Prediction about chaotic times series of natural circulation flow under rolling motion
International Nuclear Information System (INIS)
Yuan Can; Cai Qi; Guo Li; Yan Feng
2014-01-01
The paper have proposed a chaotic time series prediction model, which combined phase space reconstruction with support vector machines. The model has been used to predict the coolant volume flow, in which a synchronous parameter optimization method was brought up based on particle swarm optimization algorithm, since the numerical value selection of related parameter was a key factor for the prediction precision. The average relative error of prediction values and actual observation values was l,5% and relative precision was 0.9879. The result indicated that the model could apply for the natural circulation coolant volume flow prediction under rolling motion condition with high accuracy and robustness. (authors)
Predicting chaotic time series
International Nuclear Information System (INIS)
Farmer, J.D.; Sidorowich, J.J.
1987-01-01
We present a forecasting technique for chaotic data. After embedding a time series in a state space using delay coordinates, we ''learn'' the induced nonlinear mapping using local approximation. This allows us to make short-term predictions of the future behavior of a time series, using information based only on past values. We present an error estimate for this technique, and demonstrate its effectiveness by applying it to several examples, including data from the Mackey-Glass delay differential equation, Rayleigh-Benard convection, and Taylor-Couette flow
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Visibility graphlet approach to chaotic time series
Energy Technology Data Exchange (ETDEWEB)
Mutua, Stephen [Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega (Kenya); Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn; Yang, Huijie, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn [Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China)
2016-05-15
Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems. Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.
Prediction and Geometry of Chaotic Time Series
National Research Council Canada - National Science Library
Leonardi, Mary
1997-01-01
This thesis examines the topic of chaotic time series. An overview of chaos, dynamical systems, and traditional approaches to time series analysis is provided, followed by an examination of state space reconstruction...
Characterizing the chaotic nature of ocean ventilation
MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew
2017-09-01
Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.
Building Chaotic Model From Incomplete Time Series
Siek, Michael; Solomatine, Dimitri
2010-05-01
This paper presents a number of novel techniques for building a predictive chaotic model from incomplete time series. A predictive chaotic model is built by reconstructing the time-delayed phase space from observed time series and the prediction is made by a global model or adaptive local models based on the dynamical neighbors found in the reconstructed phase space. In general, the building of any data-driven models depends on the completeness and quality of the data itself. However, the completeness of the data availability can not always be guaranteed since the measurement or data transmission is intermittently not working properly due to some reasons. We propose two main solutions dealing with incomplete time series: using imputing and non-imputing methods. For imputing methods, we utilized the interpolation methods (weighted sum of linear interpolations, Bayesian principle component analysis and cubic spline interpolation) and predictive models (neural network, kernel machine, chaotic model) for estimating the missing values. After imputing the missing values, the phase space reconstruction and chaotic model prediction are executed as a standard procedure. For non-imputing methods, we reconstructed the time-delayed phase space from observed time series with missing values. This reconstruction results in non-continuous trajectories. However, the local model prediction can still be made from the other dynamical neighbors reconstructed from non-missing values. We implemented and tested these methods to construct a chaotic model for predicting storm surges at Hoek van Holland as the entrance of Rotterdam Port. The hourly surge time series is available for duration of 1990-1996. For measuring the performance of the proposed methods, a synthetic time series with missing values generated by a particular random variable to the original (complete) time series is utilized. There exist two main performance measures used in this work: (1) error measures between the actual
A time-delayed method for controlling chaotic maps
International Nuclear Information System (INIS)
Chen Maoyin; Zhou Donghua; Shang Yun
2005-01-01
Combining the repetitive learning strategy and the optimality principle, this Letter proposes a time-delayed method to control chaotic maps. This method can effectively stabilize unstable periodic orbits within chaotic attractors in the sense of least mean square. Numerical simulations of some chaotic maps verify the effectiveness of this method
Synchronization of Time-Continuous Chaotic Oscillators
DEFF Research Database (Denmark)
Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik
2003-01-01
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...
Lag synchronization of chaotic systems with time-delayed linear
Indian Academy of Sciences (India)
In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.
Statistical methods of parameter estimation for deterministically chaotic time series
Pisarenko, V. F.; Sornette, D.
2004-03-01
We discuss the possibility of applying some standard statistical methods (the least-square method, the maximum likelihood method, and the method of statistical moments for estimation of parameters) to deterministically chaotic low-dimensional dynamic system (the logistic map) containing an observational noise. A “segmentation fitting” maximum likelihood (ML) method is suggested to estimate the structural parameter of the logistic map along with the initial value x1 considered as an additional unknown parameter. The segmentation fitting method, called “piece-wise” ML, is similar in spirit but simpler and has smaller bias than the “multiple shooting” previously proposed. Comparisons with different previously proposed techniques on simulated numerical examples give favorable results (at least, for the investigated combinations of sample size N and noise level). Besides, unlike some suggested techniques, our method does not require the a priori knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the trade off between the need of using a large number of data points in the ML analysis to decrease the bias (to guarantee consistency of the estimation) and the unstable nature of dynamical trajectories with exponentially fast loss of memory of the initial condition. The method of statistical moments for the estimation of the parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for deterministically chaotic time series is proved so far theoretically (not only numerically).
The variation of the density functions on chaotic spheres in chaotic space-like Minkowski space time
International Nuclear Information System (INIS)
El-Ahmady, A.E.
2007-01-01
In this article we introduce types of chaotic spheres in chaotic space-like Minkowski space time M n+1 . The variations of the density functions under the folding of these chaotic spheres are defined. The foldings restriction imposed on the density function are also discussed. The relations between the folding of geometry and pure chaotic manifolds are deduced. Some theorems concerning these relations are presented
Cosmic time gauge in quantum cosmology and chaotic inflation model
International Nuclear Information System (INIS)
Hosoya, A.
1986-01-01
The author proposes a cosmic time gauge formalism in quantum cosmology to get an equation for the Schrodinger type. Its application to the chaotic inflation scenario reveals that the uncertainty in the scale factor grows exponentially as the universe inflates
Behavioural analysis of a time series– A chaotic approach
Indian Academy of Sciences (India)
Abstract. Out of the various methods available to study the chaotic behaviour, cor- ... that CDM is an efficient method for behavioural study of a time series. ...... Stochastic Environmental Research and Risk Assessment, 27(6): 1371–1381.
Cryptanalysis of a discrete-time synchronous chaotic encryption system
International Nuclear Information System (INIS)
Arroyo, David; Alvarez, Gonzalo; Li Shujun; Li Chengqing; Nunez, Juana
2008-01-01
Recently a chaotic cryptosystem based on discrete-time synchronization has been proposed. Some weaknesses of that new encryption system are addressed and exploited in order to successfully cryptanalyze the system
Chaotic time series prediction: From one to another
International Nuclear Information System (INIS)
Zhao Pengfei; Xing Lei; Yu Jun
2009-01-01
In this Letter, a new local linear prediction model is proposed to predict a chaotic time series of a component x(t) by using the chaotic time series of another component y(t) in the same system with x(t). Our approach is based on the phase space reconstruction coming from the Takens embedding theorem. To illustrate our results, we present an example of Lorenz system and compare with the performance of the original local linear prediction model.
The North American natural gas liquids markets are chaotic
Energy Technology Data Exchange (ETDEWEB)
Serletis, A.; Gogas, P. (Univ. of Calgary, Alberta (Canada). Dept. of Economics)
1999-01-01
In this paper the authors test for deterministic chaos (i.e., nonlinear deterministic processes which look random) in seven Mont Belview, Texas hydrocarbon markets, using monthly data from 1985:1 to 1996:12--the markets are those of ethane, propane, normal butane, iso-butane, naptha, crude oil, and natural gas. In doing so, they use the Lyapunov exponent estimator of Nychka, Ellner, Gallant, and McCaffrey. They conclude that there is evidence consistent with a chaotic nonlinear generation process in all five natural gas liquids markets.
Nonlinear Time Series Prediction Using Chaotic Neural Networks
Li, Ke-Ping; Chen, Tian-Lun
2001-06-01
A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm. The project supported by National Basic Research Project "Nonlinear Science" and National Natural Science Foundation of China under Grant No. 60074020
Fuzzy logic controllers and chaotic natural convection loops
International Nuclear Information System (INIS)
Theler, German
2007-01-01
The study of natural circulation loops is a subject of special concern for the engineering design of advanced nuclear reactors, as natural convection provides an efficient and completely passive heat removal system. However, under certain circumstances thermal-fluid-dynamical instabilities may appear, threatening the reactor safety as a whole.On the other hand, fuzzy logic controllers provide an ideal framework to approach highly non-linear control problems. In the present work, we develop a software-based fuzzy logic controller and study its application to chaotic natural convection loops.We numerically analyse the linguistic control of the loop known as the Welander problem in such conditions that, if the controller were not present, the circulation flow would be non-periodic unstable.We also design a Taka gi-Sugeno fuzzy controller based on a fuzzy model of a natural convection loop with a toroidal geometry, in order to stabilize a Lorenz-chaotic behaviour.Finally, we show experimental results obtained in a rectangular natural circulation loop [es
Unstable Periodic Orbit Analysis of Histograms of Chaotic Time Series
International Nuclear Information System (INIS)
Zoldi, S.M.
1998-01-01
Using the Lorenz equations, we have investigated whether unstable periodic orbits (UPOs) associated with a strange attractor may predict the occurrence of the robust sharp peaks in histograms of some experimental chaotic time series. Histograms with sharp peaks occur for the Lorenz parameter value r=60.0 but not for r=28.0 , and the sharp peaks for r=60.0 do not correspond to a histogram derived from any single UPO. However, we show that histograms derived from the time series of a non-Axiom-A chaotic system can be accurately predicted by an escape-time weighting of UPO histograms. copyright 1998 The American Physical Society
Generalized pole inflation: Hilltop, natural, and chaotic inflationary attractors
Energy Technology Data Exchange (ETDEWEB)
Terada, Takahiro, E-mail: takahiro.terada@apctp.org [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of)
2016-09-10
A reformulation of inflationary model analyses appeared recently, in which inflationary observables are determined by the structure of a pole in the inflaton kinetic term rather than the shape of the inflaton potential. We comprehensively study this framework with an arbitrary order of the pole taking into account possible additional poles in the kinetic term or in the potential. Depending on the setup, the canonical potential becomes the form of hilltop or plateau models, variants of natural inflation, power-law inflation, or monomial/polynomial chaotic inflation. We demonstrate attractor behaviors of these models and compute corrections from the additional poles to the inflationary observables.
Robust control of time-delay chaotic systems
International Nuclear Information System (INIS)
Hua Changchun; Guan Xinping
2003-01-01
Robust control problem of nonlinear time-delay chaotic systems is investigated. For such uncertain systems, we propose adaptive feedback controller and novel nonlinear feedback controller. They are both independent of the time delay and can render the corresponding closed-loop systems globally uniformly ultimately bounded stable. The simulations on controlling logistic system are made and the results show the controllers are feasible
A simple time-delayed method to control chaotic systems
International Nuclear Information System (INIS)
Chen Maoyin; Zhou Donghua; Shang Yun
2004-01-01
Based on the adaptive iterative learning strategy, a simple time-delayed controller is proposed to stabilize unstable periodic orbits (UPOs) embedded in chaotic attractors. This controller includes two parts: one is a linear feedback part; the other is an adaptive iterative learning estimation part. Theoretical analysis and numerical simulation show the effectiveness of this controller
Time series analysis in chaotic diode resonator circuit
Energy Technology Data Exchange (ETDEWEB)
Hanias, M.P. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece)] e-mail: mhanias@teihal.gr; Giannaris, G. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece); Spyridakis, A. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece); Rigas, A. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece)
2006-01-01
A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension {nu} and m {sub min}, respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated.
Time series analysis in chaotic diode resonator circuit
International Nuclear Information System (INIS)
Hanias, M.P.; Giannaris, G.; Spyridakis, A.; Rigas, A.
2006-01-01
A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension ν and m min , respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated
On Chaotic Nature of the Emerging European Forex Markets
Directory of Open Access Journals (Sweden)
Anoop S Kumar
2014-06-01
Full Text Available This study attempts to analyze the presence deterministic chaos in the forex markets of select European countries namely Bulgaria, Croatia, Czech Republic, Hungary Poland, Romania, Russia, Slovakia and Slovenia. Monthly NEER data ranging from jan-1994 to Dec-2013 is used for the purpose of analysis. A two step methodology is employed where in the first step, non-linear dependence structure in the underlying time series is verified using BDS test. The results show that all the markets under study exhibit non-linear dependence. In the next stage, it is enquired whether this non-linear behavior is due to the presence of chaotic dynamics in the markets. This is achieved by estimating Lyapunov exponents for the time series under analysis. An EGARCH (1, 1 filter is applied to see if the non-linearity could be explained by a GARCH process. From the Lyapunov exponent values, it is found that the GARCH process is unable to explain the forex markets behavior in a satisfying manner. It is concluded that the forex markets under study exhibit deterministic chaotic behavior.
Chaotic time series. Part II. System Identification and Prediction
Directory of Open Access Journals (Sweden)
Bjørn Lillekjendlie
1994-10-01
Full Text Available This paper is the second in a series of two, and describes the current state of the art in modeling and prediction of chaotic time series. Sample data from deterministic non-linear systems may look stochastic when analysed with linear methods. However, the deterministic structure may be uncovered and non-linear models constructed that allow improved prediction. We give the background for such methods from a geometrical point of view, and briefly describe the following types of methods: global polynomials, local polynomials, multilayer perceptrons and semi-local methods including radial basis functions. Some illustrative examples from known chaotic systems are presented, emphasising the increase in prediction error with time. We compare some of the algorithms with respect to prediction accuracy and storage requirements, and list applications of these methods to real data from widely different areas.
Guaranteed cost control of time-delay chaotic systems
International Nuclear Information System (INIS)
Park, Ju H.; Kwon, O.M.
2006-01-01
This article studies a guaranteed cost control problem for a class of time-delay chaotic systems. Attention is focused on the design of memory state feedback controllers such that the resulting closed-loop system is asymptotically stable and an adequate level of performance is also guaranteed. Using the Lyapunov method and LMI (linear matrix inequality) framework, two criteria for the existence of the controller are derived in terms of LMIs. A numerical example is given to illustrate the proposed method
Time delay correlations in chaotic scattering and random matrix approach
International Nuclear Information System (INIS)
Lehmann, N.; Savin, D.V.; Sokolov, V.V.; Sommers, H.J.
1994-01-01
We study the correlations in the time delay a model of chaotic resonance scattering based on the random matrix approach. Analytical formulae which are valid for arbitrary number of open channels and arbitrary coupling strength between resonances and channels are obtained by the supersymmetry method. The time delay correlation function, through being not a Lorentzian, is characterized, similar to that of the scattering matrix, by the gap between the cloud of complex poles of the S-matrix and the real energy axis. 28 refs.; 4 figs
Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun
2017-11-01
The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.
Chaotic time series analysis in economics: Balance and perspectives
International Nuclear Information System (INIS)
Faggini, Marisa
2014-01-01
The aim of the paper is not to review the large body of work concerning nonlinear time series analysis in economics, about which much has been written, but rather to focus on the new techniques developed to detect chaotic behaviours in economic data. More specifically, our attention will be devoted to reviewing some of these techniques and their application to economic and financial data in order to understand why chaos theory, after a period of growing interest, appears now not to be such an interesting and promising research area
Chaotic time series analysis in economics: Balance and perspectives
Energy Technology Data Exchange (ETDEWEB)
Faggini, Marisa, E-mail: mfaggini@unisa.it [Dipartimento di Scienze Economiche e Statistiche, Università di Salerno, Fisciano 84084 (Italy)
2014-12-15
The aim of the paper is not to review the large body of work concerning nonlinear time series analysis in economics, about which much has been written, but rather to focus on the new techniques developed to detect chaotic behaviours in economic data. More specifically, our attention will be devoted to reviewing some of these techniques and their application to economic and financial data in order to understand why chaos theory, after a period of growing interest, appears now not to be such an interesting and promising research area.
Nonlinear Time-Reversal in a Wave Chaotic System
Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven
2012-02-01
Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
International Nuclear Information System (INIS)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
2016-01-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Scale invariance in chaotic time series: Classical and quantum examples
Landa, Emmanuel; Morales, Irving O.; Stránský, Pavel; Fossion, Rubén; Velázquez, Victor; López Vieyra, J. C.; Frank, Alejandro
Important aspects of chaotic behavior appear in systems of low dimension, as illustrated by the Map Module 1. It is indeed a remarkable fact that all systems tha make a transition from order to disorder display common properties, irrespective of their exacta functional form. We discuss evidence for 1/f power spectra in the chaotic time series associated in classical and quantum examples, the one-dimensional map module 1 and the spectrum of 48Ca. A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum of 48Ca obtained with a large realistic shell model calculation (ANTOINE code) and with a random shell model (TBRE) calculation also in the time series obtained with the map mod 1. We compare the scale invariant properties of the 48Ca nuclear spectrum sith similar analyses applied to the RMT ensambles GOE and GDE. A comparison with the corresponding power spectra is made in both cases. The possible consequences of the results are discussed.
State-space prediction model for chaotic time series
Alparslan, A. K.; Sayar, M.; Atilgan, A. R.
1998-08-01
A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model. The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.
High-temperature apparatus for chaotic mixing of natural silicate melts
Energy Technology Data Exchange (ETDEWEB)
Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D., E-mail: diego.perugini@unipg.it [Department of Physics and Geology, Petro-Volcanology Research Group (PVRG), University of Perugia, Piazza Università, Perugia 06100 (Italy)
2015-10-15
A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10{sup 6} Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.
High-temperature apparatus for chaotic mixing of natural silicate melts
International Nuclear Information System (INIS)
Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D.
2015-01-01
A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10 6 Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment
Finite-Time Synchronizing Control for Chaotic Neural Networks
Directory of Open Access Journals (Sweden)
Chao Zhang
2014-01-01
Full Text Available This paper addresses the finite-time synchronizing problem for a class of chaotic neural networks. In a real communication network, parameters of the master system may be time-varying and the system may be perturbed by external disturbances. A simple high-gain observer is designed to track all the nonlinearities, unknown system functions, and disturbances. Then, a dynamic active compensatory controller is proposed and by using the singular perturbation theory, the control method can guarantee the finite-time stability of the error system between the master system and the slave system. Finally, two illustrative examples are provided to show the effectiveness and applicability of the proposed scheme.
Partial control of chaotic transients using escape times
International Nuclear Information System (INIS)
Sabuco, Juan; Zambrano, Samuel; Sanjuan, Miguel A F
2010-01-01
The partial control technique allows one to keep the trajectories of a dynamical system inside a region where there is a chaotic saddle and from which nearly all the trajectories diverge. Its main advantage is that this goal is achieved even if the corrections applied to the trajectories are smaller than the action of environmental noise on the dynamics, a counterintuitive result that is obtained by using certain safe sets. Using the Henon map as a paradigm, we show here the deep relationship between the safe sets and the sets of points with different escape times, the escape time sets. Furthermore, we show that it is possible to find certain extended safe sets that can be used instead of the safe sets in the partial control technique. Numerical simulations confirm our findings and show that in some situations, the use of extended safe sets can be more advantageous.
Scargle, Jeffrey D.
1990-01-01
While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.
Finite-time synchronization of a class of autonomous chaotic systems
Indian Academy of Sciences (India)
Some criteria for achieving the finite-time synchronization of a class of autonomous chaotic systems are derived by the finite-time stability theory and Gerschgorin disc theorem. Numerical simulations are shown to illustrate the effectiveness of the proposed method. Keywords. Finite-time synchronization; autonomous chaotic ...
Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C
2016-01-01
Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering
Adaptive control of discrete-time chaotic systems: a fuzzy control approach
International Nuclear Information System (INIS)
Feng Gang; Chen Guanrong
2005-01-01
This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm
Adaptive control of chaotic continuous-time systems with delay
Tian, Yu-Chu; Gao, Furong
1998-06-01
A simple delay system governed by a first-order differential-delay equation may behave chaotically, but the conditions for the system to have such behaviors have not been well recognized. In this paper, a set of rules is postulated first for the conditions for the delay system to display chaos. A model-reference adaptive control scheme is then proposed to control the chaotic system state to converge to an arbitrarily given reference trajectory with certain and uncertain system parameters. Numerical examples are given to analyze the chaotic behaviors of the delay system and to demonstrate the effectiveness of the proposed adaptive control scheme.
A unified approach for impulsive lag synchronization of chaotic systems with time delay
International Nuclear Information System (INIS)
Li Chuandong; Liao Xiaofeng; Zhang Rong
2005-01-01
In this paper, we propose a unified approach for impulsive lag-synchronization of a class of chaotic systems with time delay by employing the stability theory of impulsive delayed differential equations. Three well-known delayed chaotic systems are presented to illustrate our results. Also, the estimates of the stable regions for these systems are given, respectively
Lag synchronization of chaotic systems with time-delayed linear ...
Indian Academy of Sciences (India)
delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differen- tial equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic ...
International Nuclear Information System (INIS)
Wu, C.Y.; Wang, S.B.; Pan, C.
1996-01-01
The oscillation characteristics of a low pressure two-phase natural circulation loop have been investigated experimentally in this study. Experimental results indicate that the characteristics of the thermal hydraulic oscillations can be periodic, with 2-5 fundamental frequencies, or chaotic, depending on the heating power and inlet subcooling. The number of fundamental frequencies of oscillation increases if the inlet subcooling is increased at a given heating power or the heating power is decreased at a given inlet subcooling; chaotic oscillations appear if the inlet subcooling is further increased and/or the heating power is further decreased. A map of the oscillation characteristics is thus established. The change in oscillation characteristics is evident from the time evolution and power spectrum of a thermal hydraulic parameter and the phase portraits of two thermal hydraulic parameters. These results reveal that a strange attractor exists in a low pressure two-phase natural circulation loop with low power and very high inlet subcooling. (orig.)
Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang
2018-03-01
A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.
The variable and chaotic nature of professional golf performance.
Stöckl, Michael; Lamb, Peter F
2018-05-01
In golf, unlike most other sports, individual performance is not the result of direct interactions between players. Instead decision-making and performance is influenced by numerous constraining factors affecting each shot. This study looked at the performance of PGA TOUR golfers in 2011 in terms of stability and variability on a shot-by-shot basis. Stability and variability were assessed using Recurrence Quantification Analysis (RQA) and standard deviation, respectively. About 10% of all shots comprised short stable phases of performance (3.7 ± 1.1 shots per stable phase). Stable phases tended to consist of shots of typical performance, rather than poor or exceptional shots; this finding was consistent for all shot categories. Overall, stability measures were not correlated with tournament performance. Variability across all shots was not related to tournament performance; however, variability in tee shots and short approach shots was higher than for other shot categories. Furthermore, tee shot variability was related to tournament standing: decreased variability was associated with better tournament ranking. The findings in this study showed that PGA TOUR golf performance is chaotic. Further research on amateur golf performance is required to determine whether the structure of amateur golf performance is universal.
Finite-Time Synchronization of Chaotic Systems with Different Dimension and Secure Communication
Directory of Open Access Journals (Sweden)
Shouquan Pang
2016-01-01
Full Text Available Finite-time synchronization of chaotic systems with different dimension and secure communication is investigated. It is rigorously proven that global finite-time synchronization can be achieved between three-dimension Lorenz chaotic system and four-dimension Lorenz hyperchaotic system which have certain parameters or uncertain parameters. The electronic circuits of finite-time synchronization using Multisim 12 are designed to verify our conclusion. And the application to the secure communications is also analyzed and discussed.
Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control
Directory of Open Access Journals (Sweden)
Jianeng Tang
2014-01-01
Full Text Available Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.
Function Projective Synchronization in Discrete-Time Chaotic System with Uncertain Parameters
International Nuclear Information System (INIS)
Chen Yong; Li Xin
2009-01-01
The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme. (general)
Adaptive control of chaotic systems with stochastic time varying unknown parameters
Energy Technology Data Exchange (ETDEWEB)
Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu
2008-10-15
In this paper based on the Lyapunov stability theorem, an adaptive control scheme is proposed for stabilizing the unstable periodic orbits (UPO) of chaotic systems. It is assumed that the chaotic system has some linearly dependent unknown parameters which are stochastically time varying. The stochastic parameters are modeled through the Weiner process derivative. To demonstrate the effectiveness of the proposed technique it has been applied to the Lorenz, Chen and Rossler dynamical systems, as some case studies. Simulation results indicate that the proposed adaptive controller has a high performance in stabilizing the UPO of chaotic systems in noisy environment.
Directory of Open Access Journals (Sweden)
Y. Saiki
2007-09-01
Full Text Available An infinite number of unstable periodic orbits (UPOs are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.
Global synchronization criteria with channel time-delay for chaotic time-delay system
International Nuclear Information System (INIS)
Sun Jitao
2004-01-01
Based on the Lyapunov stabilization theory, matrix measure, and linear matrix inequality (LMIs), this paper studies the chaos synchronization of time-delay system using the unidirectional linear error feedback coupling with time-delay. Some generic conditions of chaos synchronization with time-delay in the transmission channel is established. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criteria under which the global chaos synchronization of the time-delay coupled systems is achieved
A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems
Wang, Xingyuan; Wang, Siwei; Zhang, Yingqian; Luo, Chao
2018-04-01
A novel image encryption algorithm is proposed that combines the SHA-3 hash function and two chaotic systems: the hyper-chaotic Lorenz and Chen systems. First, 384 bit keystream hash values are obtained by applying SHA-3 to plaintext. The sensitivity of the SHA-3 algorithm and chaotic systems ensures the effect of a one-time pad. Second, the color image is expanded into three-dimensional space. During permutation, it undergoes plane-plane displacements in the x, y and z dimensions. During diffusion, we use the adjacent pixel dataset and corresponding chaotic value to encrypt each pixel. Finally, the structure of alternating between permutation and diffusion is applied to enhance the level of security. Furthermore, we design techniques to improve the algorithm's encryption speed. Our experimental simulations show that the proposed cryptosystem achieves excellent encryption performance and can resist brute-force, statistical, and chosen-plaintext attacks.
Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback
International Nuclear Information System (INIS)
Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir
2006-01-01
The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier
Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback
Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir
2006-01-01
The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier.
The brief time-reversibility of the local Lyapunov exponents for a small chaotic Hamiltonian system
International Nuclear Information System (INIS)
Waldner, Franz; Hoover, William G.; Hoover, Carol G.
2014-01-01
Highlights: •We consider the local Lyapunov spectrum for a four-dimensional Hamilton system. •Its stable periodic motion can be reversed for long times. •In the chaotic motion, time reversal occurs only for a short time. •Perturbations will change this short unstable case into a different stable case. •These observations might relate chaos to the Second Law of Thermodynamics. - Abstract: We consider the local (instantaneous) Lyapunov spectrum for a four-dimensional Hamiltonian system. Its stable periodic motion can be reversed for long times. Its unstable chaotic motion, with two symmetric pairs of exponents, cannot. In the latter case reversal occurs for more than a thousand fourth-order Runge–Kutta time steps, followed by a transition to a new set of paired Lyapunov exponents, unrelated to those seen in the forward time direction. The relation of the observed chaotic dynamics to the Second Law of Thermodynamics is discussed
A prediction method based on wavelet transform and multiple models fusion for chaotic time series
International Nuclear Information System (INIS)
Zhongda, Tian; Shujiang, Li; Yanhong, Wang; Yi, Sha
2017-01-01
In order to improve the prediction accuracy of chaotic time series, a prediction method based on wavelet transform and multiple models fusion is proposed. The chaotic time series is decomposed and reconstructed by wavelet transform, and approximate components and detail components are obtained. According to different characteristics of each component, least squares support vector machine (LSSVM) is used as predictive model for approximation components. At the same time, an improved free search algorithm is utilized for predictive model parameters optimization. Auto regressive integrated moving average model (ARIMA) is used as predictive model for detail components. The multiple prediction model predictive values are fusion by Gauss–Markov algorithm, the error variance of predicted results after fusion is less than the single model, the prediction accuracy is improved. The simulation results are compared through two typical chaotic time series include Lorenz time series and Mackey–Glass time series. The simulation results show that the prediction method in this paper has a better prediction.
Regular and chaotic dynamics in time-dependent relativistic mean-field theory
International Nuclear Information System (INIS)
Vretenar, D.; Ring, P.; Lalazissis, G.A.; Poeschl, W.
1997-01-01
Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory. Time-dependent and self-consistent calculations that reproduce experimental data on monopole resonances in 208 Pb show that the motion of the collective coordinate is regular for isoscalar oscillations, and that it becomes chaotic when initial conditions correspond to the isovector mode. Regular collective dynamics coexists with chaotic oscillations on the microscopic level. Time histories, Fourier spectra, state-space plots, Poincare sections, autocorrelation functions, and Lyapunov exponents are used to characterize the nonlinear system and to identify chaotic oscillations. Analogous considerations apply to higher multipolarities. copyright 1997 The American Physical Society
Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
International Nuclear Information System (INIS)
Ma Qianli; Zheng Qilun; Peng Hong; Qin Jiangwei; Zhong Tanwei
2008-01-01
This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by co-evolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series
Finite-time synchronization of Lorenz chaotic systems: theory and circuits
International Nuclear Information System (INIS)
Louodop, Patrick; Fotsin, Hilaire; Kountchou, Michaux; Bowong, Samuel
2013-01-01
This paper addresses the problem of finite-time master–slave synchronization of Lorenz chaotic systems from a control theoretic point of view. We propose a family of feedback couplings which accomplish the synchronization of Lorenz chaotic systems based on Lyapunov stability theory. These feedback couplings are based on non-periodic functions. A finite horizon can be arbitrarily established by ensuring that chaos synchronization is achieved at established time. An advantage is that some of the proposed feedback couplings are simple and easy to implement. Both mathematical investigations and numerical simulations followed by a Pspice experiment are presented to show the feasibility of the proposed method. (paper)
New prediction of chaotic time series based on local Lyapunov exponent
International Nuclear Information System (INIS)
Zhang Yong
2013-01-01
A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After reconstructing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the local Lyapunov exponent. Numerical simulations are carried out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically. (general)
International Nuclear Information System (INIS)
Yang Dong-Sheng; Liu Zhen-Wei; Liu Zhao-Bing; Zhao Yan
2012-01-01
The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method. (general)
A simple method of chaos control for a class of chaotic discrete-time systems
International Nuclear Information System (INIS)
Jiang Guoping; Zheng Weixing
2005-01-01
In this paper, a simple method is proposed for chaos control for a class of discrete-time chaotic systems. The proposed method is built upon the state feedback control and the characteristic of ergodicity of chaos. The feedback gain matrix of the controller is designed using a simple criterion, so that control parameters can be selected via the pole placement technique of linear control theory. The new controller has a feature that it only uses the state variable for control and does not require the target equilibrium point in the feedback path. Moreover, the proposed control method cannot only overcome the so-called 'odd eigenvalues number limitation' of delayed feedback control, but also control the chaotic systems to the specified equilibrium points. The effectiveness of the proposed method is demonstrated by a two-dimensional discrete-time chaotic system
Long Range Dependence Prognostics for Bearing Vibration Intensity Chaotic Time Series
Directory of Open Access Journals (Sweden)
Qing Li
2016-01-01
Full Text Available According to the chaotic features and typical fractional order characteristics of the bearing vibration intensity time series, a forecasting approach based on long range dependence (LRD is proposed. In order to reveal the internal chaotic properties, vibration intensity time series are reconstructed based on chaos theory in phase-space, the delay time is computed with C-C method and the optimal embedding dimension and saturated correlation dimension are calculated via the Grassberger–Procaccia (G-P method, respectively, so that the chaotic characteristics of vibration intensity time series can be jointly determined by the largest Lyapunov exponent and phase plane trajectory of vibration intensity time series, meanwhile, the largest Lyapunov exponent is calculated by the Wolf method and phase plane trajectory is illustrated using Duffing-Holmes Oscillator (DHO. The Hurst exponent and long range dependence prediction method are proposed to verify the typical fractional order features and improve the prediction accuracy of bearing vibration intensity time series, respectively. Experience shows that the vibration intensity time series have chaotic properties and the LRD prediction method is better than the other prediction methods (largest Lyapunov, auto regressive moving average (ARMA and BP neural network (BPNN model in prediction accuracy and prediction performance, which provides a new approach for running tendency predictions for rotating machinery and provide some guidance value to the engineering practice.
Time-delay-induced amplitude death in chaotic map lattices and its avoiding control
International Nuclear Information System (INIS)
Konishi, Keiji; Kokame, Hideki
2007-01-01
The present Letter deals with amplitude death in chaotic map lattices coupled with a diffusive delay connection. It is shown that if a fixed point of the individual map satisfies an odd-number property, then amplitude death never occurs at the fixed point for any number of the maps, coupling strength, and delay time. From the viewpoint of engineering applications that utilize oscillatory behavior in coupled oscillators, death would be undesirable. This Letter proposes a feedback controller, which is added to each chaotic map, such that the fixed point of the individual map satisfies the odd-number property. Accordingly, it is guaranteed that death never occurs in the controlled chaotic-map-lattice. It is verified that the proposed controller works well in numerical simulations
Dynamic synchronization of a time-evolving optical network of chaotic oscillators.
Cohen, Adam B; Ravoori, Bhargava; Sorrentino, Francesco; Murphy, Thomas E; Ott, Edward; Roy, Rajarshi
2010-12-01
We present and experimentally demonstrate a technique for achieving and maintaining a global state of identical synchrony of an arbitrary network of chaotic oscillators even when the coupling strengths are unknown and time-varying. At each node an adaptive synchronization algorithm dynamically estimates the current strength of the net coupling signal to that node. We experimentally demonstrate this scheme in a network of three bidirectionally coupled chaotic optoelectronic feedback loops and we present numerical simulations showing its application in larger networks. The stability of the synchronous state for arbitrary coupling topologies is analyzed via a master stability function approach. © 2010 American Institute of Physics.
Analysis of the time structure of synchronization in multidimensional chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Makarenko, A. V., E-mail: avm.science@mail.ru [Constructive Cybernetics Research Group (Russian Federation)
2015-05-15
A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.
Analysis of the time structure of synchronization in multidimensional chaotic systems
International Nuclear Information System (INIS)
Makarenko, A. V.
2015-01-01
A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete
LMI optimization approach to stabilization of time-delay chaotic systems
International Nuclear Information System (INIS)
Park, Ju H.; Kwon, O.M.
2005-01-01
Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, this paper proposes a novel control method for stabilization of a class of time-delay chaotic systems. A stabilization criterion is derived in terms of LMIs which can be easily solved by efficient convex optimization algorithms. A numerical example is included to show the advantage of the result derived
Statistics of resonances and time reversal reconstruction in aluminum acoustic chaotic cavities
Antoniuk, O.; Sprik, R.
2010-01-01
The statistical properties of wave propagation in classical chaotic systems are of fundamental interest in physics and are the basis for diagnostic tools in materials science. The statistical properties depend in particular also on the presence of time reversal invariance in the system, which can be
Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems
International Nuclear Information System (INIS)
Li Yin; Chen Yong; Li Biao
2009-01-01
This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discrete-time chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
Synchronization of time-delayed systems with chaotic modulation and cryptography
International Nuclear Information System (INIS)
Banerjee, Santo
2009-01-01
This paper presents a method of synchronization between two time-delayed systems where the delay times are modulated by a common chaotic signal of the driving system. The technique is well applied to two identical autonomous continuous-time-delayed systems with numerical simulations. Finally, a new method of encryption is generated for digital messages. This method is illustrated with two different encryption processes for text as well as picture messages.
Hamid, Nor Zila Abd; Adenan, Nur Hamiza; Noorani, Mohd Salmi Md
2017-08-01
Forecasting and analyzing the ozone (O3) concentration time series is important because the pollutant is harmful to health. This study is a pilot study for forecasting and analyzing the O3 time series in one of Malaysian educational area namely Shah Alam using chaotic approach. Through this approach, the observed hourly scalar time series is reconstructed into a multi-dimensional phase space, which is then used to forecast the future time series through the local linear approximation method. The main purpose is to forecast the high O3 concentrations. The original method performed poorly but the improved method addressed the weakness thereby enabling the high concentrations to be successfully forecast. The correlation coefficient between the observed and forecasted time series through the improved method is 0.9159 and both the mean absolute error and root mean squared error are low. Thus, the improved method is advantageous. The time series analysis by means of the phase space plot and Cao method identified the presence of low-dimensional chaotic dynamics in the observed O3 time series. Results showed that at least seven factors affect the studied O3 time series, which is consistent with the listed factors from the diurnal variations investigation and the sensitivity analysis from past studies. In conclusion, chaotic approach has been successfully forecast and analyzes the O3 time series in educational area of Shah Alam. These findings are expected to help stakeholders such as Ministry of Education and Department of Environment in having a better air pollution management.
A note on chaotic synchronization of time-delay secure communication systems
International Nuclear Information System (INIS)
Li Demin; Wang Zidong; Zhou Jie; Fang Jianan; Ni Jinjin
2008-01-01
In a real world, the signals are often transmitted through a hostile environment, and therefore the secure communication system has attracted considerable research interests. In this paper, the observer-based chaotic synchronization problem is studied for a class of time-delay secure communication systems. The system under consideration is subject to delayed state and nonlinear disturbances. The time-delay is allowed to be time-varying, and the nonlinearities are assumed to satisfy global Lipschitz conditions. The problem addressed is the design of a synchronization scheme such that, for the admissible time-delay as well as nonlinear disturbances, the response system can globally synchronize the driving system. An effective algebraic matrix inequality approach is developed to solve the chaotic synchronization problem. A numerical example is presented to show the effectiveness and efficiency of the proposed secure communication scheme
Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin
2010-08-01
This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.
Phase Space Prediction of Chaotic Time Series with Nu-Support Vector Machine Regression
International Nuclear Information System (INIS)
Ye Meiying; Wang Xiaodong
2005-01-01
A new class of support vector machine, nu-support vector machine, is discussed which can handle both classification and regression. We focus on nu-support vector machine regression and use it for phase space prediction of chaotic time series. The effectiveness of the method is demonstrated by applying it to the Henon map. This study also compares nu-support vector machine with back propagation (BP) networks in order to better evaluate the performance of the proposed methods. The experimental results show that the nu-support vector machine regression obtains lower root mean squared error than the BP networks and provides an accurate chaotic time series prediction. These results can be attributable to the fact that nu-support vector machine implements the structural risk minimization principle and this leads to better generalization than the BP networks.
International Nuclear Information System (INIS)
Sudheer, K. Sebastian; Sabir, M.
2011-01-01
In this Letter we consider modified function projective synchronization of unidirectionally coupled multiple time-delayed Rossler chaotic systems using adaptive controls. Recently, delay differential equations have attracted much attention in the field of nonlinear dynamics. The high complexity of the multiple time-delayed systems can provide a new architecture for enhancing message security in chaos based encryption systems. Adaptive control can be used for synchronization when the parameters of the system are unknown. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems are function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.
Power Forecasting of Combined Heating and Cooling Systems Based on Chaotic Time Series
Directory of Open Access Journals (Sweden)
Liu Hai
2015-01-01
Full Text Available Theoretic analysis shows that the output power of the distributed generation system is nonlinear and chaotic. And it is coupled with the microenvironment meteorological data. Chaos is an inherent property of nonlinear dynamic system. A predicator of the output power of the distributed generation system is to establish a nonlinear model of the dynamic system based on real time series in the reconstructed phase space. Firstly, chaos should be detected and quantified for the intensive studies of nonlinear systems. If the largest Lyapunov exponent is positive, the dynamical system must be chaotic. Then, the embedding dimension and the delay time are chosen based on the improved C-C method. The attractor of chaotic power time series can be reconstructed based on the embedding dimension and delay time in the phase space. By now, the neural network can be trained based on the training samples, which are observed from the distributed generation system. The neural network model will approximate the curve of output power adequately. Experimental results show that the maximum power point of the distributed generation system will be predicted based on the meteorological data. The system can be controlled effectively based on the prediction.
GEKF, GUKF and GGPF based prediction of chaotic time-series with additive and multiplicative noises
International Nuclear Information System (INIS)
Wu Xuedong; Song Zhihuan
2008-01-01
On the assumption that random interruptions in the observation process are modelled by a sequence of independent Bernoulli random variables, this paper generalize the extended Kalman filtering (EKF), the unscented Kalman filtering (UKF) and the Gaussian particle filtering (GPF) to the case in which there is a positive probability that the observation in each time consists of noise alone and does not contain the chaotic signal (These generalized novel algorithms are referred to as GEKF, GUKF and GGPF correspondingly in this paper). Using weights and network output of neural networks to constitute state equation and observation equation for chaotic time-series prediction to obtain the linear system state transition equation with continuous update scheme in an online fashion, and the prediction results of chaotic time series represented by the predicted observation value, these proposed novel algorithms are applied to the prediction of Mackey–Glass time-series with additive and multiplicative noises. Simulation results prove that the GGPF provides a relatively better prediction performance in comparison with GEKF and GUKF. (general)
Chaos control and duration time of a class of uncertain chaotic systems
International Nuclear Information System (INIS)
Bowong, Samuel; Moukam Kakmeni, F.M.
2003-01-01
This Letter presents a robust control scheme for a class of uncertain chaotic systems in the canonical form, with unknown nonlinearities. To cope with the uncertainties, we combine Lyapunov methodology with observer design. The proposed strategy comprises an exponential linearizing feedback and an uncertainty estimator. The developed control scheme allows chaos suppression. The advantage of this method over the existing results is that the control time is explicitly computed. Simulations studies are conducted to verify the effectiveness of the scheme
International Nuclear Information System (INIS)
Xu Ruirui; Chen Tianlun; Gao Chengfeng
2006-01-01
Nonlinear time series prediction is studied by using an improved least squares support vector machine (LS-SVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.
Robust Active MPC Synchronization for Two Discrete-Time Chaotic Systems with Bounded Disturbance
Directory of Open Access Journals (Sweden)
Longge Zhang
2017-01-01
Full Text Available This paper proposes a synchronization scheme for two discrete-time chaotic systems with bounded disturbance. By using active control method and imposing some restriction on the error state, the computation of controller’s feedback matrix is converted to the min-max optimization problem. The theoretical results are derived with the aid of predictive model predictive paradigm and linear matrix inequality technique. Two example simulations are performed to show the effectiveness of the designed control method.
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.
International Nuclear Information System (INIS)
Guo, Zhenhai; Chi, Dezhong; Wu, Jie; Zhang, Wenyu
2014-01-01
Highlights: • Impact of meteorological factors on wind speed forecasting is taken into account. • Forecasted wind speed results are corrected by the associated rules. • Forecasting accuracy is improved by the new wind speed forecasting strategy. • Robust of the proposed model is validated by data sampled from different sites. - Abstract: Wind energy has been the fastest growing renewable energy resource in recent years. Because of the intermittent nature of wind, wind power is a fluctuating source of electrical energy. Therefore, to minimize the impact of wind power on the electrical grid, accurate and reliable wind power forecasting is mandatory. In this paper, a new wind speed forecasting approach based on based on the chaotic time series modelling technique and the Apriori algorithm has been developed. The new approach consists of four procedures: (I) Clustering by using the k-means clustering approach; (II) Employing the Apriori algorithm to discover the association rules; (III) Forecasting the wind speed according to the chaotic time series forecasting model; and (IV) Correcting the forecasted wind speed data using the associated rules discovered previously. This procedure has been verified by 31-day-ahead daily average wind speed forecasting case studies, which employed the wind speed and other meteorological data collected from four meteorological stations located in the Hexi Corridor area of China. The results of these case studies reveal that the chaotic forecasting model can efficiently improve the accuracy of the wind speed forecasting, and the Apriori algorithm can effectively discover the association rules between the wind speed and other meteorological factors. In addition, the correction results demonstrate that the association rules discovered by the Apriori algorithm have powerful capacities in handling the forecasted wind speed values correction when the forecasted values do not match the classification discovered by the association rules
Wigner time-delay distribution in chaotic cavities and freezing transition.
Texier, Christophe; Majumdar, Satya N
2013-06-21
Using the joint distribution for proper time delays of a chaotic cavity derived by Brouwer, Frahm, and Beenakker [Phys. Rev. Lett. 78, 4737 (1997)], we obtain, in the limit of the large number of channels N, the large deviation function for the distribution of the Wigner time delay (the sum of proper times) by a Coulomb gas method. We show that the existence of a power law tail originates from narrow resonance contributions, related to a (second order) freezing transition in the Coulomb gas.
International Nuclear Information System (INIS)
Ohnishi, T.
1995-01-01
The amount of information concerning nuclear problems was time analysed which has been released by three types of the newsmedia in Japan, the press, television and magazines during the past 20 years. The time series of the logarithmic value of the amount released by some of the newsmedia was found to be possibly chaotic, or at least to be non-stochastic. Such a characteristic of time series can be interpreted as a result of the exertion of a certain sort of selection process in the interior of the newsmedia in deciding an event as news to be released. (author)
Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System.
Rozenbaum, Efim B; Ganeshan, Sriram; Galitski, Victor
2017-02-24
It was proposed recently that the out-of-time-ordered four-point correlator (OTOC) may serve as a useful characteristic of quantum-chaotic behavior, because, in the semiclassical limit ℏ→0, its rate of exponential growth resembles the classical Lyapunov exponent. Here, we calculate the four-point correlator C(t) for the classical and quantum kicked rotor-a textbook driven chaotic system-and compare its growth rate at initial times with the standard definition of the classical Lyapunov exponent. Using both quantum and classical arguments, we show that the OTOC's growth rate and the Lyapunov exponent are, in general, distinct quantities, corresponding to the logarithm of the phase-space averaged divergence rate of classical trajectories and to the phase-space average of the logarithm, respectively. The difference appears to be more pronounced in the regime of low kicking strength K, where no classical chaos exists globally. In this case, the Lyapunov exponent quickly decreases as K→0, while the OTOC's growth rate may decrease much slower, showing a higher sensitivity to small chaotic islands in the phase space. We also show that the quantum correlator as a function of time exhibits a clear singularity at the Ehrenfest time t_{E}: transitioning from a time-independent value of t^{-1}lnC(t) at ttime at t>t_{E}. We note that the underlying physics here is the same as in the theory of weak (dynamical) localization [Aleiner and Larkin, Phys. Rev. B 54, 14423 (1996)PRBMDO0163-182910.1103/PhysRevB.54.14423; Tian, Kamenev, and Larkin, Phys. Rev. Lett. 93, 124101 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.124101] and is due to a delay in the onset of quantum interference effects, which occur sharply at a time of the order of the Ehrenfest time.
Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad
2018-04-01
The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.
Wu, Wei; Cui, Bao-Tong
2007-07-01
In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.
International Nuclear Information System (INIS)
Feng Cun-Fang; Wang Ying-Hai
2011-01-01
Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach. (general)
Bildirici, Melike; Sonustun, Fulya Ozaksoy; Sonustun, Bahri
2018-01-01
In the regards of chaos theory, new concepts such as complexity, determinism, quantum mechanics, relativity, multiple equilibrium, complexity, (continuously) instability, nonlinearity, heterogeneous agents, irregularity were widely questioned in economics. It is noticed that linear models are insufficient for analyzing unpredictable, irregular and noncyclical oscillations of economies, and for predicting bubbles, financial crisis, business cycles in financial markets. Therefore, economists gave great consequence to use appropriate tools for modelling non-linear dynamical structures and chaotic behaviors of the economies especially in macro and the financial economy. In this paper, we aim to model the chaotic structure of exchange rates (USD-TL and EUR-TL). To determine non-linear patterns of the selected time series, daily returns of the exchange rates were tested by BDS during the period from January 01, 2002 to May 11, 2017 which covers after the era of the 2001 financial crisis. After specifying the non-linear structure of the selected time series, it was aimed to examine the chaotic characteristic for the selected time period by Lyapunov Exponents. The findings verify the existence of the chaotic structure of the exchange rate returns in the analyzed time period.
Interpretation of engine cycle-to-cycle variation by chaotic time series analysis
Energy Technology Data Exchange (ETDEWEB)
Daw, C.S.; Kahl, W.K.
1990-01-01
In this paper we summarize preliminary results from applying a new mathematical technique -- chaotic time series analysis (CTSA) -- to cylinder pressure data from a spark-ignition (SI) four-stroke engine fueled with both methanol and iso-octane. Our objective is to look for the presence of deterministic chaos'' dynamics in peak pressure variations and to investigate the potential usefulness of CTSA as a diagnostic tool. Our results suggest that sequential peak cylinder pressures exhibit some characteristic features of deterministic chaos and that CTSA can extract previously unrecognized information from such data. 18 refs., 11 figs., 2 tabs.
Energy Technology Data Exchange (ETDEWEB)
Zhen-Tang Liu; En-Lai Zhao; En-Yuan Wang; Jing Wang [China University of Mining and Technology, Xuzhou (China). School of Safety Engineering
2009-02-15
Based on chaos theory, the chaotic characteristics of electromagnetic radiation time series of coal or rock under different loads was studied. The results show that the correlation of electromagnetic radiation time series of small-scale coal or rock and coal mine converges to a stable saturation value, which shows that these electromagnetic radiation time series have chaos characteristics. When there is danger of coal seam burst, the value of the saturation correlation dimension D{sub 2} of the electromagnetic radiation time series is bigger and it changes greatly; when there is no danger, its value is smaller and changes smoothly. The change of saturation correlation of electromagnetic radiation time series can be used to forecast coal or rock dynamic disasters. 11 refs., 4 figs.
International Nuclear Information System (INIS)
Feng Cunfang; Guan Wei; Wang Yinghai
2013-01-01
We investigate different types of projective (projective-anticipating, projective and projective-lag) synchronization in unidirectionally nonlinearly coupled time-delayed chaotic systems with variable time delays. Based on the Krasovskii–Lyapunov approach, we find both the existence and sufficient stability conditions, using a general class of time-delayed chaotic systems related to optical bistable or hybrid optical bistable devices. Our method has the advantage that it requires only one nonlinearly coupled term to achieve different types of projective synchronization in time-delayed chaotic systems with variable time delays. Compared with other existing works, our result provides an easy way to achieve projective-anticipating, projective and projective-lag synchronization. Numerical simulations of the Ikeda system are given to demonstrate the validity of the proposed method. (paper)
International Nuclear Information System (INIS)
Schlick, Conor P.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.
2014-01-01
We investigate chaotic advection and diffusion in autocatalytic reactions for time-periodic sine flow computationally using a mapping method with operator splitting. We specifically consider three different autocatalytic reaction schemes: a single autocatalytic reaction, competitive autocatalytic reactions, which can provide insight into problems of chiral symmetry breaking and homochirality, and competitive autocatalytic reactions with recycling. In competitive autocatalytic reactions, species B and C both undergo an autocatalytic reaction with species A such that A+B→2B and A+C→2C. Small amounts of initially spatially localized B and C and a large amount of spatially homogeneous A are advected by the velocity field, diffuse, and react until A is completely consumed and only B and C remain. We find that local finite-time Lyapunov exponents (FTLEs) can accurately predict the final average concentrations of B and C after the reaction completes. The species that starts in the region with the larger FTLE has, with high probability, the larger average concentration at the end of the reaction. If B and C start in regions with similar FTLEs, their average concentrations at the end of the reaction will also be similar. When a recycling reaction is added, the system evolves towards a single species state, with the FTLE often being useful in predicting which species fills the entire domain and which is depleted. The FTLE approach is also demonstrated for competitive autocatalytic reactions in journal bearing flow, an experimentally realizable flow that generates chaotic dynamics
Parametric, nonparametric and parametric modelling of a chaotic circuit time series
Timmer, J.; Rust, H.; Horbelt, W.; Voss, H. U.
2000-09-01
The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock's multiple shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where we obtain an extremely accurate reconstruction of the observed attractor.
Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators
Yao, Chenggui; Yi, Ming; Shuai, Jianwei
2013-09-01
Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.
Consistency properties of chaotic systems driven by time-delayed feedback
Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.
2018-04-01
Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.
Directory of Open Access Journals (Sweden)
Cao Jinde
2011-01-01
Full Text Available Abstract In this paper, an integral sliding mode control approach is presented to investigate synchronization of nonidentical chaotic neural networks with discrete and distributed time-varying delays as well as leakage delay. By considering a proper sliding surface and constructing Lyapunov-Krasovskii functional, as well as employing a combination of the free-weighting matrix method, Newton-Leibniz formulation and inequality technique, a sliding mode controller is designed to achieve the asymptotical synchronization of the addressed nonidentical neural networks. Moreover, a sliding mode control law is also synthesized to guarantee the reachability of the specified sliding surface. The provided conditions are expressed in terms of linear matrix inequalities, and are dependent on the discrete and distributed time delays as well as leakage delay. A simulation example is given to verify the theoretical results.
Future mission studies: Forecasting solar flux directly from its chaotic time series
Ashrafi, S.
1991-01-01
The mathematical structure of the programs written to construct a nonlinear predictive model to forecast solar flux directly from its time series without reference to any underlying solar physics is presented. This method and the programs are written so that one could apply the same technique to forecast other chaotic time series, such as geomagnetic data, attitude and orbit data, and even financial indexes and stock market data. Perhaps the most important application of this technique to flight dynamics is to model Goddard Trajectory Determination System (GTDS) output of residues between observed position of spacecraft and calculated position with no drag (drag flag = off). This would result in a new model of drag working directly from observed data.
Cai, Shuiming; Hao, Junjun; Liu, Zengrong
2011-06-01
This paper studies the synchronization of coupled chaotic systems with time-varying delays in the presence of parameter mismatches by means of periodically intermittent control. Some novel and useful quasisynchronization criteria are obtained by using the methods which are different from the techniques employed in the existing works, and the derived results are less conservative. Especially, a strong constraint on the control width that the control width should be larger than the time delay imposed by the current references is released in this paper. Moreover, our results show that the synchronization criteria depend on the ratio of control width to control period, but not the control width or the control period. Finally, some numerical simulations are given to show the effectiveness of the theoretical results.
Optimal Exponential Synchronization of Chaotic Systems with Multiple Time Delays via Fuzzy Control
Directory of Open Access Journals (Sweden)
Feng-Hsiag Hsiao
2013-01-01
Full Text Available This study presents an effective approach to realize the optimal exponential synchronization of multiple time-delay chaotic (MTDC systems. First, a neural network (NN model is employed to approximate the MTDC system. Then, a linear differential inclusion (LDI state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov’s direct method to ensure that the trajectories of the slave system can approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI. Based on the LMI, a fuzzy controller is synthesized not only to realize the exponential synchronization but also to achieve the optimal performance by minimizing the disturbance attenuation level. Finally, a numerical example with simulations is provided to illustrate the concepts discussed throughout this work.
Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai
2014-05-01
We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.
International Nuclear Information System (INIS)
Shi-Guo, Peng; Si-Min, Yu
2009-01-01
A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi–Sugeno (TS) fuzzy IF–THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov–Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method
Sleep Spindle Detection and Prediction Using a Mixture of Time Series and Chaotic Features
Directory of Open Access Journals (Sweden)
Amin Hekmatmanesh
2017-01-01
Full Text Available It is well established that sleep spindles (bursts of oscillatory brain electrical activity are significant indicators of learning, memory and some disease states. Therefore, many attempts have been made to detect these hallmark patterns automatically. In this pilot investigation, we paid special attention to nonlinear chaotic features of EEG signals (in combination with linear features to investigate the detection and prediction of sleep spindles. These nonlinear features included: Higuchi's, Katz's and Sevcik's Fractal Dimensions, as well as the Largest Lyapunov Exponent and Kolmogorov's Entropy. It was shown that the intensity map of various nonlinear features derived from the constructive interference of spindle signals could improve the detection of the sleep spindles. It was also observed that the prediction of sleep spindles could be facilitated by means of the analysis of these maps. Two well-known classifiers, namely the Multi-Layer Perceptron (MLP and the K-Nearest Neighbor (KNN were used to distinguish between spindle and non-spindle patterns. The MLP classifier produced a~high discriminative capacity (accuracy = 94.93%, sensitivity = 94.31% and specificity = 95.28% with significant robustness (accuracy ranging from 91.33% to 94.93%, sensitivity varying from 91.20% to 94.31%, and specificity extending from 89.79% to 95.28% in separating spindles from non-spindles. This classifier also generated the best results in predicting sleep spindles based on chaotic features. In addition, the MLP was used to find out the best time window for predicting the sleep spindles, with the experimental results reaching 97.96% accuracy.
International Nuclear Information System (INIS)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-01-01
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. (paper)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-08-01
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
Fuzzy model-based adaptive synchronization of time-delayed chaotic systems
International Nuclear Information System (INIS)
Vasegh, Nastaran; Majd, Vahid Johari
2009-01-01
In this paper, fuzzy model-based synchronization of a class of first order chaotic systems described by delayed-differential equations is addressed. To design the fuzzy controller, the chaotic system is modeled by Takagi-Sugeno fuzzy system considering the properties of the nonlinear part of the system. Assuming that the parameters of the chaotic system are unknown, an adaptive law is derived to estimate these unknown parameters, and the stability of error dynamics is guaranteed by Lyapunov theory. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.
Detection of chaotic determinism in time series from randomly forced maps
Chon, K. H.; Kanters, J. K.; Cohen, R. J.; Holstein-Rathlou, N. H.
1997-01-01
Time series from biological system often display fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". Despite this effort, it has been difficult to establish the presence of chaos in time series from biological sytems. The output from a biological system is probably the result of both its internal dynamics, and the input to the system from the surroundings. This implies that the system should be viewed as a mixed system with both stochastic and deterministic components. We present a method that appears to be useful in deciding whether determinism is present in a time series, and if this determinism has chaotic attributes, i.e., a positive characteristic exponent that leads to sensitivity to initial conditions. The method relies on fitting a nonlinear autoregressive model to the time series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data.
International Nuclear Information System (INIS)
Cui Baotong; Lou Xuyang
2009-01-01
In this paper, a new method to synchronize two identical chaotic recurrent neural networks is proposed. Using the drive-response concept, a nonlinear feedback control law is derived to achieve the state synchronization of the two identical chaotic neural networks. Furthermore, based on the Lyapunov method, a delay independent sufficient synchronization condition in terms of linear matrix inequality (LMI) is obtained. A numerical example with graphical illustrations is given to illuminate the presented synchronization scheme
Synchronization of chaotic systems
International Nuclear Information System (INIS)
Pecora, Louis M.; Carroll, Thomas L.
2015-01-01
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators
Gu, Yan; Wang, Jiao
1997-02-01
We study relaxation of an ensemble of cat maps with initially localized phase-space distributions. Calculations of the coarse-grained entropy Sɛ ( t) for both classical and quantum motions are presented. It is shown that, within the relaxation period, both classical and quantum entropies increase with a nearly constant rate which can be identified as the largest Lyapunov exponent of the classical cat. After an empirical relaxation time, the time behavior for two entropies becomes different. While the classical entropy increases to the equilibrium entropy Seqm and stays there, its quantum analogue fluctuates incessantly around a mean overlineSɛ which is less than Seqm. We regard the entropy difference ΔS = S eqm - overlineSɛ as a measure of nonergodicity of the quantum motion of strongly chaotic systems and investigate its dependence on the Planck constant h. For fixed initial phase-space distributions, numerical results suggest that there is a scaling law ΔSαhβ with β ≈ 0.72 in the semiclassical regime.
Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness
International Nuclear Information System (INIS)
Zhang, W.; Yao, M.H.; Zhan, X.P.
2006-01-01
In this paper, we investigate the Shilnikov type multi-pulse chaotic dynamics for a rotor-active magnetic bearings (AMB) system with 8-pole legs and the time-varying stiffness. The stiffness in the AMB is considered as the time-varying in a periodic form. The dimensionless equation of motion for the rotor-AMB system with the time-varying stiffness in the horizontal and vertical directions is a two-degree-of-freedom nonlinear system with quadratic and cubic nonlinearities and parametric excitation. The asymptotic perturbation method is used to obtain the averaged equations in the case of primary parametric resonance and 1/2 subharmonic resonance. It is found from the numerical results that there are the phenomena of the Shilnikov type multi-pulse chaotic motions for the rotor-AMB system. A new jumping phenomenon is discovered in the rotor-AMB system with the time-varying stiffness
Directory of Open Access Journals (Sweden)
Shih-Yu Li
2015-01-01
Full Text Available A novel bioinspired control strategy design is proposed for generalized synchronization of nonlinear chaotic systems, combining the bioinspired stability theory, fuzzy modeling, and a novel, simple-form Lyapunov control function design of derived high efficient, heuristic and bioinspired controllers. Three main contributions are concluded: (1 apply the bioinspired stability theory to further analyze the stability of fuzzy error systems; the high performance of controllers has been shown in previous study by Li and Ge 2009, (2 a new Lyapunov control function based on bioinspired stability theory is designed to achieve synchronization without using traditional LMI method, which is a simple linear homogeneous function of states and the process of designing controller to synchronize two fuzzy chaotic systems becomes much simpler, and (3 three different situations of synchronization are proposed; classical master and slave Lorenz systems, slave Chen’s system, and Rossler’s system as functional system are illustrated to further show the effectiveness and feasibility of our novel strategy. The simulation results show that our novel control strategy can be applied to different and complicated control situations with high effectiveness.
Directory of Open Access Journals (Sweden)
Guo-Jheng Yang
2013-08-01
Full Text Available The fragile watermarking technique is used to protect intellectual property rights while also providing security and rigorous protection. In order to protect the copyright of the creators, it can be implanted in some representative text or totem. Because all of the media on the Internet are digital, protection has become a critical issue, and determining how to use digital watermarks to protect digital media is thus the topic of our research. This paper uses the Logistic map with parameter u = 4 to generate chaotic dynamic behavior with the maximum entropy 1. This approach increases the security and rigor of the protection. The main research target of information hiding is determining how to hide confidential data so that the naked eye cannot see the difference. Next, we introduce one method of information hiding. Generally speaking, if the image only goes through Arnold’s cat map and the Logistic map, it seems to lack sufficient security. Therefore, our emphasis is on controlling Arnold’s cat map and the initial value of the chaos system to undergo small changes and generate different chaos sequences. Thus, the current time is used to not only make encryption more stringent but also to enhance the security of the digital media.
Study of chaos in chaotic satellite systems
Indian Academy of Sciences (India)
Lyapunov exponents are estimated. From these studies, chaosin satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the ...
Correlation control theory of chaotic laser systems
International Nuclear Information System (INIS)
Li Fuli.
1986-04-01
A novel control theory of chaotic systems is studied. The correlation functions are calculated and used as feedback signals of the chaotic lasers. Computer experiments have shown that in this way the chaotic systems can be controlled to have time-independent output when the external control parameters are in chaotic domain. (author)
An improved harmony search algorithm for synchronization of discrete-time chaotic systems
International Nuclear Information System (INIS)
Santos Coelho, Leandro dos; Andrade Bernert, Diego Luis de
2009-01-01
The harmony search (HS) algorithm is a recently developed meta-heuristic algorithm, and has been very successful in a wide variety of optimization problems. HS was conceptualized using an analogy with music improvisation process where music players improvise the pitches of their instruments to obtain better harmony. The HS algorithm does not require initial values and uses a random search instead of a gradient search, so derivative information is unnecessary. Furthermore, the HS algorithm is simple in concept, few in parameters, easy in implementation, imposes fewer mathematical requirements, and does not require initial value settings of the decision variables. In recent years, the investigation of synchronization and control problem for discrete chaotic systems has attracted much attention, and many possible applications. The tuning of a proportional-integral-derivative (PID) controller based on an improved HS (IHS) algorithm for synchronization of two identical discrete chaotic systems subject the different initial conditions is investigated in this paper. Simulation results of the IHS to determine the PID parameters to synchronization of two Henon chaotic systems are compared with other HS approaches including classical HS and global-best HS. Numerical results reveal that the proposed IHS method is a powerful search and controller design optimization tool for synchronization of chaotic systems.
Model-free prediction of noisy chaotic time series by deep learning
Yeo, Kyongmin
2017-01-01
We present a deep neural network for a model-free prediction of a chaotic dynamical system from noisy observations. The proposed deep learning model aims to predict the conditional probability distribution of a state variable. The Long Short-Term Memory network (LSTM) is employed to model the nonlinear dynamics and a softmax layer is used to approximate a probability distribution. The LSTM model is trained by minimizing a regularized cross-entropy function. The LSTM model is validated against...
International Nuclear Information System (INIS)
Rakkiyappan, R.; Sivasamy, R.; Lakshmanan, S.
2014-01-01
In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov—Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequalities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results
International Nuclear Information System (INIS)
Shahnazi, Reza; Haghani, Adel; Jeinsch, Torsten
2015-01-01
An observer-based output feedback adaptive fuzzy controller is proposed to stabilize a class of uncertain chaotic systems with unknown time-varying time delays, unknown actuator nonlinearities and unknown external disturbances. The actuator nonlinearity can be backlash-like hysteresis or dead-zone. Based on universal approximation property of fuzzy systems the unknown nonlinear functions are approximated by fuzzy systems, where the consequent parts of fuzzy rules are tuned with adaptive schemes. The proposed method does not need the availability of the states and an observer based output feedback approach is proposed to estimate the states. To have more robustness and at the same time to alleviate chattering an adaptive discontinuous structure is suggested. Semi-global asymptotic stability of the overall system is ensured by proposing a suitable Lyapunov–Krasovskii functional candidate. The approach is applied to stabilize the time-delayed Lorenz chaotic system with uncertain dynamics amid significant disturbances. Analysis of simulations reveals the effectiveness of the proposed method in terms of coping well with the modeling uncertainties, nonlinearities in actuators, unknown time-varying time-delays and unknown external disturbances while maintaining asymptotic convergence
International Nuclear Information System (INIS)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-01-01
A main problem associated with the synchronization of two chaotic systems is that the time in which complete synchronization will occur is not specified. Synchronization time is either infinitely large or is finite but only its upper bound is known and this bound depends on the systems' initial conditions. In this paper we propose a method for synchronizing of two chaotic systems precisely at a time which we want. To this end, time-varying switching surfaces sliding mode control is used and the control law based on Lyapunov stability theorem is derived which is able to synchronize two fractional-order chaotic systems precisely at a pre specified time without concerning about their initial conditions. Moreover, by eliminating the reaching phase in the proposed synchronization scheme, robustness against existence of uncertainties and exogenous disturbances is obtained. Because of the existence of fractional integral of the sign function instead of the sign function in the control equation, the necessity for infinitely fast switching be obviated in this method. To show the effectiveness of the proposed method the illustrative examples under different situations are provided and the simulation results are reported.
Zhong, Dongzhou; Xu, Geliang; Luo, Wei; Xiao, Zhenzhen
2017-09-04
According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.
Xu, Xijin; Tang, Qian; Xia, Haiyue; Zhang, Yuling; Li, Weiqiu; Huo, Xia
2016-04-01
Chaotic time series prediction based on nonlinear systems showed a superior performance in prediction field. We studied prenatal exposure to polychlorinated biphenyls (PCBs) by chaotic time series prediction using the least squares self-exciting threshold autoregressive (SEATR) model in umbilical cord blood in an electronic waste (e-waste) contaminated area. The specific prediction steps basing on the proposal methods for prenatal PCB exposure were put forward, and the proposed scheme’s validity was further verified by numerical simulation experiments. Experiment results show: 1) seven kinds of PCB congeners negatively correlate with five different indices for birth status: newborn weight, height, gestational age, Apgar score and anogenital distance; 2) prenatal PCB exposed group at greater risks compared to the reference group; 3) PCBs increasingly accumulated with time in newborns; and 4) the possibility of newborns suffering from related diseases in the future was greater. The desirable numerical simulation experiments results demonstrated the feasibility of applying mathematical model in the environmental toxicology field.
International Nuclear Information System (INIS)
Doron, E.; Smilanski, U.
1991-11-01
We discuss the spectra of quantized chaotic billiards from the point of view of scattering theory. We show that the spectral and resonance density functions both fluctuate about a common mean. A semiclassical treatment explains this in terms of classical scattering trajectories and periodic orbits of the poincare scattering map. This formalism is used to interpret recent experiments where the spectra of chaotic cavities where measured by microwave scattering. (author)
Experimental Observation of Chaotic Beats in Oscillators Sharing Nonlinearity
Paul Asir, M.; Jeevarekha, A.; Philominathan, P.
This paper deals with the generation of chaotic beats in a system of two forced dissipative LCR oscillators sharing a nonlinear element. The presence of two external periodic excitations and a common nonlinear element in the chosen system enables the facile generation of chaotic beats. Thus rendered chaotic beats were characterized in both time domain and phase space. Lyapunov exponents and envelope of the beats were computed to diagnose the chaotic nature of the signals. The role of common nonlinearity on the complexity of the generated beats is discussed. Real-time experimental hardware implementation has also been done to confirm the subsistence of the phenomenon, for the first time. Extensive Multisim simulations were carried out to understand, a bit more about the shrinkage and revivals of state variables in phase space.
Digital chaotic sequence generator based on coupled chaotic systems
International Nuclear Information System (INIS)
Shu-Bo, Liu; Jing, Sun; Jin-Shuo, Liu; Zheng-Quan, Xu
2009-01-01
Chaotic systems perform well as a new rich source of cryptography and pseudo-random coding. Unfortunately their digital dynamical properties would degrade due to the finite computing precision. Proposed in this paper is a modified digital chaotic sequence generator based on chaotic logistic systems with a coupling structure where one chaotic subsystem generates perturbation signals to disturb the control parameter of the other one. The numerical simulations show that the length of chaotic orbits, the output distribution of chaotic system, and the security of chaotic sequences have been greatly improved. Moreover the chaotic sequence period can be extended at least by one order of magnitude longer than that of the uncoupled logistic system and the difficulty in decrypting increases 2 128 *2 128 times indicating that the dynamical degradation of digital chaos is effectively improved. A field programmable gate array (FPGA) implementation of an algorithm is given and the corresponding experiment shows that the output speed of the generated chaotic sequences can reach 571.4 Mbps indicating that the designed generator can be applied to the real-time video image encryption. (general)
Predictability of chaotic dynamics a finite-time Lyapunov exponents approach
Vallejo, Juan C
2017-01-01
This book is primarily concerned with the computational aspects of predictability of dynamical systems – in particular those where observation, modeling and computation are strongly interdependent. Unlike with physical systems under control in laboratories, for instance in celestial mechanics, one is confronted with the observation and modeling of systems without the possibility of altering the key parameters of the objects studied. Therefore, the numerical simulations offer an essential tool for analyzing these systems. With the widespread use of computer simulations to solve complex dynamical systems, the reliability of the numerical calculations is of ever-increasing interest and importance. This reliability is directly related to the regularity and instability properties of the modeled flow. In this interdisciplinary scenario, the underlying physics provide the simulated models, nonlinear dynamics provides their chaoticity and instability properties, and the computer sciences provide the actual numerica...
International Nuclear Information System (INIS)
Wei Qing-Lai; Song Rui-Zhuo; Xiao Wen-Dong; Sun Qiu-Ye
2015-01-01
This paper estimates an off-policy integral reinforcement learning (IRL) algorithm to obtain the optimal tracking control of unknown chaotic systems. Off-policy IRL can learn the solution of the HJB equation from the system data generated by an arbitrary control. Moreover, off-policy IRL can be regarded as a direct learning method, which avoids the identification of system dynamics. In this paper, the performance index function is first given based on the system tracking error and control error. For solving the Hamilton–Jacobi–Bellman (HJB) equation, an off-policy IRL algorithm is proposed. It is proven that the iterative control makes the tracking error system asymptotically stable, and the iterative performance index function is convergent. Simulation study demonstrates the effectiveness of the developed tracking control method. (paper)
CHAOTIC CAPTURE OF NEPTUNE TROJANS
International Nuclear Information System (INIS)
Nesvorny, David; Vokrouhlicky, David
2009-01-01
Neptune Trojans (NTs) are swarms of outer solar system objects that lead/trail planet Neptune during its revolutions around the Sun. Observations indicate that NTs form a thick cloud of objects with a population perhaps ∼10 times more numerous than that of Jupiter Trojans and orbital inclinations reaching ∼25 deg. The high inclinations of NTs are indicative of capture instead of in situ formation. Here we study a model in which NTs were captured by Neptune during planetary migration when secondary resonances associated with the mean-motion commensurabilities between Uranus and Neptune swept over Neptune's Lagrangian points. This process, known as chaotic capture, is similar to that previously proposed to explain the origin of Jupiter's Trojans. We show that chaotic capture of planetesimals from an ∼35 Earth-mass planetesimal disk can produce a population of NTs that is at least comparable in number to that inferred from current observations. The large orbital inclinations of NTs are a natural outcome of chaotic capture. To obtain the ∼4:1 ratio between high- and low-inclination populations suggested by observations, planetary migration into a dynamically excited planetesimal disk may be required. The required stirring could have been induced by Pluto-sized and larger objects that have formed in the disk.
Zimmerman, Annie R; Johnson, Laura; Brunstrom, Jeffrey M
2018-03-24
Although regular meal timings are recommended for weight loss, no study has characterised irregularity in the timing of eating occasions or investigated associations with body-mass index (BMI). Here, we characterise "chaotic eating" as the tendency to eat at variable times of day. In two studies, we used a novel measure to explore the relationship between BMI and chaotic eating. In Study 1 (N = 98) we measured BMI and used a self-report measure to assess the usual range of times that meals and snacks are consumed over a seven-day period, as well as meal and snack frequency. A separate meal and snack 'chaotic eating index' was derived from the number of possible thirty-minute snack- or meal-slots, divided by the frequency of these eating events. After adjusting for age, gender, and dietary habits (Three-Factor Eating Questionnaire) we found no relationship between BMI and chaotic eating of meals (β = -0.07, p = 0.73) or snacks (β = -0.10, p = 0.75). In Study 2, we calculated the same chaotic eating index (meals and snacks) using data from the UK National Diet and Nutrition Survey of adults 2000-2001 (seven-day diet diaries; N = 1175). Again, we found little evidence that BMI is associated with chaotic eating of meals (β = 0.16, p = 0.27) or snacks (β = 0.15, p = 0.12). Together, these results suggest that irregular eating timings do not promote weight gain and they challenge guidelines that recommend regularity in meal timings for weight loss. Copyright © 2018. Published by Elsevier Inc.
Modeling of Coupled Chaotic Oscillators
International Nuclear Information System (INIS)
Lai, Y.; Grebogi, C.
1999-01-01
Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations of natural systems. We give theoretical argument that severe modeling difficulties may occur for high-dimensional chaotic systems in the sense that no model is able to produce reasonably long solutions that are realized by nature. We make these ideas concrete by investigating systems of coupled chaotic oscillators. They arise in many situations of physical and biological interests, and they also arise from discretization of nonlinear partial differential equations. copyright 1999 The American Physical Society
International Nuclear Information System (INIS)
Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong
2014-01-01
Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes
Directory of Open Access Journals (Sweden)
M. Muraskin
1990-01-01
Full Text Available We study how the notion of time can affect the motion of particles within the No Integrability Aesthetic Field Theory. We show that the Minkowski hypothesis of treating x4 as pure imaginary as well as the fourth component of vectors as pure imaginary, does not lead to different solutions provided we alter the sign of dx4 and certain origin point field components. We next show that it is possible to introduce time in the situation where all fields are real so that: (1 The field equations treat all coordinates the same way; (2 The flow concept is associated with time but not with space; (3 Data is prescribed at a single point rather than on a hypersurface as in hyperbolic theories. We study the lattice solution in the approximation that ignores zig-zag paths. This enables us to investigate the effect of a non-trivial superposition principle in the simplest way. We find that such a system, combined with our new approach to time, gives rise to an apparent infinite particle system in which particles can be looked at as not having well defined trajectories. This result is similar to what we obtained when we treated time in the same manner as the space variables in our previous work.
Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics
Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal
2017-12-01
Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.
On a new time-delayed feedback control of chaotic systems
International Nuclear Information System (INIS)
Tian Lixin; Xu Jun; Sun Mei; Li Xiuming
2009-01-01
In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.
International Nuclear Information System (INIS)
Chai, Soo H.; Lim, Joon S.
2016-01-01
This study presents a forecasting model of cyclical fluctuations of the economy based on the time delay coordinate embedding method. The model uses a neuro-fuzzy network called neural network with weighted fuzzy membership functions (NEWFM). The preprocessed time series of the leading composite index using the time delay coordinate embedding method are used as input data to the NEWFM to forecast the business cycle. A comparative study is conducted using other methods based on wavelet transform and Principal Component Analysis for the performance comparison. The forecasting results are tested using a linear regression analysis to compare the approximation of the input data against the target class, gross domestic product (GDP). The chaos based model captures nonlinear dynamics and interactions within the system, which other two models ignore. The test results demonstrated that chaos based method significantly improved the prediction capability, thereby demonstrating superior performance to the other methods.
Synchronization approach for chaotic time-varying delay system based on Wirtinger inequality
Directory of Open Access Journals (Sweden)
Zhanshan Zhao
2017-01-01
Full Text Available A novel control approach based on Wirtinger inequality is designed for nonlinear chaos synchronization time delay system. In order to reduce the conservatism for the stability criterion, a Lyapunov–Krasovskii functional with triple-integral term is constructed. The improved Wirtinger inequality is used to reduce the conservative which is caused by Jensen inequality, and a stability criterion is proposed by reciprocally convex method. Furthermore, a state feedback controller is designed to synchronize the master-slave systems based on the proposed criteria through cone complementary linearization approach. Finally, a simulation for Lorenz chaos time delay system is given to prove the validity based on the proposed synchronization control approach.
Long-time correlation for the chaotic orbit in the two-wave Hamiltonian
International Nuclear Information System (INIS)
Hatori, Tadatsugu; Irie, Haruyuki.
1987-03-01
The time correlation function of velocity is found to decay with the power law for the orbit governed by a Hamiltonian, H = v 2 /2-M cos x - P cos[k(x - t)]. The renormalization group technique can predict the power of decay for the correlation function defined by the ensemble average. The power spectrum becomes the 1/f-type for a special case. (author)
Detection of chaotic determinism in time series from randomly forced maps
DEFF Research Database (Denmark)
Chon, K H; Kanters, J K; Cohen, R J
1997-01-01
Time series from biological system often display fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". Despite this effort, it has been difficult to establish the presence of cha...... series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data....
Robust synchronization of chaotic systems via feedback
Energy Technology Data Exchange (ETDEWEB)
Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion
2008-07-01
This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)
Clustering stock market companies via chaotic map synchronization
Basalto, N.; Bellotti, R.; De Carlo, F.; Facchi, P.; Pascazio, S.
2005-01-01
A pairwise clustering approach is applied to the analysis of the Dow Jones index companies, in order to identify similar temporal behavior of the traded stock prices. To this end, the chaotic map clustering algorithm is used, where a map is associated to each company and the correlation coefficients of the financial time series to the coupling strengths between maps. The simulation of a chaotic map dynamics gives rise to a natural partition of the data, as companies belonging to the same industrial branch are often grouped together. The identification of clusters of companies of a given stock market index can be exploited in the portfolio optimization strategies.
The chaotic dynamical aperture
International Nuclear Information System (INIS)
Lee, S.Y.; Tepikian, S.
1985-01-01
Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator design have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipoles should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take tremendous amount of computing time. In this paper, we try to apply the existing method in the nonlinear dynamics to study the possible alternative solution. When the Hamiltonian motion becomes chaotic, the tune of the machine becomes undefined. The aperture related to the chaotic orbit can be identified as chaotic dynamical aperture. We review the method of determining chaotic orbit and apply the method to nonlinear problems in accelerator physics. We then discuss the scaling properties and effect of random sextupoles
Studies in Chaotic adiabatic dynamics
International Nuclear Information System (INIS)
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the open-quotes goodnessclose quotes of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees)
International Nuclear Information System (INIS)
Chien, T.-I.; Liao, T.-L.
2005-01-01
This paper presents a secure digital communication system based on chaotic modulation, cryptography, and chaotic synchronization techniques. The proposed system consists of a Chaotic Modulator (CM), a Chaotic Secure Transmitter (CST), a Chaotic Secure Receiver (CSR) and a Chaotic Demodulator (CDM). The CM module incorporates a chaotic system and a novel Chaotic Differential Peaks Keying (CDPK) modulation scheme to generate analog patterns corresponding to the input digital bits. The CST and CSR modules are designed such that a single scalar signal is transmitted in the public channel. Furthermore, by giving certain structural conditions of a particular class of chaotic system, the CST and the nonlinear observer-based CSR with an appropriate observer gain are constructed to synchronize with each other. These two slave systems are driven simultaneously by the transmitted signal and are designed to synchronize and generate appropriate cryptography keys for encryption and decryption purposes. In the CDM module, a nonlinear observer is designed to estimate the chaotic modulating system in the CM. A demodulation mechanism is then applied to decode the transmitted input digital bits. The effectiveness of the proposed scheme is demonstrated through the numerical simulation of an illustrative communication system. Synchronization between the chaotic circuits of the transmitter and receiver modules is guaranteed through the Lyapunov stability theorem. Finally, the security features of the proposed system in the event of attack by an intruder in either the time domain or the frequency domain are discussed
International Nuclear Information System (INIS)
Wei Jun; Liao Xiaofeng; Wong, Kwok-wo; Xiang Tao
2006-01-01
Based on the study of some previously proposed chaotic encryption algorithms, we found that it is dangerous to mix chaotic state or iteration number of the chaotic system with ciphertext. In this paper, a new chaotic cryptosystem is proposed. Instead of simply mixing the chaotic signal of the proposed chaotic cryptosystem with the ciphertext, a noise-like variable is utilized to govern the encryption and decryption processes. This adds statistical sense to the new cryptosystem. Numerical simulations show that the new cryptosystem is practical whenever efficiency, ciphertext length or security is concerned
Vaughan, Adam; Bohac, Stanislav V
2015-10-01
Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Cook, A.
1990-09-01
An elementary account of the origin of chaotic behaviour in classical dynamics is given with examples from geophysics, and in conclusion some thoughts about what can be predicted of chaotic behaviour and what sorts of arguments can be used to guide human behaviour in chaotic conditions are presented. 4 refs
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....
A dynamic modification to sneutrino chaotic inflation
International Nuclear Information System (INIS)
Saha, Abhijit Kumar; Sil, Arunansu
2015-01-01
We consider a right-handed scalar neutrino as the inflaton which carries a gravitational coupling with a supersymmetric QCD sector responsible for breaking supersymmetry dynamically. The framework suggests an inflaton potential which is a deformed version of the quadratic chaotic inflation leading to a flatter potential. We find that this deformation results a sizable tensor to scalar ratio which falls within the allowed region by PLANCK 2015. At the same time supersymmetry breaking at the end of inflation can naturally be induced in this set-up. The symmetries required to construct the framework allows the neutrino masses and mixing to be of right order.
Miranian, A; Abdollahzade, M
2013-02-01
Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.
Aydiner, Ekrem
2018-01-15
In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de >-1, w dm ≥ 0, w m ≥ 0 and w r ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.
Chaotic scattering and quantum dynamics
International Nuclear Information System (INIS)
Doron, Eyal.
1992-11-01
The main concern of this thesis is the application of the semiclassical approximation to quantum chaotic scattering systems. We deal with two separate, although interconnected, subjects. The first subject dealt with is the semiclassical characterization of the fluctuations of the S matrix. A particular important parameter is the magnetic field B, and we show how the correlation length and line shape of S matrix elements under a change of B may be derived. An effect which is present in many physical wave systems is absorption of energy flux. We show how absorption affects both the reflectivity and the scattering phase and time delay of a scattering system. In the second part of the thesis, we show how the formalism and results obtained from chaotic scattering can be applied to the investigation of closed chaotic systems, and in particular to chaotic billiards. The semiclassical expansion for billiards is presented. In the last part of the thesis we deal with the statistics of S matrices of chaotic scattering systems. The main message of this work is that scattering matrix, and its classical counterpart the Poincare Scattering Map can be used to yield a powerful formulation of the quantum mechanical dynamics of bounded systems. (author)
Mixing enhancement and transport reduction in chaotic advection
Benzekri , Tounsia; Chandre , Cristel; Leoncini , Xavier; Lima , Ricardo; Vittot , Michel
2005-01-01
We present a method for reducing chaotic transport in a model of chaotic advection due to time-periodic forcing of an oscillating vortex chain. We show that by a suitable modification of this forcing, the modified model combines two effects: enhancement of mixing within the rolls and suppression of chaotic transport along the channel.
Chaotic structure of oil prices
Bildirici, Melike; Sonustun, Fulya Ozaksoy
2018-01-01
The fluctuations in oil prices are very complicated and therefore, it is unable to predict its effects on economies. For modelling complex system of oil prices, linear economic models are not sufficient and efficient tools. Thus, in recent years, economists attached great attention to non-linear structure of oil prices. For analyzing this relationship, GARCH types of models were used in some papers. Distinctively from the other papers, in this study, we aimed to analyze chaotic pattern of oil prices. Thus, it was used the Lyapunov Exponents and Hennon Map to determine chaotic behavior of oil prices for the selected time period.
International Nuclear Information System (INIS)
Aghababa Mohammad Pourmahmood
2012-01-01
The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers. (general)
Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto
2018-03-01
A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.
Barkai, E.
2002-01-01
We demonstrate aging behavior in a simple non-linear system. Our model is a chaotic map which generates deterministically sub-diffusion. Asymptotic behaviors of the diffusion process are described using aging continuous time random walks, introduced previously to model diffusion in glasses.
Directory of Open Access Journals (Sweden)
Jesus Manuel Munoz-Pacheco
2013-01-01
Full Text Available An algorithm to compute the Lyapunov exponents of piecewise linear function-based multidirectional multiscroll chaotic oscillators is reported. Based on the m regions in the piecewise linear functions, the suggested algorithm determines the individual expansion rate of Lyapunov exponents from m-piecewise linear variational equations and their associated m-Jacobian matrices whose entries remain constant during all computation cycles. Additionally, by considering OpAmp-based chaotic oscillators, we study the impact of two analog design procedures on the magnitude of Lyapunov exponents. We focus on analyzing variations of both frequency bandwidth and voltage/current dynamic range of the chaotic signals at electronic system level. As a function of the design parameters, a renormalization factor is proposed to estimate correctly the Lyapunov spectrum. Numerical simulation results in a double-scroll type chaotic oscillator and complex chaotic oscillators generating multidirectional multiscroll chaotic attractors on phase space confirm the usefulness of the reported algorithm.
International Nuclear Information System (INIS)
Mirzaee, Hossein
2009-01-01
The Levenberg-Marquardt learning algorithm is applied for training a multilayer perception with three hidden layer each with ten neurons in order to carefully map the structure of chaotic time series such as Mackey-Glass time series. First the MLP network is trained with 1000 data, and then it is tested with next 500 data. After that the trained and tested network is applied for long-term prediction of next 120 data which come after test data. The prediction is such a way that, the first inputs to network for prediction are the four last data of test data, then the predicted value is shifted to the regression vector which is the input to the network, then after first four-step of prediction, the input regression vector to network is fully predicted values and in continue, each predicted data is shifted to input vector for subsequent prediction.
de Oliveira, G. L.; Ramos, R. V.
2018-03-01
In this work, it is presented an optical scheme for quantum key distribution employing two synchronized optoelectronic oscillators (OEO) working in the chaotic regime. The produced key depends on the chaotic dynamic, and the synchronization between Alice's and Bob's OEOs uses quantum states. An attack on the synchronization signals will disturb the synchronization of the chaotic systems increasing the error rate in the final key.
NMR relaxation times of natural rubber latex
International Nuclear Information System (INIS)
Harun, S.; Aziz, H.; Basir, Z.
1994-01-01
NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content
Stages of chaotic synchronization.
Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.
1998-09-01
In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.
Directory of Open Access Journals (Sweden)
Khalid Ahmad Yas
2017-12-01
Full Text Available The paper aims to utilise chaos theory as a methodology and perspective to analyse Shelagh Stephenson’s science drama An Experiment with an Air Pump thematically and structurally. It is highly pertinent to mention here that the discovery of the DNA structure in 1953 by Watson and Crick coincided with the development of a new paradigm shift in science, chaos theory. The discovery of the DNA structure, on the other hand, led to the birth of the science of genetics which reached its peak in the late 1990s when Human Genome Project was completed. Theatre did not stand aloof from this radical shift. Mapping human genome might lead to appalling ethical dilemmas. Topics related to the cold war and nuclear-bomb were replaced with ones quoted from biology, genetics and cloning. Stephenson’s play brings to light the danger of turning from natural to artificial selection as science, now, has access not only to the DNA structure but also how to manipulate it. The drama’s extensive debate focuses mainly on the risk of genome-related discrimination.
Directory of Open Access Journals (Sweden)
Xiaomin Xu
2015-11-01
Full Text Available The uncertainty and regularity of wind power generation are caused by wind resources’ intermittent and randomness. Such volatility brings severe challenges to the wind power grid. The requirements for ultrashort-term and short-term wind power forecasting with high prediction accuracy of the model used, have great significance for reducing the phenomenon of abandoned wind power , optimizing the conventional power generation plan, adjusting the maintenance schedule and developing real-time monitoring systems. Therefore, accurate forecasting of wind power generation is important in electric load forecasting. The echo state network (ESN is a new recurrent neural network composed of input, hidden layer and output layers. It can approximate well the nonlinear system and achieves great results in nonlinear chaotic time series forecasting. Besides, the ESN is simpler and less computationally demanding than the traditional neural network training, which provides more accurate training results. Aiming at addressing the disadvantages of standard ESN, this paper has made some improvements. Combined with the complementary advantages of particle swarm optimization and tabu search, the generalization of ESN is improved. To verify the validity and applicability of this method, case studies of multitime scale forecasting of wind power output are carried out to reconstruct the chaotic time series of the actual wind power generation data in a certain region to predict wind power generation. Meanwhile, the influence of seasonal factors on wind power is taken into consideration. Compared with the classical ESN and the conventional Back Propagation (BP neural network, the results verify the superiority of the proposed method.
Stochastic nature of series of waiting times
Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H.; Salehi, E.; Behjat, E.; Qorbani, M.; Khazaei Nezhad, M.; Zirak, M.; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M. Reza Rahimi
2013-06-01
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the “waiting times” series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2
Optimized chaotic Brillouin dynamic grating with filtered optical feedback.
Zhang, Jianzhong; Li, Zhuping; Wu, Yuan; Zhang, Mingjiang; Liu, Yi; Li, Mengwen
2018-01-16
Chaotic Brillouin dynamic gratings (BDGs) have special advantages such as the creation of single, permanent and localized BDG. However, the periodic signals induced by conventional optical feedback (COF) in chaotic semiconductor lasers can lead to the generation of spurious BDGs, which will limit the application of chaotic BDGs. In this paper, filtered optical feedback (FOF) is proposed to eliminate spurious BDGs. By controlling the spectral width of the optical filter and its detuning from the laser frequency, semiconductor lasers with FOF operate in the suppression region of the time-delay signature, and chaotic outputs serving as pump waves are then utilized to generate the chaotic BDG in a polarization maintaining fiber. Through comparative analysis of the COF and FOF schemes, it has been demonstrated that spurious BDGs are effectively eliminated and that the reflection characterization of the chaotic BDG is improved. The influence of FOF on the reflection and gain spectra of the chaotic BDG is analyzed as well.
Dimension of chaotic attractors
Energy Technology Data Exchange (ETDEWEB)
Farmer, J.D.; Ott, E.; Yorke, J.A.
1982-09-01
Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.
DEFF Research Database (Denmark)
Schäfer, Mirko; Greiner, Martin
2011-01-01
to chaotic strings. Inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure are discussed. It is found that certain combinations of coupling and network disorder preserve the empirical relationship between chaotic strings and the weak and strong sector...
International Nuclear Information System (INIS)
Mitchel, G.; Shriner, J.
2005-01-01
Although the predictions of Random Matrix Theory (RMT) were available by the early 1960s, data of sufficiently high quality to adequately test the theory were only obtained a decade later by Rainwater. It was another decade later that Bohigas, Haq and Pandey combined the best available nuclear resonance data - the Columbia neutron resonances in heavy nuclei and the TUNL proton resonances in lighter nuclei - to form the Nuclear Data Ensemble. They obtained excellent agreement for the level statistics with the RMT predictions. The expected Porter-Thomas (PT) distribution was considered very early. However, since the widths (amplitudes squared) are measured, the predicted Gaussian distribution for the amplitudes was only qualitatively confirmed. A much more sensitive test was performed by measuring two widths and the relative phase between the two amplitudes. By comparison of the width and amplitude correlations, the Gaussian distribution was confirmed at the 1% level. Following the Bohigas conjecture - that quantum analogs of classically chaotic systems obey RMT - there was an explosion of activity utilizing level statistics in many different quantum systems. In nuclei the focus was verifying the range of applicability of RMT. Of particular interest was the effect of collectivity and of excitation energy on statistical properties. The effect of symmetry breaking on level statistics was examined and early predictions by Dyson were confirmed. The effect of symmetry breaking on the width distribution was also measured for the first time. Although heuristic arguments predicted no change from the PT distribution, experimentally there was a large deviation from the PT prediction. Later theoretical efforts were consistent with this result. The stringent conditions placed on the experiments - for eigenvalue tests the data need to be essentially perfect (few or no missing levels or mis assigned quantum numbers) - has limited the amount of suitable experimental data. The
Directory of Open Access Journals (Sweden)
Meredith S Berry
Full Text Available Impulsivity in delay discounting is associated with maladaptive behaviors such as overeating and drug and alcohol abuse. Researchers have recently noted that delay discounting, even when measured by a brief laboratory task, may be the best predictor of human health related behaviors (e.g., exercise currently available. Identifying techniques to decrease impulsivity in delay discounting, therefore, could help improve decision-making on a global scale. Visual exposure to natural environments is one recent approach shown to decrease impulsive decision-making in a delay discounting task, although the mechanism driving this result is currently unknown. The present experiment was thus designed to evaluate not only whether visual exposure to natural (mountains, lakes relative to built (buildings, cities environments resulted in less impulsivity, but also whether this exposure influenced time perception. Participants were randomly assigned to either a natural environment condition or a built environment condition. Participants viewed photographs of either natural scenes or built scenes before and during a delay discounting task in which they made choices about receiving immediate or delayed hypothetical monetary outcomes. Participants also completed an interval bisection task in which natural or built stimuli were judged as relatively longer or shorter presentation durations. Following the delay discounting and interval bisection tasks, additional measures of time perception were administered, including how many minutes participants thought had passed during the session and a scale measurement of whether time "flew" or "dragged" during the session. Participants exposed to natural as opposed to built scenes were less impulsive and also reported longer subjective session times, although no differences across groups were revealed with the interval bisection task. These results are the first to suggest that decreased impulsivity from exposure to natural as
Illusion optics in chaotic light
International Nuclear Information System (INIS)
Zhang Suheng; Gan Shu; Xiong Jun; Zhang Xiangdong; Wang Kaige
2010-01-01
The time-reversal process provides the possibility to counteract the time evolution of a physical system. Recent research has shown that such a process can occur in the first-order field correlation of chaotic light and result in the spatial interference and phase-reversal diffraction in an unbalanced interferometer. Here we report experimental investigations on the invisibility cloak and illusion phenomena in chaotic light. In an unbalanced interferometer illuminated by thermal light, we have observed the cloak effect and the optical transformation of one object into another object. The experimental results can be understood by the phase-reversal diffraction, and they demonstrate the theoretical proposal of similar effects in complementary media.
Study of chaos in chaotic satellite systems
Khan, Ayub; Kumar, Sanjay
2018-01-01
In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan-Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system.
Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki
2013-01-01
The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425
Chaotic Zones around Rotating Small Bodies
Energy Technology Data Exchange (ETDEWEB)
Lages, José; Shevchenko, Ivan I. [Institut UTINAM, Observatoire des Sciences de l’Univers THETA, CNRS, Université de Franche-Comté, Besançon F-25030 (France); Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr [Laboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, UPS, Toulouse F-31062 (France)
2017-06-01
Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples of the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.
Nonlinear chaotic model for predicting storm surges
Directory of Open Access Journals (Sweden)
M. Siek
2010-09-01
Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.
Anomalous diffusion in chaotic scattering
International Nuclear Information System (INIS)
Srokowski, T.; Ploszajczak, M.
1994-01-01
The anomalous diffusion is found for peripheral collision of atomic nuclei described in the framework of the molecular dynamics. Similarly as for chaotic billiards, the long free paths are the source of the long-time correlations and the anomalous diffusion. Consequences of this finding for the energy dissipation in deep-inelastic collisions and the dynamics of fission in hot nuclei are discussed (authors). 30 refs., 2 figs
Martínez-Guerra, Rafael; Gómez-Cortés, Gian Carlo
2015-01-01
This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems. This is achieved using a combination of analytic, algebraic, geometrical and asymptotical methods to tackle the dynamical feedback stabilization problem. In particular, differential-geometric and algebraic differential concepts reveal important structural properties of chaotic systems and serve as guide for the construction of design procedures for a wide variety of chaotic systems. The basic differential algebraic and geometric concepts are presented in the first few chapters in a novel way as design tools, together with selected experimental studies demonstrating their importance. The subsequent chapters treat recent applications. Written for graduate students in applied physical sciences, systems engineers, and applied mathematicians interested in synchronization of chaotic systems and in secure communications, this self-contained text requires only...
Pei, Yan
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067
Directory of Open Access Journals (Sweden)
Yan Pei
2015-01-01
Full Text Available We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC algorithm, interactive chaotic evolution (ICE that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.
International Nuclear Information System (INIS)
Munmuangsaen, Buncha; Srisuchinwong, Banlue
2011-01-01
Highlights: → Five new elementary chaotic snap flows and a generalization of an existing chaotic snap flow have been presented. → Three of all are conservative systems whilst three others are dissipative systems. → Four cases need only a single control parameter and a single nonlinearity. → A cubic case in a jerk representation requires only two terms and a single nonlinearity. - Abstract: Hyperjerk systems with 4th-order derivative of the form x .... =f(x ... ,x .. ,x . ,x) have been referred to as snap systems. Five new elementary chaotic snap flows and a generalization of an existing flow are presented through an extensive numerical search. Four of these flows demonstrate elegant simplicity of a single control parameter based on a single nonlinearity of a quadratic, a piecewise-linear or an exponential type. Two others demonstrate elegant simplicity of all unity-in-magnitude parameters based on either a single cubic nonlinearity or three cubic nonlinearities. The chaotic snap flow with a single cubic nonlinearity requires only two terms and can be transformed to its equivalent dynamical form of only five terms which have a single nonlinearity. An advantage is that such a chaotic flow offers only five terms even though the (four) dimension is high. Three of the chaotic snap flows are characterized as conservative systems whilst three others are dissipative systems. Basic dynamical properties are described.
Wada basins and chaotic invariant sets in the H non-Heiles system
Aguirre, J E; Sanjun, M A F
2001-01-01
The H non-Heiles Hamiltonian is investigated in the context of chaotic scattering, in the range of energies where escaping from the scattering region is possible. Special attention is paid to the analysis of the different nature of the orbits, and the invariant sets, such as the stable and unstable manifolds and the chaotic saddle. Furthermore, a discussion on the average decay time associated to the typical chaotic transients, which are present in this problem is presented. The main goal of this paper is to show, by using various computational methods, that the corresponding exit basins of this open Hamiltonian are not only fractal, but they also verify the more restrictive property of Wada. We argue that this property is verified by typical open Hamiltonian systems with three or more escapes.
Synchronization of identical chaotic systems through external chaotic driving
International Nuclear Information System (INIS)
Patidar, V.; Sud, K.K.
2005-11-01
In recent years, the study of synchronization of identical chaotic systems subjected to a common fluctuating random driving signal has drawn considerable interest. In this communication, we report that it is possible to achieve synchronization between two identical chaotic systems, which are not coupled directly but subjected to an external chaotic signal. The external chaotic signal may be obtained from any chaotic system identical or non-identical to both identical chaotic systems. Results of numerical simulations on well known Roessler and jerk dynamical systems have been presented. (author)
Cascade Chaotic System With Applications.
Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip
2015-09-01
Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.
International Nuclear Information System (INIS)
Wijland, Frederic van
1997-01-01
The Nature of Space and Time is a seven and a half hour long video that comes in a three tape set. Professors Hawking and Penrose are shown giving a series of one hour lectures at the Isaac Newton Institute. The topics of their talks range from the structure of space-time to the quantum theory of gravitation. They are organized along three main lines. Both speakers first discuss the singularities of space and time within the framework of classical general relativity, that is, as deduced from Einstein's equations. After giving arguments in favour of the existence of closed trapped surfaces (collapsing stars, black holes), Hawking draws a parallel between thermodynamic irreversibility and the loss of information coming from gravity trapped surfaces. Instead, Penrose insists on the mathematical structure of the singularities, using in particular the Weyl curvature to characterize them. From his analysis two classes of singularities emerge: those from which matter comes out (big bang) and those in which matter comes in (big crunch, black holes). The classical setting being recalled, the speakers turn to quantum theory. Hawking's second talk is concerned with the quantum theory of black holes. In order to account for quantum effects, he introduces a path-integral formulation over Euclideanized metrics, Armed with this tool, the validity of which he merely assumes, he proves that black holes actually radiate so that he renders fully consistent the thermodynamic analogy, entropy being replaced by the area event horizon, and statistical fluctuations by quantum fluctuations. Basing his analysis upon an interpretation in terms of information theory, there exists, Hawking asserts, a new level of unpredictability. Penrose prefers not to expand on Hawking's interpretations and starts building upon quantum mechanics (analysis of the EPR experiment) and the density matrix formalism to stress the problems caused by the nonlocality of energy. In his last lecture Hawking comes back
Energy Technology Data Exchange (ETDEWEB)
Wijland, Frederic van
1997-09-01
The Nature of Space and Time is a seven and a half hour long video that comes in a three tape set. Professors Hawking and Penrose are shown giving a series of one hour lectures at the Isaac Newton Institute. The topics of their talks range from the structure of space-time to the quantum theory of gravitation. They are organized along three main lines. Both speakers first discuss the singularities of space and time within the framework of classical general relativity, that is, as deduced from Einstein's equations. After giving arguments in favour of the existence of closed trapped surfaces (collapsing stars, black holes), Hawking draws a parallel between thermodynamic irreversibility and the loss of information coming from gravity trapped surfaces. Instead, Penrose insists on the mathematical structure of the singularities, using in particular the Weyl curvature to characterize them. From his analysis two classes of singularities emerge: those from which matter comes out (big bang) and those in which matter comes in (big crunch, black holes). The classical setting being recalled, the speakers turn to quantum theory. Hawking's second talk is concerned with the quantum theory of black holes. In order to account for quantum effects, he introduces a path-integral formulation over Euclideanized metrics, Armed with this tool, the validity of which he merely assumes, he proves that black holes actually radiate so that he renders fully consistent the thermodynamic analogy, entropy being replaced by the area event horizon, and statistical fluctuations by quantum fluctuations. Basing his analysis upon an interpretation in terms of information theory, there exists, Hawking asserts, a new level of unpredictability. Penrose prefers not to expand on Hawking's interpretations and starts building upon quantum mechanics (analysis of the EPR experiment) and the density matrix formalism to stress the problems caused by the nonlocality of energy. In his last lecture
Video encryption using chaotic masks in joint transform correlator
Saini, Nirmala; Sinha, Aloka
2015-03-01
A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.
Video encryption using chaotic masks in joint transform correlator
International Nuclear Information System (INIS)
Saini, Nirmala; Sinha, Aloka
2015-01-01
A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest–Shamir–Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique. (paper)
Fractal dimension algorithms and their application to time series associated with natural phenomena
International Nuclear Information System (INIS)
La Torre, F Cervantes-De; González-Trejo, J I; Real-Ramírez, C A; Hoyos-Reyes, L F
2013-01-01
Chaotic invariants like the fractal dimensions are used to characterize non-linear time series. The fractal dimension is an important characteristic of systems, because it contains information about their geometrical structure at multiple scales. In this work, three algorithms are applied to non-linear time series: spectral analysis, rescaled range analysis and Higuchi's algorithm. The analyzed time series are associated with natural phenomena. The disturbance storm time (Dst) is a global indicator of the state of the Earth's geomagnetic activity. The time series used in this work show a self-similar behavior, which depends on the time scale of measurements. It is also observed that fractal dimensions, D, calculated with Higuchi's method may not be constant over-all time scales. This work shows that during 2001, D reaches its lowest values in March and November. The possibility that D recovers a change pattern arising from self-organized critical phenomena is also discussed
International Nuclear Information System (INIS)
Mead, W.C.; Jones, R.D.; Barnes, C.W.; Lee, L.A.; O'Rourke, M.K.; Lee, Y.C.; Flake, G.W.
1991-01-01
We use the Connectionist Normalized Local Spline (CNLS) network to learn the dynamics of the Mackey-Glass time-delay differential equation, for the case τ = 30. We show the optimum network operating mode and determine the accuracy and robustness of predictions. We obtain pedictions of varying accuracy using some 2--120 minutes of execution time on a Sun SPARC-1 workstation. CNLS-net is capable of very good performance in predicting the Mackey-Glass time series. 11 refs., 4 figs
Nonlinear Dynamics, Chaotic and Complex Systems
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
Searching of Chaotic Elements in Hydrology
Directory of Open Access Journals (Sweden)
Sorin VLAD
2014-03-01
Full Text Available Chaos theory offers new means of understanding and prediction of phenomena otherwise considered random and unpredictable. The signatures of chaos can be isolated by performing nonlinear analysis of the time series available. The paper presents the results obtained by conducting a nonlinear analysis of the time series of daily Siret river flow (located in the North-Eastern part of Romania. The time series analysis is recorded starting with January 1999 to July 2009. The attractor is embedded in the reconstructed phase space then the chaotic dynamics is revealed computing the chaotic invariants - correlation dimension and the maximum Lyapunov Exponent.
International Nuclear Information System (INIS)
Kawai, Y.
1991-08-01
It has recently been recognized that the research on various aspects of chaotic dynamics grows rapidly as one of some areas in nonlinear science. On the other hands, the plasma has long been called a treasure-house of nonlinear phenomena, so it is easy to imagine that the plasma is abundant in chaotic phenomena. In fact, the research on plasma chaos is going on, such as the research on the stochastic magnetic field and the chaotic orbit in the toroidal helical system, as well as the research in other experiments. To review the present status of the research on plasma chaos and to make clear the basic common physics, a working group was organized in 1990 as a collaboration research of National Institute for Fusion Science. This is the report on its activity in 1990, with a stress on experimental data obtained in basic plasma experiments and RFP, and on the relaxed theories and computer simulations. (author)
Cryptography with chaotic mixing
International Nuclear Information System (INIS)
Oliveira, Luiz P.L. de; Sobottka, Marcelo
2008-01-01
We propose a cryptosystem based on one-dimensional chaotic maps of the form H p (x)=r p -1 0G0r p (x) defined in the interval [0, 10 p ) for a positive integer parameter p, where G(x)=10x(mod10) and r p (x)= p √(x), which is a topological conjugacy between G and the shift map σ on the space Σ of the sequences with 10 symbols. There are three advantages in comparison with the recently proposed cryptosystem based on chaotic logistic maps F μ (x)=μx(1-x) with 3 p is always chaotic for all parameters p, (b) the knowledge of an ergodic measure allows assignments of the alphabetic symbols to equiprobable sites of H p 's domain and (c) for each p, the security of the cryptosystem is manageable against brute force attacks
Hypogenetic chaotic jerk flows
International Nuclear Information System (INIS)
Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan
2016-01-01
Removing the amplitude or polarity information in the feedback loop of a jerk structure shows that special nonlinearities with partial information in the variable can also lead to chaos. Some striking properties are found for this kind of hypogenetic chaotic jerk flow, including multistability of symmetric coexisting attractors from an asymmetric structure, hidden attractors with respect to equilibria but with global attraction, easy amplitude control, and phase reversal which is convenient for chaos applications. - Highlights: • Hypogenetic chaotic jerk flows with incomplete feedback of amplitude or polarity are obtained. • Multistability of symmetric coexisting attractors from an asymmetric structure is found. • Some jerk systems have hidden attractors with respect to equilibria but have global attraction. • These chaotic jerk flows have the properties of amplitude control and phase reversal.
Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming
2016-12-12
A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.
Regularized forecasting of chaotic dynamical systems
International Nuclear Information System (INIS)
Bollt, Erik M.
2017-01-01
While local models of dynamical systems have been highly successful in terms of using extensive data sets observing even a chaotic dynamical system to produce useful forecasts, there is a typical problem as follows. Specifically, with k-near neighbors, kNN method, local observations occur due to recurrences in a chaotic system, and this allows for local models to be built by regression to low dimensional polynomial approximations of the underlying system estimating a Taylor series. This has been a popular approach, particularly in context of scalar data observations which have been represented by time-delay embedding methods. However such local models can generally allow for spatial discontinuities of forecasts when considered globally, meaning jumps in predictions because the collected near neighbors vary from point to point. The source of these discontinuities is generally that the set of near neighbors varies discontinuously with respect to the position of the sample point, and so therefore does the model built from the near neighbors. It is possible to utilize local information inferred from near neighbors as usual but at the same time to impose a degree of regularity on a global scale. We present here a new global perspective extending the general local modeling concept. In so doing, then we proceed to show how this perspective allows us to impose prior presumed regularity into the model, by involving the Tikhonov regularity theory, since this classic perspective of optimization in ill-posed problems naturally balances fitting an objective with some prior assumed form of the result, such as continuity or derivative regularity for example. This all reduces to matrix manipulations which we demonstrate on a simple data set, with the implication that it may find much broader context.
Initial conditions for chaotic inflation
International Nuclear Information System (INIS)
Brandenberger, R.; Kung, J.; Feldman, H.
1991-01-01
In contrast to many other inflationary Universe models, chaotic inflation does not depend on fine tuning initial conditions. Within the context of linear perturbation theory, it is shown that chaotic inflation is stable towards both metric and matter perturbations. Neglecting gravitational perturbations, it is shown that chaotic inflation is an attractor in initial condition space. (orig.)
Modelling chaotic Hamiltonian systems as a Markov Chain ...
African Journals Online (AJOL)
The behaviour of chaotic Hamiltonian system has been characterised qualitatively in recent times by its appearance on the Poincaré section and quantitatively by the Lyapunov exponent. Studying the dynamics of the two chaotic Hamiltonian systems: the Henon-Heiles system and non-linearly coupled oscillators as their ...
Scaling Features of Multimode Motions in Coupled Chaotic Oscillators
DEFF Research Database (Denmark)
Pavlov, A.N.; Sosnovtseva, Olga; Mosekilde, Erik
2003-01-01
Two different methods (the WTMM- and DFA-approaches) are applied to investigate the scaling properties in the return-time sequences generated by a system of two coupled chaotic oscillators. Transitions from twomode asynchronous dynamics (torus or torus-Chaos) to different states of chaotic phase ...
Chaotic advection, diffusion, and reactions in open flows
International Nuclear Information System (INIS)
Tel, Tamas; Karolyi, Gyoergy; Pentek, Aron; Scheuring, Istvan; Toroczkai, Zoltan; Grebogi, Celso; Kadtke, James
2000-01-01
We review and generalize recent results on advection of particles in open time-periodic hydrodynamical flows. First, the problem of passive advection is considered, and its fractal and chaotic nature is pointed out. Next, we study the effect of weak molecular diffusion or randomness of the flow. Finally, we investigate the influence of passive advection on chemical or biological activity superimposed on open flows. The nondiffusive approach is shown to carry some features of a weak diffusion, due to the finiteness of the reaction range or reaction velocity. (c) 2000 American Institute of Physics
Jridi, Maher; Alfalou, Ayman
2018-03-01
In this paper, enhancement of an existing optical simultaneous fusion, compression and encryption (SFCE) scheme in terms of real-time requirements, bandwidth occupation and encryption robustness is proposed. We have used and approximate form of the DCT to decrease the computational resources. Then, a novel chaos-based encryption algorithm is introduced in order to achieve the confusion and diffusion effects. In the confusion phase, Henon map is used for row and column permutations, where the initial condition is related to the original image. Furthermore, the Skew Tent map is employed to generate another random matrix in order to carry out pixel scrambling. Finally, an adaptation of a classical diffusion process scheme is employed to strengthen security of the cryptosystem against statistical, differential, and chosen plaintext attacks. Analyses of key space, histogram, adjacent pixel correlation, sensitivity, and encryption speed of the encryption scheme are provided, and favorably compared to those of the existing crypto-compression system. The proposed method has been found to be digital/optical implementation-friendly which facilitates the integration of the crypto-compression system on a very broad range of scenarios.
Real time natural object modeling framework
International Nuclear Information System (INIS)
Rana, H.A.; Shamsuddin, S.M.; Sunar, M.H.
2008-01-01
CG (Computer Graphics) is a key technology for producing visual contents. Currently computer generated imagery techniques are being developed and applied, particularly in the field of virtual reality applications, film production, training and flight simulators, to provide total composition of realistic computer graphic images. Natural objects like clouds are an integral feature of the sky without them synthetic outdoor scenes seem unrealistic. Modeling and animating such objects is a difficult task. Most systems are difficult to use, as they require adjustment of numerous, complex parameters and are non-interactive. This paper presents an intuitive, interactive system to artistically model, animate, and render visually convincing clouds using modern graphics hardware. A high-level interface models clouds through the visual use of cubes. Clouds are rendered by making use of hardware accelerated API -OpenGL. The resulting interactive design and rendering system produces perceptually convincing cloud models that can be used in any interactive system. (author)
Chaotic bursting in semiconductor lasers
Ruschel, Stefan; Yanchuk, Serhiy
2017-11-01
We investigate the dynamic mechanisms for low frequency fluctuations in semiconductor lasers subjected to delayed optical feedback, using the Lang-Kobayashi model. This system of delay differential equations displays pronounced envelope dynamics, ranging from erratic, so called low frequency fluctuations to regular pulse packages, if the time scales of fast oscillations and envelope dynamics are well separated. We investigate the parameter regions where low frequency fluctuations occur and compute their Lyapunov spectra. Using the geometric singular perturbation theory, we study this intermittent chaotic behavior and characterize these solutions as bursting slow-fast oscillations.
International Nuclear Information System (INIS)
Linde, A.D.
1986-05-01
It is shown that the universe evolution in the chaotic inflation scenario has no end and may have no beginning. According to this scenario, the universe consists of exponentially large number of different mini-universes inside which all possible metastable vacuum states and all possible types of compactification are realized. (author)
Hawking, Stephen
2000-01-01
Einstein said that the most incomprehensible thing about the universe is that it is comprehensible. But was he right? Can the quantum theory of fields and Einstein's general theory of relativity, the two most accurate and successful theories in all of physics, be united in a single quantum theory of gravity? Can quantum and cosmos ever be combined? On this issue, two of the world's most famous physicists--Stephen Hawking (A Brief History of Time) and Roger Penrose (The Emperor's New Mind and Shadows of the Mind)--disagree. Here they explain their positions in a work based on six lectures
A new chaotic algorithm for image encryption
International Nuclear Information System (INIS)
Gao Haojiang; Zhang Yisheng; Liang Shuyun; Li Dequn
2006-01-01
Recent researches of image encryption algorithms have been increasingly based on chaotic systems, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper presents a new nonlinear chaotic algorithm (NCA) which uses power function and tangent function instead of linear function. Its structural parameters are obtained by experimental analysis. And an image encryption algorithm in a one-time-one-password system is designed. The experimental results demonstrate that the image encryption algorithm based on NCA shows advantages of large key space and high-level security, while maintaining acceptable efficiency. Compared with some general encryption algorithms such as DES, the encryption algorithm is more secure
International Nuclear Information System (INIS)
Schaefer, Mirko
2011-01-01
The main topic of this thesis is the investigation of dynamical properties of coupled Tchebycheff map networks. The results give insights into the chaotic string model and its network generalization from a dynamical point of view. As a first approach, discrete symmetry transformations of the model are studied. These transformations are formulated in a general way in order to be also applicable to similar dynamics on bipartite network structures. The dynamics is studied numerically via Lyapunov measures, spatial correlations, and ergodic properties. It is shown that the zeros of the interaction energy are distinguished only with respect to this specific observable, but not by a more general dynamical principle. The original chaotic string model is defined on a one-dimensional lattice (ring-network) as the underlying network topology. This thesis studies a modification of the model based on the introduction of tunable disorder. The effects of inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure on the interaction energy are discussed. Synchronization properties of the chaotic string model and its network generalization are studied in later chapters of this thesis. The analysis is based on the master stability formalism, which relates the stability of the synchronized state to the spectral properties of the network. Apart from complete synchronization, where the dynamics at all nodes of the network coincide, also two-cluster synchronization on bipartite networks is studied. For both types of synchronization it is shown that depending on the type of coupling the synchronized dynamics can display chaotic as well as periodic or quasi-periodic behaviour. The semi-analytical calculations reveal that the respective synchronized states are often stable for a wide range of coupling values even for the ring-network, although the respective basins of attraction may inhabit only a small fraction of the phase space. To provide
Hybrid chaotic ant swarm optimization
International Nuclear Information System (INIS)
Li Yuying; Wen Qiaoyan; Li Lixiang; Peng Haipeng
2009-01-01
Chaotic ant swarm optimization (CASO) is a powerful chaos search algorithm that is used to find the global optimum solution in search space. However, the CASO algorithm has some disadvantages, such as lower solution precision and longer computational time, when solving complex optimization problems. To resolve these problems, an improved CASO, called hybrid chaotic swarm optimization (HCASO), is proposed in this paper. The new algorithm introduces preselection operator and discrete recombination operator into the CASO; meanwhile it replaces the best position found by own and its neighbors' ants with the best position found by preselection operator and discrete recombination operator in evolution equation. Through testing five benchmark functions with large dimensionality, the experimental results show the new method enhances the solution accuracy and stability greatly, as well as reduces the computational time and computer memory significantly when compared to the CASO. In addition, we observe the results can become better with swarm size increasing from the sensitivity study to swarm size. And we gain some relations between problem dimensions and swam size according to scalability study.
Chaotic Transport in Circumterrestrial Orbits
Rosengren, Aaron Jay
2018-04-01
The slow deformation of circumterrestrial orbits in the medium region, subject to lunisolar secular resonances, is well approximated by a Hamiltonian system with 2.5 degrees of freedom. This dynamical model is referred to in the astrophysical and celestial dynamics communities as the quadrupolar, secular, hierarchical three-body problem, and, in the non-autonomous case, gives rise to the classical Kozai-Lidov mechanism. In the time-dependent model, brought about in our case by the Moon's perturbed motion, the action variables of the system may experience chaotic variations and large drifts due to the possible overlap of nearby resonances. Using variational chaos indicators, we compute high-resolution portraits of the action space, revealing the existence of tori and structures filling chaotic regions. Our refined and elaborate calculations allow us to isolate precise initial conditions near specific areas of interest and to study their asymptotic behavior in time. We highlight in particular how the drift in phase space is mediated by the complement of the numerically detected KAM tori. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors, and, like the small body remnants of Solar system formation, they have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.
Design of the Chaotic Signal Generator Based on LABVIEW
Directory of Open Access Journals (Sweden)
Jian-Guo Zhang
2014-01-01
Full Text Available We introduces a new method that can achieve the generation of Colpitts chaotic signal The system is based on virtual instrument platform and combined with MATLAB calculation to achieve the generation of Colpitts chaotic signal and making it analysis with autocorrelation and power spectrum at the same time. Signal channel output of chaotic signal was realized through USB-6009 acquisition module extending DA5405 high-speed DAC (Digital-to-Analog Converter chip. The system can adjust parameters based on customers’ requirements to achieve different frequency chaotic signal generation. Compared with the traditional autonomy Colpitts chaotic signal generator, this generator is simple and clear in structure, simple to operate, strong stability, easy to achieve etc.
A Novel Audio Cryptosystem Using Chaotic Maps and DNA Encoding
Directory of Open Access Journals (Sweden)
S. J. Sheela
2017-01-01
Full Text Available Chaotic maps have good potential in security applications due to their inherent characteristics relevant to cryptography. This paper introduces a new audio cryptosystem based on chaotic maps, hybrid chaotic shift transform (HCST, and deoxyribonucleic acid (DNA encoding rules. The scheme uses chaotic maps such as two-dimensional modified Henon map (2D-MHM and standard map. The 2D-MHM which has sophisticated chaotic behavior for an extensive range of control parameters is used to perform HCST. DNA encoding technology is used as an auxiliary tool which enhances the security of the cryptosystem. The performance of the algorithm is evaluated for various speech signals using different encryption/decryption quality metrics. The simulation and comparison results show that the algorithm can achieve good encryption results and is able to resist several cryptographic attacks. The various types of analysis revealed that the algorithm is suitable for narrow band radio communication and real-time speech encryption applications.
Universality for the parameter-mismatching effect on weak synchronization in coupled chaotic systems
International Nuclear Information System (INIS)
Lim, Woochang; Kim, Sang-Yoon
2004-01-01
To examine the universality for the parameter-mismatching effect on weak chaotic synchronization, we study coupled multidimensional invertible systems such as the coupled Henon maps and coupled pendula. By generalizing the method proposed in coupled one-dimensional (1D) noninvertible maps, we introduce the parameter sensitivity exponent δ to measure the degree of the parameter sensitivity of a weakly stable synchronous chaotic attractor. In terms of the parameter sensitivity exponents, we characterize the effect of the parameter mismatch on the intermittent bursting and the basin riddling occurring in the regime of weak synchronization. It is thus found that the scaling exponent μ for the average characteristic time (i.e., the average interburst time and the average chaotic transient lifetime) for both the bubbling and riddling cases is given by the reciprocal of the parameter sensitivity exponent, as in the simple system of coupled 1D maps. Hence, the reciprocal relation (i.e., μ = 1/δ) seems to be 'universal', in the sense that it holds in typical coupled chaotic systems of different nature
International Nuclear Information System (INIS)
Jung, Jinwoo; Lee, Jewon; Song, Hanjung
2011-01-01
This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performed simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-μm single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with ±2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.
Energy Technology Data Exchange (ETDEWEB)
Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)
1981-09-01
A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.
Dynamic control of chaotic resonators
Di Falco, A.; Bruck, R.; Liu, C.; Muskens, O.; Fratalocchi, Andrea
2016-01-01
We report on the all-optical control of chaotic optical resonators based on silicon on insulator (SOI) platform. We show that simple non-chaotic cavities can be tuned to exhibit chaotic behavior via intense optical pump- ing, inducing a local change of refractive index. To this extent we have fabricated a number of devices and demonstrated experimentally and theoretically that chaos can be triggered on demand on an optical chip. © 2016 SPIE.
Dynamic control of chaotic resonators
Di Falco, A.
2016-02-16
We report on the all-optical control of chaotic optical resonators based on silicon on insulator (SOI) platform. We show that simple non-chaotic cavities can be tuned to exhibit chaotic behavior via intense optical pump- ing, inducing a local change of refractive index. To this extent we have fabricated a number of devices and demonstrated experimentally and theoretically that chaos can be triggered on demand on an optical chip. © 2016 SPIE.
Identifying and Evaluating Chaotic Behavior in Hydro-Meteorological Processes
Directory of Open Access Journals (Sweden)
Soojun Kim
2015-01-01
Full Text Available The aim of this study is to identify and evaluate chaotic behavior in hydro-meteorological processes. This study poses the two hypotheses to identify chaotic behavior of the processes. First, assume that the input data is the significant factor to provide chaotic characteristics to output data. Second, assume that the system itself is the significant factor to provide chaotic characteristics to output data. For solving this issue, hydro-meteorological time series such as precipitation, air temperature, discharge, and storage volume were collected in the Great Salt Lake and Bear River Basin, USA. The time series in the period of approximately one year were extracted from the original series using the wavelet transform. The generated time series from summation of sine functions were fitted to each series and used for investigating the hypotheses. Then artificial neural networks had been built for modeling the reservoir system and the correlation dimension was analyzed for the evaluation of chaotic behavior between inputs and outputs. From the results, we found that the chaotic characteristic of the storage volume which is output is likely a byproduct of the chaotic behavior of the reservoir system itself rather than that of the input data.
Chaotic magnetic field line in toroidal plasmas
International Nuclear Information System (INIS)
Hatori, Tadatsugu; Abe, Yoshihiko; Urata, Kazuhiro; Irie, Haruyuki.
1989-05-01
This is an introductory review of chaotic magnetic field line in plasmas, together with some new results, with emphasis on the long-time tail and the fractional Brownian motion of the magnetic field line. The chaotic magnetic field line in toroidal plasmas is a typical chaotic phenomena in the Hamiltonian dynamical systems. The onset of stochasticity induced by a major magnetic perturbation is thought to cause a macroscopic rapid phenomena called the current disruption in the tokamak discharges. Numerical simulations on the basis of magnetohydrodynamics reveal in fact the disruptive phenomena. Some dynamical models which include the area-preserving mapping such as the standard mapping, and the two-wave Hamiltonian system can model the stochastic magnetic field. Theoretical results with use of the functional integral representation are given regarding the long-time tail on the basis of the radial twist mapping. It is shown that application of renormalization group technique to chaotic orbit in the two-wave Hamiltonian system proves decay of the velocity autocorrelation function with the power law. Some new numerical results are presented which supports these theoretical results. (author)
Using Chaotic System in Encryption
Findik, Oğuz; Kahramanli, Şirzat
In this paper chaotic systems and RSA encryption algorithm are combined in order to develop an encryption algorithm which accomplishes the modern standards. E.Lorenz's weather forecast' equations which are used to simulate non-linear systems are utilized to create chaotic map. This equation can be used to generate random numbers. In order to achieve up-to-date standards and use online and offline status, a new encryption technique that combines chaotic systems and RSA encryption algorithm has been developed. The combination of RSA algorithm and chaotic systems makes encryption system.
Security analysis of chaotic communication systems based on Volterra-Wiener-Korenberg model
International Nuclear Information System (INIS)
Lei Min; Meng Guang; Feng Zhengjin
2006-01-01
Pseudo-randomicity is an important cryptological characteristic for proof of encryption algorithms. This paper proposes a nonlinear detecting method based on Volterra-Wiener-Korenberg model and suggests an autocorrelation function to analyze the pseudo-randomicity of chaotic secure systems under different sampling interval. The results show that: (1) the increase of the order of the chaotic transmitter will not necessarily result in a high degree of security; (2) chaotic secure systems have higher and stronger pseudo-randomicity at sparse sampling interval due to the similarity of chaotic time series to the noise; (3) Volterra-Wiener-Korenberg method can also give a further appropriate sparse sampling interval for improving the security of chaotic secure communication systems. For unmasking chaotic communication systems, the Volterra-Wiener-Korenberg technique can be applied to analyze the chaotic time series with surrogate data
A simple chaotic delay differential equation
International Nuclear Information System (INIS)
Sprott, J.C.
2007-01-01
The simplest chaotic delay differential equation with a sinusoidal nonlinearity is described, including the route to chaos, Lyapunov exponent spectrum, and chaotic diffusion. It is prototypical of many other high-dimensional chaotic systems
Directory of Open Access Journals (Sweden)
Bo Sun
2014-09-01
Full Text Available Consider the Klein-Gordon equation with variable coefficients, a van der Pol cubic nonlinearity in one of the boundary conditions and a spatially distributed antidamping term, we use a variable-substitution technique together with the analogy with the 1-dimensional wave equation to prove that for the Klein-Gordon equation chaos occurs for a class of equations and boundary conditions when system parameters enter a certain regime. Chaotic and nonchaotic profiles of solutions are illustrated by computer graphics.
COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY
Energy Technology Data Exchange (ETDEWEB)
Deng, L. H.; Xiang, Y. Y.; Dun, G. T. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Li, B., E-mail: wooden@escience.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, Weihai 264209 (China)
2016-01-15
The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaotic attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.
Control of chaotic vibration in automotive wiper systems
International Nuclear Information System (INIS)
Wang Zheng; Chau, K.T.
2009-01-01
Chaotic vibration has been identified in the automotive wiper system at certain wiping speeds. This irregular vibration not only decreases the wiping efficiency, but also degrades the driving comfort. The purpose of this paper is to propose a new approach to stabilize the chaotic vibration in the wiper system. The key is to employ the extended time-delay feedback control in such a way that the applied voltage of the wiper motor is online adjusted according to its armature current feedback. Based on a practical wiper system, it is verified that the proposed approach can successfully stabilize the chaotic vibration, and provide a wide range of wiping speeds
Generation and control of multi-scroll chaotic attractors in fractional order systems
International Nuclear Information System (INIS)
Ahmad, Wajdi M.
2005-01-01
The objective of this paper is twofold: on one hand we demonstrate the generation of multi-scroll attractors in fractional order chaotic systems. Then, we design state feedback controllers to eliminate chaos from the system trajectories. It is demonstrated that modifying the underlying nonlinearity of the fractional chaotic system results in the birth of multiple chaotic attractors, thus forming the so called multi-scroll attractors. The presence of chaotic behavior is evidenced by a positive largest Lyapunov exponent computed for the output time series. We investigate generation and control of multi-scroll attractors in two different models, both of which are fractional order and chaotic: an electronic oscillator, and a mechanical 'jerk' model. The current findings extend previously reported results on generation of n-scroll attractors from the domain of integer order to the domain of fractional order chaotic systems, and addresses the issue of controlling such chaotic behaviors. Our investigations are validated through numerical simulations
Stochastic and Chaotic Relaxation Oscillations
Grasman, J.; Roerdink, J.B.T.M.
1988-01-01
For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a
Non-reversible evolution of quantum chaotic system. Kinetic description
International Nuclear Information System (INIS)
Chotorlishvili, L.; Skrinnikov, V.
2008-01-01
It is well known that the appearance of non-reversibility in classical chaotic systems is connected with a local instability of phase trajectories relatively to a small change of initial conditions and parameters of the system. Classical chaotic systems reveal an exponential sensitivity to these changes. This leads to an exponential growth of initial error with time, and as the result after the statistical averaging over this error, the dynamics of the system becomes non-reversible. In spite of this, the question about the origin of non-reversibility in quantum case remains actual. The point is that the classical notion of instability of phase trajectories loses its sense during quantum consideration. The current work is dedicated to the clarification of the origin of non-reversibility in quantum chaotic systems. For this purpose we study a non-stationary dynamics of the chaotic quantum system. By analogy with classical chaos, we consider an influence of a small unavoidable error of the parameter of the system on the non-reversibility of the dynamics. It is shown in the Letter that due to the peculiarity of chaotic quantum systems, the statistical averaging over the small unavoidable error leads to the non-reversible transition from the pure state into the mixed one. The second part of the Letter is dedicated to the kinematic description of the chaotic quantum-mechanical system. Using the formalism of superoperators, a muster kinematic equation for chaotic quantum system was obtained from Liouville equation under a strict mathematical consideration
What does the structure of its visibility graph tell us about the nature of the time series?
Franke, Jasper G.; Donner, Reik V.
2017-04-01
) allow to systematically distinguish regular from deterministic-chaotic dynamics. We demonstrate the application of our method for different model systems as well as selected paleoclimate time series from the North Atlantic region. Notably, visibility graph based methods are particularly suited for studying the latter type of geoscientific data, since they do not impose intrinsic restrictions or assumptions on the nature of the time series under investigation in terms of noise process, linearity and sampling homogeneity. [1] Lacasa, Lucas, et al. "From time series to complex networks: The visibility graph." Proceedings of the National Academy of Sciences 105.13 (2008): 4972-4975. [2] Telesca, Luciano, and Michele Lovallo. "Analysis of seismic sequences by using the method of visibility graph." EPL (Europhysics Letters) 97.5 (2012): 50002. [3] Donges, Jonathan F., Reik V. Donner, and Jürgen Kurths. "Testing time series irreversibility using complex network methods." EPL (Europhysics Letters) 102.1 (2013): 10004. [4] Small, Michael. "Complex networks from time series: capturing dynamics." 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing (2013): 2509-2512. [5] Jacob, Rinku, K.P. Harikrishnan, Ranjeev Misra, and G. Ambika. "Measure for degree heterogeneity in complex networks and its application to recurrence network analysis." arXiv preprint 1605.06607 (2016).
Chaotic hydrodynamics of fluidized beds
Energy Technology Data Exchange (ETDEWEB)
Van der Stappen, M.L.M. [Unit Process and Systems Engineering, Advanced Manufacturing Technology Group, Unilever Research Laboratorium, Vlaardingen (Netherlands)
1996-12-31
The major goals of this thesis are: (1) to develop and evaluate an analysis method based on techniques from non-linear chaos theory to characterize the nonlinear hydrodynamics of gas-solids fluidized beds quantitatively; and (2) to determine the dependence of the chaotic invariants on the operating conditions and investigate how the chaos analysis method can be profitably applied to improve scale-up and design of gas-solids fluidized bed reactors. Chaos theory is introduced in chapter 2 with emphasis on analysis techniques for (experimental) time series, known from literature at the start of this work (1990-1991). In chapter 3, the testing of existing and newly developed techniques on both model and fluidized bed data is described. This leads to the development of the chaos analysis method to analyze measured pressure fluctuations time series of a fluidized bed. Following, in chapter 4, this method is tested and all choices for the parameters are evaluated. The influence of the experimental parameters and external disturbances on the measurements and analysis results is discussed and quantified. The result is a chaos measurement and analysis protocol, which is further used in this work. In chapter 5, the applications to fluidized beds are discussed. It is shown that the entropy is a good measure for the characterization of the dynamical behavior of gas-solids bubbling/slugging fluidized beds. Entropy is applied to characterize the influence of the operating conditions, to assess regime transitions and to analyze dimensionless similar beds of different scale. Quantitative design correlations that relate entropy to the operating parameters (including the bed diameter) are described. Finally, it is discussed how the results of this work might be used in scaling up the chaotic dynamics of fluidized beds. The overall conclusions and outlook from this work are presented in chapter 6. 182 refs.
Applications of chaotic neurodynamics in pattern recognition
Baird, Bill; Freeman, Walter J.; Eeckman, Frank H.; Yao, Yong
1991-08-01
Network algorithms and architectures for pattern recognition derived from neural models of the olfactory system are reviewed. These span a range from highly abstract to physiologically detailed, and employ the kind of dynamical complexity observed in olfactory cortex, ranging from oscillation to chaos. A simple architecture and algorithm for analytically guaranteed associative memory storage of analog patterns, continuous sequences, and chaotic attractors in the same network is described. A matrix inversion determines network weights, given prototype patterns to be stored. There are N units of capacity in an N node network with 3N2 weights. It costs one unit per static attractor, two per Fourier component of each sequence, and three to four per chaotic attractor. There are no spurious attractors, and for sequences there is a Liapunov function in a special coordinate system which governs the approach of transient states to stored trajectories. Unsupervised or supervised incremental learning algorithms for pattern classification, such as competitive learning or bootstrap Widrow-Hoff can easily be implemented. The architecture can be ''folded'' into a recurrent network with higher order weights that can be used as a model of cortex that stores oscillatory and chaotic attractors by a Hebb rule. Network performance is demonstrated by application to the problem of real-time handwritten digit recognition. An effective system with on-line learning has been written by Eeckman and Baird for the Macintosh. It utilizes static, oscillatory, and/or chaotic attractors of two kinds--Lorenze attractors, or attractors resulting from chaotically interacting oscillatory modes. The successful application to an industrial pattern recognition problem of a network architecture of considerable physiological and dynamical complexity, developed by Freeman and Yao, is described. The data sets of the problem come in three classes of difficulty, and performance of the biological network is
Chaotic radiation/turbulence interactions in flames
Energy Technology Data Exchange (ETDEWEB)
Menguec, M.P.; McDonough, J.M.
1998-11-01
In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.
Chaotic transport of a matter-wave soliton in a biperiodically driven optical superlattice
International Nuclear Information System (INIS)
Zhou Zheng; Hai Wenhua; Deng Yan; Xie Qiongtao
2012-01-01
Under the effective particle approximation, we study the temporal ratchet effect for chaotic transport of a matter-wave soliton consisting of an attractive Bose–Einstein condensate held in a quasi-one-dimensional symmetric optical superlattice with biperiodic driving. It is known that chaos can substitute for disorder in Anderson’s scenario [Wimberger S, Krug A, Buchleitner A. Phys Rev Lett 2002;89:263601] and only a higher level of disorder can induce Anderson localization for some special systems [Schwartz T, Bartal G, Fishman S, Segev M. Nature 2007;46:52], and a matter-wave soliton can transit to chaos with high or low probability in a high- or low-chaoticity region [Zhu Q, Hai W, Rong S. Phys Rev E 2009;80:016203]. Here we demonstrate that varying the driving phase to break the time reversal symmetry of the system can increase the size of the high-chaoticity region for low- and moderate-frequency regions. Consequently, the parameter region of the exponential spatial localization increases to the same size, and the low-chaoticity and delocalization region, which includes subregions of the ratchet effect and its inverse effect, correspondingly decreases. The positive dependence of the localization on the driving frequency is also revealed. The results indicate that a high-chaoticity region could replace higher disorder and assists in Anderson localization. From the results we suggest a method for controlling directed motion of a matter-wave soliton by adjusting the driving frequency and amplitude to strengthen or suppress, or even reverse, the temporal ratchet effect.
Failure modes and natural control time for distributed vibrating systems
International Nuclear Information System (INIS)
Reid, R.M.
1994-01-01
The eigenstructure of the Gram matrix of frequency exponentials is used to study linear vibrating systems of hyperbolic type with distributed control. Using control norm as a practical measure of controllability and the vibrating string as a prototype, it is demonstrated that hyperbolic systems have a natural control time, even when only finitely many modes are excited. For shorter control times there are identifiable control failure modes which can be steered to zero only with very high cost in control norm. Both natural control time and the associated failure modes are constructed for linear fluids, strings, and beams, making note of the essential algorithms and Mathematica code, and displaying results graphically
NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach
Energy Technology Data Exchange (ETDEWEB)
Goudarzi, Sobhan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Jafari, Sajad, E-mail: sajadjafari@aut.ac.ir [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Moradi, Mohammad Hassan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Sprott, J.C. [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States)
2016-02-15
The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.
NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach
International Nuclear Information System (INIS)
Goudarzi, Sobhan; Jafari, Sajad; Moradi, Mohammad Hassan; Sprott, J.C.
2016-01-01
The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.
An exponential observer for the generalized Rossler chaotic system
International Nuclear Information System (INIS)
Sun, Y.-J.
2009-01-01
In this paper, the generalized Rossler chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a state observer for the generalized Rossler chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be arbitrarily pre-specified. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.
A simple observer of the generalized Chen chaotic systems
International Nuclear Information System (INIS)
Sun, Y.-J.
2009-01-01
In this paper, the generalized Chen chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a simple observer for the generalized Chen chaotic system is proposed to guarantee the global exponential stability of the resulting error system. Furthermore, the guaranteed exponential convergence rate can be correctly estimated. Finally, a numerical example is provided to illustrate the use of the main result.
A simple observer design of the generalized Lorenz chaotic systems
International Nuclear Information System (INIS)
Sun, Y.-J.
2010-01-01
In this Letter, the generalized Lorenz chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a simple observer for the generalized Lorenz chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be correctly estimated. Finally, a numerical example is given to show the effectiveness of the obtained result.
Integrating Real-time Earthquakes into Natural Hazard Courses
Furlong, K. P.; Benz, H. M.; Whitlock, J. S.; Bittenbinder, A. N.; Bogaert, B. B.
2001-12-01
Natural hazard courses are playing an increasingly important role in college and university earth science curricula. Students' intrinsic curiosity about the subject and the potential to make the course relevant to the interests of both science and non-science students make natural hazards courses popular additions to a department's offerings. However, one vital aspect of "real-life" natural hazard management that has not translated well into the classroom is the real-time nature of both events and response. The lack of a way to entrain students into the event/response mode has made implementing such real-time activities into classroom activities problematic. Although a variety of web sites provide near real-time postings of natural hazards, students essentially learn of the event after the fact. This is particularly true for earthquakes and other events with few precursors. As a result, the "time factor" and personal responsibility associated with natural hazard response is lost to the students. We have integrated the real-time aspects of earthquake response into two natural hazard courses at Penn State (a 'general education' course for non-science majors, and an upper-level course for science majors) by implementing a modification of the USGS Earthworm system. The Earthworm Database Management System (E-DBMS) catalogs current global seismic activity. It provides earthquake professionals with real-time email/cell phone alerts of global seismic activity and access to the data for review/revision purposes. We have modified this system so that real-time response can be used to address specific scientific, policy, and social questions in our classes. As a prototype of using the E-DBMS in courses, we have established an Earthworm server at Penn State. This server receives national and global seismic network data and, in turn, transmits the tailored alerts to "on-duty" students (e-mail, pager/cell phone notification). These students are responsible to react to the alarm
Exact solutions to chaotic and stochastic systems
González, J. A.; Reyes, L. I.; Guerrero, L. E.
2001-03-01
We investigate functions that are exact solutions to chaotic dynamical systems. A generalization of these functions can produce truly random numbers. For the first time, we present solutions to random maps. This allows us to check, analytically, some recent results about the complexity of random dynamical systems. We confirm the result that a negative Lyapunov exponent does not imply predictability in random systems. We test the effectiveness of forecasting methods in distinguishing between chaotic and random time series. Using the explicit random functions, we can give explicit analytical formulas for the output signal in some systems with stochastic resonance. We study the influence of chaos on the stochastic resonance. We show, theoretically, the existence of a new type of solitonic stochastic resonance, where the shape of the kink is crucial. Using our models we can predict specific patterns in the output signal of stochastic resonance systems.
International Nuclear Information System (INIS)
Theiler, J.; Eubank, S.
1993-01-01
A common first step in time series signal analysis involves digitally filtering the data to remove linear correlations. The residual data is spectrally white (it is ''bleached''), but in principle retains the nonlinear structure of the original time series. It is well known that simple linear autocorrelation can give rise to spurious results in algorithms for estimating nonlinear invariants, such as fractal dimension and Lyapunov exponents. In theory, bleached data avoids these pitfalls. But in practice, bleaching obscures the underlying deterministic structure of a low-dimensional chaotic process. This appears to be a property of the chaos itself, since nonchaotic data are not similarly affected. The adverse effects of bleaching are demonstrated in a series of numerical experiments on known chaotic data. Some theoretical aspects are also discussed
Chaotic advection in the ocean
Energy Technology Data Exchange (ETDEWEB)
Koshel' , Konstantin V; Prants, Sergei V [V.I. Il' ichev Pacific Oceanological Institute, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok (Russian Federation)
2006-11-30
The problem of chaotic advection of passive scalars in the ocean and its topological, dynamical, and fractal properties are considered from the standpoint of the theory of dynamical systems. Analytic and numerical results on Lagrangian transport and mixing in kinematic and dynamic chaotic advection models are described for meandering jet currents, topographical eddies in a barotropic ocean, and a two-layer baroclinic ocean. Laboratory experiments on hydrodynamic flows in rotating tanks as an imitation of geophysical chaotic advection are described. Perspectives of a dynamical system approach in physical oceanography are discussed. (reviews of topical problems)
Eigenfunctions in chaotic quantum systems
Energy Technology Data Exchange (ETDEWEB)
Baecker, Arnd
2007-07-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Eigenfunctions in chaotic quantum systems
International Nuclear Information System (INIS)
Baecker, Arnd
2007-01-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Reconfigurable chaotic logic gates based on novel chaotic circuit
International Nuclear Information System (INIS)
Behnia, S.; Pazhotan, Z.; Ezzati, N.; Akhshani, A.
2014-01-01
Highlights: • A novel method for implementing logic gates based on chaotic maps is introduced. • The logic gates can be implemented without any changes in the threshold voltage. • The chaos-based logic gates may serve as basic components of future computing devices. - Abstract: The logical operations are one of the key issues in today’s computer architecture. Nowadays, there is a great interest in developing alternative ways to get the logic operations by chaos computing. In this paper, a novel implementation method of reconfigurable logic gates based on one-parameter families of chaotic maps is introduced. The special behavior of these chaotic maps can be utilized to provide same threshold voltage for all logic gates. However, there is a wide interval for choosing a control parameter for all reconfigurable logic gates. Furthermore, an experimental implementation of this nonlinear system is presented to demonstrate the robustness of computing capability of chaotic circuits
A new transiently chaotic flow with ellipsoid equilibria
Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan
2018-03-01
In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.
Extraction of dynamical equations from chaotic data
International Nuclear Information System (INIS)
Rowlands, G.; Sprott, J.C.
1991-02-01
A method is described for extracting from a chaotic time series a system of equations whose solution reproduces the general features of the original data even when these are contaminated with noise. The equations facilitate calculation of fractal dimension, Lyapunov exponents and short-term predictions. The method is applied to data derived from numerical solutions of the Logistic equation, the Henon equations, the Lorenz equations and the Roessler equations. 10 refs., 5 figs
Wave dynamics of regular and chaotic rays
International Nuclear Information System (INIS)
McDonald, S.W.
1983-09-01
In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space
Transient chaotic transport in dissipative drift motion
Energy Technology Data Exchange (ETDEWEB)
Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)
2016-04-22
Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.
Time trends in the natural dizygotic twinning rate.
Derom, Catherine; Gielen, Marij; Peeters, Hilde; Frijns, Jean-Pierre; Zeegers, Maurice P A
2011-08-01
The natural dizygotic (DZ) twinning rate has been proposed as a reliable and useful measure of human fecundity, if adjusted for maternal age at twin birth. The aim of this study was to analyze age-adjusted trends in natural DZ twinning rates over the past 40 years using data from the 'East Flanders Prospective Twin Survey (EFPTS)'. This study involved 4835 naturally conceived twin pregnancies between 1969 and 2009 from the population-based Belgian 'EFPTS'. Age-adjusted trends in the incidence of natural DZ twin pregnancies were calculated using a generalized linear model with Poisson distribution. Both the natural DZ twinning rates and maternal age at twin birth increased in a linear fashion from 1969 to 2009. When age-adjusted, we found that the trend in the natural DZ twinning rate was stable during the whole time period. According to our population-based data and after age-adjustment, a stable natural DZ twinning rate could be observed over the last four decades. Under the assumption that the spontaneous DZ twinning rate is a sensor of fecundity, this indicates a stable 'high' fecundity for this population.
Time series analysis of the behavior of brazilian natural rubber
Directory of Open Access Journals (Sweden)
Antônio Donizette de Oliveira
2009-03-01
Full Text Available The natural rubber is a non-wood product obtained of the coagulation of some lattices of forest species, being Hevea brasiliensis the main one. Native from the Amazon Region, this species was already known by the Indians before the discovery of America. The natural rubber became a product globally valued due to its multiple applications in the economy, being its almost perfect substitute the synthetic rubber derived from the petroleum. Similarly to what happens with other countless products the forecast of future prices of the natural rubber has been object of many studies. The use of models of forecast of univariate timeseries stands out as the more accurate and useful to reduce the uncertainty in the economic decision making process. This studyanalyzed the historical series of prices of the Brazilian natural rubber (R$/kg, in the Jan/99 - Jun/2006 period, in order tocharacterize the rubber price behavior in the domestic market; estimated a model for the time series of monthly natural rubberprices; and foresaw the domestic prices of the natural rubber, in the Jul/2006 - Jun/2007 period, based on the estimated models.The studied models were the ones belonging to the ARIMA family. The main results were: the domestic market of the natural rubberis expanding due to the growth of the world economy; among the adjusted models, the ARIMA (1,1,1 model provided the bestadjustment of the time series of prices of the natural rubber (R$/kg; the prognosis accomplished for the series supplied statistically adequate fittings.
Enhanced energy storage in chaotic optical resonators
Liu, Changxu; Di Falco, Andrea; Molinari, Diego P.; Khan, Yasser; Ooi, Boon S.; Krauss, Thomas F.; Fratalocchi, Andrea
2013-01-01
Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.
Exact folded-band chaotic oscillator.
Corron, Ned J; Blakely, Jonathan N
2012-06-01
An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.
Enhanced energy storage in chaotic optical resonators
Liu, Changxu
2013-05-05
Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.
Fast natural color mapping for night-time imagery
Hogervorst, M.A.; Toet, A.
2010-01-01
We present a new method to render multi-band night-time imagery (images from sensors whose sensitive range does not necessarily coincide with the visual part of the electromagnetic spectrum, e.g. image intensifiers, thermal camera's) in natural daytime colors. The color mapping is derived from the
Time-Dependent Natural Convection Couette Flow of Heat ...
African Journals Online (AJOL)
Time-Dependent Natural Convection Couette Flow of Heat Generating/Absorbing Fluid between Vertical Parallel Plates Filled With Porous Material. ... The numerical simulation conducted for some saturated liquids reveled that at t ≥ Pr the steady and unsteady state velocities (as well as the temperature of the fluid) ...
Nuclear friction and chaotic motion
International Nuclear Information System (INIS)
Srokowski, T.; Szczurek, A.; Drozdz, S.
1990-01-01
The concept of nuclear friction is considered from the point of view of regular versus chaotic motion in an atomic nucleus. Using a realistic nuclear Hamiltonian it is explicitly shown that the frictional description of the gross features of nuclear collisions is adequate if the system behaves chaotically. Because of the core in the Hamiltonian, the three-body nuclear system already reveals a structure of the phase space rich enough for this concept to be applicable
Chaotic diagonal recurrent neural network
International Nuclear Information System (INIS)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)
Synchronization of mobile chaotic oscillator networks
Energy Technology Data Exchange (ETDEWEB)
Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)
2016-09-15
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
Synchronization of mobile chaotic oscillator networks
International Nuclear Information System (INIS)
Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert
2016-01-01
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
Synchronization of mobile chaotic oscillator networks.
Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert
2016-09-01
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
Performance of Multi-chaotic PSO on a shifted benchmark functions set
Energy Technology Data Exchange (ETDEWEB)
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan [Tomas Bata University in Zlín, Faculty of Applied Informatics Department of Informatics and Artificial Intelligence nám. T.G. Masaryka 5555, 760 01 Zlín (Czech Republic)
2015-03-10
In this paper the performance of Multi-chaotic PSO algorithm is investigated using two shifted benchmark functions. The purpose of shifted benchmark functions is to simulate the time-variant real-world problems. The results of chaotic PSO are compared with canonical version of the algorithm. It is concluded that using the multi-chaotic approach can lead to better results in optimization of shifted functions.
Performance of Multi-chaotic PSO on a shifted benchmark functions set
International Nuclear Information System (INIS)
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan
2015-01-01
In this paper the performance of Multi-chaotic PSO algorithm is investigated using two shifted benchmark functions. The purpose of shifted benchmark functions is to simulate the time-variant real-world problems. The results of chaotic PSO are compared with canonical version of the algorithm. It is concluded that using the multi-chaotic approach can lead to better results in optimization of shifted functions
Time in powers of ten natural phenomena and their timescales
't Hooft, Gerard
2014-01-01
In this richly illustrated book, Nobel Laureate Gerard 't Hooft and Theoretical Physicist Stefan Vandoren describe the enormous diversity of natural phenomena that take place at different time scales. In the tradition of the bestseller Powers of Ten , the authors zoom in and out in time, each step with a factor of ten. Starting from one second, time scales are enlarged until processes are reached that take much longer than the age of the universe. After the largest possible eternities, the reader is treated to the shortest and fastest phenomena known. Then the authors increase with powers of t
Chaotic spectra: How to extract dynamic information
International Nuclear Information System (INIS)
Taylor, H.S.; Gomez Llorente, J.M.; Zakrzewski, J.; Kulander, K.C.
1988-10-01
Nonlinear dynamics is applied to chaotic unassignable atomic and molecular spectra with the aim of extracting detailed information about regular dynamic motions that exist over short intervals of time. It is shown how this motion can be extracted from high resolution spectra by doing low resolution studies or by Fourier transforming limited regions of the spectrum. These motions mimic those of periodic orbits (PO) and are inserts into the dominant chaotic motion. Considering these inserts and the PO as a dynamically decoupled region of space, resonant scattering theory and stabilization methods enable us to compute ladders of resonant states which interact with the chaotic quasi-continuum computed in principle from basis sets placed off the PO. The interaction of the resonances with the quasicontinuum explains the low resolution spectra seen in such experiments. It also allows one to associate low resolution features with a particular PO. The motion on the PO thereby supplies the molecular movements whose quantization causes the low resolution spectra. Characteristic properties of the periodic orbit based resonances are discussed. The method is illustrated on the photoabsorption spectrum of the hydrogen atom in a strong magnetic field and on the photodissociation spectrum of H 3 + . Other molecular systems which are currently under investigation using this formalism are also mentioned. 53 refs., 10 figs., 2 tabs
Chaotic exploration and learning of locomotion behaviors.
Shim, Yoonsik; Husbands, Phil
2012-08-01
We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage.
A Simple Hybrid Synchronization for a Class of Chaotic Financial Systems
Directory of Open Access Journals (Sweden)
Jiming Zheng
2017-01-01
Full Text Available It is an important to achieve the hybrid synchronization of the chaotic financial system. Chaos synchronization is equivalent to the error system which is asymptotically stable. The hybrid synchronization for a class of finance chaotic systems is discussed. First, a simple single variable controller is obtained to synchronize two identical chaotic financial systems with different initial conditions. Second, a novel algorithm is proposed to determine the variables of the master system that should antisynchronize with corresponding variables of the slave system and use this algorithm to determine the corresponding variables in the chaotic financial systems. The hybrid synchronization of the chaotic financial systems is realized by a simple controller. At the same time, different controllers can implement the chaotic financial system hybrid synchronization. In comparison with the existing results, the obtained controllers in this paper are simpler than those of the existing results. Finally, numerical simulations show the effectiveness of the proposed results.
Stability of operation versus temperature of a three-phase clock-driven chaotic circuit
International Nuclear Information System (INIS)
Zhou Ji-Chao; Son Hyunsik; Song Han Jung; Kim Namtae
2013-01-01
We evaluate the influence of temperature on the behavior of a three-phase clock-driven metal—oxide—semiconductor (MOS) chaotic circuit. The chaotic circuit consists of two nonlinear functions, a level shifter, and three sample and hold blocks. It is necessary to analyze a CMOS-based chaotic circuit with respect to variation in temperature for stability because the circuit is sensitive to the behavior of the circuit design parameters. The temperature dependence of the proposed chaotic circuit is investigated via the simulation program with integrated circuit emphasis (SPICE) using 0.6-μm CMOS process technology with a 5-V power supply and a 20-kHz clock frequency. The simulation results demonstrate the effects of temperature on the chaotic dynamics of the proposed chaotic circuit. The time series, frequency spectra, bifurcation phenomena, and Lyapunov exponent results are provided. (general)
Feature Selection via Chaotic Antlion Optimization.
Directory of Open Access Journals (Sweden)
Hossam M Zawbaa
Full Text Available Selecting a subset of relevant properties from a large set of features that describe a dataset is a challenging machine learning task. In biology, for instance, the advances in the available technologies enable the generation of a very large number of biomarkers that describe the data. Choosing the more informative markers along with performing a high-accuracy classification over the data can be a daunting task, particularly if the data are high dimensional. An often adopted approach is to formulate the feature selection problem as a biobjective optimization problem, with the aim of maximizing the performance of the data analysis model (the quality of the data training fitting while minimizing the number of features used.We propose an optimization approach for the feature selection problem that considers a "chaotic" version of the antlion optimizer method, a nature-inspired algorithm that mimics the hunting mechanism of antlions in nature. The balance between exploration of the search space and exploitation of the best solutions is a challenge in multi-objective optimization. The exploration/exploitation rate is controlled by the parameter I that limits the random walk range of the ants/prey. This variable is increased iteratively in a quasi-linear manner to decrease the exploration rate as the optimization progresses. The quasi-linear decrease in the variable I may lead to immature convergence in some cases and trapping in local minima in other cases. The chaotic system proposed here attempts to improve the tradeoff between exploration and exploitation. The methodology is evaluated using different chaotic maps on a number of feature selection datasets. To ensure generality, we used ten biological datasets, but we also used other types of data from various sources. The results are compared with the particle swarm optimizer and with genetic algorithm variants for feature selection using a set of quality metrics.
Wen-Bo, Wang; Xiao-Dong, Zhang; Yuchan, Chang; Xiang-Li, Wang; Zhao, Wang; Xi, Chen; Lei, Zheng
2016-01-01
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. Project supported by the National Science and Technology, China (Grant No. 2012BAJ15B04), the National Natural Science Foundation of China (Grant Nos. 41071270 and 61473213), the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFB424), the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science, China (Grant No. Z201303), and the Hubei Key Laboratory Foundation of Transportation Internet of Things, Wuhan University of Technology, China (Grant No.2015III015-B02).
Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)
Kędra, Mariola
2014-02-01
Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.
Stabilization at almost arbitrary points for chaotic systems
International Nuclear Information System (INIS)
Huang, C.-S.; Lian, K.-Y.; Su, C.-H.; Wu, J.-W.
2008-01-01
We consider how to design a feasible control input for chaotic systems via a suitable input channel to achieve the stabilization at arbitrary points. Regarding the nonlinear systems without naturally defined input vectors, we propose a local stabilization controller which works for almost arbitrary points. Subsequently, according to topologically transitive property for chaotic systems, the feedback control force is activated only when the trajectory passes through the neighboring region of the regulated point. Hence the global stabilization is achieved whereas the control effort of the hybrid controller is extremely low
Performance Analysis of Chaotic Encryption Using a Shared Image ...
African Journals Online (AJOL)
Most of the secret key encryption algorithms in use today are designed based on either the feistel structure or the substitution-permutation structure. This paper focuses on data encryption technique using multi-scroll chaotic natures and a publicly shared image as a key. A key is generated from the shared image using a full ...
Time-variant random interval natural frequency analysis of structures
Wu, Binhua; Wu, Di; Gao, Wei; Song, Chongmin
2018-02-01
This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
On synchronization of three chaotic systems
International Nuclear Information System (INIS)
Yan Jianping; Li Changpin
2005-01-01
In this paper, a simple but efficient method is applied to the synchronization of three chaotic systems, i.e., the chaotic Lorenz, Chua, and Chen systems. Numerical simulations show this method works very well
Intermittent chaotic chimeras for coupled rotators
DEFF Research Database (Denmark)
Olmi, Simona; Martens, Erik Andreas; Thutupalli, Shashi
2015-01-01
Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence of intermittent chaotic chimeras, where one population is synchronized and the other...
On the Design of Chaotic Oscillators
DEFF Research Database (Denmark)
Lindberg, Erik; Tamasevicius, A; Cenys, A.
1998-01-01
A discussion of the chaotic oscillator concept from a design methodology pointof view. The attributes of some chaoticoscillators are discussed and a systematicdesign method based on eigenvalue investigation is proposed. The method isillustrated with a chaotic Wien-bridgeoscillator design....
Chaotic Image Encryption Algorithm Based on Circulant Operation
Directory of Open Access Journals (Sweden)
Xiaoling Huang
2013-01-01
Full Text Available A novel chaotic image encryption scheme based on the time-delay Lorenz system is presented in this paper with the description of Circulant matrix. Making use of the chaotic sequence generated by the time-delay Lorenz system, the pixel permutation is carried out in diagonal and antidiagonal directions according to the first and second components. Then, a pseudorandom chaotic sequence is generated again from time-delay Lorenz system using all components. Modular operation is further employed for diffusion by blocks, in which the control parameter is generated depending on the plain-image. Numerical experiments show that the proposed scheme possesses the properties of a large key space to resist brute-force attack, sensitive dependence on secret keys, uniform distribution of gray values in the cipher-image, and zero correlation between two adjacent cipher-image pixels. Therefore, it can be adopted as an effective and fast image encryption algorithm.
The relativity theory and the nature of time
International Nuclear Information System (INIS)
Selleri, F.
1997-01-01
In this paper and its continuation, old and recent ideas concerning the nature of time are reviewed by starting from March's refusal of Newton's absolute time. Modern experimental evidence shows that the slowing down of moving clocks is a real phenomenon, Such is also the so-called twin paradox owing its name to its evident incompatibility with the philosophy of relativism (which should not be confused with the theory of relativity). Lorentz reformulation of relativity theory started by postulating physical effects of the ether, but adopted Einstein's clock synchronization: more than anything else this stopped Lorentz from understanding the advantages of different synchronization procedures. One of the problems of the usual approach is the necessity of a superdeterministic universe, as stressed by Popper. Recent results obtained by the author show that a theory is possible, based on relative time but on absolute simultaneity, in which all the conceptual difficulties of relativity are avoided. (Author) 21 refs
The relativity theory and the nature of time
International Nuclear Information System (INIS)
Selleri, F.
1997-01-01
In this paper and its continuation, old and recent ideas concerning the nature of time are reviewed by starting from Mach's refusal of Newton's absolute time. Modern experimental evidence shows that the slowing down of moving clocks is a real phenomenon. Such is also the so-called twin paradox owing its name to its evident incompatibility with the philosophy of relativism (which should not be confused with the theory of relativity). Lorentz' reformulation of relativity theory started by postulating physical effects of the ether, but adopted Einstein's clock synchronization: more than anything else this stopped Lorentz from understanding the advantages of different synchronization procedures. One of the problems of the usual approach is the necessity of a super deterministic universe, as stressed by Popper. Recent results obtained by the author show that a theory is possible, based on relative time but on absolute simultaneity, in which all the conceptual difficulties of relativity are avoided. (Author) 21 refs
Precepting at the time of a natural disaster.
Myhre, Douglas; Bajaj, Sameer; Fehr, Lana; Kapusta, Mike; Woodley, Kristine; Nagji, Alim
2017-04-01
Natural disasters strike communities that have varied degrees of preparedness, both physical and psychological. Rural communities may be particularly vulnerable as they often do not have the infrastructure or resources to prepare in advance. The psychological impact of a natural disaster is amplified in learners who may be temporary members of the community and therefore cannot draw on personal support during the crisis. They may turn to their clinical preceptors for guidance. The Slave Lake fire (population 6782) in May 2011 and the High River flood (population 12 920) in June 2013 are examples of natural disasters that have occurred in rural Alberta, Canada. At the time of these critical incidents, three medical students and one family medicine resident from the two provincial medical schools were participating in rotations in these communities. Although disasters occur rarely, there is a need for guidelines for preceptors from the learner perspective. Accordingly, using a modified Delphi approach, we captured the experiences of learners that were then refined into two themes, each containing three recommendations: considerations for action during a natural disaster and considerations for action after the acute crisis has passed. Although disasters occur rarely, there is a need for guidelines for preceptors from the learner perspective IMPLICATIONS: Our recommendations provide suggestions for practical solutions that build on the usual expectations of mentors and may benefit the student-teacher relationship at the time of a disaster and beyond. They are meant to initiate discussion regarding further study aimed towards creating recommendations for preceptor response that may cross disciplines. © 2016 John Wiley & Sons Ltd.
Light matter interaction in chaotic resonators
Liu, Changxu
2016-05-11
Chaos is a complex dynamics with exponential sensitivity to the initial conditions. Since the study of three-body problem by Henri Poincare, chaos has been extensively studied in many systems, ranging from electronics to fluids, brains and more recently photonics. Chaos is a ubiquitous phenomenon in Nature, from the gigantic oceanic waves to the disordered scales of white beetles at nanoscale. The presence of chaos is often unwanted in applications, as it introduces unpredictability,which makes it difficult to predict or explain experimental results. Inspired by how chaos permeates the natural world, this thesis investigates on how the interaction between light and chaotic structure can enhance the performance of photonics devices. With a proper design of the lighter-mater interaction in chaotic resonators, I illustrate how chaos can be used to enhance the ability of an optical cavity to store electromagnetic energy, realize a blackbody system composed of gold nanoparticles, localize light beyond the diffraction limit and control the phase transition of super-radiance.
Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail
Holland, D. L.; Martin, R. F., Jr.; Burris, C.
2017-12-01
It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.
A new chaotic secure communication scheme
International Nuclear Information System (INIS)
Hua Changchun; Yang Bo; Ouyang Gaoxiang; Guan Xinping
2005-01-01
A new chaotic secure communication scheme is constructed. Unified chaotic system is used to encrypt the emitted signal. Different from the existing chaotic secure communication methods, the useful information is embodied in the parameter of chaotic systems in this Letter. The receiver is designed which can succeed in recovering the former signal. Finally computer simulations are done to verify the proposed methods, and the results show that the obtained theoretic results are feasible and efficient
Chaotic signals in digital communications
Eisencraft, Marcio; Suyama, Ricardo
2013-01-01
Chaotic Signals in Digital Communications combines fundamental background knowledge with state-of-the-art methods for using chaotic signals and systems in digital communications. The book builds a bridge between theoretical works and practical implementation to help researchers attain consistent performance in realistic environments. It shows the possible shortcomings of the chaos-based communication systems proposed in the literature, particularly when they are subjected to non-ideal conditions. It also presents a toolbox of techniques for researchers working to actually implement such system
Lectures on chaotic dynamical systems
Afraimovich, Valentin
2002-01-01
This book is devoted to chaotic nonlinear dynamics. It presents a consistent, up-to-date introduction to the field of strange attractors, hyperbolic repellers, and nonlocal bifurcations. The authors keep the highest possible level of "physical" intuition while staying mathematically rigorous. In addition, they explain a variety of important nonstandard algorithms and problems involving the computation of chaotic dynamics. The book will help readers who are not familiar with nonlinear dynamics to understand and appreciate sophisticated modern dynamical systems and chaos. Intended for courses in either mathematics, physics, or engineering, prerequisites are calculus, differential equations, and functional analysis.
Identifying Chaotic FitzHugh–Nagumo Neurons Using Compressive Sensing
Directory of Open Access Journals (Sweden)
Ri-Qi Su
2014-07-01
Full Text Available We develop a completely data-driven approach to reconstructing coupled neuronal networks that contain a small subset of chaotic neurons. Such chaotic elements can be the result of parameter shift in their individual dynamical systems and may lead to abnormal functions of the network. To accurately identify the chaotic neurons may thus be necessary and important, for example, applying appropriate controls to bring the network to a normal state. However, due to couplings among the nodes, the measured time series, even from non-chaotic neurons, would appear random, rendering inapplicable traditional nonlinear time-series analysis, such as the delay-coordinate embedding method, which yields information about the global dynamics of the entire network. Our method is based on compressive sensing. In particular, we demonstrate that identifying chaotic elements can be formulated as a general problem of reconstructing the nodal dynamical systems, network connections and all coupling functions, as well as their weights. The working and efficiency of the method are illustrated by using networks of non-identical FitzHugh–Nagumo neurons with randomly-distributed coupling weights.
Natural time analysis of the Centennial Earthquake Catalog
International Nuclear Information System (INIS)
Sarlis, N. V.; Christopoulos, S.-R. G.
2012-01-01
By using the most recent version (1900–2007) of the Centennial Earthquake Catalog, we examine the properties of the global seismicity. Natural time analysis reveals that the fluctuations of the order parameter κ 1 of seismicity exhibit for at least three orders of magnitude a characteristic feature similar to that of the order parameter for other equilibrium or non-equilibrium critical systems—including self-organized critical systems. Moreover, we find non-trivial magnitude correlations for earthquakes of magnitude greater than or equal to 7.
Characteristics of level-spacing statistics in chaotic graphene billiards.
Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2011-03-01
A fundamental result in nonrelativistic quantum nonlinear dynamics is that the spectral statistics of quantum systems that possess no geometric symmetry, but whose classical dynamics are chaotic, are described by those of the Gaussian orthogonal ensemble (GOE) or the Gaussian unitary ensemble (GUE), in the presence or absence of time-reversal symmetry, respectively. For massless spin-half particles such as neutrinos in relativistic quantum mechanics in a chaotic billiard, the seminal work of Berry and Mondragon established the GUE nature of the level-spacing statistics, due to the combination of the chirality of Dirac particles and the confinement, which breaks the time-reversal symmetry. A question is whether the GOE or the GUE statistics can be observed in experimentally accessible, relativistic quantum systems. We demonstrate, using graphene confinements in which the quasiparticle motions are governed by the Dirac equation in the low-energy regime, that the level-spacing statistics are persistently those of GOE random matrices. We present extensive numerical evidence obtained from the tight-binding approach and a physical explanation for the GOE statistics. We also find that the presence of a weak magnetic field switches the statistics to those of GUE. For a strong magnetic field, Landau levels become influential, causing the level-spacing distribution to deviate markedly from the random-matrix predictions. Issues addressed also include the effects of a number of realistic factors on level-spacing statistics such as next nearest-neighbor interactions, different lattice orientations, enhanced hopping energy for atoms on the boundary, and staggered potential due to graphene-substrate interactions.
On the cognition of laws of nature
WEINGARTNER PAUL
2003-01-01
In this paper I shall discuss the problem of cognition of laws of nature on the following different levels of understanding: (i) First level of understanding of laws of nature: the Greek Ideal of Science (ii) Second level: Space Time Invariance (iii) Third level: Dynamical Laws (iv) Fourth level: Statistical Laws (v) Fifth level: Laws and Causality (vi) Sixth level: Chaotic Motion (vii) Seventh level: Initial conditions and Constants of Nature
Chaotic behaviour of a fourth-order autonomous electric circuit
International Nuclear Information System (INIS)
Koliopanos, Ch.L.; Kyprianidis, I.M.; Stouboulos, I.N.; Anagnostopoulos, A.N.; Magafas, L.
2003-01-01
The chaotic dynamics of a fourth-order autonomous nonlinear electric circuit was studied by measuring its response in the form of chaotic time series. The circuit consists of two active elements, one linear negative conductance and one nonlinear resistor exhibiting a symmetrical piecewise-linear v-i characteristic and two capacitances C 1 and C 2 , which serve as the control parameters of the system. From the experimental time series the minimum embedding dimensions m min =4, correlation dimensions ν, with positive noninteger values, and Kolmogorov entropies, tending to constant positive values, were determined by numerical evaluation for the examined states of the system
Identification of chaotic systems with hidden variables (modified Bock's algorithm)
International Nuclear Information System (INIS)
Bezruchko, Boris P.; Smirnov, Dmitry A.; Sysoev, Ilya V.
2006-01-01
We address the problem of estimating parameters of chaotic dynamical systems from a time series in a situation when some of state variables are not observed and/or the data are very noisy. Using specially developed quantitative criteria, we compare performance of the original multiple shooting approach (Bock's algorithm) and its modified version. The latter is shown to be significantly superior for long chaotic time series. In particular, it allows to obtain accurate estimates for much worse starting guesses for the estimated parameters
Ast, Olga
2013-09-01
This paper and poster seek to address several fundamental questions about time. What are the natural phenomena and cognitive structures that underlie the human perception of time? What social constructs have evolved around questioning its nature? How did they arise and evolve over the ages? I have been exploring the subject of time merging my background as a conceptual artist with principles of scientific study. My focus has been on the changing visualizations of time through the evolution of human society, from the earliest depictions of the flowing river or the circular uroboros - a snake eating its own tail - to the linear arrow and the paintings of Dali and Magritte, who depict time with modern metaphors of a clock, a train, or the 4th dimension. How have these images influenced scientific, religious and philosophical thought surrounding time? Drawn by now from our collective subconscious, do they naturally bias us towards particular conventional models? And finally, how can an analysis of the visual metaphors of time contribute to the larger dialogue, one that involves scientists, technologists and philosophers, each with their own theories on the subject? This project attempts to answer these questions, and to propose that art is an essential voice in any discussion about time. Can artists and scientists working together bring us closer to an answer to the age-old question - what is time?
Directory of Open Access Journals (Sweden)
Ast Olga
2013-09-01
Full Text Available This paper and poster seek to address several fundamental questions about time. What are the natural phenomena and cognitive structures that underlie the human perception of time? What social constructs have evolved around questioning its nature? How did they arise and evolve over the ages? I have been exploring the subject of time merging my background as a conceptual artist with principles of scientific study. My focus has been on the changing visualizations of time through the evolution of human society, from the earliest depictions of the flowing river or the circular uroboros – a snake eating its own tail – to the linear arrow and the paintings of Dali and Magritte, who depict time with modern metaphors of a clock, a train, or the 4th dimension. How have these images influenced scientific, religious and philosophical thought surrounding time? Drawn by now from our collective subconscious, do they naturally bias us towards particular conventional models? And finally, how can an analysis of the visual metaphors of time contribute to the larger dialogue, one that involves scientists, technologists and philosophers, each with their own theories on the subject? This project attempts to answer these questions, and to propose that art is an essential voice in any discussion about time. Can artists and scientists working together bring us closer to an answer to the age-old question – what is time?
Nonlinear mode conversion with chaotic soliton generation at plasma resonance
International Nuclear Information System (INIS)
Pietsch, H.; Laedke, E.W.; Spatschek, K.H.
1993-01-01
The resonant absorption of electromagnetic waves near the critical density in inhomogeneous plasmas is studied. A driven nonlinear Schroedinger equation for the mode-converted oscillations is derived by multiple-scaling techniques. The model is simulated numerically. The generic transition from a stationary to a time-dependent solution is investigated. Depending on the parameters, a time-chaotic behavior is found. By a nonlinear analysis, based on the inverse scattering transform, solitons of a corresponding integrable equation are identified as the dominant coherent structures of the chaotic dynamics. Finally, a map is presented which predicts chaotic soliton generation and emission at the critical density. Its qualitative behavior, concerning the bifurcation points, is in excellent agreement with the numerical simulations
Modified Baptista type chaotic cryptosystem via matrix secret key
International Nuclear Information System (INIS)
Ariffin, M.R.K.; Noorani, M.S.M.
2008-01-01
In 1998, M.S. Baptista proposed a chaotic cryptosystem using the ergodicity property of the simple low-dimensional and chaotic logistic equation. Since then, many cryptosystems based on Baptista's work have been proposed. However, over the years research has shown that this cryptosystem is predictable and vulnerable to attacks and is widely discussed. Among the weaknesses are the non-uniform distribution of ciphertexts and succumbing to the one-time pad attack (a type of chosen plaintext attack). In this Letter, our objective is to modify the chaotic cryptographic scheme proposed previously. We use a matrix secret key such that the cryptosystem would no longer succumb to the one-time pad attack
Importance sampling of rare events in chaotic systems
DEFF Research Database (Denmark)
Leitão, Jorge C.; Parente Lopes, João M.Viana; Altmann, Eduardo G.
2017-01-01
space of chaotic systems. As examples of our general framework we compute the distribution of finite-time Lyapunov exponents (in different chaotic maps) and the distribution of escape times (in transient-chaos problems). Our methods sample exponentially rare states in polynomial number of samples (in......Finding and sampling rare trajectories in dynamical systems is a difficult computational task underlying numerous problems and applications. In this paper we show how to construct Metropolis-Hastings Monte-Carlo methods that can efficiently sample rare trajectories in the (extremely rough) phase...... both low- and high-dimensional systems). An open-source software that implements our algorithms and reproduces our results can be found in reference [J. Leitao, A library to sample chaotic systems, 2017, https://github.com/jorgecarleitao/chaospp]....
On the quantization of classically chaotic system
International Nuclear Information System (INIS)
Godoy, N.F. de.
1988-01-01
Some propeties of a quantization in terms of observables of a classically chaotic system, which exhibits a strange are studied. It is shown in particular that convenient expected values of some observables have the correct classical limit and that in these cases the limits ℎ → O and t → ∞ (t=time) rigorously comute. This model was alternatively quantized by R.Graham in terms of Wigner function. The Graham's analysis is completed a few points, in particular, we find out a remarkable analogy with general results about the semi-classical limit of Wigner function. Finally the expected values obtained by both methods of quantization were compared. (author) [pt
Chaotic combustion in spark ignition engines
International Nuclear Information System (INIS)
Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz
2003-01-01
We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process
Multicarrier chaotic communications in multipath fading channels without channel estimation
Energy Technology Data Exchange (ETDEWEB)
Wang, Shilian, E-mail: wangsl@nudt.edu.cn; Zhang, Zhili [College of Electrical Science and Engineering, National University of Defense Technology, Changsha, 410073, P R China (China)
2015-01-15
A multi-carrier chaotic shift keying(MC-CSK) communication scheme with low probability of interception(LPI) is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM) subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK) in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.
Multicarrier chaotic communications in multipath fading channels without channel estimation
Directory of Open Access Journals (Sweden)
Shilian Wang
2015-01-01
Full Text Available A multi-carrier chaotic shift keying(MC-CSK communication scheme with low probability of interception(LPI is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.
Chaotic dynamics from interspike intervals
DEFF Research Database (Denmark)
Pavlov, A N; Sosnovtseva, Olga; Mosekilde, Erik
2001-01-01
Considering two different mathematical models describing chaotic spiking phenomena, namely, an integrate-and-fire and a threshold-crossing model, we discuss the problem of extracting dynamics from interspike intervals (ISIs) and show that the possibilities of computing the largest Lyapunov expone...
Earthquake prediction in Japan and natural time analysis of seismicity
Uyeda, S.; Varotsos, P.
2011-12-01
M9 super-giant earthquake with huge tsunami devastated East Japan on 11 March, causing more than 20,000 casualties and serious damage of Fukushima nuclear plant. This earthquake was predicted neither short-term nor long-term. Seismologists were shocked because it was not even considered possible to happen at the East Japan subduction zone. However, it was not the only un-predicted earthquake. In fact, throughout several decades of the National Earthquake Prediction Project, not even a single earthquake was predicted. In reality, practically no effective research has been conducted for the most important short-term prediction. This happened because the Japanese National Project was devoted for construction of elaborate seismic networks, which was not the best way for short-term prediction. After the Kobe disaster, in order to parry the mounting criticism on their no success history, they defiantly changed their policy to "stop aiming at short-term prediction because it is impossible and concentrate resources on fundamental research", that meant to obtain "more funding for no prediction research". The public were and are not informed about this change. Obviously earthquake prediction would be possible only when reliable precursory phenomena are caught and we have insisted this would be done most likely through non-seismic means such as geochemical/hydrological and electromagnetic monitoring. Admittedly, the lack of convincing precursors for the M9 super-giant earthquake has adverse effect for us, although its epicenter was far out off shore of the range of operating monitoring systems. In this presentation, we show a new possibility of finding remarkable precursory signals, ironically, from ordinary seismological catalogs. In the frame of the new time domain termed natural time, an order parameter of seismicity, κ1, has been introduced. This is the variance of natural time kai weighted by normalised energy release at χ. In the case that Seismic Electric Signals
Applications of Chaotic Dynamics in Robotics
Directory of Open Access Journals (Sweden)
Xizhe Zang
2016-03-01
Full Text Available This article presents a summary of applications of chaos and fractals in robotics. Firstly, basic concepts of deterministic chaos and fractals are discussed. Then, fundamental tools of chaos theory used for identifying and quantifying chaotic dynamics will be shared. Principal applications of chaos and fractal structures in robotics research, such as chaotic mobile robots, chaotic behaviour exhibited by mobile robots interacting with the environment, chaotic optimization algorithms, chaotic dynamics in bipedal locomotion and fractal mechanisms in modular robots will be presented. A brief survey is reported and an analysis of the reviewed publications is also presented.
Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin
International Nuclear Information System (INIS)
Ermann, Leonardo; Paz, Juan Pablo; Saraceno, Marcos
2006-01-01
We study the differences between the processes of decoherence induced by chaotic and regular environments. For this we analyze a family of simple models that contain both regular and chaotic environments. In all cases the system of interest is a ''quantum walker,'' i.e., a quantum particle that can move on a lattice with a finite number of sites. The walker interacts with an environment which has a D-dimensional Hilbert space. The results we obtain suggest that regular and chaotic environments are not distinguishable from each other in a (short) time scale t*, which scales with the dimensionality of the environment as t*∝log 2 (D). However, chaotic environments continue to be effective over exponentially longer time scales while regular environments tend to reach saturation much sooner. We present both numerical and analytical results supporting this conclusion. The family of chaotic evolutions we consider includes the so-called quantum multibaker map as a particular case
Dynamic Parameter-Control Chaotic System.
Hua, Zhongyun; Zhou, Yicong
2016-12-01
This paper proposes a general framework of 1-D chaotic maps called the dynamic parameter-control chaotic system (DPCCS). It has a simple but effective structure that uses the outputs of a chaotic map (control map) to dynamically control the parameter of another chaotic map (seed map). Using any existing 1-D chaotic map as the control/seed map (or both), DPCCS is able to produce a huge number of new chaotic maps. Evaluations and comparisons show that chaotic maps generated by DPCCS are very sensitive to their initial states, and have wider chaotic ranges, better unpredictability and more complex chaotic behaviors than their seed maps. Using a chaotic map of DPCCS as an example, we provide a field-programmable gate array design of this chaotic map to show the simplicity of DPCCS in hardware implementation, and introduce a new pseudo-random number generator (PRNG) to investigate the applications of DPCCS. Analysis and testing results demonstrate the excellent randomness of the proposed PRNG.
Chaotic synchronization of two complex nonlinear oscillators
International Nuclear Information System (INIS)
Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.
2009-01-01
Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.
Advances and applications in chaotic systems
Volos, Christos
2016-01-01
This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.
Chaotic advection and heat transfer enhancement in Stokes flows
International Nuclear Information System (INIS)
Lefevre, A.; Mota, J.P.B.; Rodrigo, A.J.S.; Saatdjian, E.
2003-01-01
The heat transfer rate from a solid boundary to a highly viscous fluid can be enhanced significantly by a phenomenon which is called chaotic advection or Lagrangian turbulence. Although the flow is laminar and dominated by viscous forces, some fluid particle trajectories are chaotic due either to a suitable boundary displacement protocol or to a change in geometry. As in turbulent flow, the heat transfer rate enhancement between the boundary and the fluid is intimately linked to the mixing of fluid in the system. Chaotic advection in real Stokes flows, i.e. flows governed by viscous forces and that can be constructed experimentally, is reviewed in this paper. An emphasis is made on recent new results on 3-D time-periodic open flows which are particularly important in industry
A fast image encryption algorithm based on chaotic map
Liu, Wenhao; Sun, Kehui; Zhu, Congxu
2016-09-01
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
Chaotic, fractional, and complex dynamics new insights and perspectives
Macau, Elbert; Sanjuan, Miguel
2018-01-01
The book presents nonlinear, chaotic and fractional dynamics, complex systems and networks, together with cutting-edge research on related topics. The fifteen chapters – written by leading scientists working in the areas of nonlinear, chaotic and fractional dynamics, as well as complex systems and networks – offer an extensive overview of cutting-edge research on a range of topics, including fundamental and applied research. These include but are not limited to aspects of synchronization in complex dynamical systems, universality features in systems with specific fractional dynamics, and chaotic scattering. As such, the book provides an excellent and timely snapshot of the current state of research, blending the insights and experiences of many prominent researchers.
One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures
DEFF Research Database (Denmark)
Belykh, Vladimir N.; Mosekilde, Erik
1996-01-01
The paper presents a qualitative analysis of coupled map lattices (CMLs) for the case of arbitrary nonlinearity of the local map and with space-shift as well as diffusion coupling. The effect of synchronization where, independently of the initial conditions, all elements of a CML acquire uniform...... dynamics is investigated and stable chaotic time behaviors, steady structures, and traveling waves are described. Finally, the bifurcations occurring under the transition from spatiotemporal chaos to chaotic synchronization and the peculiarities of CMLs with specific symmetries are discussed....
H∞ synchronization of chaotic systems via dynamic feedback approach
International Nuclear Information System (INIS)
Lee, S.M.; Ji, D.H.; Park, Ju H.; Won, S.C.
2008-01-01
This Letter considers H ∞ synchronization of a general class of chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the novel feedback controller is established to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance to an H ∞ norm constraint. A dynamic feedback control scheme is proposed for H ∞ synchronization in chaotic systems for the first time. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme
Directing orbits of chaotic systems by particle swarm optimization
International Nuclear Information System (INIS)
Liu Bo; Wang Ling; Jin Yihui; Tang Fang; Huang Dexian
2006-01-01
This paper applies a novel evolutionary computation algorithm named particle swarm optimization (PSO) to direct the orbits of discrete chaotic dynamical systems towards desired target region within a short time by adding only small bounded perturbations, which could be formulated as a multi-modal numerical optimization problem with high dimension. Moreover, the synchronization of chaotic systems is also studied, which can be dealt with as an online problem of directing orbits. Numerical simulations based on Henon Map demonstrate the effectiveness and efficiency of PSO, and the effects of some parameters are also investigated
Improved numerical solutions for chaotic-cancer-model
Directory of Open Access Journals (Sweden)
Muhammad Yasir
2017-01-01
Full Text Available In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Shadowing of physical trajectories in chaotic dynamics: Containment and refinement
International Nuclear Information System (INIS)
Grebogi, C.; Hammel, S.M.; Yorke, J.A.; Sauer, T.
1990-01-01
For a chaotic system, a noisy trajectory diverges rapidly from the true trajectory with the same initial condition. To understand in what sense the noisy trajectory reflects the true dynamics of the actual system, we developed a rigorous procedure to show that some true trajectories remain close to the noisy one for long times. The procedure involves a combination of containment, which establishes the existence of an uncountable number of true trajectories close to the noisy one, and refinement, which produces a less noisy trajectory. Our procedure is applied to noisy chaotic trajectories of the standard map and the driven pendulum
Improved numerical solutions for chaotic-cancer-model
Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair
2017-01-01
In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Generalized projective synchronization of chaotic systems via adaptive learning control
International Nuclear Information System (INIS)
Yun-Ping, Sun; Jun-Min, Li; Hui-Lin, Wang; Jiang-An, Wang
2010-01-01
In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov–Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme. (general)
On the way to understanding the time phenomenon the constructions of time in natural science
Time is considered as an independent entity which cannot be reduced to the concept of matter, space or field. The point of discussion is the "time flow" conception of N A Kozyrev (1908-1983), an outstanding Russian astronomer and natural scientist. In addition to a review of the experimental studies of "the active properties of time", by both Kozyrev and modern scientists, the reader will find different interpretations of Kozyrev's views and some developments of his ideas in the fields of geophysics, astrophysics, general relativity and theoretical mechanics.
Vehicle routing problem with time windows using natural inspired algorithms
Pratiwi, A. B.; Pratama, A.; Sa’diyah, I.; Suprajitno, H.
2018-03-01
Process of distribution of goods needs a strategy to make the total cost spent for operational activities minimized. But there are several constrains have to be satisfied which are the capacity of the vehicles and the service time of the customers. This Vehicle Routing Problem with Time Windows (VRPTW) gives complex constrains problem. This paper proposes natural inspired algorithms for dealing with constrains of VRPTW which involves Bat Algorithm and Cat Swarm Optimization. Bat Algorithm is being hybrid with Simulated Annealing, the worst solution of Bat Algorithm is replaced by the solution from Simulated Annealing. Algorithm which is based on behavior of cats, Cat Swarm Optimization, is improved using Crow Search Algorithm to make simplier and faster convergence. From the computational result, these algorithms give good performances in finding the minimized total distance. Higher number of population causes better computational performance. The improved Cat Swarm Optimization with Crow Search gives better performance than the hybridization of Bat Algorithm and Simulated Annealing in dealing with big data.
International Nuclear Information System (INIS)
Hu Manfeng; Xu Zhenyuan; Zhang Rong; Hu Aihua
2007-01-01
Based on the active control idea and the invariance principle of differential equations, a general scheme of adaptive full state hybrid projective synchronization (FSHPS) and parameters identification of a class of chaotic (hyper-chaotic) systems with linearly dependent uncertain parameters is proposed in this Letter. With this effective scheme parameters identification and FSHPS of chaotic and hyper-chaotic systems can be realized simultaneously. Numerical simulations on the chaotic Chen system and the hyper-chaotic Chen system are presented to verify the effectiveness of the proposed scheme
Directory of Open Access Journals (Sweden)
Fei Wang
2017-11-01
Full Text Available The optimal dispatching model for a stand-alone microgrid (MG is of great importance to its operation reliability and economy. This paper aims at addressing the difficulties in improving the operational economy and maintaining the power balance under uncertain load demand and renewable generation, which could be even worse in such abnormal conditions as storms or abnormally low or high temperatures. A new two-time scale multi-objective optimization model, including day-ahead cursory scheduling and real-time scheduling for finer adjustments, is proposed to optimize the operational cost, load shedding compensation and environmental benefit of stand-alone MG through controllable load (CL and multi-distributed generations (DGs. The main novelty of the proposed model is that the synergetic response of CL and energy storage system (ESS in real-time scheduling offset the operation uncertainty quickly. And the improved dispatch strategy for combined cooling-heating-power (CCHP enhanced the system economy while the comfort is guaranteed. An improved algorithm, Search Improvement Process-Chaotic Optimization-Particle Swarm Optimization-Elite Retention Strategy (SIP-CO-PSO-ERS algorithm with strong searching capability and fast convergence speed, was presented to deal with the problem brought by the increased errors between actual renewable generation and load and prior predictions. Four typical scenarios are designed according to the combinations of day types (work day or weekend and weather categories (sunny or rainy to verify the performance of the presented dispatch strategy. The simulation results show that the proposed two-time scale model and SIP-CO-PSO-ERS algorithm exhibit better performance in adaptability, convergence speed and search ability than conventional methods for the stand-alone MG’s operation.
Design and Hardware Implementation of a New Chaotic Secure Communication Technique.
Directory of Open Access Journals (Sweden)
Li Xiong
Full Text Available In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.
Design and Hardware Implementation of a New Chaotic Secure Communication Technique.
Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag
2016-01-01
In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.
Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil
Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris
2016-01-01
Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.
Detection of Mycoplasma hyopneumoniae in naturally infected gilts over time.
Takeuti, Karine L; de Barcellos, David E S N; de Lara, Anne C; Kunrath, Cintia F; Pieters, Maria
2017-05-01
Mycoplasma hyopneumoniae causes a chronic respiratory infection in pigs and its transmission occurs mainly by direct contact and by vertical transmission (sow-to-piglet). The objective of this study was to assess the detection dynamics and persistence of M. hyopneumoniae natural infection in replacement gilts. Forty-four twenty-day-old gilts were selected from a M. hyopneumoniae positive farm and followed up to one day prior to their first weaning. Laryngeal swabs were collected every 30days, starting at day 20, for M. hyopneumoniae detection by real-time PCR, resulting in 12 samplings. Piglets born to selected females were sampled via laryngeal swabs one day prior to weaning to evaluate sow-to-piglet transmission. The M. hyopneumoniae prevalence was estimated at each one of the 12 samplings in gilts and a multiple comparison test and Bonferroni correction were performed. Bacterial detection in gilts started at 110days of age (doa) and a significant increase (phyopneumoniae prevalence remained above 20% from 140 to 230 doa, decreasing thereafter. However, it did not reach 0% at any sampling after 110 doa. In this study, M. hyopneumoniae was not detected in piglets sampled prior to weaning. The M. hyopneumoniae detection pattern showed that in natural infections, gilts were positive for M. hyopneumoniae for one to three months, but occasionally long-term detection may occur. Moreover, the lack of M. hyopneumoniae detection throughout the study in 18.2% of gilts indicated the existence of negative subpopulations in positive herds. Copyright © 2017 Elsevier B.V. All rights reserved.
Color image encryption based on Coupled Nonlinear Chaotic Map
International Nuclear Information System (INIS)
Mazloom, Sahar; Eftekhari-Moghadam, Amir Masud
2009-01-01
Image encryption is somehow different from text encryption due to some inherent features of image such as bulk data capacity and high correlation among pixels, which are generally difficult to handle by conventional methods. The desirable cryptographic properties of the chaotic maps such as sensitivity to initial conditions and random-like behavior have attracted the attention of cryptographers to develop new encryption algorithms. Therefore, recent researches of image encryption algorithms have been increasingly based on chaotic systems, though the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper proposes a Coupled Nonlinear Chaotic Map, called CNCM, and a novel chaos-based image encryption algorithm to encrypt color images by using CNCM. The chaotic cryptography technique which used in this paper is a symmetric key cryptography with a stream cipher structure. In order to increase the security of the proposed algorithm, 240 bit-long secret key is used to generate the initial conditions and parameters of the chaotic map by making some algebraic transformations to the key. These transformations as well as the nonlinearity and coupling structure of the CNCM have enhanced the cryptosystem security. For getting higher security and higher complexity, the current paper employs the image size and color components to cryptosystem, thereby significantly increasing the resistance to known/chosen-plaintext attacks. The results of several experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.
Chaotic attractors with separated scrolls
International Nuclear Information System (INIS)
Bouallegue, Kais
2015-01-01
This paper proposes a new behavior of chaotic attractors with separated scrolls while combining Julia's process with Chua's attractor and Lorenz's attractor. The main motivation of this work is the ability to generate a set of separated scrolls with different behaviors, which in turn allows us to choose one or many scrolls combined with modulation (amplitude and frequency) for secure communication or synchronization. This set seems a new class of hyperchaos because each element of this set looks like a simple chaotic attractor with one positive Lyapunov exponent, so the cardinal of this set is greater than one. This new approach could be used to generate more general higher-dimensional hyperchaotic attractor for more potential application. Numerical simulations are given to show the effectiveness of the proposed theoretical results
Chaotic evolution of arms races
Tomochi, Masaki; Kono, Mitsuo
1998-12-01
A new set of model equations is proposed to describe the evolution of the arms race, by extending Richardson's model with special emphases that (1) power dependent defensive reaction or historical enmity could be a motive force to promote armaments, (2) a deterrent would suppress the growth of armaments, and (3) the defense reaction of one nation against the other nation depends nonlinearly on the difference in armaments between two. The set of equations is numerically solved to exhibit stationary, periodic, and chaotic behavior depending on the combinations of parameters involved. The chaotic evolution is realized when the economic situation of each country involved in the arms race is quite different, which is often observed in the real world.
International Nuclear Information System (INIS)
Goh, S.M.; Noorani, M.S.M.; Hashim, I.
2009-01-01
This is a case study of solving the Genesio system by using the classical variational iteration method (VIM) and a newly modified version called the multistage VIM (MVIM). VIM is an analytical technique that grants us a continuous representation of the approximate solution, which allows better information of the solution over the time interval. Unlike its counterpart, numerical techniques, such as the Runge-Kutta method, provide solutions only at two ends of the time interval (with condition that the selected time interval is adequately small for convergence). Furthermore, it offers approximate solutions in a discretized form, making it complicated in achieving a continuous representation. The explicit solutions through VIM and MVIM are compared with the numerical analysis of the fourth-order Runge-Kutta method (RK4). VIM had been successfully applied to linear and nonlinear systems of non-chaotic in nature and this had been testified by numerous scientists lately. Our intention is to determine whether VIM is also a feasible method in solving a chaotic system like Genesio. At the same time, MVIM will be applied to gauge its accuracy compared to VIM and RK4. Since, for most situations, the validity domain of the solutions is often an issue, we will consider a reasonably large time frame in our work.
Working Towards Führer: A Chaotic View
Cakar, Ulas
Leadership is a concept that has been discussed since the beginning of history. Even though there have been many theories in the field accepting leadership's role in bringing order, chaotic aspects of leadership are generally neglected. This chapter aims to examine the leadership beyond an orderly interpretation of universe. For this purpose, Third Reich period and leadership during this period will be examined. Ian Kershaw's "Working Towards Führer" concept provides a unique understanding of leadership concept. It goes beyond the dualist depiction of Third Reich, it does not state Adolf Hitler as an all powerful dictator, or a weak one. Rather, he expresses that due to the conditions in the Third Reich, Adolf Hitler was both of this. This complex situation can be understood deeper when it is examined through the lens of chaos theory. This study contributes to the field by being the first in using chaos theory for examining "Working Towards Führer" concept and its development. Seemingly orderly nature of synchronization process and its vortex will be shown. Adolf Hitler's storm spot position in the chaotic system and its dynamics are explained. War's entropic power and its effect on the downfall of the system is crucial in understanding this unique chaotic system. The chaotic pattern of "Working Towards Führer" offers an opportunity to analyze the complexities of the leadership concept.
Jamming and chaotic dynamics in different granular systems
Maghsoodi, Homayoon; Luijten, Erik
Although common in nature and industry, the jamming transition has long eluded a concrete, mechanistic explanation. Recently, Banigan et al. (Nat. Phys. 9, 288-292, 2013) proposed a method for characterizing this transition in a granular system in terms of the system's chaotic properties, as quantified by the largest Lyapunov exponent. They demonstrated that in a two-dimensional shear cell the jamming transition coincides with the bulk density at which the system's largest Lyapunov exponent changes sign, indicating a transition between chaotic and non-chaotic regimes. To examine the applicability of this observation to realistic granular systems, we study a model that includes frictional forces within an expanded phase space. Furthermore, we test the generality of the relation between chaos and jamming by investigating the relationship between jamming and the chaotic properties of several other granular systems, notably sheared systems (Howell, D., Behringer R. P., Veje C., Phys. Rev. Lett. 82, 5241-5244, 1999) and systems with a free boundary. Finally, we quantify correlations between the largest Lyapunov vector and collective rearrangements of the system to demonstrate the predictive capabilities enabled by adopting this perspective of jamming.
Chaotic Behavior in a Switched Dynamical System
Directory of Open Access Journals (Sweden)
Fatima El Guezar
2008-01-01
Full Text Available We present a numerical study of an example of piecewise linear systems that constitute a class of hybrid systems. Precisely, we study the chaotic dynamics of the voltage-mode controlled buck converter circuit in an open loop. By considering the voltage input as a bifurcation parameter, we observe that the obtained simulations show that the buck converter is prone to have subharmonic behavior and chaos. We also present the corresponding bifurcation diagram. Our modeling techniques are based on the new French native modeler and simulator for hybrid systems called Scicos (Scilab connected object simulator which is a Scilab (scientific laboratory package. The followed approach takes into account the hybrid nature of the circuit.
Time domain simulations of preliminary breakdown pulses in natural lightning.
Carlson, B E; Liang, C; Bitzer, P; Christian, H
2015-06-16
Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.
Chaotic dynamics of respiratory sounds
International Nuclear Information System (INIS)
Ahlstrom, C.; Johansson, A.; Hult, P.; Ask, P.
2006-01-01
There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D 2 ) and the Kaplan-Yorke dimension (D KY ) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data
Chaotic dynamics of respiratory sounds
Energy Technology Data Exchange (ETDEWEB)
Ahlstrom, C. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden) and Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden)]. E-mail: christer@imt.liu.se; Johansson, A. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Hult, P. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden); Ask, P. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden)
2006-09-15
There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D {sub 2}) and the Kaplan-Yorke dimension (D {sub KY}) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data.
Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation
Mansingka, Abhinav S.
2012-05-01
This thesis presents a generalized approach for the fully digital design and implementation of chaos generators through the numerical solution of chaotic ordinary differential equations. In particular, implementations use the Euler approximation with a fixed-point twos complement number representation system for optimal hardware and performance. In general, digital design enables significant benefits in terms of power, area, throughput, reliability, repeatability and portability over analog implementations of chaos due to lower process, voltage and temperature sensitivities and easy compatibility with other digital systems such as microprocessors, digital signal processing units, communication systems and encryption systems. Furthermore, this thesis introduces the idea of implementing multidimensional chaotic systems rather than 1-D chaotic maps to enable wider throughputs and multiplier-free architectures that provide significant performance and area benefits. This work focuses efforts on the well-understood family of autonomous 3rd order "jerk" chaotic systems. The effect of implementation precision, internal delay cycles and external delay cycles on the chaotic response are assessed. Multiplexing of parameters is implemented to enable switching between chaotic and periodic modes of operation. Enhanced chaos generators that exploit long-term divergence in two identical systems of different precision are also explored. Digital design is shown to enable real-time controllability of 1D multiscroll systems and 4th order hyperchaotic systems, essentially creating non-autonomous chaos that has thus far been difficult to implement in the analog domain. Seven different systems are mathematically assessed for chaotic properties, implemented at the register transfer level in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA. The statistical properties of the output are rigorously studied using the NIST SP. 800-22 statistical testing suite. The output is
Gao, Zhong-Ke; Jin, Ning-De; Wang, Wen-Xu; Lai, Ying-Cheng
2010-07-01
The dynamics of two-phase flows have been a challenging problem in nonlinear dynamics and fluid mechanics. We propose a method to characterize and distinguish patterns from inclined water-oil flow experiments based on the concept of network motifs that have found great usage in network science and systems biology. In particular, we construct from measured time series phase-space complex networks and then calculate the distribution of a set of distinct network motifs. To gain insight, we first test the approach using time series from classical chaotic systems and find a universal feature: motif distributions from different chaotic systems are generally highly heterogeneous. Our main finding is that the distributions from experimental two-phase flows tend to be heterogeneous as well, suggesting the underlying chaotic nature of the flow patterns. Calculation of the maximal Lyapunov exponent provides further support for this. Motif distributions can thus be a feasible tool to understand the dynamics of realistic two-phase flow patterns.
Characterizing chaotic melodies in automatic music composition
Coca, Andrés E.; Tost, Gerard O.; Zhao, Liang
2010-09-01
In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests.
Modelling of long-wave chaotic radar system for anti-stealth applications
Al-Suhail, Ghaida A.; Tahir, Fadhil Rahma; Abd, Mariam Hussien; Pham, Viet-Thanh; Fortuna, Luigi
2018-04-01
Although the Very Low-Frequency (VLF) waveforms have limited practical applications in acoustics (sonar) and secure military communications with radars and submarines; to this end; this paper presents a new and simple analytical model of VLF monostatic direct chaotic radar system. The model hypothetically depends on the two identical coupled time-delayed feedback chaotic systems which can generate and recover a long-wave chaotic signal. To resist the influence of positive Lyapunov exponents of the time-delay chaotic systems, the complete replacement of Pecaro and Carroll (PC) synchronization is employed. It can faithfully recover the chaotic signal from the back-scattered (echo) signal from the target over a noisy channel. The system performance is characterized in terms of the time series of synchronization in addition to the peak of the cross-correlation. Simulation results are conducted for substantial sensitivities of the chaotic signal to the system parameters and initial conditions. As a result, it is found that an effective and robust chaotic radar (CRADAR) model can be obtained when the signal-to-noise ratio (SNR) highly degrades to 0 dB, but with clear peak in correlation performance for detecting the target. Then, the model can be considered as a state of the art towards counter stealth technology and might be developed for other acoustic secure applications.
TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR
DEFF Research Database (Denmark)
Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis
2007-01-01
A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...
Unstable periodic orbits and chaotic economic growth
International Nuclear Information System (INIS)
Ishiyama, K.; Saiki, Y.
2005-01-01
We numerically find many unstable periodic solutions embedded in a chaotic attractor in a macroeconomic growth cycle model of two countries with different fiscal policies, and we focus on a special type of the unstable periodic solutions. It is confirmed that chaotic behavior represented by the model is qualitatively and quantitatively related to the unstable periodic solutions. We point out that the structure of a chaotic solution is dissolved into a class of finite unstable periodic solutions picked out among a large number of periodic solutions. In this context it is essential for the unstable periodic solutions to be embedded in the chaotic attractor
On Chaotic Behavior of Temperature Distribution in a Heat Exchanger
Bagyalakshmi, Morachan; Gangadharan, Saisundarakrishnan; Ganesh, Madhu
The objective of this paper is to introduce the notion of fractional derivatives in the energy equations and to study the chaotic nature of the temperature distribution in a heat exchanger with variation of temperature dependent transport properties. The governing fractional partial differential equations are transformed to a set of recurrence relations using fractional differential transform method and solved using inverse transform. The approximate analytical solution obtained by the proposed method has good agreement with the existing results.
A Fast Enhanced Secure Image Chaotic Cryptosystem Based on Hybrid Chaotic Magic Transform
Directory of Open Access Journals (Sweden)
Srinivas Koppu
2017-01-01
Full Text Available An enhanced secure image chaotic cryptosystem has been proposed based on hybrid CMT-Lanczos algorithm. We have achieved fast encryption and decryption along with privacy of images. The pseudorandom generator has been used along with Lanczos algorithm to generate root characteristics and eigenvectors. Using hybrid CMT image, pixels are shuffled to accomplish excellent randomness. Compared with existing methods, the proposed method had more robustness to various attacks: brute-force attack, known cipher plaintext, chosen-plaintext, security key space, key sensitivity, correlation analysis and information entropy, and differential attacks. Simulation results show that the proposed methods give better result in protecting images with low-time complexity.
Decoupled Scheme for Time-Dependent Natural Convection Problem II: Time Semidiscreteness
Directory of Open Access Journals (Sweden)
Tong Zhang
2014-01-01
stability and the corresponding optimal error estimates are presented. Furthermore, a decoupled numerical scheme is proposed by decoupling the nonlinear terms via temporal extrapolation; optimal error estimates are established. Finally, some numerical results are provided to verify the performances of the developed algorithms. Compared with the coupled numerical scheme, the decoupled algorithm not only keeps good accuracy but also saves a lot of computational cost. Both theoretical analysis and numerical experiments show the efficiency and effectiveness of the decoupled method for time-dependent natural convection problem.
Chaotic spin exchange: is the spin non-flip rate observable?
International Nuclear Information System (INIS)
Senba, Masayoshi
1994-01-01
If spin exchange is of the Poisson nature, that is, if the time distribution of collisions obeys an exponential distribution function and the collision process is random, the muon spin depolarization is determined only by the spin flip rate regardless of the spin non-flip rate. In this work, spin exchange is discussed in the case of chaotic spin exchange, where the distribution of collision time sequences, generated by a deterministic equation, is exponential but not random (deterministic chaos). Even though this process has the same time distribution as a Poisson process, the muon polarization is affected by the spin non-flip rate. Having an exponential time distribution function is not a sufficient condition for the non-observation of the spin non-flip rate and it is essential that the process is also random. (orig.)
Quantum graphs: a simple model for chaotic scattering
International Nuclear Information System (INIS)
Kottos, Tsampikos; Smilansky, Uzy
2003-01-01
We connect quantum graphs with infinite leads, and turn them into scattering systems. We show that they display all the features which characterize quantum scattering systems with an underlying classical chaotic dynamics: typical poles, delay time and conductance distributions, Ericson fluctuations, and when considered statistically, the ensemble of scattering matrices reproduces quite well the predictions of the appropriately defined random matrix ensembles. The underlying classical dynamics can be defined, and it provides important parameters which are needed for the quantum theory. In particular, we derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. We use this in order to investigate the origin of the connection between random matrix theory and the underlying classical chaotic dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the forefront of the research in chaotic scattering and related fields
Wound healing: time to look for intelligent, 'natural' immunological approaches?
Garraud, Olivier; Hozzein, Wael N; Badr, Gamal
2017-06-21
There is now good evidence that cytokines and growth factors are key factors in tissue repair and often exert anti-infective activities. However, engineering such factors for global use, even in the most remote places, is not realistic. Instead, we propose to examine how such factors work and to evaluate the reparative tools generously provided by 'nature.' We used two approaches to address these objectives. The first approach was to reappraise the internal capacity of the factors contributing the most to healing in the body, i.e., blood platelets. The second was to revisit natural agents such as whey proteins, (honey) bee venom and propolis. The platelet approach elucidates the inflammation spectrum from physiology to pathology, whereas milk and honey derivatives accelerate diabetic wound healing. Thus, this review aims at offering a fresh view of how wound healing can be addressed by natural means.
Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators
Energy Technology Data Exchange (ETDEWEB)
Semenova, N.; Anishchenko, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)
2016-06-08
In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.
International Nuclear Information System (INIS)
Duan Shukai; Liao Xiaofeng
2007-01-01
A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments
Chaotic Patterns in Aeroelastic Signals
Directory of Open Access Journals (Sweden)
F. D. Marques
2009-01-01
patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincaré mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents.
Chaotic fluctuations in mathematical economics
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Hiroyuki, E-mail: yoshida.hiroyuki@nihon-u.ac.jp [College of Economics, Nihon University, Chiyoda-ku, Tokyo 101-8360 (Japan)
2011-03-01
In this paper we examine a Cournot duopoly model, which expresses the strategic interaction between two firms. We formulate the dynamic adjustment process and investigate the dynamic properties of the stationary point. By introducing a memory mechanism characterized by distributed lag functions, we presuppose that each firm makes production decisions in a cautious manner. This implies that we have to deal with the system of integro-differential equations. By means of numerical simulations we show the occurrence of chaotic fluctuations in the case of fixed delays.
Observer-based design of set-point tracking adaptive controllers for nonlinear chaotic systems
International Nuclear Information System (INIS)
Khaki-Sedigh, A.; Yazdanpanah-Goharrizi, A.
2006-01-01
A gradient based approach for the design of set-point tracking adaptive controllers for nonlinear chaotic systems is presented. In this approach, Lyapunov exponents are used to select the controller gain. In the case of unknown or time varying chaotic plants, the Lyapunov exponents may vary during the plant operation. In this paper, an effective adaptive strategy is used for online identification of Lyapunov exponents and adaptive control of nonlinear chaotic plants. Also, a nonlinear observer for estimation of the states is proposed. Simulation results are provided to show the effectiveness of the proposed methodology
Observer-based design of set-point tracking adaptive controllers for nonlinear chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Khaki-Sedigh, A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Sayyed Khandan Bridge, Shariati Street, Tehran 16314 (Iran, Islamic Republic of)]. E-mail: sedigh@kntu.ac.ir; Yazdanpanah-Goharrizi, A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Sayyed Khandan Bridge, Shariati Street, Tehran 16314 (Iran, Islamic Republic of)]. E-mail: yazdanpanah@ee.kntu.ac.ir
2006-09-15
A gradient based approach for the design of set-point tracking adaptive controllers for nonlinear chaotic systems is presented. In this approach, Lyapunov exponents are used to select the controller gain. In the case of unknown or time varying chaotic plants, the Lyapunov exponents may vary during the plant operation. In this paper, an effective adaptive strategy is used for online identification of Lyapunov exponents and adaptive control of nonlinear chaotic plants. Also, a nonlinear observer for estimation of the states is proposed. Simulation results are provided to show the effectiveness of the proposed methodology.
CO2 laser with modulated losses: Theoretical models and experiments in the chaotic regime
International Nuclear Information System (INIS)
Pando L, C.L.; Meucci, R.; Ciofini, M.; Arecchi, F.T.
1993-04-01
We compare two different theoretical models for a CO 2 laser, namely the two-and four-level model, and show that the second one traces with much better accuracy the experimental behavior in the case of a chaotic dynamics due to time modulation of the cavity losses. Even though the two-level model provides a qualitative explanation of the chaotic dynamics, only the four-level one assures a quantitative fitting. We also show that, at the onset of chaos, the chaotic dynamics is low dimensional and can be described in terms of a noninvertible unidimensional map. (author). 12 refs, 8 figs, 2 tabs
A controllability approach to the control of a class of chaotic systems
International Nuclear Information System (INIS)
Bowong, Samuel; Moukam Kakmeni, F.M.; Tchawoua, Clement; Abdus Salam International Centre for Theoretical Physics, Trieste
2003-10-01
In this paper the exponential control problem for a class of chaotic systems with affine dependence on the control is addressed and solved by the controllability approach. It is shown that the controllability approach in conjunction with Lyapunov Direct Method yields a promising way of controlling chaotic dynamics. The proposed strategy is an input-output control scheme which comprises a state estimator and an exponential linearizing feedback. The proposed output feedback controller allows chaos suppression and can be applied to a large class of chaotic systems. Explicit expression of the control time is given. Computer simulations confirm the feasibility of the proposed approach. (author)
International Nuclear Information System (INIS)
Li Nian-Qiang; Pan Wei; Yan Lian-Shan; Luo Bin; Xu Ming-Feng; Tang Yi-Long
2012-01-01
Symbolic transfer entropy (STE) is employed to quantify the dominant direction of information flow between two chaotic-semiconductor-laser time series. The information flow in unidirectionally and bidirectionally coupled systems was analyzed systematically. Numerical results show that the dependence relationship can be revealed if there exists any coupling between two chaotic semiconductor lasers. More importantly, in both unsynchronized and good synchronization regimes, the STE can be used to quantify the direction of information flow between the lasers, although the former case leads to a better identification. The results thus establish STE as an effective tool for quantifying the direction of information flow between chaotic-laser-based systems
Controller Synthesis for Periodically Forced Chaotic Systems
Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo
Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.
Theory and practice of chaotic cryptography
International Nuclear Information System (INIS)
Amigo, J.M.; Kocarev, L.; Szczepanski, J.
2007-01-01
In this Letter we address some basic questions about chaotic cryptography, not least the very definition of chaos in discrete systems. We propose a conceptual framework and illustrate it with different examples from private and public key cryptography. We elaborate also on possible limits of chaotic cryptography
Synthesizing chaotic maps with prescribed invariant densities
International Nuclear Information System (INIS)
Rogers, Alan; Shorten, Robert; Heffernan, Daniel M.
2004-01-01
The Inverse Frobenius-Perron Problem (IFPP) concerns the creation of discrete chaotic mappings with arbitrary invariant densities. In this Letter, we present a new and elegant solution to the IFPP, based on positive matrix theory. Our method allows chaotic maps with arbitrary piecewise-constant invariant densities, and with arbitrary mixing properties, to be synthesized
Repetitive learning control of continuous chaotic systems
International Nuclear Information System (INIS)
Chen Maoyin; Shang Yun; Zhou Donghua
2004-01-01
Combining a shift method and the repetitive learning strategy, a repetitive learning controller is proposed to stabilize unstable periodic orbits (UPOs) within chaotic attractors in the sense of least mean square. If nonlinear parts in chaotic systems satisfy Lipschitz condition, the proposed controller can be simplified into a simple proportional repetitive learning controller
The time course of natural scene perception with reduced attention.
Groen, Iris I A; Ghebreab, Sennay; Lamme, Victor A F; Scholte, H Steven
2016-02-01
Attention is thought to impose an informational bottleneck on vision by selecting particular information from visual scenes for enhanced processing. Behavioral evidence suggests, however, that some scene information is extracted even when attention is directed elsewhere. Here, we investigated the neural correlates of this ability by examining how attention affects electrophysiological markers of scene perception. In two electro-encephalography (EEG) experiments, human subjects categorized real-world scenes as manmade or natural (full attention condition) or performed tasks on unrelated stimuli in the center or periphery of the scenes (reduced attention conditions). Scene processing was examined in two ways: traditional trial averaging was used to assess the presence of a categorical manmade/natural distinction in event-related potentials, whereas single-trial analyses assessed whether EEG activity was modulated by scene statistics that are diagnostic of naturalness of individual scenes. The results indicated that evoked activity up to 250 ms was unaffected by reduced attention, showing intact categorical differences between manmade and natural scenes and strong modulations of single-trial activity by scene statistics in all conditions. Thus initial processing of both categorical and individual scene information remained intact with reduced attention. Importantly, however, attention did have profound effects on later evoked activity; full attention on the scene resulted in prolonged manmade/natural differences, increased neural sensitivity to scene statistics, and enhanced scene memory. These results show that initial processing of real-world scene information is intact with diminished attention but that the depth of processing of this information does depend on attention. Copyright © 2016 the American Physiological Society.
Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.
2018-01-01
Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the
Synchronization and parameter identification of one class of realistic chaotic circuit
International Nuclear Information System (INIS)
Chun-Ni, Wang; Jun, Ma; Run-Tong, Chu; Shi-Rong, Li
2009-01-01
In this paper, the synchronization and the parameter identification of the chaotic Pikovsky–Rabinovich (PR) circuits are investigated. The linear error of the second corresponding variables is used to change the driven chaotic PR circuit, and the complete synchronization of the two identical chaotic PR circuits is realized with feedback intensity k increasing to a certain threshold. The Lyapunov exponents of the chaotic PR circuits are calculated by using different feedback intensities and our results are confirmed. The case where the two chaotic PR circuits are not identical is also investigated. A general positive Lyapunov function V, which consists of all the errors of the corresponding variables and parameters and changeable gain coefficient, is constructed by using the Lyapunov stability theory to study the parameter identification and complete synchronization of two non-identical chaotic circuits. The controllers and the parameter observers could be obtained analytically only by simplifying the criterion dV/dt < 0 (differential coefficient of Lyapunov function V with respect to time is negative). It is confirmed that the two non-identical chaotic PR circuits could still reach complete synchronization and all the unknown parameters in the drive system are estimated exactly within a short transient period
International Nuclear Information System (INIS)
Santos Coelho, Leandro dos
2009-01-01
Despite the popularity, the tuning aspect of proportional-integral-derivative (PID) controllers is a challenge for researchers and plant operators. Various controllers tuning methodologies have been proposed in the literature such as auto-tuning, self-tuning, pattern recognition, artificial intelligence, and optimization methods. Chaotic optimization algorithms as an emergent method of global optimization have attracted much attention in engineering applications. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool for engineering applications. In this paper, a tuning method for determining the parameters of PID control for an automatic regulator voltage (AVR) system using a chaotic optimization approach based on Lozi map is proposed. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Simulation results are promising and show the effectiveness of the proposed approach. Numerical simulations based on proposed PID control of an AVR system for nominal system parameters and step reference voltage input demonstrate the good performance of chaotic optimization.
Approximating chaotic saddles for delay differential equations.
Taylor, S Richard; Campbell, Sue Ann
2007-04-01
Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a "logistic" delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.
Approximating chaotic saddles for delay differential equations
Taylor, S. Richard; Campbell, Sue Ann
2007-04-01
Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a “logistic” delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.
Time: The Biggest Pattern in Natural History Research
Gontier, Nathalie
2016-10-01
We distinguish between four cosmological transitions in the history of Western intellectual thought, and focus on how these cosmologies differentially define matter, space and time. We demonstrate that how time is conceptualized significantly impacts a cosmology's notion on causality, and hone in on how time is conceptualized differentially in modern physics and evolutionary biology. The former conflates time with space into a single space-time continuum and focuses instead on the movement of matter, while the evolutionary sciences have a tradition to understand time as a given when they cartography how organisms change across generations over or in time, thereby proving the phenomenon of evolution. The gap becomes more fundamental when we take into account that phenomena studied by chrono-biologists demonstrate that numerous organisms, including humans, have evolved a "sense" of time. And micro-evolutionary/genetic, meso-evolutionary/developmental and macro-evolutionary phenomena including speciation and extinction not only occur by different evolutionary modes and at different rates, they are also timely phenomena that follow different periodicities. This article focusses on delineating the problem by finding its historical roots. We conclude that though time might be an obsolete concept for the physical sciences, it is crucial for the evolutionary sciences where evolution is defined as the change that biological individuals undergo in/over or through time.
Forward and adjoint sensitivity computation of chaotic dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Qiqi, E-mail: qiqi@mit.edu [Department of Aeronautics and Astronautics, MIT, 77 Mass Ave., Cambridge, MA 02139 (United States)
2013-02-15
This paper describes a forward algorithm and an adjoint algorithm for computing sensitivity derivatives in chaotic dynamical systems, such as the Lorenz attractor. The algorithms compute the derivative of long time averaged “statistical” quantities to infinitesimal perturbations of the system parameters. The algorithms are demonstrated on the Lorenz attractor. We show that sensitivity derivatives of statistical quantities can be accurately estimated using a single, short trajectory (over a time interval of 20) on the Lorenz attractor.
Universality in level spacing fluctuations of a chaotic optical billiard
Energy Technology Data Exchange (ETDEWEB)
Laprise, J.F.; Hosseinizadeh, A.; Lamy-Poirier, J. [Departement de Physique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada); Zomorrodi, R. [Departement de Physique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada)] [Centre de Recherche Universite Laval Robert Giffard, Quebec, Quebec G1J 2G3 (Canada); Kroeger, J. [Physics Department and Center for Physics of Materials, McGill University, Montreal, Quebec H3A 2T8 (Canada)] [Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6 (Canada); Kroeger, H., E-mail: hkroger@phy.ulaval.c [Departement de Physique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada)] [Functional Neurobiology, University of Utrecht, 3584 CH Utrecht (Netherlands)
2010-04-19
We study chaotic behavior of a classical optical stadium billiard model. We construct a matrix of time-of-travel along trajectories corresponding to a set of boundary points. We carry out a level spacing fluctuation analysis and compute the Dyson-Mehta spectral rigidity. The distribution of time-of-travel is approximately described by a Gaussian. The results for level spacing distribution and spectral rigidity show universal behavior.
Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators
International Nuclear Information System (INIS)
Grishin, S. V.; Golova, T. M.; Morozova, M. A.; Romanenko, D. V.; Seleznev, E. P.; Sysoev, I. V.; Sharaevskii, Yu. P.
2015-01-01
The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series
Investigation of a chaotic thermostat
Morales, G. J.
2018-03-01
A numerical study is presented of a free particle interacting with a deterministic thermostat in which the usual friction force is supplemented with a fluctuating force that depends on the self-consistent damping coefficient associated with coupling to the heat bath. It is found that this addition results in a chaotic environment in which a particle self-heats from rest and moves in positive and negative directions, exhibiting a characteristic diffusive behavior. The frequency power spectrum of the dynamical quantities displays the exponential frequency dependence ubiquitous to chaotic dynamics. The velocity distribution function approximates a Maxwellian distribution, but it does show departures from perfect thermal equilibrium, while the distribution function for the damping coefficient shows a closer fit. The behavior for the classic Nosé-Hoover (NH) thermostat is compared to that of the enlarged Martyna-Klein-Tuckerman (MKT) model. Over a narrow amplitude range, the application of a constant external force results quantitatively in the Einstein relation for the NH thermostat, and for the MKT model it differs by a factor of 2.
Determining the flexibility of regular and chaotic attractors
International Nuclear Information System (INIS)
Marhl, Marko; Perc, Matjaz
2006-01-01
We present an overview of measures that are appropriate for determining the flexibility of regular and chaotic attractors. In particular, we focus on those system properties that constitute its responses to external perturbations. We deploy a systematic approach, first introducing the simplest measure given by the local divergence of the system along the attractor, and then develop more rigorous mathematical tools for estimating the flexibility of the system's dynamics. The presented measures are tested on the regular Brusselator and chaotic Hindmarsh-Rose model of an excitable neuron with equal success, thus indicating the overall effectiveness and wide applicability range of the proposed theory. Since responses of dynamical systems to external signals are crucial in several scientific disciplines, and especially in natural sciences, we discuss several important aspects and biological implications of obtained results
Chaotic mixing by microswimmers moving on quasiperiodic orbits
Jalali, Mir Abbas; Khoshnood, Atefeh; Alam, Mohammad-Reza
2015-11-01
Life on the Earth is strongly dependent upon mixing across a vast range of scales. For example, mixing distributes nutrients for microorganisms in aquatic environments, and balances the spatial energy distribution in the oceans and the atmosphere. From industrial point of view, mixing is essential in many microfluidic processes and lab-on-a-chip operations, polymer engineering, pharmaceutics, food engineering, petroleum engineering, and biotechnology. Efficient mixing, typically characterized by chaotic advection, is hard to achieve in low Reynolds number conditions because of the linear nature of the Stokes equation that governs the motion. We report the first demonstration of chaotic mixing induced by a microswimmer that strokes on quasiperiodic orbits with multi-loop turning paths. Our findings can be utilized to understand the interactions of microorganisms with their environments, and to design autonomous robotic mixers that can sweep and mix an entire volume of complex-geometry containers.
Neural network modeling of chaotic dynamics in nuclear reactor flows
International Nuclear Information System (INIS)
Welstead, S.T.
1992-01-01
Neural networks have many scientific applications in areas such as pattern classification and time series prediction. The universal approximation property of these networks, however, can also be exploited to provide researchers with tool for modeling observed nonlinear phenomena. It has been shown that multilayer feed forward networks can capture important global nonlinear properties, such as chaotic dynamics, merely by training the network on a finite set of observed data. The network itself then provides a model of the process that generated the data. Characterizations such as the existence and general shape of a strange attractor and the sign of the largest Lyapunov exponent can then be extracted from the neural network model. In this paper, the author applies this idea to data generated from a nonlinear process that is representative of convective flows that can arise in nuclear reactor applications. Such flows play a role in forced convection heat removal from pressurized water reactors and boiling water reactors, and decay heat removal from liquid-metal-cooled reactors, either by natural convection or by thermosyphons
Characterization of chaotic electroconvection near flat electrodes under oscillatory voltages
Kim, Jeonglae; Davidson, Scott; Mani, Ali
2017-11-01
Onset of hydrodynamic instability and chaotic electroconvection in aqueous systems are studied by directly solving the two-dimensional coupled Poisson-Nernst-Planck and Navier-Stokes equations. An aqueous binary electrolyte is bounded by two planar electrodes where time-harmonic voltage is applied at a constant oscillation frequency. The governing equations are solved using a fully-conservative second-order-accurate finite volume discretization and a second-order implicit Euler time advancement. At a sufficiently high amplitude of applied voltage, the system exhibits chaotic behaviors involving strong hydrodynamic mixing and enhanced electroconvection. The system responses are characterized as a function of oscillation frequency, voltage magnitude, and the ratio of diffusivities of two ion species. Our results indicate that electroconvection is most enhanced for frequencies on the order of inverse system RC time scale. We will discuss the dependence of this optimal frequency on the asymmetry of the diffusion coefficients of ionic species. Supported by the Stanford's Precourt Institute.
Dynamics of coherent states in regular and chaotic regimes of the non-integrable Dicke model
Lerma-Hernández, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; López-del-Carpio, B.; Hirsch, J. G.
2018-04-01
The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.
The geometry of chaotic dynamics — a complex network perspective
Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J.
2011-12-01
Recently, several complex network approaches to time series analysis have been developed and applied to study a wide range of model systems as well as real-world data, e.g., geophysical or financial time series. Among these techniques, recurrence-based concepts and prominently ɛ-recurrence networks, most faithfully represent the geometrical fine structure of the attractors underlying chaotic (and less interestingly non-chaotic) time series. In this paper we demonstrate that the well known graph theoretical properties local clustering coefficient and global (network) transitivity can meaningfully be exploited to define two new local and two new global measures of dimension in phase space: local upper and lower clustering dimension as well as global upper and lower transitivity dimension. Rigorous analytical as well as numerical results for self-similar sets and simple chaotic model systems suggest that these measures are well-behaved in most non-pathological situations and that they can be estimated reasonably well using ɛ-recurrence networks constructed from relatively short time series. Moreover, we study the relationship between clustering and transitivity dimensions on the one hand, and traditional measures like pointwise dimension or local Lyapunov dimension on the other hand. We also provide further evidence that the local clustering coefficients, or equivalently the local clustering dimensions, are useful for identifying unstable periodic orbits and other dynamically invariant objects from time series. Our results demonstrate that ɛ-recurrence networks exhibit an important link between dynamical systems and graph theory.
Inhibition of chaotic escape from a potential well using small parametric modulations
International Nuclear Information System (INIS)
Chacon, R.; Balibrea, F.; Lopez, M.A.
1996-01-01
It is shown theoretically for the first time that, depending on its period, amplitude, and initial phase, a periodic parametric modulation can suppress a chaotic escape from a potential well. The instance of the Helmholtz oscillator is used to demonstrate, by means of Melnikov close-quote s method, that parametric modulations of the linear or quadratic potential terms inhibit chaotic escape when certain resonance conditions are met. copyright 1996 American Institute of Physics
Chaos synchronization of uncertain Genesio-Tesi chaotic systems with deadzone nonlinearity
International Nuclear Information System (INIS)
Sun, Y.-J.
2009-01-01
In this Letter, the concept of practical synchronization is introduced and the chaos synchronization of uncertain Genesio-Tesi chaotic systems with deadzone nonlinearity is investigated. Based on the time-domain approach, a tracking control is proposed to realize chaos synchronization for the uncertain Genesio-Tesi chaotic systems with deadzone nonlinearity. Moreover, the guaranteed exponential convergence rate and convergence radius can be pre-specified. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.
Optical image hiding based on chaotic vibration of deformable moiré grating
Lu, Guangqing; Saunoriene, Loreta; Aleksiene, Sandra; Ragulskis, Minvydas
2018-03-01
Image hiding technique based on chaotic vibration of deformable moiré grating is presented in this paper. The embedded secret digital image is leaked in a form of a pattern of time-averaged moiré fringes when the deformable cover grating vibrates according to a chaotic law of motion with a predefined set of parameters. Computational experiments are used to demonstrate the features and the applicability of the proposed scheme.
From natural to biomimetic: The superhydrophobicity and the contact time.
Liang, Yun-Hong; Peng, Jian; Li, Xiu-Juan; Xu, Jin-Kai; Zhang, Zhi-Hui; Ren, Lu-Quan
2016-08-01
The superhydrophobicities and the contact time of lotus leaf and reed leaf were investigated. The results indicated that both lotus leaf and reed leaf have good superhydrophobic properties, and the water contact time was 12.7 and 14.7 ms on the surface of lotus leaf and reed leaf, respectively. Surface structure plays a key role in the different contacting times. Homogeneous distribution of papillae on the surface of lotus leaf was more helpful to reduce the contact time than anisotropic groove-shape on the surface of reed leaf. Based on the bionics coupling theory, the bionics sample possessing similar lotus-leaf-like surface structure on the aluminum alloy was designed and fabricated successfully. The water contact angle was about 153 ± 2°, sliding angle less than 5°, and the water contact time was 13.4 ms on the surface of bionics sample, which presented excellent superhydrophobic property, and achieved the aim of bionic design. Microsc. Res. Tech. 79:712-720, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The chaotic regime of D-term inflation
Energy Technology Data Exchange (ETDEWEB)
Buchmüller, W. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Domcke, V. [SISSA/INFN, Via Bonomea 265, 34136 Trieste (Italy); Schmitz, K., E-mail: wilfried.buchmueller@desy.de, E-mail: valerie.domcke@sissa.it, E-mail: kai.schmitz@ipmu.jp [Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa (Japan)
2014-11-01
We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of 'chaotic inflation'.
The chaotic regime of D-term inflation
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Domcke, V. [SISSA/INFN, Triest (Italy); Schmitz, K. [Kavli IPMU (WPI), Kashiwa (Japan)
2014-08-15
We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of 'chaotic inflation'.
The chaotic regime of D-term inflation
International Nuclear Information System (INIS)
Buchmueller, W.; Domcke, V.; Schmitz, K.
2014-08-01
We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of 'chaotic inflation'.
The chaotic regime of D-term inflation
International Nuclear Information System (INIS)
Buchmüller, W.; Domcke, V.; Schmitz, K.
2014-01-01
We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of 'chaotic inflation'
The chaotic regime of D-term inflation
Buchmüller, W.; Domcke, V.; Schmitz, K.
2014-11-01
We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of `chaotic inflation'.
Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations
Energy Technology Data Exchange (ETDEWEB)
Wang, Qiqi, E-mail: qiqi@mit.edu; Hu, Rui, E-mail: hurui@mit.edu; Blonigan, Patrick, E-mail: blonigan@mit.edu
2014-06-15
The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical systems. The result from these methods can be too large, often by orders of magnitude, when the result is the derivative of a long time averaged quantity. This failure is known to be caused by ill-conditioned initial value problems. This paper overcomes this failure by replacing the initial value problem with the well-conditioned “least squares shadowing (LSS) problem”. The LSS problem is then linearized in our sensitivity analysis algorithm, which computes a derivative that converges to the derivative of the infinitely long time average. We demonstrate our algorithm in several dynamical systems exhibiting both periodic and chaotic oscillations.
Basic Studies on Chaotic Characteristics of Electric Power Market Price
Takeuchi, Yuya; Miyauchi, Hajime; Kita, Toshihiro
Recently, deregulation and reform of electric power utilities have been progressing in many parts of the world. In Japan, partial deregulation has been started from generation sector since 1995 and partial deregulation of retail sector is executed through twice law revisions. Through the deregulation, because electric power is traded in the market and its price is always fluctuated, it is important for the electric power business to analyze and predict the price. Although the price data of the electric power market is time series data, it is not always proper to analyze by the linear model such as ARMA because the price sometimes changes suddenly. Therefore, in this paper, we apply the methods of chaotic time series analysis, one of non-linear analysis methods, and investigate the chaotic characteristics of the system price of JEPX.
On dynamics analysis of a new chaotic attractor
International Nuclear Information System (INIS)
Zhou Wuneng; Xu Yuhua; Lu Hongqian; Pan Lin
2008-01-01
In this Letter, a new chaotic system is discussed. Some basic dynamical properties, such as Lyapunov exponents, Poincare mapping, fractal dimension, bifurcation diagram, continuous spectrum and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed in this Letter is a new chaotic system and deserves a further detailed investigation
Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser
International Nuclear Information System (INIS)
Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael
2010-01-01
Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.
Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser
Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael
2010-06-01
Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.
Influence of external extrusion on stability of hydrogen molecule and its chaotic behavior
Jarosik, M. W.; SzczÈ©śniak, R.; Durajski, A. P.; Kalaga, J. K.; Leoński, W.
2018-01-01
We have determined the stability conditions of the hydrogen molecule under the influence of an external force of harmonic-type explicitly dependent on the amplitude (A) and frequency (Ω). The ground state of the molecule has been determined in the framework of the Born-Oppenheimer approximation, whereas the energy of the electronic subsystem has been calculated using the Hubbard model including all two-site electron interactions. The diagram of RT0(A ,Ω) , where RT0 denotes the distance between protons after the fixed initial time T0, allowed us to visualize the area of the instability with the complicated structure. We have shown that the vibrations of the hydrogen molecule have a chaotic nature for some points of the instability region. In addition to the amplitude and frequency of the extrusion, the control parameter of the stability of the molecule is the external force associated with pressure. The increase in its value causes the disappearance of the area of the instability and chaotic vibrations.
Directory of Open Access Journals (Sweden)
A. W. Wernik
1996-01-01
Full Text Available Four data sets of density fluctuations measured in-situ by the Dynamics Explorer (DE 2 were analyzed in an attempt to study chaotic nature of the high-latitude turbulence and, in this way to complement the conventional spectral analysis. It has been found that the probability distribution function of density differences is far from Gaussian and similar to that observed in the intermittent fluid or MBD turbulence. This indicates that ionospheric density fluctuations are not stochastic but coherent to some extent. Wayland's and surrogate data tests for determinism in a time series of density data allowed us to differentiate between regions of intense shear and moderate shear. We observe that in the region of strong field aligned currents (FAC and intense shear, or along the convection in the collisional regime, ionospheric turbulence behaves like a random noise with non-Gaussian statistics implying that the underlying physical process is nondeterministic. On the other hand, when FACs are weak, and shear is moderate or observations made in the inertial regime the turbulence is chaotic. The attractor dimension is lowest (1.9 for 'old' convected irregularities. The dimension 3.2 is found for turbulence in the inertial regime and considerably smaller (2.4 in the collisional regime. It is suggested that a high dimension in the inertial regime may be caused by a complicated velocity structure in the shear instability region.
Multi-machine power system stabilizers design using chaotic optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-07-15
In this paper, a multiobjective design of the multi-machine power system stabilizers (PSSs) using chaotic optimization algorithm (COA) is proposed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The PSSs parameters tuning problem is converted to an optimization problem which is solved by a chaotic optimization algorithm based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Two different objective functions are proposed in this study for the PSSs design problem. The first objective function is the eigenvalues based comprising the damping factor, and the damping ratio of the lightly damped electro-mechanical modes, while the second is the time domain-based multi-objective function. The robustness of the proposed COA-based PSSs (COAPSS) is verified on a multi-machine power system under different operating conditions and disturbances. The results of the proposed COAPSS are demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices. In addition, the potential and superiority of the proposed method over the classical approach and genetic algorithm is demonstrated.
When Darwin meets Lorenz: Evolving new chaotic attractors through genetic programming
International Nuclear Information System (INIS)
Pan, Indranil; Das, Saptarshi
2015-01-01
Highlights: •New 3D continuous time chaotic systems with analytical expressions are obtained. •The multi-gene genetic programming (MGGP) paradigm is employed to achieve this. •Extends earlier works for evolving generalised family of Lorenz attractors. •Over one hundred of new chaotic attractors along with their parameters are reported. •The MGGP method have the potential for finding other similar chaotic attractors. -- Abstract: In this paper, we propose a novel methodology for automatically finding new chaotic attractors through a computational intelligence technique known as multi-gene genetic programming (MGGP). We apply this technique to the case of the Lorenz attractor and evolve several new chaotic attractors based on the basic Lorenz template. The MGGP algorithm automatically finds new nonlinear expressions for the different state variables starting from the original Lorenz system. The Lyapunov exponents of each of the attractors are calculated numerically based on the time series of the state variables using time delay embedding techniques. The MGGP algorithm tries to search the functional space of the attractors by aiming to maximise the largest Lyapunov exponent (LLE) of the evolved attractors. To demonstrate the potential of the proposed methodology, we report over one hundred new chaotic attractor structures along with their parameters, which are evolved from just the Lorenz system alone
Chaotic bubbling and nonstagnant foams.
Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard
2007-06-01
We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.
Chaotic inflation in models with flat directions
International Nuclear Information System (INIS)
Graziani, F.; Olive, K.
1989-01-01
We consider the chaotic inflationary scenario in models with flat directions. We find that unless the scalars along the flat directions have vacuum expectation values p or 10 14 M p 15 M p depending on the expectation values of the chaotic inflator, Ψ, one or two or more periods of inflation occur but with a resulting energy density perturbation δρ/ρ ≅ 10 -16 , far too small to be of any consequence for galaxy formation. Even with p only limited initial values of ≅ (3-200) M p result in inflation with reasonable density perturbations. Thus chaotic inflation in models with flat directions require rather special initial conditions. (orig.)
Design and Implementation of a Chaotic Scheme in Additive White Gaussian Noise Channel
Directory of Open Access Journals (Sweden)
Nizar Al Bassam
2016-01-01
Full Text Available A new chaotic scheme named Flipped Chaotic On-Off Keying (FCOOK is proposed for binary transmission. In FCOOK, the low correlation value between the stationary signal and its mirrored version is utilized. Transmitted signal for binary 1 is a chaotic segment added to its time flipped (mirrored version within one bit duration, while in binary 0, no transmission takes place within the same bit duration. The proposed scheme is compared with the standard chaotic systems: Differential Chaos Shift Keying (DCSK and Correlation Delay Shift Keying (CDSK. The Bit Error Rate (BER of FCOOK is studied analytically based on Gaussian approximation method. Results show that the BER performance of FCOOK outperforms DCSK and CDSK in AWGN channel environment and with various Eb/No levels. Additionally, FCOOK offers a double bit rate compared with the standard DCSK.
Analytically solvable chaotic oscillator based on a first-order filter
Energy Technology Data Exchange (ETDEWEB)
Corron, Ned J.; Cooper, Roy M.; Blakely, Jonathan N. [Charles M. Bowden Laboratory, Aviation and Missile Research, Development and Engineering Center, U.S. Army RDECOM, Redstone Arsenal, Alabama 35898 (United States)
2016-02-15
A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform for any stable infinite-impulse response filter is chaotic.
Complex network synchronization of chaotic systems with delay coupling
International Nuclear Information System (INIS)
Theesar, S. Jeeva Sathya; Ratnavelu, K.
2014-01-01
The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology
Chaotic Music Generation System Using Music Conductor Gesture
Chen, Shuai; Maeda, Yoichiro; Takahashi, Yasutake
2013-01-01
In the research of interactive music generation, we propose a music generation method, that the computer generates the music, under the recognition of human music conductor's gestures.In this research, the generated music is tuned by the recognized gestures for the parameters of the network of chaotic elements in real time. The music conductor's hand motions are detected by Microsoft Kinect in this system. Music theories are embedded in the algorithm, as a result, the generated music will be ...
Chaotic inflation as an attractor in initial-condition space
International Nuclear Information System (INIS)
Kung, J.H.; Brandenberger, R.H.
1990-01-01
We study the evolution of scalar field inhomogeneities in the preinflationary phase of an inflationary universe. We decompose the scalar field configuration in Fourier modes and consider initial conditions in which more than one mode is excited. We find that the long-wavelength modes are stable against perturbations due to short-wavelength excitations and that chaotic inflation results even if at the initial time the short waves contain most of the energy density
Adaptive Control of the Chaotic System via Singular System Approach
Directory of Open Access Journals (Sweden)
Yudong Li
2014-01-01
Full Text Available This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method.
Dynamics and Control of a Chaotic Electromagnetic System
Shun-Chang Chang
2012-01-01
In this paper, different nonlinear dynamics analysis techniques are employed to unveil the rich nonlinear phenomena of the electromagnetic system. In particular, bifurcation diagrams, time responses, phase portraits, Poincare maps, power spectrum analysis, and the construction of basins of attraction are all powerful and effective tools for nonlinear dynamics problems. We also employ the method of Lyapunov exponents to show the occurrence of chaotic motion and to verify those numerical simula...
International Nuclear Information System (INIS)
Ahmadi, Mohamadreza; Mojallali, Hamed
2012-01-01
Highlights: ► A new meta-heuristic optimization algorithm. ► Integration of invasive weed optimization and chaotic search methods. ► A novel parameter identification scheme for chaotic systems. - Abstract: This paper introduces a novel hybrid optimization algorithm by taking advantage of the stochastic properties of chaotic search and the invasive weed optimization (IWO) method. In order to deal with the weaknesses associated with the conventional method, the proposed chaotic invasive weed optimization (CIWO) algorithm is presented which incorporates the capabilities of chaotic search methods. The functionality of the proposed optimization algorithm is investigated through several benchmark multi-dimensional functions. Furthermore, an identification technique for chaotic systems based on the CIWO algorithm is outlined and validated by several examples. The results established upon the proposed scheme are also supplemented which demonstrate superior performance with respect to other conventional methods.
Tokunaga self-similarity arises naturally from time invariance
Kovchegov, Yevgeniy; Zaliapin, Ilya
2018-04-01
The Tokunaga condition is an algebraic rule that provides a detailed description of the branching structure in a self-similar tree. Despite a solid empirical validation and practical convenience, the Tokunaga condition lacks a theoretical justification. Such a justification is suggested in this work. We define a geometric branching process G (s ) that generates self-similar rooted trees. The main result establishes the equivalence between the invariance of G (s ) with respect to a time shift and a one-parametric version of the Tokunaga condition. In the parameter region where the process satisfies the Tokunaga condition (and hence is time invariant), G (s ) enjoys many of the symmetries observed in a critical binary Galton-Watson branching process and reproduces the latter for a particular parameter value.
Time and Consciousness in Cognitive Naturalism: Four Questions
Directory of Open Access Journals (Sweden)
Paolo Parrini
2015-12-01
Full Text Available By referring to two paradigm shifts - the passage from classical physics to relativistic physics on the one hand and the one from folk psychology to cognitive science on the other - Nannini aims at explaining “why neurological theories that reduce consciousness and the Self to aspects of brain dynamics appear implausible from a common sense perspective despite being sound from a scientific point of view”. In the comment I underline the importance of the articulated attempt made by Nannini, whilst asking at the same time for some clarifications regarding four epistemological aspects of the perspective he defends.
Timing is everything : western Canada natural gas supply
International Nuclear Information System (INIS)
George, R.
1998-01-01
The issue of the energy market's ability to support Western Canadian pipeline expansion projects was re-visited. Related topics discussed included the ex-basin transportation bottleneck, the large 'basis' differential, estimates of the magnitude of impact on 'basis', trends in drilling and the decline in well productivity. The conclusions drawn from the analysis were that drilling activity must remain high, that more gas-directed drilling was needed, along with a reduction in drilling time. A shift towards more exploratory drilling and higher quality reserves further north and west was recommended to 'fill the pipes'. 2 tabs., 5 figs
FAME Storage Time in an Optimized Natural Antioxidant Mixture
Directory of Open Access Journals (Sweden)
Rodolfo Lopes Coppo
2013-01-01
Full Text Available The study of B100 biodiesel oxidation stability, and its conservation, is extremely important to control its quality, especially regarding storage. Many spices have shown antioxidant effect and are the targets of study. Knowing the oxidation process in greater detail allows a reliable storage period to be stipulated for the biodiesel without its degradation until the time of use. Results have shown that according to the accelerated stove method, the optimal mixture, composed of 100% of oregano extract, can confer a 535-day shelf life to biodiesel without evident oxidation. According to the results obtained by the Rancimat method, the ideal mixture consists of 100% rosemary, resulting in 483 days of storage. The application of the process variable showed that the accelerated stove method was more suitable to determine oxidative stability of biodiesel.
Bidirectional communication using delay coupled chaotic directly ...
Indian Academy of Sciences (India)
Corresponding author. ... 30 September 2009. Abstract. Chaotic synchronization of two directly modulated semiconductor lasers with ... For InGaAsP lasers used in optical communication systems, the nonlinear gain re- duction is very strong and its ...
Bifurcation Control of Chaotic Dynamical Systems
National Research Council Canada - National Science Library
Wang, Hua O; Abed, Eyad H
1992-01-01
A nonlinear system which exhibits bifurcations, transient chaos, and fully developed chaos is considered, with the goal of illustrating the role of two ideas in the control of chaotic dynamical systems...
Encryption in Chaotic Systems with Sinusoidal Excitations
Directory of Open Access Journals (Sweden)
G. Obregón-Pulido
2014-01-01
Full Text Available In this contribution an encryption method using a chaotic oscillator, excited by “n” sinusoidal signals, is presented. The chaotic oscillator is excited by a sum of “n” sinusoidal signals and a message. The objective is to encrypt such a message using the chaotic behavior and transmit it, and, as the chaotic system is perturbed by the sinusoidal signal, the transmission security could be increased due to the effect of such a perturbation. The procedure is based on the regulation theory and consider that the receiver knows the frequencies of the perturbing signal, with this considerations the algorithm estimates the excitation in such a way that the receiver can cancel out the perturbation and all the undesirable dynamics in order to produce only the message. In this way we consider that the security level is increased.
Indirect adaptive control of discrete chaotic systems
International Nuclear Information System (INIS)
Salarieh, Hassan; Shahrokhi, Mohammad
2007-01-01
In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations
Globally Coupled Chaotic Maps with Constant Force
International Nuclear Information System (INIS)
Li Jinghui
2008-01-01
We investigate the motion of the globally coupled maps (logistic map) with a constant force. It is shown that the constant force can cause multi-synchronization for the globally coupled chaotic maps studied by us.
Multiswitching compound antisynchronization of four chaotic systems
Indian Academy of Sciences (India)
Ayub Khan
2017-11-28
Nov 28, 2017 ... systems, electrical engineering, information process- ... model. The synchronization problem among three or more chaotic ...... we perform numerical simulations in MATLAB using ... In the simulation process we assume α1 =.
Gross-Pitaevski map as a chaotic dynamical system.
Guarneri, Italo
2017-03-01
The Gross-Pitaevski map is a discrete time, split-operator version of the Gross-Pitaevski dynamics in the circle, for which exponential instability has been recently reported. Here it is studied as a classical dynamical system in its own right. A systematic analysis of Lyapunov exponents exposes strongly chaotic behavior. Exponential growth of energy is then shown to be a direct consequence of rotational invariance and for stationary solutions the full spectrum of Lyapunov exponents is analytically computed. The present analysis includes the "resonant" case, when the free rotation period is commensurate to 2π, and the map has countably many constants of the motion. Except for lowest-order resonances, this case exhibits an integrable-chaotic transition.
Quantifiers for randomness of chaotic pseudo-random number generators.
De Micco, L; Larrondo, H A; Plastino, A; Rosso, O A
2009-08-28
We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature.
Discriminating chaotic and stochastic dynamics through the permutation spectrum test
Energy Technology Data Exchange (ETDEWEB)
Kulp, C. W., E-mail: Kulp@lycoming.edu [Department of Astronomy and Physics, Lycoming College, Williamsport, Pennsylvania 17701 (United States); Zunino, L., E-mail: lucianoz@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CONICET La Plata—CIC), C.C. 3, 1897 Gonnet (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata (Argentina)
2014-09-01
In this paper, we propose a new heuristic symbolic tool for unveiling chaotic and stochastic dynamics: the permutation spectrum test. Several numerical examples allow us to confirm the usefulness of the introduced methodology. Indeed, we show that it is robust in situations in which other techniques fail (intermittent chaos, hyperchaotic dynamics, stochastic linear and nonlinear correlated dynamics, and deterministic non-chaotic noise-driven dynamics). We illustrate the applicability and reliability of this pragmatic method by examining real complex time series from diverse scientific fields. Taking into account that the proposed test has the advantages of being conceptually simple and computationally fast, we think that it can be of practical utility as an alternative test for determinism.
A chaotic cryptography scheme for generating short ciphertext
International Nuclear Information System (INIS)
Wong, Kwok-Wo; Ho, Sun-Wah; Yung, Ching-Ki
2003-01-01
Recently, we have proposed a chaotic cryptographic scheme based on iterating the logistic map and updating the look-up table dynamically. The encryption and decryption processes become faster as the number of iterations required is reduced. However, the length of the ciphertext is still at least twice that of the original message. This may result in huge ciphertext files and hence long transmission time when encrypting large multimedia files. In this Letter, we modify the chaotic cryptographic scheme proposed previously so as to reduce the length of the ciphertext to the level slightly longer than that of the original message. Moreover, a session key is introduced in the cryptographic scheme so that the ciphertext length for a given message is not fixed
Stochastic Resonance in a System of Coupled Chaotic Oscillators
International Nuclear Information System (INIS)
Krawiecki, A.
1999-01-01
Noise-free stochastic resonance is investigated numerically in a system of two coupled chaotic Roessler oscillators. Periodic signal is applied either additively or multiplicatively to the coupling term. When the coupling constant is varied the oscillators lose synchronization via attractor bubbling or on-off intermittency. Properly chosen signals are analyzed which reflect the sequence of synchronized (laminar) phases and non-synchronized bursts in the time evolution of the oscillators. Maximum of the signal-to-noise ratio as a function of the coupling constant is observed. Dependence of the signal-to-noise ratio on the frequency of the periodic signal and parameter mismatch between the oscillators is investigated. Possible applications of stochastic resonance in the recovery of signals in secure communication systems based on chaotic synchronization are briefly discussed. (author)
Historical evidence for nature disconnection in a 70-year time series of Disney animated films.
Prévot-Julliard, Anne-Caroline; Julliard, Romain; Clayton, Susan
2015-08-01
The assumed ongoing disconnection between humans and nature in Western societies represents a profoundly challenging conservation issue. Here, we demonstrate one manifestation of this nature disconnection, via an examination of the representation of natural settings in a 70-year time series of Disney animated films. We found that natural settings are increasingly less present as a representation of outdoor environments in these films. Moreover, these drawn natural settings tend to be more and more human controlled and are less and less complex in terms of the biodiversity they depict. These results demonstrate the increasing nature disconnection of the filmmaking teams, which we consider as a proxy of the Western relation to nature. Additionally, because nature experience of children is partly based on movies, the depleted representation of biodiversity in outdoor environments of Disney films may amplify the current disconnection from nature for children. This reduction in exposure to nature may hinder the implementation of biodiversity conservation measures. © The Author(s) 2014.
Diffusion of chaotic field lines in tokamaks
Ali, Halima; Punjabi, Alkesh
2006-10-01
An important instability for the destruction of magnetic surfaces in tokamaks due to island overlapping is the tearing modes. Magnetic fields perturbed by tearing modes are given by the sinusoidal form Br=-1rR∑m,nbm^n ( mθ-n ) . The sinusoidal nature of perturbation creates islands structure near resonant surfaces. In this work, we consider two modes, ( m1,n1 )and ( m2,n2 )that interact with each other, leading to two chains of islands, called primary islands. We use a previously derived Hamiltonian map, the ψ-θ map, with and without higher order control terms to study the diffusion of chaotic field lines. We will present and discuss the results of this work, and discuss its implications with regard to magnetic transport barriers for a fixed q-profile and increasing strength of magnetic perturbations. This work is done under the DOE grant number DE-FG02-01ER54624. 1.A. Punjabi et al, Phys. Rev. lett., 69, 3322 (1992). 2. H. Ali, A. Punjabi, and A. Boozer, Int. J. Comp. Num. Ana. Applications 6, 17 (2005).
Synchronizing a class of uncertain chaotic systems
International Nuclear Information System (INIS)
Chen Maoyin; Zhou Donghua; Shang Yun
2005-01-01
This Letter deals with the synchronization of a class of uncertain chaotic systems in the drive-response framework. A robust adaptive observer based response system is designed to synchronize a given chaotic system with unknown parameters and external disturbances. Lyapunov stability ensures the global synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of Genesio-Tesi system verifies the effectiveness of this scheme
Anti-synchronization of chaotic oscillators
International Nuclear Information System (INIS)
Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai
2003-01-01
We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation
Design of Threshold Controller Based Chaotic Circuits
DEFF Research Database (Denmark)
Mohamed, I. Raja; Murali, K.; Sinha, Sudeshna
2010-01-01
We propose a very simple implementation of a second-order nonautonomous chaotic oscillator, using a threshold controller as the only source of nonlinearity. We demonstrate the efficacy and simplicity of our design through numerical and experimental results. Further, we show that this approach...... of using a threshold controller as a nonlinear element, can be extended to obtain autonomous and multiscroll chaotic attractor circuits as well....
Improvement on generalised synchronisation of chaotic systems
International Nuclear Information System (INIS)
Hui-Bin, Zhu; Fang, Qiu; Bao-Tong, Cui
2010-01-01
In this paper, the problem of generalised synchronisation of two different chaotic systems is investigated. Some less conservative conditions are derived using linear matrix inequality other than existing results. Furthermore, a simple adaptive control scheme is proposed to achieve the generalised synchronisation of chaotic systems. The proposed method is simple and easy to implement in practice and can be applied to secure communications. Numerical simulations are also given to demonstrate the effectiveness and feasibility of the theoretical analysis
Chaotic orbits of a pendulum with variable length
Directory of Open Access Journals (Sweden)
Massimo Furi
2004-03-01
Full Text Available The main purpose of this investigation is to show that a pendulum, whose pivot oscillates vertically in a periodic fashion, has uncountably many chaotic orbits. The attribute chaotic is given according to the criterion we now describe. First, we associate to any orbit a finite or infinite sequence as follows. We write 1 or $-1$ every time the pendulum crosses the position of unstable equilibrium with positive (counterclockwise or negative (clockwise velocity, respectively. We write 0 whenever we find a pair of consecutive zero's of the velocity separated only by a crossing of the stable equilibrium, and with the understanding that different pairs cannot share a common time of zero velocity. Finally, the symbol $omega$, that is used only as the ending symbol of a finite sequence, indicates that the orbit tends asymptotically to the position of unstable equilibrium. Every infinite sequence of the three symbols ${1,-1,0}$ represents a real number of the interval $[0,1]$ written in base 3 when $-1$ is replaced with 2. An orbit is considered chaotic whenever the associated sequence of the three symbols ${1,2,0}$ is an irrational number of $[0,1]$. Our main goal is to show that there are uncountably many orbits of this type.
Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng
2016-06-01
Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.
Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system
Mobayen, Saleh; Kingni, Sifeu Takougang; Pham, Viet-Thanh; Nazarimehr, Fahimeh; Jafari, Sajad
2018-02-01
This paper investigates a three-dimensional autonomous chaotic flow without linear terms. Dynamical behaviour of the proposed system is investigated through eigenvalue structures, phase portraits, bifurcation diagram, Lyapunov exponents and basin of attraction. For a suitable choice of the parameters, the proposed system can exhibit anti-monotonicity, periodic oscillations and double-scroll chaotic attractor. Basin of attraction of the proposed system shows that the chaotic attractor is self-excited. Furthermore, feasibility of double-scroll chaotic attractor in the real word is investigated by using the OrCAD-PSpice software via an electronic implementation of the proposed system. A good qualitative agreement is illustrated between the numerical simulations and the OrCAD-PSpice results. Finally, a finite-time control method based on dynamic sliding surface for the synchronisation of master and slave chaotic systems in the presence of external disturbances is performed. Using the suggested control technique, the superior master-slave synchronisation is attained. Illustrative simulation results on the studied chaotic system are presented to indicate the effectiveness of the suggested scheme.
Digital color image encoding and decoding using a novel chaotic random generator
International Nuclear Information System (INIS)
Nien, H.H.; Huang, C.K.; Changchien, S.K.; Shieh, H.W.; Chen, C.T.; Tuan, Y.Y.
2007-01-01
This paper proposes a novel chaotic system, in which variables are treated as encryption keys in order to achieve secure transmission of digital color images. Since the dynamic response of chaotic system is highly sensitive to the initial values of a system and to the variation of a parameter, and chaotic trajectory is so unpredictable, we use elements of variables as encryption keys and apply these to computer internet communication of digital color images. As a result, we obtain much higher communication security. We adopt one statistic method involving correlation coefficient γ and FIPS PUB 140-1 to test on the distribution of distinguished elements of variables for continuous-time chaotic system, and accordingly select optimal encryption keys to use in secure communication of digital color images. At the transmitter end, we conduct RGB level decomposition on digital color images, and encrypt them with chaotic keys, and finally transmit them through computer internet. The same encryption keys are used to decrypt and recover the original images at the receiver end. Even if the encrypted images are stolen in the public channel, an intruder is not able to decrypt and recover the original images because of the lack of adequate encryption keys. Empirical example shows that the chaotic system and encryption keys applied in the encryption, transmission, decryption, and recovery of digital color images can achieve higher communication security and best recovered images
de Boer, Jan; Llabrés, Eva; Pedraza, Juan F.; Vegh, David
2018-05-01
Holographic theories with classical gravity duals are maximally chaotic; i.e., they saturate the universal bound on the rate of growth of chaos [J. Maldacena, S. H. Shenker, and D. Stanford, J. High Energy Phys. 08 (2016) 106, 10.1007/JHEP08(2016)106]. It is interesting to ask whether this property is true only for leading large N correlators or if it can show up elsewhere. In this Letter, we consider the simplest setup to tackle this question: a Brownian particle coupled to a thermal ensemble. We find that the four-point out-of-time-order correlator that diagnoses chaos initially grows at an exponential rate that saturates the chaos bound, i.e., with a Lyapunov exponent λL=2 π /β . However, the scrambling time is parametrically smaller than for plasma excitations, t*˜β log √{λ } instead of t*˜β log N2. Our result shows that, at least in certain cases, maximal chaos can be attained in the probe sector without the explicit need of gravitational degrees of freedom.
Frequency-domain criterion for the chaos synchronization of time ...
Indian Academy of Sciences (India)
of time-delay power systems under linear feedback control ... arbitrary dimension of the time-delay systems can keep their chaotic characteristic as long as ... As a basic theory on chaotic secure communication, synchronization of time-delay.
Chaotic characteristics of corona discharges in atmospheric air
International Nuclear Information System (INIS)
Tan Xiangyu; Zhang Qiaogen; Wang Xiuhuan; Sun Fu; Zha Wei; Jia Zhijie
2008-01-01
A point-plane electrode system in atmospheric air is established to investigate the mechanism of the corona discharge. By using this system, the current pulses of the corona discharges under the 50 Hz ac voltage are measured using partial discharge (PD) measurement instrument and constitute the point-plane voltage-current (V-I) characteristic equation together with the voltage. Then, this paper constructs the nonlinear circuit model and differential equations of the system in an attempt to give the underlying dynamic mechanism based on the nonlinear V-I characteristics of the point-plane corona discharges. The results show that the chaotic phenomenon is found in the corona circuit by the experimental study and nonlinear dynamic analysis. The basic dynamic characteristics, including the Lyapunov exponent, the existence of the strange attractors, and the equilibrium points, are also found and analyzed in the development process of the corona circuit. Moreover, the time series of the corona current pulses obtained in the experiment is used to demonstrate the chaotic characteristics of the corona current based on the nonlinear dynamic circuit theory and the experimental basis. It is pointed out that the corona phenomenon is not a purely stochastic phenomenon but a short term deterministic chaotic activity
International Nuclear Information System (INIS)
Wang Xing-Yuan; Bao Xue-Mei
2013-01-01
In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption. (general)
Optimizing Markovian modeling of chaotic systems with recurrent neural networks
International Nuclear Information System (INIS)
Cechin, Adelmo L.; Pechmann, Denise R.; Oliveira, Luiz P.L. de
2008-01-01
In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included
Correlation function behavior in quantum systems which are classically chaotic
International Nuclear Information System (INIS)
Berman, G.P.; Kolovsky, A.R.
1983-01-01
The time behavior of a phase correlation function for dynamical quantum systems which are classically chaotic is considered. It is shown that under certain conditions there are three time regions of the quantum correlations behavior; the region of classical stochasticity (exponential decay of quantum correlations); the region of the correlations decay with a power law; the region of the constant level of the quantum correlations. The boundaries of these time regions are presented. The estimation of a remaining level of the quantum correlations is given. (orig.)
Composing chaotic music from the letter m
Sotiropoulos, Anastasios D.
Chaotic music is composed from a proposed iterative map depicting the letter m, relating the pitch, duration and loudness of successive steps. Each of the two curves of the letter m is based on the classical logistic map. Thus, the generating map is xn+1 = r xn(1/2 - xn) for xn between 0 and 1/2 defining the first curve, and xn+1 = r (xn - 1/2)(1 - xn) for xn between 1/2 and 1 representing the second curve. The parameter r which determines the height(s) of the letter m varies from 2 to 16, the latter value ensuring fully developed chaotic solutions for the whole letter m; r = 8 yielding full chaotic solutions only for its first curve. The m-model yields fixed points, bifurcation points and chaotic regions for each separate curve, as well as values of the parameter r greater than 8 which produce inter-fixed points, inter-bifurcation points and inter-chaotic regions from the interplay of the two curves. Based on this, music is composed from mapping the m- recurrence model solutions onto actual notes. The resulting musical score strongly depends on the sequence of notes chosen by the composer to define the musical range corresponding to the range of the chaotic mathematical solutions x from 0 to 1. Here, two musical ranges are used; one is the middle chromatic scale and the other is the seven- octaves range. At the composer's will and, for aesthetics, within the same composition, notes can be the outcome of different values of r and/or shifted in any octave. Compositions with endings of non-repeating note patterns result from values of r in the m-model that do not produce bifurcations. Scores of chaotic music composed from the m-model and the classical logistic model are presented.
Eigenvalue study of a chaotic resonator
Energy Technology Data Exchange (ETDEWEB)
Banova, Todorka [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D-64289 Darmstadt (Germany); Technische Universitaet Darmstadt, Graduate School of Computational Engineering, Dolivostrasse 15, D-64293 Darmstadt (Germany); Ackermann, Wolfgang; Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D-64289 Darmstadt (Germany)
2013-07-01
The field of quantum chaos comprises the study of the manifestations of classical chaos in the properties of the corresponding quantum systems. Within this work, we compute the eigenfrequencies that are needed for the level spacing analysis of a microwave resonator with chaotic characteristics. The major challenges posed by our work are: first, the ability of the approaches to tackle the large scale eigenvalue problem and second, the capability to extract many, i.e. order of thousands, eigenfrequencies for the considered cavity. The first proposed approach for an accurate eigenfrequency extraction takes into consideration the evaluated electric field computations in time domain of a superconducting cavity and by means of signal-processing techniques extracts the eigenfrequencies. The second approach is based on the finite element method with curvilinear elements, which transforms the continuous eigenvalue problem to a discrete generalized eigenvalue problem. Afterwards, the Lanczos algorithm is used for the solution of the generalized eigenvalue problem. In the poster, a summary of the applied algorithms, as well as, critical implementation details together with the simulation results are provided.
Mixed basin boundary structures of chaotic systems
International Nuclear Information System (INIS)
Rosa, E. Jr.; Ott, E.
1999-01-01
Motivated by recent numerical observations on a four-dimensional continuous-time dynamical system, we consider different types of basin boundary structures for chaotic systems. These general structures are essentially mixtures of the previously known types of basin boundaries where the character of the boundary assumes features of the previously known boundary types at different points arbitrarily finely interspersed in the boundary. For example, we discuss situations where an everywhere continuous boundary that is otherwise smooth and differentiable at almost every point has an embedded uncountable, zero Lebesgue measure set of points at which the boundary curve is nondifferentiable. Although the nondifferentiable set is only of zero Lebesgue measure, the curve close-quote s fractal dimension may (depending on parameters) still be greater than one. In addition, we discuss bifurcations from such a mixed boundary to a 'pure' boundary that is a fractal nowhere differentiable curve or surface and to a pure nonfractal boundary that is everywhere smooth. copyright 1999 The American Physical Society
Ibrahim, K. M.; Jamal, R. K.; Ali, F. H.
2018-05-01
The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems’ variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.
Chaotic interactions of self-replicating RNA.
Forst, C V
1996-03-01
A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.
Image Encryption and Chaotic Cellular Neural Network
Peng, Jun; Zhang, Du
Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.
Qualitative feature extractions of chaotic systems
International Nuclear Information System (INIS)
Vicha, T.; Dohnal, M.
2008-01-01
The theory of chaos offers useful tools for systems analysis. However, models of complex systems are based on a network of inconsistent, space and uncertain knowledge items. Traditional quantitative methods of chaos analysis are therefore not applicable. The paper by the same authors [Vicha T, Dohnal M. Qualitative identification of chaotic systems behaviours. Chaos, Solitons and Fractals, in press, [Log. No. 601019] ] presents qualitative interpretation of some chaos concepts. There are only three qualitative values positive/increasing, negative/decreasing and zero/constant. It means that any set of qualitative multidimensional descriptions of unsteady state behaviours is discrete and finite. A finite upper limit exists for the total number of qualitatively distinguishable scenarios. A set of 21 published chaotic models is solved qualitatively and 21 sets of all existing qualitative scenarios are presented. The intersection of all 21 scenario sets is empty. There is no such a behaviour which is common for all 21 models. The set of 21 qualitative models (e.g. Lorenz, Roessler) can be used to compare chaotic behaviours of an unknown qualitative model with them to evaluate if its chaotic behaviours is close to e.g. Lorenz chaotic model and how much
A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis
International Nuclear Information System (INIS)
Zhang, Chunwei; Cui, Guomin; Peng, Fuyu
2016-01-01
Highlights: • The chaotic ant swarm algorithm is proposed to avoid trapping into a local optimum. • The organization variables update strategy makes full use of advantages of the chaotic search. • The structure evolution strategy is developed to handle integer variables optimization. • Overall three cases taken form the literatures are investigated with better optima. - Abstract: The heat exchanger networks synthesis (HENS) still remains an open problem due to its combinatorial nature, which can easily result in suboptimal design and unacceptable calculation effort. In this paper, a novel hybrid chaotic ant swarm algorithm is proposed. The presented algorithm, which consists of a combination of chaotic ant swarm (CAS) algorithm, structure evolution strategy, local optimization strategy and organization variables update strategy, can simultaneously optimize continuous variables and integer variables. The CAS algorithm chaotically searches and generates new solutions in the given space, and subsequently the structure evolution strategy evolves the structures represented by the solutions and limits the search space. Furthermore, the local optimizing strategy and the organization variables update strategy are introduced to enhance the performance of the algorithm. The study of three different cases, found in the literature, revealed special search abilities in both structure space and continuous variable space.
Spatial chaotic behavior of vortices in type-II superconductors with different pinning strength
International Nuclear Information System (INIS)
Lin, H.-T.; Pan, M.; Cheng, C.H.; Cui, Y.J.; Zhao, Y.
2008-01-01
Spatial chaotic character in systems where defects are arranged in periodic arrays has been investigated by computer simulation. Due to the high nonlinearity of the vortex-defect interaction, arrangement of the vortices in a periodic pinning array can be chaotic (glassy), depending on the vortex-defect interaction state and vortex-vortex interaction. Two types of disordered vortex states in the system are observed. The type-I disorder arises from the intrinsically chaotic nature of the nonlinear system, existing when the pinning disorder is low and the pinning strength is weak. The type-II disordered state is related to the pinning disorder, which is dominating when both the pinning disorder and the pinning strength are strong
Spatial chaotic behavior of vortices in type-II superconductors with different pinning strength
Energy Technology Data Exchange (ETDEWEB)
Lin, H.-T. [Faculty of Information Management, Cheng Shui University, Taiwan (China); Pan, M. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney (Australia); Cui, Y.J. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney (Australia)], E-mail: yzhao@swjtu.edu.cn
2008-09-15
Spatial chaotic character in systems where defects are arranged in periodic arrays has been investigated by computer simulation. Due to the high nonlinearity of the vortex-defect interaction, arrangement of the vortices in a periodic pinning array can be chaotic (glassy), depending on the vortex-defect interaction state and vortex-vortex interaction. Two types of disordered vortex states in the system are observed. The type-I disorder arises from the intrinsically chaotic nature of the nonlinear system, existing when the pinning disorder is low and the pinning strength is weak. The type-II disordered state is related to the pinning disorder, which is dominating when both the pinning disorder and the pinning strength are strong.
Study of chaotic oscillations in practical work on radio physics
International Nuclear Information System (INIS)
Ezdov, A.A.; Il'in, V.A.; Petrova, E.B.
1995-01-01
A description is given of a laboratory study of chaotic oscillations in deterministic dynamical systems. This work utilizes mathematical modeling and a computer experiment, as well as a direct study of the chaotic behavior of nonlinear electrical circuits
Generalized projective synchronization of a unified chaotic system
International Nuclear Information System (INIS)
Yan Jianping; Li Changpin
2005-01-01
In the present paper, a simple but efficient control technique of the generalized projective synchronization is applied to a unified chaotic system. Numerical simulations show that this method works very well, which can also be applied to other chaotic systems
The Hausdorff measure of chaotic sets of adjoint shift maps
Energy Technology Data Exchange (ETDEWEB)
Wang Huoyun [Department of Mathematics of Guangzhou University, Guangzhou 510006 (China)]. E-mail: wanghuoyun@sina.com; Song Wangan [Department of Computer, Huaibei Coal Industry Teacher College, Huaibei 235000 (China)
2006-11-15
In this paper, the size of chaotic sets of adjoint shift maps is estimated by Hausdorff measure. We prove that for any adjoint shift map there exists a finitely chaotic set with full Hausdorff measure.
Describing chaotic attractors: Regular and perpetual points
Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz
2018-03-01
We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.
Chaotic behavior learning of Chua's circuit
International Nuclear Information System (INIS)
Sun Jian-Cheng
2012-01-01
Least-square support vector machines (LS-SVM) are applied for learning the chaotic behavior of Chua's circuit. The system is divided into three multiple-input single-output (MISO) structures and the LS-SVM are trained individually. Comparing with classical approaches, the proposed one reduces the structural complexity and the selection of parameters is avoided. Some parameters of the attractor are used to compare the chaotic behavior of the reconstructed and the original systems for model validation. Results show that the LS-SVM combined with the MISO can be trained to identify the underlying link among Chua's circuit state variables, and exhibit the chaotic attractors under the autonomous working mode
Semi-classical quantization of chaotic billiards
International Nuclear Information System (INIS)
Smilansky, U.
1992-02-01
The semi-classical quantization of chaotic billiards will be developed using scattering theory approach. This will be used to introduce and explain the inherent difficulties in the semi-classical quantization of chaos, and to show some of the modern tools which were developed recently to overcome these difficulties. To this end, we shall first obtain a semi-classical secular equation which is based on a finite number of classical periodic orbits. We shall use it to derive some spectral properties, and in particular to investigate the relationship between spectral statistics of quantum chaotic systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiard, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...) but rather, corresponds to a new universality class. (author)
Energy Technology Data Exchange (ETDEWEB)
Forsling, Willis; Andersson-Skog, Lena; Haenninen, Hannu; Knutsson, Gert; Ma ttsson, Soeren; Stigh, Jimmy; Soederberg, Olof; Bolin, Bert; Nordlund, Erling
2007-05-15
This report consists of a number of independent contribution that treat different aspects of the nuclear waste complex, with the time perspective as a common starting point. The review does not pretend to cover the entire area, but the selected issues addressed are those of large general interest. First a general overview is given of how the nuclear waste issue has been treated in Sweden since the plans to use nuclear power begun be planned in the middle of the 1940s. The complex of problem around the nuclear waste issue is linked to our natural aversion against the development of nuclear weapons during they last 60-70 years, but also to the controversies around the peaceful use of the nuclear power that has happened during the latest 30-40 years. In chapters 3 the time perspective is considerably shorter, approximately 20 years. Here, construction and operation of an underground repository for nuclear waste is discussed. Such an undertaking has many resemblances with establishing an underground mine and there is much experience to learn from. In chapters 4 questions about the technical barriers are treated, the copper container, bentonite buffer and the backfilling. The copper container and bentonite buffer both have key roles to prevent ground water to come in contact with the spent fuel and that radioactivity is transported out into the environment. They must both fulfil their functions during the period when the fuel is dangerous, i.e. over 100,000 years. Different processes affects the repository, some during short periods, some during several 10,000 years. Specific intervals (from 10 years and up to 100,000 years) are indicated for the different processes, almost all with the starting point at the deposition of the waste. The possibility to gain experiences from natural analogies is treated in chapters 5. They can be seen as a prolonged experiment in natural systems where one reactor zone has been active for more than 100,000 years. The time perspective
Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel
Energy Technology Data Exchange (ETDEWEB)
Lim, C. P.; Lam, Y. C., E-mail: myclam@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 (Singapore); BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Han, J. [BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2015-07-15
Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D{sub 2}) and the largest Lyapunov exponent (λ{sub 1}), with D{sub 2} being fractional and λ{sub 1} being positive. Contour maps of D{sub 2} and λ{sub 1} of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D{sub 2} and λ{sub 1} maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.
Psychotherapy Is Chaotic-(Not Only) in a Computational World.
Schiepek, Günter K; Viol, Kathrin; Aichhorn, Wolfgang; Hütt, Marc-Thorsten; Sungler, Katharina; Pincus, David; Schöller, Helmut J
2017-01-01
Objective: The aim of this article is to outline the role of chaotic dynamics in psychotherapy. Besides some empirical findings of chaos at different time scales, the focus is on theoretical modeling of change processes explaining and simulating chaotic dynamics. It will be illustrated how some common factors of psychotherapeutic change and psychological hypotheses on motivation, emotion regulation, and information processing of the client's functioning can be integrated into a comprehensive nonlinear model of human change processes. Methods: The model combines 5 variables (intensity of emotions, problem intensity, motivation to change, insight and new perspectives, therapeutic success) and 4 parameters into a set of 5 coupled nonlinear difference equations. The results of these simulations are presented as time series, as phase space embedding of these time series (i.e., attractors), and as bifurcation diagrams. Results: The model creates chaotic dynamics, phase transition-like phenomena, bi- or multi-stability, and sensibility of the dynamic patterns on parameter drift. These features are predicted by chaos theory and by Synergetics and correspond to empirical findings. The spectrum of these behaviors illustrates the complexity of psychotherapeutic processes. Conclusion: The model contributes to the development of an integrative conceptualization of psychotherapy. It is consistent with the state of scientific knowledge of common factors, as well as other psychological topics, such as: motivation, emotion regulation, and cognitive processing. The role of chaos theory is underpinned, not only in the world of computer simulations, but also in practice. In practice, chaos demands technologies capable of real-time monitoring and reporting on the nonlinear features of the ongoing process (e.g., its stability or instability). Based on this monitoring, a client-centered, continuous, and cooperative process of feedback and control becomes possible. By contrast, restricted
Chaotic Flows Correlation effects and coherent structures
Bakunin, Oleg G
2011-01-01
The book introduces readers to and summarizes the current ideas and theories about the basic mechanisms for transport in chaotic flows. Typically no single paradigmatic approach exists as this topic is relevant for fields as diverse as plasma physics, geophysical flows and various branches of engineering. Accordingly, the dispersion of matter in chaotic or turbulent flows is analyzed from different perspectives. Partly based on lecture courses given by the author, this book addresses both graduate students and researchers in search of a high-level but approachable and broad introduction to the topic.
Higgs vacuum stability and modified chaotic inflation
Energy Technology Data Exchange (ETDEWEB)
Saha, Abhijit Kumar, E-mail: abhijit.saha@iitg.ernet.in; Sil, Arunansu, E-mail: asil@iitg.ernet.in
2017-02-10
The issue of electroweak vacuum stability is studied in presence of a scalar field which participates in modifying the minimal chaotic inflation model. It is shown that the threshold effect on the Higgs quartic coupling originating from the Higgs–inflaton sector interaction can essentially make the electroweak vacuum stable up to the Planck scale. On the other hand we observe that the new physics parameters in this combined framework are enough to provide deviation from the minimal chaotic inflation predictions so as to keep it consistent with recent observation by Planck 2015.
Chaotic behavior of a quantum waveguide
Energy Technology Data Exchange (ETDEWEB)
Pérez-Aguilar, H., E-mail: hiperezag@yahoo.com [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Mendoza-Suárez, A.; Tututi, E.S. [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Herrera-González, I.F. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico)
2013-02-15
In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system.
Chaotic behavior of a quantum waveguide
International Nuclear Information System (INIS)
Pérez-Aguilar, H.; Mendoza-Suárez, A.; Tututi, E.S.; Herrera-González, I.F.
2013-01-01
In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system
The transition to chaotic phase synchronization
DEFF Research Database (Denmark)
Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.
2012-01-01
The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system...... to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically...
Huang, Zhu; Zhang, Wei; Xi, Guang
2015-01-01
The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher
Improving the pseudo-randomness properties of chaotic maps using deep-zoom
Machicao, Jeaneth; Bruno, Odemir M.
2017-05-01
A generalized method is proposed to compose new orbits from a given chaotic map. The method provides an approach to examine discrete-time chaotic maps in a "deep-zoom" manner by using k-digits to the right from the decimal separator of a given point from the underlying chaotic map. Interesting phenomena have been identified. Rapid randomization was observed, i.e., chaotic patterns tend to become indistinguishable when compared to the original orbits of the underlying chaotic map. Our results were presented using different graphical analyses (i.e., time-evolution, bifurcation diagram, Lyapunov exponent, Poincaré diagram, and frequency distribution). Moreover, taking advantage of this randomization improvement, we propose a Pseudo-Random Number Generator (PRNG) based on the k-logistic map. The pseudo-random qualities of the proposed PRNG passed both tests successfully, i.e., DIEHARD and NIST, and were comparable with other traditional PRNGs such as the Mersenne Twister. The results suggest that simple maps such as the logistic map can be considered as good PRNG methods.
Chaotic correlations in barrier billiards with arbitrary barriers
International Nuclear Information System (INIS)
Osbaldestin, A H; Adamson, L N C
2013-01-01
We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation. (paper)
Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.
Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David
2017-01-01
Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO.
Recognizing chaotic states in stadium billiard by calculating gyration radius
Directory of Open Access Journals (Sweden)
M. Barezi
2006-12-01
Full Text Available Nowadays study of chaotic quantum billiards because of their relation to Nano technology. In this paper distribution of zeros of wave function on the boundary of two circular and stadium billiards are investigated. By calculating gyration radius for these points chaotic and non-chaotic states are distinguished.
Synchronization of two different chaotic systems via nonlinear ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: This work reports the synchronization of a pair of four chaotic systems via nonlinear control technique. This method has been found to be easy to implement and effective especially on two different chaotic systems. We paired four chaotic systems out of which one is new and we have six possible pairs.
Control of chaotic dynamics in an OLG economic model
International Nuclear Information System (INIS)
Mendes, Diana A; Mendes, Vivaldo
2005-01-01
This paper deals with the control of chaotic economic motion. We show that very complicated dynamics arising, e.g., from an overlapping generations model (OLG) with production and an endogenous intertemporal decision between labour and leisure, which produces chaos, can in fact be controlled with relative simplicity. The aperiodic and very complicated motion that stems from this model can be subject to control by small perturbations in its parameters and turned into a stable steady state or into a regular cycle. Therefore, the system can be controlled without changing of its original properties. To perform the control of the totally unstable equilibrium (both eigenvalues with modulus greater than unity) in this economic model we apply the pole-placement technique, developed by Romeiras, Grebogi, Ott and Dayawansa (1992). The application of control methods to chaotic economic dynamics may raise serious reservations, at least on mathematical and logical grounds, to some recent views on economics which have argued that economic policy becomes useless in the presence of chaotic motion (and thus, that the performance of the economic system cannot be improved by public intervention, i.e., that the amplitude of cycles can not be controlled or reduced). In fact, the fine tuning of the system (that is, the control) can be performed without having to rely only on infinitesimal accuracy in the perturbation to the system, because the control can be performed with larger or smaller perturbations, but neither too large (because these would lead to a different fixed point of the system, therefore modifying its original nature), nor too small because the control becomes too inefficient
Chaos suppression based on adaptive observer for a P-class of chaotic systems
International Nuclear Information System (INIS)
Rodriguez, Angel; Leon, Jesus de; Femat, Ricardo
2007-01-01
A feedback approach is presented to suppress chaos in a P-class of chaotic system. The approach is based on an adaptive observer; which provides estimated values of both the unmeasured states and the uncertain model parameters. A continuous-time feedback law is taken as suppressing force. The feedback law attains chaos suppression as the observer provides estimated values close to the actual state/parameter values along time. The proposed scheme is robust in the sense that suppression is achieved despite only some states are measured and uncertainties in parameters are compensated. Results are corroborated experimentally by implementation in chaotic circuits
Chaos suppression based on adaptive observer for a P-class of chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Angel [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, Av. Pedro de Alba s/n Cd. Universitaria, CP 66450 San Nicolas de los Garza, NL (Mexico); Leon, Jesus de [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, Av. Pedro de Alba s/n Cd. Universitaria, CP 66450 San Nicolas de los Garza, NL (Mexico); Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas Computacionales, IPICyT, Camino a la Presa San Jose 2055 Col. Lomas 4a. Secc. CP 78216 San Luis Potosi, SLP (Mexico)]. E-mail: rfemat@ipicyt.edu.mx
2007-05-15
A feedback approach is presented to suppress chaos in a P-class of chaotic system. The approach is based on an adaptive observer; which provides estimated values of both the unmeasured states and the uncertain model parameters. A continuous-time feedback law is taken as suppressing force. The feedback law attains chaos suppression as the observer provides estimated values close to the actual state/parameter values along time. The proposed scheme is robust in the sense that suppression is achieved despite only some states are measured and uncertainties in parameters are compensated. Results are corroborated experimentally by implementation in chaotic circuits.
Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.
2017-02-01
We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.
Chaotic operation and chaos control of travelling wave ultrasonic motor.
Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie
2013-08-01
The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
Resonances in a Chaotic Attractor Crisis of the Lorenz Flow
Tantet, Alexis; Lucarini, Valerio; Dijkstra, Henk A.
2018-02-01
Local bifurcations of stationary points and limit cycles have successfully been characterized in terms of the critical exponents of these solutions. Lyapunov exponents and their associated covariant Lyapunov vectors have been proposed as tools for supporting the understanding of critical transitions in chaotic dynamical systems. However, it is in general not clear how the statistical properties of dynamical systems change across a boundary crisis during which a chaotic attractor collides with a saddle. This behavior is investigated here for a boundary crisis in the Lorenz flow, for which neither the Lyapunov exponents nor the covariant Lyapunov vectors provide a criterion for the crisis. Instead, the convergence of the time evolution of probability densities to the invariant measure, governed by the semigroup of transfer operators, is expected to slow down at the approach of the crisis. Such convergence is described by the eigenvalues of the generator of this semigroup, which can be divided into two families, referred to as the stable and unstable Ruelle-Pollicott resonances, respectively. The former describes the convergence of densities to the attractor (or escape from a repeller) and is estimated from many short time series sampling the state space. The latter is responsible for the decay of correlations, or mixing, and can be estimated from a long times series, invoking ergodicity. It is found numerically for the Lorenz flow that the stable resonances do approach the imaginary axis during the crisis, as is indicative of the loss of global stability of the attractor. On the other hand, the unstable resonances, and a fortiori the decay of correlations, do not flag the proximity of the crisis, thus questioning the usual design of early warning indicators of boundary crises of chaotic attractors and the applicability of response theory close to such crises.
A chaotic modulation scheme based on algebraic observability and sliding mode differentiators
International Nuclear Information System (INIS)
Cannas, Barbara; Cincotti, Silvano; Usai, Elio
2005-01-01
A chaotic communication technique for the transmission of secure information signals is presented. The proposed method allows the reconstruction of the system input (i.e., the information signal) from a scalar observable (i.e., the transmitted signal) and its derivatives. The approach is based on the concept of algebraic observability. A systematic procedure for the chaotic demodulation of the class of algebraic chaotic systems is described and discussed. The proposed procedure also allows one to directly identify a suitable 'response' system and the 'drive signal'. Moreover, it is shown that sliding differentiators can be used to reconstruct the time derivatives of the observable, and thus the information signal is recovered at the receiving end through some simple signal-processing operations such as multiplication, addition and subtraction. This allows the estimation of the system state and of the input signal (i.e., the information recovery) in a finite time
Mobayen, Saleh
2018-06-01
This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Modelling and prediction for chaotic fir laser attractor using rational function neural network.
Cho, S
2001-02-01
Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.
On black holes, space-time foam and the nature of time in string theory
International Nuclear Information System (INIS)
Mavromatos, N.E.; Grenoble-1 Univ., 74 - Annecy
1993-04-01
It is shown that the light particles in string theory obey an effective quantum mechanics modified by the inclusion of a quantum-gravitational friction term, induced by unavoidable couplings to unobserved massive string states in the space-time foam. This term is related to the W-symmetries that couple light particles to massive solitonic string states in black hole backgrounds, and has a formal similarity to simple models of environmental quantum friction. All properties follow from a definition of target-time as a Renormalization Group scale parameter and the associated (generic) properties of the renormalization group flow. Some experimental consequences, concerning CPT violation detectable in systems that are generally considered as sensitive probes of quantum mechanics (e.g. neutral kaons), are briefly discussed. (author). 52 refs., 1 fig
Chaotic dynamics and chaos control in nonlinear laser systems
International Nuclear Information System (INIS)
Fang Jinqing; Yao Weiguang
2001-01-01
Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally
The n-level spectral correlations for chaotic systems
International Nuclear Information System (INIS)
Nagao, Taro; Mueller, Sebastian
2009-01-01
We study the n-level spectral correlation functions of classically chaotic quantum systems without time-reversal symmetry. According to Bohigas, Giannoni and Schmit's universality conjecture, it is expected that the correlation functions are in agreement with the prediction of the circular unitary ensemble (CUE) of random matrices. A semiclassical resummation formalism allows us to express the correlation functions as sums over pseudo-orbits. Using an extended version of the diagonal approximation on the pseudo-orbit sums, we derive the n-level correlation functions identical to the n x n determinantal correlation functions of the CUE.
Room acoustic enhancement in a small hall with very low natural reverberation time
DEFF Research Database (Denmark)
Gade, Anders Christian
1996-01-01
natural combinations of room acoustic properties. Consequently, the natural reverberation time in a newly opened 350 seat multipurpose hall in Denmark was designed as low as 0.7 sec. Two different reverberation enhancement systems were considered and tested in the hall. The objective and subjective...... testing results are reported and compared with previous results obtained in another small hall supplied with a similar enhancement system. The results concerning 'realism' are also compared with acoustic properties found in 'natural' halls of different sizes and reverberation times.......In small multipurpose halls to be equipped with electronic reverberation enhancement systems, selecting a very low natural reverberation time is advantageous for several reasons. It will 1) reduce the risk of feedback, 2) increase the possible range of room acoustic variation and 3) allow for more...
Direct numerical simulation of electrokinetic instability and transition to chaotic motion
Demekhin, E. A.; Nikitin, N. V.; Shelistov, V. S.
2013-12-01
A new type of instability—electrokinetic instability—and an unusual transition to chaotic motion near a charge-selective surface (semiselective electric membrane, electrode, or system of micro-/nanochannels) was studied by the numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. A special finite-difference method was used for the space discretization along with a semi-implicit 31/3-step Runge-Kutta scheme for the integration in time. Two kinds of initial conditions were considered: (a) white-noise initial conditions to mimic "room disturbances" and subsequent natural evolution of the solution, and (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. Our weakly nonlinear analysis and numerical integration of the entire system predict possibility of both kinds of bifurcations at the critical point, supercritical and subcritical, depending on the system parameters. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution, two-dimensional steady electroconvective vortices (stationary point in a proper phase space), unsteady vortices aperiodically changing their parameters (homoclinic contour), periodic motion (limit cycle), and chaotic motion. The transition to chaotic motion does not include Hopf bifurcation. The numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the
Direct numerical simulation of electrokinetic instability and transition to chaotic motion
International Nuclear Information System (INIS)
Demekhin, E. A.; Nikitin, N. V.; Shelistov, V. S.
2013-01-01
A new type of instability—electrokinetic instability—and an unusual transition to chaotic motion near a charge-selective surface (semiselective electric membrane, electrode, or system of micro-/nanochannels) was studied by the numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. A special finite-difference method was used for the space discretization along with a semi-implicit 31/3 -step Runge-Kutta scheme for the integration in time. Two kinds of initial conditions were considered: (a) white-noise initial conditions to mimic “room disturbances” and subsequent natural evolution of the solution, and (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. Our weakly nonlinear analysis and numerical integration of the entire system predict possibility of both kinds of bifurcations at the critical point, supercritical and subcritical, depending on the system parameters. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution, two-dimensional steady electroconvective vortices (stationary point in a proper phase space), unsteady vortices aperiodically changing their parameters (homoclinic contour), periodic motion (limit cycle), and chaotic motion. The transition to chaotic motion does not include Hopf bifurcation. The numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the
Direct numerical simulation of electrokinetic instability and transition to chaotic motion
Energy Technology Data Exchange (ETDEWEB)
Demekhin, E. A., E-mail: edemekhi@gmail.com [Laboratory of Micro- and Nanofluidics, Moscow State University, Moscow 119192 (Russian Federation); Department of Computation Mathematics and Computer Science, Kuban State University, Krasnodar 350040 (Russian Federation); Institute of Mechanics, Moscow State University, Moscow 117192 (Russian Federation); Nikitin, N. V. [Institute of Mechanics, Moscow State University, Moscow 117192 (Russian Federation); Shelistov, V. S. [Institute of Mechanics, Moscow State University, Moscow 117192 (Russian Federation); Scientific Research Department, Kuban State University, Krasnodar 350040 (Russian Federation)
2013-12-15
A new type of instability—electrokinetic instability—and an unusual transition to chaotic motion near a charge-selective surface (semiselective electric membrane, electrode, or system of micro-/nanochannels) was studied by the numerical integration of the Nernst-Planck-Poisson-Stokes system and a weakly nonlinear analysis near the threshold of instability. A special finite-difference method was used for the space discretization along with a semi-implicit 31/3 -step Runge-Kutta scheme for the integration in time. Two kinds of initial conditions were considered: (a) white-noise initial conditions to mimic “room disturbances” and subsequent natural evolution of the solution, and (b) an artificial monochromatic ion distribution with a fixed wave number to simulate regular wave patterns. The results were studied from the viewpoint of hydrodynamic stability and bifurcation theory. The threshold of electroconvective movement was found by the linear spectral stability theory, the results of which were confirmed by numerical simulation of the entire system. Our weakly nonlinear analysis and numerical integration of the entire system predict possibility of both kinds of bifurcations at the critical point, supercritical and subcritical, depending on the system parameters. The following regimes, which replace each other as the potential drop between the selective surfaces increases, were obtained: one-dimensional steady solution, two-dimensional steady electroconvective vortices (stationary point in a proper phase space), unsteady vortices aperiodically changing their parameters (homoclinic contour), periodic motion (limit cycle), and chaotic motion. The transition to chaotic motion does not include Hopf bifurcation. The numerical resolution of the thin concentration polarization layer showed spike-like charge profiles along the surface, which could be, depending on the regime, either steady or aperiodically coalescent. The numerical investigation confirmed the
Two Chaotic Patterns of Dynamic Risk Definition for Solving Hazardous Materials Routing Problem
Directory of Open Access Journals (Sweden)
Abbas Mahmoudabadi
2015-01-01
Full Text Available In the case of determining routes for hazardous material transportation, risk is considered as a main attribute. Transport risk, which is usually combined with other attributes such as cost or travel time, plays a significant role in determining paths for hazardous materials transportation. Since, risk is chaotically affected by road incidents, decision makers are dealing with selecting a method for defining chaotic risk factors in hazmat transportation. In this paper, transport risk has been defined as a chaotic variable using two different methods of generating chaotic patterns. In an experimental road network, which consists of eighty-nine nodes and one hundred and one two-way links, two different methods of generating chaotic variables have been used for applying the proposed procedure. In addition, results for different amounts of risk and cost have also been analyzed in case study. Results revealed that different cost and risk priorities change the frequencies of selected paths determined for hazmat transportation, but the route convergence of the route to chaos method is better than that of the logistic map equation.
Generation of multi-wing chaotic attractor in fractional order system
International Nuclear Information System (INIS)
Zhang Chaoxia; Yu Simin
2011-01-01
Highlights: → We investigate a novel approach for generating multi-wing chaotic attractors. → We introduce a fundamental fractional differential nominal linear system. → A proper nonlinear state feedback controller is designed. → The controlled system can generate fractional-order multi-wing chaotic attractors. - Abstract: In this paper, a novel approach is proposed for generating multi-wing chaotic attractors from the fractional linear differential system via nonlinear state feedback controller equipped with a duality-symmetric multi-segment quadratic function. The main idea is to design a proper nonlinear state feedback controller by using four construction criterions from a fundamental fractional differential nominal linear system, so that the controlled fractional differential system can generate multi-wing chaotic attractors. It is the first time in the literature to report the multi-wing chaotic attractors from an uncoupled fractional differential system. Furthermore, some basic dynamical analysis and numerical simulations are also given, confirming the effectiveness of the proposed method.
A novel grid multiwing chaotic system with only non-hyperbolic equilibria
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-05-01
The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.
Chaotic behaviour of photonic crystals resonators
Di Falco, A.; Liu, C.; Krauss, T. F.; Fratalocchi, Andrea
2015-01-01
We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Controlling chaotic systems via nonlinear feedback control
International Nuclear Information System (INIS)
Park, Ju H.
2005-01-01
In this article, a new method to control chaotic systems is proposed. Using Lyapunov method, we design a nonlinear feedback controller to make the controlled system be stabilized. A numerical example is given to illuminate the design procedure and advantage of the result derived
Economic dispatch using chaotic bat algorithm
International Nuclear Information System (INIS)
Adarsh, B.R.; Raghunathan, T.; Jayabarathi, T.; Yang, Xin-She
2016-01-01
This paper presents the application of a new metaheuristic optimization algorithm, the chaotic bat algorithm for solving the economic dispatch problem involving a number of equality and inequality constraints such as power balance, prohibited operating zones and ramp rate limits. Transmission losses and multiple fuel options are also considered for some problems. The chaotic bat algorithm, a variant of the basic bat algorithm, is obtained by incorporating chaotic sequences to enhance its performance. Five different example problems comprising 6, 13, 20, 40 and 160 generating units are solved to demonstrate the effectiveness of the algorithm. The algorithm requires little tuning by the user, and the results obtained show that it either outperforms or compares favorably with several existing techniques reported in literature. - Highlights: • The chaotic bat algorithm, a new metaheuristic optimization algorithm has been used. • The problem solved – the economic dispatch problem – is nonlinear, discontinuous. • It has number of equality and inequality constraints. • The algorithm has been demonstrated to be applicable on high dimensional problems.
Analyzing and improving a chaotic encryption method
International Nuclear Information System (INIS)
Wu Xiaogang; Hu Hanping; Zhang Baoliang
2004-01-01
To resist the return map attack [Phys. Rev. Lett. 74 (1995) 1970] presented by Perez and Cerdeira, Shouliang Bu and Bing-Hong Wang proposed a simple method to improve the security of the chaotic encryption by modulating the chaotic carrier with an appropriately chosen scalar signal in [Chaos, Solitons and Fractals 19 (2004) 919]. They maintained that this modulating strategy not only preserved all appropriate information required for synchronizing chaotic systems but also destroyed the possibility of the phase space reconstruction of the sender dynamics such as a return map. However, a critical defect does exist in this scheme. This paper gives a zero-point autocorrelation method, which can recover the parameters of the scalar signal from the modulated signal. Consequently, the messages will be extracted from the demodulated chaotic carrier by using return map. Based on such a fact, an improved scheme is presented to obtain higher security, and the numerical simulation indicates the improvement of the synchronizing performance as well
Entanglement production in quantized chaotic systems
Indian Academy of Sciences (India)
Abstract. Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical ...
Entanglement production in quantized chaotic systems
Indian Academy of Sciences (India)
Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies.
Cryptanalysis of a chaotic secure communication system
International Nuclear Information System (INIS)
Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.
2003-01-01
Recently a chaotic encryption system has been proposed by P. Garcia et al. It represents an improvement over an algorithm previously presented by some of the same authors. In this Letter, several weaknesses of the new cryptosystem are pointed out and four successful cryptanalytic attacks are described