WorldWideScience

Sample records for natural circulation loops

  1. Numerical simulation of a natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Verissimo, Gabriel L.; Moreira, Maria de Lourdes; Faccini, Jose Luiz H., E-mail: gabrielverissimo@poli.ufrj.b, E-mail: malu@ien.gov.b, E-mail: faccini@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work presents a numerical simulation of a natural circulation loop using computational fluid dynamics. The simulated loop is an experimental model in a reduced scale of 1:10 of a passive heat removal system typical of advanced PWR reactors. The loop is composed of a heating vessel containing 52 electric heaters, a vertical shell-tube heat exchanger and a column of expansion. The working fluid is distilled water. Initially it was created a tridimensional geometric model of the loop components. After that, it was generated a tridimensional mesh of finite elements in order to calculate the variables of the problem. The boundaries of the numerical simulation were the power of the electric resistances and the cooling flow in the secondary side of the heat exchanger. The initial conditions were the temperature, the pressure and the fluid velocity at the time just before the power has been switched on. The results of this simulation were compared with the experimental data, in terms of the evolution of the temperatures in different locations of the loop, and of the average natural circulation flow as a function of time for a given power. (author)

  2. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  3. An efficiency booster for energy conversion in natural circulation loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqing, E-mail: wangdongqing@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-08-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  4. Numerical simulation of losses along a natural circulation helium loop

    Science.gov (United States)

    Knížat, Branislav; Urban, František; Mlkvik, Marek; RidzoÅ, František; Olšiak, Róbert

    2016-06-01

    A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly in the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.

  5. Inverted annular flow heat transfer in a natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, M.; Umekawa, H.; Shiba, Y.; Yano, T. [Kansai Univ., Osaka (Japan)

    1998-07-01

    Gravity-feed reflooding experiment was conducted in a natural circulation loop of liquid nitrogen. The cooling curve of high temperature tube wall had a characteristic feature, i.e. initial rapid cooling with steam binding, relatively long-time plateau, gradual decrease with or without flow oscillation, and final drastic decrease during quenching process. Such phenomena had close relationship to the heated wall dynamics and heating power transient. To provide fundamental understanding on the present phenomena, the heat transfer data in inverted annular and dispersed flows were obtained under steady or oscillatory flow condition. The experimental data suggested that the heat transfer coefficient in the inverted annular or dispersed flow regimes is a slightly increasing function of heat flux but significantly depended on the tube diameter. The flow oscillation deteriorated heat transfer slightly in the inverted annular and dispersed flow regimes but significantly in the quenching process.

  6. Thermal-hydraulic instabilities in natural circulation flow loops under supercritical conditions

    Science.gov (United States)

    Jain, Rachna

    In recent years, a growing interest has been generated in investigating the thermal hydraulics and flow stability phenomenon in supercritical natural circulation loops. These flow conditions are relevant to some of the innovative passive safety designs proposed for the Gen-IV Supercritical Water Reactor (SCWR) concepts. A computational model has been developed at UW Madison which provides a good basic simulation tool for the steady state and transient analysis of one dimensional natural circulation flow, and can be applied to conduct stability analysis. Several modifications and improvements were incorporated in an earlier numerical scheme before applying it to investigate the transient behavior of two experimental loops, namely, the supercritical water loop at UW-Madison and the supercritical carbon-dioxide (SCCO2) loop at Argonne National Laboratories. Although the model predicted development of instabilities for both SCW and SCCO2 loop which agrees with some previous work, the experiments conducted at SCCO2 loop exhibited stable behavior under similar conditions. To distinguish between numerical effects and physical processes, a linear stability approach has also been developed to investigate the stability characteristics associated with the natural circulation loop systems for various inlet conditions, input powers and geometries. The linear stability results for the SCW and SCCO2 loops exhibited differences with the corresponding transient simulations. This linear model also predicted the presence of instability in the SCCO 2 loop for certain high input powers contradictory to the experimental findings. Dimensionless parameters were proposed which would generalize the stability characteristics of the natural circulation flow loops under supercritical conditions.

  7. Non-dimensional analysis of static bifurcation in a natural circulation loop

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The steady-state characteristics of a two-phase natural circulation loop were investigated based on the homogenous model. Transcendental equations of non-dimensional loop mass flow rate under various conditions were also derived. The static bifurcation diagram of a two-phase natural circulation described with non-dimensional variables Npch-m + was obtained. In addition, various steady-state characteristics of a natural circulation loop were analyzed and discussed. These characteristics include the existence of multiple solutions under certain conditions, and the maximum mass flow rate. The authors also examined the effects of important parameters such as sub-cooling number,riser-to-heated-region length ratio, and riser-to-heated-region diameter ratio.

  8. Effect of Loop Diameter on the Steady State and Stability Behaviour of Single-Phase and Two-Phase Natural Circulation Loops

    Directory of Open Access Journals (Sweden)

    P. K. Vijayan

    2008-01-01

    Full Text Available In natural circulation loops, the driving force is usually low as it depends on the riser height which is generally of the order of a few meters. The heat transport capability of natural circulation loops (NCLs is directly proportional to the flow rate it can generate. With low driving force, the straightforward way to enhance the flow is to reduce the frictional losses. A simple way to do this is to increase the loop diameter which can be easily adopted in pressure tube designs such as the AHWR and the natural circulation boilers employed in fossil-fuelled power plants. Further, the loop diameter also plays an important role on the stability behavior. An extensive experimental and theoretical investigation of the effect of loop diameter on the steady state and stability behavior of single- and two-phase natural circulation loops have been carried out and the results of this study are presented in this paper.

  9. Natural circulation loop using liquid nitrogen for cryo-detection system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon Suk [Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 305-806 (Korea, Republic of)

    2014-01-29

    The natural circulation loop is designed for the cryogenic insert in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Sensitivity is the key parameter of a FTICR mass spectrometer and the cryo-cooling of the pre-amplifier can reduce the thermal noise level and thereby improve the signal-to-noise ratio. The pre-amplifier consisted of non-magnetic materials is thermally connected to the cooling loop which is passing through the flange maintaining ultra-high vacuum in the ion cell. The liquid nitrogen passes through inside of the loop to cool the pre-amplifier indirectly. At the end, a cryocooler is located to re-condense nitrogen vapor generated due to the heat from the pre-amplifier. The circulating fluid removes heat from the pre-amplifier and transports it to the cryocooler or heat sink. In this paper the natural circulation loop for cryogenic pre-amplifier is introduced for improving the sensitivity of cryo-detector. In addition, the initial cool-down of the system by a cryocooler is presented and the temperature of the radiation shield is discussed with respect to the thickness of shield and the thermal radiation load.

  10. Development of vapor compression refrigeration cycle with a natural-circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Takashi; Sumida, Yoshihiro; Matsushita, Akihiro

    1999-07-01

    Vapor compression refrigeration cycle with a natural-circulation loop (VCNC) has been developed to save energy for an air conditioner of shelters of electronic facilities. VCNC consists of a compressor, a condenser, a liquid pipe, an evaporator, a gas pipe, an accumulator and three valves. VCNC has two operating modes; vapor compression mode and natural-circulation mode, which are easily changed by the values. The experiments were carried out to evaluate the cycle performance in natural-circulation mode, and calculations were performed to examine the energy consumption of VCNC using the profile of seasonal environmental temperature in Tokyo. The experimental results indicated that the cooling capacity in natural-circulation mode depended on the amount of charged refrigerant and took a maximum value in the case that the refrigerant at the outlet of the evaporator became saturated vapor. Also, the cooling capacity in natural-circulation mode linearly increased as the outdoor temperature decreased. The calculated results indicated that the operating ratio of the compressor of VCNC was approximately 70% smaller than that of conventional air conditioners (VC). Furthermore, the energy consumption of VCNC was approximately 50% lower than that of VC.

  11. Numerical modeling of supercritical CO{sub 2} natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Archana, V., E-mail: archanav@barc.gov.in [Homi Bhabha National Institute, Mumbai, Maharashtra 400 094 (India); Vaidya, A.M., E-mail: avaidya@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India); Vijayan, P.K., E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India)

    2015-11-15

    Highlights: • Supercritical CO{sub 2} natural circulation loop is modeled by in-house developed 1D and 2D axi-symmetric CFD codes. • Steady state characteristics of VHVC configuration of supercritical CO{sub 2} natural circulation loop are studied over a range of power. • Improved accuracy of predictions by 2D axi-symmetric formulation over 1D formulation is demonstrated. • The validity of correlations used in 1D model such as friction factor and heat transfer correlations is analyzed. • Simulation results shows normal, enhanced and deteriorated heat transfer regimes in supercritical CO{sub 2} natural circulation loop. - Abstract: The objective of this research project is to estimate steady state characteristics of supercritical natural circulation loop (SCNCL) using computational methodology and to compliment on-going experimental investigation of the same at the authors’ organization. For computational investigation, a couple of in-house codes are developed. At first, formulation and a corresponding computer program for the SCNCL based on conservation equations written in 1D framework is developed. Comparison of 1D code results with experimental data showed that, under some operating conditions, there is deviation between computed results and experimental data. To improve predictive capability, it was thought to model the SCNCL using conservation equations in 2D axi-symmetric framework. An existing 2D axi-symmetric code (named NAFA), which was developed and validated for supercritical fluid flow in pipes, is modified for natural circulation loop (NCL) geometry. The modified code, named NAFA-Loop, is subsequently used to compute the steady state characteristics of the SCNCL. These results are compared with experimental data. The steady state characteristics such as the variation of mass flow rate with power, velocity and temperature profiles in heater and cooler are studied using NAFA-Loop. The computed velocity and temperature fields show that the

  12. Steam drum level control studies of a natural circulation multi loop reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh; Contractor, A.D.; Srivastava, Abhishek; Lele, H.G. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Reactor Safety Div.; Vaze, K.K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Reactor Design and Development Group

    2013-12-15

    The proposed heavy water moderated and light water cooled pressure tube type boiling water reactor works on natural circulation at all power levels. It has parallel inter-connected loops with 452 boiling channels in the main heat transport system configuration. These multiple (four) interconnected loops influence the steam drum level control adversely through the common reactor inlet header. Alternate design studies made earlier for efficient control of SD levels have shown favorable results. This has lead to explore further the present scheme with the compartmentalization of CRIH into four compartments catering to four loops separately. The conventional 3-element level control has been found to be working satisfactorily. The interconnections between ECCS header and inlet header compartments have also increased the safety margin for various LOCA and design basis events. The paper deals with the SD level control aspects for this novel MHT configuration which has been analyzed for various PIEs (Postulated Initiating Events) and found to be satisfactory. (orig.)

  13. Helium I heat transfer in a small natural circulation loop with self-sustaining recondensation

    Science.gov (United States)

    Song, Yu; Four, Aurélien; Baudouy, Bertrand

    2014-01-01

    Heat transfer of helium I in a natural circulation loop is experimentally studied around atmospheric pressure. The test section of the loop has an inner diameter of 4 mm and a height of 23 cm and can be uniformly heated by wire heater. On top of the loop, a condenser is mounted and thermally connected to the second-stage of a 1.5 W at 4.2 K GM cryocooler. Helium can be recondensed in the condenser, where the pressure is regulated around the atmospheric pressure. While the dissipated heat flux is increased from 0 to 1 W, one encounters the different heat transfer regimes as single phase liquid convection, two phase nucleate boiling and single phase vapor convection. The wall superheat varies up to 11 K in the single phase vapor convection regime. The wall temperature measurement allows obtaining the boiling curve and determining the heat transfer coefficient.

  14. Visualization of boiling flow structure in a natural circulation boiling loop

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Arnab; Paruya, Swapan, E-mail: swapanparuya@gmail.com

    2015-04-15

    Highlights: • Vapor–liquid jet flows in natural circulation boiling loop. • Flow patterns and their transitions during geysering instability in the loop. • Evaluation of the efficiency of the needle probe in detecting the vapor–liquid and boiling flow structure. - Abstract: The present study reports vapor–liquid jet flows, flow patterns and their transitions during geysering instability in a natural circulation boiling loop under varied inlet subcooling ΔT{sub sub} (30–50 °C) and heater power Q (4–5 kW). Video imaging, voltage measurement using impedance needle probe, measurement of local pressure and loop flow rate have been carried out in this study. Power spectra of the voltage, the pressure and the flow rate reveal that at a high ΔT{sub sub} the jet flows have long period (21.36–86.95 s) and they are very irregular with a number of harmonics. The period decreases and becomes regular with a decrease of ΔT{sub sub}. The periods of the jet flows at ΔT{sub sub} = 30–50 °C and Q = 4 kW are in close agreement with those obtained from the video imaging. The probe was found to be more efficient than the pressure sensor in detecting the jet flows within an uncertainty of 9.5% and in detecting a variety of bubble classes. Both the imaging and the probe consistently identify the bubbly flow/vapor-mushrooms transition or the bubbly flow/slug flow transition on decreasing ΔT{sub sub} or on increasing Q.

  15. Estimating steady state and transient characteristics of molten salt natural circulation loop using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Kudariyawar, J.Y. [Homi Bhabha National Institue, Mumbai (India); Vaidya, A.M.; Maheshwari, K.K.; Srivastava, A.K. [Reactor Engineering Division, Bhabha Atomic Research Center, Mumbai (India); Satyamurthy, P. [ATDS, Bhabha Atomic Research Center, Mumbai (India)

    2015-03-15

    The steady state and transient characteristics of a molten salt natural circulation loop (NCL) are obtained by 3D CFD simulations. The working fluid is a mixture of NaNO{sub 3} and KNO{sub 3} in 60:40 ratio. Simulation is performed using PHOENICS CFD software. The computational domain is discretized by a body fitted grid generated using in-built mesh generator. The CFD model includes primary side. Primary side fluid is subjected to heat addition in heater section, heat loss to ambient (in piping connecting heater and cooler) and to secondary side (in cooler section). Reynolds Averaged Navier Stokes equations are solved along with the standard k-ε turbulence model. Validation of the model is done by comparing the computed steady state Reynolds number with that predicted by various correlations proposed previously. Transient simulations were carried out to study the flow initiations transients for different heater powers and different configurations. Similarly the ''power raising'' transient is computed and compared with in-house experimental data. It is found that, using detailed information obtained from 3D transient CFD simulations, it is possible to understand the physics of oscillatory flow patterns obtained in the loop under certain conditions.

  16. Numerical Simulations and Design Optimization of the PHT Loop of Natural Circulation BWR

    Directory of Open Access Journals (Sweden)

    G. V. Durga Prasad

    2008-01-01

    Full Text Available Mathematical modeling and numerical simulation of natural circulation boiling water reactor (NCBWR are very important in order to study its performance for different designs and various off-design conditions and for design optimization. In the present work, parametric studies of the primary heat transport loop of NCBWR have been performed using lumped parameter models and RELAP5/MOD3.4 code. The lumped parameter models are based on the drift flux model and homogeneous equilibrium mixture (HEM model of two-phase flow. Numerical simulations are performed with both models. Compared to the results obtained from the HEM model, those obtained from the drift flux model are closer to RELAP5. The variations of critical heat flux with various geometric parameters and operating conditions are thoroughly investigated. The material required to construct the primary heat transport (PHT loop of NCBWR has been minimized using sequential quadratic programming. The stability of NCBWR has also been verified at the optimum point.

  17. Numerical Analysis of General Trends in Single-Phase Natural Circulation in a 2D-Annular Loop

    Directory of Open Access Journals (Sweden)

    Gilles Desrayaud

    2008-01-01

    Full Text Available The aim of this paper is to address fluid flow behavior of natural circulation in a 2D-annular loop filled with water. A two-dimensional, numerical analysis of natural convection in a 2D-annular closed-loop thermosyphon has been performed for various radius ratios from 1.2 to 2.0, the loop being heated at a constant flux over the bottom half and cooled at a constant temperature over the top half. It has been numerically shown that natural convection in a 2D-annular closed-loop thermosyphon is capable of showing pseudoconductive regime at pitchfork bifurcation, stationary convective regimes without and with recirculating regions occurring at the entrance of the exchangers, oscillatory convection at Hopf bifurcation and Lorenz-like chaotic flow. The complexity of the dynamic properties experimentally encountered in toroidal or rectangular loops is thus also found here.

  18. Thermal analysis of lithium cooled natural circulation loop module for fuel rod testing in the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Kim, D.; Stover, R.L.; Beaver, T.R.

    1987-01-01

    Maximum heat removal capability of a lithium cooled natural circulation fuel rod test module design is determined. Loop geometry is optimized within limitations of design specifications for nominal operation temperatures, materials, and test module environment. Results provide test module operation limits and range of potential uncertainties. 3 refs., 12 figs.

  19. Two-phase flow assessment and void fraction measurement of a pilot natural circulation loop using capacitance probe

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Marcelo S.; Cabral, Eduardo L.L., E-mail: msrocha@ipen.br, E-mail: elcabral@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This article focuses the project, construction and tests of a capacitance probe for void fraction measurement and two-phase flow assessment in a natural circulation loop. Two-phase flow patterns and the associated variables are very important in natural circulation circuits and it is used in the new generation of nuclear reactors for residual heat removal during shut-off and emergency events. The capacitance probe was calibrated to measure the instantaneous bulk void fraction in a vertical tube section of a natural circulation loop. Instantaneous signals generated by the capacitance probe allow the determination of the local bulk void fraction. The probe design is presented and discussed and void fraction data obtained by the probe are compared with theoretical void fraction calculated by analytical models from literature. (author)

  20. Feasibility analysis of the Primary Loop of Pool-Type Natural Circulating Nuclear Reactor Dedicated to Seawater Desalination

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woonho; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the feasibility of natural circulation was evaluated for the reference plant AHR400 (Advanced Heating Reactor 400MWth). AHR400 is a pool-type desalination-dedicated nuclear reactor. As a consequence, AHR400 has low operating pressure and temperature which provides large safety margin. Removal of the reactor coolant pump from the AHR400 will enforce integrity of the reactor vessel and passive safety feature. Therefore, the study also tried to find out optimized primary loop design to achieve total natural circulation of the coolant. Natural circulation capacity of the primary loop of the desalination dedicated nuclear reactor AHR400 was evaluated. It was concluded that to remove RCP from the AHR400 and operates the reactor only by natural circulation of the coolant is impossible. Decreased core power as half make removal of RCP possible with 15m central height difference between the core and IHXs. Furthermore, validation and modification of pressure loss coefficients by small-scaled natural circulation experiment at a pool-type reactor would provide more accurate results.

  1. An Analytical and Experimental Study of a Natural Circulation Loop with Horizontal Heating Section

    Institute of Scientific and Technical Information of China (English)

    YinxueSu; QingjinWu

    1994-01-01

    The thermal performance of a rectangular loop with a horizontal heating segment and a partly cooling vertical leg is studied.By one-dimensional approach,traditional friction factor and empirical correlation,a modified Grashof number Gr* which turns out to be very important in the description of circulation flow is introduced .A new correlation for Nusselt number of the horizontal heater is obtained and the comparison with experimental values shows good agreement.

  2. Self-organizing maps applied to two-phase flow on natural circulation loop studies

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Leonardo F.; Cunha, Kelly de P.; Andrade, Delvonei A.; Sabundjian, Gaiane; Torres, Walmir M.; Macedo, Luiz A.; Rocha, Marcelo da S.; Masotti, Paulo H.F.; Mesquita, Roberto N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for heat removal on 'loss of pump power' or 'plant shutdown' accidents. The accuracy of heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. Self-Organizing Maps are trained to digital images acquired on natural circulation flow instabilities. This technique will allow the selection of the more important characteristics associated with each flow pattern, enabling a better comprehension of each observed instability. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The Natural Circulation Facility (Circuito de Circulacao Natural - CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to one and two phase flow under natural circulation conditions. (author)

  3. A Computing Approach with the Heat-Loss Model for the Transient Analysis of Liquid Metal Natural Circulation Loop

    OpenAIRE

    2014-01-01

    The transient behaviors of natural circulation loop (NCL) are important for the system reliability under postulated accidents. The heat loss and structure thermal inertia may influence the transient behaviors of NCL greatly, so a transient analysis model with consideration of heat loss was developed based on the MATLAB/Simulink to predict the thermal-hydraulic characteristic of liquid metal NCL. The transient processes including the start-up, the loss of pump, and the shutdown of thermal-hydr...

  4. Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

    Directory of Open Access Journals (Sweden)

    Milan Krishna Singha Sarkar

    2017-02-01

    Full Text Available Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  5. Numerical comparison of thermal hydraulic aspects of supercritical carbon dioxide and subcritical water-based natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Milan Krishna Singhar; Basu, Dipankar Narayan [Dept. of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati (India)

    2017-02-15

    Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  6. Transient analysis of subcritical/supercritical carbon dioxide based natural circulation loop with end heat exchangers: experimental study

    Science.gov (United States)

    Yadav, Ajay Kumar; Ramgopal, Maddali; Bhattacharyya, Souvik

    2017-09-01

    Carbon dioxide (CO2) based natural circulation loops (NCLs) has gained attention due to its compactness with higher heat transfer rate. In the present study, experimental investigations have been carried out to capture the transient behaviour of a CO2 based NCL operating under subcritical as well as supercritical conditions. Water is used as the external fluid in cold and hot heat exchangers. Results are obtained for various inlet temperatures (323-353 K) of water in the hot heat exchanger and a fixed inlet temperature (305 K) of cooling water in the cold heat exchanger. Effect of loop operating pressure (50-90 bar) on system performance is also investigated. Effect of loop tilt in two different planes (XY and YZ) is also studied in terms of transient as well as steady state behaviour of the loop. Results show that the time required to attain steady state decreases as operating pressure of the loop increases. It is also observed that the change in temperature of loop fluid (CO2) across hot or cold heat exchanger decreases as operating pressure increases.

  7. Working regime identification for natural circulation loops by comparative thermalhydraulic analyses with three fluids under identical operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Milan K.S.; Basu, Dipankar N., E-mail: dipankar.n.basu@gmail.com

    2015-11-15

    Highlights: • Thermalhydraulic analyses of NCL to justify the use of supercritical condition. • Mass flow rate of supercritical loop increases with heater power till a maxima. • Supercritical loop suffer from HTD beyond the maxima with jump in fluid temperature. • HTD is pronounced at higher sink temperatures and pressures just above critical. • Supercritical CO{sub 2} is preferred fluid till the HTD and single-phase water afterwards. - Abstract: Computational investigation for comparative thermalhydraulic analyses of rectangular natural circulation loops is performed to propose a guideline for selecting the working fluid and nature of the loop, subcritical or supercritical, under identical levels of operating parameters like pressure, heating power and coolant temperature. A 3-d uniform-diameter loop geometry is developed with horizontal heating and cooling. Heating is provided in constant heat flux mode, whereas cooling is through a constant temperature sink. Due to favourable thermophysical properties and environmental conformity, water, CO{sub 2} and R134a are selected as possible working fluids. Operational parameters are set so as to have sub- to supercritical condition for CO{sub 2}, supercritical for R134a and single-phase liquid for water. Mass flow rate for supercritical fluid rapidly increases with heater power, when the fluid is allowed to cross the pseudocritical point during its passage through the heater, and exhibits a maxima. Drastic fall in mass flow rate can be observed beyond the maxima, accompanied by a jump in maximum fluid temperature and a rapid decline in sink-side heat transfer coefficient. That can be identified as heat transfer deterioration in supercritical natural circulation loops, a highly undesirable situation from loop safety point of view. Allowable working range of heater power can be enhanced by increasing system pressure and decreasing sink temperature. For any specified set of operating conditions, CO{sub 2}-based

  8. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Dipankar N., E-mail: dipankar.n.basu@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Bhattacharyya, Souvik; Das, P.K. [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-12-15

    Highlights: • Comprehensive review of state-of-the-art on single-phase natural circulation loops. • Detailed discussion on growth in solar thermal system and nuclear thermal hydraulics. • Systematic development in scaling methodologies for fabrication of test facilities. • Importance of numerical modeling schemes for stability assessment using 1-D codes. • Appraisal of current trend of research and possible future directions. - Abstract: A comprehensive review of single-phase natural circulation loop (NCL) is presented here. Relevant literature reported since the later part of 1980s has been meticulously surveyed, with occasional obligatory reference to a few pioneering studies originating prior to that period, summarizing the key observations and the present trend of research. Development in the concept of buoyancy-induced flow is discussed, with introduction to flow initiation in an NCL due to instability. Detailed discussion on modern advancement in important application areas like solar thermal systems and nuclear thermal hydraulics are presented, with separate analysis for various reactor designs working on natural circulation. Identification of scaling criteria for designing lab-scale experimental facilities has gone through a series of modification. A systematic analysis of the same is presented, considering the state-of-the-art knowledge base. Different approaches have been followed for modeling single-phase NCLs, including simplified Lorenz system mostly for toroidal loops, 1-D computational modeling for both steady-state and stability characterization and 3-D commercial system codes to have a better flow visualization. Methodical review of the relevant studies is presented following a systematic approach, to assess the gradual progression in understanding of the practical system. Brief appraisal of current research interest is reported, including the use of nanofluids for fluid property augmentation, marine reactors subjected to rolling waves

  9. Numerical analysis of the fluid dynamics in a natural circulation loop; Analise numerica da dinamica do escoamento em circuitos de circulacao natural

    Energy Technology Data Exchange (ETDEWEB)

    Angelo, Gabriel

    2013-07-01

    Natural circulation loops apply to many engineering applications such as: water heating solar energy system (thermo-siphons), thermal management of electrical components (voltage converter), geothermal energy, nuclear reactors, etc. In pressurized water nuclear reactors, known as PWR's, the natural circulation loops are employed to ensure passive safety. In critical situations, the heat transfer will occur only by natural convection, without any external control or mechanical devices. This feature is desired and has been considered in modern nuclear reactor projects. This work consists of a numerical study of the natural circulation loop, located at the Instituto de Pesquisas Energeticas e Nucleares / Comissao Nacional de Energia Nuclear in Sao Paulo, Brazil, in order to establish the flow pattern in single phase conditions. The comparison of numerical results to experiments in transient condition revealed significant deviations for the Zero Equation turbulence model. Intermediate deviations for the Eddy Viscosity Turbulence Equation (EVTE), k - {omega}, SST e SSG models. And the best results are obtained by the k - {epsilon} e DES models (with better results for the k - {epsilon} model). (author)

  10. Computational simulation of flow and heat transfer in single-phase natural circulation loops; Simulacao computacional de escoamento e transferencia de calor em circuitos de circulacao natural monofasica

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha

    2017-07-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr{sub m}), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  11. Reduced-scale water test of natural circulation for decay heat removal in loop-type sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, T., E-mail: murakami@criepi.denken.or.jp [Central Research Institute of Electric Power Industry, 1646 Abiko, Chiba (Japan); Eguchi, Y., E-mail: eguchi@criepi.denken.or.jp [Central Research Institute of Electric Power Industry, 1646 Abiko, Chiba (Japan); Oyama, K., E-mail: kazuhiro_oyama@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 2-34-17 Jinguumae, Shibuya, Tokyo (Japan); Watanabe, O., E-mail: osamu4_watanabe@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 2-34-17 Jinguumae, Shibuya, Tokyo (Japan)

    2015-07-15

    Highlights: • The natural circulation characteristics of a loop-type SFR are examined by a water test. • The performance of decay heat removal system is evaluated using a similarity law. • The effects of flow deviation in the parallel piping of a primary loop are clarified. • The reproducibility of the natural circulation test is confirmed. - Abstract: Water tests of a loop-type sodium-cooled fast reactor have been conducted to physically evaluate the natural circulation characteristics. The water test apparatus was manufactured as a 1/10-scale mock-up of the Japan Sodium-Cooled Fast Reactor, which adopts a decay heat removal system (DHRS) utilizing natural circulation. Tests simulating a variety of events and operation conditions clarified the thermal hydraulic characteristics and core-cooling performance of the natural circulation in the primary loop. Operation conditions such as the duration of the pump flow coast-down and the activation time of the DHRS affect the natural circulation characteristics. A long pump flow coast-down cools the upper plenum of the reactor vessel (RV). This causes the loss of the buoyant force in the RV. The test result indicates that a long pump flow coast-down tends to result in a rapid increase in the core temperature because of the loss of the buoyant force. The delayed activation of the DHRS causes a decrease in the natural circulation flow rate and a temperature rise in the RV. Flow rate deviation and a reverse flow appear in the parallel cold-leg piping in some events, which cause thermal stratification in the cold-leg piping. The DHRS prevents the core temperature from fatally rise even for the most severe design-basis event, in which sodium leakage in a secondary loop of the DHRS and the opening failure of a single damper of the air cooler occur simultaneously. In the water test for the case of siphon break in the primary loop, which is one of the design extension conditions, a circulation flow consisting of ascendant

  12. A Computing Approach with the Heat-Loss Model for the Transient Analysis of Liquid Metal Natural Circulation Loop

    Directory of Open Access Journals (Sweden)

    Daogang Lu

    2014-01-01

    Full Text Available The transient behaviors of natural circulation loop (NCL are important for the system reliability under postulated accidents. The heat loss and structure thermal inertia may influence the transient behaviors of NCL greatly, so a transient analysis model with consideration of heat loss was developed based on the MATLAB/Simulink to predict the thermal-hydraulic characteristic of liquid metal NCL. The transient processes including the start-up, the loss of pump, and the shutdown of thermal-hydraulic ADS lead bismuth loop (TALL experimental facility were simulated by using the model. A good agreement is obtained to validate the transient model. The appended structure would provide significant thermal inertia and flatten the temperature distribution in the transients. The oscillations of temperature and flow rate are also weakened. The temperature difference between hot leg and cold leg would increase with the decrease of heat loss, so the flow rate increases as well. However, a significant increase of hot section temperature may cause a failure of facility integrity due to the decrease of heat loss. Hence, the full power of the core tank may also be limited.

  13. Inlet throttling effect on the boiling two-phase flow stability in a natural circulation loop with a chimney

    Science.gov (United States)

    Furuya, M.; Inada, F.; Yasuo, A.

    Experiments have been conducted to investigate an effect of inlet restriction on the thermal-hydraulic stability. A Test facility used in this study was designed and constructed to have non-dimensional values that are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation at the stability boundary was described as a function of heat flux and inlet subcooling independent of inlet restriction. In order to extend experimental database regarding thermal-hydraulic stability to different inlet restriction, numerical analysis was carried out based on the homogeneous flow model. Stability maps in reference to the core inlet subcooling and heat flux were presented for various inlet restrictions using the above-mentioned function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux.

  14. Experimental studies and computational benchmark on heavy liquid metal natural circulation in a full height-scale test loop for small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Jaehyun [Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 Beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Jueun; Ju, Heejae; Sohn, Sungjune; Kim, Yeji; Noh, Hyunyub; Hwang, Il Soon [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of)

    2017-05-15

    Highlights: • Experimental studies on natural circulation for lead-bismuth eutectic were conducted. • Adiabatic wall boundaries conditions were established by compensating heat loss. • Computational benchmark with a system thermal-hydraulics code was performed. • Numerical simulation and experiment showed good agreement in mass flow rate. • An empirical relation was formulated for mass flow rate with experimental data. - Abstract: In order to test the enhanced safety of small lead-cooled fast reactors, lead-bismuth eutectic (LBE) natural circulation characteristics have been studied. We present results of experiments with LBE non-isothermal natural circulation in a full-height scale test loop, HELIOS (heavy eutectic liquid metal loop for integral test of operability and safety of PEACER), and the validation of a system thermal-hydraulics code. The experimental studies on LBE were conducted under steady state as a function of core power conditions from 9.8 kW to 33.6 kW. Local surface heaters on the main loop were activated and finely tuned by trial-and-error approach to make adiabatic wall boundary conditions. A thermal-hydraulic system code MARS-LBE was validated by using the well-defined benchmark data. It was found that the predictions were mostly in good agreement with the experimental data in terms of mass flow rate and temperature difference that were both within 7%, respectively. With experiment results, an empirical relation predicting mass flow rate at a non-isothermal, adiabatic condition in HELIOS was derived.

  15. Design of the Natural Circulation Loop and Implementation of DOWTHERM A Properties into MARS-LMR Code

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Park, Seong Dae; Kang, Sarah; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Molten Salt Reactor (MSR), which is one of the generation IV reactors, has an advantage in these requirements. MSR uses a molten salt mixture as the primary coolant, or the fuel itself and it operates on high temperature, so it doesn't need pressurizing. Also, liquid state fuel has an advantage for pyro-processing with easy separation of fission products. These fission products also have relatively short half-lives compared to those of the existing reactors. With these characteristics, MSR can have inherent safety in both direct and indirect sides. Also, MSR can operate at high temperature range, so that it can have the high efficiency to produce electricity. Therefore, research of MSR is meaningful for developing advanced nuclear reactors. FLiBe which is a mixture of lithium fluoride (LiF) and beryllium fluoride (BeF{sub 2}) is used as a primary coolant in MSR and LMR (Liquid Metal cooled Reactor). It has superiority over conventional liquid metal coolant like sodium, because it doesn't react with air or water. thermos-physical properties of DOWTHERM A for MARS-LMR code were made by modifying stg file of existing one. It was based on the process of Moore using 6 output parameters such as specific volume, internal energy, thermal expansion coefficient, isothermal compressibility, specific heat and entropy. With generated stg file (stgdowa.f90) and input file, tpf file (tpfdowa) which includes fluid property tables for MARS-LMR simulation was obtained. For the verification, this tpf file with execution file will be applied to the input deck of our natural circulation design. This work will contribute to researching and developing of MSR and LMR.

  16. Effect of Coolant Inventories and Parallel Loop Interconnections on the Natural Circulation in Various Heat Transport Systems of a Nuclear Power Plant during Station Blackout

    Directory of Open Access Journals (Sweden)

    Avinash J. Gaikwad

    2008-01-01

    Full Text Available Provision of passive means to reactor core decay heat removal enhances the nuclear power plant (NPP safety and availability. In the earlier Indian pressurised heavy water reactors (IPHWRs, like the 220 MWe and the 540 MWe, crash cooldown from the steam generators (SGs is resorted to mitigate consequences of station blackout (SBO. In the 700 MWe PHWR currently being designed an additional passive decay heat removal (PDHR system is also incorporated to condense the steam generated in the boilers during a SBO. The sustainability of natural circulation in the various heat transport systems (i.e., primary heat transport (PHT, SGs, and PDHRs under station blackout depends on the corresponding system's coolant inventories and the coolant circuit configurations (i.e., parallel paths and interconnections. On the primary side, the interconnection between the two primary loops plays an important role to sustain the natural circulation heat removal. On the secondary side, the steam lines interconnections and the initial inventory in the SGs prior to cooldown, that is, hooking up of the PDHRs are very important. This paper attempts to open up discussions on the concept and the core issues associated with passive systems which can provide continued heat sink during such accident scenarios. The discussions would include the criteria for design, and performance of such concepts already implemented and proposes schemes to be implemented in the proposed 700 MWe IPHWR. The designer feedbacks generated, and critical examination of performance analysis results for the added passive system to the existing generation II & III reactors will help ascertaining that these safety systems/inventories in fact perform in sustaining decay heat removal and augmenting safety.

  17. TMSR硝酸盐自然循环回路控制系统设计%Design of nitrate natural circulation loop control system in TMSR

    Institute of Scientific and Technical Information of China (English)

    张宁; 郭冰; 韩立欣; 周大勇

    2015-01-01

    Background: Nitrate natural circulation loop (NNCL) is one of experimental platform in thorium-based molten salt reactor (TMSR), which was designed to study the heat transfer behavior and corrosion behavior of direct reactor auxiliary cooling system (DRACS).Purpose: This study aims to implement a distributed control system (DCS) with functionalities of system control, online state monitor and experimental data acquisition in NNCL. Methods: An experimental physics and industrial control system (EPICS) based distributed control system was designed for this project. An optimized support module structure was designed for I/O operation with low-level PLCs to improve the performance of input/output controller (IOC) runtime database, and a PostgreSQL database was employed for data archive by RDB ChannelArchiver. A control system studio (CSS) interface and MATLAB was implemented in operator interface (OPI) computers, for visual operation and experimental data calculation.Results: Testing for online operation and history data acquisition in OPI interface proved that the control system satisfied all requirements of NNCL control and state monitor with long-term effective.Conclusion: The system could provide efficient and reliable routine for online operation and would well support advanced study of DRACS on this NNCL platform.%为了对硝酸盐自然循环回路(Nitrate Natural Circulation Loop, NNCL)的各子系统及设备的运行状态进行在线监测及远程控制,设计并实现了具有分布式结构的控制系统,并根据工程实际对其软件模块进行了改进。主要包括对过程控制软件包进行结构优化,以提高多通道模式下数据传输效率;使用PostgreSQL关系型数据库取代本地数据存储方式进行数据存档管理和和查询;在操作员计算机中更新人机界面软件以获得更好的界面效果,配置MATLAB在线驱动接口用于数据在线处理。经过运行测试表明,此系统可长期有

  18. Self-organizing maps applied to two-phase flow on natural circulation loop study; Aplicacao de mapas auto-organizaveis na classificacao de padroes de escoamento bifasico

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Leonardo Ferreira

    2016-11-01

    Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for decay heat removal. The Natural Circulation Facility (Circuito de Circulacao Natural CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to single and two-phase flow under natural circulation conditions. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. This work presents experiments realized at CCN to visualize natural circulation cycles in order to classify two-phase flow patterns associated with phase transients and static instabilities of flow. Images are compared and clustered using Kohonen Self-organizing Maps (SOM's) applied on different digital image features. The Full Frame Discret Cosine Transform (FFDCT) coefficients were used as input for the classification task, enabling good results. FFDCT prototypes obtained can be associated to each flow pattern, enabling a better comprehension of each observed instability. A systematic test methodology was used to verify classifier robustness.

  19. Use of the Natural Circulation Flow Map for Natural Circulation Systems Evaluation

    Directory of Open Access Journals (Sweden)

    M. Cherubini

    2008-01-01

    Full Text Available The aim of this paper is to collect and resume the work done to build and develop, at the University of Pisa, an engineering tool related to the natural circulation. After a brief description of the different loop flow regimes in single phase and two phase, the derivation of a suitable tool to judge the NC performance in a generic system is presented. Finally, an extensive comparison among the NC performance of various nuclear power plants having different design is done to show a practical application of the NC flow map.

  20. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  1. 自然循环汽包炉蒸发回路稳态数学模型%A Steady-state Model of Drum-downcomer-riser Loop in Natural Circulation Drum-type Boilers

    Institute of Scientific and Technical Information of China (English)

    刘福国; 何传怀

    2014-01-01

    A steady-state model was developed which gave detailed account of the thermal-hydraulic phenomena in down-comer-riser-drum loop of a natural circulation drum-type boiler. The model was composed of mass, energy and momentum conservation equations, together with algebraic relationships to describe the working fluids properties and phase change. The empirical relative distribution of heat flux along the height of the furnace was used to drive the model, the averaged heat flux in furnace was solved as unknown, and this fairly accords with the physical process. The model is capable of predicting working fluids temperature, pressure, circulation flow-rates and steam distributions in risers under various operating conditions. Results of the simulation provide a clear insight into two-phase flow and heat transfer conditions in evaporating tubes, and predicated circulation ratios are consistent with results obtained in other literatures.%建立了自然循环汽包炉下降管-上升管-汽包回路的稳态数学模型,该模型是由物质、能量和动量微分方程以及工质物性和相变代数方程组成,炉膛相对热负荷沿高度的一维经验分布作为模型的驱动方程,炉膛平均热负荷是求解变量,因此,热负荷不是独立变量,它与汽包产生的蒸汽量相关,这与实际物理过程较好地相符。该模型能够预测不同运行状态下工质在上升管内的压力、温度、循环流量以及含汽率分布,模拟结果给出了蒸发管内两相流动和传热的清晰图景,循环倍率的预测值与有关文献给出的结果相一致。

  2. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  3. A hybrid mock circulation loop for a total artificial heart.

    Science.gov (United States)

    Nestler, Frank; Bradley, Andrew P; Wilson, Stephen J; Timms, Daniel L; Frazier, O Howard; Cohn, William E

    2014-09-01

    Rotary blood pumps are emerging as a viable technology for total artificial hearts, and the development of physiological control algorithms is accelerated with new evaluation environments. In this article, we present a novel hybrid mock circulation loop (HMCL) designed specifically for evaluation of rotary total artificial hearts (rTAH). The rTAH is operated in the physical domain while all vasculature elements are embedded in the numerical domain, thus combining the strengths of both approaches: fast and easy exchange of the vasculature model together with improved controllability of the pump. Parameters, such as vascular resistance, compliance, and blood volume, can be varied dynamically in silico during operation. A hydraulic-numeric interface creates a real-time feedback loop between the physical and numerical domains. The HMCL uses computer-controlled resistance valves as actuators, thereby reducing the size and number of hydraulic elements. Experimental results demonstrate a stable interaction over a wide operational range and a high degree of flexibility. Therefore, we demonstrate that the newly created design environment can play an integral part in the hydraulic design, control development, and durability testing of rTAHs.

  4. Experimental study of natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LASME/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Simulacao e Metodos Numericos; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (LTE/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2011-07-01

    This work presents an experimental study about fluid flows behavior in natural circulation, under conditions of single-phase flow. The experiment was performed through experimental thermal-hydraulic circuit built at IEN. This test equipment has performance similar to passive system of residual heat removal present in Advanced Pressurized Water Reactors (APWR). This experimental study aims to observing and analyzing the natural circulation phenomenon, using this experimental circuit that was dimensioned and built based on concepts of similarity and scale. This philosophy allows the analysis of natural circulation behavior in single-phase flow conditions proportionally to the functioning real conditions of a nuclear reactor. The experiment was performed through procedures to initialization of hydraulic feeding of primary and secondary circuits and electrical energizing of resistors installed inside heater. Power controller has availability to adjust values of electrical power to feeding resistors, in order to portray several conditions of energy decay of nuclear reactor in a steady state. Data acquisition system allows the measurement and monitoring of the evolution of the temperature in various points through thermocouples installed in strategic points along hydraulic circuit. The behavior of the natural circulation phenomenon was monitored by graphical interface on computer screen, showing the temperature evolutions of measuring points and results stored in digital spreadsheets. The results stored in digital spreadsheets allowed the getting of data to graphic construction and discussion about natural circulation phenomenon. Finally, the calculus of Reynolds number allowed the establishment for a correlation of friction in function of geometric scales of length, heights and cross section of tubing, considering a natural circulation flow throughout in the region of hot leg. (author)

  5. Experimental study on natural circulation using liquid nitrogen for superconducting applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon Suk [Korea Basic Science Institute, Daejeon(Korea, Republic of)

    2013-09-15

    An experiment to investigate the natural circulation of a cryogen has been performed. The study is motivated mainly by our recent development of cryogenic cooling system for prototype superconducting cyclotron without any circulating pump. In the natural circulation loop system, a cooling channel is attached on the outer surface of the aluminium block and the liquid nitrogen passes through inside of the channel to cool the block indirectly. A cryocooler as a heat sink is located at the top to re-condense cryogenic vapor coming from the aluminium block in which electrical heater is installed as a heat source. The main dimensions are determined using the relevant analysis and the natural circulation loop is successfully fabricated. The temperature distributions in the loop are measured during initial cool-down process and in steady state, from which the modified Grashof numbers are calculated and compared with the existing correlation estimated with one-dimensional analysis for steady state flow.

  6. Adaptive fuzzy system for analysis of natural circulation; Sistema fuzzy adaptativo para analise de circulacao natural

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Antonio Cesar Ferreira [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2002-04-01

    This work consists of the analysis of natural circulation in a thermal hydraulics loop to a system of passive cooling of a nuclear reactor. The loop in reduced scale is similar to a passive heat removal system of a Pressurized Water Reactor. Using some experts of the area and of the system simulator, a set of fuzzy rules are defined to represent the problem and the associated uncertainties. The results are satisfactory if compared for example to experimental ones. With this model, inferences can be accomplished by the engineer, for adjustment and control of the problem variables. (author)

  7. Design Construction and Operation of a Supercritical Carbon Dioxide (sCO2) Loop for Investigation of Dry Cooling and Natural Circulation Potential for Use in Advanced Small Modular Reactors Utilizing sCO2 Power Conversion Cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlson, Matthew David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report outlines the work completed for a Laboratory Directed Research and Development project at Sandia National Laboratories from October 2012 through September 2015. An experimental supercritical carbon dioxide (sCO 2 ) loop was designed, built, and o perated. The experimental work demonstrated that sCO 2 can be uti lized as the working fluid in an air - cooled, natural circulation configuration to transfer heat from a source to the ultimate heat sink, which is the surrounding ambient environment in most ca ses. The loop was also operated in an induction - heated, water - cooled configuration that allows for measurements of physical parameters that are difficult to isolate in the air - cooled configuration. Analysis included the development of two computational flu id dynamics models. Future work is anticipated to answer questions that were not covered in this project.

  8. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    Directory of Open Access Journals (Sweden)

    Domenico Paladino

    2008-01-01

    Full Text Available Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural circulation loops in a range with increased attention. This paper presents a synthesis of a part of the results obtained within the EU-Project NACUSP “natural circulation and stability performance of boiling water reactors.” It does so by using the experimental results produced in PANDA and by showing some examples of numerical simulations performed with the thermal-hydraulic code ATHLET.

  9. Experiments on the basic behavior of supercritical CO{sub 2} natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guangxu [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China (China); Huang, Yanping, E-mail: hyanping007@163.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China (China); Wang, Junfeng; Lv, Fa [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China (China); Leung, Laurence K.H. [Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, Ontario (Canada)

    2016-04-15

    Highlights: • Steady-state behavior of supercritical CO{sub 2} natural circulation was studied. • Effects of pressure and inlet temperature were carefully investigated. • No instabilities were found in present study. • The maximum of mass flow was obtained at outlet temperature much higher than T{sub pc}. • Inlet temperature has vital effect on mass flow rate. - Abstract: To study the steady-state characteristics of supercritical carbon dioxide natural circulation, experiments were carried out in a simple rectangular loop with vertically placed heating section. The effects of system pressure and inlet temperature on the system behavior were also investigated. No instabilities were found in the present experiments. The maximum of mass flow rate was obtained at a heating section outlet temperature much higher than the pseudo-critical temperature. The maximum value of mass flow rate increased with system pressure just as in two-phase natural circulation systems. Inlet temperature significantly affected the steady-state characteristics of supercritical carbon dioxide natural circulation system. A small temperature difference of 14 °C in the natural circulation system could induce a mass flow rate with considerably high Re up to 9.1 × 10{sup 4}, which indicates the potential for supercritical carbon dioxide to be used as a high efficient natural circulation working fluid.

  10. Study on stability of natural circulation flow in an LMFBR. Pt. 2. Stability of core flow

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.

    1997-11-01

    By using an experimental apparatus with water in which the primary loop and the core of an LMFBR were roughly simulated, stability of natural circulation flows in the core has been experimentally evaluated. The following were clarified as a result of the present study: (1) Though a certain and stable flow occurs in the primary loop under a steady state of natural circulation, a chaotic flow or a variant flow in addition to the steady flow arises in some simulated fuel sub-assemblies. The chaotic flow tends to occur in the range of large Reynolds number and large Richardson number. (2) Estimation of the fluctuation supposed as a chaos revealed that it was a high dimensional chaos. (author)

  11. Liquid Circulation in a Multi-tube Air-lift Loop Reactor

    Institute of Scientific and Technical Information of China (English)

    刘永民; 刘铮; 穆克; 袁乃驹

    2000-01-01

    A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.

  12. Parametric study on a natural circulation cooled U-battery

    Energy Technology Data Exchange (ETDEWEB)

    De Zwaan, Sieuwert; Kloosterman, Jan Leen [Delft University of Technology, Delft (Netherlands); Van Uitert, Gert [The Hague (Netherlands)

    2008-07-01

    A feasibility study has been performed on a natural circulation cooled small nuclear reactor with a molten salt or tin as a coolant. This reactor is called the U-Battery. The study included neutronics calculations to obtain the minimum dimensions required for a critical system during burnup, the calculation of coolant temperature and core temperature reactivity coefficients, and an investigation of the thermal hydraulics to asses the possibilities for natural circulation cooling. For every coolant, core designs are feasible within the dimensions imposed and with natural circulation of the coolant. (authors)

  13. Screening key parameters affecting nitrate natural circulation loop performance based on analytic hierarchy process%基于层次分析法选取影响硝酸盐自然循环回路性能的关键参数

    Institute of Scientific and Technical Information of China (English)

    邵世威; 王凯; 曲世祥; 何兆忠; 陈堃

    2016-01-01

    硝酸盐自然循环回路(Nitrate natural circulation loop,NNCL)中驱动力和阻力在量级上非常接近,由于环境、材料参数、结构参数和运行参数的波动都可能对NNCL系统性能造成不可忽略的影响,因此需要寻找出影响NNCL系统性能的关键参数.层次分析法是一种采用专家经验构造判断矩阵,通过计算参数不同权重供人们决策的系统分析方法.利用层次分析法对影响NNCL系统性能的40个参数进行建立层次结构模型和判断矩阵,通过权重计算从而选出12个关键参数,这些参数既包括物性参数、结构参数,也包括运行参数.通过分析得出NNCL系统运行阶段应关注的关键参数依次为空气入口温度、加热功率和空气流量.%Background:The driving force and resistance in nitrate natural circulation loop (NNCL) are almost in the same magnitude. The system performance of NNCL can be influenced by lots of parameters, such as environment, material, structural and operation condition, thus selection of key parameters affecting NNCL is very important. Purpose:The aim is toidentify the key parameters affecting NNCL reliability.Methods: The analytic hierarchy process (AHP) is an effective method to analyze the importance of each parameter to the NNCL reliability using experts' judgment to structure judgment matrix and calculate the parameters' weight. In this paper, an AHP model and judgment matrix is established for the 40 parameters.Results:12 key parameters are selected including physical parameters, structural parameters and operating parameters.Conclusion: The results show that the most important parameters affecting NNCL reliability are air temperature, heating power and air flow rate in the NNCL operational phase.

  14. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    Science.gov (United States)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  15. Simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha; Su, Jian, E-mail: larissa@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenhraria Nuclear; Cotta, Renato Machado, E-mail: cotta@mecanica.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (POLI/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2015-07-01

    Single phase natural circulation circuits composed of two convective heat exchangers and connecting tubes are important for the passive heat removal from spent fuel pools (SFP). To keep the structural integrity of the stored spent fuel assemblies, continuously cooling has to be provided in order to avoid increase at the pool temperature and subsequent uncovering of the fuel and enhanced reaction between water and metal releasing hydrogen. Decay heat can achieve considerably high amounts of energy e.g. in the AP1000, considering the emergency fuel assemblies, the maximum heat decay will reach 13 MW in the 15th day (Westinghouse Electric Company, 2010). A highly efficient alternative to do so is by means of natural circulation, which is cost-effective compared to active cooling systems and is inherently safer since presents less associated devices and no external work is required. Many researchers have investigated safety and stability aspects of natural circulation loops (NCL). However, there is a lack of literature concerning the improvement of NCL through a standard unified methodology, especially for natural circulation circuits with two heat exchangers. In the present study, a simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchanges is presented. Relevant dimensionless key groups were proposed to for the design and safety analysis of a scaled NCL for the cooling of spent fuel storage pool with convective cooling and heating. (author)

  16. Mock circulation loop to investigate hemolysis in a pulsatile total artificial heart.

    Science.gov (United States)

    Gräf, Felix; Finocchiaro, Thomas; Laumen, Marco; Mager, Ilona; Steinseifer, Ulrich

    2015-05-01

    Hemocompatibility of blood pumps is a crucial parameter that has to be ensured prior to in vivo testing. In contrast to rotary blood pumps, a standard for testing a pulsatile total artificial heart (TAH) has not yet been established. Therefore, a new mock circulation loop was designed to investigate hemolysis in the left ventricle of the ReinHeart TAH. Its main features are a high hemocompatibility, physiological conditions, a low priming volume, and the conduction of blood through a closed tubing system. The mock circulation loop consists of a noninvasive pressure chamber, an aortic compliance chamber, and an atrium directly connected to the ventricle. As a control pump, the clinically approved Medos-HIA ventricular assist device (VAD) was used. The pumps were operated at 120 beats per minute with an aortic pressure of 120 to 80 mm Hg and a mean atrial pressure of 10 mm Hg, generating an output flow of about 5 L/min. Heparinized porcine blood was used. A series of six identical tests were performed. A test method was established that is comparable to ASTM F 1841, which is standard practice for the assessment of hemolysis in continuous-flow blood pumps. The average normalized index of hemolysis (NIH) values of the VAD and the ReinHeart TAH were 0.018 g/100 L and 0.03 g/100 L, respectively. The standard deviation of the NIH was 0.0033 for the VAD and 0.0034 for the TAH. Furthermore, a single test with a BPX-80 Bio-Pump was performed to verify that the hemolysis induced by the mock circulation loop was negligible. The performed tests showed a good reproducibility and statistical significance. The mock circulation loop and test protocol developed in this study are valid methods to investigate the hemolysis induced by a pulsatile blood pump.

  17. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  18. Experimental study of two-phase natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2012-07-01

    This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)

  19. Effects of anaesthesia induction drugs on circulation in denervated intestinal loop preparation.

    Science.gov (United States)

    Tverskoy, M; Gelman, S; Fowler, K C; Bradley, E L

    1985-09-01

    The effect of anaesthesia induction drugs on the intestinal circulation was evaluated in an isolated loop preparation in 28 dogs. Selected intestinal loops were perfused with aortic blood by a pump at a constant pressure of 100 mmHg. A mixture of 86Rb and 9 microns spheres labeled with 141Ce was injected into the arterial cannula supplying the intestinal segment while mesenteric venous blood was collected for activity counting. Diazepam in a dose of 3 mg X kg-1 was accompanied by a significantly lower clearance (Cl-Rb), and permeability-surface area product (PS) than pentobarbitone; there were no differences between diazepam and pentobarbitone in total blood flow (BF), vascular resistance (VR) and oxygen consumption in the intestinal segments. Circulatory variable observed after midazolam, 8 mg X kg-1 and an additional 16 mg X kg-1, did not significantly differ from those seen during pentobarbitone. Ketamine in a dose of 8 mg X kg-1 was accompanied by a significantly lower BF, Cl-Rb, microsphere entrapment (Cl-Sph), PS, and higher VR and arterio-venous oxygen content difference. Sixteen mg X kg-1 of ketamine did not lead to any additional changes in determined variables of the intestinal circulation. Alpha-adrenoceptor blockade completely abolished vasoconstriction caused by ketamine, suggesting that the long-lasting vasoconstricting effect of ketamine on the intestinal circulation is mediated through catecholamines.

  20. Closed-loop helium circulation system for actuation of a continuously operating heart catheter pump.

    Science.gov (United States)

    Karabegovic, Alen; Hinteregger, Markus; Janeczek, Christoph; Mohl, Werner; Gföhler, Margit

    2017-06-09

    Currently available, pneumatic-based medical devices are operated using closed-loop pulsatile or open continuous systems. Medical devices utilizing gases with a low atomic number in a continuous closed loop stream have not been documented to date. This work presents the construction of a portable helium circulation addressing the need for actuating a novel, pneumatically operated catheter pump. The design of its control system puts emphasis on the performance, safety and low running cost of the catheter pump. Static and dynamic characteristics of individual elements in the circulation are analyzed to ensure a proper operation of the system. The pneumatic circulation maximizes the working range of the drive unit inside the catheter pump while reducing the total size and noise production.Separate flow and pressure controllers position the turbine's working point into the stable region of the pressure creation element. A subsystem for rapid gas evacuation significantly decreases the duration of helium removal after a leak, reaching subatmospheric pressure in the intracorporeal catheter within several milliseconds. The system presented in the study offers an easy control of helium mass flow while ensuring stable behavior of its internal components.

  1. Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Yang, Hyung Suk

    2016-12-01

    A new concept of cryogenic cooling system is proposed and investigated for application to long-length HTS cables. One of major obstacles to the cable length of 1 km or longer is the difficulty in circulating liquid nitrogen (LN) along the cables, since the temperature rise and pressure drop of LN flow could be excessively large. This study attempts a breakthrough by integrating the refrigerator with the LN circulation loop in order to eliminate the cryogenic LN pumps, and generate a large LN flow with the power of compressors at ambient temperature. A variety of thermodynamic structures are investigated on standard and modified Claude cycles, where nitrogen is used as refrigerant and the LN circulation loop is included as part of the closed cycle. Four proposed cycles are fully analyzed and optimized with a process simulator (Aspen HYSYS) to evaluate the FOM (figure of merit) and examine the feasibility. The modified dual-pressure cycle cooled with expander stream is recommended for long HTS cables.

  2. PWR hot leg natural circulation modeling with MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Lee, Jong In [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models. 6 refs., 2 figs. (Author)

  3. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M. [University of California, Riverside (United States)

    2015-07-15

    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters.

  4. Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-male (EMMS) model was used to simulate a semi-industry scale circulating fiuidized bed (CFB).Three-dimensional(3D), time-dependent simulation of a full-loop CFB revealed that the axial profiles of cross-sectionally averaged solid volume fraction,and the radial profiles of solid axial velocity and solid volume fraction were in reasonable agreement with experimental data.Based on this agreement,database derived from experiments not yet accomplished was replenished with such simulations, and fluid regime diagrams and pressure balance around the CFB loop were derived accordingly. This work presents an integrated viewpoint on CFB and unfolds a fresh paradigm fur CFB modeling, which can be expected to help resolve certain issues long in dispute but hard for experiments.

  5. Replication of the Frank-Starling response in a mock circulation loop.

    Science.gov (United States)

    Gregory, Shaun D; Stevens, Michael; Timms, Daniel; Pearcy, Mark

    2011-01-01

    Mock circulation loops (MCLs) are used to evaluate cardiovascular devices prior to in-vivo trials; however they lack the vital autoregulatory responses that occur in humans. This study aimed to develop and implement a left and right ventricular Frank-Starling response in a MCL. A proportional controller based on ventricular end diastolic volume was used to control the driving pressure of the MCL's pneumatically operated ventricles. Ventricular pressure-volume loops and end systolic pressure-volume relationships were produced for a variety of healthy and pathological conditions and compared with human data to validate the simulated Frank-Starling response. The non-linear Frank-Starling response produced in this study successfully altered left and right ventricular contractility with changing preload and was validated with previously reported data. This improvement to an already detailed MCL has resulted in a test rig capable of further refining cardiovascular devices and reducing the number of in-vivo trials.

  6. Methodology for studies of natural circulation in closed circuits; Metodologia para estudos de circulacao natural em circuitos fechados

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rafael de Oliveira Pessoa de

    2009-07-01

    This work presents the results obtained from the analysis of stability of the phenomenon of the natural circulation for one-dimension single-phase flow in a closed loop, by a computer program with the method of finite element. The Navier-Stokes equations in cartesian geometry were used for the balance of mass, momentum and one equation for energy. The formulation has been implemented in a computer code developed at the Nuclear Engineering Institute(IEN-CNEN-RJ) and is now available either for futures analysis or design of nuclear systems. (author)

  7. Enhancement of natural circulation type domestic solar hot water system performance by using a wind turbine

    Science.gov (United States)

    Ramasamy, K. K.; Srinivasan, P. S. S.

    2011-08-01

    Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted. A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop. The windmill driven pump circulates the water through the collector. The system with necessary instrumentation is tested over a day. Tests on Natural Circulation System (NCS) mode and Wind Assisted System (WAS) mode are carried out during January, April, July and October, 2009. Test results of a clear day are reported. Daily average efficiency of 25-28 % during NCS mode and 33-37 % during WAS mode are obtained. With higher wind velocities, higher collector flow rates and hence higher efficiencies are obtained. In general, WAS mode provides improvements in efficiency when compared to NCS mode.

  8. Study on natural circulation characteristics of an IPWR under inclined and rolling condition

    Energy Technology Data Exchange (ETDEWEB)

    He, Lihui [College of Computer Science and Information Technology, Harbin Normal University, Harbin (China); Wang, Bing [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China); Xia, Genglei, E-mail: xiagenglei@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China); Peng, Minjun [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-06-15

    Highlights: • An ocean-based thermal-hydraulic analysis code was developed based on RELAP5 codes. • The inclination condition can reduce the mass flow rate of reactor core. • The system parameters asymmetry increases with the increasing inclination angle. • Flow oscillation of different loops cancel each other due to the symmetrical arrangement of the reactor. • The off-center roll axis location can break the symmetry and enlarge fluctuation amplitude of the core flow rate. - Abstract: An ocean-based thermal-hydraulic system analysis code was developed based on RELAP5/MOD3 code by adding additional force model of ocean condition and control volume coordinate solver model. The natural circulation operation characteristics of integrated pressurized water reactor (IPWR) under ocean conditions were studied and the effects of inclination and rolling motions were analyzed. The results conclude that, the inclination condition can reduce the mass flow rate of reactor core and lead to inconsistent coolant flow rates of the left and right loops, furthermore, it affects the heat transfer of once-through steam generators (OTSGs). In the case of rolling motion, the additional pressure drop of the loop is dominated by tangential force, and flow oscillation of different loops cancel each other due to the symmetrical arrangement of the reactor. The off-center roll axis location, the combination of the inclination and rolling motion, both can break the thermal-hydraulic symmetry among different loops and enlarge fluctuation amplitude of the core flow rate.

  9. Preliminary Study of Single-Phase Natural Circulation for Lab-scaled Molten Salt Application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Kang, Sarah; Kim, In Guk; Seo, Seok Bin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Advanced reactors such as MSR (FHR), VHTR and AHTR utilized molten salt as a coolant for efficiency and safety which has advantages in higher heat capacity, lower pumping power and scale compared to liquid metal. It becomes more necessary to study on the characteristics of molten salt. However, due to several characteristics such as high operating temperature, large-scale facility and preventing solidification, satisfying that condition for study has difficulties. Thus simulant fluid was used with scaling method for lab-scale experiment. Scaled experiment enables simulant fluid to simulate fluid mechanics and heat transfer behavior of molten salt on lower operating temperature and reduced scale. In this paper, as a proof test of the scaled experiment, simplified single-phase natural circulation loop was designed in a lab-scale and applied to the passive safety system in advanced reactor in which molten salt is considered as a major coolant of the system. For the application of the improved safety system, prototype was based on the primary loop of the test-scale DRACS, the main passive safety system in FHR, developed at the OSU. For preliminary experiment, single-phase natural circulation under low power was performed. DOWTHERM A and DOWTHERM RP were selected as simulant candidates. Then, study of feasibility with simulant was conducted based on the scaling law for heat transfer characteristics and geometric parameters. Additionally, simulation with MARS code and ANSYS-CFX with the same condition of natural circulation was carried out as verification. For the accurate code simulation, thermo-physical properties of DOWTHERM A and RP were developed and implemented into MARS code. In this study, single-phase natural circulation experiment was performed with simulant oil, DOWTHERM RP, based on the passive safety system of FHR. Feasibility of similarity experiment for molten salt with oil simulant was confirmed by scaling method. In addition, simulation with two

  10. Severe accident natural circulation studies at the INEL

    Energy Technology Data Exchange (ETDEWEB)

    Bayless, P.D.; Brownson, D.A.; Dobbe, C.A.; Jones, K.R.; O`Brien, J.E.; Pafford, D.J.; Schlenker, L.D.; Tung, V.X.

    1995-02-01

    Severe accident natural circulation flows have been investigated at the Idaho National Engineering Laboratory to better understand these flows and their potential impacts on the progression of a pressurized water reactor severe accident. Parameters affecting natural circulation in the reactor vessel and hot legs were identified and ranked based on their perceived importance. Reviews of the scaling of the 1/7-scale experiments performed by Westinghouse were undertaken. RELAP5/MOD3 calculations of two of the experiments showed generally good agreement between the calculated and observed behavior. Analyses of hydrogen behavior in the reactor vessel showed that hydrogen stratification is not likely to occur, and that an initially stratified layer of hydrogen would quickly mix with a recirculating steam flow. An analysis of the upper plenum behavior in the Three Mile Island, Unit 2 reactor concluded that vapor temperatures could have been significantly higher than the temperatures seen by the control rod drive lead screws, supporting the premise that a strong natural circulation flow was likely present during the accident. SCDAP/RELAP5 calculations of a commercial pressurized water reactor severe accident without operator actions showed that the natural circulation flows enhance the likelihood of ex-vessel piping failures long before failure of the reactor vessel lower head.

  11. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)

    1997-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  12. Natural circulation in a VVER reactor geometry: Experiments with the PACTEL facility and Cathare simulations

    Energy Technology Data Exchange (ETDEWEB)

    Raussi, P.; Kainulainen, S. [Lappeenranta Univ. of Technology, Lappeenranta (Finland); Kouhia, J. [VTT Energy, Lappeenranta (Finland)

    1995-09-01

    There are some 40 reactors based on the VVER design in use. Database available for computer code assessment for VVER reactors is rather limited. Experiments were conducted to study natural circulation behaviour in the PACTEL facility, a medium-scale integral test loop patterned after VVER pressurized water reactors. Flow behaviour over a range of coolant inventories was studied with a small-break experiment. In the small-break experiments, flow stagnation and system repressurization were observed when the water level in the upper plenum fell below the entrances to the hot legs. The cause was attributed to the hot leg loop seals, which are a unique feature of the VVER geometry. At low primary inventories, core cooling was achieved through the boiler-condenser mode. The experiment was simulated using French thermalhydraulic system code CATHARE.

  13. The Effect of Circulation Fan on Energy Consumption in Nature Convective Refrigerator-Freezer

    Institute of Scientific and Technical Information of China (English)

    LU Zhi-li; DING Guo-liang

    2007-01-01

    The effect of the circulation fan installed in fresh food compartment on energy consumption of natural convective refrigerator/freezers (RFs) was experimentally studied. Five different RF models with different cycles were tested. The experimental results showed that the energy consumption of the single-loop cycle RF increased by 2.4%~3.8%, that of the bypass two-circuit cycle RF decreased by 1.0%, and that of the two-circuit cycle RF with its evaporators in parallel when the geometry parameters of refrigeration system and the refrigerant charge were not changed after the circulation fan was installed decreased by 3.3%. When the optimization on the refrigerant charge and the evaporator was carried out, the energy consumption of the single-loop cycle RF , the bypass two-circuit cycle RF and the two-circuit cycle RF with its evaporators in parallel, decreased by 1.0%~ 6.4%,3.25% and 3.23% respectively. The present conclusions will provide a guideline to the optimum design for the RF with the circulation fan.

  14. Experimental studies on heat transfer characteristics and natural circulation performance of PRHRS of the high temperature and high pressure thermal-hydraulic test facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, H. S.; Choi, K. Y.; Joe, S.; Park, C. K.; Lee, S. J.; Song, C. W.; Jeong, M. K. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Several experiments are performed to investigate the heat transfer characteristics and natural circulation performance of passive residual removal system (PRHRS) of the high temperature and high pressure thermal-hydraulic test facility. Especially the natural circulation performance of PRHRS, the heat transfer characteristics of PRHRS heat exchangers and emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are investigated in detail. The coolant flows steadily in the natural circulation loop which is composed of the steam generator (SG) primary side, the secondary system, and the PRHRS. The heat transfers through the PRHRS heat exchanger and ECT are sufficient enough to enable the natural circulation of the coolant. Also the experimental results show that the core decay heat are sufficiently removed with the operation of the PRHRS.

  15. Scaling Analysis and Design for Integrated Nuclear Heating Reactor Ⅱ Major Loop Test Facility Under Single Phase Natural Circulation%一体化核供热堆Ⅱ型主回路单相自然循环实验比例分析与设计

    Institute of Scientific and Technical Information of China (English)

    刘洋; 贾海军; 吴磊

    2012-01-01

    The small integrated nuclear reactor has drawn attention. On the basis of the NHR200-Ⅰ, the integrated nuclear heating reactor NHR200-Ⅱ was developed by Institute of Nuclear and New Energy Technology in Qinghua University. The NHR200- Ⅱ reactor major loop thermal parameters were increased, and made it suitable for heating, industrial steam supply and sea water desalinization. In order to discover the natural circulation behavior under high temperature and pressure, the experiment study was needed. The scaling analysis provided the theoretical basis for determining the characteristics scale of the test facility. The similarity groups (Richardson number, etc.) could be determined using the dimensionless fluid and solid governing equations. In order to reduce the distortion, the test facility used the fluid with same property as the prototype. The axial length scale ratio and core surface average heat flux density ratio was 1:1, and the flow area ratio was 1:210.%小型一体化反应堆技术是目前研究的热点.在清华大学核能与新能源技术研究院原有的NHR200-Ⅰ型的基础上,开发了NHR200-Ⅱ型核供热堆,较大幅度的提升了热工参数,适用于城市集中供热、生产工业蒸汽、海水淡化等非发电领域.为研究NHR200-Ⅱ型核供热堆高温、高压系统自然循环运行特性,需开展实验研究.比例分析是主回路系统单相自然循环实验本体装置设计的理论依据和前提.对主回路流体、固体控制方程无量纲化,确定单相自然循环的相似特征数组合(Richardson数等6项).在实验条件允许的范围内,为了减小模拟失真,实验装置使用等物性流体,其轴向长度比例为1∶1,平均表面热流密度比例为1∶1,流道面积比例为1∶210.

  16. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Heatherly, Dennis Wayne [ORNL; Williams, David F [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; Caja, Joseph [Electrochemical Systems, Inc.; Caja, Mario [ORNL; Jordan, John [Texas A& M University, Kingsville; Salinas, Roberto [Texas A& M University, Kingsville

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  17. Experimental study of natural circulation flow instability in rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.

    2017-05-15

    Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.

  18. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  19. Experimental and analytical study of stability characteristics of natural circulation boiling water reactors during startup transient

    Science.gov (United States)

    Woo, Kyoungsuk

    Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation

  20. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  1. Characteristics of thermal hydraulic stability in a HYPER system with enhanced natural circulation potential

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Nam Il; Park, Won S.; Han, Seok Jung

    1999-06-01

    Pb-Bi eutectic chosen as a coolant of HYPER is an excellent heat transfer medium but requires relatively large pumping power. Thus the mixed cooling concept to increase economy and safety is being considered for HYPER. In this cooling concept, a large fraction of total thermal power is carried by natural circulation. However, the mixed cooling concept has been considered for conceptual designs only an it has never been applied to real reactors. The purpose of the present study is to provide simple tools to analyze mixed flow and to examine fundamental stability characteristics of mixed flow. Conventional one-dimensional approaches using mass, momentum, and energy conservation are used to describe a forced circulating flow affected by a large buoyancy force. The results of simple analysis using preliminary design parameters of HYPER show that cooling by mixed flow is possible only when the total pressure loss of system is sufficiently low. The stability behavior of mixed flow in a simple rectangular loop has been studied using numerical solutions of the governing equations. As in the case of natural circulation, three types of flow regions, such as stable, neutrally stable, and unstable regions, were found. The stability map of mixed flow has been obtained using the results of calculations. Forced flow due to the pump is found to increase the stability of the loop, since the stable portion of the stability map is increased. However, the unstable region of the mixed flow does not completely disappear, even though the pump exists. (author). 37 refs., 4 tabs., 23 figs.

  2. Automated scoping methodology for liquid metal natural circulation small reactor

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyung M.; Suh, Kune Y., E-mail: kysuh@snu.ac.kr

    2014-07-01

    Highlights: • Automated scoping methodology for natural circulation small modular reactor is developed. • In-house code is developed to carry out system analysis and core geometry generation during scoping. • Adjustment relations are obtained to correct the critical core geometry out of diffusion theory. • Optimized design specification is found using objective function value. • Convex hull volume is utilized to quantify the impact of different constraints on the scope range. - Abstract: A novel scoping method is proposed that can automatically generate design variable range of the natural circulation driven liquid metal cooled small reactor. From performance requirements based upon Generation IV system roadmap, appropriate structure materials are selected and engineering constraints are compiled based upon literature. Utilizing ASME codes and standards, appropriate geometric sizing criteria on constituting components are developed to ensure integrity of the system during its lifetime. In-house one dimensional thermo-hydraulic system analysis code is developed based upon momentum integral model and finite element methods to deal with non-uniform descritization of temperature nodes for convection and thermal diffusion equation of liquid metal coolant. In order to quickly generate critical core dimensions out of given unit cell information, an adjustment relation that relates the critical geometry estimated from one-group diffusion and that from MCNP code is constructed and utilized throughout the process. For the selected unit cell dimension ranges, burnup calculations are carried out to check the cores can generate energy over the reactor lifetime. Utilizing random method, sizing criteria, and in-house analysis codes, an automated scoping methodology is developed. The methodology is applied to nitride fueled integral type lead cooled natural circulation reactor concept to generate design scopes which satisfies given constraints. Three dimensional convex

  3. Effect of steam quality on two—phase flow in a netural circulation loop

    Institute of Scientific and Technical Information of China (English)

    贾海军; 吴少融; 等

    1996-01-01

    Test pressures are 1.0-4.0MPa,heating powers 27-190kW,inlet subcoolings 5-80℃,water used as coolant,and steam quality at the outlet of test section is less than 0.05,These test conditions cover the parameters for a typical 200MW heating reactor.The experimental results show that the stema quality is the dominant factor in a natural circulation system with low pressure and low steam quality about the effect of system pressure,heating power and inlet subcooling on the flow rate,relative oscilatroy amplitude and oscilatory region of flow rate.

  4. Experimental natural circulation circuit - preliminaries results; Circuito experimental de circulacao natural - resultados experimentais preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Faccini, Jose Luiz H.; Botelho, David A.; Soares, Milton; Coutinho, Jorge A.; Freitas, Sergio Carlos [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). E-mail: faccini@cnen.gov.br

    2000-07-01

    These are the preliminaries results of the tests carried out at experimental natural circulation system of IEN/CNEN. The experimental system is a reduced scale similar model in power, pressure, and length of a passive residual heat removal prototype system. It enables studies of natural circulation phenomena in an advanced PWR. The experimental results refer to the steps of data acquisition system calibration, power control system calibration, and single-phase operational tests. The results of single-phase tests show temperature in time measured by the thermocouples placed along the natural circulation system. It is also presented a brief commentary on the experimental results, based on theory and preliminary computational simulations. (author)

  5. Gas Hold-Up, Mixing Time and Circulation Time in Internal Loop Airlift Bubble Column

    Directory of Open Access Journals (Sweden)

    Ali Abdul Rahman–Al Ezzi

    2014-01-01

    Full Text Available The effects of superficial gas in the riser (Vgr and liquid phase properties on the gas hold-up(ɛg , mixing time (Tm and circulation time (TC were studied in 8 liter internal air lift loop reactor (down comer-to-riser crosssectional area ratio = 0.249. Air was used as a gas phase. Water and four aqueous solutions of 10% concentration methanol, ethanol, (were used to simulate the behavior of non-coalescing organic liquids 50% glycerol and 2% Carboxy Methyl Cellulose (CMC were used to simulate the behavior of coalescing viscous liquids. Polyethylene-non-porous-solid particles with a concentration of (50 Kg/m3 were used as solid phase. Superficial gas velocity varied from 0.01 m/s to 0.1 m/s and air dispersed into the center of the draught tube by using a porous gas distributor. The results showed that (εg increased with increasing gas velocity and coalescence inhibition of liquid, while Tm and Tc decrease with increasing gas velocity. It was found that increasing liquid viscosity and coalescence reduces (εg but increases (Tm and (Tc. The gas holdup was correlated with dimensionless groups and independent parameter with correlation coefficient is 0.967, the following correlation is obtained.

  6. Stability analysis of a natural circulation lead-cooled fast reactor

    Science.gov (United States)

    Lu, Qiyue

    This dissertation is aimed at nuclear-coupled thermal hydraulics stability analysis of a natural circulation lead cooled fast reactor design. The stability concerns arise from the fact that natural circulation operation makes the system susceptible to flow instabilities similar to those observed in boiling water reactors. In order to capture the regional effects, modal expansion method which incorporates higher azimuthal modes is used to model the neutronics part of the system. A reduced order model is used in this work for the thermal-hydraulics. Consistent with the number of heat exchangers (HXs), the reactor core is divided into four equal quadrants. Each quadrant has its corresponding external segments such as riser, plenum, pipes and HX forming an equivalent 1-D closed loop. The local pressure loss along the loop is represented by a lumped friction factor. The heat transfer process in the HX is represented by a model for the coolant temperature at the core inlet that depends on the coolant temperature at the core outlet and the coolant velocity. Additionally, time lag effects are incorporated into this HX model due to the finite coolant speed. A conventional model is used for the fuel pin heat conduction to couple the neutronics and thermal-hydraulics. The feedback mechanisms include Doppler, axial/radial thermal expansion and coolant density effects. These effects are represented by a linear variation of the macroscopic cross sections with the fuel temperature. The weighted residual method is used to convert the governing PDEs to ODEs. Retaining the first and second modes, leads to six ODEs for neutronics, and five ODEs for the thermal-hydraulics in each quadrant. Three models are developed. These are: 1) natural circulation model with a closed coolant flow path but without coupled neutronics, 2) forced circulation model with constant external pressure drop across the heated channels but without coupled neutronics, 3) coupled system including neutronics with

  7. Experimental Study of a Stoppage Natural Circulation during a Nuclear Heating Reactor LOCA

    Institute of Scientific and Technical Information of China (English)

    博金海; 张佑杰; 姜胜耀

    2001-01-01

    The 5MW nuclear heating reactor is an integral naturalcirculation reactor. The rupture of the coolant penetrating tube is a typical accident causing coolant loss. When the water level drops down to the upper edge of the inlet of the heat exchanger, the natural circulation stops. This influences the core cooling and the stability of the main loop. A series of tests showed that there is a stable drop of pressure, and the heated element temperature is not too high to cause burnout. But the backward flow or flow oscillation in the primary coolant circuit occurs when the flow breaks completely in the end. The whole flow process is described and the mechanism is discussed.

  8. Analysis on Non-Uniform Flow in Steam Generator During Steady State Natural Circulation Cooling

    Directory of Open Access Journals (Sweden)

    Susyadi

    2007-07-01

    Full Text Available Investigation on non uniform flow behavior among U-tube in steam generator during natural circulation cooling has been conducted using RELAP5. The investigation is performed by modeling the steam generator into multi channel models, i.e. 9-tubes model. Two situations are implemented, high pressure and low pressure cases. Using partial model, the calculation simulates situation similar to the natural circulation test performed in LSTF. The imposed boundary conditions are flow rate, quality, pressure of the primary side, feed water temperature, steam generator liquid level, and pressure in the secondary side. Calculation result shows that simulation using model with nine tubes is capable to capture important non-uniform phenomena such as reverse flow, fill-and-dump, and stagnant vertical stratification. As a result of appropriate simulation of non uniform flow, the calculated steam generator outlet flow in the primary loop is stable as observed in the experiments. The results also clearly indicate the importance of simulation of non-uniform flow in predicting both the flow stability and heat transfer between the primary and secondary side. In addition, the history of transient plays important role on the selection of the flow distribution among tubes. © 2007 Atom Indonesia. All rights reserved

  9. Experimental Study on Heat Transfer Enhancement of Natural Circulation Liquid Cooling System for Electronic Component

    Institute of Scientific and Technical Information of China (English)

    张正国; 李倩侠; 方晓明; 本田博司

    2004-01-01

    The present research is an experimental study on heat transfer characteristics of a natural circulation cooling system for electronic components. A smooth chip and two micro-pin-finned chips were tested. The chip is mounted on the base of a rectangular horizontal duct located at the bottom of 250 mm high natural circulation loop.FC-72 is used as a coolant. The test conditions are set that the operation pressure of experimental system is 1. 013× 105 Pa, the flow rate of FC-72 is 150 g/min and the subcoolings are 10 K, 25 K and 35 k, respectively. Effect of the subcooling on nucleate boiling and critical heat flux(CHF) were investigated. The results show that subcoolingis found to significantly affect CHF for all chips and micro-pin-finned chips sharply enhanced the boiling heat transfer, CHF of micro-pin-finned chips are 2.5~3 times as large as that of smooth chip at the same subcooling.

  10. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Mamoru [Purdue Univ., West Lafayette, IN (United State

    2016-11-30

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results and models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup

  11. Analysis on natural circulation capacity of the CARR

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenxi; QIU Suizheng; WANG Jiaqiang; SU Guanghui; JIA Dounan; ZHANG Jianwei

    2007-01-01

    The investigation on natural circulation (NC) characteristics of the China Advanced Research Reactor(CARR) is very valuable for practical engineering application and also a key subject for the CARR. In this study, a computer code was developed to calculate the NC capacity of the CARR under different pool water temperatures. Effects of the pool water temperature on NC characteristics were analyzed. The results show that with increasing pool water temperature, the NC flow rate increases while the NC capacity decreases. Based on the computation results and theoretical deduction, a correlation was proposed on predicting the relationship between the NC mass flow and the core power under different conditions. The correlation prediction agrees well with the computational result within ±10% for the maximal deviation. This work is instructive for the actual operation of the CARR.

  12. Naturalness made easy: two-loop naturalness bounds on minimal SM extensions

    Science.gov (United States)

    Clarke, Jackson D.; Cox, Peter

    2017-02-01

    The main result of this paper is a collection of conservative naturalness bounds on minimal extensions of the Standard Model by (vector-like) fermionic or scalar gauge multiplets. Within, we advocate for an intuitive and physical concept of naturalness built upon the renormalisation group equations. In the effective field theory of the Standard Model plus a gauge multiplet with mass M , the low scale Higgs mass parameter is a calculable function of overline{MS} input parameters defined at some high scale Λ h > M . If the Higgs mass is very sensitive to these input parameters, then this signifies a naturalness problem. To sensibly capture the sensitivity, it is shown how a sensitivity measure can be rigorously derived as a Bayesian model comparison, which reduces in a relevant limit to a Barbieri-Giudice-like fine-tuning measure. This measure is fully generalisable to any perturbative EFT. The interesting results of our two-loop renormalisation group study are as follows: for Λ h = ΛPl we find "10% fine-tuning" bounds on the masses of various gauge multiplets of Mloop.

  13. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  14. Conceptual design of a passive moderator cooling system for a pressure tube type natural circulation boiling water cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Pal, Eshita, E-mail: eshi.pal@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nayak, Arun K.; Vijayan, Pallipattu K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-09-15

    Highlights: • Passive moderator cooling system is designed to cool moderator passively during SBO. • PMCS is a system of two natural circulation loops, coupled via a heat exchanger. • RELAP5 analyses show that PMCS maintains moderator within safe limits for 7 days. - Abstract: The recent Fukushima accident has raised strong concern and apprehensions about the safety of reactors in case of a prolonged Station Black Out (SBO) continuing for several days. In view of this, a detailed study was performed simulating this condition in Advanced Heavy Water Reactor. In this study, a novel concept of moderator cooling by passive means has been introduced in the reactor design. The Passive Moderator Cooling System (PMCS) consists of a shell and tube heat exchanger designed to remove 2 MW heat from the moderator inside Calandria. The heat exchanger is located at a suitable elevation from the Calandria of the reactor, such that the hot moderator rises due to buoyancy into the heat exchanger and upon cooling from shell side water returns to Calandria forming a natural circulation loop. The shell side of the heat exchanger is also a natural circulation loop connected to an overhead large water reservoir, namely the GDWP. The objective of the PMCS is to remove the heat from the moderator in case of an SBO and maintaining its temperature below the permissible safe limit (100 °C) for at least 7 days. The paper first describes the concept of the PMCS. The concept has been assessed considering a prolonged SBO for at least 7 days, through an integrated analysis performed using the code RELAP5/MOD3.2 considering all the major components of the reactor. The analysis shows that the PMCS is able to maintain the moderator temperature below boiling conditions for 7 days.

  15. Experiments for heat transfer characteristics and natural circulation performance of PRHRS of the high temperature/high pressure thermal-hydraulic test facility(VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Sik; Choi, Ki Yong; Cho, Seok; Lee, Sung Jae; Song, Chul Hwa; Park, Chun Kyong; Chung, Moon Ki

    2004-01-01

    The VISTA (Experimental Verification by Integral Simulation of Transients and Accidents) is an experimental facility to verify the performance and safety issues of the SMART-P (Pilot plant of the System-integrated Modular Advanced Reactor). The basic design of the SMART-P has been completed by KAERI. The present report describes the experimental results on the heat transfer characteristics and the natural circulation performance of the PRHRS of the VISTA facility. A stable flow occurs in a natural circulation loop which is composed of a steam generator secondary side, a secondary system, and a PRHRS, and its flow rate corresponds to 12% of the rated feedwater flowrate of the secondary system. The heat transfers through the PRHRS heat exchanger and the emergency cooldown tank are sufficient enough to enable stable natural circulation. In the primary loop the natural circulation occurs due to the core decay heat and the heat removal of the steam generator. Although the flow rate in the primary loop fluctuates a little, the decay heat is removed easily.

  16. System model of a natural circulation integral test facility

    Science.gov (United States)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  17. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    Science.gov (United States)

    Scarlat, Raluca Olga

    approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to

  18. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    OpenAIRE

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps, also called natural circulation BWRs, are being considered. A possible disadvantage of natural circulation BWRs might be their susceptibility to instabilities, which could then lead to both flow and ...

  19. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    Science.gov (United States)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal

  20. Loop suppressed electroweak symmetry breaking and naturally heavy superpartners

    CERN Document Server

    Dermisek, Radovan

    2016-01-01

    A model is presented in which O(10 TeV) stop masses, typically required by the Higgs boson mass in supersymmetric models, do not originate from soft supersymmetry breaking terms that would drive the Higgs mass squared parameter to large negative values but rather from the mixing with vectorlike partners. Their contribution to the Higgs mass squared parameter is reduced to threshold corrections and thus it is one loop suppressed compared to usual scenarios. New fermion and scalar partners of the top quark with O(10 TeV) masses are predicted.

  1. Naturalness made easy: two-loop naturalness bounds on minimal SM extensions

    CERN Document Server

    Clarke, Jackson D

    2016-01-01

    The main result of this paper is a collection of conservative naturalness bounds on minimal extensions of the standard model by (vector-like) fermionic or scalar gauge multiplets. Within, we advocate for an intuitive and physical concept of naturalness built upon the renormalisation group equations. In the effective field theory of the standard model plus a gauge multiplet with mass $M$, the low scale Higgs mass parameter is a calculable function of $\\overline{\\rm MS}$ input parameters defined at some high scale $\\Lambda_h > M$. If the Higgs mass is very sensitive to these input parameters, then this signifies a naturalness problem. To sensibly capture the sensitivity, it is shown how a sensitivity measure can be rigorously derived as a Bayesian model comparison, which reduces in a relevant limit to a Barbieri--Giudice-like fine-tuning measure. This measure is fully generalisable to any perturbative EFT. The interesting results of our two-loop renormalisation group study are as follows: for $\\Lambda_h=\\Lambda...

  2. Analysis of hot leg natural circulation under station blackout severe accident

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Under severe accidents, natural circulation flows are important to influence the accident progression and result in a pressurized water reactor (PWR). In a station blackout accident with no recovery of steam generator (SG) auxiliary feedwater (TMLB' severe accident scenario), the hot leg countercurrent natural circulation flow is analyzed by using a severe-accident code, to better understand its potential impacts on the creep-rupture timing among the surge line, the hot leg, and SG tubes. The results show that the natural circulation may delay the failure time of the hot leg.The recirculation ratio and the hot mixing factor are also calculated and discussed.

  3. Absorption of a volatile organic compound by a jet loop reactor with circulation of a surfactant solution: Performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byungjoon; Hwang, Geelsu; Haam, Seungjoo; Lee, Changha [Department of Chemical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Ahn, Ik-Sung [Department of Chemical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: iahn@yonsei.ac.kr; Lee, Kyoungjoo [Advanced Biotech Inc., Seoul (Korea, Republic of)

    2008-05-01

    Biofiltration shows high efficiency for the removal of industrial waste gases and reliable operational stability at low investment and operating cost, especially when the VOC concentration is low, such as 100 ppmv ({mu}L L{sup -1}) or less. However, it has been reported that the abrupt change in VOC concentrations leads to the failure of the biofilter. Hence, the pretreatment of waste gases is necessary to ensure the stable operation of the biofilter. The objective of this study is to develop a jet loop reactor (JLR) with circulation of a surfactant solution to lower the concentration of VOCs, especially hydrophobic VOCs. Toluene and Tween 81 were used as a model industrial waste gas and a surfactant, respectively. Among several non-ionic surfactants tested, Tween 81 showed the most rapid dissolution of toluene. When a JLR is replaced with fresh Tween 81 solution (0.3% w/v) every hour, it successfully absorbed for 48 h over 90% of the toluene in an inlet gas containing toluene at 1000 ppmv ({mu}L L{sup -1}) or less. Therefore, JLR with circulation of a surfactant solution is believed to ensure the stable operation of the biofilter even with the unexpected increase in the VOC concentrations.

  4. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  5. Study on control method of natural circulation by injection of helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tetsuaki, E-mail: ttakeda@yamanashi.ac.jp; Nomura, Masashi; Yanagawa, Naoto; Funatani, Shumpei

    2014-05-01

    This study is to investigate a control method of natural circulation of air by injection of helium gas. A depressurization accident is one of the design-basis accidents of a very high temperature reactor (VHTR). When the primary pipe rupture accident occurs in the VHTR, air is expected to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Finally, it seems to be probable that the natural circulation flow of air in the reactor pressure vessel produce continuously. In order to predict or analyze the air ingress phenomena during the depressurization accident of the VHTR, therefore, it is important to develop the method for prevention of air ingress during the accident. The experiment has been carried out regarding natural circulation using a circular tube consisting of a reverse U-shaped type. The vertical channel consists of the one side heated tube and the other side cooled tube. The experimental procedure is as follows. Firstly, the apparatus is filled with air and one vertical tube is heated. Then, natural circulation of air will be produced in the channel. After the steady state is established, a very small amount of helium gas injects from the top of the channel. The velocity, temperature of gas, and temperature of the tube wall are measured during the experiment. The analysis also has been carried out regarding natural circulation. The results were obtained as follows. The temperature difference between the vertical pipes was 50–130 K, and a small amount of helium gas injected to the channel. The volume of injected helium gas is about 3.5–10% of the total volume of the channel. When the temperature difference between the vertical tubes was kept at 52 K, the velocity of natural circulation flow became about 0.12 m/s. During a steady state, a small amount of helium gas injected into the channel. Then, the flow velocity of natural circulation suddenly decreased. The volume of injected helium gas is about 3% of the

  6. Experiments and numerical analysis of a control method for natural circulation through helium gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tetsuaki, E-mail: ttakeda@yamanashi.ac.jp; Hatori, Hirofumi; Funatani, Shumpei

    2016-09-15

    This study investigated a control method for natural circulation of air by helium gas injection. A depressurization accident is a design-basis accident of a very high temperature reactor. When a primary pipe rupture accident occurs, air is expected to enter the reactor pressure vessel from the breach. Thus, in-core graphite structures are oxidized. In order to predict and analyze the phenomena of air ingress during a depressurization accident, numerical analysis was carried out using a one-dimensional (1D) analysis code and three-dimensional computational fluid dynamics (3D CFD). An experiment was carried out regarding natural circulation using a circular pipe consisting of a reverse U-shaped channel. The channel consisted of two vertical heated and cooled pipes. The temperature difference between the vertical pipes was maintained at 40–80 K, and a small amount of helium gas was injected into the channel. The injected volume of helium was about 3.1–12.5% of the total channel volume. After injecting helium gas, each component gas moved through molecular diffusion and very weak natural circulation. After approximately 1180 s, ordinary natural circulation of air was suddenly produced. The numerical results of the 3D CFD code were in good agreement with the experimental results. The numerical results also showed that the natural circulation of air can be controlled by helium gas injection.

  7. Validation of the RELAP5 code for the modeling of flashing-induced instabilities under natural-circulation conditions using experimental data from the CIRCUS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kozmenkov, Y. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (FZD), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Institute of Physics and Power Engineering, Obninsk (Russian Federation); Rohde, U., E-mail: U.Rohde@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf e.V. (FZD), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Manera, A. [Paul Scherrer Institute (Switzerland)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We report about the simulation of flashing-induced instabilities in natural circulation systems. Black-Right-Pointing-Pointer Flashing-induced instabilities are of relevance for operation of pool-type reactors of small power at low pressure. Black-Right-Pointing-Pointer The RELAP5 code is validated against measurement data from natural circulation experiments. Black-Right-Pointing-Pointer The magnitude and frequency of the oscillations were reproduced in good agreement with the measurement data. - Abstract: This paper reports on the use of the RELAP5 code for the simulation of flashing-induced instabilities in natural circulation systems. The RELAP 5 code is intended to be used for the simulation of transient processes in the Russian RUTA reactor concept operating at atmospheric pressure with forced convection of coolant. However, during transient processes, natural circulation with flashing-induced instabilities might occur. The RELAP5 code is validated against measurement data from natural circulation experiments performed within the framework of a European project (NACUSP) on the CIRCUS facility. The facility, built at the Delft University of Technology in The Netherlands, is a water/steam 1:1 height-scaled loop of a typical natural-circulation-cooled BWR. It was shown that the RELAP5 code is able to model all relevant phenomena related to flashing induced instabilities. The magnitude and frequency of the oscillations were reproduced in a good agreement with the measurement data. The close correspondence to the experiments was reached by detailed modeling of all components of the CIRCUS facility including the heat exchanger, the buffer vessel and the steam dome at the top of the facility.

  8. Analysis of transient gas-liquid two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Isao; Matsumoto, Tadayoshi; Morita, Yu; Kawashima, Atsushi [Department of Mechanophysics Engineering, Osaka University, Suita, Osaka (Japan); Nakayama, Akio

    1999-07-01

    Analyses were made on the transient behavior of two-phase natural circulation in annular passage. Drift flux model was used in the analyses and several correlations of drift velocity were used and compared. Transient variation of void fraction, inlet liquid flux and length of two-phase region were predicted based on simplified model. It was revealed that in transient two-phase natural circulation, the condition for pressure difference between inlet and outlet is quite important and difficult to be specified. A simplified model for inlet pressure condition was assumed and transient two-phase natural circulation was reasonably predicted. The correlation of drift velocity was shown to have important effect on the flow behavior particularly for the transient variation of two-phase length. (author)

  9. RELAP5 simulation for one and two-phase natural circulation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro Ernesto; Torres, Walmir Maximo; Castro, Alfredo Jose Alvim de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: gdjian@ipen.br; delvonei@ig.com.br; umbehaun@ipen.br; wmtorres@ipen.br; Braz Filho, Francisco A.; Borges, Eduardo Madeira [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados]. E-mails: eduardo@ieav.cta.br; fbraz@ieav.cta.br; Belchior Junior, Antonio; Rocha, Ricardo Takeshi Vieira da [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)]. E-mails: belchior@bol.com.br; rtvrocha@uol.com.br; Damy, Osvaldo Luiz Almeida; Torres, Eduardo [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica]. E-mails: osvaldo.damy@poli.usp.br; etorres@pac.ind.br

    2007-07-01

    The objective of this paper is to study the natural circulation phenomenon in one and two-phase regime. There has been a crescent interest in the scientific community in the study of the natural circulation. New generation of compact nuclear reactors uses the natural circulation for residual heat removal in case of accident or shutdown. For this study, the modeling and the simulation of the experimental circuit is performed with the RELAP5 code. The experimental circuit is mounted in the Chemical Engineering Department of the University of Sao Paulo. It is presented in this work the theoretical/experimental comparison for one and two-phase flow. These results will be stored in a database to validate RELAP5 calculations. This work was also used to training some users of RELAP5 from IEAv. (author)

  10. Evaluation of SPACE code for natural circulation test of Hanbit unit 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyun; Kim, Minhee [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    SPACE (Safety and Performance Analysis Code for Nuclear Power Plants) has been developed by KHNP with the cooperation with KEPCO E and C and KAERI. SPACE code is expected to be applied to the safety analysis for LOCA (Loss of Coolant Accident) and Non-LOCA scenarios. SPACE code solves two-fluid, three-field governing equations and programmed with C++ computer language using object-oriented concepts. To evaluate the analysis capability for the passive cooling phenomenon in the actual nuclear power plant, a natural circulation test of Hanbit unit 2 was simulated with SPACE code. To evaluate the analysis capability for the passive cooling phenomenon in the actual nuclear power plant, a natural circulation test of Hanbit unit 2 was simulated with SPACE code. The major parameters of natural circulation in transient are well predicted in SPACE calculations when compared to the plant data. The SPACE code has sufficient capability to simulate passive cooling phenomena.

  11. A circulating fluidized bed combustor system with inherent CO{sub 2} separation : application of chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E.; Lyngfelt, A.; Mattisson, T.; Johnsson, F. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Energy Conversion

    2002-07-01

    This paper presents a method to achieve carbon dioxide-free combustion while still using fossil fuels as the energy source. The method is based on separation and disposal of carbon dioxide from combustion. Chemical looping combustion (CLC) uses metal oxide particles to transfer oxygen from air to a gaseous fuel. The gaseous fuel is combusted with inherent separation of carbon dioxide (a greenhouse gas) from the flue gas. A bubbling bed below the downcomer in the circulating fluidized bed acts as a fuel reactor where oxygen is transferred from the metal oxide to the fuel. The riser acts as the air reactor where the oxygen from the air oxidizes the previously reduced metal oxide. The fuel and combustion air are not in direct contact. The conceptual design of the pressurized CLC system was examined in order to map suitable conditions for the riser and to achieve sufficient net solids flux between the reactors and the bed mass in the riser. A range of possible operating conditions were suggested. The operating conditions depend on the reaction properties of the oxygen carriers. 16 refs., 1 tab., 8 figs.

  12. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    NARCIS (Netherlands)

    Furuya, M.

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps, al

  13. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    NARCIS (Netherlands)

    Furuya, M.

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps,

  14. Experimental and Analytical Modeling of Natural Circulation and Forced Circulation BWRs : Thermal-Hydraulic, Core-Wide, and Regional Stability Phenomena

    NARCIS (Netherlands)

    Furuya, M.

    2006-01-01

    Currently, 434 nuclear power plants are in operation worldwide. 21% of them are known as Boiling Water Reactors (BWRs). These BWRs have pumps that cool their reactor cores (the forced circulation BWRs). In the design of new BWRs, ways to cool the core by a natural circulation flow, without pumps, al

  15. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Chang, Huajian [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhao, Yufeng, E-mail: zhaoyufeng@snptc.com.cn [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhang, Ming; Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei [State Power Investment Corporation, Beijing (China)

    2017-05-15

    Highlights: • Natural circulation tests are performed to study the effect of hypervapotron on CHF. • Hypervapotron structure improves CHF under natural circulation conditions. • Visualization data illustrate vapor blanket behavior under subcooled flow conditions. - Abstract: The enhancement of critical heat flux with a hypervapotron structure under natural circulation conditions is investigated in this study. Subcooled flow boiling CHF experiments are performed using smooth and hypervapotron surfaces at different inclination angles under natural circulation conditions. The experimental facility, TESEC (Test of External Vessel Surface with Enhanced Cooling), is designed to conduct CHF experiments in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. The two-phase flow of subcooled flow boiling on both smooth and hypervapotron heating plates is observed and analyzed by the high-speed visualization technology. The results show that both smooth surface and hypervapotron surface CHF data exhibit a similar trend against inclination angles compared with the CHF results under forced flow condition on the same facility in earlier studies. However, the CHF enhancement of the hypervapotron structure is evidently more significant than the one under forced flow conditions. The experiments also indicate that the natural flow rates are higher with hypervapotron structure. The initiation of CHF is analyzed under transient subcooling and flow rate conditions for both smooth and hypervapotron heating surfaces. An explanation is given for the significant enhancement effect caused by the hypervapotron surface under natural circulation conditions. The visualization data are exhibited to demonstrate the behavior of the vapor blanket at various inclination angles and on different surfaces. The geometric data of the vapor blanket are quantified by an image post-processing method. It is found that the thickness of the vapor blanket

  16. Experimental and numerical stability investigations on natural circulation boiling water reactors

    CERN Document Server

    Marcel, CP

    2007-01-01

    In the design of novel nuclear reactors active systems are replaced by passive ones in order to reduce the risk of failure. For that reason natural circulation is being considered as the primary cooling mechanism in next generation nuclear reactor designs

  17. Single Phase Natural Circulation Behaviors of the Integral Type Marine Reactor Simulator under Rolling Motion Condition

    Directory of Open Access Journals (Sweden)

    Hou-jun Gong

    2015-01-01

    Full Text Available During operation in the sea the reactor natural circulation behaviors are affected by ship rolling motion. The development of an analysis code and the natural circulation behaviors of a reactor simulator under rolling motion are described in this paper. In the case of rolling motion, the primary coolant flow rates in the hot legs and heating channels oscillated periodically, and the amplitude of flow rate oscillation was in direct proportion to rolling amplitude, but in inverse proportion to rolling period. The total mass flow rate also oscillated with half the rolling period, and the average total mass flow rate was less than that in steady state. In the natural circulation under a rolling motion, the flow rate oscillations in the hot legs were controlled by the tangential force; however, the mass flow rate oscillations in the total natural circulation and the heating channels were a result of the combined action of the change of inclination angle, flow resistance, and the extra force arising from the rolling motion. The extra tangential force brought about intense flow rate oscillations in the hot legs, which resulted in increasing total flow resistance; however the extra centrifugal force played a role in increasing thermal driving head.

  18. Experimental and numerical stability investigations on natural circulation boiling water reactors

    NARCIS (Netherlands)

    Marcel, C.P.

    2007-01-01

    The stability of natural circulation boiling water reactors is investigated with a strong emphasis on experiments. Two different facilities are used for such a task: the GENESIS facility (to which a void reactivity feedback system is artificially added) and the CIRCUS facility. In addition, numerica

  19. Experimental and numerical stability investigations on natural circulation boiling water reactors

    NARCIS (Netherlands)

    Marcel, C.P.

    2007-01-01

    The stability of natural circulation boiling water reactors is investigated with a strong emphasis on experiments. Two different facilities are used for such a task: the GENESIS facility (to which a void reactivity feedback system is artificially added) and the CIRCUS facility. In addition, numerica

  20. Experimental and numerical stability investigations on natural circulation boiling water reactors

    NARCIS (Netherlands)

    Marcel, C.P.

    2007-01-01

    The stability of natural circulation boiling water reactors is investigated with a strong emphasis on experiments. Two different facilities are used for such a task: the GENESIS facility (to which a void reactivity feedback system is artificially added) and the CIRCUS facility. In addition,

  1. A RELAP5 study to identify flow regime in natural circulation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Sabundjian, Gaiane; Torres, Walmir M.; Macedo, Luiz A.; Mesquita, Roberto N.; Andrade, Delvonei A.; Umbehaun, Pedro E.; Conti, Thadeu N.; Masotti, Paulo H.F.; Belchior Junior, Antonio; Angelo, Gabriel, E-mail: gdjian@ipen.b, E-mail: umbehaun@ipen.b, E-mail: wmtorres@ipen.b, E-mail: tnconti@ipen.b, E-mail: rnavarro@ipen.b, E-mail: lamacedo@ipen.b, E-mail: pmasotti@ipen.b, E-mail: abelchior@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    There has been a crescent interest in the scientific community in the study of natural circulation phenomenon. New generation of compact nuclear reactors uses the natural circulation of the fluid as a system of cooling and of residual heat removal in case of accident or shutdown. The objective of this paper is to compare the flow patterns of experimental data and numerical simulation for the natural circulation phenomenon in two-phase flow regime. An experimental circuit built with glass tubes is used for the experiments. Thus, it allows the thermal hydraulic phenomena visualization. There is an electric heater as the heat source, a heat exchanger as the heat sink and an expansion tank to accommodate fluid density excursions. The circuit instrumentation consists of thermocouples and pressure meters to better keep track of the flow and heat transfer phenomena. Data acquisition is performed through a computer interface developed with LABVIEW. The characteristic of the regime is identified using photography techniques. Numerical modeling and simulation is done with the thermal hydraulic code RELAP5, which is widely used for this purpose. This numerical simulation is capable to reproduce some of the flow regimes which are present in the circuit for the natural circulation phenomenon. Comparison between experimental and numerical simulation is presented in this work. (author)

  2. An Arabidopsis Natural Epiallele Maintained by a Feed-Forward Silencing Loop between Histone and DNA.

    Directory of Open Access Journals (Sweden)

    Astrid Agorio

    2017-01-01

    Full Text Available The extent of epigenetic variation is currently well documented, but the number of natural epialleles described so far remains very limited. Determining the relevance of epigenetic changes for natural variation is an important question of research that we investigate by isolating natural epialleles segregating in Arabidopsis recombinant populations. We previously described a genetic incompatibility among Arabidopsis strains based on the silencing of a gene involved in fitness. Here, we isolated a new epiallele resulting from the silencing of a transfer-RNA editing gene in an Arabidopsis accession from the Netherlands (Nok-1. Crosses with the reference accession Col-0 show a complete incompatibility between this epiallele and another locus localized on a different chromosome. We demonstrate that conversion of an unmethylated version of this allele occurs in hybrids, associated with modifications of small RNA populations. These epialleles can also spontaneously revert within the population. Furthermore, we bring evidence that neither METHYLTRANSFERASE 1, maintaining methylation at CGs, nor components of RNA-directed DNA methylation, are key factors for the transmission of the epiallele over generations. This depends only on the self-reinforcing loop between CHROMOMETHYLASE 3 and KRYPTONITE, involving DNA methylated in the CHG context and histone H3 lysine 9 methylation. Our findings reveal a predominant role of this loop in maintaining a natural epiallele.

  3. An Arabidopsis Natural Epiallele Maintained by a Feed-Forward Silencing Loop between Histone and DNA

    Science.gov (United States)

    Agorio, Astrid; Durand, Stéphanie; Brousse, Cécile; Gy, Isabelle; Simon, Matthieu; Anava, Sarit; Rechavi, Oded; Loudet, Olivier; Camilleri, Christine

    2017-01-01

    The extent of epigenetic variation is currently well documented, but the number of natural epialleles described so far remains very limited. Determining the relevance of epigenetic changes for natural variation is an important question of research that we investigate by isolating natural epialleles segregating in Arabidopsis recombinant populations. We previously described a genetic incompatibility among Arabidopsis strains based on the silencing of a gene involved in fitness. Here, we isolated a new epiallele resulting from the silencing of a transfer-RNA editing gene in an Arabidopsis accession from the Netherlands (Nok-1). Crosses with the reference accession Col-0 show a complete incompatibility between this epiallele and another locus localized on a different chromosome. We demonstrate that conversion of an unmethylated version of this allele occurs in hybrids, associated with modifications of small RNA populations. These epialleles can also spontaneously revert within the population. Furthermore, we bring evidence that neither METHYLTRANSFERASE 1, maintaining methylation at CGs, nor components of RNA-directed DNA methylation, are key factors for the transmission of the epiallele over generations. This depends only on the self-reinforcing loop between CHROMOMETHYLASE 3 and KRYPTONITE, involving DNA methylated in the CHG context and histone H3 lysine 9 methylation. Our findings reveal a predominant role of this loop in maintaining a natural epiallele. PMID:28060933

  4. MODELING STRATEGIES TO COMPUTE NATURAL CIRCULATION USING CFD IN A VHTR AFTER A LOFA

    Energy Technology Data Exchange (ETDEWEB)

    Yu-Hsin Tung; Richard W. Johnson; Ching-Chang Chieng; Yuh-Ming Ferng

    2012-11-01

    A prismatic gas-cooled very high temperature reactor (VHTR) is being developed under the next generation nuclear plant program (NGNP) of the U.S. Department of Energy, Office of Nuclear Energy. In the design of the prismatic VHTR, hexagonal shaped graphite blocks are drilled to allow insertion of fuel pins, made of compacted TRISO fuel particles, and coolant channels for the helium coolant. One of the concerns for the reactor design is the effects of a loss of flow accident (LOFA) where the coolant circulators are lost for some reason, causing a loss of forced coolant flow through the core. In such an event, it is desired to know what happens to the (reduced) heat still being generated in the core and if it represents a problem for the fuel compacts, the graphite core or the reactor vessel (RV) walls. One of the mechanisms for the transport of heat out of the core is by the natural circulation of the coolant, which is still present. That is, how much heat may be transported by natural circulation through the core and upwards to the top of the upper plenum? It is beyond current capability for a computational fluid dynamic (CFD) analysis to perform a calculation on the whole RV with a sufficiently refined mesh to examine the full potential of natural circulation in the vessel. The present paper reports the investigation of several strategies to model the flow and heat transfer in the RV. It is found that it is necessary to employ representative geometries of the core to estimate the heat transfer. However, by taking advantage of global and local symmetries, a detailed estimate of the strength of the resulting natural circulation and the level of heat transfer to the top of the upper plenum is obtained.

  5. Evaluation of nitrogen gas accumulated inside MCP during natural circulation operation of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. S.; Kim, Y. I.; Seo, J. K.; Park, C. T.; Lee, D. J.; Jang, M. H. [KAERI, Taejon (Korea, Republic of)

    2001-10-01

    With nitrogen used in pressurizer, primary coolant of SMART will contain dissolved nitrogen. The solubility of nitrogen gas in water is calculated as a function of temperature and pressure by Himmelblau equation based on Henry's law. It is found that the nitrogen concentration of primary coolant is highly dependent upon thermal-hydraulic parameters of the primary system, temperature, pressure and heatup rate. The accumulated nitrogen gas within MCP is evaluated based on the assumed natural convective flows established between SMART core and MCP. It is concluded that the natural circulation time is varied from 100 {approx} 1000 hrs according to the natural convection flows.

  6. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    Science.gov (United States)

    Sakitani, Katsumi; Honda, Hiroshi

    Experimental and theoretical studies were made of the heat transfer characteristics of a latent heat storage unit used for a natural circulation cooling /latent heat storage system. Heating and cooling curves of the latent heat storage unit undergoing solid-liquid phase change of a PCM (lauric acid) was obtained by using anatural circulation loop of R22 which consisted of an electrically heated evaporater, a water cooled condenser and the latent heat storage unit. The latent heat storage unit showed a heat transfer performance which was high enough for practical use. An approximate theoretical analysis was conducted to investigate transient behavior of the latent heat storage unit. Predictions of the refrigerant and outer surface temperatures during the melting process were in fair agreement with the experimental data, whereas that of the refrigerant temperature during the solidification process was considerably lower than the measurement.

  7. Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the preliminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the primary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation.

  8. Study on thermal-hydraulics of natural circulation operation for decay heat removal of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab

    2000-05-01

    Thermal-hydraulic characteristics of the decay heat removal system (DHRS) has been evaluated by both a water test and its computational analysis. The direct reactor auxiliary cooling system (DRACS) was studied as a representative DHRS in the LMFBR design. A natural circulation flow of the DRACS is originated from the buoyancy force balanced with the pressure loss within the active core. Hence it appears that the performance of the DRACS could be fully estimated by the thermal-hydraulic study of one fuel sub-assembly under the condition of low flow rate. The inter-wrapper flow occurring in the gap between core sub-assemblies under the natural circulation operation might have a large capacity to cool the core. An inverse flow occurring at the outer region of the core was due to the cooling effect of the inter-wrapper flow. (author)

  9. Thermal-hydraulic characteristics of natural circulation operation for decay heat removal of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan); Watanabe, Osamu [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)

    2000-10-01

    Thermal-hydraulic characteristics of the decay heat removal system (DHRS) has been evaluated by both a water test and its computational analysis. The direct reactor auxiliary cooling system (DRACS) was studied as a representative DHRS in the LMFBR design. A natural circulation flow of the DRACS is originated from the buoyancy force balanced with the pressure loss within the active core. Hence it appears that the performance of the DRACS could be fully estimated by the thermal-hydraulic study of one fuel sub-assembly under the condition of low flow rate. The inter-wrapper flow occurring in the gap between core sub-assemblies under the natural circulation operation might have a large capacity to cool the core. An inverse flow occurring at the outer region of the core was due to the cooling effect of the inter-wrapper flow. (author)

  10. Validation of a plant dynamics code for 4S - Test analysis of natural circulation behavior

    Energy Technology Data Exchange (ETDEWEB)

    Sebe, F.; Horie, H.; Matsumiya, H. [Toshiba Corporation, 8 Shinsugita-Cho, Isogo-Ku, Yokohama, 235-8523 (Japan); Fanning, T. H. [Argonne National Laboratory, 9700 S Cass Ave, Argonne, IL 60439 (United States)

    2012-07-01

    A plant transient dynamics code for a sodium-cooled fast reactor was developed by Toshiba. The code is used to evaluate the safety performance of Super-Safe, Small, and Simple reactor (4S) for Anticipated Operational Occurrences (AOOs), Design Basis Accident (DBA) and Beyond DBA (BDBA). The code is currently undergoing verification and validation (V and V). As one of the validation, test analysis of the Shutdown Heat Removal Test (SHRT)-17 performed in the Experimental Breeder Reactor (EBR)-II was conducted. The SHRT-17 is protected loss of flow test. The purpose of this validation is to confirm capability of the code to simulate natural circulation behavior of the plant. As a result, good agreements are shown between the analytical results and the measured data which were available from instrumented subassembly. The detailed validation result of the natural circulation behavior is described in this paper. (authors)

  11. Frequency analysis for the thermal hydraulic characterization of a natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Walmir M.; Macedo, Luiz A.; Sabundjian, Gaiane; Andrade, Delvonei A.; Umbehaun, Pedro E.; Conti, Thadeu N.; Mesquita, Roberto N.; Masotti, Paulo H.; Angelo, Gabriel, E-mail: wmtorres@ipen.b, E-mail: lamacedo@ipen.b, E-mail: gdjian@ipen.b, E-mail: delvonei@ipen.b, E-mail: umbehaun@ipen.b, E-mail: tnconti@ipen.b, E-mail: , E-mail: rnavarro@ipen.b, E-mail: pmasotti@ipen.b, E-mail: gabriel.angelo@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the frequency analysis studies of the pressure signals from an experimental natural circulation circuit during a heating process. The main objective is to identify the characteristic frequencies of this process using fast Fourier transform. Video images are used to associate these frequencies to the observed phenomenology in the circuit during the process. Sub-cooled and saturated flow boiling, heaters vibrations, overall circuit vibrations, chugging and geysering were observed. Each phenomenon has its specific frequency associated. Some phenomena and their frequencies must be avoided or attenuated since they can cause damages to the natural circulation circuit and its components. Special operation procedures and devices can be developed to avoid these undesirable frequencies. (author)

  12. Experimental Study of Non-Resonant Self Circulating Heat Transfer Loop Used in Thermoacoustic-Stirling Engines

    Science.gov (United States)

    Gao, B.; Luo, E. C.; Dai, W.; Chen, Y. Y.; Hu, J. Y.

    2010-04-01

    A novel heat transfer loop for thermoacoustic-Stirling engines which could substitute for a traditional heat exchanger was developed. This new heat transfer loop uses a pair of check valves to transform oscillating flow into steady flow that allows the oscillating flow system's own working gas to go through a physically remote high-temperature or cold-temperature heat source. Since the early principle experiment has achieved success, this paper explores the real operating performance of this heat transfer loop by coupling with thermoacoustic-Stirling engine. Furthermore, a new type water-cooled heat exchanger was developed in this paper to deduce the extra acoustic power dissipation. In addition, the influence of two kinds of check valves the heat transfer loop was discussed in this paper. The loop with 0.1 mm valve disc thickness shows that the heat transfer capacity is higher than the traditional heat exchanger. Our experiments have demonstrated its feasibility and flexibility for practical applications.

  13. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.

  14. Comparison between experimental data and numerical modeling for the natural circulation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Sabundjian, Gaiane; Andrade, Delvonei A.; Umbehaun, Pedro E.; Torres, Walmir M.; Macedo, Luiz A.; Conti, Thadeu N.; Mesquita, Roberto N.; Massotti, Paulo H.F.; Penha, Rosani M.L.; Silva Filho, Mauro F.; Melo, Gabriel R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: gdjian@ipen.br, e-mail: delvonei@ig.com.br, e-mail: umbehaun@ipen.br, e-mail: wmtorres@ipen.br, e-mail: tnconti@ipen.br, e-mail: rnavarro@ipen.br, e-mail: lamacedo@ipen.br, e-mail: pmasotti@ipen.br, e-mail: rmpenha@ipen.br, e-mail: mauromfs@uol.com; Braz Filho, Francisco A.; Borges, Eduardo M. [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil)], e-mail: eduardo@ieav.cta.br, e-mail: fbraz@ieav.cta.br

    2009-07-01

    There is a crescent interest in the scientific community in the study of natural circulation phenomenon. New generation of compact nuclear reactors uses the natural circulation of the fluid as a system of cooling and of residual heat removal in case of accident or shutdown. The objective of this paper is to present a study through the comparison of experimental data and numerical simulation for the natural circulation phenomenon in one and two-phase flow regime. An experimental circuit built with glass tubes is used for the experiments. Thus, it allows the thermal hydraulic phenomena visualization. There is an electric heater as the heat source, a heat exchanger as the heat sink and an expansion tank to accommodate fluid density excursions. The circuit instrumentation consists of thermocouples and pressure meters to better keep track of the flow and heat transfer phenomena. Instrumentation data acquisition is performed through a computer interface developed with LABVIEW. Previous comparisons were presented. However, in this work pressure transducers were mounted in the heat source outlet and in the expansion tank inlet to allow fluid level variation measures. Numerical modeling and simulation is done with the thermal hydraulic code RELAP5, which is widely used for this purpose. This simulation is capable to reproduce pressure variations, expansion tank level and temperatures measured along the circuit. The observed reverse flow in the circuit is also well represented by model. Comparison between experimental and numerical simulation is presented in this work and showed to be in good agreement. (author)

  15. Experimental Investigation of Natural Circulation in Regional Energy Reactor-10MW{sub th}

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong Il; Jeun, Gyoo Dong [Hanyang University, Seoul (Korea, Republic of); Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)

    2009-10-15

    A small- and medium-sized nuclear reactor (SMR) has drawn attention because it is used for multi-purpose applications of desaltination, district heating, ship propulsion and small-scale power generation. The SMR has the virtue of providing for the safety more than a large-sized nuclear reactor. It can be avoidable the occurrence of a large break LOCA because the primary pipes are eliminated. And as the SMR is designed to simplify the geometries and safety systems, uncertainties about the reactor operations are reduced and its safety improves. RERI (Regional Energy Research Institute for Next Generation) is designing REX-10 (Regional Energy Reactor 10 MWth) based on SMART-P. This reactor must improve the enhanced safety because the main purposes of it are small-scale power generation and district heating. From this reason, REX-10 adopts the way to remove heat by natural circulation. And to investigate the natural circulation characteristics of REX-10, we constructed RTF (REX- 10 Test Facility) in RERI. The main aim of this article is to evaluate the natural circulation behavior under various experimental conditions.

  16. Europium Oxybromide Catalysts for Efficient Bromine Looping in Natural Gas Valorization.

    Science.gov (United States)

    Paunović, Vladimir; Lin, Ronghe; Scharfe, Matthias; Amrute, Amol P; Mitchell, Sharon; Hauert, Roland; Pérez-Ramírez, Javier

    2017-08-07

    The industrialization of bromine-mediated natural gas upgrading is contingent on the ability to fully recycle hydrogen bromide (HBr), which is the end form of the halogen after the activation and coupling of the alkanes. Europium oxybromide (EuOBr) is introduced as a unique catalytic material to close the bromine loop via HBr oxidation, permitting low-temperature operation and long lifetimes with a stoichiometric feed (O2 :HBr=0.25)-conditions at which any catalyst reported to date severely deactivates because of excessive bromination. Besides, EuOBr exhibits unparalleled selectivity to methyl bromide in methane oxybromination, which is an alternative route for bromine looping. This novel active phase is finely dispersed on appropriate carriers and scaled up to technical extrudates, enhancing the utilization of the europium phase while preserving the performance. This catalytic system paves the way for sustainable valorization of stranded natural gas via bromine chemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Potential of enhancing a natural convection loop with a thermomagnetically pumped ferrofluid

    CERN Document Server

    Aursand, Eskil; Lervåg, Karl Yngve; Lund, Halvor

    2016-01-01

    The feasibility of using a thermomagnetically pumped ferrofluid to enhance the performance of a natural convection cooling loop is investigated. First, a simplified analytical estimate for the thermomagnetic pumping action is derived, and then design rules for optimal solenoid and ferrofluid are presented. The design rules are used to set up a medium-scale (1 m, 10-1000 W) case study, which is modeled using a previously published and validated model (Aursand et al. [1]). The results show that the thermomagnetic driving force is significant compared to the natural convection driving force, and may in some cases greatly surpass it. The results also indicate that cooling performance can be increased by factors up to 4 and 2 in the single-phase and two- phase regimes, respectively, even when taking into the account the added heat from the solenoid. The performance increases can alternatively be used to obtain a reduction in heat-sink size by up to 75 %.

  18. Development of essential system technologies for advanced reactor - Development of natural circulation analysis code for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Park, Ik Gyu; Kim, Jae Hak; Lee, Sang Min; Kim, Tae Wan [Seoul National University, Seoul (Korea)

    1999-04-01

    The objective of this study is to understand the natural circulation characteristics of integral type reactors and to develope the natural circulation analysis code for integral type reactors. This study is focused on the asymmetric 3-dimensional flow during natural circulation such as 1/4 steam generator section isolation and the inclination of the reactor systems. Natural circulation experiments were done using small-scale facilities of integral reactor SMART (System-Integrated Modular Advanced ReacTor). CFX4 code was used to investigate the flow patterns and thermal mixing phenomena in upper pressure header and downcomer. Differences between normal operation of all steam generators and the 1/4 section isolation conditions were observed and the results were used as the data 1/4 section isolation conditions were observed and the results were used as the data for RETRAN-03/INT code validation. RETRAN-03 code was modified for the development of natural circulation analysis code for integral type reactors, which was development of natural circulation analysis code for integral type reactors, which was named as RETRAN-03/INT. 3-dimensional analysis models for asymmetric flow in integral type reactors were developed using vector momentum equations in RETRAN-03. Analysis results using RETRAN-03/INT were compared with experimental and CFX4 analysis results and showed good agreements. The natural circulation characteristics obtained in this study will provide the important and fundamental design features for the future small and medium integral reactors. (author). 29 refs., 75 figs., 18 tabs.

  19. Development of essential system technologies for advanced reactor - Development of natural circulation analysis code for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Park, Ik Gyu; Kim, Jae Hak; Lee, Sang Min; Kim, Tae Wan [Seoul National University, Seoul (Korea)

    1999-04-01

    The objective of this study is to understand the natural circulation characteristics of integral type reactors and to develope the natural circulation analysis code for integral type reactors. This study is focused on the asymmetric 3-dimensional flow during natural circulation such as 1/4 steam generator section isolation and the inclination of the reactor systems. Natural circulation experiments were done using small-scale facilities of integral reactor SMART (System-Integrated Modular Advanced ReacTor). CFX4 code was used to investigate the flow patterns and thermal mixing phenomena in upper pressure header and downcomer. Differences between normal operation of all steam generators and the 1/4 section isolation conditions were observed and the results were used as the data 1/4 section isolation conditions were observed and the results were used as the data for RETRAN-03/INT code validation. RETRAN-03 code was modified for the development of natural circulation analysis code for integral type reactors, which was development of natural circulation analysis code for integral type reactors, which was named as RETRAN-03/INT. 3-dimensional analysis models for asymmetric flow in integral type reactors were developed using vector momentum equations in RETRAN-03. Analysis results using RETRAN-03/INT were compared with experimental and CFX4 analysis results and showed good agreements. The natural circulation characteristics obtained in this study will provide the important and fundamental design features for the future small and medium integral reactors. (author). 29 refs., 75 figs., 18 tabs.

  20. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Science.gov (United States)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-01

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  1. Development of an Internally Circulating Fluidized Bed Membrane Reactor for Hydrogen Production from Natural Gas

    Institute of Scientific and Technical Information of China (English)

    XIE Dong-lai; GRACE John R; LIM C Jim

    2006-01-01

    An innovative Internally Circulating Fluidized Bed Membrane Reactor (ICFBMR) was designed and operated for ultra-pure hydrogen production from natural gas. The reactor includes internal catalyst solids circulation for conveying heat between a reforming zone and an oxidation zone. In the reforming zone, catalyst particles are transported upwards by reactant gas where steam reforming reactions are taking place and hydrogen is permeating through the membrane surfaces. Air is injected into the oxidation zone to generate heat which is carried by catalyst particles to the reforming zone supporting the endothermic steam reforming reaction. The technology development process is introduced: cold model test,pilot plant and industrial demonstration unit. The process flow diagram and key components of each unit are described.The ICFBMR process has the potential to provide improved performance relative to conventional SMR fixed-bed tubular reactors.

  2. Acoustic streaming enhances the Multicyclic CO2 capture of natural limestone at Ca-looping conditions.

    Science.gov (United States)

    Valverde, J M; Ebri, J M P; Quintanilla, M A S

    2013-08-20

    The Ca-Looping (CaL) process, based on the multicyclic carbonation/calcination of CaO at high temperatures, is a viable technology to achieve high CO2 capture efficiencies in both precombustion and postcombustion applications. In this paper we show an experimental study on the multicyclic CO2 capture of a natural limestone in a fixed bed at CaL conditions as affected by the application of a high-intensity acoustic field. Our results indicate that sound promotes the efficiency of CO2 sorption in the fast carbonation phase by enhancing the gas-solids mass transfer. The fundamentals of the physical mechanism responsible for this effect (acoustic streaming) as well as the technical feasibility of the proposed technique allows envisaging that sonoprocessing will be beneficial to enhance multicyclic CO2 capture in large-scale applications.

  3. Changes in equatorial zonal circulations and precipitation in the context of the global warming and natural modes

    Science.gov (United States)

    Kim, Byeong-Hee; Ha, Kyung-Ja

    2017-07-01

    The strengthening and westward shift of Pacific Walker Circulation (PWC) is observed during the recent decades. However, the relative roles of global warming and natural variability on the change in PWC unclearly remain. By conducting numerical atmospheric general circulation model (AGCM) experiments using the spatial SST patterns in the global warming and natural modes which are obtained by the multi-variate EOF analysis from three variables including precipitation, sea surface temperature (SST), and divergent zonal wind, we indicated that the westward shift and strengthening of PWC are caused by the global warming SST pattern in the global warming mode and the negative Interdecadal Pacific Oscillation-like SST pattern in the natural mode. The SST distribution of the Pacific Ocean (PO) has more influence on the changes in equatorial zonal circulations and tropical precipitation than that of the Indian Ocean (IO) and Atlantic Ocean (AO). The change in precipitation is also related to the equatorial zonal circulations variation through the upward and downward motions of the circulations. The IO and AO SST anomalies in the global warming mode can affect on the changes in equatorial zonal circulations, but the influence of PO SST disturbs the changes in Indian Walker Circulation and Atlantic Walker Circulation which are affected by the anomalous SST over the IO and AO. The zonal shift of PWC is found to be highly associated with a zonal gradient of SST over the PO through the idealized numerical AGCM experiments and predictions of CMIP5 models.

  4. Two-phase flow stability structure in a natural circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  5. The research of feasible temperature modes in the ampoule channel with natural circulation

    Directory of Open Access Journals (Sweden)

    T.A. Osipova

    2016-03-01

    Full Text Available The paper presents the results of a computational analysis into the thin-wall sample cooling during in-pile irradiation in a two-body ampoule channel with heat transfer by natural convection. A two-body design of the channel makes it possible to change the channel wall heat resistance with the channel heat leak regulation by varying the gas composition and pressure inside the gap between the bodies. The purpose of the study is to determine the feasible sample cooling conditions in the considered channel. The computational analysis was based on a thermal-hydraulic code, RELAP5/MOD3.2. For the calculations, helium and nitrogen were assumed to be the filling gas for the gap between the bodies. Major regularities in the variation of irradiation temperatures have been shown depending on the power density in the channel and irradiation device structural materials, the circulation circuit height, and the channel wall heat resistance. By varying the circulation circuit height and the power density in the structural materials, it is possible to provide inside the ampoule channel the sample cooling temperatures in a range from the circumambient primary coolant temperature to the boiling temperature at a given pressure (50–331°C. With no coolant boiling on samples and with the maximum (8m circulation circuit height, not more than 55kW (14W/g on samples is removed when helium is used as the gap filling gas and not more than 15kW (3.7W/g on samples is removed when nitrogen is used, while, with the minimum (1m circulation circuit height, the respective values are not more than 10kW (2.5W/g on samples and 5kW (1.2W/g on samples.

  6. Unsteady single-phase natural circulation flow mixing prediction using CATHARE three-dimensional capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Anis Bousbia; Vlassenbroeck, Jacques [Bel V - Subsidiary of the Belgian Federal Agency for Nuclear Contro, Brussels (Belize)

    2017-04-15

    Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal–hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

  7. Numerical simulation and artificial neural network modeling of natural circulation boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Sastry, P.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Pandey, M. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)]. E-mail: manmohan@iitg.ac.in; Dixit, U.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Gupta, S.K. [Atomic Energy Regulatory Board, Mumbai 400085 (India)

    2007-02-15

    Numerical simulation of natural circulation boiling water reactor is important in order to study its performance for different designs and under various off-design conditions. Numerical simulations can be performed by using thermal-hydraulic codes. Very fast numerical simulations, useful for extensive parametric studies and for solving design optimization problems, can be achieved by using an artificial neural network (ANN) model of the system. In the present work, numerical simulations of natural circulation boiling water reactor have been performed with RELAP5 code for different values of design parameters and operational conditions. Parametric trends observed have been discussed. The data obtained from these simulations have been used to train artificial neural networks, which in turn have been used for further parametric studies and design optimization. The ANN models showed error within {+-}5% for all the simulated data. Two most popular methods, multilayer perceptron (MLP) and radial basis function (RBF) networks, have been used for the training of ANN model. Sequential quadratic programming (SQP) has been used for optimization.

  8. Design study of lead bismuth cooled fast reactors and capability of natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id [Nuclear and Reactor Physics Laboratory, FMIPA, ITB, Physics Buildings, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation at inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.

  9. Development of Sirius facility that simulates void-reactivity feedback, and regional and core-wide stability estimation of natural circulation BWR

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, M.; Inada, F.; Yasuo, A. [Tokyo Electric Power Co., Inc., Central Research Institute (Japan)

    2001-07-01

    The SIRIUS facility was designed and constructed for highly accurate simulation of core-wide and regional instabilities of the BWR. A real-time simulation was performed in the digital controller for modal point kinetics of reactor neutronics and fuel-rod conduction on the basis of measured void fractions in reactor core sections of the thermal-hydraulic loop. Stability experiments were conducted for a wide range of fluid conditions, power distributions, and fuel rod thermal conductivity time constants, including the normal operating conditions of a typical natural circulation BWR. The results showed that there is a sufficiently wide stability margin under normal operating conditions, even when void-reactivity feedback is taken into account. (author)

  10. Correlation of Steam Generator Mixing Parameters for Severe Accident Hot-Leg Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yehong; Guentay, Salih [Paul Scherrer Institut, Villigen PSI, CH-5232 (Switzerland)

    2008-07-01

    Steam generator inlet plenum mixing phenomenon with hot-leg counter-current natural circulation during a PWR station blackout severe accident is one of the important processes governing which component will fail first as a result of thermal challenge from the circulating gas with high temperature and pressure. Since steam generator tube failure represents bypass release of fission product from the reactor to environment, study of inlet plenum mixing parameters is important to risk analysis. Probability distribution functions of individual mixing parameter should be obtained from experiments or calculated by analysis. In order to perform sensitivity studies of the synergetic effects of all mixing parameters on the severe accident-induced steam generator tube failure, the distribution and correlation of these mixing parameters must be known to remove undue conservatism in thermal-hydraulic calculations. This paper discusses physical laws governing three mixing parameters in a steady state and setups the correlation among these mixing parameters. The correlation is then applied to obtain the distribution of one of the mixing parameters that has not been given in the previous CFD analysis. Using the distributions and considering the inter-dependence of the three mixing parameters, three sensitivity cases enveloping the mixing parameter uncertainties are recommended for the plant analysis. (authors)

  11. Bifurcation and hysteresis phenomena in thetwo-phase natural circulation system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The static bifurcation of the two-phase natural circulation (TPNC)system was studiedtheoretically and numerically. By the DERPAR algorithm the solutiondiagram was calculated, which shows that the static bifurcationoccurs undersome conditions in the TPNC systems. Also, it shows that, in a region of multiplesolutions, the static instability may occur. It is defined as a region ofthermal-siphon instability induced flow rate jumping. By means of thesolution diagram, the stability margin can be determined in this region.Furthermore, the heat input at the peak of the solution diagram is defined as themaximum capacity of heating load that can be used to judge the capacityof the TPNC ofa given geometry topological structure. Meanwhile, it is interestingthat the TPNCsystemshave the hysteresis phenomenon defined as thermal-siphon hysteresis.Some parametriceffects related were also studied.

  12. Circulation of images and graphic practices in Renaissance natural history: the example of Conrad Gessner.

    Science.gov (United States)

    Egmond, Florike; Kusukawa, Sachiko

    2016-01-01

    Conrad Gessner's Historia animalium is a compilation of information from a variety of sources: friends, correspondents, books, broadsides, drawings, as well as his own experience. The recent discovery of a cache of drawings at Amsterdam originally belonging to Gessner has added a new dimension for research into the role of images in Gessner's study of nature. In this paper, we examine the drawings that were the basis of the images in the volume of fishes. We uncovered several cases where there were multiple copies of the same drawing of a fish (rather than multiple drawings of the samefish), which problematizes the notion of unique "original" copies and their copies. While we still know very little about the actual mechanism of, or people involved in, commissioning or generating copies of drawings, their very existence suggests that the images functioned as an important medium in the circulation of knowledge in the early modern period.

  13. Experimental Investigation of a Natural Circulation Solar Domestic Water Heater Performance under Standard Consumption Rate

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Taherian, H.; Ganji, D. D.

    2012-01-01

    This paper reports experimental studies on the performance of a natural circulation solar water heater considering the weather condition of a city in north of Iran. The tests are done on clear and partly cloudy days. The variations of storage tank temperature due to consumption from the tank, daily...... consumption influence on the solar water heater efficiency, and on the input temperature of the collector are studied and the delivered daily useful energy has been obtained. The results show that by withdrawing from storage tank, the system as well as its collector efficiency will increase. Considering...... the value of the coefficient FRUL and τα, which are obtained experimentally as 6.03 and 0.83 respectively, average. monthly total load that is covered by this solar water heating system is estimated....

  14. Genetic characterization of small ruminant lentiviruses circulating in naturally infected sheep and goats in Ontario, Canada.

    Science.gov (United States)

    Santry, Lisa A; de Jong, Jondavid; Gold, Alexander C; Walsh, Scott R; Menzies, Paula I; Wootton, Sarah K

    2013-07-01

    Maedi-visna virus (MVV) and caprine arthritis encephalitis virus (CAEV) are related members of a group of small ruminant lentiviruses (SRLVs) that infect sheep and goats. SRLVs are endemic in many countries, including Canada. However, very little is known about the genetic characteristics of Canadian SRLVs, particularly in the province of Ontario. Given the importance of surveillance and eradication programs for the control of SRLVs, it is imperative that the diagnostic tests used to identify infected animals are sensitive to local strains of SRLVs. The aim of this work was to characterize SRLV strains circulating in Ontario and to evaluate the variability of the immunodominant regions of the Gag protein. In this study, the nearly complete gag sequence of 164 SRLVs, from 130 naturally infected sheep and 32 naturally infected goats from Ontario, was sequenced. Animals belonged to distantly located single and mixed species (sheep and goats) farms. Ovine lentiviruses from the same farm tended to cluster more closely together than did caprine lentiviruses from the same farm. Sequence analysis revealed a higher degree of heterogeneity among the caprine lentivirus sequences with an average inter-farm pairwise DNA distance of 10% and only 5% in the ovine lentivirus group. Interestingly, amplification of SRLVs from ELISA positive sheep was successful in 81% of cases, whereas amplification of SRLV proviral DNA was only possible in 55% of the ELISA positive goat samples; suggesting that a significant portion of caprine lentiviruses circulating in Ontario possess heterogeneity at the primer binding sites used in this study. Sequences of sheep and goat SRLVs from Ontario were assembled into phylogenetic trees with other known SRLVs and were found to belong to sequence groups A2 and B1, respectively, as defined by Shah et al. (2004a). A novel caprine lentivirus with a pairwise genetic difference of 15.6-25.4% relative to other group B subtypes was identified. Thus we suggest

  15. The Response of Ω-Loop D Dynamics to Truncation of Trimethyllysine 72 of Yeast Iso-1-cytochrome c Depends on the Nature of Loop Deformation

    Science.gov (United States)

    McClelland, Levi J.; Seagraves, Sean M.; Khan, Khurshid Alam; Cherney, Melisa M.; Bandi, Swati; Culbertson, Justin E.; Bowler, Bruce E.

    2015-01-01

    Trimethyllysine 72 (tmK72) has been suggested to play a role in sterically constraining the heme crevice dynamics of yeast iso-1-cytochrome c mediated by the Ω-loop D cooperative substructure (residues 70 to 85). A tmK72A mutation causes a gain in peroxidase activity, a function of cytochrome c that is important early in apoptosis. More than one higher energy state is accessible for the Ω-loop D substructure via tier 0 dynamics. Two of these are alkaline conformers mediated by Lys73 and Lys79. In the current work, the effect of the tmK72A mutation on the thermodynamic and kinetic properties of wild type iso-1-cytochrome c (yWT versus WT*) and on variants carrying a K73H mutation (yWT/K73H versus WT*/K73H) is studied. Whereas the tmK72A mutation confers increased peroxidase activity in wild type yeast iso-1-cytochrome c and increased dynamics for formation of a previously studied His79-heme alkaline conformer, the tmK72A mutation speeds return of the His73-heme alkaline conformer to the native state through destabilization of the His73-heme alkaline conformer relative to the native conformer. These opposing behaviors demonstrate that the response of the dynamics of a protein substructure to mutation depends on the nature of the perturbation to the substructure. For a protein substructure which mediates more than one function of a protein through multiple non-native structures, a mutation could change the partitioning between these functions. The current results suggest that the tier 0 dynamics of Ω-loop D that mediates peroxidase activity has similarities to the tier 0 dynamics required to form the His79-heme alkaline conformer. PMID:25948392

  16. Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping

    Directory of Open Access Journals (Sweden)

    Erans María

    2016-01-01

    Full Text Available Calcium looping (CaL is promising for large-scale CO2 capture in the power generation and industrial sectors due to the cheap sorbent used and the relatively low energy penalties achieved with this process. Because of the high operating temperatures the heat utilisation is a major advantage of the process, since a significant amount of power can be generated from it. However, this increases its complexity and capital costs. Therefore, not only the energy efficiency performance is important for these cycles, but also the capital costs must be taken into account, i.e. techno-economic analyses are required in order to determine which parameters and configurations are optimal to enhance technology viability in different integration scenarios. In this study the integration scenarios of CaL cycles and natural gas combined cycles (NGCC are explored. The process models of the NGCC and CaL capture plant are developed to explore the most promising scenarios for NGCC-CaL integration with regards to efficiency penalties. Two scenarios are analysed in detail, and show that the system with heat recovery steam generator (HRSG before and after the capture plant exhibited better performance of 49.1% efficiency compared with that of 45.7% when only one HRSG is located after the capture plant. However, the techno-economic analyses showed that the more energy efficient case, with two HRSGs, implies relatively higher cost of electricity (COE, 44.1€/MWh, when compared to that of the reference plant system (33.1€/MWh. The predicted cost of CO2 avoided for the case with two HRSGS is 29.3 €/ton CO2.

  17. Molecular recognition in helix-loop-helix and helix-loop-helix-leucine zipper domains. Design of repertoires and selection of high affinity ligands for natural proteins.

    Science.gov (United States)

    Ciarapica, Roberta; Rosati, Jessica; Cesareni, Gianni; Nasi, Sergio

    2003-04-04

    Helix-loop-helix (HLH) and helix-loop-helix-leucine zipper (HLHZip) are dimerization domains that mediate selective pairing among members of a large transcription factor family involved in cell fate determination. To investigate the molecular rules underlying recognition specificity and to isolate molecules interfering with cell proliferation and differentiation control, we assembled two molecular repertoires obtained by directed randomization of the binding surface in these two domains. For this strategy we selected the Heb HLH and Max Zip regions as molecular scaffolds for the randomization process and displayed the two resulting molecular repertoires on lambda phage capsids. By affinity selection, many domains were isolated that bound to the proteins Mad, Rox, MyoD, and Id2 with different levels of affinity. Although several residues along an extended surface within each domain appeared to contribute to dimerization, some key residues critically involved in molecular recognition could be identified. Furthermore, a number of charged residues appeared to act as switch points facilitating partner exchange. By successfully selecting ligands for four of four HLH or HLHZip proteins, we have shown that the repertoires assembled are rather general and possibly contain elements that bind with sufficient affinity to any natural HLH or HLHZip molecule. Thus they represent a valuable source of ligands that could be used as reagents for molecular dissection of functional regulatory pathways.

  18. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    empirical model was also implemented in the computational models of the NSTF using both RELAP5-3D and STARCCM+ codes. Accounting for the effects of ambient conditions, simulations from both codes predicted the natural circulation flow rates very well.

  19. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  20. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel Simulation de la combustion en boucle chimique d’une charge gazeuse dans un lit fluidisé circulant

    Directory of Open Access Journals (Sweden)

    Mahalatkar K.

    2011-05-01

    Full Text Available Numerical studies using Computational Fluid Dynamics (CFD have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185. There have been extensive experimental studies in Chemical Looping Combustion (CLC, however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particleparticle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. Des études numériques de simulation des écoulements (CFD ont été réalisées sur un lit fluidisé circulant opérant en combustion par boucle chimique (CLC décrit dans la littérature (Abad et al., 2006 Fuel 85, 1174-1185. Si de nombreuses études expérimentales ont été conduites pour étudier le procédé CLC, les études concernant la simulation des écoulements par CFD de ce concept sont très limitées. Le système de combustion en boucle chimique simulé dans cette étude concerne la combustion d’une charge gazeuse (méthane. Un modèle 2-D à deux phases continues a été utilisé pour décrire les phases gaz et solide avec des sous-modèles détaillés pour décrire les forces d’interactions entre fluideparticule et particule-particule. Des modèles cinétiques globaux ont été intégrés pour décrire les réactions de combustion et de transformation du matériau transporteur d’oxygène. Les résultats obtenus par CFD ont été comparés aux concentrations expérimentales mesurées des diff

  1. Experimental verification of the horizontal steam generator boil-off transfer degradation at natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Hyvaerinen, J. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Kouhia, J. [VTT Energy, Lappeenranta (Finland)

    1997-12-31

    The presentation summarises the highlights of experimental results obtained for VVER type horizontal steam generator heat transfer, primary side flow pattern, and mixing in the hot collector during secondary side boil-off with primary at single-phase natural circulation. The experiments were performed using the PACTEL facility with Large Diameter (LD) steam generator models, with collector instrumentation designed specifically for these tests. The key findings are as follows: (1) the primary to secondary heat transfer degrades as the secondary water inventory is depleted, following closely the wetted tube area; (2) a circulatory flow pattern exists in the tube bundle, resulting in reversed flow (from cold to the hot collector) in the lower part of the tube bundle, and continuous flow through the upper part, including the tubes that have already dried out; and (3) mixing of the hot leg flow entering the hot collector and reversed, cold, tube flow remains confined within the collector itself, extending only a row or two above the elevation at which tube flow reversal has taken place. 6 refs.

  2. Modeling of natural circulation for the inherent safety analysis of sodium cooled fast reactors

    Directory of Open Access Journals (Sweden)

    A.S. Bochkarev

    2016-12-01

    Full Text Available The paper discusses a set of developed integrated one-dimensional models of thermal-hydraulic processes that contribute to the removal of decay heat in a BN-type reactor. The assumptions and constraints involved in one-dimensional equations of unsteady natural convection in closed circuits have been analyzed. It has been shown that the calculated values of the primary circuit sodium temperature and flow rate in conditions with a loss of heat sink and with a forced circulation of the primary coolant are in a reasonable agreement with the results of a benchmark experiment in the PHENIX reactor. The model makes it possible to assess the effects general thermophysical and geometrical parameters and the selected technology have on the efficiency of passive heat removal by the natural coolant convection in the reactor tank and in the emergency heat removal system's intermediate circuit and by the heat transfer through the reactor vessel. The model is a part of an integrated algorithm used to assess the inherent safety level of advanced fast neutron reactors and is intended primarily to develop, at the early conceptual design stage, the recommendations and requirements with respect to the reactor equipment parameters leading to an increase in the reactor inherent safety. The model will be used to identify the set of quantitative thermal-hydraulic criteria that have an effect on the dynamics of emergency transients leading to a potential loss of integrity by the reactor safety barriers, and to formulate such limits for the defined criteria as would cause, if observed, the requirement for the safety barrier integrity to be met under any combination of the accident initiating events.

  3. The complex of looped diagrams and natural operations on Hochschild homology

    DEFF Research Database (Denmark)

    Klamt, Angela

    operations for commutative algebras (as computed in the rst part of the thesis) and a shifted BV structure which has been investigated by Abbaspour earlier. We prove that this BV structure comes from a suspended Cacti operad sitting inside the complex of looped diagrams. Last, we eneralize the setup...

  4. Looking for a gift of Nature: Hadron loops and hybrid mixing

    Energy Technology Data Exchange (ETDEWEB)

    Close, Frank; Thomas, Christopher

    2009-01-01

    We investigate how coupling of valence q qbar to meson pairs can modify the properties of conventional q qbar and hybrid mesons. In a symmetry limit the mixing between hybrids and conventional q qbar with the same J^PC is shown to vanish. Flavor mixing between heavy and light q qbar due to meson loops is shown to be dual to the

  5. The effects of phototherapy on the numbers of circulating natural killer cells and T lymphocytes in psoriasis.

    LENUS (Irish Health Repository)

    Tobin, A M

    2009-04-01

    The innate immune system is believed to be important in the pathogenesis of psoriasis and natural killer (NK) have been found in increased numbers in psoriatic plaques. Alterations in the numbers of NK cells in peripheral blood have been reported. We investigated the effect of phototherapy on levels of peripheral NK cells and lymphocytes in patients with psoriasis. In nine patients whom we followed before, during and after narrowband ultraviolet B (UVB) treatment there were no differences in the numbers of circulating lymphocytes, lymphocyte subsets or cells expressing NK markers and controls. Treatment with narrowband UVB did, however, significantly lower circulating CD4 counts which gradually recovered posttreatment.

  6. 多重耦合自然循环载热系统瞬态特性及其热工水力解耦%Transient Characteristics and Thermo-hydraulic Decoupling of Multi-coupled Natural Circulation Heat Transport Systems

    Institute of Scientific and Technical Information of China (English)

    李晓伟; 宋宇; 吴莘馨; 李笑天

    2014-01-01

    The thermo-hydraulic of multi-coupled natural circulation heat transport sys-tems has the characteristics of flow-and-heat-transfer coupling and between-loop coupling .In this paper ,theoretical and numerical methods were used to investigate the natural circulation start-up time ,circulation direction and thermo-hydraulic decoupling of the multi-coupled natural circulation systems .A transient flow model for a natural circulation loop was proposed ,which can predict the start-up time and flow decay of a natural circulation loop . The predictions coincide with numerical simulation . The circulation direction of a natural circulation loop with zero initial velocity was determined by the orientations of the heating and cooling surfaces .The vertical arrangement of the heating and cooling surfaces will make the system have an intrinsic circulation direction . However ,when the initial velocity is reverse to the intrinsic circulation direction and exceeds a critical value , it can make the circulation direction reverse to its intrinsic direction .A simple decoupling analysis method of the thermo-hydraulic of multi-coupled natural circulation heat transport systems was proposed . It can quickly predict the thermal-hydraulic parameters of a multi-coupled natural circulation system .Both theory and calculation show that the heat transfer capacity of a natural circulation loop is proportional to 1 .5 power of the temperature difference of the heating and cooling sources .%多重耦合自然循环载热系统热工水力具有流动换热耦合和回路间耦合的特点,本文采用理论分析结合数值计算的方法对自然循环的建立时间、流动方向及多重耦合自然循环系统的热工水力解耦等问题进行了研究。提出了自然循环载热系统瞬态流动的理论模型,该模型能预测自然循环建立时间、流动衰减等现象,模型计算结果与数值计算结果吻合。初始流速为零的

  7. One loop effects of natural SUSY in third generation fermion production at the ILC

    CERN Document Server

    Kouda, Yusaku; Kurihara, Yoshimasa; Ishikawa, Tadashi; Jimbo, Masato; Kato, Kiyoshi; Kuroda, Masaaki

    2016-01-01

    We investigate the 1-loop effects of supersymmetric particles on the third-generation fermion-pair production at the ILC within the framework of the Minimal Supersymmetric Standard Model. Three sets of the SUSY parameters are proposed which are consistent with the observed Higgs mass, the muon $g$-$2$, the Dark Matter abundance, etc. We discuss on the possibility of discovering the signals consistent with SUSY as well as of experimentally distinguishing the proposed sets of SUSY parameters.

  8. Evaluation of circulating levels and renal clearance of natural amino acids in patients with Cushing's disease.

    Science.gov (United States)

    Faggiano, A; Pivonello, R; Melis, D; Alfieri, R; Filippella, M; Spagnuolo, G; Salvatore, F; Lombardi, G; Colao, A

    2002-02-01

    Although the hypercortisolism-induced impairment of protein homeostasis is object of several studies, a detailed evaluation of the complete amino acid profile of patients with Cushing's syndrome (CS) has never been performed. The aim of the current open transversal controlled study was to evaluate serum and urinary concentrations as well as renal clearance of the complete series of natural amino acids and their relationship with glucose tolerance in patients with Cushing's disease (CD). Twenty patients with CD (10 active and 10 cured) and 20 sex- and age-matched healthy controls entered the study. Measurement of serum and urinary levels of the complete series of natural amino acids was performed in all patients analyzed by cationic exchange high performance liquid cromatography (HPLC) after 2 weeks of a standardized protein intake regimen. The renal clearance (renal excretion rate) of each amino acid was calculated on the basis of the serum and urinary concentrations of creatinine and the specific amino acid. Fasting glucose and insulin levels, glucose and insulin response to standard glucose load, insulinogenic and homeostasis model insulin resistance (Homa-R) indexes were also evaluated and correlated to the circulating levels and renal clearances of each amino acid. Significantly higher serum (p<0.01) and urinary (p<0.05) levels of alanine and cystine, lower serum and higher urinary levels of leucine, isoleucine and valine (p<0.05) and higher renal excretion rates of leucine, isoleucine and valine (p<0.01) were found in patients with active CD than in patients cured from the disease and in controls. No difference was found between cured patients and controls. Creatinine clearance was similar in active and cured patients and in controls. In patients with active CD, urinary cortisol levels were significantly correlated to urinary cystine levels (r=0.85; p<0.01) and renal excretion rate of leucine (r=-0.76; p<0.05), isoleucine (r=-0.76; p<0.05) and valine (r=-0

  9. Thermal-hydraulic characterization of the natural circulation of air between two vertical cylinders enclosed in a rectangular cavity

    Science.gov (United States)

    Alfredo Payan-Rodriguez, Luis; Rivera-Solorio, Carlos Ivan; Villarreal-Garcia, Salvador; Garcia-Cuellar, Alejadro Javier; Ramirez-Tijerina, Ramon

    2008-11-01

    This work presents the results of an experimental analysis focused on the characterization of the natural circulation of air in the vicinity of two vertical cylinders. A three dimensional cavity encloses each cylinder, where one of them is a heat source and the other is a heat sink. A wall with two holes of variable diameter delimits and connects the two enclosures in order to restrict the air flow exchanged between them. The distance between the center lines of the cylinders was varied with the purpose of measuring the effect of the surrounding walls on the natural circulation. All configurations were tested for different heat generation rates. A Particle Image Velocimeter was used to obtain the flow patterns and a set of thermocouples was installed to measure the temperature field. The experimental results are analyzed and discussed.

  10. Immune signal transduction in leishmaniasis from natural to artificial systems: role of feedback loop insertion.

    Science.gov (United States)

    Mol, Milsee; Patole, Milind S; Singh, Shailza

    2014-01-01

    Modulated immune signal (CD14-TLR and TNF) in leishmaniasis can be linked to EGFR pathway involved in wound healing, through crosstalk points. This signaling network can be further linked to a synthetic gene circuit acting as a positive feedback loop to elicit a synchronized intercellular communication among the immune cells which may contribute to a better understanding of signaling dynamics in leishmaniasis. Network reconstruction with positive feedback loop, simulation (ODE 15s solver) and sensitivity analysis of CD14-TLR, TNF and EGFR was done in SimBiology (MATLAB 7.11.1). Cytoscape and adjacency matrix were used to calculate network topology. PCA was extracted by using sensitivity coefficient in MATLAB. Model reduction was done using time, flux and sensitivity score. Network has five crosstalk points: NIK, IκB-NFκB and MKK (4/7, 3/6, 1/2) which show high flux and sensitivity. PI3K in EGFR pathway shows high flux and sensitivity. PCA score was high for cytoplasmic ERK1/2, PI3K, Atk, STAT1/3 and nuclear JNK. Of the 125 parameters, 20% are crucial as deduced by model reduction. EGFR can be linked to CD14-TLR and TNF through the MAPK crosstalk points. These pathways may be controlled through Ras and Raf that lie upstream of signaling components ERK ½ (c) and JNK (n) that have a high PCA score via a synthetic gene circuit for activating cell-cell communication to elicit an inflammatory response. Also a disease resolving effect may be achieved through PI3K in the EGFR pathway. The reconstructed signaling network can be linked to a gene circuit with a positive feedback loop, for cell-cell communication resulting in synchronized response in the immune cell population, for disease resolving effect in leishmaniasis. © 2013 Elsevier B.V. All rights reserved.

  11. Analysis of the Natural Circulation Behavior in Regional Energy {sub r}X-10MW{sub th}

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong Il [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of); Choi, Sun Do [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of); Kim, Moo Hwan [Pohang University of Science and Technology, Pohang (Korea, Republic of); Jeun, Gyoo Dong [Hanyang University, Seoul (Korea, Republic of)

    2011-05-15

    Recently there has been a renewal of interest in the Small- and Medium-sized nuclear Reactor (SMR)1-2 such as NHR-200 (China), CAREM (Argentina), IRIS (USA), PSRD-100 (Japan) and SMART (Korea). The SMR has two significant redeeming features various applications and enhanced safety. Firstly, the SMR is used for desalination, district heating, ship propulsion and small-scale power generation. Secondly, in the case of the SMR as the main pipes in the reactor pressure vessel are eliminated and have a simple design, it can avoid a large break loss of coolant accident (LBLOCA). A Regional Energy Research Institute for Next Generation (Redi) is designing a new conceptual nuclear reactor, a Regional Energy {sub r}X-10MW{sub th} (Rex- 10)3 as references of various SMRs. To increase reactor safety, the REX-10 adopts the cooling mode of natural circulation. To evaluate the natural circulation behavior of the REX-10, an experimental facility, NACTER, was designed by scaling down the REX-10. The detailed descriptions of NACTER are in section 2. The main purpose of this article is to evaluate the natural circulation behavior of the REX-10 by the experiment

  12. Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Bayham, Samuel [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Weber, Justin [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2017-02-21

    The proposed Clean Power Plan requires CO2 emission reductions of 30% by 2030 and further reductions are targeted by 2050. The current strategies to achieve the 30% reduction targets do not include options for coal. However, the 2016 Annual Energy Outlook suggests that coal will continue to provide more electricity than renewable sources for many regions of the country in 2035. Therefore, cost effective options to reduce greenhouse gas emissions from fossil fuel power plants are vital in order to achieve greenhouse gas reduction targets beyond 2030. As part of the U.S. Department of Energy’s Advanced Combustion Program, the National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metal-oxide) is continuously cycled to oxidize the fuel. This CLC concept is the focus of this research and will be described in more detail in the following sections. The solid material that is used to transport oxygen is called an oxygen carrier material. The cost, durability, and performance of this material is a key issue for the CLC technology. Researchers at the NETL R&IC have developed an oxygen carrier material that consists of copper, iron, and alumina. This material has been tested extensively using lab scale instruments such as thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mechanical attrition (ASTM D5757), and small fluidized bed reactor tests. This report will describe the results from a realistic, circulating, proof-of-concept test that was

  13. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Multiple Trauma.

    Science.gov (United States)

    Jo, Young Goun; Choi, Hyun Jung; Kim, Jung Chul; Cho, Young Nan; Kang, Jeong Hwa; Jin, Hye Mi; Kee, Seung Jung; Park, Yong Wook

    2017-05-01

    Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play important roles in autoimmunity, infectious diseases and cancers. However, little is known about the roles of these invariant T cells in multiple trauma. The purposes of this study were to examine MAIT and NKT cell levels in patients with multiple trauma and to investigate potential relationships between these cell levels and clinical parameters. The study cohort was composed of 14 patients with multiple trauma and 22 non-injured healthy controls (HCs). Circulating MAIT and NKT cell levels in the peripheral blood were measured by flow cytometry. The severity of injury was categorised according to the scoring systems, such as Acute Physiology and Chronic Health Evaluation (APACHE) II score, Simplified Acute Physiology Score (SAPS) II, and Injury Severity Score (ISS). Circulating MAIT and NKT cell numbers were significantly lower in multiple trauma patients than in HCs. Linear regression analysis showed that circulating MAIT cell numbers were significantly correlated with age, APACHE II, SAPS II, ISS category, hemoglobin, and platelet count. NKT cell numbers in the peripheral blood were found to be significantly correlated with APACHE II, SAPS II, and ISS category. This study shows numerical deficiencies of circulating MAIT cells and NKT cells in multiple trauma. In addition, these invariant T cell deficiencies were found to be associated with disease severity. These findings provide important information for predicting the prognosis of multiple trauma. © 2017 The Korean Academy of Medical Sciences.

  14. Circulating concentrations of insulin-like growth factor-1 in dogs with naturally occurring mitral regurgitation

    DEFF Research Database (Denmark)

    Pedersen, Henrik Duelund; Falk, Bo Torkel; Häggström, Jens;

    2005-01-01

    Insulin-like growth factor-1 (IGF-1), which mediates most effects of growth hormone, has effects on cardiac mass and function, and plays an important role in the regulation of vascular tone. In humans, an inverse relationship between degree of heart failure (HF) and circulating IGF-1 concentrations...

  15. Input Calibration and Validation of RELAP5 Against CIRCUS-IV Single Channel Tests on Natural Circulation Two-Phase Flow Instability

    Directory of Open Access Journals (Sweden)

    Viet-Anh Phung

    2015-01-01

    Full Text Available RELAP5 is a system thermal-hydraulic code that is used to perform safety analysis on nuclear reactors. Since the code is based on steady state, two-phase flow regime maps, there is a concern that RELAP5 may provide significant errors for rapid transient conditions. In this work, the capability of RELAP5 code to predict the oscillatory behavior of a natural circulation driven, two-phase flow at low pressure is investigated. The simulations are compared with a series of experiments that were performed in the CIRCUS-IV facility at the Delft University of Technology. For this purpose, we developed a procedure for calibration of the input and code validation. The procedure employs (i multiple parameters measured in different regimes, (ii independent consideration of the subsections of the loop, and (iii assessment of importance of the uncertain input parameters. We found that predicted system parameters are less sensitive to variations of the uncertain input and boundary conditions in high frequency oscillations regime. It is shown that calculation results overlap experimental values, except for the high frequency oscillations regime where the maximum inlet flow rate was overestimated. This finding agrees with the idea that steady state, two-phase flow regime maps might be one of the possible reasons for the discrepancy in case of rapid transients in two-phase systems.

  16. The Essential Role of Circulating Thyroglobulin in Maintaining Dominance of Natural Regulatory T Cell Function to Prevent Autoimmune Thyroiditis.

    Science.gov (United States)

    Kong, Y M; Brown, N K; Morris, G P; Flynn, J C

    2015-09-01

    Several key findings from the late 1960s to mid-1970s regarding thyroid hormone metabolism and circulating thyroglobulin composition converged with studies pertaining to the role of T lymphocytes in autoimmune thyroiditis. These studies cemented the foundation for subsequent investigations into the existence and antigenic specificity of thymus-derived natural regulatory T cells (nTregs). These nTregs prevented the development of autoimmune thyroiditis, despite the ever-present genetic predisposition, autoantigen (thyroglobulin), and thyroglobulin-reactive T cells. Guided by the hypothalamus-pituitary-thyroid axis as a fixed set-point regulator in thyroid hormone metabolism, we used a murine model and compared at key junctures the capacity of circulating thyroglobulin level (raised by thyroid-stimulating hormone or exogenous thyroglobulin administration) to strengthen self-tolerance and resist autoimmune thyroiditis. The findings clearly demonstrated an essential role for raised circulating thyroglobulin levels in maintaining the dominance of nTreg function and inhibiting thyroid autoimmunity. Subsequent identification of thyroglobulin-specific nTregs as CD4(+)CD25(+)Foxp3(+) in the early 2000s enabled the examination of probable mechanisms of nTreg function. We observed that whenever nTreg function was perturbed by immunotherapeutic measures, opportunistic autoimmune disorders invariably surfaced. This review highlights the step-wise progression of applying insights from endocrinologic and immunologic studies to advance our understanding of the clonal balance between natural regulatory and autoreactive T cells. Moreover, we focus on how tilting the balance in favor of maintaining peripheral tolerance could be achieved. Thus, murine autoimmune thyroiditis has served as a unique model capable of closely simulating natural physiologic conditions.

  17. CFD Analysis of the Primary Cooling System for the Small Modular Natural Circulation Lead Cooled Fast Reactor SNRLFR-100

    OpenAIRE

    Pengcheng Zhao; Kangli Shi; Shuzhou Li; Jingchao Feng; Hongli Chen

    2016-01-01

    Small modular reactor (SMR) has drawn wide attention in the past decades, and Lead cooled fast reactor (LFR) is one of the most promising advanced reactors which are able to meet the safety economic goals of Gen-IV nuclear energy systems. A small modular natural circulation lead cooled fast reactor-100 MWth (SNRLFR-100) is being developed by University of Science and Technology of China (USTC). In the present work, a 3D CFD model, primary heat exchanger model, fuel pin model, and point kineti...

  18. Pre-test analysis for identification of natural circulation instabilities in TALL-3D facility

    Energy Technology Data Exchange (ETDEWEB)

    Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se; Jeltsov, Marti, E-mail: marti@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2017-04-01

    Highlights: • Global optimum search method was used to identify a region of instability. • Parametric study was used for detailed investigation of system behavior modes. • The results include identification of sustained mass flow rate oscillations. • Recommendations are made for selection of optimal experimental conditions. - Abstract: TALL-3D facility is a lead-bismuth eutectic (LBE) thermal-hydraulic loop designed to provide experimental data on thermal-hydraulics phenomena for validation of stand-alone and coupled System Thermal Hydraulics (STH) and Computational Fluid Dynamics (CFD) codes. Pre-test analysis is crucial for proper choice of experimental conditions at which the experimental data would be most useful for code validation and benchmarking. The goal of this work is to identify these conditions at which the experiment is challenging for the STH codes yet minimizes the 3D-effects from the test section on the loop dynamics. The analysis is focused on the identification of limit cycle flow oscillations in the TALL-3D facility main heater leg using a global optimum search tool GA-NPO to find a general region in the parameter space where oscillatory behavior is expected. As a second step a grid study is conducted outlining the boundaries between different stability modes. Phenomena, simulation results and methodology for selection of the test parameters are discussed in detail and recommendations for experiments are provided.

  19. The complex of looped diagrams and natural operations on Hochschild homology

    DEFF Research Database (Denmark)

    Klamt, Angela

    In this thesis natural operations on the (higher) Hochschild complex of a given family of algebras are investigated. We give a description of all formal operations (in the sense of Wahl) for the class of commutative algebras using Loday's lambda operation, Connes' boundary operator and shue produ...... of formal operations on Hochschild homology to higher Hochschild homology. We also generalize statements about the formal operations and give smaller models for the formal operations on higher Hochschild homology in certain cases....

  20. Estimation of the coolant flow through a natural circulation BWR fuel channel applying and equivalent electrical model

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, DEPFI, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Campus Morelos en IMTA, Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_ig@yahoo.com.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-10-15

    This work presents the design and implementation of an advanced controller for a reduced order model of a BWR reactor core cooled by natural circulating water, which allows real time estimates of coolant flows through fuel assemblies about standard neutron flux strings. Nuclear power plants with boiling water reactors control individual fuel assembly coolant flows by forced circulation using external or internal water pumps and different core support plate orifices. These two elements reduce flow dependency on local channel pressure drops. In BWR reactors using only natural circulation coolant flows, these two elements are not available and therefore individual channel coolant flows are highly dependent in local conditions, such as power distributions and local pressure drops. Therefore it is expected that grater uncertainties in these variables be used during safety, fuel management and other analysis, which in turns may lead to increased operation penalties, such as tighter operating limits. The objective of this work is to asses by computer simulations means to reduce uncertainties in the measurement of fuel assembly coolant flows and eventually the associated penalties. During coolant phase transitions, pressure drops and local power may alter local natural circulation through fuel assemblies and flow estimates can be helped or not by control rod moves. This work presents the construction of an optimal controller for a core flow estimator based on a reduced order model of the coolant going though the reactor vessel components and nuclear core. This model is to be driven by plant signals from standard BWR instrumentation in order to estimate the coolant flows in selected fuel assemblies about a LPRM string. For this purpose an equivalent electrical model has been mathematically developed and numerically tested. The power-flow maps of typical BRW are used as steady state references for this equivalent model. Once these were fully reproduced for steady state

  1. Nature on the Move: The Value and Circulation of Liquid Nature and the Emergence of Fictitious Conservation

    NARCIS (Netherlands)

    B.E. Büscher (Bram)

    2013-01-01

    markdownabstract__Abstract__ A rich body of literature investigates the many ways in which nature is impacted upon and transformed by the “endless accumulation of capital.” Much less attention has been reserved for understanding how capitalist actors increasingly aim to profit from the non-extracti

  2. CFD Analysis of the Primary Cooling System for the Small Modular Natural Circulation Lead Cooled Fast Reactor SNRLFR-100

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhao

    2016-01-01

    Full Text Available Small modular reactor (SMR has drawn wide attention in the past decades, and Lead cooled fast reactor (LFR is one of the most promising advanced reactors which are able to meet the safety economic goals of Gen-IV nuclear energy systems. A small modular natural circulation lead cooled fast reactor-100 MWth (SNRLFR-100 is being developed by University of Science and Technology of China (USTC. In the present work, a 3D CFD model, primary heat exchanger model, fuel pin model, and point kinetic model were established based on some reasonable simplifications and assumptions, the steady-state natural circulation characteristics of SNCLFR-100 primary cooling system were discussed and illustrated, and some reasonable suggestions were proposed for the reactor’s thermal-hydraulic and structural design. Moreover, in order to have a first evaluation of the system behavior in accident conditions, an unprotected loss of heat sink (ULOHS transient simulation at beginning of the reactor cycle (BOC has been analyzed and discussed based on the steady-state simulation results. The key temperatures of the reactor core are all under the safety limits at transient state; the reactor has excellent thermal-hydraulic performance.

  3. Investigation of TASS/SMR Capability to Predict a Natural Circulation in the Test Facility for an Integral Reactor

    Directory of Open Access Journals (Sweden)

    Young-Jong Chung

    2014-01-01

    Full Text Available System-integrated modular advanced reactor (SMART is a small-sized advanced integral type pressurized water reactor (PWR with a rated thermal power of 330 MW. It can produce 100 MW of electricity or 90 MW of electricity and 40,000 ton of desalinated water concurrently, which is sufficient for 100,000 residents. The design features contributing to safety enhancement are basically inherent safety improvement and passive safety features. TASS/SMR code was developed for an analysis of design based events and accidents in an integral type reactor reflecting the characteristics of the SMART design. The main purpose of the code is to analyze all relevant phenomena and processes. The code should be validated using experimental data in order to confirm prediction capability. TASS/SMR predicts well the overall thermal-hydraulic behavior under various natural circulation conditions at the experimental test facility for an integral reactor. A pressure loss should be provided a function of Reynolds number at low velocity conditions in order to simulate the mass flow rate well under natural circulations.

  4. Investigation of some locally water-soluble natural polymers as circulation loss control agents during oil fields drilling

    Directory of Open Access Journals (Sweden)

    A.M. Alsabagh

    2014-03-01

    Full Text Available Eliminating or controlling lost circulation during drilling process is costly and time-consuming. Polymers play an important role in mud loss control for their viscosity due to their high molecular weight. In this paper, three natural cellulosic polymers (carboxymethyl cellulose, guar gum and potato starch were investigated as lost circulation control material by measuring different filtration parameters such as; spurt loss, fluid loss and permeability plugging tester value according to the American Petroleum Institute (API standard. The experiments were conducted in a permeability plugging apparatus (PPA at a differential pressure of 100 and 300 psi, using 10, 60 and 90 ceramic discs. From the obtained data, it was found that the 0.1% from the carboxymethyl cellulose exhibited the best results in the filtration parameters among 0.3% guar gum and 0.6% potato starch. At the same time the carboxymethyl cellulose (CMC enhanced the rheological properties of the drilling mud better than the two other used natural polymers in the term of gel strength, thixotropy, plastic and apparent viscosity. These results were discussed in the light of the adsorption and micellar formation.

  5. Reliability Assessment of 2400 MWth Gas-Cooled Fast Reactor Natural Circulation Decay Heat Removal in Pressurized Situations

    Directory of Open Access Journals (Sweden)

    C. Bassi

    2008-01-01

    Full Text Available As the 2400 MWth gas-cooled fast reactor concept makes use of passive safety features in combination with active safety systems, the question of natural circulation decay heat removal (NCDHR reliability and performance assessment into the ongoing probabilistic safety assessment in support to the reactor design, named “probabilistic engineering assessment” (PEA, constitutes a challenge. Within the 5th Framework Program for Research and Development (FPRD of the European Community, a methodology has been developed to evaluate the reliability of passive systems characterized by a moving fluid and whose operation is based on physical principles, such as the natural circulation. This reliability method for passive systems (RMPSs is based on uncertainties propagation into thermal-hydraulic (T-H calculations. The aim of this exercise is finally to determine the performance reliability of the DHR system operating in a “passive” mode, taking into account the uncertainties of parameters retained for thermal-hydraulical calculations performed with the CATHARE 2 code. According to the PEA preliminary results, exhibiting the weight of pressurized scenarios (i.e., with intact primary circuit boundary for the core damage frequency (CDF, the RMPS exercise is first focusing on the NCDHR performance at these T-H conditions.

  6. Study on model of onset of nucleate boiling in natural circulation with subcooled boiling using unascertained mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhoutao@mail.tsinghua.edu.cn; Wang Zenghui [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Yang Ruichang [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2005-10-01

    Experiment data got from onset of nucleate boiling (ONB) in natural circulation is analyzed using unascertained mathematics. Unitary mathematics model of the relation between the temperature and onset of nucleate boiling is built up to analysis ONB. Multiple unascertained mathematics models are also built up with the onset of natural circulation boiling equation based on the experiment. Unascertained mathematics makes that affirmative results are a range of numbers that reflect the fluctuation of experiment data more truly. The fluctuating value with the distribution function F(x) is the feature of unascertained mathematics model and can express fluctuating experimental data. Real status can be actually described through using unascertained mathematics. Thus, for calculation of ONB point, the description of unascertained mathematics model is more precise than common mathematics model. Based on the unascertained mathematics, a new ONB model is developed, which is important for advanced reactor safety analysis. It is conceivable that the unascertained mathematics could be applied to many other two-phase measurements as well.

  7. Circulating natural killer and γδ T cells decrease soon after infection of rhesus macaques with lymphocytic choriomeningitis virus

    Directory of Open Access Journals (Sweden)

    Juan D Rodas

    2009-07-01

    Full Text Available Rhesus macaques infected with the WE strain of lymphocytic choriomeningitis virus (LCMV-WE serve as a model for human infection with Lassa fever virus. To identify the earliest events of acute infection, rhesus macaques were monitored immediately after lethal infection for changes in peripheral blood mononuclear cells (PBMCs. Changes in CD3, CD4, CD8 and CD20 subsets did not vary outside the normal fluctuations of these blood cell populations; however, natural killer (NK and γδ T cells increased slightly on day 1 and then decreased significantly after two days. The NK subsets responsible for the decrease were primarily CD3-CD8+ or CD3-CD16+ and not the NKT (primarily CD3+CD56+ subset. Macaques infected with a non-virulent arenavirus, LCMV-Armstrong, showed a similar drop in circulating NK and γδ T cells, indicating that this is not a pathogenic event. V³9 T cells, representing the majority of circulating γδ T cells in rhesus macaques, displayed significant apoptosis when incubated with LCMV in cell culture; however, the low amount of cell death for virus-co-cultured NK cells was insufficient to account for the observed disappearance of this subset. Our observations in primates are similar to those seen in LCMV-infected mice, where decreased circulating NK cells were attributed to margination and cell death. Thus, the disappearance of these cells during acute hemorrhagic fever in rhesus macaques may be a cytokine-induced lymphopenia common to many virus infections.

  8. Circulation of Coxiella burnetii in a Naturally Infected Flock of Dairy Sheep: Shedding Dynamics, Environmental Contamination, and Genotype Diversity.

    Science.gov (United States)

    Joulié, A; Laroucau, K; Bailly, X; Prigent, M; Gasqui, P; Lepetitcolin, E; Blanchard, B; Rousset, E; Sidi-Boumedine, K; Jourdain, E

    2015-10-01

    Q fever is a worldwide zoonosis caused by Coxiella burnetii. Domestic ruminants are considered to be the main reservoir. Sheep, in particular, may frequently cause outbreaks in humans. Because within-flock circulation data are essential to implementing optimal management strategies, we performed a follow-up study of a naturally infected flock of dairy sheep. We aimed to (i) describe C. burnetii shedding dynamics by sampling vaginal mucus, feces, and milk, (ii) assess circulating strain diversity, and (iii) quantify barn environmental contamination. For 8 months, we sampled vaginal mucus and feces every 3 weeks from aborting and nonaborting ewes (n=11 and n=26, respectively); for lactating females, milk was obtained as well. We also sampled vaginal mucus from nine ewe lambs. Dust and air samples were collected every 3 and 6 weeks, respectively. All samples were screened using real-time PCR, and strongly positive samples were further analyzed using quantitative PCR. Vaginal and fecal samples with sufficient bacterial burdens were then genotyped by multiple-locus variable-number tandem-repeat analysis (MLVA) using 17 markers. C. burnetii burdens were higher in vaginal mucus and feces than in milk, and they peaked in the first 3 weeks postabortion or postpartum. Primiparous females and aborting females tended to shed C. burnetii longer and have higher bacterial burdens than nonaborting and multiparous females. Six genotype clusters were identified; they were independent of abortion status, and within-individual genotype diversity was observed. C. burnetii was also detected in air and dust samples. Further studies should determine whether the within-flock circulation dynamics observed here are generalizable.

  9. Hydrodynamique, transfert de chaleur et combustion de gaz naturel en lit fluidisé circulant Hydrodynamics, Heat Transfer and Combustion of Natural Gas in a Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Feugier A.

    2006-11-01

    Full Text Available L'hydrodynamique, les transferts de chaleur et la combustion du gaz naturel ont été étudiés dans un réacteur à lit circulant de 15 cm de diamètre et de 7 m de haut. Ce réacteur peut opérer avec des vitesses de gaz allant jusqu'à 15 m/s, jusqu'à des températures de 880-900°C et avec des débits de solides compris entre 0 et 15t/h. Les charges utilisées sont des sables de granulométrie allant de 95 à 625 microns. Le profil de concentration en solides dans le réacteur est déterminé à partir du profil de pression. Une corrélation reliant la vitesse de glissement des particules aux principaux paramètres opératoires, rend compte de façon très satisfaisante de l'ensemble des résultats expérimentaux. La mise en place d'un échangeur en paroi dans la partie supérieure du réacteur a permis la détermination de coefficients d'échange thermique. Ces derniers sont essentiellement fonction de la, concentration en particules au droit de l'échangeur et de la granulométrie des particules. Des valeurs allant jusqu'à 200 W/m2 K peuvent, être obtenues. Enfin, la combustion du méthane s'avère très sensible à la présence de particules dans le réacteur. Ces particules ont un effet inhibiteur. Hydrodynamics, heat transfer and combustion of natural gas have been investigated in a circulating-bed reactor 15 cm in diameter and 7 m high. This reactor can operate with gas velocities up to 15 m/s, at temperature up to 880-900°C and with solids flow rates of between 0 and 15 t/h. The solids used are sands with a particle size ranging from 95 to 625 microns. The solids concentration profile in the reactor is determined from the pressure profile. A correlation linking the slippage velocity of particles to the principal operating parameters very satisfactorily takes into consideration the overall experimental results. The installation of a wall heat exchanger in the upper part of the reactor enabled the heat exchange coefficients to be

  10. The simulation of start-up of natural circulation boiler based on the Astrom-Bell model

    Science.gov (United States)

    Zhang, Tianyu; Zhao, Zhenning; Li, Yuanyuan; Zhu, Xianran

    2017-01-01

    This paper presents a numerical investigation on the dynamic analysis of steam and water system of the natural circulation boiler SHL35.2.5/AI with the software MATLAB/SIMULINK. Based on the four-order Astrom-Bell model, a model applicable the specific boiler was established, casting light on the changes in parameters of designed, cold start and varying load condition. And a curve of cold start is obtained, which can be taken as reference for practical operation. In addition, in the condition of varying load, our model captured the phenomenon of false water level, and according analysis is made. Our study introduces a feasible method of simulation on the dynamic analysis of steam and water system on other boilers as well.

  11. Experimental and computational studies on the natural circulation characteristics of a small- and medium-sized reactor, REX-10

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong Il

    2012-02-15

    The rapid economic development in many countries has led to a growing need for energy. To meet the demand, the nuclear power generation is emerging as a viable alternative because it emits much smaller amount of carbon dioxide as compared to conventional fossil fuel plant produces high power density energy. Because of the latter attractiveness, many large-sized nuclear reactors ({approx}1000 MWe/unit) for electricity generation have been constructed around the world. Recently, small- and medium-sized nuclear reactors (SMRs) receive attention because of its effective adaptability to diversified energy demands. Several attractiveness of the SMR is worth to report here. First, the SMR is a viable alternative for the developing countries that have inferior electricity grids. Second, the SMR may effectively prevent the Large-Break Loss of Coolant Accident (LBLOCA) as it adopts the integral-type reactor. Finally, the SMR is used for various applications - desalination, district heating, small-scale power generation, ship propulsion, to mention a few. These attractiveness provides reasonable justification to construct the SMRs such as SMART, IRIS, CAREM, and KLT-40S. As such, the Regional Energy Research Institute for Next Generation (RERI) has been developing a SMR for regional energy supply, REX-10 since 2005. The REX-10 is the integral-type reactor and relies on natural circulation to improve passive safety. In this study, the natural circulation behavior and capability of the REX-10 is investigated experimentally as well as numerically. To evaluate the thermal-hydraulics of the REX-10, two experimental facilities . RTF and NACTER . were designed and fabricated using the scaling laws proposed by Ishii et al. Both experimental facilities consist of main components of the core, heat exchanger, hot legs, pressurizer, and chillers; however, both experimental facilities have different heat exchanger systems because two types of the heat exchanger are being considered. To

  12. Post shut-down decay heat removal from nuclear reactor core by natural convection loops in sodium pool

    Energy Technology Data Exchange (ETDEWEB)

    Rajamani, A. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Sundararajan, T., E-mail: tsundar@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Prasad, B.V.S.S.S. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Parthasarathy, U.; Velusamy, K. [Nuclear Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2016-05-15

    Highlights: • Transient simulations are performed for a worst case scenario of station black-out. • Inter-wrapper flow between various sub-assemblies reduces peak core temperature. • Various natural convection paths limits fuel clad temperatures below critical level. - Abstract: The 500 MWe Indian pool type Prototype Fast Breeder Reactor (PFBR) has a passive core cooling system, known as the Safety Grade Decay Heat Removal System (SGDHRS) which aids to remove decay heat after shut down phase. Immediately after reactor shut down the fission products in the core continue to generate heat due to beta decay which exponentially decreases with time. In the event of a complete station blackout, the coolant pump system may not be available and the safety grade decay heat removal system transports the decay heat from the core and dissipates it safely to the atmosphere. Apart from SGDHRS, various natural convection loops in the sodium pool carry the heat away from the core and deposit it temporarily in the sodium pool. The buoyancy driven flow through the small inter-wrapper gaps (known as inter-wrapper flow) between fuel subassemblies plays an important role in carrying the decay heat from the sub-assemblies to the hot sodium pool, immediately after reactor shut down. This paper presents the transient prediction of flow and temperature evolution in the reactor subassemblies and the sodium pool, coupled with the safety grade decay heat removal system. It is shown that with a properly sized decay heat exchanger based on liquid sodium and air chimney stacks, the post shutdown decay heat can be safely dissipated to atmospheric air passively.

  13. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    Energy Technology Data Exchange (ETDEWEB)

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  14. HIV Type 1 Integrase Natural Polymorphisms in Viral Variants Circulating in FSU Countries.

    Science.gov (United States)

    Lapovok, Ilya; Laga, Vita; Kazennova, Elena; Bobkova, Marina

    2017-08-15

    Natural variability of integrase (IN) across HIV-1 variants may influence the emergence of resistant viruses. The most apparent explanation of these fact is the IN polymorphism and the associated differences in codon usage, which, in turn, influence the probability and the terms of DRMs acquisition. Possible mechanisms by which polymorphisms affect DRMs emergence remain disputed and should still be clarified because these substitutions may be associated with a reduced activity of some INSTIs and may impact on ART regimen choice depending of HIV-1 subtype. The aim of this work was to assess the prevalence of naturally occurring polymorphisms within the HIV-1 integrase gene, which might influence the susceptibility to INSTIs, among the patients from Russia and former USSR countries, according to HIV-1 subtypes. A study involved 506 HIV-1 IN sequences of INSTI-naive patients from Russia, Ukraine, Armenia, Kyrgyzstan, Kazakhstan, Uzbekistan, Belarus, and Georgia. Among them, 194 sequences were newly obtained in this study and 312 were downloaded from Los-Alamos database. The proviral DNA was sequenced using an in-house PCR protocol designed on the basis of a well-conserved integrase region in order to detect all HIV-1 variants. The phylogenetic analyses based on IN population sequencing found subtype A6 being the most prevalent (259) (51.2%) in the collection studied, followed by subtype G (36) (7.1%), AG-recombinants (148) (29.3%), subtype B (50) (9.9%), and CRF03_AB (5) (1,0%). The major INSTI resistance-associated mutations (DRMs) were found only in two A6 samples. The prevalence of minor/accessory substitutions depended on HIV-1 variants, while the most notable findings were L74I in subtype A6 (93.1%) and E157Q in subtype B (44.0%). Most of minor DRMs and polymorphic substitutions were concentrated in the central catalytic domain of the IN molecule. Both the DDE triad and HHCC zinc binding motifs were fully conserved. The results of the study suggest a very low

  15. Asymptotic stability analysis of open-loop circulating current suppression of modular multilevel converter%模块化多电平变流器开环环流抑制策略的渐进稳定性分析

    Institute of Scientific and Technical Information of China (English)

    赵聪; 李耀华; 李子欣; 王平; 楚遵方

    2016-01-01

    The circulating current of modular multilevel converter ( MMC) makes arm current distorted. It increa⁃ses converter losses and also threatens safe operating of power devices. This paper analyzes the open⁃loop circulat⁃ing current suppression method based on arm energy from two aspects. Firstly, the fundamental of the open⁃loop circulating current suppression algorithm is proved. This paper also proposes general principle of open⁃loop circulat⁃ing current suppression which provides theoretical basis for system design of MMC. Secondly, compared with the actual value modulation algorithm which is easier to implement, the method based on arm energy in this paper has module capacitor voltage self⁃balancing features without additional control. This paper also proves that the open⁃loop circulating current suppression based on arm energy has module voltage self⁃balancing features theoretically. Hence, the global asymptotic stability of the open⁃loop circulating current suppression is proved. Finally, the meth⁃od and its module capacitor voltage self⁃balancing are verified by simulation.%模块化多电平变流器相间环流的存在使得桥臂电流产生畸变,一方面增加了变流器的损耗,另一方面对功率器件的安全工作范围也提出了更高的要求。本文从两个方面分析了开环环流抑制策略的渐进稳定性。首先证明了开环环流抑制策略的基本原理,并在此基础上提出开环环流抑制的一般原理,为模块化多电平变流器开环环流抑制的系统设计提供了理论依据。其次,相比实现起来更为简单的实际值调制环流抑制方法,本文的基于桥臂能量的开环环流抑制策略具有模块电容电压自平衡的特性,无需施加额外的控制;同时,从理论上证明了该开环环流抑制策略具备在不平衡条件下电容电压自平衡的特性,从而证明了该方法的渐近稳定性。最后,通过仿真验证了

  16. Contribution to the study of the thermal and hydrodynamical properties of a two-phase natural circulation flow of normal helium (He I) for the cooling of superconducting magnets; Contribution a l'etude des proprietes thermiques et hydrodynamiques d'un ecoulement d'helium normal (He I) diphasique en circulation naturelle pour le refroidissement des aimants supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Benkheira, L

    2007-06-15

    The method of cooling based on the thermosyphon principle is of great interest because of its simplicity, its passivity and its low cost. It is adopted to cool down to 4,5 K the superconducting magnet of the CMS particles detector of the Large Hadron Collider (LHC) experiment under construction at CERN, Geneva. This work studies heat and mass transfer characteristics of two phase He I in a natural circulation loop. The experimental set-up consists of a thermosyphon single branch loop mainly composed of a phase separator, a downward tube, and a test section. The experiments were conducted with varying several parameters such as the diameter of the test section (10 mm or 14 mm) and the applied heat flux up to the appearance of the boiling crisis. These experiments have permitted to determine the laws of evolution of the various parameters characterizing the flow (circulation mass flow rate, vapour mass flow rate, vapour quality, friction coefficient, two phase heat transfer coefficient and the critical heat flux) as a function of the applied heat flux. On the base of the obtained results, we discuss the validity of the various existing models in the literature. We show that the homogeneous model is the best model to predict the hydrodynamical properties of this type of flow in the vapour quality range 0{<=}x{<=}30%. Moreover, we propose two models for the prediction of the two phase heat transfer coefficient and the density of the critical heat flux. The first one considers that the effects of the forced convection and nucleate boiling act simultaneously and contribute to heat transfer. The second one correlates the measured critical heat flux density with the ratio altitude to diameter. (author)

  17. Simulation of short-term pressure regulation during the tilt test in a coupled 3D-0D closed-loop model of the circulation.

    Science.gov (United States)

    Lau, Kevin D; Figueroa, C Alberto

    2015-08-01

    Short-term fluctuations in arterial pressures arising from normal physiological function are buffered by a negative feedback system known as the arterial baroreflex. Initiated by altered biomechanical stretch in the vessel wall, the baroreflex coordinates a systemic response that alters heart rate, cardiac contractility and peripheral vessel vasoconstriction. In this work, a coupled 3D-0D formulation for the short-term pressure regulation of the systemic circulation is presented. Including the baroreflex feedback mechanisms, a patient-specific model of the large arteries is subjected to a simulated head up tilt test. Comparative simulations with and without baroreflex control highlight the critical role that the baroreflex has in regulating variations in pressures within the systemic circulation.

  18. Malthus and the Philanthropists, 1764–1859: The Cultural Circulation of Political Economy, Botany, and Natural Knowledge

    Directory of Open Access Journals (Sweden)

    J. Marc MacDonald

    2017-01-01

    Full Text Available Modernity does not possess a monopoly on mass incarceration, population fears, forced migration, famine, or climatic change. Indeed, contemporary and early modern concerns over these matters have extended interests in Thomas Malthus. Yet, despite extensive research on population issues, little work explicates the genesis of population knowledge production or how the process of intellectual transfer occurred during the eighteenth and early nineteenth centuries. This paper examines the Delessert network’s instrumental role in cultivating, curating, and circulating knowledge that popularized Malthusian population theory, including the theory’s constitutive elements of political economy, philanthropy, industry, agriculture, and botany. I show how deviant, nonconformist groups suffered forced migration for their political philosophy, particularly during the revolutionary 1790s, resulting in their imprisonment and migration to America. A consequence of these social shifts was the diffusion and dissemination of population theory—as a pursuit of scientific knowledge and exploration—across both sides of the Atlantic. By focusing on the Delesserts and their social network, I find that a byproduct of inter and intra continental migration among European elites was a knowledge exchange that stimulated Malthus’s thesis on population and Genevan Augustin Pyramus Candolle’s research on botany, ultimately culminating in Charles Darwin’s theory of natural selection and human evolution.

  19. Evaluation of some natural water-insoluble cellulosic material as lost circulation control additives in water-based drilling fluid

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Alsabagh

    2015-12-01

    In this work, three natural water-insoluble cellulosic materials; peanut hulls, bagasse and sawdust were investigated as lost circulation control materials. One hundred and eight different LCM samples made of various materials were tested with mud. The experiments were conducted in a permeability plugging apparatus (PPA at a differential pressure of 100 psi and 300 psi, using 10, 60 and 90 ceramic discs. The performance of each LCM sample was determined based on the amount of spurt loss and total fluid loss of the mud according to the American Petroleum Institute (API standard. The obtained results showed that, the amount of the fluid loss depends on the LCM material, concentration and size distribution, testing results show that, the peanut gives the best results among the bagasse and sawdust, especially fine size which exhibited better results in the filtration characteristics due to the better filling properties of this size. Peanut hulls, bagasse and sawdust show a slight effect on the rheological properties of the mud. The results were discussed on light of particle size distribution.

  20. Analysis of a natural draught tower in the circulation seawater system of nuclear power plant of Laguna Verde; Analisis de una torre de tiro natural en el sistema de agua de circulacion de mar de la central nucleoelectrica Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Vargas A, A. [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Veracruz-Medellin Km. 7.5, Veracruz (Mexico)], e-mail: francisco.tijerina@cfe.gob.mx

    2009-10-15

    The analysis of a natural draught tower in open circuit for the cooling system of seawater circulation on the nuclear power plant of Laguna Verde, it is based on conditions of 2027 MWt and 2317 MWt, where the flows of circulation water system hardly vary and whose purpose will be, to cool the seawater circulation. The circulation water system is used as heat drain in main condenser of turbo generator to condense the nuclear vapor. The annual average temperature in the seawater at present is of 26 C to the entrance to circulation water system and it is vary in accordance with the time of year. The mean temperature of leaving of circulation water system to the sea is of 41 C. Having a cooling tower to reduce the entrance temperature to the circulation water system, it improves the efficiency of thermal transfer in condenser, it improves the vacuum in condenser giving more operative margin to avoid condenser losses by air entrances and nuclear power plant shutdowns, as well as for to improve the efficiency of operative balance of nuclear power plant, also it prevents the impact in thermal transfer efficiency in condenser by the climatic change. (Author)

  1. The simulation of thermohydraulic phenomena in a pressurized water reactor primary loop

    Energy Technology Data Exchange (ETDEWEB)

    Popp, M

    1987-01-01

    Several important fluid flow and heat transfer phenomena essential to nuclear power reactor safety were investigated. Scaling and modeling laws for pressurized water reactors are reviewed and a new scaling approach focusing on the overall loop behavior is presented. Scaling criteria for one- and two-phase natural circulation are developed, as well as a simplified model describing the first phase of a small break loss of coolant accident. Reactor vessel vent valve effects are included in the analysis of steady one-phase natural circulation flow. Two new dimensionless numbers, which uniquely describe one-phase flow in natural circulation loops, were deduced and are discussed. A scaled model of the primary loop of a typical Babcock and Wilcox reactor was designed, built, and tested. The particular prototype modeled was the TMI unit 2 reactor. The electrically heated, stainless steel model operates at a maximum pressure of 300 psig and has a maximum heat input of 188 kW. The model is about 4 times smaller in height than the prototype reactor, with a nominal volume scale of 1:500. Experiments were conducted establishing subcooled natural circulation in the model loop. Both steady flow and power transients were investigated.

  2. Scaled Facility Design Approach for Pool-Type Lead-Bismuth Eutectic Cooled Small Modular Reactor Utilizing Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangrok; Shin, Yong-Hoon; Lee, Jueun; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    In low carbon era, nuclear energy is the most prominent energy source of electricity. For steady ecofriendly nuclear energy supply, Generation IV reactors which are future nuclear reactor require safety, sustainability, economics and non-proliferation as four criteria. Lead cooled fast reactor (LFR) is one of these reactor type and Generation IV international forum (GIF) adapted three reference LFR systems which are a small and movable systems with long life without refueling, intermediate size and huge electricity generation system for power grid. NUTRECK (Nuclear Transmutation Energy Center of Korea) has been designed reactor called URANUS (Ubiquitous, Rugged, Accident-forgiving, Non-proliferating, and Ultra-lasting Sustainer) which is small modular reactor and using lead-bismuth eutectic coolant. To prove natural circulation capability of URANUS and analyze design based accidents, scaling mock-up experiment facility will be constructed. In this paper, simple specifications of URANUS will be presented. Then based on this feature, scaling law and scaled facility design results are presented. To validate safety feature and thermodynamics characteristic of URANUS, scaled mockup facility of URANUS is designed based on the scaling law. This mockup adapts two area scale factors, core and lower parts of mock-up are scaled for 3D flow experiment. Upper parts are scaled different size to reduce electricity power and LBE tonnage. This hybrid scaling method could distort some thermal-hydraulic parameters, however, key parameters for experiment will be matched for up-scaling. Detailed design of mock-up will be determined through iteration for design optimization.

  3. Mass flow rate sensitivity and uncertainty analysis in natural circulation boiling water reactor core from Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto, E-mail: gepe@xanum.uam.m [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico D.F., 09340 (Mexico); Verma, Surendra P. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/no., Col Centro, Apartado Postal 34, Temixco 62580 (Mexico); Vazquez-Rodriguez, Alejandro [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico D.F., 09340 (Mexico); Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragan 779, Col. Narvarte, Mexico D.F. 03020 (Mexico)

    2010-05-15

    Our aim was to evaluate the sensitivity and uncertainty of mass flow rate in the core on the performance of natural circulation boiling water reactor (NCBWR). This analysis was carried out through Monte Carlo simulations of sizes up to 40,000, and the size, i.e., repetition of 25,000 was considered as valid for routine applications. A simplified boiling water reactor (SBWR) was used as an application example of Monte Carlo method. The numerical code to simulate the SBWR performance considers a one-dimensional thermo-hydraulics model along with non-equilibrium thermodynamics and non-homogeneous flow approximation, one-dimensional fuel rod heat transfer. The neutron processes were simulated with a point reactor kinetics model with six groups of delayed neutrons. The sensitivity was evaluated in terms of 99% confidence intervals of the mean to understand the range of mean values that may represent the entire statistical population of performance variables. The regression analysis with mass flow rate as the predictor variable showed statistically valid linear correlations for both neutron flux and fuel temperature and quadratic relationship for the void fraction. No statistically valid correlation was observed for the total heat flux as a function of the mass flow rate although heat flux at individual nodes was positively correlated with this variable. These correlations are useful for the study, analysis and design of any NCBWR. The uncertainties were propagated as follows: for 10% change in the mass flow rate in the core, the responses for neutron power, total heat flux, average fuel temperature and average void fraction changed by 8.74%, 7.77%, 2.74% and 0.58%, respectively.

  4. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  5. Study on Instability of Natural Circulation Induced by Subcooled Boiling%欠热沸腾诱发自然循环不稳定性的研究

    Institute of Scientific and Technical Information of China (English)

    彭天骥; 邱金荣; 郭赟; 曾和义

    2013-01-01

    The best estimate system analysis code RELAP5 was used to analyze the natural circulation systems. The instability boundaries of one natural circulation system were obtained under different conditions. According to present results, most of the boundary points were found in the low subcooled boiling zone. The natural circulation systems can tolerate high subcooled boiling, and the disturbance of bubbles departing from the wall and condensing in the subcooled boiling region may be the inherent source to induce the instability, then the flow oscillations can become self-sustained and evolve because of the phase differences among system driving force, resistance and flow rate.%以最佳估算程序RELAP5为基本分析工具,对自然循环系统进行数值分析,得出了不同条件下系统的不稳定性边界.研究发现自然循环对过冷沸腾有一定的承受能力,不稳定性一般发生在低欠热沸腾区,气泡脱离壁面和凝结时的扰动可能是自然循环系统不稳定性的诱因,系统驱动力、阻力和流量之间的相位差使振荡得以维持和发展.

  6. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae-Joon, E-mail: rjpark@kaeri.re.kr; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-03-15

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m{sup 2} s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  7. 基于IAPWS-IF97的自然循环差压测量修正技术%Natural Circulation Differential Pressure Measurement Correction Technology Based on IAPWS-IF97

    Institute of Scientific and Technical Information of China (English)

    郝文涛; 李卫华; 杨星团; 姜胜耀; 刘志勇

    2012-01-01

    The low temperature nuclear heating reactor (NHR), developed by Institute of Nuclear and New Energy Technology of Qinghua University, is highly safe because of its natural circulation at full power level, The driving force of natural circulation is very low, so the flow rate is highly affected by the resistance of the reactor coolant loop. As a result, reducing the flow resistance is a key technology of NHR design. A experiment equipment, which simulated the natural circulation of the reactor coolant loop, was constructed to validate the design. The pressure drop was measured by differential pressure transmitters. The temperature difference of the water in different impulse tubes introduced density difference, which led to large measurement error. Considering the high precision of IAPWS-97, an ActiveX control was developed based on IAPWS-97 to calculate the density of water at deferent pressures and temperatures. The control was used in the data acquisition system based on configuration software platform and the online correction of differential pressure measurement was realized. The testing data analysts shows that the precision of the corrected differential pressure measurement results is highly improved.%清华大学核能与新能源技术研究院所设计的低温供热堆一回路采用全功率自然循环,具有很强的固有安全性.由于自然循环压头低,回路阻力对流量有较大影响,因此,降低一回路阻力是反应堆设计的关键技术之一.为验证设计的正确性,搭建了1个试验回路,模拟一回路自然循环.采用差压变送器测量回路压降时,引压管内水的温度差将导致其密度差,并进而带来很大的测量误差.IAPWS-IF97公式在计算水和蒸汽物性时具有很高的精度,为此,开发了基于该公式的ActiveX控件,计算水在不同温度和压力下的密度.将该控件应用到基于组态软件的数据采集系统中,实现了差压测量的在线修正.数据分析结果表

  8. Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material

    Energy Technology Data Exchange (ETDEWEB)

    Bayham, Sanuel [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Straub, Doug [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Weber, Justin [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2017-02-01

    As part of the U.S. Department of Energy’s Advanced Combustion Program, the National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metaloxide) is continuously cycled to oxidize the fuel. This CLC concept is the focus of this research and will be described in more detail in the following sections.

  9. Optimal estimate of the coolant flow in the assemblies of a BWR of natural circulation in real time; Estimacion optima del flujo de refrigerante en los ensambles de un BWR de circulacion natural en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, Facultad de Ingenieria, Division de Estudios de Posgrado, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_jg@yahoo.com.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2012-10-15

    The present work exposes the design and the implementation of an advanced controller that allows estimating the coolant flow in the fuel assemblies of a BWR reactor of natural circulation in real time. To be able to reduce the penalizations that are established in the calculations of the operation limits due to the magnitude of the uncertainties in the coolant flows of a natural circulation reactor, is the objective of this research. In this work the construction of the optimal controller that allows estimating the coolant flows in a fuel channels group of the reactor is shown, as well as the operation of this applied to a reduced order model that simulates the dynamics of a natural circulation reactor. The controller design required of an estimator of the valuation variables not directly of the plant and of the estimates use of the local distributions of the coolant flow. The controller construction of the estimator was based mathematically in the filter Kalman whose algorithm allows to be carried out an advanced control of the system. To prove the estimator operation was development a simplified model that reproduces the basic dynamics of the flowing coolant in the reactor, which works as observer of the system, this model is coupled by means of the estimator controller to a detail model of the plant. The results are presented by means of graphics of the interest variables and the estimate flow, and they are documented in the chart that is presented at the end of this article. (Author)

  10. Estimate of coolant flow in assemblies of a natural circulation BWR applying and equivalent electric model; Estimacion del flujo de refrigerante en los ensambles de un BWR de circulacion natural aplicando un modelo electrico equivalente

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, DEPFI, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: julfi_jg@yahoo.com.mx

    2009-10-15

    The present work exposes the design and implementation of an advanced controller that it allows to estimate the coolant flow in fuel assemblies of a natural circulation BWR in real time. the complete development of this study is part of a doctoral project in course. In this work the construction of optimal controller is shown that allows to estimate the coolant flows in reactor and its operation applied to an equivalent electric model to natural circulation ESBWR. The controller design that allows the completely automatic starter of natural circulation reactor, required of a variables estimator not meter directly of nuclear power plant and use of local distributions estimates of coolant flow, (this controller type at the moment is utilized in the A BWR and several BWR in operation in Japan). The construction of estimator controller is mathematically based in the theory referring to Kalman filter, whose algorithm provides an advanced control of system. To prove the estimator operation was developed a simplified model that reproduces the basic dynamic of coolant flowing in the ESBWR, a practice way and very interesting of representing this phenomenon is by means the use of an equivalent electric model, which was developed starting from analogies that there is among the relation that keep the pressure differences with the mass flow and differences of electric potential with electric current. A detailed analysis of equivalence among models will be presented in a later article. (Author)

  11. What Controls DNA Looping?

    Directory of Open Access Journals (Sweden)

    Pamela J. Perez

    2014-08-01

    Full Text Available The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein—the nonspecific nucleoid protein HU—increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture.

  12. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    Purpose - This paper is an attempt to advance the critical discussion regarding environmental and societal responsibility in economics and business. Design/methodology/approach - The paper presents and discusses as a holistic, organic perspective enabling innovative solutions to challenges...... concerning the responsible and efficient use of natural resources and the constructive interplay with culture. To reach the goal of sustainable development, the paper argues that it is necessary to make changes in several dimensions in mainstream economics. This change of perspective is called a turn towards...... presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  13. An ELISA for sensitive and specific detection of circulating antigen of Angiostrongylus vasorum in serum samples of naturally and experimentally infected dogs.

    Science.gov (United States)

    Schnyder, M; Tanner, I; Webster, P; Barutzki, D; Deplazes, P

    2011-06-30

    Canine angiostrongylosis is an emerging cardiopulmonary disease in Europe which can be fatal if left untreated. We developed a sandwich-ELISA based on a monoclonal antibody (mAb Av 56/1/2) and on polyclonal rabbit antibodies directed against Angiostrongylus vasorum adult excretory/secretory - antigen for the detection of circulating serum antigen of A. vasorum. The sensitivity of the test was 95.7% (78.1-99.9, 95% CI) as determined with sera of 23 dogs naturally infected with A. vasorum. The specificity was 94.0% (83.5-98.7, 95% CI) using 50 dog sera (control group) submitted for reasons other than parasitic infections. Potential cross-reactions were investigated with sera of a group of totally 61 dogs with proven infections with Dirofilaria immitis (n=23), Crenosoma vulpis (n=14), Ancylostoma caninum (n=4) or Toxocara canis (n=20). No significant difference was observed concerning the proportion of positive reactions between the control group and the group with proven helminth infections other than A. vasorum. In experimentally inoculated dogs with proven worm burdens of A. vasorum, the proportion of seropositive dogs increased over the first 3 months of infection, starting from 35 days post inoculation (dpi) which was before the onset of larval excretion. Ten weeks post inoculation, 98.6% of the dogs were seropositive, and circulating antigen persisted in two dogs with long-term follow-up over 286 and 356 days, respectively. In contrast, in dogs with a single treatment with imidacloprid/moxidectin at four or 32 dpi, no circulating antigen was observed, while in dogs treated at 88-92 dpi, OD values decreased within 13-34 days. The specific detection of circulating A. vasorum antigen by ELISA represents a valid alternative for reliable diagnosis and for follow-up investigations after anthelmintic treatment. Moreover, the test can be used for mass screening in large epidemiological investigations.

  14. Changes in natural Foxp3(+Treg but not mucosally-imprinted CD62L(negCD38(+Foxp3(+Treg in the circulation of celiac disease patients.

    Directory of Open Access Journals (Sweden)

    Marieke A van Leeuwen

    Full Text Available BACKGROUND: Celiac disease (CD is an intestinal inflammation driven by gluten-reactive CD4(+ T cells. Due to lack of selective markers it has not been determined whether defects in inducible regulatory T cell (Treg differentiation are associated with CD. This is of importance as changes in numbers of induced Treg could be indicative of defects in mucosal tolerance development in CD. Recently, we have shown that, after encounter of retinoic acid during differentiation, circulating gut-imprinted T cells express CD62L(negCD38(+. Using this new phenotype, we now determined whether alterations occur in the frequency of natural CD62L(+Foxp3(+ Treg or mucosally-imprinted CD62L(negCD38(+Foxp3(+ Treg in peripheral blood of CD patients. In particular, we compared pediatric CD, aiming to select for disease at onset, with adult CD. METHODS: Cell surface markers, intracellular Foxp3 and Helios were determined by flow cytometry. Foxp3 expression was also detected by immunohistochemistry in duodenal tissue of CD patients. RESULTS: In children, the percentages of peripheral blood CD4(+Foxp3(+ Treg were comparable between CD patients and healthy age-matched controls. Differentiation between natural and mucosally-imprinted Treg on the basis of CD62L and CD38 did not uncover differences in Foxp3. In adult patients on gluten-free diet and in refractory CD increased percentages of circulating natural CD62L(+Foxp3(+ Treg, but normal mucosally-imprinted CD62L(negCD38(+Foxp3(+ Treg frequencies were observed. CONCLUSIONS: Our data exclude that significant numeric deficiency of mucosally-imprinted or natural Foxp3(+ Treg explains exuberant effector responses in CD. Changes in natural Foxp3(+ Treg occur in a subset of adult patients on a gluten-free diet and in refractory CD patients.

  15. Study on bubbly flow behavior in natural circulation reactor by thermal-hydraulic simulation tests with SF6-Gas and ethanol liquid

    Science.gov (United States)

    Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro

    2009-02-01

    An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.

  16. A short-term increase of the postoperative naturally circulating dendritic cells subsets in flurbiprofen-treated patients with esophageal carcinoma undergoing thoracic surgery

    Science.gov (United States)

    Chai, Xiao-qing; Shu, Shu-hua; Zhang, Xiao-lin; Xie, Yan-hu; Wei, Xin; Wu, Yu-jing; Wei, Wei

    2016-01-01

    The present study evaluated whether flurbiprofen increased the naturally circulating dendritic cells (DCs) subsets in patients with esophageal squamous cell carcinoma (ESCC) undergoing esophageal resection. Compared to healthy donors (n=20), the significantly depressed percentages of plasmacytoid DCs (pDCs), CD1c+ myeloid DCs (mDCs), and CD141+ mDCs among ESCC patients (n=60) were confirmed. Flurbiprofen was administered before skin incision and at the end of operation in group F (n=30), as well as placebo in group C (n=30). The postoperative suppressed percentages of pDCs, CD1c+ mDCs, and CD141+ mDCs increased significantly following the perioperative treatment with flurbiprofen. Flurbiprofen also significantly stimulated the postoperative IFN-f and IL-17 production, but inhibited the immunosuppressive IL-10 and TGF-β levels. Furthermore, flurbiprofen exerted a similar analgesic effect and brought a significantly less sufentanil consumption compared to group C. Taken together, flurbiprofen provided a short-term increase of postoperative naturally circulating DCs in ESCC patients. PMID:26959879

  17. 一体化压水堆强迫循环转自然循环过渡过程特性分析%Research on Transition Process From Forced Circulation to Natural Circulation of Integrated Pressurized Water Reactor

    Institute of Scientific and Technical Information of China (English)

    刘守相; 于雷; 鄢炳火

    2012-01-01

    针对一体化压水堆核动力装置,以核动力装置瞬态最佳估算程序RELAP5/MOD3为基础,采用两群三维时空中子动力学模型替代点堆模型,并建立三维空间内中子物理与热工水力的耦合模型,研制相应的计算程序.对一体化核动力装置强迫循环向自然循环转换过程进行仿真模拟.在过渡过程中,一体化压水堆核动力装置反应堆功率变化幅度较大,冷却剂流量的变化对一回路温度影响较大.%The analysis code for an integrated pressurized water reactor was developed on the basis of best-estimate transient analysis code RELAP5/MOD3 for nuclear power plan. The point reactor kinetics model in the original code was replaced by the two-group, 3-D spatial and temporal neutron kinetic model. The coupling model for three-dimensional physics and thermal hydraulic was established. The transition process from forced circulation (FC) to natural circulation (NC) was simulated with this code. During the transition from FC to NC, the variation of reactor power is significant, while the coolant temperature is greatly affected by the coolant flow rate.

  18. 压力容器外部冷却两相自然循环特性理论分析%Theoretical analysis of the properties of the two-phase natural circulation of ERVC

    Institute of Scientific and Technical Information of China (English)

    赵国志; 曹欣荣; 石兴伟

    2014-01-01

    针对严重事故下压水堆压力容器下封头外侧与绝热层内侧环形通道内两相自然循环流动问题,利用FORTRAN语言,编写了压水堆压力容器外部冷却( external reactor vessel cooling, ERVC)一维稳态自然循环分析程序。通过分析不同摩擦系数的计算公式对两相自然循环质量流量和空泡份额计算的影响,与中国开展的REPEC( reactor pressure vessel external cooling)实验及RELAP5模拟结果对比,验证了程序的可行性。对ERVC系统重要的热工水力和结构参数进行了敏感性分析,得到结论:进口过冷度对ERVC系统内两相流量影响很大,当过冷度接近饱和值时,流量会出现峰值,进口面积、间隙宽度和水淹高度会影响质量流量峰值的大小;当过冷度高于峰值对应的过冷度,流量随过冷度增大而减小,反之随过冷度增大而增大。结果可为ERVC系统的设计和运行参数的评估提供了一种简便快速的方法。%Focusing on the problem of two-phase natural circulation flow inside the loop-shape passage between the outside of the lower head of the reactor vessel and the inside of the insulator in times of severe accidents, an analy-sis program for one-dimensional steady-state natural circulation under the external reactor vessel cooling ( ERVC ) condition was done by utilizing the FORTRAN language. The effects of the calculation formulae of different friction coefficients on mass flow and void fraction of the two-phase natural circulation flow were studied. The results were compared with those obtained in the Chinese REPEC ( reactor pressure vessel external cooling) experiment and the RELAP5 simulation, and the feasibility of the program was demonstrated. A sensitivity analysis was performed for the important thermal-hydraulic and configuration parameters of the ERVC system, and the following conclusion was obtained:The inlet subcooling has a significant impact on the two

  19. LMFBR with booster pump in pumping loop

    Science.gov (United States)

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  20. Fetal Circulation

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Fetal Circulation Updated:Oct 18,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  1. On the effect of gravity on the bifurcation of rectangular closed-loop thermosyphon

    Energy Technology Data Exchange (ETDEWEB)

    Cammarata, L.; Fichera, A.; Guglielmino, I.D.; Pagano, A. [Universita degli Studi di Catania, Dipartimento di Ingegneria Industriale e Meccanica, Catania (Italy)

    2004-08-01

    Closed-loop thermosyphons are systems in which heat is transferred from a source to a sink by means of a natural convective flow, i.e. without the help of mechanical pumping. In fact, the dynamics of such systems strongly depend both on the thermal boundary conditions and on the gravitational field in which they operate. While the effect of variations of the boundary conditions has been extensively analysed in the last decades, the dependence on gravity has never been explicitly studied. The aim of this paper is to examine the effect of variations of gravity as well as that of thermal boundary conditions on the dynamics of natural circulation loops. Such an analysis might point out some useful applications for the cooling of a generic source in reduced gravity conditions. To this purpose an experimental campaign was performed on a natural circulation operating under a gravity field varying in the range between 10{sup -2} g and 1.8 g, with g= 9.81 ms{sup -2}. The dynamical behaviour detected during the experiment was used for the validation of a mathematical model, previously validated under terrestrial gravity conditions. Model simulations were found to satisfactorily reproduce the dynamics of the system under variable gravity. This proved the possibility to use the model for the construction of bifurcation diagrams describing the behaviours of natural circulation loops under variations of both the gravitational field and the thermal boundaries. (orig.)

  2. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α

    DEFF Research Database (Denmark)

    Riley, Caroline H; Hansen, Morten; Brimnes, Marie K

    2015-01-01

    -tumor immune response against the JAK2-mutated clone. The objective of this study was to investigate circulating levels and phenotype of natural killer cells in 29 JAK2-positive MPN patients during IFN-α treatment. Furthermore, functional studies of NK cells upon target-cell recognition and cytokine......In recent years, major molecular remissions have been observed in patients with JAK2-positive chronic myeloproliferative neoplasms (MPNs) after therapy with IFN-α. IFN-α is known to have altering effects on immune cells involved in immune surveillance and might consequently enhance anti...... stimulation were performed. The CD56(bright) and CD56(dim) NK cell subtypes display different properties in terms of cytokine production and cytotoxicity, respectively. Our results show a significant increase in the proportion of CD56(bright) NK cells and a decreasing CD56(dim) population during treatment...

  3. Phenotypic Features of Circulating Leukocytes from Non-human Primates Naturally Infected with Trypanosoma cruzi Resemble the Major Immunological Findings Observed in Human Chagas Disease.

    Directory of Open Access Journals (Sweden)

    Renato Sathler-Avelar

    2016-01-01

    Full Text Available Cynomolgus macaques (Macaca fascicularis represent a feasible model for research on Chagas disease since natural T. cruzi infection in these primates leads to clinical outcomes similar to those observed in humans. However, it is still unknown whether these clinical similarities are accompanied by equivalent immunological characteristics in the two species. We have performed a detailed immunophenotypic analysis of circulating leukocytes together with systems biology approaches from 15 cynomolgus macaques naturally infected with T. cruzi (CH presenting the chronic phase of Chagas disease to identify biomarkers that might be useful for clinical investigations.Our data established that CH displayed increased expression of CD32+ and CD56+ in monocytes and enhanced frequency of NK Granzyme A+ cells as compared to non-infected controls (NI. Moreover, higher expression of CD54 and HLA-DR by T-cells, especially within the CD8+ subset, was the hallmark of CH. A high level of expression of Granzyme A and Perforin underscored the enhanced cytotoxicity-linked pattern of CD8+ T-lymphocytes from CH. Increased frequency of B-cells with up-regulated expression of Fc-γRII was also observed in CH. Complex and imbricate biomarker networks demonstrated that CH showed a shift towards cross-talk among cells of the adaptive immune system. Systems biology analysis further established monocytes and NK-cell phenotypes and the T-cell activation status, along with the Granzyme A expression by CD8+ T-cells, as the most reliable biomarkers of potential use for clinical applications.Altogether, these findings demonstrated that the similarities in phenotypic features of circulating leukocytes observed in cynomolgus macaques and humans infected with T. cruzi further supports the use of these monkeys in preclinical toxicology and pharmacology studies applied to development and testing of new drugs for Chagas disease.

  4. An IL-12/Shh-C domain fusion protein-based IL-12 autocrine loop for sustained natural killer cell activation.

    Science.gov (United States)

    Zhu, Lining; Zhao, Zhihui; Wei, Yanzhang; Marcotte, William; Wagner, Thomas E; Yu, Xianzhong

    2012-08-01

    The dependency of activated natural killer (NK) cells on the continuous support of exogenous interleukin (IL)-2 for their in vivo survival, tumor localization and consequently, their antitumor effect, is a major obstacle for NK cell-mediated tumor therapy. In the present study, a fusion gene between IL-12 and mouse sonic hedgehog C-terminal domain (Shh-C) was constructed. The fusion protein was autocatalytically processed to form cholesterol-modified IL-12 molecules and an autocrine loop of IL-12 was established for the sustained activation of NK cells. The transduced NK cells matured more rapidly in vitro with the enhanced expression of granule-related proteins. NKIL-12/Shh-C cells reached the same proliferation rate as NK cells transduced with enhanced green fluorescent protein (EGFP)/Shh-C (NKEGFP/Shh-C) with Shh-C cells 5 and 7 days after transduction was significantly higher than that in the supernatants of NKIL-12 cells. Immunofluorescent staining of lung tissues from B16-bearing mice which had received an intravenous injection of lentivirus-transduced NK cells without exogenous IL-2 confirmed that donor NK cells successfully infiltrated into the lung tissues. The survival time of the mice which had received NKIL-12/Shh-C cells was significantly prolonged compared to the mice which had received NKEGFP/Shh-C cells.

  5. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  6. Circulating Natural IgM Antibodies Against Angiogenin in the Peripheral Blood Sera of Patients with Osteosarcoma as Candidate Biomarkers and Reporters of Tumorigenesis

    Science.gov (United States)

    Savitskaya, Yulia A.; Rico, Genaro; Linares, Luis; González, Roberto; Téllez, René; Estrada, Eréndira; Marín, Norma; Martínez, Elisa; Alfaro, Alfonso; Ibarra, Clemente

    2010-01-01

    Background: Tumor immunology research has led to the identification of a number of tumor-associated self antigens, suggesting that most tumors trigger an immunogenic response, as is the case in osteosarcoma, where the detection of natural serum IgM antibodies might achieve the diagnosis of osteosarcoma. Natural IgM antibodies to tumor-associated proteins may expand the number of available tumor biomarkers for osteosarcoma and may be used together in a serum profile to enhance test sensitivity and specificity. Natural IgM antibodies can be consistently detected in the peripheral blood sera months to years before the tumor is diagnosed clinically. The study of the level of a potential biomarker many months (or years) prior to diagnosis is fundamentally important. Integrated circulating and imaging markers in clinical practice treating osteosarcoma have potential applications for controlling tumor angiogenesis. Objectives: To study the expression of natural IgM antibodies to the tumor antigens of angiogenesis in the peripheral blood sera of osteosarcoma patients and healthy individuals, and to develop serum-based predictive biomarkers. Methods: Peripheral venous blood samples were collected from 117 osteosarcoma patients and 117 patients with other tumors. All diagnosis was histologically confirmed. Staging of patients was performed according to the Enneking Surgical Staging System. The control group consisted of 117 age- and sex- matched healthy individuals. In this study, novel immunoconjugates were designed, synthesized and then used to develop a rapid, specific and sensitive enzyme-linked immunosorbent assay (ELISA) method to detect angiogenin (ANG)–IgM directly in the peripheral blood sera of humans. Results: Serum ANG–IgM levels are significantly higher in osteosarcoma patients than in healthy individuals (P osteosarcoma patients and ANG–IgM levels were significantly higher in osteosarcoma patients compared to any other tumors (P osteosarcoma patients than

  7. Standardization and Optimization of mtDNA Isolation and Molecular Genetic Analysis of D-loop Region in Animal Natural Fibres

    Directory of Open Access Journals (Sweden)

    Priyanka P. Rane

    2011-01-01

    Full Text Available Increase in demand for animal natural fibres in recent years for the production of high quality textile products has resulted in the adulteration and false declaration of these fibres causing heavy financial loss. Fibres are expensive due to limited feedstock and less fibre production. To keep up with the demand these fibres are adulterated with less expensive fibres viz., wool to give special effect to the fabric. To control false declaration, there is a need for fibre identification and to ascertain blend composition. Though Scanning Electron Microscopy is generally used for fibre analysis but this method is time consuming, expensive and the reliability of results depend on the expertise of the microscopist. Hence, there is a need for reliable and economical method to characterize these fibres and to study composition of each animal fibre in blends. The aim of the present study was mitochondrial DNA extraction from animal natural fibres in untreated and blends. The modified protocol includes addition of Proteinase K, Dithioerythritol individually in each tube and final extraction with phenol: chloroform: isoamyl alcohol, amplification of D-loop region using species specific and mammalian specific primers. We observed that with species specific primers, it was possible to study inter species variation but the blends could be detected if there was prior knowledge about the fibres in blends. With mammalian specific primers we could study blends and differentiate between fibres from sheep breeds but inter species variation was difficult. It can be concluded that mtDNA analysis can be used to differentiate animal fibres and control adulteration.

  8. Effect of Mixing on Microorganism Growth in Loop Bioreactors

    Directory of Open Access Journals (Sweden)

    A. M. Al Taweel

    2012-01-01

    Full Text Available The impact of mixing on the promotion of microorganism growth rate has been analyzed using a multiphase forced-circulation pipe-loop reactor model capable of identifying conditions under which it is possible to convert natural gas into Single-Cell Protein. The impact of mixing in the interphase mass transfer was found to exert a critical role in determining the overall productivity of the bioreactor, particularly at the high cell loadings needed to reduce the capital costs associated with the large-scale production needed for the production of relatively low-value SCP in a sustainable manner.

  9. Access of Digitized Print Originals in US and UK Higher Education Libraries Combined with Print Circulation Indicates Increased Usage of Traditional Forms of Reading Materials. A Review of: Joint, Nicholas. “Is Digitisation the New Circulation?: Borrowing Trends, Digitisation and the nature of reading in US and UK Libraries.” Library Review 57.2 (2008: 87-95.

    Directory of Open Access Journals (Sweden)

    Kurt Blythe

    2009-03-01

    libraries, while it is up in the non-ARL higher education libraries represented and in UK higher education libraries. However, audio book circulation in US public libraries supplements print circulation to the point where overall circulation of book materials is increasing, and the access of digital literature supplements print circulation in ARL member libraries (although the statistics are difficult to measure and meld with print circulation statistics. Essentially, the circulation of book material is increasing in most institutions when all formats are considered. According to the author, library patrons are reading more than ever; the materials patrons are accessing are traditional in content regardless of the means by which the materials are accessed.Conclusion – The author contends that print circulation is in decline only where digitization efforts are extensive, such as in ARL-member libraries; when digital content is factored into the equation the access of book-type materials is up in most libraries. The author speculates that whether library patrons use print or digital materials, the content of those materials is largely traditional in nature, thereby resulting in the act of “literary” reading remaining a focal point of library usage. Modes of reading and learning have not changed, at least insofar as these things may be inferred from studying circulation statistics. The author asserts that digital access is favorable to patrons and that libraries should attempt to follow the ARL model of engaging in large scale digitization projects in order to provide better service to their patrons; the author goes on to argue that UK institutions with comparable funding to ARLs will have greater success in this endeavour if UK copyright laws are relaxed.

  10. Natural Killer Cell Assessment in Peripheral Circulation and Bronchoalveolar Lavage Fluid of Patients with Severe Sepsis: A Case Control Study

    Science.gov (United States)

    Souza-Fonseca-Guimaraes, Paulo; Guimaraes, Fernando; Natânia De Souza-Araujo, Caroline; Maria Boldrini Leite, Lidiane; Cristina Senegaglia, Alexandra; Nishiyama, Anita; Souza-Fonseca-Guimaraes, Fernando

    2017-01-01

    Sepsis is a complex systemic inflammatory syndrome, the most common cause of which is attributed to systemic underlying bacterial infection. The complete mechanisms of the dynamic pro- and anti-inflammatory processes underlying the pathophysiology of sepsis remain poorly understood. Natural killer (NK) cells play a crucial role in the pathophysiology of sepsis, leading to exaggerated inflammation due their rapid response and production of pro-inflammatory cytokines such as interferon gamma (IFN-γ). Several studies have already shown that NK cells undergo lymphopenia in the peripheral blood of patients with sepsis. However, our understanding of the mechanisms behind its cellular trafficking and its role in disease development is restricted to studies in animal models. In this study, we aimed to compare the human NK cell subset (CD56bright or dim) levels in the peripheral blood and bronchoalveolar lavage (BAL) fluid of sepsis patients. We conducted a case-control study with a sample size consisting of 10 control patients and 23 sepsis patients enrolled at the Hospital Cajuru (Curitiba/PR, Brazil) from 2013 to 2015. Although we were able to confirm previous observations of peripheral blood lymphopenia, no significant differences were detected in NK cell levels in the BAL fluid of these patients. Overall, these findings strengthened the evidence that peripheral blood lymphopenia is likely to be associated with cell death as a consequence of sepsis. PMID:28287491

  11. Natural Killer Cell Assessment in Peripheral Circulation and Bronchoalveolar Lavage Fluid of Patients with Severe Sepsis: A Case Control Study.

    Science.gov (United States)

    Souza-Fonseca-Guimaraes, Paulo; Guimaraes, Fernando; Natânia De Souza-Araujo, Caroline; Maria Boldrini Leite, Lidiane; Cristina Senegaglia, Alexandra; Nishiyama, Anita; Souza-Fonseca-Guimaraes, Fernando

    2017-03-12

    Sepsis is a complex systemic inflammatory syndrome, the most common cause of which is attributed to systemic underlying bacterial infection. The complete mechanisms of the dynamic pro- and anti-inflammatory processes underlying the pathophysiology of sepsis remain poorly understood. Natural killer (NK) cells play a crucial role in the pathophysiology of sepsis, leading to exaggerated inflammation due their rapid response and production of pro-inflammatory cytokines such as interferon gamma (IFN-γ). Several studies have already shown that NK cells undergo lymphopenia in the peripheral blood of patients with sepsis. However, our understanding of the mechanisms behind its cellular trafficking and its role in disease development is restricted to studies in animal models. In this study, we aimed to compare the human NK cell subset (CD56(bright or dim)) levels in the peripheral blood and bronchoalveolar lavage (BAL) fluid of sepsis patients. We conducted a case-control study with a sample size consisting of 10 control patients and 23 sepsis patients enrolled at the Hospital Cajuru (Curitiba/PR, Brazil) from 2013 to 2015. Although we were able to confirm previous observations of peripheral blood lymphopenia, no significant differences were detected in NK cell levels in the BAL fluid of these patients. Overall, these findings strengthened the evidence that peripheral blood lymphopenia is likely to be associated with cell death as a consequence of sepsis.

  12. The immunity of the ICMS (Circulation Tax) on interstate operations involving natural gas; Da imunidade do ICMS (Imposto sobre Circulacao de Mercadorias e Servicos) em operacoes interestaduais envolvendo gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Yvy, Maytta A.S.; Galvao, Katia C.P.; Mendonca, Fabiano A.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Faculdade de Direito

    2004-07-01

    The Federal Constitution of Brazil, in the article 155, para. 2nd, X, b, determines that there will not be Circulation Taxs (ICMS) over operations that destinates to other States petroleum, including lubricants, liquid and gaseous fuels of him derived. It establishes, therefore, hypothesis of tributary immunity. However, the interpretation of this rule in the juridical scenery is rounded by doubts. There are two possible interpretations: or the natural gas is included in this hypothesis of tributary immunity, considering it is a derived gaseous fuel of the petroleum or, in the other hand, it is not included in the hypothesis, since it is not admitted as a petroleum product. Using not juridical interpretative elements and using constitutional principles and interpretative rules, the conclusion is that the natural gas doesn't integrate the normative hypothesis, in view that the opposite comprehension would surpass the meaning of the norm in exam, falling in inconstitutionality. However, having in mind the convenience of enlarging the natural gas participation in the national energy head office, the possibility of granting tributary discharge through exemption of ICMS over operations between States involving natural gas is open. (author)

  13. Loop-to-loop coupling.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  14. Radial propagators and Wilson loops

    CERN Document Server

    Leupold, S; Leupold, Stefan; Weigert, Heribert

    1996-01-01

    We present a relation which connects the propagator in the radial (Fock-Schwinger) gauge with a gauge invariant Wilson loop. It is closely related to the well-known field strength formula and can be used to calculate the radial gauge propagator. The result is shown to diverge in four-dimensional space even for free fields, its singular nature is however naturally explained using the renormalization properties of Wilson loops with cusps and self-intersections. Using this observation we provide a consistent regularization scheme to facilitate loop calculations. Finally we compare our results with previous approaches to derive a propagator in Fock-Schwinger gauge.

  15. Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project

    Energy Technology Data Exchange (ETDEWEB)

    Pialla, David, E-mail: david.pialla@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Tenchine, Denis [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Li, Simon [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 91191 Gif-sur-Yvette Cedex (France); Gauthe, Paul; Vasile, Alfredo [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DER/SESI, 13108 Saint Paul Lez Durance Cedex (France); Baviere, Roland; Tauveron, Nicolas; Perdu, Fabien [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Maas, Ludovic; Cocheme, François [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN/SEMIA/BAST, B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); Huber, Klaus; Cheng, Xu [Karlsruhe Institute of Technology (KIT), Institute of Fusion and Reactor Technology (IFRT), Kaiserstraße 12, Building 07.08, 76131 Karlsruhe (Germany)

    2015-08-15

    Highlights: • The PHENIX natural convection test performed during the end of life tests program. • The calculation with system codes and theirs limits. • The calculation with coupling CFD and system code, which allows better prediction. • The tasks of code validation have been done in the frame of the THINS project. - Abstract: The PHENIX sodium cooled fast reactor started operation in 1973 and was shut down in 2009. Before decommissioning, an ultimate test program was designed and performed to provide valuable data for the development of future sodium cooled fast reactors, as the so-called Astrid prototype in France. Among these ultimate tests, a thermal-hydraulic Natural Convection Test (NCT) was set-up in June 2009. Starting from a reduced power state of 120 MWt, the NCT consists of a loss of the heat sink combined with a reactor scram and a primary pumps trip leading to stabilized natural circulation in the primary sodium system. The thermal-hydraulics innovative system project (THINS project), sponsored by the European Community in the frame of the 7th FP has selected this transient for validation of both stand-alone system code simulations and coupled simulations using system and CFD codes. Participants from three organizations (CEA, IRSN and KIT) have addressed this transient using different system codes (CATHARE, DYN2B and ATHLET) and CFD codes (TRIO-U and OPEN FOAM). The present paper depicts the different modeling approaches, methodologies and compares the numerical results with the available experimental data. Finally, the main lessons learned from the work performed within the THINS project on the PHENIX NCT with respect to code development and validation are summarized.

  16. Nearshore circulation

    NARCIS (Netherlands)

    Battjes, J.A.; Sobey, R.J.; Stive, M.J.F.

    1990-01-01

    Shelf circulation is driven primarily by wind- and tide-induced forces. It is laterally only weakly constrained so that the geostrophic (Coriolis) acceleration is manifest in the response. Nearshore circulation on the other hand is dominated by wave-induced forces associated with shallow-water. wave

  17. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  18. Successful Antiparasitic Treatment for Cysticercosis is Associated with a Fast and Marked Reduction of Circulating Antigen Levels in a Naturally Infected Pig Model.

    Science.gov (United States)

    Gonzalez, Armando E; Bustos, Javier A; Garcia, Hector H; Rodriguez, Silvia; Zimic, Mirko; Castillo, Yesenia; Praet, Nicolas; Gabriël, Sarah; Gilman, Robert H; Dorny, Pierre

    2015-12-01

    Taenia solium cysticercosis is a common parasitic infection of humans and pigs. We evaluated the posttreatment evolution of circulating parasite-specific antigen titers in 693 consecutive blood samples from 50 naturally infected cysticercotic pigs, which received different regimes of antiparasitic drugs (N = 39, 7 groups), prednisone (N = 5), or controls (N = 6). Samples were collected from baseline to week 10 after treatment, when pigs were euthanized and carefully dissected at necropsy. Antigen levels decreased proportionally to the efficacy of treatment and correlated with the remaining viable cysts at necropsy (Pearson's p = 0.67, P = 0.000). A decrease of 5 times in antigen levels (logarithmic scale) compared with baseline was found in 20/26 pigs free of cysts at necropsy, compared with 1/24 of those who had persisting viable cysts (odds ratio [OR] = 76.7, 95% confidence interval [CI] = 8.1-3308.6, P pig. If a similar correlation exists in infected humans, this assay may provide a minimally invasive and easy monitoring assay to assess disease evolution and efficacy of antiparasitic treatment in human neurocysticercosis.

  19. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.

    Science.gov (United States)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-03-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the

  20. Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Loop Heat Pipe (LHP) is a high performance heat transport device using capillary forces to circulate the working fluid in a closed loop. Conventional LHPs usually...

  1. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  2. Broken phase effective potential in the two-loop Phi-derivable approximation and nature of the phase transition in a scalar theory

    CERN Document Server

    Markó, Gergely; Szép, Zsolt

    2012-01-01

    We study the phase transition of a real scalar phi^4 theory in the two-loop Phi-derivable approximation using the imaginary time formalism, extending our previous (analytical) discussion of the Hartree approximation. We combine Fast Fourier Transform algorithms and accelerated Matsubara sums in order to achieve a high accuracy. Our results confirm and complete earlier ones obtained in the real time formalism [1] but which were less accurate due to the integration in Minkowski space and the discretization of the spectral density function. We also provide a complete and explicit discussion of the renormalization of the two-loop Phi-derivable approximation at finite temperature, both in the symmetric and in the broken phase, which was already used in the real-time approach, but never published. Our main result is that the two-loop Phi-derivable approximation suffices to cure the problem of the Hartree approximation regarding the order of the transition: the transition is of the second order type, as expected on ...

  3. 研究堆自然循环阀直径的选择与实验验证%Selection of Natural Circulation Valve Diameter and Experiment Verification for Research Reactor

    Institute of Scientific and Technical Information of China (English)

    黄洪文; 刘汉刚; 徐显启; 钱达志

    2012-01-01

    为了确定某研究堆自然循环阀门直径,利用RETRAN-02分析模型,从自然循环阀(NCV)误打开和停堆后自然循环建立过程的角度,分析研究堆自然循环阀直径分别为150、200、250和300 mm时通过的流量、堆芯热通道的流量、燃料元件热点温度和最小偏离泡核沸腾比(MDNBR)的差异以及对反应堆安全的影响,最后选定NCV的直径为200 mm.%Based on different natural circulation valve diameters of 150mm, 200mm, 250mm and 300mm. RETRAN-02 code is used to calculate the flow of the natural circulation valve (NCV) and the hot channel, the temperature of the hot spot, the minimum departure from nuclear boiling ratio (MDNBR), and to analyze the safety of thermo-hydraulic parameter from the two aspects of NCV abnormal open and the establishment of natural circulation. It is proved that the NCV diameter of 200 mm is suitable.

  4. Hyperstaticity and loops in frictional granular packings

    Science.gov (United States)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  5. Operation of fixed-bed chemical looping combustion

    NARCIS (Netherlands)

    Kimball, E.; Hamers, H.P.; Cobden, P.D.; Gallucci, F.; Sint Annaland, M. van

    2013-01-01

    Chemical Looping Combustion is an alternative technology for CO2 capture. While most systems utilize dual circulating fluidized-beds, this work shows that fixed-bed Chemical Looping Combustion is a feasible configuration for this technology. The inherent separation of the CO2 from the depleted air

  6. Operation of fixed-bed chemical looping combustion

    NARCIS (Netherlands)

    Kimball, E.; Hamers, H.P.; Cobden, P.D.; Gallucci, F.; Sint Annaland, M. van

    2013-01-01

    Chemical Looping Combustion is an alternative technology for CO2 capture. While most systems utilize dual circulating fluidized-beds, this work shows that fixed-bed Chemical Looping Combustion is a feasible configuration for this technology. The inherent separation of the CO2 from the depleted air s

  7. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  8. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  9. Saving cost in solar water heaters by means of integration of the solar equipment in an existing hot water circulation loop; Kosteneinsparungen bei solaren Warmwasseranlagen durch Einbindung in die Warmwasserzirkulation. Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Sitzmann, B.

    2001-07-01

    The implementation of solar water heaters in hot-water circulations for apartment buildings was examined. Models as well as investigations at 6 water supply systems in existing buildings show technically and economically opportunities for the proposed installation. Beside a reduction of the solar-piping length the proposed system shows higher opportunities for using existing hot water storage devices for solar energy storage. This is because of the energy transfer at the hot water storage devices from the existing in- and outlets instead of a heat exchanger. Today the proposed installation can be already classified as economic useful if the investment for piping and additional hot water storage device can be reduced in comparison to conventional solar water heaters. Further optimisation can be seen in the simple installation of the solar water heater to improve the economic efficiency of the proposed system. (author)

  10. TROPICAL METEOROLOGY & Climate: Hadley Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian; Vecchi, Gabriel A.

    2015-01-30

    The Hadley circulation, a prominent circulation feature characterized by rising air near the Equator and sinking air in the subtropics, defines the position of dry subtropical areas and is a fundamental regulator of the earth’s energy and momentum budgets. The character of the Hadley circulation, and its related precipitation regimes, exhibits variation and change in response to both climate variability and radiative forcing changes. The strength and position of the Hadley circulation change from year to year paced by El Niño and La Niña events. Over the last few decades of the twentieth century, the Hadley cell has expanded poleward in both hemispheres, with changes in atmospheric composition (including stratospheric ozone depletion and greenhouse gas increases) thought to have contributed to its expansion. This article introduces the basic phenomenology and driving mechanism of the Hadley circulation and discusses its variations under both natural and anthropogenic climate forcings.

  11. Circulating Fibronectin Controls Tumor Growth

    Directory of Open Access Journals (Sweden)

    Anja von Au

    2013-08-01

    Full Text Available Fibronectin is ubiquitously expressed in the extracellular matrix, and experimental evidence has shown that it modulates blood vessel formation. The relative contribution of local and circulating fibronectin to blood vessel formation in vivo remains unknown despite evidence for unexpected roles of circulating fibronectin in various diseases. Using transgenic mouse models, we established that circulating fibronectin facilitates the growth of bone metastases by enhancing blood vessel formation and maturation. This effect is more relevant than that of fibronectin produced by endothelial cells and pericytes, which only exert a small additive effect on vessel maturation. Circulating fibronectin enhances its local production in tumors through a positive feedback loop and increases the amount of vascular endothelial growth factor (VEGF retained in the matrix. Both fibronectin and VEGF then cooperate to stimulate blood vessel formation. Fibronectin content in the tumor correlates with the number of blood vessels and tumor growth in the mouse models. Consistent with these results, examination of three separate arrays from patients with breast and prostate cancers revealed that a high staining intensity for fibronectin in tumors is associated with increased mortality. These results establish that circulating fibronectin modulates blood vessel formation and tumor growth by modifying the amount of and the response to VEGF. Furthermore, determination of the fibronectin content can serve as a prognostic biomarker for breast and prostate cancers and possibly other cancers.

  12. 重水堆停堆工况下单相自然循环流动与传热分析%Analysis on Flow Rate and Heat Transfer of Single-phase Natural Circulation Under Shutdown Condition for PHWR

    Institute of Scientific and Technical Information of China (English)

    苑景田; 佟立丽; 曹学武

    2014-01-01

    The single-phase natural circulation of the main heat transport system (HTS) for CANDU 6 under shutdown condition was analyzed by using RELAP5 code ,and the single-phase natural circulation mass flow rate model was developed .The comparison analysis of the Vijayan model and natural circulation models including the Chrichill-Chu model and McAdams model for RELAP5 was conducted ,respectively .The results show that a lower horizontal heat transfer coefficient is obtained by using Vijayan model than that by the McAdams model ,causing a slight higher cladding temperature .However , the vertical heat transfer coefficients from both models have no significant difference .%使用RELAP5程序建立CANDU 6型重水堆模型,对停堆工况下主热传输系统环路内的单相自然循环进行了分析研究,并推导出重水堆单相自然循环流量模型。对 Vijayan模型与 RELAP5程序的自然对流传热模型(Churchill-Chu和McAdams模型)进行比较计算,结果表明,Vijayan模型计算的水平壁面传热系数低于程序模型,造成包壳温度略高,而竖直壁面传热系数则无明显差别。

  13. Development and evaluation of a loop-mediated isothermal amplification assay for detection of Ehrlichia canis DNA in naturally infected dogs using the p30 gene.

    Science.gov (United States)

    Pinhanelli, V C; Costa, P N M; Silva, G; Aguiar, D M; Silva, C M L; Fachin, A L; Marins, M

    2015-12-22

    Canine monocytic ehrlichiosis (CME) is a common tick-borne disease caused by the rickettsial bacterium Ehrlichia canis (Rickettsiales: Anaplasmataceae). In view of the different stages and variable clinical signs of CME, which can overlap with those of other infections, a conclusive diagnosis can more readily be obtained by combining clinical and hematological evaluations with molecular diagnostic methods. In this study, a loop-mediated isothermal amplification (LAMP) assay targeting the p30 gene of E. canis was developed. The assay was developed using DNA extracted from E. canis-infected cultures of the macrophage cell line DH82 and samples from dogs testing positive for E. canis DNA by PCR. The LAMP assay was compared to a p30-based PCR assay, using DNA extracted from EDTA-anticoagulated blood samples of 137 dogs from an endemic region in Brazil. The LAMP assay was sensitive enough to detect a single copy of the target gene, and identified 74 (54.0%) E. canis DNA-positive samples, while the p30 PCR assay detected 50 positive samples (36.5%) among the field samples. Agreement between the two assays was observed in 42 positive and 55 negative samples. However, 32 positive samples that were not detected by the PCR assay were identified by the LAMP assay, while eight samples identified as E. canis-positive by PCR showed negative results in LAMP. The developed E. canis LAMP assay showed the potential to maximize the use of nucleic acid tests in a veterinary clinical laboratory, and to improve the diagnosis of CME.

  14. The finite Bruck Loops

    CERN Document Server

    Baumeister, Barbara

    2009-01-01

    We continue the work by Aschbacher, Kinyon and Phillips [AKP] as well as of Glauberman [Glaub1,2] by describing the structure of the finite Bruck loops. We show essentially that a finite Bruck loop $X$ is the direct product of a Bruck loop of odd order with either a soluble Bruck loop of 2-power order or a product of loops related to the groups $PSL_2(q)$, $q= 9$ or $q \\geq 5$ a Fermat prime. The latter possibillity does occur as is shown in [Nag1, BS]. As corollaries we obtain versions of Sylow's, Lagrange's and Hall's Theorems for loops.

  15. Generalized loop space and TMDs

    Directory of Open Access Journals (Sweden)

    Mertens Tom

    2014-06-01

    Full Text Available The Standard Model describes the three (of four basic interactions known in Nature in terms of the quantum fields which are constituted by representations of special unitary gauge groups of symmetry. However, the physical observables do not always coincide with the fundamental degrees of freedom of the Standard Model. Therefore it can be useful to switch to the loop space representation of the gauge theory, where the variables are inherently gauge invariant but the degrees of freedom are absorbed in the path/loop dependence. Over-completeness of this space requires the introduction of an equivalence relation which is provided by Wilson loop functionals operating on piecewise regular paths. It is well known that certain Wilson loops show the same singularity structure as some Transverse Momentum Dependent PDFs (TMDs, which are not renormalizable by the common methods due to exactly this singularity structure. By introducing geometrical operators, like the area-derivative, we were able to derive an evolution equation for these Wilson loops and we hope to apply this method in the future to find some renormalization schemes for TMDs.

  16. Conceptual analysis of a preliminary model for instability study in normal operation of a natural circulation reactor type EBWR, using Relap5/Mod 3.2; Analisis conceptual de un modelo preliminar para el estudio de la inestabilidad en la operacion normal de un reactor de circulacion natural tipo ESBWR, usando Relap5/Mod 3.2

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda S, J.; Morales S, J.; Chavez M, C. [UNAM, Facultad de Ingenieria, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)], e-mail: j.os.ojeda@hotmail.com

    2009-10-15

    This work intends a model using the code Relap5/Mod 3.2, for the instability study in normal operation of a natural circulation reactor type ESBWR. A conceptual analysis is considered because all the information was obtained of the open literature, and some of reactor operation or dimension (not available) parameters were approached. As starting point was took the pattern developed for reactor type BWR, denominated Browns Ferry and changes were focused in elimination of bonds of forced recirculation, in modification of operation parameters, dimensions and own control parameters, according to internal code structure. Additionally the nodalization outline is described analyzing for separate the four fundamental areas employees in peculiar geometry of natural circulation reactor. Comparative analysis of results of stability behavior obtained with those reported in the open literature were made, by part of commercial reactor designer ESBWR. (Author)

  17. Standardization and Optimization of mtDNA Isolation and Molecular Genetic Analysis of D-loop Region in Animal Natural Fibres

    OpenAIRE

    Priyanka P. Rane; S.S. Barve

    2011-01-01

    Increase in demand for animal natural fibres in recent years for the production of high quality textile products has resulted in the adulteration and false declaration of these fibres causing heavy financial loss. Fibres are expensive due to limited feedstock and less fibre production. To keep up with the demand these fibres are adulterated with less expensive fibres viz., wool to give special effect to the fabric. To control false declaration, there is a need for fibre identification and to ...

  18. natural

    Directory of Open Access Journals (Sweden)

    Elías Gómez Macías

    2006-01-01

    Full Text Available Partiendo de óxido de magnesio comercial se preparó una suspensión acuosa, la cual se secó y calcinó para conferirle estabilidad térmica. El material, tanto fresco como usado, se caracterizó mediante DRX, área superficial BET y SEM-EPMA. El catalizador mostró una matriz de MgO tipo periclasa con CaO en la superficie. Las pruebas de actividad catalítica se efectuaron en lecho fijo empacado con partículas obtenidas mediante prensado, trituración y clasificación del material. El flujo de reactivos consistió en mezclas gas natural-aire por debajo del límite inferior de inflamabilidad. Para diferentes flujos y temperaturas de entrada de la mezcla reactiva, se midieron las concentraciones de CH4, CO2 y CO en los gases de combustión con un analizador de gases tipo infrarrojo no dispersivo (NDIR. Para alcanzar conversión total de metano se requirió aumentar la temperatura de entrada al lecho a medida que se incrementó el flujo de gases reaccionantes. Los resultados obtenidos permiten desarrollar un sistema de combustión catalítica de bajo costo con un material térmicamente estable, que promueva la alta eficiencia en la combustión de gas natural y elimine los problemas de estabilidad, seguridad y de impacto ambiental negativo inherentes a los procesos de combustión térmica convencional.

  19. Pseudonoise code tracking loop

    Science.gov (United States)

    Laflame, D. T. (Inventor)

    1980-01-01

    A delay-locked loop is presented for tracking a pseudonoise (PN) reference code in an incoming communication signal. The loop is less sensitive to gain imbalances, which can otherwise introduce timing errors in the PN reference code formed by the loop.

  20. Assessment of RELAP5/MOD2 against a pressurizer spray valve inadverted fully opening transient and recovery by natural circulation in Jose Cabrera Nuclear Station

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, R.; Rebollo, L. [Union Electrica, SA, Madrid (Spain)

    1993-06-01

    This document presents the comparison between the simulation results and the plant measurements of a real event that took place in JOSE CABRERA nuclear power plant in August 30th, 1984. The event was originated by the total, continuous and inadverted opening of the pressurizer spray valve PCV-400A. JOSE CABRERA power plant is a single loop Westinghouse PWR belonging to UNION ELECTRICA FENOSA, S.A. (UNION FENOSA), an Spanish utility which participates in the International Code Assessment and Applications Program (ICAP) as a member of UNIDAD ELECTRICA, S.A. (UNESA). This is the second of its two contributions to the Program: the first one was an application case and this is an assessment one. The simulation has been performed using the RELAP5/MOD2 cycle 36.04 code, running on a CDC CYBER 180/830 computer under NOS 2.5 operating system. The main phenomena have been calculated correctly and some conclusions about the 3D characteristics of the condensation due to the spray and its simulation with a 1D tool have been got.

  1. Circulating CD56dim natural killer cells and CD56+ T cells that produce interferon-γ or interleukin-10 are expanded in asymptomatic, E antigen-negative patients with persistent hepatitis B virus infection.

    Science.gov (United States)

    Conroy, M J; Mac Nicholas, R; Grealy, R; Taylor, M; Otegbayo, J A; O'Dea, S; Mulcahy, F; Ryan, T; Norris, S; Doherty, D G

    2015-03-01

    Infection with hepatitis B virus (HBV) can result in spontaneous resolution or chronic infection, which can remain asymptomatic or can progress to cirrhosis and/or hepatocellular carcinoma. The host immune response is thought to be a major determinant of the outcome of HBV infection and virus-specific cytotoxic T lymphocytes (CTL) can mediate immunity against the virus and cause liver pathology. Antigen-nonspecific innate lymphocytes may also contribute to HBV infection and liver disease, therefore, we examined the frequencies, phenotypes, cytolytic activities and cytokine profiles of circulating natural killer (NK) cells, CD1d-restricted invariant natural killer T (iNKT) cells and CD56(+) T cells in 102 asymptomatic HBV-infected patients and compared them with those in 66 uninfected control subjects. NK cells expressing low levels of CD56 (CD56(dim)) and CD56(+) T cells were significantly expanded in the circulation of HBV-infected patients compared with control subjects. CD1d expression and iNKT cell frequencies were similar in both groups. Despite these expansions, we did not detect augmented natural or cytokine-induced cytotoxicity in the HBV-infected subjects. All lymphocyte populations studied produced interferon-γ (IFN-γ) significantly more frequently when taken from HBV-infected patients compared with when taken from healthy controls. Additionally, NK cells from the patients more frequently produced interleukin-10. As our HBV-infected cohort consisted of asymptomatic patients with low viral loads, we propose that CD56(dim) NK cells and CD56(+) T cells control HBV infection by noncytolytic mechanisms. © 2014 John Wiley & Sons Ltd.

  2. 风力发电机自循环蒸发内冷系统稳定性的研究∗%Static bifurcation analysis of natural circulation inner evap orative co oling system in wind turbine

    Institute of Scientific and Technical Information of China (English)

    王海峰; 李旺; 顾国彪; 沈俊; 滕启治

    2016-01-01

    -phase natural circulation, an experimental platform is built. Static bifurcation of the SCIECS is observed experimentally. The experimental results show that the static bifurcation phenomenon exists in the natural circulation two-phase flow of small angle, and the theoretically predicted m-Q bifurcation curves are in good agreement with the experimental curves, which verifies the correctness of the theoretical analysis.%自循环蒸发内冷系统的冷却效率高,可以实现无泵自循环,运行安全可靠,基本免维护,因此适合在大型风力发电机中使用。蒸发内冷系统的稳定性对风力发电机的安全运行十分重要,本文基于非线性分岔理论及其数值延拓法,对自循环蒸发内冷系统应用于风力发电机的的静态稳定性进行了深入研究。获得了系统静态分岔解图,分析了系统演化特性,同时分析了系统分岔现象的参数效应。搭建了实验平台,通过实验观测到了自循环蒸发内冷系统的静态分岔现象,验证了理论计算的正确性。

  3. Supersymmetric Wilson loops at two loops

    CERN Document Server

    Bassetto, Antonio; Pucci, Fabrizio; Seminara, Domenico

    2008-01-01

    We study the quantum properties of certain BPS Wilson loops in ${\\cal N}=4$ supersymmetric Yang-Mills theory. They belong to a general family, introduced recently, in which the addition of particular scalar couplings endows generic loops on $S^3$ with a fraction of supersymmetry. When restricted to $S^2$, their quantum average has been further conjectured to be exactly computed by the matrix model governing the zero-instanton sector of YM$_2$ on the sphere. We perform a complete two-loop analysis on a class of cusped Wilson loops lying on a two-dimensional sphere, finding perfect agreement with the conjecture. The perturbative computation reproduces the matrix-model expectation through a highly non-trivial interplay between ladder diagrams and self-energies/vertex contributions, suggesting the existence of a localization procedure.

  4. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers.

  5. Preconceptual design of the new production reactor circulator test facility

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, G.

    1990-06-01

    This report presents the results of a study of a new circulator test facility for the New Production Reactor Modular High-Temperature Gas-Cooled Reactor. The report addresses the preconceptual design of a stand-alone test facility with all the required equipment to test the Main Circulator/shutoff valve and Shutdown Cooling Circulator/shutoff valve. Each type of circulator will be tested in its own full flow, full power helium test loop. Testing will cover the entire operating range of each unit. The loop will include a test vessel, in which the circulator/valve will be mounted, and external piping. The external flow piping will include a throttle valve, flowmeter, and heat exchanger. Subsystems will include helium handling, helium purification, and cooling water. A computer-based data acquisition and control system will be provided. The estimated costs for the design and construction of this facility are included. 2 refs., 15 figs.

  6. Analysis of the possible incidence of ICMS (tax on circulation of merchandises and services) on burning natural gas; Analise da possivel incidencia de ICMS (Imposto sobre Circulacao de Mercadorias e Servicos) na queima de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Marianna Perantoni; Silva, Fernando Henrique Dantas de Araujo [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Brasilia, DF (Brazil). Programa de Recursos Humanos em Direito do Petroleo, Gas Natural e Biocombustiveis

    2010-02-15

    This paper proposes to address the issue in regards to tax national gas industry, which, to date, has not their economic agents classified as 'Imposto sobre Circulacao de Mercadorias e Servicos, ICMS' (tax on circulation of merchandises and services) for the gas burned in flares. Despite this fact, within their needs and skills raised, the Treasury Department of the Sao Paulo and Rio de Janeiro States, announced that they will collect the tax mentioned in the aforementioned circumstances, causing a collision to generate the which have different legal arguments. The research will address arguments for and against the tax incidence of flaring, within legal parameters.

  7. Intestinal circulation during inhalation anesthesia

    Energy Technology Data Exchange (ETDEWEB)

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-04-01

    This study was designed to evaluate the influence of inhalational agents on the intestinal circulation in an isolated loop preparation. Sixty dogs were studied, using three intestinal segments from each dog. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mmHg. A mixture of /sub 86/Rb and 9-microns spheres labeled with /sup 141/Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A very strong and significant correlation was found between rubidium clearance and microsphere entrapment (r = 0.97, P less than 0.0001). Nitrous oxide anesthesia was accompanied by a higher vascular resistance (VR), lower flow (F), rubidium clearance (Cl-Rb), and microspheres entrapment (Cl-Sph) than pentobarbital anesthesia, indicating that the vascular bed in the intestinal segment was constricted and flow (total and nutritive) decreased. Halothane, enflurane, and isoflurane anesthesia were accompanied by a much lower arteriovenous oxygen content difference (AVDO/sub 2/) and oxygen uptake than pentobarbital or nitrous oxide. Compared with pentobarbital, enflurane anesthesia was not accompanied by marked differences in VR, F, Cl-Rb, and Cl-Sph; halothane at 2 MAC decreased VR and increased F and Cl-Rb while isoflurane increased VR and decreased F. alpha-Adrenoceptor blockade with phentolamine (1 mg . kg-1) abolished isoflurane-induced vasoconstriction, suggesting that the increase in VR was mediated via circulating catecholamines.

  8. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  9. Experimental Investigation of CaMnO3−δ Based Oxygen Carriers Used in Continuous Chemical-Looping Combustion

    Directory of Open Access Journals (Sweden)

    Peter Hallberg

    2014-01-01

    Full Text Available Three materials of perovskite structure, CaMn1−xMxO3−δ (M = Mg or Mg and Ti, have been examined as oxygen carriers in continuous operation of chemical-looping combustion (CLC in a circulating fluidized bed system with the designed fuel power 300 W. Natural gas was used as fuel. All three materials were capable of completely converting the fuel to carbon dioxide and water at 900°C. All materials also showed the ability to release gas phase oxygen when fluidized by inert gas at elevated temperature (700–950°C; that is, they were suitable for chemical looping with oxygen uncoupling (CLOU. Both fuel conversion and oxygen release improved with temperature. All three materials also showed good mechanical integrity, as the fraction of fines collected during experiments was small. These results indicate that the materials are promising oxygen carriers for chemical-looping combustion.

  10. SImulated Dodewaard ASsembly: Developments in loop-design

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, R. van de

    1992-03-01

    A computer program was written to calculate void-fraction, flow rate, system circulation time and pressure drops for SIDAS under natural circulation conditions. In this program the thermohydraulic behaviour of the loop is simulated. Taking into account for the large uncertainty in two-phase frictional pressure drops, the chimney length is calculated, together with the length of the tubes which connect the downcomer at assembly height with the assembly inlet in a roundabout way. Tube diameter is chosen such that the frictional pressure losses are negligible. Using the results, it was decided to construct the chimney `telescopically` (consisting of a fixed part and a movable part) in order to influence the driving force. Calculations of the enthalpy of the condensed vapour flow for various system conditions have shown that it is impractical to use this flow to lower the temperature of the total downcomer flow at the necessary subcooling temperature. It is therefore decided to use the condensor flow only for lowering the total downcomer flow enthalpy at saturation enthalpy and to establish the necessary subcooling separately by cooling of the flow in the connecting tubes. (orig.).

  11. Dispensing with the DVD Circulation Dilemma

    Science.gov (United States)

    Ellis, Mark

    2008-01-01

    Richmond Public Library (RPL) is a four-branch suburban library with the highest per capita circulation of any comparable library in Canada. While DVDs naturally fit into RPL's emphasis on popular material, circulating them using the standard model proved problematic: Long hold queues built up, DVDs idled on the hold shelves, and the circulation…

  12. Research for Natural Circulation Steam Generator Modular Simulation Method%自然循环蒸汽发生器模块化仿真建模研究

    Institute of Scientific and Technical Information of China (English)

    时浩; 蔡琦; 李磊

    2014-01-01

    ABSTRACT:At present,the modular simulation techniques of the second loop in nuclear reactor system have been mature,while the primary loop can not be fully modular simulated.By using the THEATRe software running on the SimExec platform,taking the Qinshan phase I NPP as the simulation object,a coolant system model can be established,the errors can be controlled within 0.5%;Modular simulating the natural circulation steam generator,then coupled the SG with the primary loop,the distinctions between the modular system with the former system are no more than 1%;Comparing the transient characteristics of the modular model with that of the former loop model by ascending the power transiently,ultimately draw a conclusion on the focus whether the modular simulation techniques of the SG in the primary loop is feasible,and thus give suggestions on improvements and recommendations of the modular simulation methods.%目前对于核电站系统二回路的模块化仿真建模技术已较为成熟,而一回路还未完全实现模块化。利用运行在SimExec平台上的THEATRe软件,以秦山一期核电站为仿真对象,建立冷却剂系统仿真模型,进而对模型进行仿真研究,误差可控制在0.5%以内;将主回路中的自然循环蒸汽发生器进行模块化建模,并通过方案优化,采用边界交换的方法将蒸汽发生器模块与系统主回路进行耦合,耦合前后系统运行参数误差不超过1%;通过瞬态提升功率比较模块化模型与环路模型的瞬态特性,最终得出对自然循环蒸汽发生器进行模块化建模仿真方法可行的结论,并由此提出改进方法及其在实际建模仿真中的建议。

  13. Cosmic string loop shapes

    CERN Document Server

    Blanco-Pillado, Jose J; Shlaer, Benjamin

    2015-01-01

    We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-universe string network. The simulation does not include gravitational back reaction, but we model that process by smoothing the loop using Lorentzian convolution. We find that loops at formation consist of generally straight segments separated by kinks. We do not see cusps or any cusp-like structure at the scale of the entire loop, although we do see very small regions of string that move with large Lorentz boosts. However, smoothing of the string almost always introduces two cusps on each loop. The smoothing process does not lead to any significant fragmentation of loops that were in non-self-intersecting trajectories before smoothing.

  14. Coxeter-Chein Loops

    CERN Document Server

    Blok, Rieuwert J

    2011-01-01

    In 1974 Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group $W$ together with $\\mathbb{Z}_2$ by a variation on a semi-direct product. We study these loops in the case where $W$ is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. As a result we are able to give amalgam presentations for Coxeter-Chein loops. This is to our knowledge the first such presentation for a Moufang loop.

  15. Experimental study on the evaporation of phosphoric acid in natural circulation under low temperature%磷酸自然循环低温蒸发实验研究

    Institute of Scientific and Technical Information of China (English)

    陈建利; 王魁; 刘德春; 夏素兰; 朱家骅

    2011-01-01

    国内大型磷酸装置普遍面临浓缩能力不足的问题,回收工艺过程中低温位余热进行稀磷酸低温预浓缩是解决此问题的方案之一。在低于30℃下进行湿法磷酸自然循环浓缩实验研究,获得了彬(P20,)O%~40%的磷酸溶液循环启动工况下垂直上升管内气液两相流沸腾传热平均给热系数377~1047w/(m^2·K),与之对应的管内壁温度35~45℃。实验结果表明,磷酸自然循环低温蒸发具有流体动力学稳定性,适于利用低温位热源。%Using the recycled waste heat with low temperature to concentrate dilute phosphoric acid is one of the methods for solving the deficiency of concentration capacity in large-scale WPA plant in China. Experiments on evaporation of WPA in natural circulation under temperature below 30°C are carried out. The average heat transfer coefficient of the gas-liquid two phase flow upwards in the vertical tube is of 377 - 1 047 W/ ( m2·K) under conditions of circulation starting with w (P205) of 0% - 40% and the corresponding temperature of inside-wall of the tube of 35- 45 °C. The result indicates: the evaporation of phosphoric acid in natural circulation under low temperature bears stability of hydro dynamics and goes well with utilization of low grade heat source.

  16. Coxeter-Chein Loops

    OpenAIRE

    Blok, Rieuwert J.; Gagola III, Stephen

    2011-01-01

    In 1974 Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group $W$ together with $\\mathbb{Z}_2$ by a variation on a semi-direct product. We study these loops in the case where $W$ is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. As a result we are able to give am...

  17. Observational Evidence for Loop-Loop Interaction

    Science.gov (United States)

    Guiping, W.; Guangli, H.; Yuhua, T.; Aoao, X.

    2004-01-01

    Through analysis of the data including the hard x-ray(BASTE) microwave(NoRP) and magnetogram(MDI from SOHO) as well as the images of soft x-ray(YHKOH) and EIT(SOHO) on Apr. 151998 solar flare in the active region 8203(N30W12) we found: (1) there are similar quasi period oscillation in the profile of hard x-ray flux (25-5050-100keV) and microwave flux(1GHz) with duration of 85+/-25s every peak includes two sub-peak structures; (2) in the preheat phase of the flare active magnetic field changes apparently and a s-pole spot emerges ; (3) several EIT and soft x-ray loops exist and turn into bright . All of these may suggest that loop-loop interaction indeed exist. Through reconnection the electrons may be accelerated and the hard x-ray and microwave emission take place.

  18. Circulation in blast driven instabilities

    Science.gov (United States)

    Henry de Frahan, Marc; Johnsen, Eric

    2016-11-01

    Mixing in many natural phenomena (e.g. supernova collapse) and engineering applications (e.g. inertial confinement fusion) is often initiated through hydrodynamic instabilities. Explosions in these systems give rise to blast waves which can interact with perturbations at interfaces between different fluids. Blast waves are formed by a shock followed by a rarefaction. This wave profile leads to complex time histories of interface acceleration. In addition to the instabilities induced by the acceleration field, the rarefaction from the blast wave decompresses the material at the interface, further increasing the perturbation growth. After the passage of the wave, circulation circulation generated by the blast wave through baroclinic vorticity continues to act upon the interface. In this talk, we provide scaling laws for the circulation and amplitude growth induced by the blast wave. Numerical simulations of the multifluid Euler equations solved using a high-order accurate Discontinuous Galerkin method are used to validate the theoretical results.

  19. A single acute dose of pinitol from a naturally-occurring food ingredient decreases hyperglycaemia and circulating insulin levels in healthy subjects.

    Science.gov (United States)

    Hernández-Mijares, Antonio; Bañuls, Celia; Peris, Jose E; Monzó, Nuria; Jover, Ana; Bellod, Lorena; Victor, Victor M; Rocha, Milagros

    2013-11-15

    A limited amount of research suggests that oral ingestion of pinitol (3-O-methyl-d-chiro-inositol) positively influences glucose tolerance in humans. This study assessed the effects of different doses of pinitol supplementation on glucose tolerance, insulin sensitivity and plasma pinitol concentrations. Thirty healthy subjects underwent two one-day trials in which they consumed a nutritive beverage (Fruit Up®) containing 2.5, 4.0 or 6.0g of pinitol and a corresponding placebo equivalent in both energy and carbohydrates. Blood samples were collected frequently over the 240-min test period. The pinitol-enriched beverage reduced serum glucose and insulin at 45 and 60min, but only at a dose of 6.0g. Plasma pinitol concentrations, maximum concentration and AUC increased according to the dose administered. The results show that a single dose of pinitol from a naturally-occurring food ingredient at the highest dose administered acutely influences indices of whole-body glucose tolerance and insulin sensitivity in healthy subjects.

  20. Testing loop quantum cosmology

    Science.gov (United States)

    Wilson-Ewing, Edward

    2017-03-01

    Loop quantum cosmology predicts that quantum gravity effects resolve the big-bang singularity and replace it by a cosmic bounce. Furthermore, loop quantum cosmology can also modify the form of primordial cosmological perturbations, for example by reducing power at large scales in inflationary models or by suppressing the tensor-to-scalar ratio in the matter bounce scenario; these two effects are potential observational tests for loop quantum cosmology. In this article, I review these predictions and others, and also briefly discuss three open problems in loop quantum cosmology: its relation to loop quantum gravity, the trans-Planckian problem, and a possible transition from a Lorentzian to a Euclidean space-time around the bounce point.

  1. Uranyl Nitrate Flow Loop

    Energy Technology Data Exchange (ETDEWEB)

    Ladd-Lively, Jennifer L [ORNL

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion

  2. Hydrothermal circulation along oceanic detachment fault: Constraints on the nature and conditions of syntectonic silicification at the 13°20'N oceanic core complex (Mid-Atlantic ridge)

    Science.gov (United States)

    Bonnemains, D.; Verlaguet, A.; Escartin, J.; Mevel, C.; Andreani, M.

    2016-12-01

    To understand the link between extreme strain localization and fluid flow at long-lived oceanic detachment faults, we present results of geological investigations at the active 13°20'N detachment fault along the Mid-Atlantic ridge (ODEMAR cruise, Nov-Dec13) onboard NO Pourquoi pas? using the ROV Victor6000. During this cruise, we identified and sampled 7 fault outcrops on the flanks of detachment microbathymetric corrugations. These fault surfaces, extending up to 100m laterally, with extension-parallel subhorizontal striations. Sampled fault rocks are breccias containing mainly diabase clasts (often altered) and rare ultramafic clasts. Samples also show striated surfaces indicating strain localization at outcrop to sample scales. These fault rocks, which show pervasive syntectonic silicification during fault exhumation, are not documented along other detachments. To constrain the nature and origin of the silicifying fluids and the conditions of fluid-rock interactions, we combined whole-rock and mineral analyses with a study of fluid inclusions in quartz. Highly silicified samples record high homogenization temperatures (250-350°C), while moderate silicification temperatures are lower (150-250°C). In all cases salinities are generally higher than seawater (4-10 wt% eq. NaCl). These high salinity fluids likely record phase separation at high temperature (>400°C), and Raman spectroscopy shows that they contain H2±CH4±CO2. These results suggest an interaction of these fluids with ultramafic rocks undergoing serpentinization reactions (H2 release) in the footwall of the detachment and the presence of a high temperature zone at depth. This is supported by trace element patterns of mafic breccias, which shift towards ultramafic compositions with increasing silicification degree. The detachment fault zone thus channels and records a tectonic mixing between hydrothermal serpentinite fluids, and shallower seawater-like fluids potentially from the mafic hanging wall.

  3. Analysis of ROSA 1.1 test with TRACE code: ECSS water injection under natural circulation conditions; Analisis con el codigo TRACE del test ROSA 1.1: Inyeccion de agua ECCS bajo condiciones de circulacion natural

    Energy Technology Data Exchange (ETDEWEB)

    Julibe, A. J.; Munoz-Coba, J. L.; Escriva, A.; Romero, A.

    2010-07-01

    This paper is based on modelling the ROSA 1.1 test by TRACE code. The ROSA 1.1 test presents several natural flow phases in biphasic conditions and this was the cause of this work. Therefore, the aim of this paper is verify the TRACE code ability to simulate such flows using standard components and modules.

  4. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  5. Force distribution in a semiflexible loop

    CERN Document Server

    Waters, James T

    2016-01-01

    Loops undergoing thermal fluctuations are prevalent in nature. Ring-like or cross-linked polymers, cyclic macromolecules, and protein-mediated DNA loops all belong to this category. Stability of these molecules are generally described in terms of free energy, an average quantity, but it may also be impacted by local fluctuating forces acting within these systems. The full distribution of these forces can thus give us insights into mechanochemistry beyond the predictive capability of thermodynamics. In this paper, we study the force exerted by an inextensible semiflexible polymer constrained in a looped state. By using a novel simulation method termed "phase-space sampling", we generate the equilibrium distribution of chain conformations in both position and momentum space. We compute the constraint forces between the two ends of the loop in this chain ensemble using Lagrangian mechanics, and show that the mean of these forces is equal to the thermodynamic force. By analyzing kinetic and potential contribution...

  6. Physical aspects of liquid-impelled loop reactors.

    NARCIS (Netherlands)

    Sonsbeek, van H.M.

    1992-01-01

    The liquid-impelled loop reactor (LLR) is a reactor that consists of two parts : the main tube and the circulation tube. Both parts are in open connection at the bottom and at the top. The reactor is filled with a liquid phase: the continuous phase. Another liquid phase is injected in the main tube

  7. Modelling and characterization of an airlift-loop bioreactor.

    NARCIS (Netherlands)

    Verlaan, P.

    1987-01-01

    An airlift-loop reactor is a bioreactor for aerobic biotechnological processes. The special feature of the ALR is the recirculation of the liquid through a downcomer connecting the top and the bottom of the main bubbling section. Due to the high circulation-flow rate, efficient mixing and oxygen tra

  8. 非能动安全壳冷却系统空气流道自然循环的比例分析与设计%Scaling Analysis and Design for PCS Air Flow Path Natural Circulation

    Institute of Scientific and Technical Information of China (English)

    刘卓; 常华健; 阳祥; 杨燕宁

    2016-01-01

    在考虑建设试验台架经济性的前提下,缩小比例的单项和整体效应试验台架对研究和开发大型先进压水堆核电站及其分析验证程序都具有重要意义。非能动安全壳冷却系统(PCS )壳外空气流道内的自然循环在安全壳非能动冷却性能中发挥着重要的作用。本文从自然循环的数学模型出发,推导出了单项和整体效应试验台架的比例设计方法。在给定壳内热流密度的条件下,通过PCCSAP‐3D程序对C A P1400非能动安全壳的2/5比例单项效应试验理想比例台架(IS F )进行模拟。结果表明,本比例分析与设计方法以及在降低高度台架上模拟自然循环是可行的。%The scale‐down separate and integral effect test facilities are of vital signifi‐cance not only for the research and development of large‐scale advanced pressurized w ater reactor nuclear pow er plants ,but also for validation and verification of the related analysis codes . The passive containment cooling system (PCS ) air flow path system plays an important role in containment passive cooling .Based on the natural circulation model ,the scaling and design methods for both the separate and integral effect test facil‐ities were proposed .Under given heat flux from the inner side of the shell ,simulation of an ideal scaled facility (ISF) design of a 2/5 length scaled separate effect test facility for CAP1400 PCS was preliminarily performed by the PCCSAP‐3D code .The simulation results show that the design method and the modeling of natural circulation on a reduced height test facility are feasible .

  9. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  10. Natively unstructured loops differ from other loops.

    Science.gov (United States)

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-07-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  11. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  12. Design and Operating Performance of Cryocooled Helium Thermosiphon Loops for HTS Transformers

    Science.gov (United States)

    Schwenterly, S. W.; Cole, M. J.; Demko, J. A.; Pleva, Edward F.; Hazelton, D. W.

    2004-06-01

    Since the large coils in a cryocooled HTS utility transformer can be located more than a meter away from the cryocooler cold heads, conductive cooling would require very large, heavy thermal links to keep temperature differentials small. Under a U.S. Department of Energy (USDOE) Superconductivity Partnership with Industry (SPI) agreement with Waukesha Electric Systems (WES), SuperPower Inc. (SP), Energy East (EE), and Oak Ridge National Laboratory (ORNL), we have developed a closed-loop helium system that couples the coils to the cold heads using natural convection cooling. The loop operates on a single-phase thermosiphon principle at temperatures and pressures from 20 to 45 K and 10 to 20 bars, and needs no external compressor to maintain helium gas circulation. Design procedures for the heat exchangers on both the cold heads and coils and for the interconnecting piping will be summarized. A 30-W cooling loop was successfully operated on a 1-MVA prototype transformer. A 350-W system for a 5/10-MVA prototype transformer has been built and tested with a dummy load over a wide range of heat loads corresponding to the range from normal transformer operation to two times (2×) overload. Later, this system successfully cooled down the 4.5-ton cold mass of the transformer to temperatures below 30 K. Design details of the hardware and performance of the assembled systems will be summarized.

  13. A loop quantum multiverse?

    CERN Document Server

    Bojowald, Martin

    2013-01-01

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  14. Blind loop syndrome

    Science.gov (United States)

    ... part of the stomach) and operations for extreme obesity As a complication of inflammatory bowel disease Diseases such as diabetes or scleroderma may slow down movement in a segment of the intestine, leading to blind loop syndrome.

  15. Diffusion of Wilson Loops

    CERN Document Server

    Brzoska, A M; Negele, J W; Thies, M

    2004-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory.

  16. From Loops to Surfaces

    CERN Document Server

    Neuberger, H

    2010-01-01

    The generating function for all antisymmetric characters of a Wilson loop matrix in SU(N) Yang Mills theory is the partition function of a fermion living on the curve describing the loop. This generalizes to fermion subsystems living on higher dimensional submanifolds, for example, surfaces. This write-up also contains some extra background, in response to some questions raised during the oral presentation.

  17. A Loop-philic Pseudoscalar

    CERN Document Server

    Li, Gang; Tang, Yi-Lei; Zhang, Chen; Zhou, Yang; Zhu, Shou-hua

    2015-01-01

    We construct a weakly-coupled renormalizable model to explain the 750 $\\mbox{GeV}$ diphoton excess. The 750 $\\mbox{GeV}$ resonance (denoted as $X(750)$) is interpreted as a pseudoscalar which comes from a complex singlet. The model also naturally provides a dark matter candidate. One most attractive feature of our model is that decays of $X(750)$ are all loop-induced so the diphoton rate is not diluted by unwanted tree level branching fractions. Relevant Yukawa interactions need not to be tuned to nearly non-perturbative region to explain the rate. The model is highly predictive, including the pseudoscalar nature of the new resonance, and two nearly mass-degenerate quarks carrying electric charge $5/3$ and $2/3$. In our model, rich phenomenology is expected with respect to collider searches, flavor physics and dark matter searches in various manners, if $X(750)$ can be pinned down by future LHC experiments.

  18. Inflation and Loop Quantum Cosmology

    CERN Document Server

    Barrau, Aurelien

    2010-01-01

    On the one hand, inflation is an extremely convincing scenario: it solves most cosmological paradoxes and generates fluctuations that became the seeds for the growth of structures. It, however, suffers from a "naturalness" problem: generating initial conditions for inflation is far from easy. On the other hand, loop quantum cosmology is very successful: it solves the Big Bang singularity through a non-perturbative and background-independent quantization of general relativity. It, however, suffers from a key drawback: it is extremely difficult to test. Recent results can let us hope that inflation and LQC could mutually cure those pathologies: LQC seems to naturally generate inflation and inflation could allow us to test LQC.

  19. Intersections of Loops and the Andersen-Mattes-Reshetikhin Algebra

    CERN Document Server

    Cahn, Patricia

    2011-01-01

    Given two free homotopy classes $\\alpha_1, \\alpha_2$ of loops on an oriented surface, it is natural to ask how to compute the minimum number of intersection points $m(\\alpha_1, \\alpha_2)$ of loops in these two classes. We show that for $\\alpha_1\

  20. Closed Loop Supply Chains for Sustainable Mass Customization

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Brunø, Thomas Ditlev

    2013-01-01

    Closed loop supply chains reducing waste, energy consumption and natural resource depletion which all contribute to more sustainable production and products. For mass customization however, the challenges of closed loop supply chains are emphasized by the large variety of inbound end...

  1. Detection and Characterization of R Loop Structures.

    Science.gov (United States)

    Boque-Sastre, Raquel; Soler, Marta; Guil, Sonia

    2017-01-01

    R loops are special three stranded nucleic acid structures that comprise a nascent RNA hybridized with the DNA template strand, leaving a non-template DNA single-stranded. More specifically, R loops form in vivo as G-rich RNA transcripts invade the DNA duplex and anneal to the template strand to generate an RNA:DNA hybrid, leaving the non-template, G-rich DNA strand in a largely single-stranded conformation (Aguilera and Garcia-Muse, Mol Cell 46:115-124, 2012).DNA-RNA hybrids are a natural occurrence within eukaryotic cells, with levels of these hybrids increasing at sites with high transcriptional activity, such as during transcription initiation, repression, and elongation. RNA-DNA hybrids influence genomic instability, and growing evidence points to an important role for R loops in active gene expression regulation (Ginno et al., Mol Cell 45, 814-825, 2012; Sun et al., Science 340: 619-621, 2013; Bhatia et al., Nature 511, 362-365, 2014). Analysis of the occurrence of such structures is therefore of increasing relevance and herein we describe methods for the in vivo and in vitro identification and characterization of R loops in mammalian systems.R loops (DNA:RNA hybrids and the associated single-stranded DNA) have been traditionally associated with threats to genome integrity, making some regions of the genome more prone to DNA-damaging and mutagenic agents. Initially considered to be rare byproducts of transcription, over the last decade accumulating evidence has pointed to a new view in which R loops form more frequently than previously thought. The R loop field has become an increasingly expanded area of research, placing these structures as a major threat to genome stability but also as potential regulators of gene expression. Special interest has arisen as they have also been linked to a variety of diseases, including neurological disorders and cancer, positioning them as potential therapeutic targets [5].

  2. Genetic Programming with Simple Loops

    Institute of Scientific and Technical Information of China (English)

    QI Yuesheng; WANG Baozhong; KANG Lishan

    1999-01-01

    A kind of loop function LoopN inGenetic Programming (GP) is proposed.Different from other forms of loopfunction, such as While-Do and Repeat-Until, LoopNtakes only oneargument as its loop body and makes its loop body simply run N times,soinfinite loops will never happen. The problem of how to avoid too manylayers ofloops in Genetic Programming is also solved. The advantage ofLoopN in GP is shown bythe computational results in solving the mowerproblem.

  3. Corrosion of alloy 718 in a mercury thermal convection loop

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, S.J.; DiStefano, J.R.; Manneschmidt, E.T.

    1999-12-01

    Two thermal convection loops (TCLs) fabricated from annealed alloy 718 continuously circulated mercury (Hg) with 1000 wppm gallium (Ga), respectively, for about 5000 h, duplicating previous TCL tests for annealed 316L. In each case, the maximum loop temperature was 305C, the minimum temperature was 242C, and the Hg flow rate was approximately 1.2 m/min. Unlike the 316L exposed to Hg, which above about 260C exhibited a thin, porous surface layer depleted in Ni and Cr, the alloy 718 coupons revealed essentially no wetting and, therefore, no interaction with that Hg at any temperature. Alloy 718 coupons suspended in the loops revealed inconsequentially small weight changes, and both the coupons and loop tubing exhibited no detectable metallographic evidence of attack.

  4. Haustral loop extraction for CT colonography using geodesics.

    Science.gov (United States)

    Liu, Yongkai; Duan, Chaijie; Liang, Jerome; Hu, Jing; Lu, Hongbing; Luo, Mingyue

    2017-03-01

    The human colon has complex geometric structures because of its haustral folds, which are thin flat protrusions on the colon wall. The haustral loop is the curve (approximately triangular in shape) that encircles the highly convex region of the haustral fold, and is regarded as the natural landmark of the colon, intersecting the longitude of the colon in the middle. Haustral loop extraction can assist in reducing the structural complexity of the colon, and the loops can also serve as anatomic markers for computed tomographic colonography (CTC). Moreover, haustral loop sectioning of the colon can help with the performance of precise prone-supine registration. We propose an accurate approach of extracting haustral loops for CT virtual colonoscopy based on geodesics. First, the longitudinal geodesic (LG) connecting the start and end points is tracked by the geodesic method and the colon is cut along the LG. Second, key points are extracted from the LG, after which paired points that are used for seeking the potential haustral loops are calculated according to the key points. Next, for each paired point, the shortest distance (geodesic line) between the paired points twice is calculated, namely one on the original surface and the other on the cut surface. Then, the two geodesics are combined to form a potential haustral loop. Finally, erroneous and nonstandard potential loops are removed. To evaluate the haustral loop extraction algorithm, we first utilized the algorithm to extract the haustral loops. Then, we let the clinicians determine whether the haustral loops were correct and then identify the missing haustral loops. The extraction algorithm successfully detected 91.87% of all of the haustral loops with a very low false positive rate. We believe that haustral loop extraction may benefit many post-procedures in CTC, such as supine-prone registration, computer-aided diagnosis, and taenia coli extraction.

  5. A Self-Circulating Heat Exchanger for Use in Stirling and Thermoacoustic-Stirling Engines

    Science.gov (United States)

    Backhaus, Scott; Reid, Robert S.

    2005-02-01

    A major technical hurdle to the implementation of large Stirling engines or thermoacoustic engines is the reliability, performance, and manufacturability of the hot heat exchanger that brings high-temperature heat into the engine. Unlike power conversion devices that utilize steady flow, the oscillatory nature of the flow in Stirling and thermoacoustic engines restricts the length of a traditional hot heat exchanger to a peak-to-peak gas displacement, which is usually around 0.2 meters or less. To overcome this restriction, a new hot heat exchanger has been devised that uses a fluid diode in a looped pipe, which is resonantly driven by the oscillating gas pressure in the engine itself, to circulate the engine's working fluid around the loop. Instead of thousands of short, intricately interwoven passages that must be individually sealed, this new design consists of a few pipes that are typically 10 meters long. This revolutionary approach eliminates thousands of hermetic joints, pumps the engine's working fluid to and from a remote heat source without using moving parts, and does so without compromising on heat transfer surface area. Test data on a prototype loop integrated with a 1-kW thermoacoustic engine will be presented.

  6. Loop electrosurgical excisional procedure.

    Science.gov (United States)

    Mayeaux, E J; Harper, M B

    1993-02-01

    Loop electrosurgical excisional procedure, or LEEP, also known as loop diathermy treatment, loop excision of the transformation zone (LETZ), and large loop excision of the transformation zone (LLETZ), is a new technique for outpatient diagnosis and treatment of dysplastic cervical lesions. This procedure produces good specimens for cytologic evaluation, carries a low risk of affecting childbearing ability, and is likely to replace cryotherapy or laser treatment for cervical neoplasias. LEEP uses low-current, high-frequency electrical generators and thin stainless steel or tungsten loops to excise either lesions or the entire transformation zone. Complication rates are comparable to cryotherapy or laser treatment methods and include bleeding, incomplete removal of the lesion, and cervical stenosis. Compared with other methods, the advantages of LEEP include: removal of abnormal tissue in a manner permitting cytologic study, low cost, ease of acquiring necessary skills, and the ability to treat lesions with fewer visits. Patient acceptance of the procedure is high. Widespread use of LEEP by family physicians can be expected.

  7. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  8. A Coordinate Control Strategy for Circulating Current Suppression in Multiparalleled Three-Phase Inverters

    DEFF Research Database (Denmark)

    Zhang, Xueguang; Wang, Tianyi; Wang, Xiongfei

    2017-01-01

    This paper addresses the zero-sequence circulating current control in the multiparalleled three-phase voltage-source inverters. The model of the zero-sequence circulating current in the N-paralleled (N ≥ 3) inverters is derived. It is shown that the circulating current is not only susceptible...... to the mismatches of circuit parameters, but it is also influenced by the interactions of circulating current controllers used by other paralleled inverters. To eliminate these adverse effects on the circulating current control loop, a coordinate control strategy for the N-paralleled inverter is proposed based...

  9. Designing of optimal double loop networks

    Institute of Scientific and Technical Information of China (English)

    徐俊明

    1999-01-01

    The double loop network G(N; r, s) has N vertices and 2N directed edges. A natural question is how to choose r and s such that G(N; r, s) has diameter as short as possible for a given N. In 1993, Li, Xu and Zhang proposed a method of constructing double loop networks with the minimum diameter for the case of r=1.The method is developed to construct such networks that none of their minimum diameters can be reached at r=1.As a by-product, a flaw in an assertation by Esqu et al. is pointed out.

  10. Classical Loop Actions of Gauge Theories

    CERN Document Server

    Armand-Ugon, D; Griego, J R; Setaro, L; Armand-Ugon, Daniel; Gambini, Rodolfo; Griego, Jorge; Setaro, Leonardo

    1994-01-01

    Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.

  11. Non-standard loop quantum cosmology

    CERN Document Server

    Piechocki, Wlodzimierz

    2010-01-01

    We present results concerning the nature of the cosmological big bounce(BB) transition within the loop geometry underlying loop quantum cosmology (LQC). Our canonical quantization method is an alternative to the standard LQC. An evolution parameter we use has clear interpretation both at classical and quantum levels. The physical volume operator has discrete spectrum which is bounded from below. The minimum gap in the spectrum defines a quantum of the volume. The spectra of operators are parametrized by a free parameter to be determined.

  12. Perturbative loop corrections and nonlocal gravity

    CERN Document Server

    Maggiore, Michele

    2016-01-01

    Nonlocal gravity has been shown to provide a phenomenologically viable infrared modification of GR. A natural question is whether the required nonlocality can emerge from perturbative quantum loop corrections due to light particles. We show that this is not the case. For the value of the mass scale of the non-local models required by cosmology, the perturbative form factors obtained from the loop corrections, in the present cosmological epoch, are in the regime where they are local. The mechanism behind the generation of the required nonlocality must be more complex, possibly related to strong infrared effects and non-perturbative mass generation for the conformal mode.

  13. Loops in Twistor Space

    CERN Document Server

    Bena, I; Kosower, D A; Roiban, R; Bena, Iosif; Bern, Zvi; Kosower, David A.; Roiban, Radu

    2004-01-01

    We elucidate the one-loop twistor-space structure corresponding to momentum-space MHV diagrams. We also discuss the infrared divergences, and argue that only a limited set of MHV diagrams contain them. We show how to introduce a twistor-space regulator corresponding to dimensional regularization for the infrared-divergent diagrams. We also evaluate explicitly the `holomorphic anomaly' pointed out by Cachazo, Svrcek, and Witten, and use the result to define modified differential operators which can be used to probe the twistor-space structure of one-loop amplitudes.

  14. Closed Loop Subspace Identification

    Directory of Open Access Journals (Sweden)

    Geir W. Nilsen

    2005-07-01

    Full Text Available A new three step closed loop subspace identifications algorithm based on an already existing algorithm and the Kalman filter properties is presented. The Kalman filter contains noise free states which implies that the states and innovation are uneorre lated. The idea is that a Kalman filter found by a good subspace identification algorithm will give an output which is sufficiently uncorrelated with the noise on the output of the actual process. Using feedback from the output of the estimated Kalman filter in the closed loop system a subspace identification algorithm can be used to estimate an unbiased model.

  15. Loop Quantum Gravity

    CERN Document Server

    Chiou, Dah-Wei

    2014-01-01

    This article presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) -- a background-independent, nonperturbative approach to a consistent quantum theory of gravity. Instead of rigorous and systematic derivations, it aims to provide a general picture of LQG, placing emphasis on the fundamental ideas and their significance. The canonical formulation of LQG, as the central topic of the article, is presented in a logically orderly fashion with moderate details, while the spin foam theory, black hole thermodynamics, and loop quantum cosmology are covered briefly. Current directions and open issues are also summarized.

  16. Study on Chaotic Characteristics of Natural Circulation Flow Instability Under Rolling Motion%摇摆条件下自然循环流动不稳定性的混沌特性研究

    Institute of Scientific and Technical Information of China (English)

    张文超; 谭思超; 高璞珍; 张虹; 张红岩

    2012-01-01

    对摇摆条件下两相自然循环系统不规则复合型脉动进行了非线性时序分析.通过相空间重构计算了不规则复合型脉动时间序列的关联维、K2熵和最大Lyapunov指数值,在几何不变量的计算结果基础上,结合密度波型脉动和波谷型脉动的对比,分析了不规则复合型脉动的混沌特征和产生机理.分析结果表明:不规则复合型脉动为典型的混沌运动,热驱动力、流动阻力和摇摆引起的附加外力的相互作用和耦合导致了混沌的出现.%Non-linear time series analysis on irregular complex flow oscillations of natural circulation system under rolling motion was studied. The correlation dimension, Kz entropy and maximal Lyapunov exponent (MLE) were determined based on phase space reconstruction theory. The chaotic features of the irregular complex flow oscillations were analyzed by comparing with density wave oscillation and trough-type flow oscillation base on the results of geometric invariants. The results indicate that irregular complex flow oscillations are typical chaotic oscillations, the interaction and feedback of thermal driving forces, flow resistance and additional forces caused by rolling motion lead to the emergence of chaos.

  17. Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease.

    Science.gov (United States)

    Dunne, Margaret R; Elliott, Louise; Hussey, Seamus; Mahmud, Nasir; Kelly, Jacinta; Doherty, Derek G; Feighery, Conleth F

    2013-01-01

    Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets), natural killer cells, CD56(+) T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity.

  18. Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease.

    Directory of Open Access Journals (Sweden)

    Margaret R Dunne

    Full Text Available Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets, natural killer cells, CD56(+ T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity.

  19. [Effect of 5 warm-hot nature Chinese drugs for promoting blood circulation and removing blood stasis on 5-HT, NE, and endocrine hormones of rats of cold coagulation and blood stasis syndrome].

    Science.gov (United States)

    Wang, Peng; Fu, Xian-Jun; Zhou, Yang; Wang, Zhen-Guo

    2014-11-01

    To study the mechanism of warm-hot nature Chinese drugs (WHNCD) for promoting blood circulation and removing blood stasis (PBCRBS) for intervening model rats of cold coagulation and blood stasis syndrome (CCBSS). CCBSS rat model was set up in outbred SD rats using ice water immersion method. Totally 300 successfully modeled CCBSS rats were randomly divided into 5 groups according to the principle of balance weight, 60 in each group. Contents of triothyrone (T3), tetraiodothyroine (T4), progesterone (P), 5-hydroxytryptamine (5-HT), and noradrenalin (NE) were paralleledly detected in all groups. Then rats in each group were subdivided into 6 subgroups as the model group, the curcuma group, the Ligsticum Chuanxiong group, the safflower group, the Rhizoma Corydalis group, and the Olibanumg group. Besides, 5 normal control groups were set up for 5 indices, 50 rats in total. We need 70 rats (7 groups) to finish observing 1 index, 350 rats in total for 5 indices. Except those in the model group and the normal control group, rats were administered with corresponding decoction at 20 g crude drugs/kg body weight by gastrogavage, 3 mL each time, once daily for 7 successive days. Equal volume of normal saline was given to rats in the normal control group and the model group. Contents of T3, T4, P, 5-HT, and NE were detected before treatment and 1 week after treatment. Compared with before treatment in the same group, T3 increased in the Ligsticum Chuanxiong group and the Olibanumg group, 5-HT increased in the Ligsticum Chuanxiong group, T4, NE, and P increased in all medicated groups (P endocrine system, which might be one of the pharmacodynamic mechanism of WHNCD for PBCRBS in intervening CCBSS.

  20. Spacecraft Thermal Management using Advanced Hybrid Two-Phase Loop Technology

    Science.gov (United States)

    2007-02-01

    HYBRID TWO-PHASE LOOPS The schematic of the Hybrid Two-Phase Loop (HTPL) used for a thermal testing is shown in Figure 3. Main components for the...hybrid two-phase loop with single evaporator. The thermal test starts first by turning on the liquid pump to circulate liquid along the loop. Once the...Vapor Out Evaporator Body (E1) Evaporator Body (E2) Total Heat Input Heat Input (E1) Heat Input (E2) Thermal Resistance (E1) FIGURE 10. Thermal test results

  1. Reversible hysteresis loop tuning

    Science.gov (United States)

    Berger, A.; Binek, Ch.; Margulies, D. T.; Moser, A.; Fullerton, E. E.

    2006-02-01

    We utilize antiferromagnetically coupled bilayer structures to magnetically tune hysteresis loop properties. Key element of this approach is the non-overlapping switching field distribution of the two magnetic layers that make up the system: a hard magnetic CoPtCrB layer (HL) and a soft magnetic CoCr layer (SL). Both layers are coupled antiferromagnetically through an only 0.6-nm-thick Ru interlayer. The non-overlapping switching field distribution allows the measurement of magnetization reversal in the SL at low fields while keeping the magnetization state of the HL unperturbed. Applying an appropriate high field or high field sequence changes the magnetic state of the HL, which then influences the SL magnetization reversal due to the interlayer coupling. In this way, the position and shape of the SL hysteresis loop can be changed or tuned in a fully reversible and highly effective manner. Here, we study specifically how the SL hysteresis loop characteristics change as we move the HL through an entire high field hysteresis loop sequence.

  2. Closed-Form Decomposition of One-Loop Massive Amplitudes

    CERN Document Server

    Britto, Ruth; Mastrolia, Pierpaolo

    2008-01-01

    We present formulas for the coefficients of 2-, 3-, 4- and 5-point master integrals for one-loop massive amplitudes. The coefficients are derived from unitarity cuts in D dimensions. The input parameters can be read off from any unitarity-cut integrand, as assembled from tree-level expressions, after simple algebraic manipulations. The formulas presented here are suitable for analytical as well as numerical evaluation. Their validity is confirmed in two known cases of helicity amplitudes contributing to gg -> gg and gg -> gH, where the masses of the Higgs and the fermion circulating in the loop are kept as free parameters.

  3. Bootstrapping the Three-Loop Hexagon

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /CERN /SLAC; Drummond, James M.; /CERN /Annecy, LAPTH; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP

    2011-11-08

    We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.

  4. 气-液-固自然循环流化床中的流动特性和压降%Flow Properties and Pressure Drop of Gas-Liquid-Solid Natural Circulating in Fluidized-Bed

    Institute of Scientific and Technical Information of China (English)

    齐国鹏; 姜峰; 赵燕禹; 赵国华; 周震; 李修伦

    2009-01-01

    A fluidized-bed evaporator for gas-liquid-solid natural circulation was set up to research the flow and distribution of solid particles and pressure drop of liquid-solid two-phase flow in a heating pipe bundle. With CCD image collecting and processing system,the influences of the particle kinds,particle holdup and additive air amount were studied. The experimental results show that air inlet positions have much effect on the distribution of solid particles in the heating pipe bundle. The form of moving and fluidization of solid particles in up-channel is different from that in down-channel. In up-channel,solid particles make circulating movement with the central part rising and perimeter dropping. As the density decreases,the distribution of solid particles in up-channel gradually becomes uniform. In down-channel,solid particles form two big whirls at both sides of the central axis. As additive air amount increases,the rotation rate of whirls increases. When the air is input from the up-channel,the pressure drop of liquid-solid two-phase flow in the heating pipe bundle increases with the increase of particles holdup and air amount. The pressure drop model of liquid-solid two-phase flow in the heating pipe bundle has been set up,and the calculated data agree well with the experimental results.%建立了气-液-固冷模多管自然循环流化床蒸发器,利用CCD图像采集和处理系统,研究了固体颗粒的种类、含率和通气量等操作参数对于固体颗粒的流化和运动形态、分布以及加热管束中液-固两相流压降的影响.结果表明:通气位置对于固体颗粒在加热管束中的分布影响较大.在上、下管箱中,固体颗粒的运动和流化形态不同.在上管箱中,固体颗粒形成中心上升、四周下降的循环运动,并且随着其密度的降低,固体颗粒在上管箱中的分布逐渐趋向均匀;在下管箱中,固体颗粒在中心轴的两侧形成两个大的旋涡,旋涡的旋转速度随着

  5. Two-loop and n-loop eikonal vertex corrections

    OpenAIRE

    Kidonakis, Nikolaos

    2003-01-01

    I present calculations of two-loop vertex corrections with massive and massless partons in the eikonal approximation. I show that the $n$-loop result for the UV poles can be given in terms of the one-loop calculation.

  6. Mountains and Tropical Circulation

    Science.gov (United States)

    Naiman, Z.; Goodman, P. J.; Krasting, J. P.; Malyshev, S.; Russell, J. L.; Stouffer, R. J.

    2015-12-01

    Observed tropical convection exhibits zonal asymmetries that strongly influence spatial precipitation patterns. The drivers of changes to this zonally-asymmetric Walker circulation on decadal and longer timescales have been the focus of significant recent research. Here we use two state-of-the-art earth system models to explore the impact of earth's mountains on the Walker circulation. When all land-surface topography is removed, the Walker circulation weakens by 33-59%. There is a ~30% decrease in global, large-scale upward vertical wind velocities in the middle of the troposphere, but only minor changes in global average convective mass flux, precipitation, surface and sea-surface temperatures. The zonally symmetric Hadley circulation is also largely unchanged. Following the spatial pattern of changes to large-scale vertical wind velocities, precipitation becomes less focused over the tropics. The weakening of the Walker circulation, but not the Hadley circulation, is similar to the behavior of climate models during radiative forcing experiments: in our simulations, the weakening is associated with changes in vertical wind velocities, rather than the hydrologic cycle. These results indicate suggest that mountain heights may significantly influence the Walker circulation on geologic time scales, and observed changes in tropical precipitation over millions of years may have been forced by changes in tropical orography.

  7. Local loop near-rings

    OpenAIRE

    Franetič, Damir

    2015-01-01

    We study loop near-rings, a generalization of near-rings, where the additive structure is not necessarily associative. We introduce local loop near-rings and prove a useful detection principle for localness.

  8. 自然循环换热器壳侧传热及流动的数值模拟%Numerical Simulation of Shell-Side Heat Transfer and Flow of Natural Circulation Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    薛若军; 邓程程; 李朝君; 王明远

    2012-01-01

    In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transferof the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer.%为分析换热器的求解模型和内部结构的不同对传热和流动特性的影响,用等效自然循环换热器的模型进行多种变换.用Fluent软件对等效模型进行非稳态数值模拟,研究其传热和流动特性.通过比较分析不同模型的温度场和流场的变化,对该换热器的传热过程和自然对流情况有较深刻的认识.结果表明:自然循环换热器的传热管内外温差较大,且流动较复杂,选用湍流模型计算更为合理;传热管位置的不对称性,引起左右两侧传热和流动的不对称性,使得流体相互影响,增强了自然对流作用;传热管的形状由直管变为C型弯管,结构的

  9. On the extended loop calculus

    CERN Document Server

    Griego, J R

    1995-01-01

    Some features of extended loops are considered. In particular, the behaviour under diffeomorphism transformations of the wavefunctions with support on the extended loop space are studied. The basis of a method to obtain analytical expressions of diffeomorphism invariants via extended loops are settled. Applications to knot theory and quantum gravity are considered.

  10. Experimental investigation of a natural circulation parabolic trough collector system for medium-high temperature steam generation%自然循环槽式太阳能中高温集热系统实验研究

    Institute of Scientific and Technical Information of China (English)

    陈欢; 王红梅; 俞自涛; 胡亚才; 张良; 倪煜; 樊建人

    2012-01-01

    A 50 kW natural circulation parabolic trough collector (PTC) system for medium-high temperature steam generation was proposed. Experimental investigation of thermal performance and stability was performed under different solar irradiation and discharging steam pressure conditions. Results show that the requirement of minimum solar irradiation perpendicular to the mirror for system working steadily is 254-272 W/m2. In good irradiation condition of summer, this system can generate steam at pressure up to 0. 5 MPa stably in one day. When three days continuous heating is performed, the pressure of saturated steam generated by the system reaches to 0. 8 MPa. During the steam producing process at different pressure, there is subcooling heat transfer happening due to insufficient solar radiation and thermal losses of pipes which result in inadequate heat fluxes in heat pipe.%介绍了规模为50 kW的自然循环槽式太阳能中高温集热系统,并对系统在不同太阳辐照和排汽压力工况下的传热特性及稳定性进行了实验研究.结果表明,系统稳定运行的最低有效辐照条件为垂直镜面辐照度254~272 W/m2;在较好的辐照条件下,本系统能够实现当天0.5 MPa稳定排汽;在连续3d良好辐照条件下,系统产生的饱和蒸汽压力达到0.8 MPa.在不同压力工况排汽过程中,由于辐照强度较小,管道热损失偏大,热管流量和携带热量偏小,自然循环换热系统均出现了不同程度的过冷换热现象.

  11. 摇摆运动下单相自然循环核热耦合特性研究%Nuclear Thermal Coupling Characteristics of Single-phase Natural Circulation Under Rolling Motion

    Institute of Scientific and Technical Information of China (English)

    张连胜; 张红岩; 谭思超; 张文超; 高璞珍; 张虹

    2013-01-01

    采用考虑6组缓发中子的点堆中子动力学模型,开发了核反馈模拟模块,并将之与摇摆条件下单相自然循环热工水力计算模型进行合并,基于Matlab软件编制了相应的计算程序,实现了摇摆条件下单相自然循环核热耦合的模拟计算。计算结果表明:摇摆条件下,与不考虑核反馈相比,考虑核反馈后核热耦合效应使系统流量降低,系统功率产生波动;系统功率的平均值随摇摆频率及振幅的增大而降低,而系统功率的振幅则随摇摆周期及振幅的增大而增大。核热耦合效应使燃料元件温度的波动振幅减小,起到了抑制燃料温度波动的作用。%A nuclear feedback simulation module adopting the point reactor neutron kinetics model with six delayed neutron precursor groups was proposed . A program which combines a nuclear feedback module with the thermal-hydraulic calculation model to simulate the natural circulation under rolling motion in Matlab platform was developed .The results show that the average flow rate and heating power decrease when considering the nuclear thermal coupling effect under rolling motion condition . The average value of the heating power decreases with the increase of the rolling frequency and rolling amplitude . The oscillation amplitude of the heating power increases with rolling period and rolling amplitude .Furthermore ,the nuclear thermal coupling effect decreases the fluctuation amplitude of the fuel temperature ,playing a positive role in suppressing the temperature fluctuations .

  12. Investigation on Installation height of Storage Tank for Natural Circulation Flat Plate Solar Collector%自然循环平板式太阳能热水器水箱放置高度的研究

    Institute of Scientific and Technical Information of China (English)

    郑土逢; 李明; 魏生贤; 罗熙; 王炳灿

    2011-01-01

    The device of natural circulation flat plate solar water heater has been built.In accordance with the national testing standard methods, the efficiency of the system was tested.The transient model of NFSWH has been developed by using the TRNSYS simulation program.The effect of installation height between the bottom of the tank and the outlet of the collector on efficiency of the solar collector has been investigated both theoretically and experimentally.The data show the theoretical results are highly consistent with the experimental ones.Results indicate that the optimum value of installation height is 0.74m with the maximum efficiency of 67.5% for the system with a total area of 1.5m2 and a storage water tank capacity of 120L.When the installation height is between 0.44 and 1.04 m, the change of thermal efficiency of the solar system is at a range of 3%.%搭建了自然循环平板式太阳能热水器(NFSWH)的实验平台,根据太阳能热水器国家测试标准方法对系统的热效率进行测试.用TRNSYS软件建立了NFSWH的瞬态模型.模拟和实际测量了水箱放置高度对热水器热效率的影响.结果显示,实验与模拟吻合较好.对于集热面积为1.5m2水箱容积为120L的系统,水箱底到集热器出口的高度(Hr)为0.74m时,系统的热效率最大(67.7%).放置高度为0.44-1.04m时,系统集热效率变化不大,在3%以内.

  13. 小型自然循环钠冷堆堆芯初步设计研究%Preliminary Design Research on Core of Small Natural-circulation Sodium-cooled Reactor

    Institute of Scientific and Technical Information of China (English)

    陆道纲; 张勋

    2014-01-01

    A small natural-circulation sodium-cooled reactor-AM TEC system was pres-ented as a distributed generation system . According to the criticality calculation and thermal-hydraulic analysis of the core when the total fuel mass was constant ,the influ-ence of pellet radius ,fuel pin length and the number of rings of fuel pins upon the effec-tive multiplication factor kef , pressure drop across the core and heat transfer was analyzed .Additionally ,the B4 C absorber thickness and beginning-of-life excess reactivi-ty under different numbers of rings of the fuel pins were studied when the assumed addi-tional shutdown margin was different .The results show that decreasing the number of rings and active fuel length would increase kef and decrease pressure drop across the core w hen the core equivalent diameter and total cross-sectional area of the coolant channel are unchanged .In order to increase additional shutdow n margin ,the absorber thickness should be increased while the beginning-of-life excess reactivity and power plant econo-my would decrease .%提出了一种适用于分布式发电系统的小型自然循环钠冷堆-AMTEC系统。通过对堆芯的临界计算和热工水力分析,研究了堆芯燃料装载量不变情况下,芯块半径、燃料棒长度和圈数对堆芯有效增殖因数 kef 、堆芯压降和传热的影响。同时分析了不同额外停堆裕量下,B4 C吸收层厚度和堆芯初始剩余反应性随燃料棒圈数的变化关系。计算结果表明:保持堆芯当量直径和冷却剂通道总截面积不变的情况下,减少燃料棒圈数和活性区长度不仅可增加 kef ,且能降低堆芯压降;为提高额外停堆裕量需增加吸收层厚度,但降低了堆芯初始剩余反应性,不利于电厂的经济性。

  14. 太阳能集热器的热流气体对砾石的蓄放热特性研究%Characteristics of heat storage and release of gravel layer in solar collectors by hot air natural circulation

    Institute of Scientific and Technical Information of China (English)

    张文基

    2005-01-01

    The thermal characteristics of heat storage and release of the gravel layer used in the solar collector in winter were analyzed. Air from the solar collector was expected to circulate through the gravel layer naturally without other energy consumption. The gravel layer consisted of river gravels with diameter from 50 mm to 100 mm. The temperature of the solar collector, gravel layer and cement mortar surface were measured respectively to analyze thermal characteristics of heat storage during daytime and heat release at night in the gravel layer. The horizontal and vertical heat characteristics of the gravel layer and cement mortar surface were analyzed. Results of the thermal characteristics of the gravel layer in the solar collector can be used as basic data for the thermal analysis of gravel layer.%太阳能的蓄放热特性的研究对清洁能源太阳能的开发和利用具有重要意义.该文利用冬季太阳能集热器的热流气体,对砾石的蓄放热特性进行了研究.以居民居住的标准房间(4 m×2.7 m)为依据进行了模拟;利用太阳能集热器的热能与直径为50~100 mm的砾石铺设成150 mm厚度的地下蓄热系统进行蓄热和放热试验,研究昼夜之间室内砾石的蓄热和放热特性;通过测试太阳能集热器的内部温度、砾石层内部及室内地表面的温度,研究了太阳能集热器的蓄热效率和转换效率,同时分析了蓄热层及室内地表面的热传递特性;为进一步开拓针对冬季寒冷地区太阳能蓄热型居民建筑物内部热环境方面的基础研究提供了科学的依据.

  15. Closing global material loops

    DEFF Research Database (Denmark)

    Prosman, Ernst-Jan; Wæhrens, Brian Vejrum; Liotta, Giacomo

    2017-01-01

    Replacing virgin materials with waste materials, a practice known as Industrial Symbiosis (IS), has been identified as a key strategy for closing material loops. This article adopts a critical view on geographic proximity and external coordinators – two key enablers of IS. By ‘uncovering’ a case...... where both enablers are absent, this study seeks to explore firm-level challenges of IS. We adopt an exploratory case study approach at a cement manufacturer who engages in cross-border IS without the support of external coordinators. Our research presents insights into two key areas of IS: 1) setting...... for geographic proximity and external coordinators. In doing so, our insights into firm-level challenges of long-distance IS exchanges contribute to closing global material loops by increasing the number of potential circular pathways....

  16. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  17. PAR Loop Schedule Review

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, Jr.; W.F.

    1958-04-30

    The schedule for the installation of the PAR slurry loop experiment in the South Facility of the ORR has been reviewed and revised. The design, fabrications and Installation is approximately two weeks behind schedule at this time due to many factors; however, indications are that this time can be made up. Design is estimated to be 75% complete, fabrication 32% complete and installation 12% complete.

  18. Verification of Loop Diagnostics

    Science.gov (United States)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  19. Cosmic string loop microlensing

    Science.gov (United States)

    Bloomfield, Jolyon K.; Chernoff, David F.

    2014-06-01

    Cosmic superstring loops within the galaxy microlens background point sources lying close to the observer-string line of sight. For suitable alignments, multiple paths coexist and the (achromatic) flux enhancement is a factor of two. We explore this unique type of lensing by numerically solving for geodesics that extend from source to observer as they pass near an oscillating string. We characterize the duration of the flux doubling and the scale of the image splitting. We probe and confirm the existence of a variety of fundamental effects predicted from previous analyses of the static infinite straight string: the deficit angle, the Kaiser-Stebbins effect, and the scale of the impact parameter required to produce microlensing. Our quantitative results for dynamical loops vary by O(1) factors with respect to estimates based on infinite straight strings for a given impact parameter. A number of new features are identified in the computed microlensing solutions. Our results suggest that optical microlensing can offer a new and potentially powerful methodology for searches for superstring loop relics of the inflationary era.

  20. Learning Circulant Sensing Kernels

    Science.gov (United States)

    2014-03-01

    learned dictionaries. Examples of analytic dictionaries include the discrete cosine basis, various wavelets bases , as well as tight frames. Some of them...Compressive sensing based high resolution channel estimation for OFDM system. To appear in IEEE Journal of Selected Topics in Signal Processing, Special...theoretical and computational properties to a (partial) circulant matrix of the same size, our discussions below are based exclusively on the circulant

  1. Super Wilson Loops and Holonomy on Supermanifolds

    CERN Document Server

    Groeger, Josua

    2013-01-01

    The classical Wilson loop is the gauge-invariant trace of the parallel transport around a closed path with respect to a connection on a vector bundle over a smooth manifold. We build a precise mathematical model of the super Wilson loop, an extension introduced by Mason-Skinner and Caron-Huot, by endowing the objects occurring with auxiliary Gra{\\ss}mann generators coming from S-points. A key feature of our model is a supergeometric parallel transport, which allows for a natural notion of holonomy on a supermanifold as a Lie group valued functor. Our main results for that theory comprise an Ambrose-Singer theorem as well as a natural analogon of the holonomy principle. Finally, we compare our holonomy functor with the holonomy supergroup introduced by Galaev in the common situation of a topological point. It turns out that both theories are different, yet related in a sense made precise.

  2. Pressure drop and blower performance tests in very high temperature Helium Experimental LooP (HELP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Soo; Hong, Sung Deok; Kim, Yong Wan [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Korea Atomic Energy Research Institute (KAERI) has developed the gas loops to develop and verify the key components of the nuclear hydrogen production system. At the present, KAERI is operating a small scale gas loop for feasibility tests of process heat exchanger and a very high temperature Helium Experimental LooP (HELP) for verification tests of bench scale prototypes for high temperature key components in Very High Temperature gas cooled Reactor (VHTR). Figure 1 presents the HELP assembled with the key components. The size was designed for the verification test of a 150kW intermediate heat exchanger or the simulation test in a 1/6 scaled down fuel block. The loop consists of the primary loop and the secondary loop. The primary loop and the secondary loop simulate VHTR and intermediate loop in nuclear hydrogen production system, respectively. The loops were designed to withstand the maximum temperature of 1000 .Deg. C, the maximum pressure of 9.0 MPa, and the normal mass velocity of 0.5 kg/sec. The working fluid is helium as the actual coolant of VHTR. The primary loop is composed of a preheater, a high temperature heater, a hot gas duct, intermediate heat exchangers, a water cooled U tube heat exchanger, a gas bearing circulator, a passive venting system and gas filters. The secondary loop has the same system configuration as the primary loop except a high temperature heater. Two loops share a helium supply system, a helium purification system and the water loop for a cooling tower as Figure 2. In this study, the experimental results of the bypass line pressure drop and blower performance at the nitrogen condition are analyzed to predict the main line mass flow rates without heaters.

  3. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  4. Influence of Heat Sink and Source Temperature on Operation Reliability of Natural Circulation System%冷源、热源温度对自然循环系统运行可靠性的影响分析

    Institute of Scientific and Technical Information of China (English)

    玉宇; 钱晓明; 高庆瀚; 王晓轩

    2012-01-01

    物理过程失效是导致非能动系统运行失效的重要因素之一,必须在非能动系统可靠性分析中予以考虑.而对于物理过程失效,目前尚无成熟的分析方法.本文提出采用蒙特卡罗模拟方法研究冷源温度、热源温度在其合理范围内变化对自然循环系统运行可靠性的影响.结果表明,冷源、热源温度变化对系统物理过程失效具有重要影响,且运行列数越少,影响越显著.计算结果说明系统运行失效是物理过程失效与设备失效综合作用的结果,但并非二者的简单叠加,物理过程失效与设备失效是互为条件的;当系统设计安全裕量较大时,即使参与运行的设备列数不能满足设计要求,也并不一定导致系统失效.%In the Probabilistic Safety Assessment (PSA), Fault Tree (FT) is the approach commonly used for system reliability analysis. And it is the important feature of passive system and the basic difference from the active system that nuclear plant is able to be driven to safe state or shutdown by inherent safety characters of the reactor and physical principles, and is independent of human interfere or the operations of outside equipments, when the reactor is in the abnormal condition. Therefore, the passive system is widely used in new generation Nuclear Power Plant (NPP), such as AP1000 NPPs and high-temperature gas-cooled reactors to improve the safety. At the same time, since the passive system operation is depending on natural force, both the driven force and resistance are influenced by many uncertain factors, physical process failure become one of the significant causes for the system failure, which need to be considered in, the system reliability analysis. FT method is not power enough to deal with this condition. For the passive system which is operating based on natural circulation, temperature of heat source and sink are important influence factors on system operation. Monte Carlo (MC) simulation is

  5. Conserved quantities in isotropic loop quantum cosmology

    CERN Document Server

    Cartin, Daniel

    2012-01-01

    We develop an action principle for those models arising from isotropic loop quantum cosmology, and show that there is a natural conserved quantity $Q$ for the discrete difference equation arising from the Hamiltonian constraint. This quantity $Q$ relates the semi-classical limit of the wavefunction at large values of the spatial volume, but opposite triad orientations. Moreover, there is a similar quantity for generic difference equations of one parameter arising from a self-adjoint operator.

  6. Model based non-invasive estimation of PV loop from echocardiography.

    Science.gov (United States)

    Itu, Lucian; Sharma, Puneet; Georgescu, Bogdan; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2014-01-01

    We introduce a model-based approach for the non-invasive estimation of patient specific, left ventricular PV loops. A lumped parameter circulation model is used, composed of the pulmonary venous circulation, left atrium, left ventricle and the systemic circulation. A fully automated parameter estimation framework is introduced for model personalization, composed of two sequential steps: first, a series of parameters are computed directly, and, next, a fully automatic optimization-based calibration method is employed to iteratively estimate the values of the remaining parameters. The proposed methodology is first evaluated for three healthy volunteers: a perfect agreement is obtained between the computed quantities and the clinical measurements. Additionally, for an initial validation of the methodology, we computed the PV loop for a patient with mild aortic valve regurgitation and compared the results against the invasively determined quantities: there is a close agreement between the time-varying LV and aortic pressures, time-varying LV volumes, and PV loops.

  7. Conceptual models of the wind-driven and thermohaline circulation

    NARCIS (Netherlands)

    Drijfhout, S.S.; Marshall, D.P.; Dijkstra, H.A.

    2013-01-01

    Conceptual models are a vital tool for understanding the processes that maintain the global ocean circulation, both in nature and in complex numerical ocean models. In this chapter we provide a broad overview of our conceptual understanding of the wind-driven circulation, the thermohaline

  8. Conceptual models of the wind-driven and thermohaline circulation

    NARCIS (Netherlands)

    Drijfhout, S.S.; Marshall, D.P.; Dijkstra, H.A.

    2013-01-01

    Conceptual models are a vital tool for understanding the processes that maintain the global ocean circulation, both in nature and in complex numerical ocean models. In this chapter we provide a broad overview of our conceptual understanding of the wind-driven circulation, the thermohaline circulatio

  9. Conceptual models of the wind-driven and thermohaline circulation

    NARCIS (Netherlands)

    Drijfhout, S.S.; Marshall, D.P.; Dijkstra, H.A.

    2013-01-01

    Conceptual models are a vital tool for understanding the processes that maintain the global ocean circulation, both in nature and in complex numerical ocean models. In this chapter we provide a broad overview of our conceptual understanding of the wind-driven circulation, the thermohaline circulatio

  10. A review of existing gas-cooled reactor circulators with application of the lessons learned to the new production reactor circulators

    Energy Technology Data Exchange (ETDEWEB)

    White, L.S.

    1990-07-01

    This report presents the results of a study of the lessons learned during the design, testing, and operation of gas-cooled reactor coolant circulators. The intent of this study is to identify failure modes and problem areas of the existing circulators so this information can be incorporated into the design of the circulators for the New Production Reactor (NPR)-Modular High-Temperature Gas Cooled Reactor (MHTGR). The information for this study was obtained primarily from open literature and includes data on high-pressure, high-temperature helium test loop circulators as well as the existing gas cooled reactors worldwide. This investigation indicates that trouble free circulator performance can only be expected when the design program includes a comprehensive prototypical test program, with the results of this test program factored into the final circulator design. 43 refs., 7 tabs.

  11. Circulating pumps. Mastering consumptions; Circulateurs. Maitriser les consommations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document, written by the French scientific and technical committee of air-conditioning industries (CoSTIC), gathers the necessary technical information to understand, dimension, select and use circulating pumps. The applications concern first the pumps used in space heating water loops. Some mathematical models are proposed for more elaborate calculations. The first goal of this document is to inform the professionals about the mastery of the energy consumptions of these devices. Significant energy savings can be performed when space heating installations are properly designed with no useless over-dimensioning, and when efficient circulating pumps are used and properly controlled. (J.S.)

  12. Gaussian Fibonacci Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n>2 and give the explicit determinants and the inverse matrices. Furthermore, the upper bounds for the spread on Gaussian Fibonacci circulant and left circulant matrices are presented, respectively.

  13. Improving Loop Dependence Analysis

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo; Karlsson, Sven

    2017-01-01

    Programmers can no longer depend on new processors to have significantly improved single-thread performance. Instead, gains have to come from other sources such as the compiler and its optimization passes. Advanced passes make use of information on the dependencies related to loops. We improve...... the quality of that information by reusing the information given by the programmer for parallelization. We have implemented a prototype based on GCC into which we also add a new optimization pass. Our approach improves the amount of correctly classified dependencies resulting in 46% average improvement...

  14. Closing the loop.

    Science.gov (United States)

    Dassau, E; Atlas, E; Phillip, M

    2011-02-01

    Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging

  15. Aesthetic rehabilitation with multiple loop connectors

    Directory of Open Access Journals (Sweden)

    Ashish Kalra

    2013-01-01

    Full Text Available Patients with a missing tooth along with diastema have limited treatment options to restore the edentulous space. The use of a conventional fixed partial denture (FPD to replace the missing tooth may result in too wide anterior teeth leading to poor esthetics. The diastema resulting from the missing central incisors can be managed with implant-supported prosthesis or FPD with loop connectors. An old lady reported with chief complaints of missing upper anterior teeth due to trauma. Her past dental history revealed that she was having generalized spacing between her upper anterior teeth. Considering her esthetic requirement of maintaining the diastema between 12, 11, 22, and 21, the treatment option of 06 units porcelain fused to metal FPD from canine to canine with intermittent loop connectors between 21, 22, 11, 12 was planned. Connectors basically link different parts of FPDs. The modified FPD with loop connectors enhanced the natural appearance of the restoration, maintained the diastemas and the proper emergence profile, and preserve the remaining tooth structure of abutment teeth. This clinical report discussed a method for fabrication of a modified FPD with loop connectors to restore the wide span created by missing central incisors.

  16. Closed Loop System Identification with Genetic Algorithms

    Science.gov (United States)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  17. Semiclassical analysis of loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Conrady, F.

    2005-10-17

    In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)

  18. Ocean circulation using altimetry

    Science.gov (United States)

    Minster, Jean-Francois; Brossier, C.; Gennero, M. C.; Mazzega, P.; Remy, F.; Letraon, P. Y.; Blanc, F.

    1991-01-01

    Our group has been very actively involved in promoting satellite altimetry as a unique tool for observing ocean circulation and its variability. TOPEX/POSEIDON is particularly interesting as it is optimized for this purpose. It will probably be the first instrument really capable of observing the seasonal and interannual variability of subtropical and polar gyres and the first to eventually document the corresponding variability of their heat flux transport. The studies of these phenomena require data of the best quality, unbiased extraction of the signal, mixing of these satellite data with in situ measurements, and assimilation of the whole set into a dynamic description of ocean circulation. Our group intends to develop responses to all these requirements. We will concentrate mostly on the circulation of the South Atlantic and Indian Oceans: This will be done in close connection with other groups involved in the study of circulation of the tropical Atlantic Ocean, in the altimetry measurements (in particular, those of the tidal issue), and in the techniques of data assimilation in ocean circulation models.

  19. Closed Loop Supply Chains for Sustainable Mass Customization

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Brunø, Thomas Ditlev

    2013-01-01

    Closed loop supply chains reducing waste, energy consumption and natural resource depletion which all contribute to more sustainable production and products. For mass customization however, the challenges of closed loop supply chains are emphasized by the large variety of inbound end-of-life prod......Closed loop supply chains reducing waste, energy consumption and natural resource depletion which all contribute to more sustainable production and products. For mass customization however, the challenges of closed loop supply chains are emphasized by the large variety of inbound end......-of-life products from customers which complicates handling and forecasting. This paper analyses these challenges in the specific context mass customization using theoretical considerations and three case studies....

  20. Looped energy harvester for human motion

    Science.gov (United States)

    Geisler, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Gobbo, C.; Despesse, G.; Ait-Ali, I.; Perraud, S.

    2017-10-01

    The development of energy harvesters for smart wearables is a challenging topic, with a difficult combination of ergonomics constraints, lifetime and electrical requirements. In this work, we focus on an inertial inductive structure, composed of a magnetic ball circulating inside a closed-loop guide and converting the kinetic energy of the user’s limbs into electricity during the run. A specific induction issue related to the free self-rotation of the ball is underlined and addressed using a ferromagnetic ‘rail’ component. From a 2 g moving ball, a 5 cm-diameter 21 cm3 prototype generated up to 4.8 mW of average power when worn by someone running at 8 km h‑1. This device is demonstrated to charge a 2.4 V NiMH battery and supply an acceleration and temperature Wireless Sensor Node at 20 Hz.

  1. Discrete holomorphicity and integrability in loop models with open boundaries

    CERN Document Server

    de Gier, Jan; Rasmussen, Jorgen

    2012-01-01

    We consider boundary conditions compatible with discrete holomorphicity for the dilute O(n) and C_2^(1) loop models. In each model, for a general set of boundary plaquettes, multiple types of loops can appear. A generalisation of Smirnov's parafermionic observable is therefore required in order to maintain the discrete holomorphicity property in the bulk. We show that there exist natural boundary conditions for this observable which are consistent with integrability, that is to say that, by imposing certain boundary conditions, we obtain a set of linear equations whose solutions also satisfy the corresponding reflection equation. In both loop models, several new sets of integrable weights are found using this approach.

  2. Loop expansion and the bosonic representation of loop quantum gravity

    Science.gov (United States)

    Bianchi, E.; Guglielmon, J.; Hackl, L.; Yokomizo, N.

    2016-10-01

    We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.

  3. Loop expansion and the bosonic representation of loop quantum gravity

    CERN Document Server

    Bianchi, Eugenio; Hackl, Lucas; Yokomizo, Nelson

    2016-01-01

    We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.

  4. Hydrodynamic Behaviour of a Gas-Solid Air-loop Stripper

    Institute of Scientific and Technical Information of China (English)

    刘梦溪; 卢春喜; 时铭显

    2004-01-01

    In this paper, the principles of airlift loop reactor in gas-liquid and gas-liquid-solid systems are extended to gas-solid system. The models on bed average voidage in draft tube and the particle circulation velocity in a gas-solid loop reactor are deduced. The experiments are also conducted on a Φ600mm×7000mm reactor. The catalyst voidage and catalyst circulation velocity are measured at different radial and axial positions in draft tube and annulus, respectively. The experimental data are analyzed systemically and represented satisfactorily by the proposed models.

  5. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  6. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  7. Circulant Double Coverings of a Circulant Graph of Valency Five

    Institute of Scientific and Technical Information of China (English)

    Rong Quan FENG; Jin Ho KWAK

    2007-01-01

    Enumerating the isomorphism classes of several types of graph covering projections is one of the central research topics in enumerative topological graph theory. A covering of G is called circulant if its covering graph is circulant. Recently, the authors [Discrete Math., 277, 73-85 (2004)]enumerated the isomorphism classes of circulant double coverings of a certain type, called a typicalcovering, and showed that no double covering of a circulant graph of valency three is circulant. Also, in [Graphs and Combinatorics, 21, 386-400 (2005)], the isomorphism classes of circulant double coverings of a circulant graph of valency four are enumerated. In this paper, the isomorphism classes of circulant double coverings of a circulant graph of valency five are enumerated.

  8. Kernels in circulant digraphs

    Directory of Open Access Journals (Sweden)

    R. Lakshmi

    2014-06-01

    Full Text Available A kernel $J$ of a digraph $D$ is an independent set of vertices of $D$ such that for every vertex $w,in,V(D,setminus,J$ there exists an arc from $w$ to a vertex in $J.$ In this paper, among other results, a characterization of $2$-regular circulant digraph having a kernel is obtained. This characterization is a partial solution to the following problem: Characterize circulant digraphs which have kernels; it appeared in the book {it Digraphs - theory, algorithms and applications}, Second Edition, Springer-Verlag, 2009, by J. Bang-Jensen and G. Gutin.

  9. A Circulating-Current Suppression Method for Parallel Connected Voltage Source Inverters (VSI) with Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    applications. The basic concept of the proposed circulating-current suppression method is to modify the original current references by using the current difference among the parallel inverters. In the proposed approach, both of cross circulating-current and zero-sequence circulating-current are considered...... on the virtual impedance. Further, a circulating-current control loop is added to improve the average current-sharing performance among parallel VSIs. Experimental results are presented to show the effectiveness of the proposed control method to suppress both of the cross and zero-sequence circulating-currents....

  10. Condition Monitoring of Control Loops

    OpenAIRE

    Horch, Alexander

    2000-01-01

    The main concern of this work is the development of methodsfor automatic condition monitoring of control loops withapplication to the process industry. By condition monitoringboth detection and diagnosis of malfunctioning control loops isunderstood, using normal operating data and a minimum amount ofprocess knowledge. The use of indices for quantifying loop performance is dealtwith in the first part of the thesis. The starting point is anindex proposed by Harris (1989). This index has been mo...

  11. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  12. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  13. Self-Duality Helicity and Higher-Loop Euler-Heisenberg Effective Actions

    Science.gov (United States)

    Dunne, Gerald V.; Schubert, Christian

    2004-10-01

    The Euler-Heisenberg effective action in a self-dual background is remarkably simple at two-loop. This simplicity is due to the inter-relationship between self-duality, helicity and supersymmetry. Applications include two-loop helicity amplitudes, beta-functions and nonperturbative effects. The two-loop Euler-Heisenberg effective Lagrangian for QED in a self-dual background field is naturally expressed in terms of one-loop quantities. This mirrors similar behavior recently found in two-loop amplitudes in N=4 SUSY Yang-Mills theory.

  14. Dynamic PID loop control

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  15. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  16. Dynamic PID loop control

    CERN Document Server

    Pei, L; Theilacker, J; Soyars, W; Martinez, A; Bossert, R; DeGraff, B; Darve, C

    2012-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.

  17. Vortex loops and Majoranas

    Energy Technology Data Exchange (ETDEWEB)

    Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  18. Loop quantization of the Schwarzschild black hole.

    Science.gov (United States)

    Gambini, Rodolfo; Pullin, Jorge

    2013-05-24

    We quantize spherically symmetric vacuum gravity without gauge fixing the diffeomorphism constraint. Through a rescaling, we make the algebra of Hamiltonian constraints Abelian, and therefore the constraint algebra is a true Lie algebra. This allows the completion of the Dirac quantization procedure using loop quantum gravity techniques. We can construct explicitly the exact solutions of the physical Hilbert space annihilated by all constraints. New observables living in the bulk appear at the quantum level (analogous to spin in quantum mechanics) that are not present at the classical level and are associated with the discrete nature of the spin network states of loop quantum gravity. The resulting quantum space-times resolve the singularity present in the classical theory inside black holes.

  19. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  20. A Circulating Current Suppression Method for Parallel Connected Voltage-Source-Inverters (VSI) with Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2016-01-01

    on circulating current control loops used to modify the reference currents by compensating the error currents among parallel inverters. Both of the cross and zero-sequence circulating currents are considered. The proposed method is coordinated together with droop and virtual impedance control. In this paper...... loop is added to acquire a better average current sharing performance among parallel VSIs, which can effectively suppress both of the cross and zero-sequence circulating currents. Experimental results are presented in order to verify the effectiveness of the proposed control strategy....

  1. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    Science.gov (United States)

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  2. Phenomenology of loop quantum cosmology

    CERN Document Server

    Sakellariadou, Mairi

    2010-01-01

    After introducing the basic ingredients of Loop Quantum Cosmology, I will briefly discuss some of its phenomenological aspects. Those can give some useful insight about the full Loop Quantum Gravity theory and provide an answer to some long-standing questions in early universe cosmology.

  3. RCD+: Fast loop modeling server.

    Science.gov (United States)

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-08

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Improved code-tracking loop

    Science.gov (United States)

    Laflame, D. T.

    1980-01-01

    Delay-locked loop tracks pseudonoise codes without introducing dc timing errors, because it is not sensitive to gain imbalance between signal processing arms. "Early" and "late" reference codes pass in combined form through both arms, and each arm acts on both codes. Circuit accomodates 1 dB weaker input signals with tracking ability equal to that of tau-dither loops.

  5. Loop groups and noncommutative geometry

    CERN Document Server

    Carpi, Sebastiano

    2015-01-01

    We describe the representation theory of loop groups in terms of K-theory and noncommutative geometry. This is done by constructing suitable spectral triples associated with the level l projective unitary positive-energy representations of any given loop group LG. The construction is based on certain supersymmetric conformal field theory models associated with LG.

  6. Brane Couplings from Bulk Loops

    OpenAIRE

    Georgi, Howard; Grant, Aaron K.; Hailu, Girma

    2000-01-01

    We compute loop corrections to the effective action of a field theory on a five-dimensional $S_1/Z_2$ orbifold. We find that the quantum loop effects of interactions in the bulk produce infinite contributions that require renormalization by four-dimensional couplings on the orbifold fixed planes. Thus bulk couplings give rise to renormalization group running of brane couplings.

  7. Higher dimensional loop quantum cosmology

    Science.gov (United States)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  8. Two-Loop Scattering Amplitudes from the Riemann Sphere

    CERN Document Server

    Geyer, Yvonne; Monteiro, Ricardo; Tourkine, Piotr

    2016-01-01

    The scattering equations give striking formulae for massless scattering amplitudes at tree level and, as shown recently, at one loop. The progress at loop level was based on ambitwistor string theory, which naturally yields the scattering equations. We proposed that, for ambitwistor strings, the standard loop expansion in terms of the genus of the worldsheet is equivalent to an expansion in terms of nodes of a Riemann sphere, with the nodes carrying the loop momenta. In this paper, we show how to obtain two-loop scattering equations with the correct factorization properties. We adapt genus-two integrands from the ambitwistor string to the nodal Riemann sphere and show that these yield correct answers, by matching standard results for the four-point two-loop amplitudes of maximal supergravity and super-Yang-Mills theory. In the Yang-Mills case, this requires the loop analogue of the Parke-Taylor factor carrying the colour dependence, which includes non-planar contributions.

  9. Two-loop scattering amplitudes from the Riemann sphere

    Science.gov (United States)

    Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr

    2016-12-01

    The scattering equations give striking formulas for massless scattering amplitudes at tree level and, as shown recently, at one loop. The progress at loop level was based on ambitwistor-string theory, which naturally yields the scattering equations. We proposed that, for ambitwistor strings, the standard loop expansion in terms of the genus of the world sheet is equivalent to an expansion in terms of nodes of a Riemann sphere, with the nodes carrying the loop momenta. In this paper, we show how to obtain two-loop scattering equations with the correct factorization properties. We adapt genus-two integrands from the ambitwistor string to the nodal Riemann sphere and show that these yield correct answers, by matching standard results for the four-point two-loop amplitudes of maximal supergravity and super-Yang-Mills theory. In the Yang-Mills case, this requires the loop analogue of the Parke-Taylor factor carrying the color dependence, which includes nonplanar contributions.

  10. Ocean circulation studies

    Science.gov (United States)

    Koblinsky, C. J.

    1984-01-01

    Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.

  11. The fetal circulation.

    Science.gov (United States)

    Kiserud, Torvid; Acharya, Ganesh

    2004-12-30

    Accumulating data on the human fetal circulation shows the similarity to the experimental animal physiology, but with important differences. The human fetus seems to circulate less blood through the placenta, shunt less through the ductus venosus and foramen ovale, but direct more blood through the lungs than the fetal sheep. However, there are substantial individual variations and the pattern changes with gestational age. The normalised umbilical blood flow decreases with gestational age, and, at 28 to 32 weeks, a new level of development seems to be reached. At this stage, the shunting through the ductus venosus and the foramen ovale reaches a minimum, and the flow through the lungs a maximum. The ductus venosus and foramen ovale are functionally closely related and represent an important distributional unit for the venous return. The left portal branch represents a venous watershed, and, similarly, the isthmus aorta an arterial watershed. Thus, the fetal central circulation is a very flexible and adaptive circulatory system. The responses to increased afterload, hypoxaemia and acidaemia in the human fetus are equivalent to those found in animal studies: increased ductus venosus and foramen ovale shunting, increased impedance in the lungs, reduced impedance in the brain, increasingly reversed flow in the aortic isthmus and a more prominent coronary blood flow.

  12. Modeling loop entropy.

    Science.gov (United States)

    Chirikjian, Gregory S

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting "the" tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of "entropy" is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice, each of the above with different solvation and solvent models, thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics, and information theory.

  13. The loop gravity string

    CERN Document Server

    Freidel, Laurent; Pranzetti, Daniele

    2016-01-01

    In this work we study canonical gravity in finite regions for which we introduce a generalisation of the Gibbons-Hawking boundary term including the Immirzi parameter. We study the canonical formulation on a spacelike hypersuface with a boundary sphere and show how the presence of this term leads to an unprecedented type of degrees of freedom coming from the restoration of the gauge and diffeomorphism symmetry at the boundary. In the presence of a loop quantum gravity state, these boundary degrees of freedom localize along a set of punctures on the boundary sphere. We demonstrate that these degrees of freedom are effectively described by auxiliary strings with a 3-dimensional internal target space attached to each puncture. We show that the string currents represent the local frame field, that the string angular momenta represent the area flux and that the string stress tensor represents the two dimensional metric on the boundary of the region of interest. Finally, we show that the commutators of these broken...

  14. Multi-loop zeta function regularization and spectral cutoff in curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Bilal, Adel, E-mail: adel.bilal@lpt.ens.fr [Centre National de la Recherche Scientifique, Laboratoire de Physique Théorique de l' École Normale Supérieure, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Ferrari, Frank, E-mail: frank.ferrari@ulb.ac.be [Service de Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus de la Plaine, CP 231, B-1050 Bruxelles (Belgium)

    2013-12-21

    We emphasize the close relationship between zeta function methods and arbitrary spectral cutoff regularizations in curved spacetime. This yields, on the one hand, a physically sound and mathematically rigorous justification of the standard zeta function regularization at one loop and, on the other hand, a natural generalization of this method to higher loops. In particular, to any Feynman diagram is associated a generalized meromorphic zeta function. For the one-loop vacuum diagram, it is directly related to the usual spectral zeta function. To any loop order, the renormalized amplitudes can be read off from the pole structure of the generalized zeta functions. We focus on scalar field theories and illustrate the general formalism by explicit calculations at one-loop and two-loop orders, including a two-loop evaluation of the conformal anomaly.

  15. BOOK REVIEW: A First Course in Loop Quantum Gravity A First Course in Loop Quantum Gravity

    Science.gov (United States)

    Dittrich, Bianca

    2012-12-01

    Students who are interested in quantum gravity usually face the difficulty of working through a large amount of prerequisite material before being able to deal with actual quantum gravity. A First Course in Loop Quantum Gravity by Rodolfo Gambini and Jorge Pullin, aimed at undergraduate students, marvellously succeeds in starting from the basics of special relativity and covering basic topics in Hamiltonian dynamics, Yang Mills theory, general relativity and quantum field theory, ending with a tour on current (loop) quantum gravity research. This is all done in a short 173 pages! As such the authors cannot cover any of the subjects in depth and indeed this book should be seen more as a motivation and orientation guide so that students can go on to follow the hints for further reading. Also, as there are many subjects to cover beforehand, slightly more than half of the book is concerned with more general subjects (special and general relativity, Hamiltonian dynamics, constrained systems, quantization) before the starting point for loop quantum gravity, the Ashtekar variables, are introduced. The approach taken by the authors is heuristic and uses simplifying examples in many places. However they take care in motivating all the main steps and succeed in presenting the material pedagogically. Problem sets are provided throughout and references for further reading are given. Despite the shortness of space, alternative viewpoints are mentioned and the reader is also referred to experimental results and bounds. In the second half of the book the reader gets a ride through loop quantum gravity; the material covers geometric operators and their spectra, the Hamiltonian constraints, loop quantum cosmology and, more broadly, black hole thermodynamics. A glimpse of recent developments and open problems is given, for instance a discussion on experimental predictions, where the authors carefully point out the very preliminary nature of the results. The authors close with an

  16. Hard Loops, Soft Loops, and High Density Effective Field Theory

    CERN Document Server

    Schäfer, T

    2003-01-01

    We study several issues related to the use of effective field theories in QCD at large baryon density. We show that the power counting is complicated by the appearance of two scales inside loop integrals. Hard dense loops involve the large scale $mu^2$ and lead to phenomena such as screening and damping at the scale $gmu$. Soft loops only involve small scales and lead to superfluidity and non-Fermi liquid behavior at exponentially small scales. Four-fermion operators in the effective theory are suppressed by powers of $1/mu$, but they get enhanced by hard loops. As a consequence their contribution to the pairing gap is only suppressed by powers of the coupling constant, and not powers of $1/mu$. We determine the coefficients of four-fermion operators in the effective theory by matching quark-quark scattering amplitudes. Finally, we introduce a perturbative scheme for computing corrections to the gap parameter in the superfluid phase

  17. Force distribution in a semiflexible loop

    Science.gov (United States)

    Waters, James T.; Kim, Harold D.

    2017-01-01

    Loops undergoing thermal fluctuations are prevalent in nature. Ringlike or cross-linked polymers, cyclic macromolecules, and protein-mediated DNA loops all belong to this category. Stability of these molecules are generally described in terms of free energy, an average quantity, but it may also be impacted by local fluctuating forces acting within these systems. The full distribution of these forces can thus give us insights into mechanochemistry beyond the predictive capability of thermodynamics. In this paper, we study the force exerted by an inextensible semiflexible polymer constrained in a looped state. By using a simulation method termed “phase-space sampling,” we generate the equilibrium distribution of chain conformations in both position and momentum space. We compute the constraint forces between the two ends of the loop in this chain ensemble using Lagrangian mechanics, and show that the mean of these forces is equal to the thermodynamic force. By analyzing kinetic and potential contributions to the forces, we find that the mean force acts in the direction of increasing extension not because of bending stress, but in spite of it. Furthermore, we obtain a distribution of constraint forces as a function of chain length, extension, and stiffness. Notably, increasing contour length decreases the average force, but the additional freedom allows fluctuations in the constraint force to increase. The force distribution is asymmetric and falls off less sharply than a Gaussian distribution. Our work exemplifies a system where large-amplitude fluctuations occur in a way unforeseen by a purely thermodynamic framework, and offers computational tools useful for efficient, unbiased simulation of a constrained system. PMID:27176436

  18. Flow and Heat Transfer Characteristics in a Closed-Type Two-Phase Loop Thermosyphon

    Science.gov (United States)

    Imura, Hideaki; Saito, Yuji; Fujimoto, Hiromitsu

    A closed-loop two-phase thermosyphon can transport a large amount of thermal energy with small temperature differences without any external power supply. A fundamental investigation of flow and heat transfer characteristics was performed experimentally and theoretically using water, ethanol and R113 as the working liquids. Heat transfer coefficients in an evaporator and a condenser, and circulation flow rates were measured experimentally. The effects of liquid fill charge, rotation angle, pressure in the loop and heat flux on the heat transfer coefficients were examined. The heat transfer coefficients in the evaporator and the condenser were correlated by the expressions for pool boiling and film condensation respectively. As a result, the heat transfer coefficients in the evaporator were correlated by the Stephan-Abdelsalam equations within a±40% error. Theoretically, the circulation flow rate was predicted by calculating pressure, temperature, quality and void fraction along the loop. And, the comparison between the calculated and experimental results was made.

  19. A recent perspective of the Circulation in the Gulf of Mexico

    Science.gov (United States)

    Candela, J.; Ochoa-de-La-Torre, J. L.; Sheinbaum, J.; Perez-Brunius, P.; Pallas-Sanz, E.; Kolodziejczyk, N.

    2013-05-01

    The flow through the Gulf of Mexico is an integral part of the North Atlantic Ocean Subtropical Gyre Circulation, known to be forced by the wind over the North Atlantic and by an equivalent contribution from the inter-hemispheric Meridional Overturning Cell. To the North Atlantic Circulation, the Gulf represents an important energy and vorticity sink through the particular behavior of the Loop Current within. Comprehending the structure and dynamics of the Loop Current System (which includes the Yucatan Current (YC), Loop Current (LC), the shedding of anticyclonic Loop Current Eddies (LCE) and peripheral cyclonic gyres) is fundamental for understanding the circulation in the entire Gulf. Within the Gulf, the eastern Loop Current and the western Campeche Bay (CB) regions are characterized by persistent eddy structures, with less structured eddy fields in between. Of these later ones, the northwestern Gulf is a geostrophic turbulence area, constantly perturbed by LCE, which represents, at the same time, an important dissipation and circulation forcing region for the Western Gulf. Important processes recently investigated that will be discussed: 1) The generation and maintenance of the Geostrophic Turbulence field in the north western Gulf. 2) The circulation in deep water induced by the surface geostrophic turbulence field. 3) The generation of intensive jets at depth by interaction of +/- gyres. 4) The generation of coastal trap waves by the interaction of LCEs with the western shelf. 5) The generation of deep topographic Roosby waves by topographic interactions of the LCEs with topography. 5) The characteristics of the Bay of Campeche Circulation, The Campeche Gyre and its interaction with LCEs. 6) The Gulf's response to the passage of hurricanes. 7) The trapping of inertial waves by the LCEs and the related enhanced mixing.

  20. Modelled Circulation In Storfjorden

    Science.gov (United States)

    Skogseth, R.; Asplin, L.

    The model area Storfjorden is situated between the islands Spitsbergen, Barentsöya and Edgeöya at the Svalbard Archipelago. The entrance of Storfjorden is defined by a shallow bank Storfjordbanken and some small islands Tusenöyane in southeast, and by an 115m deep sill at about 76 45' N in the south. Maximum depth in Storfjorden is 190m, which is surrounded by gradually shallower shelves in the north, the east and southeast. A steep bottom slope is present on the western side of Storfjorden. He- leysundet and Freemansundet, two sounds between respectively Spitsbergen and Bar- entsöya, and Barentsöya and Edgeöya, define two narrow and shallow entrances in the north and northeast connecting Storfjorden with the northwestern Barents Sea. Strong tidal currents exist in Heleysundet (4-5ms-1) and Freemansundet (2-3ms-1), but the general circulation in Storfjorden is not well known. The coastal current in Storfjor- den is cyclonic directed into Storfjorden south of Edgeöya from the East Spitsbergen Current and out of Storfjorden south of Spitsbergen where it is called Sørkappstrøm- men. A three-dimensional sigma layered numerical ocean model called Bergen Ocean Model (BOM) was used to simulate the circulation in Storfjorden with Freemansundet opened. Two simulations were carried out, one with heat flux (100 Wm-2) and one without heat flux from the ocean to the atmosphere. The heat flux was applied only in the proper fjord area north of the sill and not outside as a crude approximation of the effects of a polynya in the sea ice cover during winter. Both simulations had a 4km horizontal resolution and 21 sigma layers. The model is forced by winds (from the NCEP reanalyzed fields) and tides. Initial fields are from the DNMI/IMR climatol- ogy. The model simulation without heat flux gave a circulation heavily dependent on tidal forcing, showing strong tidal currents up to 2ms-1 in Freemansundet, between Tusenöyane and on Storfjordbanken southwest of Edgeöya. Earlier

  1. Cereral Circulation in Preeclampsia

    Directory of Open Access Journals (Sweden)

    A. A. Ivshin

    2008-01-01

    Full Text Available Objective: to evaluate the possibilities of using transcranial Doppler study in pregnant women and pueperas with preeclamp-sia. Subjects and methods. Two hundred and thirty-two pregnant women diagnosed as having varying preeclampsia were prospectively studied. A comparison group comprised 90 apparently healthy women in the third trimester of pregnancy. All the respondents underwent transcranial duplex scanning of the medial cerebral artery with the linear velocity values being determined. A number of the values reflecting the level of perfusion and intracranial pressures, hydrodynamic resistance in the system, cerebrovascular responsiveness and the state of the vascular wall were calculated. Correlation analysis was made between the parameters of cerebral circulation and the severity of preeclampsia, proteinuria, the severity of hydrops, and the parameters of central and peripheral hemodynamics. Results. The findings suggest that there is impaired cerebral perfusion in pregnant women and puerperas with varying preeclampsia, the severity of cerebral circulatory disorders being in proportion with that of preeclampsia. There is a close correlation between cerebral circulation and the individual criteria determining the severity of preeclampsia. The linear values of the Doppler spectrum, namely linear flow characteristics, are prognos-tically most significant. Conclusion. The introduction of transcranial Doppler study into obstetric care has permitted the authors not only to study cerebral circulatory disorders in healthy and pregnant women and puerperas with preeclampia in detail, but also to establish a number of highly significant prognostic criteria for the severity of this life-threatening complication of gestation. The results of transcranial Doppler study assist practitioners in timely and accurately solving the problems in the diagnosis of preeclampsia and in evaluating its severity. Cerebral circulatory values may be successfully used to

  2. Product Integrals and Wilson loops

    CERN Document Server

    Karp, R L

    2001-01-01

    Using product integrals we review the unambiguous mathematical representation of Wilson line and Wilson loop operators, including their behavior under gauge transformations and the non-abelian Stokes theorem. Interesting consistency conditions among Wilson lines are also presented.

  3. Thermal fluctuations in loop cosmology

    CERN Document Server

    Magueijo, J; Magueijo, Joao; Singh, Parampreet

    2007-01-01

    Quantum gravitational effects in loop quantum cosmology lead to a resolution of the initial singularity and have the potential to solve the horizon problem and generate a quasi scale-invariant spectrum of density fluctuations. We consider loop modifications to the behavior of the inverse scale factor below a critical scale in closed models and assume a purely thermal origin for the fluctuations. We show that the no-go results for scale invariance in classical thermal models can be evaded even if we just consider modifications to the background (zeroth order) gravitational dynamics. Since a complete and systematic treatment of the perturbed Einstein equations in loop cosmology is still lacking, we simply parameterize their expected modifications. These change quantitatively, but not qualitatively, our conclusions. We thus urge the community to more fully work out this complex aspect of loop cosmology, since the full picture would not only fix the free parameters of the theory, but also provide a model for a no...

  4. Loop Quantum Cosmology Gravitational Baryogenesis

    CERN Document Server

    Odintsov, S D

    2016-01-01

    Loop Quantum Cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer remedy or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of Loop Quantum Cosmology. As we demonstrate, when Loop Quantum Cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of Loop Quantum Cosmology and we investigate under which circumstances the bar...

  5. World Ocean Circulation Experiment

    Science.gov (United States)

    Clarke, R. Allyn

    1992-01-01

    The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.

  6. Resolvability in Circulant Graphs

    Institute of Scientific and Technical Information of China (English)

    Muhammad SALMAN; Imran JAVAID; Muhammad Anwar CHAUDHRY

    2012-01-01

    A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u,v ∈ V(G) there is a vertex w ∈ W such that d(u,w) ≠ d(v,w).A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G,denoted by dim(G).For a vertex u of G and a subset S of V(G),the distance between u and S is the number mins∈s d(u,s).A k-partition H ={S1,S2,...,Sk} of V(G) is called a resolving partition if for every two distinct vertices u,v ∈ V(G) there is a set Si in Π such that d(u,Si) ≠ d(v,Si).The minimum k for which there is a resolving k-partition of V(G) is called the partition dimension of G,denoted by pd(G).The circulant graph is a graph with vertex set Zn,an additive group ofintegers modulo n,and two vertices labeled i and j adjacent if and only if i - j (mod n) ∈ C,where C C Zn has the property that C =-C and 0(∈) C.The circulant graph is denoted by Xn,△ where A =|C|.In this paper,we study the metric dimension of a family of circulant graphs Xn,3 with connection set C ={1,-n/2,n - 1} and prove that dim(Xn,3) is independent of choice of n by showing that 3 for all n =0 (mod 4),dim(X,n,3) ={ 4 for all n =2 (mod 4).We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C ={±1,±2} and prove that pd(Xn,4) is independent of choice of n and show that pd(X5,4) =5 and 3 forall odd n≥9,pd(Xn,4) ={ 4 for all even n ≥ 6 and n =7.

  7. Continuous smearing of Wilson Loops

    CERN Document Server

    Lohmayer, Robert

    2011-01-01

    Continuum smearing was introduced in section 4.1 of JHEP03, 064 (2006) as a meaningful continuum analogue of the well known set of lattice techniques by the same name. Here we apply continuous smearing in continuous space-time to Wilson loops in order to clarify what it does in the context of field theory and also in the context of the loop calculus of the Makeenko-Migdal equation.

  8. The Projectile inside the Loop

    OpenAIRE

    Varieschi, Gabriele U.

    2005-01-01

    In this paper we describe an alternative use of the loop-the-loop apparatus, which can be used to study an interesting case of projectile motion. We also present an effective way to perform and analyze these experiments, by using video capture software together with a digital video camera. These experiments can be integrated into classroom demonstrations for general physics courses, or become part of laboratory activities.

  9. Introduction to Loop Quantum Gravity

    OpenAIRE

    Mercuri, Simone

    2010-01-01

    The questions I have been asked during the 5th International School on Field Theory and Gravitation, have compelled me to give an account of the premises that I consider important for a beginner's approach to Loop Quantum Gravity. After a description of some general arguments and an introduction to the canonical theory of gravity, I review the background independent approach to quantum gravity, giving only a brief survey of Loop Quantum Gravity.

  10. Bifurcations of nontwisted heteroclinic loop

    Institute of Scientific and Technical Information of China (English)

    田清平; 朱德明

    2000-01-01

    Bifurcations of nontwisted and fine heteroclinic loops are studied for higher dimensional systems. The existence and its associated existing regions are given for the 1-hom orbit and the 1-per orbit, respectively, and bifurcation surfaces of the two-fold periodic orbit are also obtained. At last, these bifurcation results are applied to the fine heteroclinic loop for the planar system, which leads to some new and interesting results.

  11. Optimization of a β-sheet-cap for long loop closure.

    Science.gov (United States)

    Anderson, Jordan M; Shcherbakov, Alexander A; Kier, Brandon L; Kellock, Jackson; Shu, Irene; Byrne, Aimee L; Eidenschink, Lisa A; Andersen, Niels H

    2017-03-01

    Protein loops make up a large portion of the secondary structure in nature. But very little is known concerning loop closure dynamics and the effects of loop composition on fold stability. We have designed a small system with stable β-sheet structures, including features that allow us to probe these questions. Using paired Trp residues that form aromatic clusters on folding, we are able to stabilize two β-strands connected by varying loop lengths and composition (an example sequence: RWITVTI - loop - KKIRVWE). Using NMR and CD, both fold stability and folding dynamics can be investigated for these systems. With the 16 residue loop peptide (sequence: RWITVTI-(GGGGKK)2 GGGG-KKIRVWE) remaining folded (ΔGU  = 1.6 kJ/mol at 295K). To increase stability and extend the series to longer loops, we added an additional Trp/Trp pair in the loop flanking position. With this addition to the strands, the 16 residue loop (sequence: RWITVRIW-(GGGGKK)2 GGGG-WKTIRVWE) supports a remarkably stable β-sheet (ΔGU  = 6.3 kJ/mol at 295 K, Tm  = ∼55°C). Given the abundance of loops in binding motifs and between secondary structures, these constructs can be powerful tools for peptide chemists to study loop effects; with the Trp/Trp pair providing spectroscopic probes for assessing both stability and dynamics by NMR. © 2016 Wiley Periodicals, Inc.

  12. Optimized Carrier Tracking Loop Design for Real-Time High-Dynamics GNSS Receivers

    Directory of Open Access Journals (Sweden)

    Pedro A. Roncagliolo

    2012-01-01

    Full Text Available Carrier phase estimation in real-time Global Navigation Satellite System (GNSS receivers is usually performed by tracking loops due to their very low computational complexity. We show that a careful design of these loops allows them to operate properly in high-dynamics environments, that is, accelerations up to 40 g or more. Their phase and frequency discriminators and loop filter are derived considering the digital nature of the loop inputs. Based on these ideas, we propose a new loop structure named Unambiguous Frequency-Aided Phase-Locked Loop (UFA-PLL. In terms of tracking capacity and noise resistance UFA-PLL has the same advantages of frequently used coupled-loop schemes, but it is simpler to design and to implement. Moreover, it can keep phase lock in situations where other loops cannot. The loop design is completed selecting the correlation time and loop bandwidth that minimize the pull-out probability, without relying on typical rules of thumb. Optimal and efficient ways to smooth the phase estimates are also presented. Hence, high-quality phase measurements—usually exploited in offline and quasistatic applications—become practical for real-time and high-dynamics receivers. Experiments with fixed-point implementations of the proposed loops and actual radio signals are also shown.

  13. Naturalness redux

    CERN Document Server

    Fabbrichesi, Marco

    2015-01-01

    The idea of naturalness, as originally conceived, refers only to the finite renormalization of the Higgs boson mass induced by the introduction of heavier states. In this respect, naturalness is still a powerful heuristic principle in model building beyond the standard model whenever new massive states are coupled to the Higgs field. The most compelling case is provided by the generation of neutrino masses. In this paper we confront this problem from a new perspective. The right-handed sector responsible for the seesaw mechanism---which introduces a large energy threshold above the electroweak scale---is made supersymmetric to comply with naturalness while the standard model is left unchanged and non-supersymmetric. Cancellations necessary to the naturalness requirement break down only at two loops, thus offering the possibility to increase the right-handed neutrino mass scale up to one order of magnitude above the usual values allowed by naturalness. If also the weak boson sector of the standard model is mad...

  14. The aeta - pinatubo loop.

    Science.gov (United States)

    Marler, Thomas E

    2011-11-01

    The impact of Mount Pinatubo's 1991 eruption on the traditional use of natural resources by the indigenous Aeta was devastating. The damage resulted in the immediate and sustained disconnection of traditional knowledge from the biological resources integral to practice that knowledge. The relatively slow ecosystem recovery a full 20 years after the event hinders the transfer of traditional knowledge to younger generations of Aeta. Their traditional knowledge is at risk of disappearing from the cultural fabric of the Philippines. In seeking to adapt, decisions by the Aeta to accept the development of foreign-designed ecotourism enterprises may negatively affect natural ecosystem recovery. Alternatives to the existing ecotourism practices may be warranted to safeguard Aeta traditional knowledge.

  15. Walker circulation in a transient climate

    Science.gov (United States)

    Plesca, Elina; Grützun, Verena; Buehler, Stefan A.

    2016-04-01

    response (temperature change by the time of CO2 doubling), which in turn might be related to a decreased ocean heat uptake. This uncertainty across the models we attribute to the multitude of factors controlling ocean and atmosphere heat exchange, both at global and regional scales, as well as to the present capabilities of GCMs in simulating this exchange. References: England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A., 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change 4 (3): 222-227. Ma, J., and Xie, S. P., 2013. Regional Patterns of Sea Surface Temperature Change: A Source of Uncertainty in Future Projections of Precipitation and Atmospheric Circulation*. Journal of Climate, 26 (8): 2482-2501

  16. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  17. North Atlantic Circulation

    Science.gov (United States)

    Molinari, R.; Bryan, K.; Schott, F.

    The intensity of the North Atlantic winddriven and thermohaline circulation and the close proximity of many oceanographic installations make the North Atlantic a particularly favored region of the world ocean from the standpoint of research in ocean circulation. Recent increases in available data and advances in numerical modeling techniques served as the impetus to convene a joint workshop of modelers and observers working on the North Atlantic with the Scientific Committee on Oceanic Research (SCOR) Working Group (WG) 68 (“North Atlantic Circulation”). Goals of the workshop were to provide an update on data sets and models and to discuss the poleward heat flux problem and possible monitoring strategies. The joint Workshop/SCOR WG-68 meeting was convened by F. Schott (chairman of the working group; Rosenstiel School of Marine and Atmospheric Science, Miami, Fla.), K. Bryan (National Oceanic and Atmospheric Administration/ Geophysical Fluid Dynamics Laboratory (NOAA/GFDL)), and R. Molinari (NOAA/Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML)).

  18. Overview of Loop Heat Pipe Operation

    Science.gov (United States)

    Ku, Jentung

    1999-01-01

    Loop heat pipes (LHP's) are two-phase heat transfer devices that utilize the evaporation and condensation of a working fluid to transfer heat, and the capillary forces developed in the porous wicks to circulate the fluid. The LHP was first developed in the former Soviet Union in the early 1980s, about the same time that the capillary pumped loop (CPL) was developed in the United States. The LHP is known for its high pumping capability and robust operation mainly due to the use of fine-pored metal wicks and an integral evaporator/hydro-accumulator design. The LHP technology is rapidly gaining acceptance in aerospace community. It is the baseline design for thermal control of several spacecraft, including NASA's GLAS and Chemistry, ESA's ATLID, CNES' STENTOR, RKA's OBZOR, and several commercial satellites. Numerous LHP papers have been published since the mid-1980's. Most papers presented test results and discussions on certain specific aspects of the LHP operation. LHP's and CPL's show many similarities in their operating principles and performance characteristics. However, they also display significant differences in many aspects of their operation. Some of the LHP behaviors may seem strange or mysterious, even to experienced CPL practitioners. The main purpose of this paper is to present a systematic description of the operating principles and thermal-hydraulic behaviors of LHP'S. LHP operating principles will be given first, followed by a description of the thermal-hydraulics involved in LHP operation. Operating characteristics and important parameters affecting the LHP operation will then be described in detail. Peculiar behaviors of the LHP, including temperature hysteresis and temperature overshoot during start-up, will be explained. For simplicity, most discussions will focus upon LHP's with a single evaporator and a single condenser, but devices with multiple evaporators and condensers will also be discussed. Similarities and differences between LHP's and

  19. Efficient quantum circuits for dense circulant and circulant like operators

    Science.gov (United States)

    Zhou, S. S.; Wang, J. B.

    2017-05-01

    Circulant matrices are an important family of operators, which have a wide range of applications in science and engineering-related fields. They are, in general, non-sparse and non-unitary. In this paper, we present efficient quantum circuits to implement circulant operators using fewer resources and with lower complexity than existing methods. Moreover, our quantum circuits can be readily extended to the implementation of Toeplitz, Hankel and block circulant matrices. Efficient quantum algorithms to implement the inverses and products of circulant operators are also provided, and an example application in solving the equation of motion for cyclic systems is discussed.

  20. Supersymmetric Wilson Loops and Super Non-Abelian Stokes Theorem

    CERN Document Server

    Karp, R L; Karp, Robert L.; Mansouri, Freydoon

    2000-01-01

    We generalize the standard product integral formalism to incorporateGrassmann valued matrices and show that the resulting supersymmetric productintegrals provide a natural framework for describing supersymmetric Wilsonlines and Wilson loops. We use this formalism to establish the supersymmetricversion of the non-Abelian Stokes Theorem.

  1. Wilson loops and topological phases in closed string theory

    CERN Document Server

    Cartas-Fuentevilla, R

    2004-01-01

    Using covariant phase space formulations for the natural topological invariants associated with the world-surface in closed string theory, we find that certain Wilson loops defined on the world-surface and that preserve topological invariance, correspond to wave functionals for the vacuum state with zero energy. The differences and similarities with the 2-dimensional QED proposed by Schwinger early are discussed.

  2. From Chiral quark dynamics with Polyakov loop to the hadron resonance gas model

    CERN Document Server

    Arriola, E Ruiz; Salcedo, L L

    2012-01-01

    Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.

  3. Grafted natural polymer as new drag reducing agent: An experimental approach

    Directory of Open Access Journals (Sweden)

    Abdulbari Hayder A.

    2012-01-01

    Full Text Available The present investigation introduces a new natural drag reducing agent which has the ability to improve the flow in pipelines carrying aqueous or hydrocarbon liquids in turbulent flow. Okra (Abelmoschus esculentus mucilage drag reduction performance was tested in water and hydrocarbon (gas-oil media after grafting. The drag reduction test was conducted in a buildup closed loop liquid circulation system consists of two pipes 0.0127 and 0.0381 m Inside Diameter (ID, four testing sections in each pipe (0.5 to 2.0 m, tank, pump and pressure transmitters. Reynolds number (Re, additive concentration and the transported media type (water and gas-oil, were the major drag reduction variables investigated. The experimental results show that, new additive drag reduction ability is high with maximum percentage of drag reduction (%Dr up to 60% was achieved. The experimental results showed that the drag reduction ability increased by increasing the additive concentration. The %Dr was found to increase by increasing the Re by using the water-soluble additive while it was found to decrease by increasing the Re when using the oil-soluble additive. The %Dr was higher in the 0.0381 m ID pipe. Finally, the grafted and natural mucilage showed high resistance to shear forces when circulated continuously for 200 seconds in the closed-loop system.

  4. Bol loops of odd prime exponent

    CERN Document Server

    Foguel, Tuval

    2009-01-01

    Although any finite Bol loop of odd prime exponent is solvable, we show there exist such Bol loops with trivial center. We also construct finitely generated, infinite, simple Bruck loops of odd prime exponent for sufficiently large primes. This shows that the Burnside problem for Bruck loops has a negative answer.

  5. Classifying Finitely Generated Indecomposable RA Loops

    CERN Document Server

    Cornelissen, Mariana

    2012-01-01

    In 1995, E. Jespers, G. Leal and C. Polcino Milies classified all finite ring alternative loops (RA loops for short) which are not direct products of proper subloops. In this paper we extend this result to finitely generated RA loops and provide an explicit description of all such loops.

  6. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  7. Study of the Open Loop and Closed Loop Oscillator Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Imel, George R. [Idaho State Univ., Pocatello, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, Tony [Knolls Atomic Power Lab. (KAPL), Schenectady, NY (United States); Langbehn, Adam [Puget Sound Naval Base, Bremerton, WA (United States); Aryal, Harishchandra [Idaho State Univ., Pocatello, ID (United States); Benzerga, M. Lamine [Idaho State Univ., Pocatello, ID (United States)

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  8. BPS Wilson Loops on S^2 at Higher Loops

    CERN Document Server

    Young, Donovan

    2008-01-01

    We consider supersymmetric Wilson loops of the variety constructed by Drukker, Giombi, Ricci, and Trancanelli, whose spatial contours lie on a two-sphere. Working to second order in the 't Hooft coupling in planar N=4 Supersymmetric Yang-Mills Theory (SYM), we compute the vacuum expectation value of a wavy-latitude and of a loop composed of two longitudes. We evaluate the resulting integrals numerically and find that the results are consistent with the zero-instanton sector calculation of Wilson loops in 2-d Yang-Mills on S^2 performed by Bassetto and Griguolo. We also consider the connected correlator of two distinct latitudes to third order in the 't Hooft coupling in planar N=4 SYM. We compare the result in the limit where the latitudes become coincident to a perturbative calculation in 2-d Yang-Mills on S^2 using a light-cone Wu-Mandelstam-Leibbrandt prescription. The two calculations produce differing results.

  9. Global ocean circulation by altimetry

    Science.gov (United States)

    Wunsch, Carl; Haidvogel, D.

    1991-01-01

    The overall objectives of this project are to determine the general circulation of the oceans and many of its climate and biochemical consequences through the optimum use of altimetry data from TOPEX/POSEIDON and related missions. Emphasis is on the global-scale circulation, as opposed to the regional scale, but some more local studies will be carried out. Because of funding limitations, the primary initial focus will be on the time-dependent global-scale circulation rather than the mean; eventually, the mean circulation must be dealt with as well.

  10. Percutaneous interventions in Fontan circulation

    Directory of Open Access Journals (Sweden)

    Eduardo Franco

    2015-09-01

    Conclusions: Interventional catheterization procedures are often necessary to reach and maintain the fragile Fontan circulation, mainly in patients with right morphology systemic ventricles and fenestrated Fontan conduits.

  11. Lost circulation technology development status

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Scott, D.D.; Wernig, M.D.; Wright, E.K.

    1992-07-01

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April 1991--March 1992. 8 refs.

  12. Study of the circulation theory of the cooling system in vertical evaporative cooling generator

    Institute of Scientific and Technical Information of China (English)

    YU; Shunzhou; CAI; Jing; GUO; Chaohong

    2006-01-01

    The article briefly states the current development of evaporative cooling generator and its advantages comparing with generators of traditional cooling. Vertical evaporative cooling generator, which adopts Close-Loop-Self-Cycle with no-pump and free convection boil in the hollow stator bar, is one of the great developments in generator design. This article emphasizes the importance of cooling system in generator; expatiates the circulation theory in two aspects, energy and flow; and analyzes the essential reason,motivity and stability of Close-Loop-Self-Cycle. The article points out that the motivity of the circulation is the heat absorbed by coolant. After absorbing heat the coolant will have the ability of doing work because of the phase change. In another words, it is the buoyancy causing by density difference leads to the Close-Loop-Self-Cycle. This conclusion is validated by experimental data.

  13. Trypanosoma cruzi: circulating antigens

    Directory of Open Access Journals (Sweden)

    V. Bongertz

    1981-03-01

    Full Text Available Circulating antigens were detected in sera of mice experimentally infected with a high close of Trypanosoma cruzi by reaction with sera from chronically infected mice. The immunodiffusion reaction between homologous acute and chronic sera produced four precipitation lines. By reaction with chronic mouse serum, circulating antingens were detected in sera from heavily infected hamsters, dogs, rabbits and in sera from chagasic patients. A reaction was also found in urine from acutely infected mice and dogs. Trypanosoma cruzi exoantigen was detected in trypanosome culture medium and in the supernatant of infected cell cultures. Attempts to isolate the antigens are described.Antígenos circulantes foram detectados em soros de camundongos infectados experimentalmente com elevadas doses de Trypanosoma cruzi pela reação com soros obtidos de camundongos em fase crônica de infecção. A reação de imunodifusão entre soros homólogos agudo e crônico produziu quatro linhas de precipitação. Por reação com soro crônico de camundongo antígenos circulantes foram detectados em soros de crícetos, cães e coelhos infectados com doses elevadas de Trypanosoma cruzi e em soros de pacientes chagásicos. Uma reação foi também observada com urina de camundongos e cães infectados de forma aguda. Exoantígeno de Trypanosoma cruzi foi detectado em meio de cultura de tripanosomas e em sobrenadantes de culturas de células infectadas. Tentativas de isolamento dos antigenos são descritas.

  14. Loop coupled resonator optical waveguides.

    Science.gov (United States)

    Song, Junfeng; Luo, Lian-Wee; Luo, Xianshu; Zhou, Haifeng; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Lo, Guo-Qiang

    2014-10-06

    We propose a novel coupled resonator optical waveguide (CROW) structure that is made up of a waveguide loop. We theoretically investigate the forbidden band and conduction band conditions in an infinite periodic lattice. We also discuss the reflection- and transmission- spectra, group delay in finite periodic structures. Light has a larger group delay at the band edge in a periodic structure. The flat band pass filter and flat-top group delay can be realized in a non-periodic structure. Scattering matrix method is used to calculate the effects of waveguide loss on the optical characteristics of these structures. We also introduce a tunable coupling loop waveguide to compensate for the fabrication variations since the coupling coefficient of the directional coupler in the loop waveguide is a critical factor in determining the characteristics of a loop CROW. The loop CROW structure is suitable for a wide range of applications such as band pass filters, high Q microcavity, and optical buffers and so on.

  15. Vertically Polarized Omnidirectional Printed Slot Loop AntennaPrinted Slot Loop Antenna (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2015-01-01

    A novel verticall A novel vertically polarized dpolarize , omnidirection omnidirectional l , printed slot loop antenna h sprinted slot loop antenna has been designed, simulated, fabricated, and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform...

  16. The Wald entropy formula and loop quantum gravity

    CERN Document Server

    Bodendorfer, Norbert

    2013-01-01

    We outline how the Wald entropy formula naturally arises in loop quantum gravity based on recently introduced dimension-independent connection variables. The key observation is that in a loop quantization of a generalized gravity theory, the analog of the area operator turns out to measure, morally speaking, the Wald entropy rather than the area. We discuss the explicit example of (higher-dimensional) Lovelock gravity and comment on recent work on finding the correct numerical prefactor of the entropy by comparing it to a semiclassical effective action.

  17. Loop formulation of supersymmetric Yang-Mills quantum mechanics

    CERN Document Server

    Steinhauer, Kyle

    2014-01-01

    We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.

  18. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  19. Assessing catchment connectivity using hysteretic loops

    Science.gov (United States)

    Davis, Jason; Masselink, Rens; Goni, Mikel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel; Keesstra, Saskia

    2017-04-01

    texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops). Ozkotz principal (ca.1,700 ha) is covered with forest and pasture (cattle-breeding); while Oskotz woodland (ca. 500 ha), a sub-watershed of the Oskotz principal, is almost completely covered with forest. The predominant climate in the Oskotz catchments sub-Atlantic. Furthermore, antecedent conditions and event characteristics were analysed. The loops were compared quantitatively and qualitatively between catchments for similar events and within the catchments for events with different characteristics. In this study, several measures to objectively classify hysteresis loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. These loop characteristics were compared to event specific characteristics such as antecedent precipitation, time of year, and precipitation intensity, duration and total. The combination of hysteresis loops and variables influencing connectivity can then tell something about the sources of sediments for different events and catchments. References Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD. 2016. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes. DOI: 10.1002/hyp.10993 Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degradation and Development 27: 933-945, DOI: 10.1002/ldr.2512 Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., Maroulis, J., Reducing sediment connectivity through man-made and natural

  20. Unravelling the Components of a Multi-thermal Coronal Loop using Magnetohydrodynamic Seismology

    Science.gov (United States)

    Krishna Prasad, S.; Jess, D. B.; Klimchuk, J. A.; Banerjee, D.

    2017-01-01

    Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multithermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variation along the loop in both channels, and thus are able to resolve two individual components of the multithermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.

  1. Unravelling the components of a multi-thermal coronal loop using magnetohydrodynamic seismology

    CERN Document Server

    Prasad, S Krishna; Klimchuk, J A; Banerjee, D

    2016-01-01

    Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multi-thermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variation along the loop in both channels, and thus are able to resolve two individual components of the multi-thermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.

  2. All digital pulsewidth control loop

    Science.gov (United States)

    Huang, Hong-Yi; Jan, Shiun-Dian; Pu, Ruei-Iun

    2013-03-01

    This work presents an all-digital pulsewidth control loop (ADPWCL). The proposed system accepts a wide range of input duty cycles and performs a fast correction to the target output pulsewidth. An all-digital delay-locked loop (DLL) with fast locking time using a simplified time to digital converter and a new differential two-step delay element is proposed. The area of the delay element is much smaller than that in conventional designs, while having the same delay range. A test chip is verified in a 0.18-µm CMOS process. The measured duty cycle ranges from 4% to 98% with 7-bit resolution.

  3. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    Martin Bojowald

    2004-10-01

    Aspects of the full theory of loop quantum gravity can be studied in a simpler context by reducing to symmetric models like cosmological ones. This leads to several applications where loop effects play a significant role when one is sensitive to the quantum regime. As a consequence, the structure of and the approach to classical singularities are very different from general relativity. The quantum theory is free of singularities, and there are new phenomenological scenarios for the evolution of the very early universe such as inflation. We give an overview of the main effects, focussing on recent results obtained by different groups.

  4. Loop quantum geometry: a primer

    Energy Technology Data Exchange (ETDEWEB)

    Corichi, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A. Postal 70-543, Mexico D.F. 04510 (Mexico)

    2005-01-15

    This is the written version of a lecture given at the 'VI Mexican School of Gravitation and Mathematical Physics' (Nov 21-27, 2004, Playa del Carmen, Mexico), introducing the basics of Loop Quantum Geometry. The purpose of the written contribution is to provide a Primer version, that is, a first entry into Loop Quantum Gravity and to present at the same time a friendly guide to the existing pedagogical literature on the subject. This account is geared towards graduate students and non-experts interested in learning the basics of the subject.

  5. LISA Pathfinder: OPD loop characterisation

    Science.gov (United States)

    Born, Michael; LPF Collaboration

    2017-05-01

    The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results.

  6. Loop Quantum Geometry: A primer

    OpenAIRE

    Corichi, Alejandro

    2005-01-01

    This is the written version of a lecture given at the ``VI Mexican School of Gravitation and Mathematical Physics" (Nov 21-27, 2004, Playa del Carmen, Mexico), introducing the basics of Loop Quantum Geometry. The purpose of the written contribution is to provide a Primer version, that is, a first entry into Loop Quantum Gravity and to present at the same time a friendly guide to the existing pedagogical literature on the subject. This account is geared towards graduate students and non-expert...

  7. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore

  8. Stem-loop structures in prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Boccia Angelo

    2006-07-01

    Full Text Available Abstract Background Prediction of secondary structures in the expressed sequences of bacterial genomes allows to investigate spontaneous folding of the corresponding RNA. This is particularly relevant in untranslated mRNA regions, where base pairing is less affected by interactions with the translation machinery. Relatively large stem-loops significantly contribute to the formation of more complex secondary structures, often important for the activity of sequence elements controlling gene expression. Results Systematic analysis of the distribution of stem-loop structures (SLSs in 40 wholly-sequenced bacterial genomes is presented. SLSs were searched as stems measuring at least 12 bp, bordering loops 5 to 100 nt in length. G-U pairing in the stems was allowed. SLSs found in natural genomes are constantly more numerous and stable than those expected to randomly form in sequences of comparable size and composition. The large majority of SLSs fall within protein-coding regions but enrichment of specific, non random, SLS sub-populations of higher stability was observed within the intergenic regions of the chromosomes of several species. In low-GC firmicutes, most higher stability intergenic SLSs resemble canonical rho-independent transcriptional terminators, but very frequently feature at the 5'-end an additional A-rich stretch complementary to the 3' uridines. In all species, a clearly biased SLS distribution was observed within the intergenic space, with most concentrating at the 3'-end side of flanking CDSs. Some intergenic SLS regions are members of novel repeated sequence families. Conclusion In depth analysis of SLS features and distribution in 40 different bacterial genomes showed the presence of non random populations of such structures in all species. Many of these structures are plausibly transcribed, and might be involved in the control of transcription termination, or might serve as RNA elements which can enhance either the stability or

  9. Stem-loop structures in prokaryotic genomes

    Science.gov (United States)

    Petrillo, Mauro; Silvestro, Giustina; Di Nocera, Pier Paolo; Boccia, Angelo; Paolella, Giovanni

    2006-01-01

    Background Prediction of secondary structures in the expressed sequences of bacterial genomes allows to investigate spontaneous folding of the corresponding RNA. This is particularly relevant in untranslated mRNA regions, where base pairing is less affected by interactions with the translation machinery. Relatively large stem-loops significantly contribute to the formation of more complex secondary structures, often important for the activity of sequence elements controlling gene expression. Results Systematic analysis of the distribution of stem-loop structures (SLSs) in 40 wholly-sequenced bacterial genomes is presented. SLSs were searched as stems measuring at least 12 bp, bordering loops 5 to 100 nt in length. G-U pairing in the stems was allowed. SLSs found in natural genomes are constantly more numerous and stable than those expected to randomly form in sequences of comparable size and composition. The large majority of SLSs fall within protein-coding regions but enrichment of specific, non random, SLS sub-populations of higher stability was observed within the intergenic regions of the chromosomes of several species. In low-GC firmicutes, most higher stability intergenic SLSs resemble canonical rho-independent transcriptional terminators, but very frequently feature at the 5'-end an additional A-rich stretch complementary to the 3' uridines. In all species, a clearly biased SLS distribution was observed within the intergenic space, with most concentrating at the 3'-end side of flanking CDSs. Some intergenic SLS regions are members of novel repeated sequence families. Conclusion In depth analysis of SLS features and distribution in 40 different bacterial genomes showed the presence of non random populations of such structures in all species. Many of these structures are plausibly transcribed, and might be involved in the control of transcription termination, or might serve as RNA elements which can enhance either the stability or the turnover of cotranscribed

  10. Numerical characterization of heat transfer in closed-loop vertical ground heat exchanger

    Institute of Scientific and Technical Information of China (English)

    Chulho; LEE; Hujeong; GIL; Hangseok; CHOI; Shin-Hyung; KANG

    2010-01-01

    A series of numerical analyses has been performed on the characteristics of heat transfer in a closed-loop vertical ground heat exchanger(U-loop).A 2-D finite element analysis was conducted to evaluate the temperature distribution over the cross section of the U-loop system involving high-density polyethylene(HDPE) pipe/grout/soil to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system,which is equipped with a thermally insulating lattice in order to reduce thermal interference between the inlet and outlet pipes.In addition,a 3-D finite volume analysis(FLUENT) was adopted to simulate the operation of the closed-loop vertical ground heat exchanger with the consideration of the effect of a distance between the inlet and outlet pipes,grout’s thermal properties,the effectiveness of the latticed HDPE pipe system,and the rate of circulation pump.It was observed that the thermal interference between the two strands of U-loop is of importance in enhancing efficiency of the ground heat exchanger.Consequently,it is recommended to modify the configuration of the conventional U-loop system by equipping the thermally insulating lattice between the two pipe strands.

  11. Sino-Danish Brain Circulation

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Du, Xiangyun; Søndergaard, Morten Karnøe

    2014-01-01

    China is faced with urgent needs to develop an economically and environmentally sustainable economy based on innovation and knowledge. Brain circulation and research and business investments from the outside are central for this development. Sino-American brain circulation and research...... and investment by overseas researchers and entrepreneurs are well described. In that case, the US is the center of global R&D and S&T. However, the brain circulation and research and investments between a small open Scandinavian economy, such as Denmark, and the huge developing economy of China are not well...... understood. In this case, Denmark is very highly developed, but a satellite in the global R&D and S&T system. With time and the growth of China as a R&D and S&T power house, both Denmark and China will benefit from brain circulation between them. Such brain circulation is likely to play a key role in flows...

  12. High capacity 30 K remote helium cooling loop

    Science.gov (United States)

    Trollier, T.; Tanchon, J.; Icart, Y.; Ravex, A.

    2014-01-01

    Absolut System has built several 50 K remote helium cooling loops used as high capacity and very low vibration cooling source into large wavelength IR detectors electro-optical characterization test benches. MgB2 based superconducting electro-technical equipment's under development require also distributed high cooling power in the 20-30 K temperature range. Absolut System has designed, manufactured and tested a high capacity 30 K remote helium cooling loop. The equipment consists of a CRYOMECH AL325 type cooler, a CP830 type compressor package used as room temperature circulator and an intermediate LN2 bath cooling used between two recuperator heat exchangers (300 K-77 K and 77 K-20 K). A cooling capacity of 30 W @ 20 K or 80 W @ 30 K has been demonstrated on the application heat exchanger, with a 4-meter remote distance ensured by a specifically designed gas circulation flexible line. The design and the performance will be reported in this paper.

  13. The Loop Current Dynamics Experiment (2009-2011) in the Gulf of Mexico

    Science.gov (United States)

    Lugo-Fernández, Alexis

    2016-12-01

    The Environmental Studies Program of the US Department of the Interior's Bureau of Ocean Energy Management (BOEM) has sponsored oceanographic research in the Gulf of Mexico for over 40 years. Since 1998, BOEM and its predecessor agencies funded several oceanographic studies on the Gulf's continental slope and beyond. These investigations were aimed at discovering and understanding the physical process driving the circulation and improving numerical models' forecasting skills. One common finding in many of those studies was the ubiquitous influence that the Loop Current (LC) and its associated eddies have on the Gulf's circulation. The LC dominance of the upper layer circulation has been well established by previous studies. Many of these studies suggested that the LC is a source of deep energy below the main thermocline. Yet, despite its acknowledged importance to the Gulf circulation, there had been few observational studies of the LC itself particularly in the main eddy shedding regime.

  14. A GM cryocooler with cold helium circulation for remote cooling

    Science.gov (United States)

    Wang, Chao; Brown, Ethan

    2014-01-01

    A GM cryocooler with new cold helium circulation system has been developed at Cryomech. A set of check valves connects to the cold heat exchanger to convert a small portion of AC oscillating flow in the cold head to a DC gas flow for circulating cold helium in the remote loop. A cold finger, which is used for remote cooling, is connected to the check valves through a pair of 5 m long vacuum insulated flexible lines. The GM cryocooler, Cryomech model AL125 having 120 W at 80 K, is employed in the testing. The cold finger can provide 50 W at 81 K for the power input of 4.1 kW and 70.5 W at 81.8 K for the power input of 6 kW. This simple and low cost design is very attractive for some applications in the near future.

  15. Direct Extraction of One-loop Integral Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Forde, Darren

    2007-04-16

    We present a general procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted by considering two-particle and triple unitarity cuts of the corresponding bubble and triangle integral functions. After choosing a specific parameterization of the cut loop momentum we can uniquely identify the coefficients of the desired integral functions simply by examining the behavior of the cut integrand as the unconstrained parameters of the cut loop momentum approach infinity. In this way we can produce compact forms for scalar integral coefficients. Applications of this method are presented for both QCD and electroweak processes, including an alternative form for the recently computed three-mass triangle coefficient in the six-photon amplitude A{sub 6}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup -}, 6{sup +}). The direct nature of this extraction procedure allows for a very straightforward automation of the procedure.

  16. What's in the Loop? The Anatomy of Double Higgs Production

    CERN Document Server

    Dawson, S; Low, Ian

    2015-01-01

    Determination of Higgs self-interactions through the double Higgs production from gluon fusion is a major goal of current and future collider experiments. We point out this channel could help disentangle and resolve the nature of ultraviolet contributions to Higgs couplings to two gluons. Analytic properties of the double Higgs amplitudes near kinematic threshold are used to study features resulting from scalar and fermionic loop particles mediating the interaction. Focusing on the hh invariant mass spectrum, we consider the effect from anomalous top and bottom Yukawa couplings, as well as from scalar and fermionic loop particles. In particular, the spectrum at high hh invariant mass is sensitive to the spin of the particles in the loop.

  17. On another two cryptographic identities in universal Osborn loops

    Directory of Open Access Journals (Sweden)

    T. G. Jaiyéolá

    2010-03-01

    Full Text Available In this study, by establishing an identity for universal Osborn loops, two other identities (of degrees 4 and 6 are deduced from it and they are recognized and recommended for cryptography in a similar spirit in which the cross inverse property (of degree 2 has been used by Keedwell following the fact that it was observed that universal Osborn loops that do not have the 3-power associative property or weaker forms of; inverse property, power associativity and diassociativity to mention a few, will have cycles (even long ones. These identities are found to be cryptographic in nature for universal Osborn loops and thereby called cryptographic identities. They were also found applicable to security patterns, arrangements and networks which the CIP may not be applicable to.

  18. Heating of the Solar Corona and its Loops

    Science.gov (United States)

    Klimchuk, James A.

    2009-01-01

    At several million degrees, the solar corona is more than two orders of magnitude hotter than the underlying solar surface. The reason for these extreme conditions has been a puzzle for decades and is considered one of the fundamental problems in astrophysics. Much of the coronal plasma is organized by the magnetic field into arch-like structures called loops. Recent observational and theoretical advances have led to great progress in understanding the nature of these loops. In particular, we now believe they are bundles of unresolved magnetic strands that are heated by storms of impulsive energy bursts called nanoflares. Turbulent convection at the solar surface shuffles the footpoints of the strands and causes them to become tangled. A nanoflare occurs when the magnetic stresses reach a critical threshold, probably by way of a mechanism called the secondary instability. I will describe our current state of knowledge concerning the corona, its loops, and how they are heated.

  19. Degradation of circulating thyroglobulin

    Energy Technology Data Exchange (ETDEWEB)

    Taura, M.; Yamashita, S.; Kubo, I.; Izumi, M.; Nagataki, S.

    1985-10-01

    In order to elucidate whether the derivatives of rat Tg in the peripheral circulation affect the results of kinetic studies of Tg, the present study was performed to investigate kinetics of rat Tg after separation of 19S Tg from its derivatives using gel-filtration. Radiolabeled Tg was obtained from thyroids of rats injected with SVI 24 hours before death, and subsequently purified by ammonium sulfate precipitation. The plasma samples obtained at varying time intervals after intravenous injection of SVI-rat Tg were fractionated on a Sephacryl S-300 column. As determined by sucrose density gradient, 99% of in vivo radiolabeled Tg was 19S. On gel-filtration, the injected labeled Tg and plasma samples obtained within two hours after injection showed a single peak in an identical area. A second peak in an area corresponding to a molecular weight of 60,000 to 70,000 appeared within six hours, and became as high as the first within 24 hours. In the second peak, 22.8% radioactivity was precipitated by anti-rat Tg antibody, and 14.4% of radioactivity of its TCA precipitate was not extracted by n-butanol. Thus, the second peak could affect the results of Tg kinetic studies which utilize TCA precipitation, n-butanol extraction or RIA procedures. The half life of rat Tg in the present study was calculated from the disappearance curves of radioactivity of 19S Tg separated from other radioactive substances.

  20. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    CERN Document Server

    Pereira, H; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of existing ones. A large spectrum of cryogenic temperatures can be covered by choosing appropriate working fluids. For high luminosity upgrades of existing experiments installed at the Large Hadron Collider (LHC) (TOTEM) and planned ones (FP420) [2-3] being in the design phase, radiation-hard solutions are studied with noble gases as working fluids to limit the radiolysis effect on molecules detrimental to the functioning of the LHP. The installation compactness requirement of experiments such as the CAST frame-store CCD d...

  1. Loop quantum cosmology: Anisotropies and inhomogeneities

    Science.gov (United States)

    Wilson-Ewing, Edward

    In this dissertation we extend the improved dynamics of loop quantum cosmology from the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker space-times to cosmological models which allow anisotropies and inhomogeneities. Specifically, we consider the cases of the homogeneous but anisotropic Bianchi type I, II and IX models with a massless scalar field as well as the vacuum, inhomogeneous, linearly polarized Gowdy T3 model. For each case, we derive the Hamiltonian constraint operator and study its properties. In particular, we show how in all of these models the classical big bang and big crunch singularities are resolved due to quantum gravity effects. Since the Bianchi models play a key role in the Belinskii, Khalatnikov and Lifshitz conjecture regarding the nature of generic space-like singularities in general relativity, the quantum dynamics of the Bianchi cosmologies are likely to provide considerable intuition about the fate of such singularities in quantum gravity. In addition, the results obtained here provide an important step toward the full loop quantization of cosmological space-times that allow generic inhomogeneities; this would provide falsifiable predictions that could be compared to observations.

  2. Ponderomotive Acceleration in Coronal Loops

    Science.gov (United States)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  3. Dirac Induction for loop groups

    NARCIS (Netherlands)

    Posthuma, H.

    2011-01-01

    Using a coset version of the cubic Dirac operators for affine Lie algebras, we give an algebraic construction of the Dirac induction homomorphism for loop group representations. With this, we prove a homogeneous generalization of the Weyl-Kac character formula and show compatibility with Dirac induc

  4. Five-loop massive tadpoles

    CERN Document Server

    Luthe, T

    2016-01-01

    We provide an update on a long-term project that aims at evaluating massive vacuum integrals at the five-loop frontier, with high precision and in various space-time dimensions. A number of applications are sketched, mainly concerning the determination of anomalous dimensions, for quantum field theories in four, three and two dimensions.

  5. Loop quantum gravity and observations

    CERN Document Server

    Barrau, A

    2014-01-01

    Quantum gravity has long been thought to be completely decoupled from experiments or observations. Although it is true that smoking guns are still missing, there are now serious hopes that quantum gravity phenomena might be tested. We review here some possible ways to observe loop quantum gravity effects either in the framework of cosmology or in astroparticle physics.

  6. Circulation Produced by a Flapping Wing During Stroke Reversal

    Science.gov (United States)

    Burge, Matthew; Ringuette, Matthew

    2016-11-01

    We investigate the circulation behavior of the 3D flow structures formed during the stroke-reversal of a 2-degree-of-freedom flapping wing in hover. Previous work has related circulation peaks to the unsteady wing kinematics and forces. However, information from experiments detailing contributions from the multiple, 3D flow structures is lacking. The objective of this work is to quantitatively study the spanwise circulation as well as the spanwise flow which advects vorticity in the complex loop topology of a flapping wing during stroke reversal. We analyze the flow features of a scaled wing model using multi-plane stereo digital particle image velocimetry in a glycerin-water mixture. Data plane locations along the wing span are inspired by the time-resolved behavior of the 3D vortex structures observed in our earlier flow visualization studies. As with our prior work, we vary dimensionless parameters such as the pitching reduced frequency to understand their effect on the circulation. This research provides insight into the vortex dynamics produced by the coupled rotational and pitching wing motions during stroke reversal, when lift generation is challenging. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.

  7. Smooth Wilson loops in N=4 non-chiral superspace

    Science.gov (United States)

    Beisert, Niklas; Müller, Dennis; Plefka, Jan; Vergu, Cristian

    2015-12-01

    We consider a supersymmetric Wilson loop operator for 4d N = 4 super Yang-Mills theory which is the natural object dual to the AdS 5 × S 5 superstring in the AdS/CFT correspondence. It generalizes the traditional bosonic 1 /2 BPS Maldacena-Wilson loop operator and completes recent constructions in the literature to smooth (non-light-like) loops in the full N=4 non-chiral superspace. This Wilson loop operator enjoys global super-conformal and local kappa-symmetry of which a detailed discussion is given. Moreover, the finiteness of its vacuum expectation value is proven at leading order in perturbation theory. We determine the leading vacuum expectation value for general paths both at the component field level up to quartic order in anti-commuting coordinates and in the full non-chiral superspace in suitable gauges. Finally, we discuss loops built from quadric splines joined in such a way that the path derivatives are continuous at the intersection.

  8. Smooth Wilson Loops in N=4 Non-Chiral Superspace

    CERN Document Server

    Beisert, Niklas; Plefka, Jan; Vergu, Cristian

    2015-01-01

    We consider a supersymmetric Wilson loop operator for 4d N=4 super Yang-Mills theory which is the natural object dual to the AdS_5 x S^5 superstring in the AdS/CFT correspondence. It generalizes the traditional bosonic 1/2 BPS Maldacena-Wilson loop operator and completes recent constructions in the literature to smooth (non-light-like) loops in the full N=4 non-chiral superspace. This Wilson loop operator enjoys global superconformal and local kappa-symmetry of which a detailed discussion is given. Moreover, the finiteness of its vacuum expectation value is proven at leading order in perturbation theory. We determine the leading vacuum expectation value for general paths both at the component field level up to quartic order in anti-commuting coordinates and in the full non-chiral superspace in suitable gauges. Finally, we discuss loops built from quadric splines joined in such a way that the path derivatives are continuous at the intersection.

  9. Characteristics of Supersonic Closed Loop with Disk CCMHD Generator

    Science.gov (United States)

    Yamasaki, Hiroyuki; Murakami, Tomoyuki; Okuno, Yoshihiro

    Results of experimental study on performance of the supersonic closed loop with a disk MHD generator are described. The high temperature (> 1900K) argon circulation was carried out successfully during 2.4 hours. The heat gain and loss of argon was investigated, and a large heat loss was found at the diffuser and the exhausting duct although an energy efficiency of recuperator was high. The large heat loss was ascribed to water cooling at the diffuser and the exhausting duct. At the same time, the enhancement of heat transfer coefficient was suggested. The argon temperature and the heat loss calculated under an assumption of four times larger heat transfer coefficient have shown a good agreement with experimental ones. The pressure ratio inside the loop was discussed, and the result has indicated that the total pressure at the upstream of nozzle throat is decided by the total temperature and the mass flow. On the other hand, the total pressure at the downstream is determined by the total mass in the loop and the total pressure at the upstream. The first power generation was carried out, and a good correlation between the load resistance and the Hall voltage was observed. However, the power output remained very small.

  10. When Prostate Cancer Circulates in the Bloodstream

    Directory of Open Access Journals (Sweden)

    Virginie Vlaeminck-Guillem

    2015-10-01

    Full Text Available Management of patients with prostate cancer is currently based on imperfect clinical, biological, radiological and pathological evaluation. Prostate cancer aggressiveness, including metastatic potential, remains difficult to accurately estimate. In an attempt to better adapt therapeutics to an individual (personalized medicine, reliable evaluation of the intrinsic molecular biology of the tumor is warranted, and particularly for all tumor sites (primary tumors and secondary sites at any time of the disease progression. As a consequence of their natural tendency to grow (passive invasion or as a consequence of an active blood vessel invasion by metastase-initiating cells, tumors shed various materials into the bloodstream. Major efforts have been recently made to develop powerful and accurate methods able to detect, quantify and/or analyze all these circulating tumor materials: circulating tumors cells, disseminating tumor cells, extracellular vesicles (including exosomes, nucleic acids, etc. The aim of this review is to summarize current knowledge about these circulating tumor materials and their applications in translational research.

  11. Loop constraints A habitat and their algebra

    CERN Document Server

    Lewandowski, J R; Lewandowski, Jerzy; Marolf, Donald

    1998-01-01

    This work introduces a new space $\\T'_*$ of `vertex-smooth' states for use in the loop approach to quantum gravity. Such states provide a natural domain for Euclidean Hamiltonian constraint operators of the type introduced by Thiemann (and using certain ideas of Rovelli and Smolin). In particular, such operators map $\\T'_*$ into itself, and so are actual operators in this space. Their commutator can be computed on $\\T'_*$ and compared with the classical hypersurface deformation algebra. Although the classical Poisson bracket of Hamiltonian constraints yields an inverse metric times an infinitesimal diffeomorphism generator, and despite the fact that the diffeomorphism generator has a well-defined non-trivial action on $\\T'_*$, the commutator of quantum constraints vanishes identically for a large class of proposals.

  12. Signature change in loop quantum cosmology

    CERN Document Server

    Mielczarek, Jakub

    2012-01-01

    The Wick rotation is commonly considered only as an useful computational trick. However, as it was suggested by Hartle and Hawking already in early eighties, Wick rotation may gain physical meaning at the Planck epoch. While such possibility is conceptually interesting, leading to no-boundary proposal, mechanism behind the signature change remains mysterious. We show that the signature change anticipated by Hartle and Hawking naturally appear in loop quantum cosmology. Theory of cosmological perturbations with the effects of quantum holonomies is discussed. It was shown by Cailleteau \\textit{et al.} (Class. Quant. Grav. {\\bf 29} (2012) 095010) that this theory can be uniquely formulated in the anomaly-free manner. The obtained algebra of effective constraints turns out to be modified such that the metric signature is changing from Lorentzian in low curvature regime to Euclidean in high curvature regime. Implications of this phenomenon on propagation of cosmological perturbations are discussed and corrections ...

  13. High Tc superconducting small loop antenna

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Mehler, M.J.; Maclean, T.S.M.; Lancaster, M.J.; Gough, C.E. (Univ. of Birmingham (UK)); Alford, N. (I.C.I. Advanced Materials Div., Runcorn (UK))

    1989-12-01

    The improvement in the radiation efficiency of an electrically small loop antenna is analysed when it is fabricated from a superconductor, and experimental results for a liquid nitrogen cooled, ceramic superconducting loop at 450MHz are presented. (orig.).

  14. Crystal packing effects on protein loops.

    Science.gov (United States)

    Rapp, Chaya S; Pollack, Rena M

    2005-07-01

    The effects of crystal packing on protein loop structures are examined by (1) a comparison of loops in proteins that have been crystallized in alternate packing arrangements, and (2) theoretical prediction of loops both with and without the inclusion of the crystal environment. Results show that in a minority of cases, loop geometries are dependent on crystal packing effects. Explicit representation of the crystal environment in a loop prediction algorithm can be used to model these effects and to reconstruct the structures, and relative energies, of a loop in alternative packing environments. By comparing prediction results with and without the inclusion of the crystal environment, the loop prediction algorithm can further be used to identify cases in which a crystal structure does not represent the most stable state of a loop in solution. We anticipate that this capability has implications for structural biology.

  15. Modified Continuous Loop Technique for microvascular anastomosis

    Directory of Open Access Journals (Sweden)

    Kumar Pramod

    2001-01-01

    Full Text Available A modified method of continuous loop technique for microvascular anastomosis is described. The handling of loop is easier & even last suture is placed under vision. This makes the microvascular anastomosis easier and simpler.

  16. Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean Models

    Science.gov (United States)

    2009-06-30

    2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes . J. Clim. 19, 1365-1387. Sun, S...Global climatic impacts of a collapse of the Atlantic thermohaline circulation , Clim. Change 54, 251– 267. Willebrand, J., et al., 2001. Circulation ...Rahmstorf, S., 1995. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145-149

  17. Glycoprotein degradation in the blind loop syndrome: identification of glycosidases in jejunal contents.

    Science.gov (United States)

    Prizont, R

    1981-02-01

    Contents obtained from jejunum of normal controls, self-emptying and self-filling blind loop rats were analyzed for the presence of glycoprotein-degrading glycosidases. The blind loop syndrome was documented by the increased fat excretion and slower growth rate of self-filling blind loop rats 6 wk after surgery. With p-nitrophenylglycosides as substrate, the specific activity of alpha-N-acetylgalactosaminidase, a potential blood group A destroying glycosidase, was 0.90+/-0.40 mU/mg of protein. This level was 23-fold higher than the specific activity of normal controls. In partially purified self-filling blind loop contents, the activity of alpha-N-acetylgalactosaminidase was 9- to 70-fold higher than activities of self-emptying and normal controls. Antibiotic treatment with chloromycetin and polymyxin decreased 24-fold the glycosidase levels in self-filling blind loops. In experiments with natural substrate, the blood group A titer of a20,000g supernate from normal jejunal homogenates decreased 128-fold after 24-h incubation with blind loop contents. Normal contents failed to diminish the blood group reactivity of the natural substrate. Furthermore, blind loop contents markedly decreased the blood group A titer of isolated brush borders. Incubation between blind loop bacteria and mucosal homogenates or isolated brush borders labeled with d-[U-(14)C]glucosamine revealed increased production of labeled ether extractable organic acids. Likewise, intraperitoneal injection of d-[U-(14)C]glucosamine into self-filling blind loop rats resulted in incorporation of the label into luminal short chain fatty acids. These results suggest that glycosidases may provide a mechanism by which blind loop bacteria obtain sugars from intestinal glycoproteins. The released sugars are used and converted by bacteria into energy and organic acids. This use of the host's glycoproteins would allow blind loop bacteria to grow and survive within the lumen independent of exogenous sources.

  18. Resumming the POPE at One Loop

    CERN Document Server

    Lam, Ho Tat

    2016-01-01

    The Pentagon Operator Product Expansion represents polygonal Wilson loops in planar $\\mathcal{N}=4$ super Yang-Mills in terms of a series of flux tube excitations for finite coupling. We demonstrate how to re-sum this series at the one loop level for the hexagonal Wilson loop dual to the six-point MHV amplitude. By summing over a series of effective excitations we find expressions which integrate to logarithms and polylogarithms, reproducing the known one-loop result.

  19. Loop Equations in Abelian Gauge Theories

    CERN Document Server

    Di Bartolo, C; Pe~na, F; Bartolo, Cayetano Di; Leal, Lorenzo; Peña, Francisco

    2005-01-01

    The equations obeyed by the vacuum expectation value of the Wilson loop of Abelian gauge theories are considered from the point of view of the loop-space. An approximative scheme for studying these loop-equations for lattice Maxwell theory is presented. The approximation leads to a partial difference equation in the area and length variables of the loop, and certain physically motivated ansatz is seen to reproduce the mean field results from a geometrical perspective.

  20. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  1. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  2. Systematic study of the d=5 Weinberg operator at one-loop order

    CERN Document Server

    Bonnet, Florian; Ota, Toshihiko; Winter, Walter

    2012-01-01

    We perform a systematic study of the $d=5$ Weinberg operator at the one-loop level. We identify three different categories of neutrino mass generation: (1) finite irreducible diagrams; (2) finite extensions of the usual seesaw mechanisms at one-loop and (3) divergent loop realizations of the seesaws. All radiative one-loop neutrino mass models must fall into one of these classes. Case (1) gives the leading contribution to neutrino mass naturally and a classic example of this class is the Zee model. We demonstrate that in order to prevent that a tree level contribution dominates in case (2), Majorana fermions running in the loop and an additional $\\mathbb{Z}_2$ symmetry are needed for a genuinely leading one-loop contribution. In the type-II loop extensions, the lepton number violating coupling will be generated at one loop, whereas the type-I/III extensions can be interpreted as loop-induced inverse or linear seesaw mechanisms. For the divergent diagrams in category (3), the tree level contribution cannot be ...

  3. The circulation physiology of agroecosystems

    Institute of Scientific and Technical Information of China (English)

    Cao Zhiping; Richard Dawson

    2007-01-01

    This paper represents an effort to enlarge the understanding of the biophysical foundation of agroecosystems by using an analogy with the circulation of the blood in the human body. The circulation function in the human body can be represented as arterial pressure. The factors affecting arterial pressure in the human body have direct counterparts in the cultivation-husbandry system. The relationship between circulation pressure and the factors affecting that pressure in the cultivation-husbandry system are similar to the relationship between the arterial pressure and factors affecting arterial pressure in the human body. Furthermore, circulation resistance in the cultivation-husbandry system can be shown to be analogous to the calculation of peripheral resistance in the human body by Poiseuille's formula.

  4. Polyhedra in loop quantum gravity

    CERN Document Server

    Bianchi, Eugenio; Speziale, Simone

    2010-01-01

    Interwiners are the building blocks of spin-network states. The space of intertwiners is the quantization of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in Euclidean space: a polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of the geometry of the polyhedron: we give formulas for the edge lengths, the volume and the adjacency of its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a quantum polyhedron, thus generalizing the notion of quantum tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry of a polyhedron. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-network states with nodes of arbitrary valence represent a collection...

  5. Nucleosome repositioning via loop formation

    CERN Document Server

    Kulic, M L

    2002-01-01

    Active (catalysed) and passive (intrinsic) nucleosome repositioning is known to be a crucial event during the transcriptional activation of certain eucaryotic genes. Here we consider theoretically the intrinsic mechanism and study in detail the energetics and dynamics of DNA-loop-mediated nucleosome repositioning, as previously proposed by Schiessel et al. (H. Schiessel, J. Widom, R. F. Bruinsma, and W. M. Gelbart. 2001. {\\it Phys. Rev. Lett.} 86:4414-4417). The surprising outcome of the present study is the inherent nonlocality of nucleosome motion within this model -- being a direct physical consequence of the loop mechanism. On long enough DNA templates the longer jumps dominate over the previously predicted local motion, a fact that contrasts simple diffusive mechanisms considered before. The possible experimental outcome resulting from the considered mechanism is predicted, discussed and compared to existing experimental findings.

  6. The Statistical Loop Analyzer (SLA)

    Science.gov (United States)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  7. Loop Diuretics in Clinical Practice.

    Science.gov (United States)

    Oh, Se Won; Han, Sang Youb

    2015-06-01

    Diuretics are commonly used to control edema across various clinical fields. Diuretics inhibit sodium reabsorption in specific renal tubules, resulting in increased urinary sodium and water excretion. Loop diuretics are the most potent diuretics. In this article, we review five important aspects of loop diuretics, in particular furosemide, which must be considered when prescribing this medicine: (1) oral versus intravenous treatment, (2) dosage, (3) continuous versus bolus infusion, (4) application in chronic kidney disease patients, and (5) side effects. The bioavailability of furosemide differs between oral and intravenous therapy. Additionally, the threshold and ceiling doses of furosemide differ according to the particular clinical condition of the patient, for example in patients with severe edema or chronic kidney disease. To maximize the efficiency of furosemide, a clear understanding of how the mode of delivery will impact bioavailability and the required dosage is necessary.

  8. Deconfinement and virtual quark loops

    Science.gov (United States)

    Çelik, T.; Engels, J.; Satz, H.

    1983-12-01

    We calculate paer Monte Carlo evaluation on an 83 × 3 lattice the energy density ɛG of the gluon sector of QCD, including virtual quark loops up to the fourth power in the hopping parameter expansion. For light quarks of one flavour, we observe at T/ΛL 95 +/- 10 a rapid variation of ɛG in T, accompanied by strong fluctuations from iteration to iteration. as clear signal of the deconfinement transition.

  9. Quantum Reduced Loop Gravity and the foundation of Loop Quantum Cosmology

    CERN Document Server

    Alesci, Emanuele

    2016-01-01

    Quantum Reduced Loop Gravity is a promising framework for linking Loop Quantum Gravity and the effective semiclassical dynamics of Loop Quantum Cosmology. We review its basic achievements and its main perspectives, outlining how it provides a quantum description of the Universe in terms of a cuboidal graph which constitutes the proper framework for applying loop techniques in a cosmological setting.

  10. Ponderomotive Acceleration in Coronal Loops

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Obenschain, K

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a "byproduct" of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets...

  11. Optimization of coolant arrangement for fusion-fission hybrid reactor and analysis of ex-core nature circulation%聚变-裂变混合堆冷却剂布置优化及堆外自然循环分析

    Institute of Scientific and Technical Information of China (English)

    喻章程; 解衡

    2013-01-01

    The simulation and numerical computation with FLUENT code are conducted for the fuel zone of fusion-fission hybrid reactor.Two coolant flowing arrangement schemes,uniform flow,and proportional flow based on the gross heat of each fuel cell,are compared for optimization.The results of the numerical computation show that the heat conduction between adjacent fuel cells is weak and the heat is carried away by the coolant in the duct,and it is almost completely equal to the heat produced by corresponding fuel cell except the fuel cell 1.Then the value of heat structure of the coolant duct is the gross heat of each fuel cell that means there is no need to remodel the fuel zone with system analysis program.The fuel zone has lower maximum temperature and more even temperature distribution in the case of proportional flow compared with uniform flow,but the effect of flattening temperature is not obvious.The capacity of heat transfer of ex-core nature circulation in the imaginary LOCA is also evaluated.The results show that the reactor core will be melted within 520s after shut-down without the nature circulation and the maximum temperature in the fuel region will be only elevated to 584.4℃ within 1000s after shut-down if with the nature circulation.%根据聚变-裂变混合堆概念堆型的燃料区水冷设计,通过FLUENT建模和模拟计算,比较了均匀流量和按燃料单元发热量比例分配流量两种冷却剂布置方案.数值计算结果表明,这两种布置方案中燃料单元之间的导热很小,除燃料单元1中冷却管道外,其余的冷却管道带走的热量几乎等于相应燃料单元的发热量,在用系统分析程序等效建模时,不必重新确定冷却管道的热构件;对后一种布置方案燃料区的最高温度更低,温度分布更均匀,但温度展平效果并不明显.计算了堆外自然循环系统在假设的失水事故(LOCA)中的导热能力.结果表明,如果不采用自然循环系统,停堆后520s

  12. Semicarbazide-sensitive amine oxidase (SSAO): from cell to circulation

    NARCIS (Netherlands)

    F. Boomsma (Frans); H. Hut; U. Bagghoe; A.H. van den Meiracker (Anton)

    2005-01-01

    textabstractSemicarbazide-sensitive amine oxidase (SSAO) is a multi-functional enzyme widely present in nature. It converts primary amines into their corresponding aldehydes, while generating H(2)O(2) and NH(3). In mammals, SSAO circulates in plasma, while a membrane-bound form (of

  13. Semicarbazide-sensitive amine oxidase (SSAO): from cell to circulation

    NARCIS (Netherlands)

    F. Boomsma (Frans); H. Hut; U. Bagghoe; A.H. van den Meiracker (Anton)

    2005-01-01

    textabstractSemicarbazide-sensitive amine oxidase (SSAO) is a multi-functional enzyme widely present in nature. It converts primary amines into their corresponding aldehydes, while generating H(2)O(2) and NH(3). In mammals, SSAO circulates in plasma, while a membrane-bound form

  14. A new method for constructing infinite families of k-tight optimal double loop networks

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The double loop network (DLN) is a circulant digraph with n nodes and outdegree 2. DLN has been widely used in the designing of local area networks and distributed systems. In this paper, a new method for constructing infinite families of k-tight optimal DLN is presented.method, where the number nk(t,a) of their nodes is a polynomial of degree 2 in t and contains a parameter a. And a conjecture is proposed.

  15. Modeling Phase-Locked Loops Using Verilog

    Science.gov (United States)

    2007-11-01

    a charge pump, the phase detector has a tri-state output that can drive a opamp loop filter directly. This signal is conditioned by the charge pump...then it can directly drive an opamp based loop filter. Most loop filters are based upon an integrator loop. The integrator loop filter is advantageous...replaced with an accumulator. The opamp circuit can be replaced by a digital filter using Z-transform theory z=exp(jwT), where T is the sampling

  16. The space of states of quantum gravity in terms of loops and extended loops some remarks

    CERN Document Server

    Di Bartolo, C; Griego, J R; Pullin, J; Di Bartolo, Cayetano; Gambini, Rodolfo; Griego, Jorge; Pullin, Jorge

    1995-01-01

    This article reviews the status of several solutions to all the constraints of quantum gravity that have been proposed in terms of loops and extended loops. We discuss pitfalls of several of the results and in particular discuss the issues of covariance and regularization of the constraints in terms of extended loops. We also propose a formalism for ``thickened out loops'' which does not face the covariance problems of extended loops and may allow to regularize expressions in a consistent manner.

  17. Satellite Altimetry, Ocean Circulation, and Data Assimilation

    Science.gov (United States)

    Fu, Lee-Lueng

    1999-01-01

    Ocean circulation is a critical factor in determining the Earth's climate. Satellite altimetry has been proven a powerful technique for measuring the height of the sea surface for the study of global ocean circulation dynamics. A major objective of my research is to investigate the utility of altimeter data for ocean circulation studies. The 6 years' data record of TOPEX/POSEIDON have been analyzed to study the spatial and temporal characteristics of large-scale ocean variability. A major result obtained in 1998 is the discovery of large-scale oscillations in sea level with a period of 25 days in the Argentine Basin of the South Atlantic Ocean (see diagram). They exhibit a dipole pattern with counterclockwise rotational propagation around the Zapiola Rise (centered at 45S and 317E), a small seamount in the abyssal plain of the basin. The peak-to-trough amplitude is about 10 cm over a distance of 500-1000 km. The amplitude of these oscillations has large seasonal-to-interannual variations. The period and rotational characteristics of these oscillations are remarkably similar to the observations made by two current meters deployed near the ocean bottom in the region. What TOPEX/POSEIDON has detected apparently are manifestations of the movement of the entire water column (barotropic motion). The resultant transport variation is estimated to be about 50 x 10(exp 6) cubic M/S, which is about 50% of the total water transport in the region. Preliminary calculations suggest that these oscillations are topographically trapped waves. A numerical model of the South Atlantic is used to investigate the nature of and causes for these waves. A very important property of sea surface height is that it is directly related to the surface geostrophic velocity, which is related to deep ocean circulation through the density field. Therefore altimetry observations are not only useful for determining the surface circulation but also for revealing information about the deep ocean. Another

  18. The extended loop representation of quantum gravity

    CERN Document Server

    Di Bartolo, C; Griego, J R

    1995-01-01

    A new representation of Quantum Gravity is developed. This formulation is based on an extension of the group of loops. The enlarged group, that we call the Extended Loop Group, behaves locally as an infinite dimensional Lie group. Quantum Gravity can be realized on the state space of extended loop dependent wavefunctions. The extended representation generalizes the loop representation and contains this representation as a particular case. The resulting diffeomorphism and hamiltonian constraints take a very simple form and allow to apply functional methods and simplify the loop calculus. In particular we show that the constraints are linear in the momenta. The nondegenerate solutions known in the loop representation are also solutions of the constraints in the new representation. The practical calculation advantages allows to find a new solution to the Wheeler-DeWitt equation. Moreover, the extended representation puts in a precise framework some of the regularization problems of the loop representation. We sh...

  19. A LOOP-BASED APPROACH IN CLUSTERING AND ROUTING IN MOBILE AD HOC NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Li Yanping; Wang Xin; Xue Xiangyang; C.K. Toh

    2006-01-01

    Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for the resource limited ad hoc network. In order to address this problem, we proposed a loop-based approach to combine clustering and routing. By employing loop topologies, topology information is disseminated with a loop instead of a single node, which provides better robustness, and the nature of a loop that there are two paths between each pair of nodes within a loop suggests smart route recovery strategy. Our approach is composed of setup procedure, regular procedure and recovery procedure to achieve clustering, routing and emergent route recovering.

  20. Coastal circulation in the North Indian Ocean: Coastal segment (14,S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Gouveia, A.D.

    and as a result the circulation shows a distinct seasonal character. The nature of winds, precipitation, runoff, and tides in the region are summarized. Characteristics of large-scale near surface circulation and of water masses in the North Indian Basin...