria; Chiralt, Amparo; Vargas, Maria

    2016-10-01

    Oregano essential oil (EO) was incorporated into film-forming dispersions (FFDs) based on biopolymers (chitosan and/or methylcellulose) at two different concentrations. The effect of the application of the FFDs was evaluated on tomato plants (cultivar Micro-Tom) at three different stages of development, and on pre-harvest and postharvest applications on tomato fruit. The application of the FFDs at '3 Leaves' stage caused phytotoxic problems, which were lethal when the EO was applied without biopolymers. Even though plant growth and development were delayed, the total biomass and the crop yield were not affected by biopolymer-EO treatments. When the FFDs were applied in the 'Fruit' stage the pre-harvest application of FFDs had no negative effects. All FFDs containing EO significantly reduced the respiration rate of tomato fruit and diminished weight loss during storage. Moreover, biopolymer-EO FFDs led to a decrease in the fungal decay of tomato fruit inoculated with Rhizopus stolonifer spores, as compared with non-treated tomato fruit and those coated with FFDs without EO. The application of biopolymer-oregano essential oil coatings has been proven to be an effective treatment to control R. stolonifer in tomato fruit. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water

    International Nuclear Information System (INIS)

    Vila, M.; Sanchez-Salcedo, S.; Cicuendez, M.; Izquierdo-Barba, I.; Vallet-Regi, Maria

    2011-01-01

    Highlights: → 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams as potential devices for the treatment of heavy metal ions. → HA stable foams coated with biopolymers. → Feasible advance in development of new, easy to handle and low cost water purifying methods. - Abstract: 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams have been developed as potential devices for the treatment of lead, cadmium and copper contamination of consumable waters. These foams have exhibited a fast and effective ion metal immobilization into the HA structure after an in vitro treatment mimicking a serious water contamination case. To improve HA foam stability at contaminated aqueous solutions pH, as well as its handling and shape integrity the 3D-macroporous foams have been coated with biopolymers polycaprolactone (PCL) and gelatine cross-linked with glutaraldehyde (G/Glu). Metal ion immobilization tests have shown higher and fast heavy metals captured as function of hydrophilicity rate of biopolymer used. After an in vitro treatment, foam morphology integrity is guaranteed and the uptake of heavy metal ions rises up to 405 μmol/g in the case of Pb 2+ , 378 μmol/g of Cu 2+ and 316 μmol/g of Cd 2+ . These novel materials promise a feasible advance in development of new, easy to handle and low cost water purifying methods.

  12. Biopolymers/poly(ε-caprolactone)/polyethylenimine functionalized nano-hydroxyapatite hybrid cryogel: Synthesis, characterization and application in gene delivery.

    Science.gov (United States)

    Simionescu, Bogdan C; Drobota, Mioara; Timpu, Daniel; Vasiliu, Tudor; Constantinescu, Cristina Ana; Rebleanu, Daniela; Calin, Manuela; David, Geta

    2017-12-01

    Nano-hydroxyapatite (nHAp), surface functionalized with linear polyethylenimine (LPEI), was used for the preparation of biocomposites in combination with biopolymers and poly(ε-caprolactone) (PCL), by cryogelation technique, to yield biomimetic scaffolds with controlled interconnected macroporosity, mechanical stability, and predictable degradation behavior. The structural characteristics, swelling and degradation behavior of hydroxyapatite and hydroxyapatite/β-tricalcium phosphate (β-TCP) filled matrices were investigated as compared to the corresponding naked polymer 3D system. It was found that the homogeneity and cohesivity of the composite are significantly dependent on the size and amount of the included inorganic particles, which are thus determining the structural parameters. Surface modification with LPEI and nanodimensions favored the nHAp integration in the organic matrix, with preferential location along protein fibers, while β-TCP microparticles induced an increased disorder in the hybrid system. The biocomposite including nHAp only was further investigated targeting biomedical uses, and proved to be non-cytotoxic and capable of acting as gene-activated matrix (GAM). It allowed sustained delivery over time (until 22days) of embedded PEI 25 -pDNA polyplexes at high levels of transgene expression, while insuring a decrease in cytotoxicity as compared to polyplexes alone. Experimental data recommend such biocomposite as an attractive material for regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biosorption of strontium ions from aqueous solution using Ca-alginate biopolymer beads

    International Nuclear Information System (INIS)

    Goek, C.; Aytas, S.; Gerstmann, U.

    2009-01-01

    Biosorption of strontium ions from aqueous solution onto calcium alginate biopolymer beads was investigated in a batch system. Ca-alginate biopolymer beads were prepared from Na-alginate via cross-linking with divalent calcium ions according to the egg box model. Optimum biosorption conditions were determined as a function of initial solution pH, initial Sr concentration, contact time, biomass dosage and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of Sr ions by Ca-alginate biopolymer beads. The thermodynamic parameters (ΔH, ΔS, ΔG) for Sr sorption onto biosorbent were also determined from the temperature dependence. The results indicate that this biosorbent has a good potential for removal of Sr ions from dilute aqueous solution.

  14. The cross-linking influence of electromagnetic radiation on water-soluble polyacrylan compositions with biopolymers

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2009-01-01

    Full Text Available The results of examinations of the cross-linking influence of electromagnetic radiation - in a microwave range – on polyacrylancompositions with biopolymers, are presented in the hereby paper. The cross-linking process of the tested compositions was determined on the basis of the FT-IR spectroscopic methods. It was shown that microwave operations can lead to the formation of new cross-linkedstructures with strong covalent bonds. The adsorption process and formation of active centres in polymer molecules as well as in highsilica sand were found due to microwave radiations. In this process hydroxyl groups (-OH - present in a polymer - and silane groups (Si- O-H - present in a matrix - are mainly taking part. Spectroscopic and strength tests performed for the system: biopolymer binding agent – matrix indicate that the microwave radiation can be applied for hardening moulding sands with biopolymer binders.

  15. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    Directory of Open Access Journals (Sweden)

    Ghasem Rezanejade Bardajee

    2013-01-01

    Full Text Available This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs by using poly(acrylic acid grafted onto salep (salep-g-PAA as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR spectrum, thermogravimetric (TG analysis, and transmission electron microscopy (TEM. The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical properties of CdTe QDs. The results showed that the optical properties of CdTe QDs were significantly enhanced by using salep-g-PAA-based biopolymer.

  16. Biopolymer nanocomposites: processing, properties, and applications (wiley series on polymer engineering and technology)

    CERN Document Server

    2013-01-01

    Interest in biopolymer nanocomposites is soaring. Not only are they green and sustainable materials, they can also be used to develop a broad range of useful products with special properties, from therapeutics to coatings to packaging materials. With contributions from an international team of leading nanoscientists and materials researchers, this book draws together and reviews the most recent developments and techniques in biopolymer nano-composites. It describes the preparation, processing, properties, and applications of bio- polymer nanocomposites developed from chitin, starch, and cellulose, three renewable resources.Biopolymer Nanocomposites features a logical organization and approach that make it easy for readers to take full advantage of the latest science and technology in designing these materials and developing new products and applications. It begins with a chapter reviewing our current understanding of b...

  17. Removal of textile dyes with biopolymers xanthan and alginic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Alvarez, J.; Jauregui-Rincon, J.; Mendoza-Diaz, G.; Rodriguez-Vazquez, G.; Frausto-Reyes, C.

    2009-07-01

    Textile industry is an important activity that provides considerable benefits to people, but unfortunately dyeing of yarn and cloth produces pollution of water, a resource that is valuable and scarce. Dyeing of textiles fibers is an inefficient process, in view of the fact that approximately ten percent of total dye is thrown to municipal sewage. Although different treatment systems are applied to wastewater, dyes are resistant to physical, chemical and biological factors because of the way they are designed. (Author)

  18. Natural biopolimers in organic food packaging

    Science.gov (United States)

    Wieczynska, Justyna; Cavoski, Ivana; Chami, Ziad Al; Mondelli, Donato; Di Donato, Paola; Di Terlizzi, Biagio

    2014-05-01

    Concerns on environmental and waste problems caused by use of non-biodegradable and non-renewable based plastic packaging have caused an increase interest in developing biodegradable packaging using renewable natural biopolymers. Recently, different types of biopolymers like starch, cellulose, chitosan, casein, whey protein, collagen, egg white, soybean protein, corn zein, gelatin and wheat gluten have attracted considerable attention as potential food packaging materials. Recyclable or biodegradable packaging material in organic processing standards is preferable where possible but specific principles of packaging are not precisely defined and standards have to be assessed. There is evidence that consumers of organic products have specific expectations not only with respect to quality characteristics of processed food but also in social and environmental aspects of food production. Growing consumer sophistication is leading to a proliferation in food eco-label like carbon footprint. Biopolymers based packaging for organic products can help to create a green industry. Moreover, biopolymers can be appropriate materials for the development of an active surfaces designed to deliver incorporated natural antimicrobials into environment surrounding packaged food. Active packaging is an innovative mode of packaging in which the product and the environment interact to prolong shelf life or enhance safety or sensory properties, while maintaining the quality of the product. The work will discuss the various techniques that have been used for development of an active antimicrobial biodegradable packaging materials focusing on a recent findings in research studies. With the current focus on exploring a new generation of biopolymer-based food packaging materials with possible applications in organic food packaging. Keywords: organic food, active packaging, biopolymers , green technology

  19. BIOREFINE-2G — Result In Brief: Novel biopolymers from biorefinery waste-streams

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Chen, Xiao; Borodina, Irina

    Second generation biorefineries are all about creating value from waste, so it seems only right that the ideal plant should leave nothing behind. With this in mind, the BIOREFINE-2G project has developed novel processes to convert pentose-rich side-streams into biopolymers.......Second generation biorefineries are all about creating value from waste, so it seems only right that the ideal plant should leave nothing behind. With this in mind, the BIOREFINE-2G project has developed novel processes to convert pentose-rich side-streams into biopolymers....

  20. Parallelized system for biopolymer degradation studies through automated microresonator measurement in liquid flow

    DEFF Research Database (Denmark)

    Casci Ceccacci, Andrea; Morelli, Lidia; Bosco, Filippo

    2015-01-01

    In this work we present a novel automated system which allows the study of enzymatic degradation of biopolymer films coated on micromechanical resonators. The system combines an optical readout based on Blu-Ray technology with a software-controlled scanning mechanism. Integrated with a microfluidic...... setup unit, the system allows high-throughput measurements of resonance frequency over microresonator arrays under controlled flow conditions. We here demonstrate the acquisition of statistical data on biopolymer films degradation under enzymatic reaction over a large sample of micromechanical...

  1. Incorporation of zinc oxide to dispersions of biopolymers and release of the metallic ion in vitro

    International Nuclear Information System (INIS)

    Barreto, Marina S.R.; Ferreira, Willian H.; Andrade, Cristina T.

    2015-01-01

    Zinc oxide (ZnO) nanoparticles, obtained from a commercial product, were dispersed in different biopolymers, to be added to piglet feeds. The resulting products, prepared with sodium alginate (SA), chitosan (CH) and low methoxyl pectin (LMP) were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The release of Zn 2+ was investigated under simulated conditions of the gastrointestinal tract of piglets, and analyzed by atomic absorption spectroscopy (AA). The results showed that the structural factors, which have influence on the biopolymer/ZnO interactions, govern the behavior of Zn 2+ release. (author)

  2. The effect of BIOPOLYM GRANULAT on quality components in cow milk

    Directory of Open Access Journals (Sweden)

    Jana HNISOVÁ

    2014-10-01

    Full Text Available The aim of this work was to assess the impact of the liquid Biopolym Granulat on quality components in cow milk. Biopolym Granulat, was by a milking robot calibrated, given to dairy cows in a selected breeding around České Budějovice for a selected period of time. A slight increase, 23.24L as compared to the 22.07 L of the control group, has been consequently found in values of the average daily milk yield. When considering the components of milk there has been a slight increase in values of fat in themilk, while the values of protein have been decreased.

  3. The Influence of Biopolym FTZ on the Content of Nitrogen Compounds in Rumen

    Directory of Open Access Journals (Sweden)

    Eva Petrášková

    2010-05-01

    Full Text Available The aim of this study was to verify the effect of Biopolym FZT on the crude protein in the ruminal content. The experiment was conducted in laboratory conditions. Rumen content was removed from the Holstein breed cow fitted with ruminal fistula. The hydrolyzed brown seaweed was added to the samples of the ruminal content. After incubation of the samples the crude protein content was determined. In experiments with solid ruminal contents positive effects of Biopolym on the crude protein content was shown. The best results were achieved at the dilution of 1:2000.

  4. Generation of non-overlapping fiber architecture

    DEFF Research Database (Denmark)

    Chapelle, Lucie; Lévesque, M.; Brøndsted, Povl

    2015-01-01

    step toward the computation of their physical properties. In this work, a realistic 3D model is developed to describe the architecture of a complex fiber structure. The domain of application of the model could include natural fibers composites, wood fibers materials, papers, mineral and steel wools......Numerical models generating actual fiber architecture by including parameters such as the fiber geometry and arrangement are a powerful tool to explore the relation between the fiber architecture and mechanical properties. The generation of virtual architectures of fibrous materials is the first...... and polymer networks. The model takes into account the complex geometry of the fiber arrangement in which a fiber can be modeled with a certain degree of bending while keeping a main fiber orientation. The model is built in two steps. First, fibers are generated as a chain of overlapping spheres or as a chain...

  5. The battle for the "green" polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement.

    Science.gov (United States)

    Hernández, Nacú; Williams, R Christopher; Cochran, Eric W

    2014-05-14

    Biopolymers have been used throughout history; however, in the last two centuries they have seen a decrease in their utilization as the proliferation of inexpensive and mass-produced materials from petrochemical feedstocks quickly became better-suited to meeting society's needs. In recent years, high petroleum prices and the concern of society to adopt greener and cleaner products has led to an increased interest in biorenewable polymers and the use of sustainable technologies to produce them. Industrial and academic researchers alike have targeted several routes for producing these renewable materials. In this perspective, we compare and contrast two distinct approaches to the economical realization of these materials. One mentality that has emerged we term "bioreplacement", in which the fields of synthetic biology and catalysis collaborate to coax petrochemical monomers from sugars and lignocellulosic feedstocks that can subsequently be used in precisely the same ways to produce precisely the same polymers as we know today. For example, the metabolic engineering of bacteria is currently being explored as a viable route to common monomers such as butadiene, isoprene, styrene, acrylic acid, and sebacic acid, amongst others. Another motif that has recently gained traction may be referred to as the "bioadvantage" strategy, where the multifunctional "monomers" given to us by nature are combined in novel ways using novel chemistries to yield new polymers with new properties; for these materials to compete with their petroleum-based counterparts, they must add some advantage, for example less cost. For instance, acrylated epoxidized soybean oil readily undergoes polymerization to thermosets and recently, thermoplastic rubbers. Additionally, many plants produce pre-polymeric or polymeric materials that require little or no post modification to extract and make use of these compounds.

  6. [Use of the term "dietary fiber" and its classification].

    Science.gov (United States)

    Dudkin, M S; Shchelkunov, L F

    1997-01-01

    Complexity of dietary fiber composition, differences of their chemical structure and ratio of components, dependence of composition and properties upon the methods of isolation resulted in different definitions of dietary fibers and misunderstanding of their nature and role in nutrition. Among different definition--dietary fibers, raw fibers, crude fibers, vegetable fibers--the most adequate the definition 'dietary fibers'. This definition indicates on fibrous nature of main components: celluloses, hemicelluloses, pectines and on their significance in nutrition. The term dietary fibers obtains recognition and supplements the other synonyms.

  7. Aplicações de fibras vegetais na secagem de concretos refratários Use of natural fibers to speed up the drying step of refractory castables

    Directory of Open Access Journals (Sweden)

    C. S. Isaac

    2004-06-01

    Full Text Available A secagem de concretos refratários é uma etapa crítica em seu processamento devido aos riscos de explosão durante a saída de água contida em sua estrutura. Para minimizar esses problemas e aumentar a velocidade de secagem, fibras poliméricas têm sido adicionadas às formulações de concreto. Uma variável importante a ser considerada no desempenho desse aditivo é o tipo de fibra utilizada. Trabalhos do grupo de pesquisa indicaram que fibras vegetais podem apresentar bom desempenho na geração de canais permeáveis. Esse fato, aliado à sua grande disponibilidade e baixo custo, sugere que estas fibras sejam uma alternativa interessante às fibras sintéticas utilizadas atualmente. Neste trabalho, comparou-se o desempenho de fibras vegetais com o do polipropileno utilizados como aditivos de secagem. Foram realizadas medidas de permeabilidade utilizando a Equação de Forchheimer, ensaios de permeametria em alta temperatura e análise termogravimétrica do concreto. As fibras foram caracterizadas por calorimetria exploratória diferencial e termogravimetria.The drying of refractory castables is a critical step during application due to the possibility of spalling. In order to decrease these risks and improve the drying rate, polymeric fibers have been added to the castables' formulation. The type of fiber is an important aspect to be studied. Authors' previous works indicated that vegetable fibers can be good candidates. This fact, associated with its wide availability and low cost, suggests that these fibers can be interesting substitutes to synthetic ones. In this work, vegetable and polypropylene fibers had their performance evaluated as drying agents. The results of permeability measurements and hot air permeametry were related with the thermogravimety of the fiber-containing castables. The fibers were characterized by differential scanning calorimetry and thermogravimetry.

  8. Microbial Flocculant for Nature Soda

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Peiyong; Zhang, Tong; Chen, Cuixian

    2004-03-31

    Microbial flocculant for nature soda has been studied. Lactobacillus TRJ21, which was able to produce an excellent biopolymer flocculant for nature soda, was obtained in our lab. The microbial flocculant was mainly produced when the bacteria laid in stationary growth phase. Fructose or glucose, as carbon sources, were more favorable for the bacterial growth and flocculant production. The bacteria was able to use ammonium sulfate or Urea as nitrogen to produce flocculant, but was not able to use peptone effectively. High C/N ratio was more favorable to Lactobacillus TRJ21 growth and flocculant production than low C/N ratio. The biopolymer flocculant was mainly composed of polysaccharide and protein with a molecular weight 1.38x106 by gel permeation chromatography. It was able to be easily purified from the culture medium by acetone. Protein in the flocculant was tested for the flocculating activity ingredient by heating the flocculant.

  9. Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors

    Science.gov (United States)

    Zhao, Jian; Chen, Yu; Yao, Ying; Tong, Zong-Rui; Li, Pu-Wang; Yang, Zi-Ming; Jin, Shao-Hua

    2018-02-01

    Hydrogels have drawn many attentions as the solid-state electrolytes in flexible solid-state supercapacitors (SCs) recently. Among them, the polyelectrolyte complex hydrogel (PECH) electrolytes of natural polymers are more competitive because of their environmentally friendly property and low cost. However, while mixing two biopolymer solutions with opposite charges, the strong electrostatic interactions between the cationic and anionic biopolymers may result in precipitates instead of hydrogels. Here we report a novel method, semi-dissolution acidification sol-gel transition (SD-A-SGT), for the preparation of the PECH of chitosan (CTS) and sodium alginate (SA), with the controllable sol-gel transition and uniform composition and successfully apply it as the hydrogel electrolyte of solid-state supercapacitors (SCs). The CTS-SA PECH exhibits an extremely high ionic conductivity of 0.051 S·cm-1 and reasonable mechanical properties with a tensile strength of 0.29 MPa and elongation at break of 109.5%. The solid-state SC fabricated with the CTS-SA PECH and conventional polyaniline (PANI) nanowire electrodes provided a high specific capacitance of 234.6 F·g-1 at 5 mV·s-1 and exhibited excellent cycling stability with 95.3% capacitance retention after 1000 cycles. Our work may pave a novel avenue to the preparation of biodegradable PECHs of full natural polymers, and promote the development of environmentally friendly electronic devices.

  10. Biopolymer gel swelling analysed with scaling laws and Flory-Rehner theory

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2015-01-01

    The swelling of biopolymer gels is analysed with scaling laws from polymer physics, as an alternative for the classical Flory-Rehner theory. With these scaling laws, holding for polymer concentrations in the semi-dilute regime, experimental data on deswelling of gels can be collapsed to a single

  11. Ionic Liquid Microemullsions, Templates for Directing Morphology of Cellulose Biopolymer Nanoparticles (Briefing Charts)

    Science.gov (United States)

    2015-08-19

    Charts 3. DATES COVERED (From - To) July 2015-August 2015 4. TITLE AND SUBTITLE Ionic Liquid Microemullsions, Templates for Directing Morphology of...unlimited AFRL Public Affairs Clearance No. TBD Ionic Liquid Microemullsions, Templates for Directing Morphology of Cellulose Biopolymer...AFRL Public Affairs Clearance No. 15438 Outline • Background on Cellulose and Ionic Liquids • Materials and Methods • Results: Designing an IL

  12. Small Strain Topological Effects of Biopolymer Networks with Rigid Cross-Links

    NARCIS (Netherlands)

    Zagar, G.; Onck, P. R.; Van der Giessen, E.; Garikipati, K; Arruda, EM

    2010-01-01

    Networks of cross-linked filamentous biopolymers form topological structures characterized by L, T and X cross-link types of connectivity 2, 3 and 4, respectively. The distribution of cross-links over these three types proofs to be very important for the initial elastic shear stiffness of isotropic

  13. BIOLOGICAL NANOPORES FOR BIOPOLYMER SENSING AND SEQUENCING BASED ON FRAC ACTINOPORIN

    NARCIS (Netherlands)

    Maglia, Giovanni; Wloka, Carsten; Mutter, Natalie Lisa; Soskine, Misha; Huang, Gang

    2018-01-01

    The invention relates generally to the field of nanopores and the use thereof in various applications, such as analysis of biopolymer s and macromolecules, typically by making electrical measurements during translocation through a nanopores. Provided is a system comprising a funnel- shaped

  14. Fracture mechanisms in biopolymer films using coupling of mechanical analysis and high speed visualization technique

    NARCIS (Netherlands)

    Paes, S.S.; Yakimets, I.; Wellner, N.; Hill, S.E.; Wilson, R.H.; Mitchell, J.R.

    2010-01-01

    The aim of this study was to provide a detailed description of the fracture mechanisms in three different biopolymer thin materials: gelatin, hydroxypropyl cellulose (HPC) and cassava starch films. That was achieved by using a combination of fracture mechanics methodology and in situ visualization

  15. A novel method of providing a library of n-mers or biopolymers

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a method of providing a library of n-mer sequences, wherein the library is composed of an n-mer sequence. Also the invention concerns a method of providing a library of biopolymer sequences having one or more n-mers in common. Further provided are specific primers...

  16. Models for stiffening in cross-linked biopolymer networks : A comparative study

    NARCIS (Netherlands)

    van Dillen, T.; Onck, P. R.; Van der Giessen, E.

    In a recent publication, we studied the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear [Onck, P.R., Koeman, T., Van Dillen, T., Van der Giessen, E., 2005. Alternative explanation of stiffening in cross-linked

  17. Polyhydroxybutyrate (PHB) Synthesis by Spirulina sp. LEB 18 Using Biopolymer Extraction Waste.

    Science.gov (United States)

    da Silva, Cleber Klasener; Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2018-01-20

    The reuse of waste as well as the production of biodegradable compounds has for years been the object of studies and of global interest as a way to reduce the environmental impact generated by unsustainable exploratory processes. The conversion of linear processes into cyclical processes has environmental and economic advantages, reducing waste deposition and reducing costs. The objective of this work was to use biopolymer extraction waste in the cultivation of Spirulina sp. LEB 18, for the cyclic process of polyhydroxybutyrate (PHB) synthesis. Concentrations of 10, 15, 20, 25, and 30% (v/v) of biopolymer extraction waste were tested. For comparison, two assays were used without addition of waste, Zarrouk (SZ) and modified Zarrouk (ZM), with reduction of nitrogen. The assays were carried out in triplicate and evaluated for the production of microalgal biomass and PHB. The tests with addition of waste presented a biomass production statistically equal to ZM (0.79 g L -1 ) (p < 0.1). The production of PHB in the assay containing 25% of waste was higher when compared to the other cultivations, obtaining 10.6% (w/w) of biopolymer. From the results obtained, it is affirmed that the use of PHB extraction waste in the microalgal cultivation, aiming at the synthesis of biopolymers, can occur in a cyclic process, reducing process costs and the deposition of waste, thus favoring the preservation of the environment.

  18. MOLECULAR TRACERS FOR SMOKE FROM CHARRING/BURNING OF CHITIN BIOPOLYMER. (R823990)

    Science.gov (United States)

    AbstractMonosaccharide derivatives from the breakdown of cellulose are the major organic components of smoke particles emitted to the atmosphere from biomass burning. In urban areas a related biopolymer, chitin, may contribute markers to smoke from grilling/charring o...

  19. Network and Nakamura tridiagonal computational simulation of electrically-conducting biopolymer micro-morphic transport phenomena.

    Science.gov (United States)

    Anwar Bég, O; Zueco, J; Norouzi, M; Davoodi, M; Joneidi, A A; Elsayed, Assma F

    2014-01-01

    Magnetic fields have been shown to achieve excellent fabrication control and manipulation of conductive bio-polymer characteristics. To simulate magnetohydrodynamic effects on non-Newtonian electro-conductive bio-polymers (ECBPs) we present herein a theoretical and numerical simulation of free convection magneto-micropolar biopolymer flow over a horizontal circular cylinder (an "enrobing" problem). Eringen's robust micropolar model (a special case of the more general micro-morphic or "microfluid" model) is implemented. The transformed partial differential conservation equations are solved numerically with a powerful and new code based on NSM (Network Simulation Method) i.e. PSPICE. An extensive range of Hartmann numbers, Grashof numbers, micropolar parameters and Prandtl numbers are considered. Excellent validation is also achieved with earlier non-magnetic studies. Furthermore the present PSPICE code is also benchmarked with an implicit tridiagonal solver based on Nakamura's method (BIONAK) again achieving close correlation. The study highlights the excellent potential of both numerical methods described in simulating nonlinear biopolymer micro-structural flows. © 2013 Published by Elsevier Ltd.

  20. Effect of chitosan biopolymer and UV/TiO 2 method for the de ...

    African Journals Online (AJOL)

    The purpose for this study is to de-color C.I. Acid Blue 40 simulated textile wastewater using chitosan and UV/TiO2 system. The methodology is to use chitosan biopolymer and UV/TiO2 to degrade textile wastewater and to measure the color removal by UV-visible spectrophotometer. The operational parameters are chitosan ...

  1. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  2. A novel method for biopolymer surface nanostructuring by platinum deposition and subsequent thermal annealing

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Juřík, P.; Kolská, Z.; Malinský, Petr; Macková, Anna; Michaljaničová, I.; Švorčík, V.

    2012-01-01

    Roč. 7, č. 671 (2012), s. 1-6 ISSN 1931-7573 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : nanopattering * surface morphology * biopolymer * platinum sputtering * thermal annealing Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.524, year: 2012

  3. A differential vapor-pressure equipment for investigations of biopolymer interactions

    DEFF Research Database (Denmark)

    Andersen, Kim B; Koga, Y.; Westh, Peter

    2002-01-01

    , particularly a "gas-phase titration" routine for changing the cell composition, makes it effective for the investigations of several types of biopolymer interactions. These include isothermal studies of net affinities such as the adsorption of water to proteins or membranes, the preferential interaction...

  4. Fiber farming with insecticidal

    Science.gov (United States)

    Leah S. Bauer

    1997-01-01

    Naturally regenerated forests are the primary source of timber, fiber, and fuel throughout much of the world today. In the United States, however, public outcry over increasing forest fragmentation and habitat loss is reducing timber harvests in many areas. As our demand for forest products exceeds supplies, reliance on international timber resources will escalate,...

  5. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  6. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  7. Biopolymers coated superparamagnetic Nickel Ferrites: Enhanced biocompatibility and MR imaging probe for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bano, Shazia, E-mail: shaziaphy@gmail.com [Department of Physics, The Islamia University of Bahawalpur (Pakistan); Zafar, Tayyaba [Department of Physics, The Islamia University of Bahawalpur (Pakistan); Akhtar, Shahnaz [Department of Pharmacy, The Islamia University of Bahawalpur (Pakistan); Buzdar, Saeed Ahmed [Department of Physics, The Islamia University of Bahawalpur (Pakistan); Waraich, Mustansar Mahmood, E-mail: mustansarwaraich@gmail.com [Quaid-e-Azam Medical College B.V. Hospital, Bahawalpur (Pakistan); Afzal, Muhammad [Department of Physics, The Islamia University of Bahawalpur (Pakistan)

    2016-11-01

    We report evidence for the promising application of bovine serum albumin (BSA), chitosan (CS) or carboxymethyl cellulose (CMC) coated NiFe{sub 2}O{sub 4} cores for improved biocompatibility and enhanced T2 relaxivity, through a single combinatorial approach. Pure nickel-ferrite nano cores (NFs) successfully synthesized by thermolysis, were immobilize with BSA, CS or CMC layer employing a simple cross linking procedure to avoid any significant influence of these biopolymers on the morphology and crystal structure of the cores. Phase, morphology, magnetic hysteresis and surface chemistry were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM) and Fourier transform infrared (FTIR) spectroscopy. The preliminary haemolysis and cell viability experiments show that biopolymers conjugation mitigates the haemolytic effect of the NFs on erythrocytes as the haemolytic index is less than 2% and cell viability is up to 100%, when normalized with the nontreated cells. The relaxivity value of coated NFs is 351±2.6 when compared to 84±0.22 of NFs without biopolymer conjugation. The results demonstrate that BSA, CS or CMC covering on NFs provide a single combinatorial approach to improve the biocompatibility and enhance the relaxivity value. Thus addressing the current challenge of the same with very good contrast for targeting MCF-7 without any further vectorization. - Highlights: • A single combinatorial system for the promising application of biopolymers coated NiFe{sub 2}O{sub 4} cores. • Immobilization of a thin layer of three different biopolymers via a simple approach. • Excellent MR contrast enhancement and targeting of MCF-7 without any further vectorization.

  8. INFLUENCE OF THE NATURE OF THE COAGULATING AGENTS AND FIBER ADDITIVES BASED ON POLYACRYLONITRILE ON THE PROCESS OF ALLOCATION RUBBER FROM LATEX

    Directory of Open Access Journals (Sweden)

    M. A. Provotorova

    2013-01-01

    Full Text Available The paper discusses the issues of application of fiber supplements based on polyacrylonitrile in the technology of isolation rubber SKS-30 ARK from latex. The use of this additive allows a 15-25% reduction in the consumption of coagulating agent based on chlorides of sodium, magnesium, aluminum.

  9. hybrid effect on the mechanical properties of sisal fiber and e-glass

    African Journals Online (AJOL)

    ral) fibers such as flax, hemp, sisal, jute, coil, oil palm and waste silk etc as replacements for glass fibers [7]. These natural fibers have some ecological advantage over glass fibers since they are renewable and can be inciner- ated. The use of natural fiber-reinforced plas- tic composites is gaining popularity in the au-.

  10. Development of naturally activated edible films with antioxidant properties prepared from red seaweed Porphyra columbina biopolymers.

    Science.gov (United States)

    Cian, Raúl E; Salgado, Pablo R; Drago, Silvina R; González, Rolando J; Mauri, Adriana N

    2014-03-01

    The aim of this work was to study the physicochemical and antioxidant properties of phycobiliproteins-phycocolloids-based films, obtained from mixtures of two aqueous fractions extracted from Porphyra columbina red seaweed, one enriched in phycocolloids (PcF) and the other in phycobiliproteins (PF). Films with different ratios of PF:PcF (0, 25, 50, 75, 100% [w/w]) and without plasticizer addition were prepared by casting. PcF films had excellent mechanical properties (tensile strength ∼50MPa, elongation at break ∼3% and an elastic modulus ∼17.5MPa). The addition of PF to formulations exerted a plasticizing effect on the PcF matrix, which was manifested in moisture content, water solubility and mechanical properties of the resulting films but not in its water vapour permeability. The antioxidant capacity (TEAC) of the PcF films was significantly increased by the addition of PF and a direct relationship between TEAC and the total phenolic compounds (r(2)=0.9998) and R-phycoerythrin (r(2)=0.9942) was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Study of algal biomass harvesting through cationic cassia gum, a natural plant based biopolymer.

    Science.gov (United States)

    Banerjee, Chiranjib; Ghosh, Sandipta; Sen, Gautam; Mishra, Sumit; Shukla, Pratyoosh; Bandopadhyay, Rajib

    2014-01-01

    Green unicellular microalgae have a capacity to entrap CO2 to increase their biomass through photosynthesis and are important for the value added product. The presence of COOH and NH2 groups are responsible for imparting negative zeta value. The present work emphasizes on the synthesis of cationic cassia (CCAS) by the insertion of quaternary amine groups onto the backbone of cassia (CAS) from N-3-Chloro-2-hydroxypropyl trimethyl ammonium chloride (CHPTAC) which was further characterized via FTIR, SEM, elemental analysis and intrinsic viscosity. The optimal dosage of the synthesized cationic cassia is used to flocculate two different green fresh water algae viz. Chlamydomonas sp. CRP7 and Chlorella sp. CB4 were evaluated. 80 and 35 mg L(-1) was optimized dose for dewatering of above algae, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications.

    Science.gov (United States)

    Sung, Moon-Hee; Park, Chung; Kim, Chul-Joong; Poo, Haryoung; Soda, Kenji; Ashiuchi, Makoto

    2005-01-01

    Poly-gamma-glutamic acid (gamma-PGA) is a very promising biodegradable polymer that is produced by Bacillus subtilis. Gamma-PGA is water-soluble, anionic, biodegradable, and edible. This paper reviews the production of a strain of gamma-PGA and recent developments with respect to applications in terms of Ca absorption, moisturizing properties, gamma-PGA conjugation, super absorbent polymer, and so on. Our recent research shows that gamma-PGA can be used as an immune-stimulating and anti-tumor agent, especially at high molecular weight. 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  13. Caracterização de biopolímeros produzidos por Beijerinckia sp. 7070 em diferentes tempos de cultivo Characterization of biopolymers produced by Beijerinckia sp 7070 at different culture times

    Directory of Open Access Journals (Sweden)

    Caroline Dellinghausen Borges

    2004-09-01

    Full Text Available Biopolímeros são polissacarídeos microbianos. O biopolímero produzido por Beijerinckia sp. 7070 possui comportamento pseudoplástico e apresenta alta viscosidade em baixas velocidades de deformação, conferindo ao polímero excelentes características de suspensão. O objetivo desse trabalho foi caracterizar o biopolímero produzido por Beijerinckia sp. 7070 em diferentes tempos de cultivo, quanto à produção total, produção de polímeros de fibra longa e curta, produtividade, viscosidade e composição química. Os polímeros produzidos em meio YM líquido foram recuperados em diferentes tempos de cultivo, secos e pesados para determinação da produção e produtividade. O tipo de fibra produzido durante o cultivo foi avaliado microscopicamente. Viscosidades aparentes de solução aquosa 1% foram determinadas a 6, 12, 30 e 60rpm, a 25º C, em um viscosímetro Brookfield. A composição do biopolímero foi determinada por cromatografia em camada delgada comparativa. As maiores produções totais encontradas foram em 30 e 72h, a maior produtividade em 48h e a maior viscosidade em 72h. Os polímeros de fibra longa apresentaram uma tendência de tornarem-se mais longos com o tempo. A viscosidade do polímero de fibra longa foi maior que a do de fibra curta. Todos os biopolímeros apresentaram os mesmos componentes (glucose, galactose, fucose e ácido glucurônico mas em concentrações diferentes.Biopolymers are microbial polysaccharides. The biopolymer produced by Beijerinckia sp 7070 has pseudoplastic behaviour and shows high viscosity at low deformation rates, giving to polymer excellent suspension characteristics. The objective of this work was to characterize the biopolymer produced at different culture times by Beijerinckia sp 7070 in relation to total production, production of short and long fiber polymers, productivity, viscosity and chemical composition. The polymers produced in liquid YM medium were recovered at different

  14. Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors

    Science.gov (United States)

    Chandra Sekhar, S.; Nagaraju, Goli; Yu, Jae Su

    2018-03-01

    Porous and ant-cave structured MnCO3/Mn3O4 microcubes (MCs) were facilely synthesized via a biopolymer-assisted hydrothermal approach. Herein, chitosan was used as a natural biopolymer, which greatly controls the surface morphology and size of the prepared composite. The amino and hydroxyl group-functionalized chitosan engraves the outer surface of MCs during the hydrothermal process, which designs the interesting morphology of nanopath ways on the surface of MCs. When used as an electrode material for pseudocapacitors, the ant-cave structured MnCO3/Mn3O4 MCs showed superior energy storage values compared to the material prepared without chitosan in aqueous electrolyte solution. Precisely, the prepared ant-cave structured MnCO3/Mn3O4 MCs exhibited a maximum specific capacitance of 116.2 F/g at a current density of 0.7 A/g with an excellent cycling stability of 73.86% after 2000 cycles. Such facile and low-cost synthesis of pseudocapacitive materials with porous nanopaths is favorable for the fabrication of high-performance energy storage devices.

  15. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  16. Extraction and characterization of Retama monosperma fibers | Aizi ...

    African Journals Online (AJOL)

    The Young's modulus was 13.3 GPa, tensile strength was 110 MPa and density was 1.3 g/cm3. The average fiber length was 155.7 mm. The fibers yield and characteristics showed that R. monosperma plant may in future be suitable source for natural fibers. Key words: Retama monosperma young stems, fibers, extraction, ...

  17. Composite biopolymers for bone regeneration enhancement in bony defects.

    Science.gov (United States)

    Jahan, K; Tabrizian, M

    2016-01-01

    For the past century, various biomaterials have been used in the treatment of bone defects and fractures. Their role as potential substitutes for human bone grafts increases as donors become scarce. Metals, ceramics and polymers are all materials that confer different advantages to bone scaffold development. For instance, biocompatibility is a highly desirable property for which naturally-derived polymers are renowned. While generally applied separately, the use of biomaterials, in particular natural polymers, is likely to change, as biomaterial research moves towards mixing different types of materials in order to maximize their individual strengths. This review focuses on osteoconductive biocomposite scaffolds which are constructed around natural polymers and their performance at the in vitro/in vivo stages and in clinical trials.

  18. A CRADLE TO GATE LIFE CYCLE ANALYSIS OF THE BIOPOLYMER POLYLACTIC ACID: LOOKING BEYOND GLOBAL WARMING AND FOSSIL FUEL USE

    Science.gov (United States)

    Derived from corn, the biopolymer polylactic acid (PLA) has recently emerged in the marketplace and is advertised as a sustainable alternative to petroleum-based polymers. Research into the environmental implications of biobased production has focused primarily on global warming...

  19. Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers.

    Science.gov (United States)

    Rengasamy, R S; Das, Dipayan; Karan, C Praba

    2011-02-15

    This article reports on oil sorption behavior of fiber assemblies made up of single natural and synthetic fibers as well as blend of natural and synthetic fibers when tested with high density oil and diesel oil. A series of filled fiber assemblies were prepared from 100% polypropylene, kapok, and milkweed fibers and another series of bonded structured fiber assemblies were prepared from a 70/30 blend of kapok and polypropylene fibers and a 70/30 blend of milkweed and polypropylene fibers. It was observed that the porosity of the fiber assemblies played a very important role in determining its oil sorption capacity. The polypropylene fiber assembly exhibited the highest sorption capacity (g/g) followed by the kapok and milkweed fiber assemblies at porosity milkweed fibers have intra fiber porosities of 0.81 and 0.83, respectively. All the fiber assemblies showed higher oil sorption capacity with the high density oil as compared to the diesel oil. As the kapok and milkweed fiber have low cellulose content, hence their slow degradation is an advantage in fresh and marine water applications. The good sorption capacity of kapok and milkweed fiber assemblies along with their bio-degradable nature offer great scope for structuring them into fiber assemblies with large porosity and uniform pores to have efficient oil sorbents. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Biopolymer as an Alternative to Petroleum-based Polymers to Control Soil Erosion: Iowa Army Ammunition Plant

    Science.gov (United States)

    2013-11-01

    of the manufacturing plant. Maintaining berm height is a critical parameter to explosion containment. 1.1.2 Technology Description Rhizobium...should not be necessary. Soils with little organic matter or nutrient content, however, may need to be supplemented with compost and/or fertilizer...Table 6. Comparative cost and maintenance of an earthen berm and a biopolymer-treated berm. Cost Parameter Earthen Berm (2012 $) Biopolymer

  1. ASM1-based activated sludge model with biopolymer kinetics for integrated simulation of membrane bioreactors for wastewater treatment

    OpenAIRE

    Janus, Tomasz; Ulanicki, Bogumil

    2015-01-01

    This paper presents an activated sludge model suitable for modelling membrane bioreactors (MBRs) for wastewater treatment. The model, later referred to as combined EPS and SMP production ASM1-based model (CES-ASM1), extends Activated Sludge Model No. 1 (ASM1) with biokinetics of two types of bacterial biopolymers: soluble microbial products (SMP) and extracellular polymeric substances (EPS). The biopolymer kinetics in CES-ASM1 are, in their majority, borrowed from Laspidou and Rittmann[1] ...

  2. Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries.

    Science.gov (United States)

    Kim, Joong-Kwon; Kim, Do Hyeong; Joo, Se Hun; Choi, Byeongwook; Cha, Aming; Kim, Kwang Min; Kwon, Tae-Hyuk; Kwak, Sang Kyu; Kang, Seok Ju; Jin, Jungho

    2017-06-27

    Here, we introduce regenerated fibers of chitin (Chiber), the second most abundant biopolymer after cellulose, and propose its utility as a nonwoven fiber separator for lithium metal batteries (LMBs) that exhibits an excellent electrolyte-uptaking capability and Li-dendrite-mitigating performance. Chiber is produced by a centrifugal jet-spinning technique, which allows a simple and fast production of Chibers consisting of hierarchically aligned self-assembled chitin nanofibers. Following the scrutinization on the Chiber-Li-ion interaction via computational methods, we demonstrate the potential of Chiber as a nonwoven mat-type separator by monitoring it in Li-O 2 and Na-O 2 cells.

  3. Thermal degradation of biopolymer binders: the example of starch-poly(acrylic acid

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2010-01-01

    Full Text Available To characterise a polymer, it is of fundamental importance to determine its parameters, like the temperatures of destruction, vitrification, melting point, specific mass losses or polymorphic transformations, which frequently determine the quality of the product and its applications. Thermal analyses were conducted of samples of a biopolymer binder: a starch-poly(acrylic acid composition and a moulding sand with a biopolymer binder previously hardened with microwaves. In order to determine the thermal stability of the examined samples by determining the destruction temperature and the thermal effects of transformations taking place during heating, FTIR spectroscopy and thermal analysis (DSC, DTG, TG methods were used. In addition, volatile products of degradation were analysed using the thermogravimetry (TG method coupled online with mass spectrometry (MS. These examinations were also aimed at identifying the changes that can take place in the moulding sand when it comes into contact with liquid metal.

  4. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  5. Biopolymer strategy for the treatment of Wilson´s disease

    Czech Academy of Sciences Publication Activity Database

    Vetrík, Miroslav; Mattová, J.; Macková, Hana; Kučka, Jan; Poučková, P.; Kukačková, Olivia; Brus, Jiří; Eigner-Henke, S.; Sedláček, Ondřej; Šefc, L.; Štěpánek, Petr; Hrubý, Martin

    2018-01-01

    Roč. 273, 10 March (2018), s. 131-138 ISSN 0168-3659 R&D Projects: GA ČR(CZ) GA16-02870S; GA MZd(CZ) NV15-25781A; GA MŠk(CZ) LM2015064; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : Wilson's disease * copper chelators * biopolymers Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.786, year: 2016

  6. Biopolymers production with carbon source from the wastes of a beer brewery industry

    Science.gov (United States)

    Wong, Phoeby Ai Ling

    The main purpose of this study was to assess the potential and feasibility of malt wastes, and other food wastes, such as soy wastes, ice-cream wastes, confectionery wastes, vinegar wastes, milk waste and sesame oil, in the induction of biosynthesis of PHA, in the cellular assembly of novel PHA with improved physical and chemical properties, and in the reduction of the cost of PHA production. In the first part of the experiments, a specific culture of Alcaligenes latus DSM 1124 was selected to ferment several types of food wastes as carbon sources into biopolymers. In addition, the biopolymer production, by way of using malt waste, of microorganisms from municipal activated sludge was also investigated. In the second part, the experiments focused on the synthesis of biopolymer with a higher molecular mass via the bacterial strain, which was selected and isolated from sesame oil, identified as Staphylococcus epidermidis . Molecular weight and molecular weight distribution of PHB were studied by GPC. Molecular weight of PHB produced from various types of food wastes by Alcaligenes latus was higher than using synthetic sucrose medium as nutrient, however, it resulted in the reverse by Staphylococcus epidermidis. Thermal properties of biopolymers were studied by DSC and TG. Using malt wastes as nutrients by Alcaligenes latus gave a higher melting temperature. Using sucrose, confectionery and sesame oil as nutrients by Staphylococcus epidermidis gave higher melting temperature. Optimization was carried out for the recovery of microbial PHB from Alcaligenes latus. Results showed that molecular weight can be controlled by changing the hypochlorite concentration, the ratio of chloroform to hypochlorite solution and the extraction time. In addition, the determination of PHB content by thermogravimetric analysis method with wet cell was the first report in our study. (Abstract shortened by UMI.)

  7. Biological Effects of Spirulina (Arthrospira Biopolymers and Biomass in the Development of Nanostructured Scaffolds

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2014-01-01

    Full Text Available Spirulina is produced from pure cultures of the photosynthetic prokaryotic cyanobacteria Arthrospira. For many years research centers throughout the world have studied its application in various scientific fields, especially in foods and medicine. The biomass produced from Spirulina cultivation contains a variety of biocompounds, including biopeptides, biopolymers, carbohydrates, essential fatty acids, minerals, oligoelements, and sterols. Some of these compounds are bioactive and have anti-inflammatory, antibacterial, antioxidant, and antifungal properties. These compounds can be used in tissue engineering, the interdisciplinary field that combines techniques from cell science, engineering, and materials science and which has grown in importance over the past few decades. Spirulina biomass can be used to produce polyhydroxyalkanoates (PHAs, biopolymers that can substitute synthetic polymers in the construction of engineered extracellular matrices (scaffolds for use in tissue cultures or bioactive molecule construction. This review describes the development of nanostructured scaffolds based on biopolymers extracted from microalgae and biomass from Spirulina production. These scaffolds have the potential to encourage cell growth while reducing the risk of organ or tissue rejection.

  8. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water.

    Science.gov (United States)

    Vila, M; Sánchez-Salcedo, S; Cicuéndez, M; Izquierdo-Barba, I; Vallet-Regí, María

    2011-08-15

    3D-macroporous biopolymer-coated hydroxyapatite (HA) foams have been developed as potential devices for the treatment of lead, cadmium and copper contamination of consumable waters. These foams have exhibited a fast and effective ion metal immobilization into the HA structure after an in vitro treatment mimicking a serious water contamination case. To improve HA foam stability at contaminated aqueous solutions pH, as well as its handling and shape integrity the 3D-macroporous foams have been coated with biopolymers polycaprolactone (PCL) and gelatine cross-linked with glutaraldehyde (G/Glu). Metal ion immobilization tests have shown higher and fast heavy metals captured as function of hydrophilicity rate of biopolymer used. After an in vitro treatment, foam morphology integrity is guaranteed and the uptake of heavy metal ions rises up to 405 μmol/g in the case of Pb(2+), 378 μmol/g of Cu(2+) and 316 μmol/g of Cd(2+). These novel materials promise a feasible advance in development of new, easy to handle and low cost water purifying methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Nanoencapsulation of the Bioactive Compounds of Spirulina with a Microalgal Biopolymer Coating.

    Science.gov (United States)

    Greque de Morais, Michele; Greque de Morais, Etiele; Vaz, Bruna da Silva; Gonçalves, Carolina Ferrer; Lisboa, Cristiane; Costa, Jorge Alberto Vieira

    2016-01-01

    Microalgae have been studied in biotechnological processes due to the various biocompounds that can be obtained from their biomasses, including pigments, proteins, antioxidants, biopeptides, fatty acids and biopolymers. Microalgae biopolymers are biodegradable materials that present similar characteristics to traditional polymers, with the advantage of being rapidly degraded when discarded. In addition, nanoencapsulation is capable of increasing the availability of bioactive compounds by allowing the release of these biocompounds to occur slowly over time. The use of polymers in the nanoencapsulation of active ingredients can mask the undesired physicochemical properties of the compounds to be encapsulated, thereby enhancing consumer acceptability. This covering also acts as a barrier against several foreign substances that can react with bioactive compounds and reduce their activity. Studies of the development of poly-3-hydroxybutyrate (PHB) nanocapsules from microbial sources are little explored; this review addresses the use of nanotechnology to obtain bioactive compounds coated with biopolymer nanocapsules, both obtained from Spirulina biomasses. These microalgae are Generally Recognized as Safe (GRAS) certified, which guarantees that the biomass can be used to obtain high added value biocompounds, which can be used in human and animal supplementation.

  10. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery.

    Science.gov (United States)

    Rai, Mahendra; Ingle, Avinash P; Gupta, Indarchand; Brandelli, Adriano

    2015-12-30

    The unique properties of nanomaterials can be applied to solve different problems including new ways of drug delivery. Noble metal nanoparticles are most promising because they have been used for medicinal purposes since ancient time. It is evident from the past studies that the metallic nanoparticles are much more effective against various microorganisms when compared to their conventional counterparts. However, decoration of such nanoparticles with biomaterials add more advantages to their antimicrobial activity. Decoration of metal nanoparticles with biopolymers is a quite new area of research. Studies performed hitherto shown that nanoparticles of noble metals like silver, gold and platinum demonstrated better antibacterial, antifungal and antiviral activities when conjugated with biopolymers. The development of such technology has potential to develop materials that are more effective in the field of health science. Considering the importance and uniqueness of this concept, the present review aims to discuss the use of biopolymer-decorated metal nanoparticles for combating various diseases caused by microbial pathogens. Moreover, the nanotoxicity aspect has also been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses

    Directory of Open Access Journals (Sweden)

    Manuel Guillermo Rojas Cortés

    2008-01-01

    Full Text Available Biopolymers have been widely studied for use in pharmaceutical applications. They have been used for modifying drug release, orientating a drug towards its therapeutic target, penetrating physiological barriers (tissues and cells and protecting unstable therapeutic agents against physiological conditions which are present in a less invasive administration routes. The importance of biopolymers in designing new biomedical devices must thus be stressed, es-pecially when a pharmaceutical substance must be incorporated into a polymer matrix. A new generation of alterna-tives for human health has thus been generated by designing pharmaceutical therapeutic systems in line with the concept of “integrated custom-made product design”. This document reviews the trends concerning using biopoly-mers for designing products having pharmaceutical and biomedical applications. The paper also introduces the elements which should be mastered by engineers for obtaining material which can be used in the health field and tries to provide a reference point regarding the state of the art in this specific field of knowledge.

  12. Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials

    Science.gov (United States)

    Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina

    1992-08-01

    Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.

  13. Biological Effects of Spirulina (Arthrospira) Biopolymers and Biomass in the Development of Nanostructured Scaffolds

    Science.gov (United States)

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2014-01-01

    Spirulina is produced from pure cultures of the photosynthetic prokaryotic cyanobacteria Arthrospira. For many years research centers throughout the world have studied its application in various scientific fields, especially in foods and medicine. The biomass produced from Spirulina cultivation contains a variety of biocompounds, including biopeptides, biopolymers, carbohydrates, essential fatty acids, minerals, oligoelements, and sterols. Some of these compounds are bioactive and have anti-inflammatory, antibacterial, antioxidant, and antifungal properties. These compounds can be used in tissue engineering, the interdisciplinary field that combines techniques from cell science, engineering, and materials science and which has grown in importance over the past few decades. Spirulina biomass can be used to produce polyhydroxyalkanoates (PHAs), biopolymers that can substitute synthetic polymers in the construction of engineered extracellular matrices (scaffolds) for use in tissue cultures or bioactive molecule construction. This review describes the development of nanostructured scaffolds based on biopolymers extracted from microalgae and biomass from Spirulina production. These scaffolds have the potential to encourage cell growth while reducing the risk of organ or tissue rejection. PMID:25157367

  14. Type III secretion as a generalizable strategy for the production of full-length biopolymer-forming proteins.

    Science.gov (United States)

    Azam, Anum; Li, Cheng; Metcalf, Kevin J; Tullman-Ercek, Danielle

    2016-11-01

    Biopolymer-forming proteins are integral in the development of customizable biomaterials, but recombinant expression of these proteins is challenging. In particular, biopolymer-forming proteins have repetitive, glycine-rich domains and, like many heterologously expressed proteins, are prone to incomplete translation, aggregation, and proteolytic degradation in the production host. This necessitates tailored purification processes to isolate each full-length protein of interest from the truncated forms as well as other contaminating proteins; owing to the repetitive nature of these proteins, the truncated polypeptides can have very similar chemistry to the full-length form and are difficult to separate from the full-length protein. We hypothesized that bacterial expression and secretion would be a promising alternative option for biomaterials-forming proteins, simplifying isolation of the full-length target protein. By using a selective secretion system, truncated forms of the protein are not secreted and thus are not found in the culture harvest. We show that a synthetically upregulated type III secretion system leads to a general increase in secretion titer for each protein that we tested. Moreover, we observe a substantial enhancement in the homogeneity of full-length forms of pro-resilin, tropo-elastin crosslinking domains, and silk proteins produced in this manner, as compared with proteins purified from the cytosol. Secretion via the type III apparatus limits co-purification of truncated forms of the target protein and increases protein purity without extensive purification steps. Demonstrating the utility of such a system, we introduce several modifications to resilin-based peptides and use an un-optimized, single-column process to purify these proteins. The resulting materials are of sufficiently high quantity and yield for the production of antimicrobial hydrogels with highly reproducible rheological properties. The ease of this process and its

  15. Nano-cellulose biopolymer based nano-biofilm biomaterial using plant biomass: An innovative plant biomaterial dataset

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif hossain

    2018-04-01

    Full Text Available The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials. Moreover, the chemical elements of nanobiofilm like K+, CO3−−, Cl−, Na+ showed standard data using the EN (166. Keywords: Nanocellulose, Nanobiofilm, Nanobioplastic, Biodegradable, Corn leaf

  16. Flexural Test in Epoxy Matrix Composites Reinforced with Hemp Fiber

    Science.gov (United States)

    Neves, Anna Carolina C.; Rohen, Lázaro A.; Margem, Frederico M.; Vieira, Carlos Maurício F.; Monteiro, Sergio N.

    Synthetic fiber has been gradually replaced by natural fiber, such as lignocellulosic fiber. In comparison with synthetic fiber, natural fiber has shown economic and environmental advantages. The natural fiber presents interfacial characteristics with polymeric matrices that favor a high impact energy absorption by the composite structure. However, until now, little information has been released about the hemp fiber incorporated in polymeric matrices. Specimens containing 0, 10, 20 and 30% in volume of hemp fibers were aligned along the entire length of a mold to create plates of these composites. Those plates were cut following the ASTM standard to obtain specimens for bending tests and the results showed the increase in the flexural strength with the increase of fiber amount.

  17. Weibull Analysis of the Behavior on Tensile Strength of Hemp Fibers for Different Intervals of Fiber Diameters

    Science.gov (United States)

    Rohen, Lázaro A.; Margem, Frederico M.; Neves, Anna C. C.; Gomes, Maycon A.; Monteiro, Sérgio N.; Vieira, Carlos Maurício F.; de Castro, Rafael G.; Borges, Gustavo X.

    Economic and environmental benefits are motivating studies on natural fibers, especially lignocellulosic extracted from plants, have been studied to substitute synthetic fibers, such as glass fiber as reinforcement in polymer matrices. By contrast to synthetic fibers, natural fibers have the disadvantage of being heterogeneous in their dimensions specially the diameter. About the hemp fiber, little is known of their dimensional characteristics. The aim of the present work was to statistically characterize the distribution of the diameter of hemp fibers. Based on this characterization, diameter intervals were set and the dependence of the tensile strength of theses fibers with a corresponding diameter was analyzed by the Weibull method. The diameter was measured with precision using a profile projector. Tensile tests were conducted on each fiber obtain mechanical strength. The results interpreted by Weibull statistical showed a correlation between the resistances of the fiber to its diameter.

  18. Preparation of the Jaws Damaged Parts from Composite Biopolymers Materials

    Directory of Open Access Journals (Sweden)

    Riyam A. Al-husseini

    2017-10-01

    Full Text Available Composite materials composing of fusing two materials or more are disaccorded in mechanical and physical characteristics, The studied the effect of changing in the reinforcement percentage by Hydroxyapatite Prepared nano world via the size of the nanoscale powder manufacturing manner chemical precipitation and microwave powders were two types their preparations have been from natural sources: the first type of eggshells and the other from the bones of fish in mechanical Properties which include the tensile strength, elastic modulus, elongation, hardness and tear for composite material consisting of Silicone rubber (SIR reinforced by (µ-n-HA, after strengthening silicone rubber Protect proportions (5,10,15,20 wt% of Article achieved results that increase the additive lead to increased hardness while tougher and modulus of elasticity decreases with added as shown in the diagrams.

  19. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  20. Physicochemical Characterization of Biopolymer Chitosan Extracted from Shrimp Shells

    Directory of Open Access Journals (Sweden)

    Nezamaddin Mengelizadeh

    2015-02-01

    Full Text Available Chitosan is a deacetylated derivative of chitin, which is a naturally abundant mucopolysaccharide, supporting the matter of crustaceans, insects, and fungi. Because of its unique properties, such as non-toxicity, biodegradability, and biocompatibility, chitosan has a wide range of applications in various fields. The objective of the present work is to extract the polymer chitosan from Persian Gulf shrimp shells. In order to determine the physicochemical characteristics of the extracted chitosan, degree of deacetylation, molecular weight, water and fat binding capacities extraction rate, and apparent viscosity were measured using a variety of techniques including viscometry, weight measurement method and Fourier transform infrared spectroscopy (FTIR. The results of the study of the physicochemical properties, molecular weight (6.7×105 Da, degree of deacetylation (57%, ash content as well as yield (0.5% of the prepared chitosan indicated that shrimp processing wastes (shrimp shells are a good source of chitosan. The water binding capacity (521% and fat binding capacity (327% of the prepared chitosan are in good agreement with the other studies. The elemental analysis showed the C, H and N contents of 35.92%, 7.02%, and 8.66%, respectively. In this study, the antimicrobial activity of chitosan was evaluated against Staphylococcus aureus and Escherichia coli. The results indicated the high potential of chitosan as an antibacterial agent. Moreover, the results of the study indicated that shrimp shells are a rich source of chitin as 25.21% of the shell’s dry weight.

  1. Physical limits to biomechanical sensing in disordered fiber networks

    Science.gov (United States)

    Beroz, Farzan; Jawerth, Louise; Münster, Stefan; Weitz, David; Broedersz, Chase; Wingreen, Ned

    Cells actively probe and respond to the stiffness of their surroundings. Since mechanosensory cells in connective tissue are surrounded by a disordered network of biopolymers, their mechanical environment can be extremely heterogeneous. Here, we investigate how this heterogeneity impacts mechanosensing by modeling the cell as an idealized local stiffness sensor inside a disordered fiber network. For all types of networks we study, including experimentally-imaged collagen and fibrin architectures, we find that measurements applied at different points yield a strikingly broad range of local stiffnesses, spanning roughly two decades. We verify via simulations and scaling arguments that this broad range of local stiffnesses is a generic property of disordered fiber networks. Finally, we show that to obtain optimal, reliable estimates of global tissue stiffness, a cell must adjust its size, shape, and position to integrate multiple stiffness measurements over extended regions of space.

  2. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  3. Characterization of palm fibers modified with alkaline solution

    International Nuclear Information System (INIS)

    Sipiao, Bryan L.S.; Goulart, Shane A.G.; Mulinari, Daniella R.; Souza Junior, Fernando G. de

    2011-01-01

    This work had the objective of to study one inexpensive and effective technique that enables the application of natural fibers from the Australian Royal Palm as reinforcement in polymer composites. The fibers treated with alkaline solution were characterized by infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) and had their data compared with the fiber in nature. Data showed that the treatment made on fibers surface was effective. (author)

  4. Monitoramento tecnológico e mercadológico de biopolímeros Biopolymers' technology and market monitoring

    Directory of Open Access Journals (Sweden)

    Suzana Borschiver

    2008-09-01

    Full Text Available Este artigo aborda um estudo de monitoramento tecnológico em biopolímeros aplicados em diversas áreas, usando como fontes de informações artigos científicos e patentes. Para tanto, foram utilizados, respectivamente, o programa Scifinder Scholar, que emprega as bases de dados CAPLUS e MEDLINE, e a base de dados americana de patentes, a USPTO. Os dados foram obtidos utilizando-se como palavras-chaves "biopolymers" e "biomaterials". Foram realizadas análises "macro", "meso" e "micro" em relação às principais universidades/centros de pesquisa, países de publicação, tipos de aplicações, principais biopolímeros mencionados, principais matérias-primas utilizadas e principais métodos de produção.This paper reports a survey on the technology of biopolymers for various sector, using information extracted from scientific articles and patents. The Scifinder Scholar program based on the CAPLUS and MEDLINE databases and the USPTO databases were used as inputs, respectively. All the data were mined using biopolymers and biomaterials as keywords. The output of this research is a map of biopolymers' university/research centers, origin countries, types of biopolymers and its applications, major raw materials and production methods.

  5. A new approach for high performance fiber manufacturing via simultaneous fiber spinning and UV initiated polymerization

    Science.gov (United States)

    Ellison, Chris

    Synthetic fibers have been manufactured for decades using solvents or heat to reduce the viscosity of pre-formed polymers and promote drawing. However, nature has engineered spiders and silkworms with benign ways of making silk fibers with high strength and toughness. Conceptually, their approach of chemically linking small functional units (i.e., proteins) into long chain molecules and solid fibrillar structures ``on-demand'' is fundamentally different from current synthetic fiber manufacturing methods. Drawing inspiration from nature, a method will be described that uses light to trigger a thiol-ene photopolymerization to rapidly transform reactive liquid mixtures into solid thread-like structures as they are forced out of a capillary at high speeds. Besides being manufactured without using solvents/volatile components or heat, these fibers are mechanically robust and have excellent chemical and thermal stability due to their crosslinked nature. During processing, the balance between curing kinetics, fiber flight time, and monomer mixture viscoelasticity is essential for the formation of defect free fibers. This work focuses on developing a universal operating diagram to show how the intricate interplay of gel time, flight time, and fluid relaxation time leads to the formation of uniform fibers and other undesirable fiber morphologies such as beads-on-string, fused fibers, non-uniform fibers, and droplets. This predictive capability enables adaptation of this spinning concept to all existing fiber spinning platforms, and customization of monomer formulations to target desired properties.

  6. Engineered biosealant strains producing inorganic and organic biopolymers.

    Science.gov (United States)

    Bergdale, Terran E; Pinkelman, Rebecca J; Hughes, Stephen R; Zambelli, Barbara; Ciurli, Stefano; Bang, Sookie S

    2012-10-31

    Microbiologically induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has shown its potential in remediation of a wide range of structural damages including concrete cracks. In this study, genetically engineered microorganisms, capable of producing extracellular polymeric substances (EPSs) as well as inducing MICCP, were developed based on the assumption that the complex of inorganic CaCO(3) and organic EPS would provide a stronger matrix than MICCP alone as biosealant. In order to develop a recombinant biosealant microorganism, the entire Sporosarcina pasteurii urease gene sequences including ureA, ureB, ureC, ureD, ureE, ureF, and ureG from plasmid pBU11 were sub-cloned into the shuttle vector, pUCP18. The newly constructed plasmid, pUBU1, was transformed into two Pseudomonas aeruginosa strains, 8821 and PAO1, to develop recombinants capable of inducing calcite precipitation in addition to their own ability to produce EPS. Nickel-dependent urease activities were expressed from the recombinant P. aeruginosa 8821 (pUBU1) and P. aeruginosa PAO1 (pUBU1), at 99.4% and 60.9% of the S. pasteurii urease activity, respectively, in a medium containing 2mM NiCl(2). No urease activities were detected from the wild type P. aeruginosa 8821 and P. aeruginosa PAO1 under the same growth conditions. Recombinant Pseudomonas strains induced CaCO(3) precipitation at a comparable rate as S. pasteurii and scanning electron microscopy evidenced the complex of CaCO(3) crystals and EPS layers surrounding the cells. The engineered strains produced in this study are expected to serve as a valuable reference to future biosealants that could be applied in the environment. However, the pathogenic potential of P. aeruginosa, used here only as a model system to show the proof of principle, prevents the use of this recombinant organism as a biosealant. In practical applications, other recombinant organisms should be used. Copyright © 2012 Elsevier B

  7. Electrospun Fibers for Energy, Electronic, & Environmental Applications

    Science.gov (United States)

    Bedford, Nicholas M.

    Electrospinning is an established method for creating polymer and bio-polymer fibers of dimensions ranging from ˜10 nanometers to microns. The process typically involves applying a high voltage between a solution source (usually at the end of a capillary or syringe) and a substrate on which the nanofibers are deposited. The high electric field distorts the shape of the liquid droplet, creating a Taylor cone. Additional applied voltage ejects a liquid jet of the polymer solution in the Taylor cone toward the counter electrode. The formation of fibers is generated by the rapid electrostatic elongation and solvent evaporation of this viscoelastic jet, which typically generates an entangled non-woven mesh of fibers with a high surface area to volume ratio. Electrospinning is an attractive alternative to other processes for creating nano-scale fibers and high surface area to volume ratio surfaces due to its low start up cost, overall simplicity, wide range of processable materials, and the ability to generate a moderate amount of fibers in one step. It has also been demonstrated that coaxial electrospinning is possible, wherein the nanofiber has two distinct phases, one being the core and another being the sheath. This method is advantageous because properties of two materials can be combined into one fiber, while maintaining two distinct material phases. Materials that are inherently electrospinable could be made into fibers using this technique as well. The most common applications areas for electrospun fibers are in filtration and biomedical areas, with a comparatively small amount of work done in energy, environmental, and sensor applications. Furthermore, the use of biologically materials in electrospun fibers is an avenue of research that needs more exploration, given the unique properties these materials can exhibit. The research aim of this thesis is to explore the use of electrospun fibers for energy, electrical and environmental applications. For energy

  8. Study report on the market and price situation with natural fibers (Germany and European Union); Studie zur Markt- und Preissituation bei Naturfasern (Deutschland und EU)

    Energy Technology Data Exchange (ETDEWEB)

    Karus, M.; Kaup, M.; Lohmeyer, D. [nova-Institut, Huerth (Germany)

    2000-07-01

    The focus of the study is on the markets for short fibers for engineering applications and materials substitution in a variety of industrial branches, particularly in European countries. The study was intended to analyse existing and future markets and the economic situation of the producers, in order to derive information on future policy and framework conditions required for an appropriate development of the new markets in Europe in the light of international competition. The development will essentially depend on the reform of EU policy on aid from public funds, planned for 2000/2001. The extensive data compilation presented is based on inquiries among relevant enterprises and associations in EU member states by way of questionnaires or interviews. (orig./CB) [German] Die Studie konzentriert sich auf die Maerkte fuer technische Kurzfasern, die besonders in den neuen Flachs- und Hanflaendern in Europa von zentraler Bedeutung sind. Ziel der Studie war es, heutige und zukuenftige Maerkte und die oekonomische Situation der Produzenten zu analysieren, um anschliessend geeignete Rahmenbedingungen fuer eine sachgerechte Entwicklung der Maerkte abzuleiten. Diese wird wesentlich von der EU-Beihilfepolitik bestimmt werden, die fuer das Wirtschaftsjahr2000/2001 grundlegend reformiert werden soll. Die umfangreiche Datensammlung basiert auf Erhebungen bei relevanten Unternehmen und Verbaenden in der EU mittels Frageboegen und Interviews. (orig./CB)

  9. Test determination of aluminum, beryllium, and cationic surfactants using phenolcarboxylic acids of the triphenylmethane series immobilized on cloths from synthetic and natural fibers

    International Nuclear Information System (INIS)

    Amelin, V.G.; Gan'kova, O.B.

    2007-01-01

    The use of cloth matrices from viscose and cotton fibers bearing phenolcarboxylic acids of the triphenylmethane series immobilized by adsorption in chemical test methods of analysis is considered. Chrome Azurol S, Sulfochrome, and Eriochrome Cyanine R were used for immobilization. It was found that the reagents are weakly retained on cellulose matrices. The degree of retention varied from 10 to 60%. It was observed that the reagent complexes of metal ions exhibited enhanced adsorbability on the matrices. Cloths with immobilized Chrome Azurol S were used in the test determination of 0.0005-0.5 mg/l beryllium and 0.0005-1.0 mg/l aluminum. When the reaction products were preconcentrated on the cloth from 100 ml of a test solution, the detection limit was 0.0001 mg/l. Procedures were developed for determining 0.1-100 mg/l aluminum and 0.02-0.6 mg/l beryllium in solutions using cloth test strips encapsulated into a polymeric film. It was demonstrated that Sulfochrome and Eriochrome Cyanine R immobilized on cloths can be used to determine 0.01-1 and 1-1000 mg/l cationic surfactants [ru

  10. A new method for measuring scouring efficiency of natural fibers based on the cellulose-binding domain-beta-glucuronidase fused protein.

    Science.gov (United States)

    Degani, Ofir; Gepstein, Shimon; Dosoretz, Carlos G

    2004-02-05

    Cellulose-binding domains (CBDs) are characterized by their ability to strongly bind to different forms of cellulose. This study examined the use of a recombinant CBD fused to the reporter enzyme beta-glucuronidase (CBD-GUS) to determine the extent of removal of the water-repellent waxy component of cotton fiber cuticles following hydrolytic treatment, i.e., scouring. The CBD-GUS test displayed higher sensitivity and repeatability than conventional water absorb techniques applied in the textile industry. Increases in the levels of CBD-GUS bound to the exposed cellulose correlated to increases in the fabric's hydrophilicity as a function of the severity of the scouring treatment applied, clearly indicating that the amount of bound enzyme increases proportionally with the amount of available binding sites. The binding of CBD-GUS also gave measurable and repeatable results when used on untreated or raw fabrics in comparison with conventional water drop techniques. The quantitative response of the reaction as bound enzyme activity was optimized for fully wettable fabrics. A minimal free enzyme concentration-to-swatch weight ratio of 75:1 was found to be necessary to ensure enzyme saturation (i.e., a linear response), corresponding to a free enzyme-to-bound enzyme ratio of at least 3:5.

  11. Role of adsorption in combined membrane fouling by biopolymers coexisting with inorganic particles.

    Science.gov (United States)

    Chen, Xu-di; Wang, Zhi; Liu, Dan-Yang; Xiao, Kang; Guan, Jing; Xie, Yuefeng F; Wang, Xiao-Mao; Waite, T David

    2018-01-01

    This study was conducted in order to obtain a better understanding of the combined fouling by biopolymers coexisting with inorganic particles from the aspects of fouling index, fouling layer structure and biopolymer-particle interactions. Calcium alginate was used as the model biopolymer and Fe 2 O 3 , Al 2 O 3 , kaolin, and SiO 2 were used as model inorganic particles. Results showed that the combined fouling differed greatly among the four types of inorganic particles. The differences were attributed particularly to the different adsorption capacities for calcium alginate by the particles with this capacity decreasing in the order of Fe 2 O 3 , Al 2 O 3 , kaolin and SiO 2 . Particle size measurement and electron microscopic observation indicated the formation of agglomerates between calcium alginate and those inorganic particles exhibiting strong adsorption capacity. A structure was proposed for the combined fouling layer comprised of a backbone cake layer of alginate-inorganic particle agglomerates with the pores partially filled with discontinuous calcium alginate gels. The filterability of the fouling layer was primarily determined by the abundance of the gels. The strength of physical interaction between calcium alginate and each type of inorganic particle was calculated from the respective surface energies and zeta potentials. Calculation results showed that the extent of physical interaction increased in the order of Al 2 O 3 , Fe 2 O 3 , kaolin and SiO 2 , with this order differing from that of adsorption capacity. Chemical interactions may also play an important role in the adsorption of alginate and the consequent combined fouling. High-resolution XPS scans revealed a slight shift of electron binding energies when alginate was adsorbed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Facile route of biopolymer mediated ferrocene (FO) nanoparticles in aqueous dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Kaus, Noor Haida Mohd., E-mail: noorhaida@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia and Centre for Organized Matter Chemistry, School of Chemistry, Cantock' s Close, BS8 1TS, Bristol (United Kingdom); Collins, A. M.; Mann, S. [Centre for Organized Matter Chemistry, School of Chemistry, Cantock' s Close, BS8 1TS, Bristol (United Kingdom)

    2014-10-24

    In this paper, we present a facile method for production stable aqueous dispersion of ferrocene (FO) nanoparticles. Ferrocene compounds were employed to achieve stable nanodispersions, stabilized with three different biopolymers namely, alginate, CM-dextran and chitosan. The nanoparticles produce are spherical, less than 10 nm in mean diameter and highly stable without any sedimentation. Fourier infrared transform (FTIR) and X-ray diffraction (XRD) studies confirmed the purity of ferrocene nanoparticles there is no modifications occur during the preparation route. FTIR spectra results were consistent with the presence of absorption band of cyclopentadienyl ring (C{sub 5}H{sub 5}{sup −} ion) which assigned to ν(C-C) vibrations (1409 cm-1), δ(C-H) stretching at 1001 cm{sup −1} and π(C-H) vibrations at 812 cm{sup −1}. Furthermore, all functional group for biopolymers such as CO from carboxyl group of CM-dextran and sodium alginate appears at 1712 cm{sup −1} and 1709 cm{sup −1} respectively, indicating there are steric repulsion interactions for particles stabilization. Powder X-ray diffraction patterns of sedimented samples of the biopolymers-stabilized ferrocene (FO) showed all reflections which were indexed respectively to the (−110), (001), (−201), (−111), (200), (−211), (210), (120) and (111) according to the monoclinic phase ferrocene. This confirmed that the products obtained were of high purity of Fe and EDAX analysis also suggests that the presence of the Fe element in the colloidal dispersion.

  13. Ephaptic coupling of myelinated nerve fibers

    DEFF Research Database (Denmark)

    Binczak, S.; Eilbeck, J. C.; Scott, Alwyn C.

    2001-01-01

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used to ...... to study ephaptic (nonsynaptic) interactions between impulses on parallel fibers, which may play a functional role in neural processing. (C) 2001 Published by Elsevier Science B.V....

  14. [Distribution and spatial ordering of biopolymer molecules in resting bacterial spores].

    Science.gov (United States)

    Duda, V I; Korolev, Iu N; El'-Registan, G I; Duzha, M V; Telegin, N L

    1978-01-01

    The presence, distribution and spatial arrangement of biopolymers in situ were studied in both a total intact spore and in a certain cellular layer using a spectroscopic technique of attenuated total refraction (ATR-IR) in the IR region. In contrast to vegetative cells, intact spores were characterized by isotropic distribution of protein components. This feature can be regarded as an index of the cryptobiotic state of spores. However, the distribution of protein components among individual layers of a spore was anisotropic. Bonds characterized by amide I and amide II bands were most often ordered in a layer which comprised cellular structures from the exosporium to the inner spore membrane.

  15. Conducting composite materials from the biopolymer kappa-carrageenan and carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Ali Aldalbahi

    2012-05-01

    Full Text Available Conducting composite films containing carbon nanotubes (CNTs were prepared by using the biopolymer kappa-carrageenan (KC as a dispersant. Rheological studies indicated that 0.5% w/v was the appropriate KC concentration for dispersing CNTs. Our results showed that multiwalled nanotubes (MWNTs required less sonic energy than single-walled nanotubes (SWNTs for the dispersion process to be complete. Films prepared by vacuum filtration exhibited higher conductivity and improved mechanical characteristics compared to those prepared by evaporative casting. All composite films displayed sensitivity to water vapour, but MWNT films were more sensitive than SWNT films.

  16. Blu-Ray-based micromechanical characterization platform for biopolymer degradation assessment

    DEFF Research Database (Denmark)

    Casci Ceccacci, Andrea; Chen, Ching-Hsiu; Hwu, En-Te

    2017-01-01

    characterization of sensor properties and then perform degradation studies of poly(lactic-co-glycolic acid) (PLGA) in steady flow for three different enzyme concentrations. The degradation has been performed in liquid environment. Before each resonator measurement, the measuring chamber has been automatically...... microfluidic chip, to characterize biopolymer degradation under the action of enzymes in controlled flow condition. The sensing platform is based on the mechanics and optics from a Blu-Ray player, which automatically localize individual sensors within the array, and sequentially measure and record...

  17. Effect of Fiber Treatment and Fiber Loading on Mechanical Properties of Luffa-Resorcinol Composites

    Directory of Open Access Journals (Sweden)

    Chhatrapati Parida

    2015-01-01

    Full Text Available Tensile and compressive behaviour of resorcinol-formaldehyde (RF matrix and its composites reinforced with fibers of Luffa cylindrica (LC have been studied. LC fibers were subjected to chemical treatments such as alkali activation by NaOH followed by bleaching and acid hydrolysis in order to improve fiber-matrix adhesion. Both treated and untreated LC fibers are modified with calcium phosphate. The presence of hydroxy apatite, a polymorph of calcium phosphate and a major constituent of vertebrate bone and teeth, was confirmed from XRD peak of treated LC fiber. XRD analysis of the treated LC fiber has confirmed the crystalline nature of the chemically treated LC fiber by its crystallinity index. The effects of fiber loading of chemically treated and untreated LC fiber on ultimate stress, yield strength, breaking stress, and modulus of the composites were analyzed. The tensile and compressive modulus of the composites were increased with incorporation of both treated and untreated LC fibers into the RF matrix. The modulus of composites with treated LC fiber was enhanced compared to that of the untreated fiber composites. Furthermore the values of ultimate stress, yield stress, and breaking stress were increased with the incorporation of treated LC fiber in the composites.

  18. Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging.

    Science.gov (United States)

    Torres-Giner, Sergio; Wilkanowicz, Sabina; Melendez-Rodriguez, Beatriz; Lagaron, Jose M

    2017-06-07

    This work originally reports on the use of electrohydrodynamic processing (EHDP) to encapsulate Aloe vera (AV, Aloe barbadensis Miller) using both synthetic polymers, i.e., polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVOH), and naturally occurring polymers, i.e., barley starch (BS), whey protein concentrate (WPC), and maltodextrin. The AV leaf juice was used as the water-based solvent for EHDP, and the resultant biopolymer solution properties were evaluated to determine their effect on the process. Morphological analysis revealed that, at the optimal processing conditions, synthetic polymers mainly produced fiber-like structures, while naturally occurring polymers generated capsules. Average sizes ranged from 100 nm to above 3 μm. As a result of their different and optimal morphology and, hence, higher AV content, PVP, in the form of nanofibers, and WPC, of nanocapsules, were further selected to study the AV stability against ultraviolet (UV) light exposure. Fourier transform infrared (FTIR) spectroscopy confirmed the successful encapsulation of AV in the biopolymer matrices, presenting both encapsulants a high chemical interaction with the bioactive components. Ultraviolet-visible (UV-vis) spectroscopy showed that, while PVP nanofibers offered a poor effect on the AV degradation during UV light exposure (∼10% of stability after 5 h), WPC nanobeads delivered excellent protection (stability of >95% after 6 h). This was ascribed to positive interactions between WPC and the hydrophilic components of AV and the inherent UV-blocking and oxygen barrier properties provided by the protein. Therefore, electrospraying of food hydrocolloids interestingly appears as a novel potential nanotechnology tool toward the formulation of more stable functional foods and nutraceuticals.

  19. Pretreatment of hemp fibers for utilization in strong biocomposite materials

    DEFF Research Database (Denmark)

    Liu, Ming

    Hemp is the common name for Cannabis sativa cultivated for industrial use. Compared to synthetic fibers (e.g. glass fiber), hemp fibers have many advantages such as low cost, low density (1.5 g/cm3) and high specific strength and stiffness. As a result of increasing environmental awareness......, interest in hemp fiber reinforced composites is increasing because of a high potential of manufacturing hemp fiber reinforced polymer composites with acceptable mechanical properties at low cost. In order to expedite the application of natural fibers in polymer composites, hemp fibers need to be treated...... before being incorporated in matrix polymers to optimize the properties of fibers and fiber reinforced composites. The overall objective of this study was therefore to focus on understanding the correlation between chemical composition and morphology of hemp fibers and mechanical properties of hemp...

  20. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism.

    Science.gov (United States)

    Badawi, M A; Negm, N A; Abou Kana, M T H; Hefni, H H; Abdel Moneem, M M

    2017-06-01

    Chitosan was reacted by tannic acid to obtain three modified chitosan biopolymer. Their chemical structures were characterized by FTIR and elemental analysis. The prepared biopolymers were used to adsorb Al(III) and Pb(II) metal ions from industrial wastewater. The factors affecting the adsorption process were biosorbent amount, initial concentration of metal ion and pH of the medium. The adsorption efficiency increased considerably with the increase of the biosorbent amount and pH of the medium. The adsorption process of biosorbent on different metal ions was fitted by Freundlich adsorption model. The adsorption kinetics was followed Pseudo-second-order kinetic model. The adsorption process occurred according to diffusion mechanism which was confirmed by the interparticle diffusion model. The modified biopolymers were efficient biosorbents for removal of Pb(II) and Al(III) metal ions from the medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Green Fiber Bottle

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido

    The ambition of the Green Fiber Bottle (GFB) project is to manufacture a fully biodegradable bottle. Carlsberg is the intended end user, and they aim to package their beer in the new bottle. The new product is intended to replace the existing plastic and glass bottles, and thus reducing...... their impact on the environment, especially the oceans. For example, the life span of a plastic bottle in the ocean is 500 years, and during its degradation, the plastic is reduced to micro pieces, which causes the starvation of several marine animals. The new bottle is completely made from molded paper pulp......, which is a renewable resource. Nevertheless, due to food and drugs limitations, only virgin paper fibers must be employed in the production. The bottle could then be left to biodegrade in nature or enter a recycle system, along with other paper-based product. In order to contain the liquid, the bottle...

  2. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.

    Science.gov (United States)

    Dhanarajan, Gunaseelan; Rangarajan, Vivek; Bandi, Chandrakanth; Dixit, Abhivyakti; Das, Susmita; Ale, Kranthikiran; Sen, Ramkrishna

    2017-08-20

    A lipopeptide biosurfactant produced by marine Bacillus megaterium and a biopolymer produced by thermophilic Bacillus licheniformis were tested for their application potential in the enhanced oil recovery. The crude biosurfactant obtained after acid precipitation effectively reduced the surface tension of deionized water from 70.5 to 28.25mN/m and the interfacial tension between lube oil and water from 18.6 to 1.5mN/m at a concentration of 250mgL -1 . The biosurfactant exhibited a maximum emulsification activity (E 24 ) of 81.66% against lube oil. The lipopeptide micelles were stabilized by addition of Ca 2+ ions to the biosurfactant solution. The oil recovery efficiency of Ca 2+ conditioned lipopeptide solution from a sand-packed column was optimized by using artificial neural network (ANN) modelling coupled with genetic algorithm (GA) optimization. Three important parameters namely lipopeptide concentration, Ca 2+ concentration and solution pH were considered for optimization studies. In order to further improve the recovery efficiency, a water soluble biopolymer produced by Bacillus licheniformis was used as a flooding agent after biosurfactant incubation. Upon ANN-GA optimization, 45% tertiary oil recovery was achieved, when biopolymer at a concentration of 3gL -1 was used as a flooding agent. Oil recovery was only 29% at optimal conditions predicted by ANN-GA, when only water was used as flooding solution. The important characteristics of biopolymers such as its viscosity, pore plugging capabilities and bio-cementing ability have also been tested. Thus, as a result of biosurfactant incubation and biopolymer flooding under the optimal process conditions, a maximum oil recovery of 45% was achieved. Therefore, this study is novel, timely and interesting for it showed the combined influence of biosurfactant and biopolymer on solubilisation and mobilization of oil from the soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Petersen, Jens Højslev; Koch, C. Bender

    2009-01-01

    It is expected that biopolymers obtained from renewable resources will in due course become fully competitive with fossil fuel-derived plastics as food-packaging materials. In this context, biopolymer nanocomposites are a field of emerging interest since such materials can exhibit improved...

  4. Effect of psyllium and gum Arabic biopolymers on the survival rate and storage stability in yogurt ofEnterococcus duransIW3 encapsulated in alginate.

    Science.gov (United States)

    Nami, Yousef; Haghshenas, Babak; Yari Khosroushahi, Ahmad

    2017-05-01

    Different herbal biopolymers were used to encapsulate Enterococcus durans IW3 to enhance its storage stability in yogurt and subsequently its endurance in gastrointestinal condition. Nine formulations of encapsulation were performed using alginate (ALG), ALG-psyllium (PSY), and ALG-gum Arabic (GA) blends. The encapsulation efficiency of all formulations, tolerance of encapsulated E. durans IW3 against low pH/high bile salt concentration, storage lifetime, and release profile of cells in natural condition of yogurt were evaluated. Result revealed 98.6% encapsulation efficiency and 76% survival rate for all formulation compared with the unencapsulated formulation cells (43%). The ALG-PSY and ALG-GA formulations have slightly higher survival rates at low pH and bile salt condition (i.e., 76-93% and 81-95%, respectively) compared with the ALG formulation. All encapsulated E. durans IW3 was released from the prepared beads of ALG after 90 min, whereas both probiotics encapsulated in ALG-GA and ALG-PSY were released after 60 min. Enterococcus durans IW3 was successfully encapsulated in ALG, ALG-GA, and ALG-PSY beads prepared by extrusion method. ALG-GA and ALG-PSY beads are suitable delivery carriers for the oral administration of bioactive compounds like probiotics. The GA and PSY gels exhibited better potential for encapsulation of probiotic bacteria cells because of the amendment of ALG difficulties and utilization of therapeutic and prebiotic potentials of these herbal biopolymers.

  5. Permeability modification by in-situ gelation with a newly discovered biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Vossoughi, S.; Buller, C.S. (Kansas Univ., Lawrence, KS (United States))

    1991-11-01

    This paper reports that, in a typical gelled polymer process, a polymer reacts with a metal ion to yield a 3D crosslinked system. The success of the process depends on monitoring a large number of variables, including the concentrations of the metal ions, polymer, and reducing agent. Controlling these variables in field-scale tests is extremely difficult, if not impossible. Devising a process with fewer variables is therefore desirable. The in-situ gelation process in this paper uses a newly discovered biopolymer produced by Cellulomonas flavigena Strain KU. The bacteria produce the biopolymer when cultured in a simple salts medium containing any one of the variety of hexoses, pentoses, disaccharides, or such inexpensive substrates as starch or molasses as the carbon and energy sources for growth. The polymer produced remains associated with the producer bacteria, causing them to aggregate and to settle out from the growth medium. The polymer is extracted from the bacteria easily by suspension in dilute alkali. Upon neutralization of such extracts, the polymer precipitates as a hydrogel. The gelation process is reversible, and the hydrogels are stable at high temperatures. A linear coreflood was performed to reveal the feasibility of using the microbial polymer for the in-situ gelation process. The core initially was waterflooded and then flushed with acid. The subsequent injection of an alkaline solution of the polymer resulted in in-situ formation of hydrogels.

  6. Biopolymer production using fungus Mucor racemosus Fresenius and glycerol as substrate

    Directory of Open Access Journals (Sweden)

    Thaíssa Rodrigues Araújo

    Full Text Available Abstract This study evaluated extracellular production of biopolymer using fungus Mucor racemosus Fresenius and glycerol as a carbon source. Initially employing conical flasks of 500 mL containing 100 mL of cultive medium with 0.18 ± 0.03 g.L–1 of microorganisms, the results showed that the best conditions of the variables studied were: initial concentration of glycerol 50 g.L–1, fermentation time of 96 h, inoculum cultivation time of 120 h, and aeration in two stages–the first 24 hours without aeration and 72 hours fermentation with aeration of 2 vvm and 2 g.L–1 of yeast extract. The experiments conducted in a Biostat B fermenter with a 2.0 L capacity that contained 1.0 L of medium showed production of 16.35 g.L–1 gum formed and 75% glycerol consumption. These conditions produced a biopolymer with the molecular weight and total sugar content of 4.607×106 g.mol–1 (Da and 89.5%, respectively.

  7. Pre-Clinical Evaluation of Biopolymer Delivered Circulating Angiogenic Cells in Hibernating Myocardium

    Science.gov (United States)

    Giordano, Celine

    Vasculogenic cell-based therapy combined with tissue engineering is a promising revascularization strategy for patients with hibernating myocardium, a common clinical condition. We used a clinically relevant swine model of hibernating myocardium to examine the benefits of biopolymer-supported delivery of circulating angiogenic cells (CACs) in this context. Twenty-five swine underwent placement of an ameroid constrictor on the left circumflex artery (LCx). After 2 weeks, positron emission tomography measures of myocardial blood flow (MBF) and myocardial flow reserve (MFR) were reduced in the affected region (both pstress MBF and MFR were increased only in the cells+matrix group (panimals (p=0.02) compared to controls. Similar results were found using microsphere-measured MBF. Wall motion abnormalities and ejection fraction improved only in the cells+matrix group. This preclinical swine model demonstrated ischemia and hibernation, which was improved by the combined delivery of CACs and a collagen-based matrix. To our knowledge, this is the first demonstration of the mechanisms and effects of combining progenitor cells and biopolymers in the setting of myocardial hibernation, a common clinical condition in patients with advanced coronary artery disease.

  8. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  9. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT (Germany); Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT, Germany and Karlsruhe Institute of Technology KIT (Germany)

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  10. Comparison of KrF and ArF excimer laser treatment of biopolymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Michaljaničová, I. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic); Heitz, J.; Barb, R.A. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Sajdl, P. [Department of Power Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic)

    2015-06-01

    Highlights: • The influence of ArF and KrF laser on biopolymer surface was determined. • ArF laser acts predominantly on biopolymer surface. • PHB roughness is increased similarly for both applied wavelengths. • Roughness of nanostructures can be precisely controlled. • ArF laser introduces nitrogen on PHB surface. - Abstract: The goal of this work was the investigation of the impact of two different excimer lasers on two biocompatible and biodegradable polymers (poly-L-lactide and poly hydroxybutyrate). Both polymers find usage in medical and pharmaceutical fields. The polymers were modified by KrF and ArF excimer lasers. Subsequently the impact on surface morphology, surface chemistry changes, and thermal properties was studied by means of confocal and AFM microscopy, FTIR and XPS spectroscopy and DSC calorimetry. Under the same conditions of laser treatment it was observed that ArF laser causes more significant changes on surface chemistry, surface morphology and pattern formation on the polymers under investigation. The data obtained in this work can be used for a wide range of possible applications, in tissue engineering or in combination with metallization in electronics, e.g. for biosensors.

  11. The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms.

    Science.gov (United States)

    Niklas, Karl J; Cobb, Edward D; Matas, Antonio J

    2017-11-09

    The transition from an aquatic ancestral condition to a terrestrial environment exposed the first land plants to the desiccating effects of air and potentially large fluctuations in temperature and light intensity. To be successful, this transition necessitated metabolic, physiological, and morphological modifications, among which one of the most important was the capacity to synthesize hydrophobic extracellular biopolymers such as those found in the cuticular membrane, suberin, lignin, and sporopollenin, which collectively reduce the loss of water, provide barriers to pathogens, protect against harmful levels of UV radiation, and rigidify targeted cell walls. Here, we review phylogenetic and molecular data from extant members of the green plant clade (Chlorobionta) and show that the capacity to synthesize the monomeric precursors of all four biopolymers is ancestral and extends in some cases to unicellular plants (e.g. Chlamydomonas). We also review evidence from extant algae, bryophytes, and early-divergent tracheophytes and show that gene duplication, subsequent neo-functionalization, and the co-option of fundamental and ancestral metabolic pathways contributed to the early evolutionary success of the land plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    International Nuclear Information System (INIS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-01-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO 2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  13. Surface changes of biopolymers PHB and PLLA induced by Ar+ plasma treatment and wet etching

    Science.gov (United States)

    Slepičková Kasálková, N.; Slepička, P.; Sajdl, P.; Švorčík, V.

    2014-08-01

    Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar+ plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers - polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.

  14. Metrologically Traceable Determination of the Water Content in Biopolymers: INRiM Activity

    Science.gov (United States)

    Rolle, F.; Beltramino, G.; Fernicola, V.; Sega, M.; Verdoja, A.

    2017-03-01

    Water content in materials is a key factor affecting many chemical and physical properties. In polymers of biological origin, it influences their stability and mechanical properties as well as their biodegradability. The present work describes the activity carried out at INRiM on the determination of water content in samples of a commercial starch-derived biopolymer widely used in shopping bags (Mater-Bi^{circledR }). Its water content, together with temperature, is the most influencing parameter affecting its biodegradability, because of the considerable impact on the microbial activity which is responsible for the biopolymer degradation in the environment. The main scope of the work was the establishment of a metrologically traceable procedure for the determination of water content by using two electrochemical methods, namely coulometric Karl Fischer (cKF) titration and evolved water vapour (EWV) analysis. The obtained results are presented. The most significant operational parameters were considered, and a particular attention was devoted to the establishment of metrological traceability of the measurement results by using appropriate calibration procedures, calibrated standards and suitable certified reference materials. Sample homogeneity and oven-drying temperature were found to be the most important influence quantities in the whole water content measurement process. The results of the two methods were in agreement within the stated uncertainties. Further development is foreseen for the application of cKF and EWV to other polymers.

  15. Preparation of a Novel Chitosan Based Biopolymer Dye and Application in Wood Dyeing

    Directory of Open Access Journals (Sweden)

    Xiaoqian Wang

    2016-09-01

    Full Text Available A novel chitosan-based biopolymer dye possessing antibacterial properties was synthesized by reaction of O-carboxymethyl chitosan and Acid Red GR. The synthesized materials were characterized by Fourier transform infrared spectroscopy (FTIR, degree of substitution (DS, X-ray photoelectron spectroscopy (XPS, thermogravimetric analysis (TG, X-ray diffraction (XRD, water solubility test, antibacterial property test, and dyeing performance, including dye uptake, color difference, and fastness. Results showed that the synthesized dye was combined by –NH3+ of O-carboxymethyl chitosan and the sulfonic group of Acid Red GR. According to the comprehensive analysis of XRD and water solubility, the introduction of the carboxymethyl group and acid dye molecule changed the structure of the chitosan from compact to loose, which improved the synthesized dye’s water solubility. However, the thermal stability of the synthesized dye was decreased. The antibacterial property of the poplar wood dyed with the synthesized dye was enhanced and its antibacterial rate, specifically against Staphylococcus aureus and Escherichia coli, also increased to a rate of more than 99%. However, the dye uptake of the synthesized dye was lower than that of the original dye. Despite this, though, the dyeing effect of the synthesized dye demonstrated better water-fastness, and light-fastness than the original dye. Therefore, the novel chitosan-based biopolymer dye can be a promising product for wood dyeing.

  16. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Strength, toughness, and reliability of a porous glass/biopolymer composite scaffold.

    Science.gov (United States)

    Fu, Qiang; Jia, Weitao; Lau, Grace Y; Tomsia, Antoni P

    2018-04-01

    Development of bioactive glass and ceramic scaffolds intended for the reconstruction of large segmental bone defects remains a challenge for materials science due to the complexities involved in clinical implantation, bone-implant reaction, implant degradation and the multiple loading modes the implants subjected to. A comprehensive evaluation of the mechanical properties of inorganic scaffolds and exploration of new ways to toughen brittle constructs are critical prior to their successful application in loaded sites. A simple and widely adopted approach involves the coating of an inorganic scaffold with a polymeric material. In this work, a systematic evaluation of the influence of a biopolymer, polycaprolactone (PCL), coating on the mechanical performance of bioactive glass scaffolds was carried out. Results from this work indicate that a biopolymer PCL coating was more effective in increasing the compressive strength and reliability of the glass scaffold under compression, but less effective in improving its flexural strength or fracture toughness. This is the first report that reveals the limited successfulness of a polymer coating in improving the toughness of strong scaffolds, suggesting that new and novel ways of toughening inorganic scaffolds should be future research directions for scaffolds applied in loaded sites. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1209-1217, 2018. © 2017 Wiley Periodicals, Inc.

  18. COMPARATIVE MACROSCOPIC STUDY OF OSTEOCHONDRAL DEFECTS PRODUCED IN FEMURS OF RABBITS REPAIRED WITH BIOPOLYMER GEL CANE SUGAR.

    Science.gov (United States)

    de Albuquerque, Paulo Cezar Vidal Carneiro; Dos Santos, Saulo Monteiro; de Andrade Aguiar, José Lamartine; Filho, Nicodemus Pontes; de Mello, Roberto José Vieira; Costa, Mariana Lúcia Correia Ramos; de Albuquerque Olbertz, Clarissa Miranda Carneiro; de Souza Almeida, Tarciana Mendonça; da Silva Santos, Alessandro Henrique; da Silva, Joacil Carlos

    2011-01-01

    To study the surface, coloring, consistency, continuity and healing of osteochondral defects produced in the femoral condyles of rabbits and filled with sugar cane biopolymer gel (SCBG), after 90, 120 and 180 days, and in comparison with a control group. Sixteen adult New Zealand white rabbits aged 6 to 7 months, weighing between 2 and 2.5 kg and without locomotor system abnormalities were studied. In all the animals, a defect was made in the femoral condyles of the right and left knees, measuring 3.2 mm in diameter and 4 mm in depth, using a trephine. The animals were divided into two groups: study group formed by the right knees, in which the medial and lateral condyles received implants of SCBG; and control group formed by the left knees, in which the medial and lateral condyles were allowed to heal naturally. The knees were assessed 90, 120 and 180 days after the operation. After the animals had been sacrificed, the anatomical specimens were resected and placed in Bouin's solution. They were then photographed with a Nikon Coolpix 5400(®) coupled to a Nikon SM2800(®) stereoscopic loupe, to analyze the surface, coloring, consistency, continuity and healing. The results were evaluated using the chi-square test. There were no significant differences in the macroscopic assessments of healing between the study and control groups. With regard to the surface, coloring, consistency, continuity and healing of the defects, the macroscopic appearance of the tissue repaired with SCBG was similar to that of the control group.

  19. Structural, mechanical and electrical properties biopolymer blend nanocomposites derived from poly (vinyl alcohol)/cashew gum/magnetite

    Science.gov (United States)

    Ramesan, M. T.; Jayakrishnan, P.; Manojkumar, T. K.; Mathew, G.

    2018-01-01

    Blending of poly vinyl alcohol (PVA) and natural biopolymers such as cashew gum (CG) with magnetite (Fe3O4) nanoparticles has been a promising way for preparing bio-degradable polymeric blend nanocomposites. PVA/CG/Fe3O4 blend nanocomposites have been prepared by a simple solution casting technique using water as the green solvent. The characterization of blend nanocomposites has been carried out by using Fourier transform infrared, UV, x-ray diffraction (XRD), high resolution transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, mechanical properties and electrical conductivity. The interaction between nanoparticles and the blend segments was confirmed from the shift in characteristic absorption peaks of nanocomposites compared to PVA/CG blend. XRD analysis has shown the presence of crystalline peaks of nanoparticles in the blend matrix. The uniform distribution of Fe3O4 nanoparticles in the blend was revealed by TEM and SEM. The strong interaction of nanoparticles with the blend has been confirmed by the increase in glass transition temperature resulting from the reduced flexibility of the blend nanocomposite compared to that of the blend system. An increase in thermal stability and tensile strength and reduction in elongation at break of nanocomposites have been noticed with the increasing loading of nanoparticles. The AC electrical conductivity, dielectric constant and dielectric loss of the nanocomposites have been found to be higher than that of the blend. Generally, it can be stated that the magnetite nanoparticles acts as a potential filler in the PVA/CG blend at 7 wt% loading, giving the best balance of properties.

  20. Vibrational analysis of coconut fiber-PP composites

    OpenAIRE

    Gelfuso, Maria Virginia; Thomazini, Daniel; Souza, Júlio César Silva de; Lima Junior, José Juliano de

    2013-01-01

    Many researchers have been studying coconut fibers due to its being a natural and renewable source. Moreover, coconut waste is discarded in landfills, bringing environmental problems because this material, although natural, takes time to be degraded. The use of natural fibers such as coconut fibers has become industrially attractive because of its low cost, high availability and desired mechanical properties for some applications, such as panels, ceilings, and partition boards and automotive ...

  1. Izod Impact Test in Epoxi Matrix Composites Reinforced with Hemp Fiber

    Science.gov (United States)

    Rohen, Lázaro A.; Margem, Frederico M.; Neves, Anna C. C.; Monteiro, Sérgio N.; Gomes, Maycon A.; de Castro, Rafael G.; Maurício, F. V. Carlos; de Paula, Fernanda

    Synthetic fiber has been gradually replaced by natural fiber, such as lignocellulosic fiber. In comparison with synthetic fiber, natural fiber has shown economic and environmental advantages. The natural fiber presents interfacial characteristics with polymeric matrices that favor a high impact energy absorption by the composite structure. However, until now little has been evaluated about the hemp fiber incorporated in polymeric matrices. This study has the purpose of evaluate the impact resistance of this kind of epoxy matrix composite reinforced with different percentages of hemp fibers. The impact resistance has substantially increased the relative amount of hemp fiber incorporated as reinforcement in the composite. This performance was associated with the difficulty of rupture imposed by the fibers resulting from the interaction of hemp fiber / epoxy matrix that helps absorb the impact energy.

  2. Production, partial characterization, and use of a red biochrome produced by Serratia sakuensis subsp. nov strain KRED for dyeing natural fibers.

    Science.gov (United States)

    Vaidyanathan, J; Bhathena-Langdana, Z; Adivarekar, R V; Nerurkar, M

    2012-01-01

    We have described a novel red biochrome, 514 Da in size, produced by solid-state cultivation of a bacterial isolate obtained from garden soil. The growth requirements of the isolate, the chemical characteristics of the biochrome produced, and the application of the biochrome in dying of silk, wool, and cotton fabrics have been studied. The biochrome obtained after 52 h of incubation and having a λ (max) of 535 nm was used for dyeing the fabrics. We found that silk, wool, and cotton fabrics dyed with this new natural red compound have high color strength values and dye uptake along with good color fastness as well as antibacterial activity.

  3. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    Science.gov (United States)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  4. Activated carbon fibers and engineered forms from renewable resources

    Science.gov (United States)

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  5. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective......The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... assessment of the contribution of each type of fiber to the overall tensile response. Possible synergistic effects resulting from particular combinations of fibers need to be clearly identified. In the present study, the evaluation of the response of different fiber reinforced cementitious composite...

  6. Tensile Strength of Epoxy Composites Reinforced with Fique Fibers

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Teles, Maria Carolina Andrade; Borges, Luiz Gustavo Xavier; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    Environmentally friendly composites, made from natural fibers, are among the most investigated and applied today. Natural fibers have showed advantages, such as, flexibility and toughness, if compared with synthetic fibers. This work investigates the tensile strength of epoxy composites reinforced with Fique fibers. The Fique fiber was extracted from Fique leaf presents some significant characteristic, but until now only few studies on Fique fiber were performed. Composites reinforced with up to 30% in volume of long, continuous and aligned Fique fibers were tested in an Instron machine at room temperature. The incorporation of Fique fibers increases the tensile strength of the composite. After fracture the specimens were analyzed by a SEM (scanning electron microscope).

  7. Multimode-Optical-Fiber Imaging Probe

    Science.gov (United States)

    Jackson, Deborah

    2000-01-01

    Currently, endoscopic surgery uses single-mode fiber-bundles to obtain in vivo image information inside orifices of the body. This limits their use to the larger natural bodily orifices and to surgical procedures where there is plenty of room for manipulation. The knee joint, for example can be easily viewed with a fiber optic viewer, but joints in the finger cannot. However, there are a host of smaller orifices where fiber endoscopy would play an important role if a cost effective fiber probe were developed with small enough dimensions (fibers and analytically demonstrates that the concept is sound. The proof of concept draws upon earlier works that concentrated on image recovery after two-way transmission through a multimode fiber as well as work that demonstrated the recovery of images after one-way transmission through a multimode fiber. Both relied on generating a phase conjugated wavefront which was predistorted with the characteristics of the fiber. The described approach also relies on generating a phase conjugated wavefront, but utilizes two fibers to capture the image at some intermediate point (accessible by the fibers, but which is otherwise visually unaccessible).

  8. Fully automated system for the gas chromatographic characterization of polar biopolymers based on thermally assisted hydrolysis and methylation

    NARCIS (Netherlands)

    Kaal, E.; de Koning, S.; Brudin, S.; Janssen, H.-G.

    2008-01-01

    Pyrolysis-gas chromatography (Py-GC) is a powerful tool for the detailed compositional analysis of polymers. A major problem of Py-GC is that polar (bio)polymers yield polar pyrolyzates which are not easily accessible to further GC characterization. In the present work, a newly developed fully

  9. Soluble vs. insoluble fiber

    Science.gov (United States)

    Insoluble vs. soluble fiber; Fiber - soluble vs. insoluble ... There are 2 different types of fiber -- soluble and insoluble. Both ... water and turns to gel during digestion. This slows digestion. ...

  10. Fiber-Reinforced Concrete For Hardened Shelter Construction

    Science.gov (United States)

    1993-02-01

    centuries. Mud bricks reinforced with straw and mortar reinforced with horse hair are but two examples. Engineering properties of natural fibers are...used to reinforce concrete. c. Coir Fibers Coir fibers come from coconut husks. They are easily extracted using water to decompose the soft material...DATES COVERED SFebruary 1993 Final I Oct 91 - 30 Nov 92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Fiber -Reinforced Concrete for Hardened Shelter

  11. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  12. Structure and mechanics of aegagropilae fiber network.

    Science.gov (United States)

    Verhille, Gautier; Moulinet, Sébastien; Vandenberghe, Nicolas; Adda-Bedia, Mokhtar; Le Gal, Patrice

    2017-05-02

    Fiber networks encompass a wide range of natural and manmade materials. The threads or filaments from which they are formed span a wide range of length scales: from nanometers, as in biological tissues and bundles of carbon nanotubes, to millimeters, as in paper and insulation materials. The mechanical and thermal behavior of these complex structures depends on both the individual response of the constituent fibers and the density and degree of entanglement of the network. A question of paramount importance is how to control the formation of a given fiber network to optimize a desired function. The study of fiber clustering of natural flocs could be useful for improving fabrication processes, such as in the paper and textile industries. Here, we use the example of aegagropilae that are the remains of a seagrass ( Posidonia oceanica ) found on Mediterranean beaches. First, we characterize different aspects of their structure and mechanical response, and second, we draw conclusions on their formation process. We show that these natural aggregates are formed in open sea by random aggregation and compaction of fibers held together by friction forces. Although formed in a natural environment, thus under relatively unconstrained conditions, the geometrical and mechanical properties of the resulting fiber aggregates are quite robust. This study opens perspectives for manufacturing complex fiber network materials.

  13. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    During this ph.d. work, attention has been focused on understanding and analyzing the modal behavior of micro-structured fibers. Micro-structured fibers are fibers with a complex dielectric toplogy, and offer a number of novel possibilities, compared to standard silica based optical fibers......, and nonlinear fibers with zero dispersion wavelength well below 1300 nm. This thesis dexcribes the functionalities of these fibers, and further point to novel application areas, such as new efficient fiber amplifiers and fibers with new possibilities within dispersion management. When pointing toward novel...

  14. Biopolymers for Hard and Soft Engineered Tissues: Application in Odontoiatric and Plastic Surgery Field

    Directory of Open Access Journals (Sweden)

    Barbara Zavan

    2011-02-01

    Full Text Available The goal of modern dentistry and plastic surgery is to restore the patient to normal function, health and aesthetics, regardless of the disease or injury to the stomatognathic and cutaneous system respectively. In recent years tissue engineering and regenerative medicine have yielded many novel tissue replacements and implementation strategies. Scientific advances in biomaterials, stem cell isolation, growth and differentiation factors and biomimetic environments have created unique opportunities to fabricate tissues in the laboratory. Repairing of bone and skin is likely to become of clinical interest when three dimensional tissue reconstructive procedures and the appropriate supporting biomimetic materials are correctly assembled. In the present review, we provide an overview of the most promising biopolymers that may find clinical application in dento-maxillo-facial and plastic surgery.

  15. Properties of films obtained from biopolymers of different origins for skin lesions therapy

    Directory of Open Access Journals (Sweden)

    Márcia Zilioli Bellini

    2015-04-01

    Full Text Available In this study, the effects of the origin of xanthan used, in combination with chitosan, to prepare films for the treatment of skin lesions were evaluated. The characteristics of the films obtained with xanthan commercially available for the food industry sector and xanthan originated from a fermentation process conducted in a pilot plant were compared. Results showed that the source did not strongly interfere in many of the properties of the films, such as the mechanical properties, cytotoxicity to L929 cells, absorption of simulated body fluid and culture medium, stability in water and saline solution. Hence, even though the properties of biopolymers of different sources might vary, the films prepared with two distinct types of xanthan gum could be considered as potentially safe and similar in terms of relevant characteristics considering the aimed application.

  16. Effect of Some Biopolymers on the Rheological Behavior of Surimi Gel

    Directory of Open Access Journals (Sweden)

    Takahiro Noda

    2012-05-01

    Full Text Available The objective of this study was to investigate the effect of selected biopolymers on the rheological properties of surimi. In our paper, we highlight the functional properties and rheological aspects of some starch mixtures used in surimi. However, the influence of some other ingredients, such as cryoprotectants, mannans, and hydroxylpropylmethylcellulose (HPMC, on the rheological properties of surimi is also described. The outcome reveals that storage modulus increased with the addition of higher levels of starch. Moreover, the increasing starch level increased the breaking force, deformation, and gel strength of surimi as a result of the absorption of water by starch granules in the mixture to make the surimi more rigid. On the other hand, the addition of cryoprotectants, mannans, and HPMC improved the rheological properties of surimi. The data obtained in this paper could be beneficial particularly to the scientists who deal with food processing field.

  17. Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Salil, E-mail: sdesai@ncat.ed [Department of Industrial and Systems Engineering, North Carolina A and T State University, NC 27411 (United States); Center for Advanced Materials and Smart Structures, North Carolina A and T State University, Greensboro, NC 27411 (United States); Wake Forest University Institute for Regenerative Medicine, Winston-Salem, NC 27157 (United States); Perkins, Jessica [Department of Industrial and Systems Engineering, North Carolina A and T State University, NC 27411 (United States); Center for Advanced Materials and Smart Structures, North Carolina A and T State University, Greensboro, NC 27411 (United States); Harrison, Benjamin S. [Wake Forest University Institute for Regenerative Medicine, Winston-Salem, NC 27157 (United States); Sankar, Jag [Center for Advanced Materials and Smart Structures, North Carolina A and T State University, Greensboro, NC 27411 (United States)

    2010-04-15

    Drug delivery and dosage concentrations are considered as major focal points in conventional as well as battlefield emergency medicine. The concept of localizing drug delivery via microcapsules is an evolving field to confine the adverse side effects of high concentration drug doses. This paper focuses on understanding release kinetics through biopolymer microcapsules for time-dependent drug release. Calcium alginate microcapsules were manufactured using a direct-write inkjet technique. Rhodamine 6G was used as the release agent to observe the release kinetics from calcium alginate beads in distilled water. A design of experiments was constructed to compare the effect of the microcapsule diameter and different concentrations of calcium chloride (M) and sodium alginate (%, w/v) solutions on the release kinetics profiles of the microcapsules. This research gives insight to identify favorable sizes of microcapsules and concentrations of sodium alginate and calcium chloride solutions for controlled release behavior of drug delivery microcapsules.

  18. Local raster scanning for high-speed imaging of biopolymers in atomic force microscopy.

    Science.gov (United States)

    Chang, Peter I; Huang, Peng; Maeng, Jungyeoul; Andersson, Sean B

    2011-06-01

    A novel algorithm is described and illustrated for high speed imaging of biopolymers and other stringlike samples using atomic force microscopy. The method uses the measurements in real-time to steer the tip of the instrument to localize the scanning area over the sample of interest. Depending on the sample, the scan time can be reduced by an order of magnitude or more while maintaining image resolution. Images are generated by interpolating the non-raster data using a modified Kriging algorithm. The method is demonstrated using physical simulations that include actuator and cantilever dynamics, nonlinear tip-sample interactions, and measurement noise as well as through scanning experiments in which a two-axis nanopositioning stage is steered by the algorithm using simulated height data. © 2011 American Institute of Physics

  19. Chemical characterization of Xanthan biopolymers synthesized by Xanthomonas campestris pv pruni strains

    International Nuclear Information System (INIS)

    Moreira, Angelita da S.; Vendruscolo, Claire T.; Furlan, Ligia; Galland, Griselda

    2001-01-01

    In this work we describe the characterisation of Xanthan biopolymers synthesized by two Xanthomonas campestris pv pruni strains, in aerobic fermentation. By chromatography on TLC we could notice the presence of Mannose monomer in higher proportion in the 82 strain with relation to the another ones. The viscosity results showed the temperature dependence. The 06 and 82 strains had their viscosity increased whereas for the 87 strain we could observe a reduction with temperature increasing. The 13 C NMR spectrum of 87 strain showed the characteristic signals at approximately 92.8, 70.4 and 61.4 ppm, attributed to C1, C4 and C6 from glucose monomer, with higher intensity. (author)

  20. Biopolymer-activated graphitic carbon nitride towards a sustainable photocathode material.

    Science.gov (United States)

    Zhang, Yuanjian; Schnepp, Zoë; Cao, Junyu; Ouyang, Shuxin; Li, Ying; Ye, Jinhua; Liu, Songqin

    2013-01-01

    Photoelectrochemical (PEC) conversion of solar light into chemical fuels is one of the most promising solutions to the challenge of sustainable energy. Graphitic carbon (IV) nitride polymer (g-CN) is an interesting sustainable photocathode material due to low-cost, visible-light sensitivity, and chemical stability up to 500 °C in air. However, grain boundary effects and limited active sites greatly hamper g-CN activity. Here, we demonstrate biopolymer-activation of g-CN through simultaneous soft-templating of a sponge-like structure and incorporation of active carbon-dopant sites. This facile approach results in an almost 300% increase in the cathodic PEC activity of g-CN under simulated solar-irradiation.

  1. Active biopolymer film based on carboxymethyl cellulose and ascorbic acid for food preservation

    Science.gov (United States)

    Halim, Al Luqman Abdul; Kamari, Azlan

    2017-05-01

    In the present study, an active biopolymer film based on carboxymethyl cellulose (CMC) and ascorbic acid (AA) was synthesised at an incorporation rate of 15% (w/w). Several analytical instruments such as Fourier Transform Infrared Spectrometer (FTIR), Thermogravimetry Analyser (TGA), UV-Visible Spectrophotometer (UV-Vis), Scanning Electron Microscope (SEM) and Universal Testing Machine were used to characterise the physical and chemical properties of CMC-AA film. The addition of AA significantly reduced elongation at break (322%) and tensile strength (10 MPa) of CMC-AA film. However, CMC-AA film shows a better antimicrobial property against two bacteria, namely Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as compared to CMC film. The CMC-AA film was able to preserve cherry tomato with low weight loss and browning index. Overall, results from this study highlight the feasibility of CSAA film for food preservation.

  2. Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions

    Science.gov (United States)

    Kim, Yi-Yeoun; Walsh, Dominic

    2010-02-01

    Nanoparticles of CuS, CuxS, Ag2S and CdS were successfully prepared using a novel general and green synthetic process to give dextran biopolymer stabilised metal sulfifde nanosuspensions. Following preparation, dextranase enzyme was used to remove the bulk of the bound dextran to give pure stable metal sulfide nanocrystals for application in for example aspects of medicine, photonics and solar cells. Particles of good homogeneity were obtained and the CuS nanoparticle size was controlled to 9-27 nm by adjusting the reaction conditions. Cu2S nanoparticles were 14 nm, Ag2S nanoparticles were 20-50 nm and CdS nanoparticles were 9 nm is size. The complexing mechanism of nanoparticle sulfides to dextrans was further studied using carboxylmethyl dextran as a complexing agent and crosslinked Sephadex (dextran) `beads as substrate. Particles were characterized by TEM, XRD, TGA, FT-IR and zeta-potential measurement, and their UV-vis spectroscopic absorption properties were determined. Stabilization of the sulfide nanoparticles with soluble hydroxylated biopolymers such as dextran is previously unreported and is here interpreted in terms of viscosity, pH of the system and weak polar S-H or S(metal)OH2+ interactions with dextran depending on the material. Notably, the complexing mechanism appears to differ significantly from that taking place in known dextran-metal oxide systems. The process shown here has good potential for scale-up as a biosynthetic route for a range of functional sulfide nanoparticles.Nanoparticles of CuS, CuxS, Ag2S and CdS were successfully prepared using a novel general and green synthetic process to give dextran biopolymer stabilised metal sulfifde nanosuspensions. Following preparation, dextranase enzyme was used to remove the bulk of the bound dextran to give pure stable metal sulfide nanocrystals for application in for example aspects of medicine, photonics and solar cells. Particles of good homogeneity were obtained and the CuS nanoparticle size

  3. Effect of Nanopore Length on the Translocation Process of a Biopolymer: Numerical Study

    Directory of Open Access Journals (Sweden)

    Yong Kweon Suh

    2013-09-01

    Full Text Available In this study, we simulate the electrophoretic motion of a bio-polymer through a synthetic nanopore in the presence of an external bias voltage by considering the hydrodynamic interactions between the polymer and the fluid explicitly. The motion of the polymer is simulated by 3D Langevin dynamics technique by modeling the polymer as a worm-like-chain, while the hydrodynamic interactions are incorporated by the lattice Boltzmann equation. We report the simulation results for three different lengths of the nanopore. The translocation time increases with the pore length even though the electrophoretic force on the polymer is the same irrespective of the pore length. This is attributed to the fact that the translocation velocity of each bead inside the nanopore decreases with the pore length due to the increased fluid resistance force caused by the increase in the straightened portion of the polymer. We confirmed this using a theoretical formula.

  4. Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material

    Science.gov (United States)

    Zhang, Yuanjian; Schnepp, Zoë; Cao, Junyu; Ouyang, Shuxin; Li, Ying; Ye, Jinhua; Liu, Songqin

    2013-01-01

    Photoelectrochemical (PEC) conversion of solar light into chemical fuels is one of the most promising solutions to the challenge of sustainable energy. Graphitic carbon (IV) nitride polymer (g-CN) is an interesting sustainable photocathode material due to low-cost, visible-light sensitivity, and chemical stability up to 500°C in air. However, grain boundary effects and limited active sites greatly hamper g-CN activity. Here, we demonstrate biopolymer-activation of g-CN through simultaneous soft-templating of a sponge-like structure and incorporation of active carbon-dopant sites. This facile approach results in an almost 300% increase in the cathodic PEC activity of g-CN under simulated solar-irradiation. PMID:23831846

  5. Preparation of biopolymer-coated magnetite nanoparticles for magnetic resonance image contrast agent.

    Science.gov (United States)

    Cho, J H; Ko, S G; Ahn, Y K; Song, K C; Choi, E J

    2009-02-01

    The magnetite nanoparticles were synthesized using the sonochemical method with oleic acid as surfactant. The average size of the magnetite particles can be controlled by the ratio R = [H2O]/[surfactant] in the range of 2 to 9 nm. The size of the magnetite nanoparticles prepared by this method shows the narrow distribution. To prepare biopolymer(beta-glucan)-coated magnetite nanoparticles, beta-glucan solution was added to the magnetic colloid suspensions under the ultrasonication at room temperature. The beta-glucan coated magnetite colloidal suspensions of various concentrations did not agglomerate for 15 days, indicating their good stability. The beta-glucan-coated magnetite colloidal suspensions exhibited the enhancement of MRI contrasts in vitro.

  6. Influence of Biopolym Granulat effects on reductionof ammonia concentration in stables of intensive farm animals breeding

    Directory of Open Access Journals (Sweden)

    Bohuslav Čermák

    2014-10-01

    Full Text Available The living environment distress is connected currently not only with industrial production but also agriculture is biggest producer of toxic gas – ammonia (NH3 .Emissions of that gas originate mainly in the farm animals breeding and generate within storage and handling with farmyard manure, slurry, poultry excrements and litter. Agriculture influences considerably landscape. has impact on basic effect on soil, water and air. In assessing experiment the preparation Biopolym Granulat rumen metabolism and N-balance was found positive effects in terms of increased ammonia nitrogen, the number of ciliates and the reduction of N-compounds in feces. Confirmed the impact on the ammonia content in well-ventilated dairy stable. The economic evaluation depends on the exercise price of milk.

  7. Detection of single macromolecules using a cryogenic particle detector coupled to a biopolymer mass spectrometer

    Science.gov (United States)

    Twerenbold, Damian; Vuilleumier, Jean-Luc; Gerber, Daniel; Tadsen, Almut; van den Brandt, Ben; Gillevet, Patrick M.

    1996-06-01

    Macromolecules with masses up to 50 kDa have been detected with a cryogenic particle detector in a MALDI time-of-flight biopolymer mass spectrometer. The cryogenic particle detector was a Sn/Sn-ox/Sn tunnel junction operated at a temperature of 0.4 K. A calibration with 6 keV single photons inferred that the delayed detector pulses corresponded to the absorption of the kinetic energy of a single macromolecule. Time-of-flight spectra of lysozyme proteins are presented. The mass resolution is 100 Da at 14 300 Da. The energy sensitive detection mechanism suggests that cryogenic particle detectors have a high and mass independent detection efficiency for macromolecules.

  8. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone

    DEFF Research Database (Denmark)

    Henriksen, S S; Ding, M; Vinther Juhl, M

    2011-01-01

    Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitecture....... Controls were un-reinforced calcium-phosphate scaffolds. Microarchitectural properties were quantified using micro-CT scanning. Mechanical properties were evaluated by destructive compression testing. Results showed that adding 10 or 15% PLA to the scaffold significantly increased the mechanical strength....... The increase in mechanical strength was seen as a result of increased scaffold thickness and changes to plate-like structure. However, the porosity was significantly lowered as a consequence of adding 15% PLA, whereas adding 10% PLA had no significant effect on porosity. Hyaluronic acid had no significant...

  9. Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro

    2016-05-01

    Full Text Available In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs as fillers and an antibiotic, i.e., ciprofloxacin (CFX, as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid (PLA and a copolyester (BioFlex®. The prepared materials were characterized by scanning electron microscopy (SEM, and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the tuning of the release of CFX without hindering the antimicrobial activity of the obtained materials.

  10. Polysaccharides as biopolymers for food shelf-life extention: recent patents.

    Science.gov (United States)

    Volpe, Maria G; Malinconico, Mario; Varricchio, Ettore; Paolucci, Marina

    2010-06-01

    Biopolymers have properties that make them suitable for use in increasing food shelf-life. At present, conventional polymers could be substituted with biobased food packaging materials in several areas such as meat products, fruits and vegetables, dairy products, frozen food, dry food, snacks, ready to eat food and drinks. In spite of the enormous amount of published scientific articles and reviews on polysaccharide employment in food shelf-life extension, there is a comparatively limited number of patents issued from industry. Several polysaccharides alone or in combination with other substances are proposed in the patents aimed to extend the food shelf-life of fresh food, reducing modifications in color, flavor and taste. In this review, we will focus on polysaccharides extracted from biomass and their applications in the food industry, in particular on food shelf-life extension. The patents issued in the last twenty years for polysaccharides and their applications in food shelf-life extension will be reviewed.

  11. Use of a gel biopolymer for the treatment of eviscerated eyes: experimental model in rabbits

    Directory of Open Access Journals (Sweden)

    Francisco de Assis Cordeiro-Barbosa

    2012-08-01

    Full Text Available PURPOSE: To evaluate histologically the integration process of cellulose gel produced by Zoogloea sp when implanted into rabbits' eviscerated eyes. METHODS: This experimental study employed 36 eyes of 18 rabbits subjected to evisceration of their right eyes. The sclerocorneal bag was sutured and filled with biopolymer from sugar cane in the gel state. All animals were clinically examined by biomicroscopy until the day of their sacrifice which occurred on the 7th, 30th, 60th, 90th, 120th, or 240th day. The eyeballs obtained, including the left eyes considered controls were sent for histopathological study by optical macroscopy and microscopy. Tissue staining techniques used included hematoxylin-eosin, Masson trichrome (with aniline, Gomori trichrome, Van Gienson, Picrosirius red, and periodic acid-Schiff (PAS. RESULTS: No clinical signs of infection, allergy, toxicity, or extrusion were observed throughout the experiment. The corneas were relatively preserved. Macroscopic examination revealed a decrease of ~ 8% in the volume of the bulbs implanted with the biopolymer. After cutting, the sclerocorneal bag was solid, compact, elastic, and resistant to traction, with a smooth and whitish surface, and showed no signs of necrosis or liquefaction. The episcleral tissues were somewhat hypertrophied. The histological preparations studied in different colors revealed an initial lymphoplasmacytic infiltration, replaced by a fibroblastic response and proliferation of histiocytes, along with formation of giant cells. Few polymorphonuclearneutrophils and eosinophils were also found. Neovascularization and collagen deposition were present in all animals starting from day 30; although on the 240th day of the experiment the chronic inflammatory response, neovascularization and collagen deposition had not yet reached the center of the implant. CONCLUSION: In this model, the cellulose gel produced by Zoogloea sp proved to be biocompatible and integrated into the

  12. Electron migration in hydrated biopolymers following pulsed irradiation at low temperatures

    International Nuclear Information System (INIS)

    Lith, D. van.

    1987-01-01

    Charge migration in biopolymer-water mixtures and the effect of water concentration on the charge migration is investigated by measuring the electrical conductivity and the light emission with the pulse radiolysis technique. A preliminary account of the microwave conductivity observed in hydrated DNA and collagen at low temperature after pulsed irradiation is given. The results show that when hydrated DNA or collagen are irradiated at low temperatures, conductivity transients with microsecond lifetime are observed. It is tentatively concluded that these transients are due to the highly mobile dry electron. The effect of water concentration on mobility, lifetime and migration distance of the electron is discussed. The effect of additives to the hydrated systems on the behaviour of the electron is described. It is shown that the observed effects of the additives confirm the earlier conclusions that the dry electron is the species responsible for the radiation induced conductivity. The water concentration in the DNA- and collagen-systems could be varied only between zero and approximately fifty percent, due to inhomogeneities which occur at higher water concentrations. Experiments on gelatin, a biopolymer which forms homogeneous samples with levels of hydration varying from almost zero to 100% water (ice) are described. Both the radiation induced and the dark microwave conductivity have been studied as a function of water content. Preliminary results of a study of the light emission from pulse irradiated DNA-water mixtures are reported in an attempt to establish a relation between the observed electron migration and the formation of excited states via charge neutralization. (Auth.)

  13. An optimized methodology to analyze biopolymer capsules by environmental scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Conforto, Egle, E-mail: egle.conforto@univ-lr.fr [LaSIE UMR 7356 CNRS-ULR, Université de La Rochelle, UFR Sciences, Avenue Michel Crepeau, 17042 La Rochelle (France); Joguet, Nicolas [Equipe Approches Moléculaires Environnement-Santé, LIENSs, UMR 7266 CNRS-ULR, Université de La Rochelle, UFR Sciences, Avenue Michel Crepeau, 17042 La Rochelle (France); Buisson, Pierre [INNOV' IA, 4 rue Samuel Champlain, Z.I. Chef de Baie, 17000 La Rochelle (France); Vendeville, Jean-Eudes; Chaigneau, Carine [IDCAPS, filiale R and D INNOV' IA, 4 rue Samuel Champlain, Z.I. Chef de Baie, 17000 La Rochelle (France); Maugard, Thierry [Equipe Approches Moléculaires Environnement-Santé, LIENSs, UMR 7266 CNRS-ULR, Université de La Rochelle, UFR Sciences, Avenue Michel Crepeau, 17042 La Rochelle (France)

    2015-02-01

    The aim of this paper is to describe an optimized methodology to study the surface characteristics and internal structure of biopolymer capsules using scanning electron microscopy (SEM) in environmental mode. The main advantage of this methodology is that no preparation is required and, significantly, no metallic coverage is deposited on the surface of the specimen, thus preserving the original capsule shape and its surface morphology. This avoids introducing preparation artefacts which could modify the capsule surface and mask information concerning important feature like porosities or roughness. Using this method gelatin and mainly fatty coatings, difficult to be analyzed by standard SEM technique, unambiguously show fine details of their surface morphology without damage. Furthermore, chemical contrast is preserved in backscattered electron images of unprepared samples, allowing visualizing the internal organization of the capsule, the quality of the envelope, etc.… This study provides pointers on how to obtain optimal conditions for the analysis of biological or sensitive material, as this is not always studied using appropriate techniques. A reliable evaluation of the parameters used in capsule elaboration for research and industrial applications, as well as that of capsule functionality is provided by this methodology, which is essential for the technological progress in this domain. - Highlights: • We optimized a methodology using ESEM to analyze biopolymer capsules. • This methodology allows analyzing original surface samples without any preparation. • No preparation artefact are introduced which would mask important surface details. • Morphological details and chemical contrast from the original surface are preserved. • Capsule shape, volume, surface roughness and coating quality were reliably evaluated.

  14. Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens.

    Science.gov (United States)

    Sundaram, Jaya; Park, Bosoon; Kwon, Yongkuk; Lawrence, Kurt C

    2013-10-01

    A biopolymer encapsulated with silver nanoparticles was prepared using silver nitrate, polyvinyl alcohol (PVA) solution, and trisodium citrate. It was deposited on a mica sheet to use as SERS substrate. Fresh cultures of Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus and Listeria innocua were washed from chicken rinse and suspended in 10 ml of sterile deionized water. Approximately 5 μl of the bacterial suspensions was placed on the substrate individually and exposed to 785 nm HeNe laser excitation. SERS spectral data were recorded over the Raman shift between 400 and 1800 cm(-1) from 15 different spots on the substrate for each sample; and three replicates were done on each bacteria type. Principal component analysis (PCA) model was developed to classify foodborne bacteria types. PC1 identified 96% of the variation among the given bacteria specimen, and PC2 identified 3%, resulted in a total of 99% classification accuracy. Soft Independent Modeling of Class Analogies (SIMCA) of validation set gave an overall correct classification of 97%. Comparison of the SERS spectra of different types of gram-negative and gram-positive bacteria indicated that all of them have similar cell walls and cell membrane structures. Conversely, major differences were noted around the nucleic acid and amino acid structure information between 1200 cm(-1) and 1700 cm(-1) and at the finger print region between 400 cm(-1) and 700 cm(-1). Silver biopolymer nanoparticle substrate could be a promising SERS tool for pathogen detection. Also this study indicates that SERS technology could be used for reliable and rapid detection and classification of food borne pathogens. Published by Elsevier B.V.

  15. Froth conductivity for in situ monitoring of fiber (solid) and wet rejects in flotation deinking

    Science.gov (United States)

    J. Y. Zhu; M. Fleischmann; R. Gleisner

    2006-01-01

    Reduced fiber rejection in flotation deinking is very important to reduce the cost of secondary fibers in paper recycling and to conserve natural resources. Online monitoring of fiber rejection is a prerequisite to achieving process control for the reduction of fiber rejection in flotation deinking. It also can improve understanding of the effects of various operating...

  16. Electrospinning of PVC with natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Muhammad Hariz; Abdullah, Ibrahim [Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Mohamed, Mahathir [Radiation Processing Technology Division (BTS), Malaysian Nuclear Agency, Bangi, 43000, Kajang (Malaysia)

    2013-11-27

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber’s mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.

  17. Role of guar fiber in appetite control.

    Science.gov (United States)

    Rao, Theertham Pradyumna

    2016-10-01

    Appetite control and reduction of additional calorie intake may be a logical approach for proper weight management. Viscous dietary fibers are effective in appetite control but difficult to apply in normal serving sizes in foods and nutritional supplements due to their viscosity and required high doses. Guar fiber popularly known as partially hydrolyzed guar gum (PHGG) is near non-viscous soluble fiber that has been proven effective in providing many physiological benefits. Guar fiber has also been identified as potential natural food and nutritional supplement ingredient for appetite control. The aim of this review is to summarize all the clinical studies pertinent to its effects on appetite control in normal subjects and postulate the mechanism of action. Guar fiber exhibited appetite control via delaying the colonic transit time of digested food, stimulation of satiety hormone cholecystokinin (CCK) and induction of prolonged perception of post-meal satiation and satiety effects. Regular intake of guar fiber at a dose of 2g/serving provided significant sustained post-meal satiation effects and minimized the inter-meal calorie intake by about 20% in normal subjects. The intake of guar fiber alone at a dose >5g/serving or its combination with protein (2.6g guar fiber+8g protein/serving) showed acute satiety effects in normal subjects. Guar fiber containing >85% dietary fiber, with clear solubility and negligible taste impact, may be an ideal natural dietary fiber for use in food and supplement applications at low dosage levels for appetite control. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Fiber Scrambling for High Precision Spectrographs

    Science.gov (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  19. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  20. High-fiber foods

    Science.gov (United States)

    ... other dried fruits Grains Grains are another important source of dietary fiber. Eat more: Hot cereals, such as oatmeal and ... wheat Whole-wheat pastas Bran muffins Alternative Names Dietary fiber - self-care; Constipation - fiber Images Sources of fiber References Dahl WJ, Stewart ML. Position ...