WorldWideScience

Sample records for natriuretic factor receptor

  1. Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa eDuda

    2014-03-01

    Full Text Available Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, was the first discovered member of the mammalian membrane guanylate cyclase family. The hallmark feature of the family is that a single protein contains both the site for recognition of the regulatory signal and the ability to transduce it into the production of the second messenger, cyclic GMP. For over two decades, the family has been classified into two subfamilies, the hormone receptor subfamily with ANF-RGC being its paramount member, and the Ca2+ modulated subfamily, which includes the rod outer segment guanylate cyclases, ROS-GC1 and 2, and the olfactory neuroepithelial guanylate cyclase, ONE-GC. ANF-RGC is the receptor and the signal transducer of the most hypotensive hormones, atrial natriuretic factor (ANF and B-type natriuretic peptide (BNP. After binding these hormones at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates the production of cyclic GMP. Cyclic GMP then serves the second messenger role in biological responses of ANF and BNP such as natriuresis, diuresis, vasorelaxation and anti-proliferation. Very recently another modus operandi for ANF-RGC was revealed. Its crux is that ANF-RGC activity is also regulated by Ca2+. The Ca2+ sensor neurocalcin  mediates this signaling mechanism. Strikingly, the Ca2+ and ANF signaling mechanisms employ separate structural motifs of ANF-RGC in modulating its core catalytic domain in accelerating the production of cyclic GMP. In this review the biochemistry and physiology of these mechanisms with emphasis on cardiovascular regulation will be discussed.

  2. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    International Nuclear Information System (INIS)

    Johns, Douglas G.; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-01-01

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [ 125 I]-ANP from NPR-C with pM-to-nM K i values. DNP displaced [ 125 I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K i > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure

  3. Increased atrial natriuretic factor receptor density in cultured vascular smooth muscle cells of the spontaneously hypertensive rat

    International Nuclear Information System (INIS)

    Khalil, F.; Fine, B.; Kuriyama, S.; Hatori, N.; Nakamura, A.; Nakamura, M.; Aviv, A.

    1987-01-01

    To explore the role of the atrial natriuretic factor (ANF) system in the pathophysiology of hypertension we examined the binding kinetics of synthetic ANF to cultured vascular smooth muscle cells (VSMCs) derived from the spontaneously hypertensive rat (SHR) and two normotensive controls-the Wistar Kyoto (WKY) and American Wistar (W). The number of maximal binding sites (Bmax) per cell (mean +/- SEM; X10(3] were: SHR = 278.0 +/- 33.0, WKY = 28.3 +/- 7.1 and W = 26.6 +/- 4.2. The differences between the SHR and normotensive strains were significant at p less than 0.001. The equilibrium dissociation constant (Kd; X 10(-9)M) was higher in SHR VSMCs (0.94 +/- 0.14) than in WKY (0.22 +/- 0.09; p less than 0.01) and W (0.39 +/- 0.14; p less than 0.02) cells. The plasma levels of the immunoreactive ANF were higher in SHR than the normotensive controls. We suggest that the relatively greater ANF receptor density in cultured VSMCs of the SHR represents a response to the in vitro environment which is relatively more deficient in ANF for VSMCs of the SHR as compared with the normotensive rats. Thus, the capacity of the SHR VSMC to regulate ANF receptor density appears to be independent of the blood pressure level

  4. Interaction of cadmium with atrial natriuretic factor receptors: Ligand binding and cellular processing

    International Nuclear Information System (INIS)

    Giridhar, J.; Rathinavelu, A.; Isom, G.E.

    1990-01-01

    ANF is a peptide hormone secreted by the heart and produces potent diuresis and vascular smooth muscle relaxation. It is well known that Cd produces cardiovascular toxicity and is implicated in the pathogenesis of hypertension. Hence the effects of Cd on ANF receptor dynamics and ligand binding were studied in PC12 cells. Receptor internalization using 125 I-ANF as the ligand at 37 degree C displayed a decrease in endocytic rate constants (ERC) when either preincubated with Cd (500 μM for 30 min, ERC = 0.183/min) or coincubated with Cd (500 μM, ERC = 0.196) when compared to control value (ERC = 0.259/min). Ligand binding ( 125 I-ANF) was changed by Cd as reflected by a decrease in the number of binding sites/cell in both Cd preincubated (Kd = 3.81 x 10 -10 M, B max = 1 x 10 -10 M, binding sites/cell = 9333) and coincubated cells (Kd = 1.76 x 10 -10 M, B max = 3.92 x 10 -11 M, binding sites/cell = 5960) from control (Kd = 3.87 x 10 -10 M, B max = 9.58 x 10 -11 M, binding sites/cell = 12141). Photoaffinity labelling with 125 I-ANF as the ligand was used to measure receptor subtype binding. Coincubation of cells with Cd (500 μM) and ligand decreased both high and low mol. wt. receptor binding, whereas preincubation with Cd (500μM) for 60 min produced a slight decrease in binding of both receptor subtypes. These results indicate that the cardiovascular toxicity of Cd may be partially mediated by altered ANF receptor function

  5. Neutral endopeptidase-resistant C-type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3-related dwarfism.

    Science.gov (United States)

    Wendt, Daniel J; Dvorak-Ewell, Melita; Bullens, Sherry; Lorget, Florence; Bell, Sean M; Peng, Jeff; Castillo, Sianna; Aoyagi-Scharber, Mika; O'Neill, Charles A; Krejci, Pavel; Wilcox, William R; Rimoin, David L; Bunting, Stuart

    2015-04-01

    Achondroplasia (ACH), the most common form of human dwarfism, is caused by an activating autosomal dominant mutation in the fibroblast growth factor receptor-3 gene. Genetic overexpression of C-type natriuretic peptide (CNP), a positive regulator of endochondral bone growth, prevents dwarfism in mouse models of ACH. However, administration of exogenous CNP is compromised by its rapid clearance in vivo through receptor-mediated and proteolytic pathways. Using in vitro approaches, we developed modified variants of human CNP, resistant to proteolytic degradation by neutral endopeptidase, that retain the ability to stimulate signaling downstream of the CNP receptor, natriuretic peptide receptor B. The variants tested in vivo demonstrated significantly longer serum half-lives than native CNP. Subcutaneous administration of one of these CNP variants (BMN 111) resulted in correction of the dwarfism phenotype in a mouse model of ACH and overgrowth of the axial and appendicular skeletons in wild-type mice without observable changes in trabecular and cortical bone architecture. Moreover, significant growth plate widening that translated into accelerated bone growth, at hemodynamically tolerable doses, was observed in juvenile cynomolgus monkeys that had received daily subcutaneous administrations of BMN 111. BMN 111 was well tolerated and represents a promising new approach for treatment of patients with ACH. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Atrial natriuretic factor increases vascular permeability

    International Nuclear Information System (INIS)

    Lockette, W.; Brennaman, B.

    1990-01-01

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness

  7. Specific binding of atrial natriuretic factor in brain microvessels

    International Nuclear Information System (INIS)

    Chabrier, P.E.; Roubert, P.; Braquet, P.

    1987-01-01

    Cerebral capillaries constitute the blood-brain barrier. Studies of specific receptors (neurotransmitters or hormones) located on this structure can be performed by means of radioligand-binding techniques on isolated brain microvessels. The authors examined on pure bovine cerebral microvessel preparations the binding of atrial natriuretic factor (ANF), using 125 I-labeled ANF. Saturation and competition experiments demonstrated the presence of a single class of ANF-binding sites with high affinity and with a binding capacity of 58 fmol/mg of protein. The binding of 125 I-labeled ANF to brain microvessels is specific, reversible, and time dependent, as is shown by association-dissociation experiments. The demonstration of specific ANF-binding sites on brain microvessels supposes a physiological role of ANF on brain microvasculature. The coexistence of ANF and angiotensin II receptors on this cerebrovascular tissue suggests that the two circulating peptides may act as mutual antagonists in the regulation of brain microcirculation and/or blood-brain barrier function

  8. Atrial natriuretic factor binding sites in experimental congestive heart failure

    International Nuclear Information System (INIS)

    Bianchi, C.; Thibault, G.; Wrobel-Konrad, E.; De Lean, A.; Genest, J.; Cantin, M.

    1989-01-01

    A quantitative in vitro autoradiographic study was performed on the aorta, renal glomeruli, and adrenal cortex of cardiomyopathic hamsters in various stages of heart failure and correlated, in some instances, with in vivo autoradiography. The results indicate virtually no correlation between the degree of congestive heart failure and the density of 125I-labeled atrial natriuretic factor [(Ser99, Tyr126)ANF] binding sites (Bmax) in the tissues examined. Whereas the Bmax was increased in the thoracic aorta in moderate and severe heart failure, there were no significant changes in the zona glomerulosa. The renal glomeruli Bmax was lower in mild and moderate heart failure compared with control and severe heart failure. The proportion of ANF B- and C-receptors was also evaluated in sections of the aorta, adrenal, and kidney of control and cardiomyopathic hamsters with severe heart failure. (Arg102, Cys121)ANF [des-(Gln113, Ser114, Gly115, Leu116, Gly117) NH2] (C-ANF) at 10(-6) M displaced approximately 505 of (Ser99, Tyr126)125I-ANF bound in the aorta and renal glomeruli and approximately 20% in the adrenal zona glomerulosa in both series of animals. These results suggest that ANF may exert a buffering effect on the vasoconstriction of heart failure and to a certain extent may inhibit aldosterone secretion. The impairment of renal sodium excretion does not appear to be related to glomerular ANF binding sites at any stage of the disease

  9. Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue

    DEFF Research Database (Denmark)

    Smith, Julie; Fahrenkrug, Jan; Jørgensen, Henrik L

    2015-01-01

    Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the tem......Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart......, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs - NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism...... in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner....

  10. Characterization and distribution of receptors for the atrial natriuretic peptides in mammalian brain

    International Nuclear Information System (INIS)

    Quirion, R.; Dalpe, M.; Dam, T.V.

    1986-01-01

    Both rat 125 I-labeled atrial natriuretic polypeptide [ 125 I-ANP or atrial natriuretic factor fragment ANF-(99-126)] and human 125 I-α-ANP or human ANF-(99-126)] bind with high specificity and affinity to an apparent single class of sites in guinea pig brain. Similar results have been reported in peripheral tissues, which indicate that central and peripheral ANP binding sites have fairly similar structural requirements. In vitro receptor autoradiography shows that in the guinea pig brain, 125 I-ANP binding sites are highly concentrated in the external plexiform layer of the olfactory bulb, subfornical organ, various thalamic nuclei, medial geniculate nucleus, and cerebellum. Lower densities are found in the central nucleus of the amygdala, dentate gyrus, hippocampus, and area postrema. Most remaining regions contain much lower densities of sites. In rat brain 125 I-ANP binding sites are differentially distributed, with high densities in the subfornical organ, area postrema, and linings of ventricles but low densities in the thalamus and cerebellum. In monkey brain, 125 I-ANP binding sites are concentrated in the cerebellum. The presence of high densities of 125 I-ANP binding sites in various brain regions strongly suggests the existence of a family of brain-heart peptides, in analogy to the well-known brain-gut peptides. Moreover, the extensive distribution of 125 I-ANP binding sites in mammalian brain suggests that the possible roles of ANP/ANF-like peptides in brain are not restricted to the central regulation of cardiovascular parameters

  11. Thyrotropin modulates receptor-mediated processing of the atrial natriuretic peptide receptor in cultured thyroid cells

    International Nuclear Information System (INIS)

    Tseng, Y.L.; Burman, K.D.; Lahiri, S.; Abdelrahim, M.M.; D'Avis, J.C.; Wartofsky, L.

    1991-01-01

    In a prior study of atrial natriuretic peptide (ANP) binding to cultured thyroid cells, we reported that at 4 C, more than 95% of bound ANP is recovered on cell membranes, with negligible ANP internalization observed. Since ANP binding was inhibited by TSH, we have further studied TSH effects on postbinding ANP processing to determine whether this phenomenon reflects enhanced endocytosis of the ANP-receptor complex. An ANP chase study was initiated by binding [125I] ANP to thyroid cells at 4 C for 2 h, followed by incubation at 37 C. ANP processing was then traced by following 125I activity at various time intervals in three fractions: cell surface membranes, incubation medium, and inside the cells. Radioactivity released into medium represented processed ANP rather than ANP dissociated from surface membranes, since prebound [125I]ANP could not be competitively dissociated by a high concentration of ANP (1 mumol/L) at 37 C. Chase study results showed that prebound ANP quickly disappeared from cell membranes down to 34% by 30 min. Internalized ANP peaked at 10 min, with 21% of initial prebound ANP found inside the cells. At the same time, radioactivity recovered in incubation medium sharply increased between 10-30 min from 8% to 52%. Preincubation of cells with chloroquine (which blocks degradation of the ANP-receptor complex by inhibiting lysosomal hydrolase) caused a 146% increase in internalized [125I]ANP by 30 min (39% compared to 15% control), while medium radioactivity decreased from 52% to 16%, suggesting that processing of the receptor complex is mediated via lysosomal enzymes. In chase studies employing cells pretreated with chloroquine, TSH stimulated the internalization rate of ANP-receptor complex. By 30 min, TSH significantly reduced the membrane-bound ANP, and the decrease was inversely correlated to the increase in internalized radioactivity

  12. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    Energy Technology Data Exchange (ETDEWEB)

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S. (Biosciences Division); (Univ. of Nevada); (Alliance Protein Labs.)

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  13. Post-translational processing and secretion of atrial natriuretic factor

    International Nuclear Information System (INIS)

    Shields, P.P.

    1988-01-01

    The post-translational processing and regulated secretion of atrial natriuretic factor (ANF) were studied in primary cultures of rat cardiac myocytes. Cultures were established from neonatal rat atria or ventricles, and were maintained for 7-14 days in complete serum free medium. The cultures contained high and constant levels of ANF-(1-126), the known storage form of the hormone in vivo. The cultures also secreted ANF-(1-126), instead of the known circulating form of the hormone, ANF-(99-126). However, the inclusion of the glucocorticoids dexamethasone or hydrocortisone in the culture medium increased the levels of ir-ANF contained and secreted by the cultures, and caused both atrial and ventricular cultures to secrete principally ANF-(99-126) instead of ANF-(1-126). The secreted peptide was shown to be authentic ANF-(99-126) by chromatographic, amino acid composition and radiosequence analysis, thus confirming that the cultures were accurately processing ANF to the in vivo circulating form in the presence of glucocorticoids. Glucocorticoids also caused an increase in size and clustering of atrial myocytes as determined by immunocytochemical analysis, but the morphological effects could be dissociated from the stimulation of ANF-(99-126) secretion by manipulating the timing of glucocorticoid exposure. The location of ANF-(99-126) formation was investigated using biosynthetically labeled 35 S-Cys-ANF-(1-126) in conjunction with actively processing cultures

  14. Atrial natriuretic factor in maternal and fetal sheep

    International Nuclear Information System (INIS)

    Cheung, C.Y.; Gibbs, D.M.; Brace, R.A.

    1987-01-01

    To determine atrial natriuretic factor (ANF) concentrations in the circulation and body fluids of adult pregnant sheep and their fetuses, pregnant ewes were anesthetized with pentobarbital sodium, and the fetuses were exteriorized for sampling. ANF concentration, as measured by radioimmunoassay, was 47 +/- 6 (SE) pg/ml in maternal plasma, which was significantly higher than the 15 +/- 3 pg/ml in maternal urine. In the fetus, plasma ANF concentration was 265 +/- 49 pg/ml, 5.6 times that in maternal plasma. No umbilical arterial and venous difference in ANF concentration was observed. Fetal urine ANF concentration was significantly lower than that in fetal plasma, and was similar to that measured in amniotic and allantoic fluid. In chronically catheterized maternal and fetal sheep, fetal plasma ANF was again 5.1 times that in maternal plasma, and these levels were not different from those measured in acutely anesthetized animals. These results demonstrate that immunoreactive ANF is present in the fetal circulation at levels higher than those found in the mother. The low concentration of ANF in fetal urine suggests that ANF is probably metabolized and/or reabsorbed by the fetal kidney

  15. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling

    KAUST Repository

    Turek, Ilona

    2016-03-05

    The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3′,5′-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities. © 2016 Springer Science+Business Media Dordrecht

  16. Reduced ability of C-type natriuretic peptide (CNP) to activate natriuretic peptide receptor B (NPR-B) causes dwarfism in lbab−/− mice

    Science.gov (United States)

    Yoder, Andrea R.; Kruse, Andrew C.; Earhart, Cathleen A.; Ohlendorf, Douglas H.; Potter, Lincoln R.

    2015-01-01

    C-type natriuretic peptide (CNP) stimulates endochondrial ossification by activating the transmembrane guanylyl cyclase, natriuretic peptide receptor-B (NPR-B). Recently, a spontaneous autosomal recessive mutation that causes severe dwarfism in mice was identified. The mutant, called long bone abnormality (lbab), contains a single point mutation that converts an arginine to a glycine in a conserved coding region of the CNP gene, but how this mutation affects CNP activity has not been reported. Here, we determined that thirty to greater than one hundred-fold more CNPlbab was required to activate NPR-B as compared to wild-type CNP in whole cell cGMP elevation and membrane guanylyl cyclase assays. The reduced ability of CNPlbab to activate NPR-B was explained, at least in part, by decreased binding since ten-fold more CNPlbab than wild-type CNP was required to compete with [125I][Tyr0]CNP for receptor binding. Molecular modeling suggested that the conserved arginine is critical for binding to an equally conserved acidic pocket in NPR-B. These results indicate that reduced binding to and activation of NPR-B causes dwarfism in lbab−/− mice. PMID:18554750

  17. Characterization of the functional domains of the natriuretic peptide receptor/guanylate cyclase by radiation inactivation

    International Nuclear Information System (INIS)

    Tremblay, J.; Huot, C.; Koch, C.; Potier, M.

    1991-01-01

    Radiation inactivation has been used to evaluate the molecular size of domains responsible for atrial natriuretic peptide (ANP)-binding and cyclase functions of the ANP receptor/guanylate cyclase. Two types of inactivation curves were observed for cyclase function in both adrenal cortex and aortic smooth muscle cells: (1) biphasic with enhanced guanylate cyclase activity after exposure to low radiation doses and (2) linear after preincubation of membrane proteins with 0.5 microM ANP or solubilization with Triton X-100. The existence of an inhibitory component was the simplest model that best explained the types of radiation curves obtained. Activation of guanylate cyclase by ANP or Triton X-100 could occur via the dissociation of this inhibitory component from the catalytic domain. On the other hand, the loss of ANP-binding activity was linear with increasing radiation exposures under basal, ANP treatment, and Triton X-100 solubilization conditions. Radiation inactivation sizes of about 30 kDa for cyclase function, 20 kDa for ANP-binding function, and 90 kDa for inhibitory function were calculated. These studies suggest that the ANP receptor/guanylate cyclase behaves as a multidomain protein. The results obtained by radiation inactivation of the various biological functions of this receptor are compatible with the hypothesis of an intramolecular inhibitory domain repressing the guanylate cyclase catalytic domain within its membrane environment

  18. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-ß mediated fibrosis

    LENUS (Irish Health Repository)

    Watson, Chris J

    2012-07-07

    AbstractBackgroundMechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts’ response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.Methods and resultsThe effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.ConclusionWe postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.

  19. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy

    DEFF Research Database (Denmark)

    Christoffersen, Tue E.H.; Aplin, Mark; Strom, Claes C.

    2006-01-01

    also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system......RNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle....

  20. Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation

    International Nuclear Information System (INIS)

    Leitman, D.C.

    1988-01-01

    The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using 125 I-ANP 8-33 . Specific 125 I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line, indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP

  1. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A.

    Science.gov (United States)

    Somanna, Naveen K; Mani, Indra; Tripathi, Satyabha; Pandey, Kailash N

    2018-04-01

    Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125 I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.

  2. Factors Associated With Natriuretic Peptide Testing in Patients Presenting to Emergency Departments With Suspected Heart Failure.

    Science.gov (United States)

    Sepehrvand, Nariman; Bakal, Jeffrey A; Lin, Meng; McAlister, Finlay; Wesenberg, James C; Ezekowitz, Justin A

    2016-08-01

    Testing for natriuretic peptides (NPs) such as brain natriuretic peptide (BNP) or N-terminal prohormone brain natriuretic peptide (NT-proBNP) in the emergency department (ED) assists in the evaluation of patients with acute heart failure (HF). The aim of this study was to investigate factors related to the use of NP testing in the ED in a large population-based sample in Canada. This was a retrospective cohort study using linked administrative data from Alberta in 2012. Patients were included if they had testing for an NP in the ED; a comparator group with HF but without NP testing was also included. Of the 16,223 patients in the cohort, 5793 were patients with HF (n = 3148 tested and n = 2645 not tested for NPs) and 10,430 were patients without HF but who were tested for NPs. Patients without HF who were tested for NPs had respiratory disease (34%), non-HF cardiovascular diseases (13%), and other conditions (52%). Patients with HF who were tested had a higher rate of hospital admission from the ED (78.4% vs 62.2%; P < 0.001) and lower 7-day and 90-day repeated ED visit rates compared with those who were not tested. Among patients with HF, male sex, being an urban resident, being seen by an emergency medicine or cardiology specialist, and being seen in hospitals with medium ED visit volumes were associated with increased likelihood of testing for NPs. Several factors, including the type of provider and ED clinical volume, influenced the use of NP testing in routine ED practice. Standardization of an NP testing strategy in clinical practice would be useful for health care systems. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  3. Binding and functional effects of atrial natriuretic factor in isolated rat kidney

    International Nuclear Information System (INIS)

    Suzuki, M.; Almeida, F.A.; Nussenzveig, D.R.; Sawyer, D.; Maack, T.

    1987-01-01

    A new methodological approach was developed to study the relationship between specific binding and dose-response curves of the renal effects of atrial natriuretic factor (ANF) in isolated perfused rat kidneys (IK). IK were perfused with 125 I-labeled and unlabeled ANF 1-28 to determine the following: (1) distribution, capacity (C max ), and apparent affinity (S 50 ) of specific binding of ANF 1-28 in cortex, outer medulla, and papilla and (2) dose-response curves of the effects of ANF 1-28 on renal hemodynamics and excretion of fluid and electrolytes. The kidney had a very high density of high-affinity binding sites for ANF. Cortex had >90% of total binding sites whereas papilla had <2% of total binding sites with a 10-fold lower apparent affinity than in cortex. ANF-induced increases in glomerular filtration rate and excretion of fluid and electrolytes were detectable at 10-100 pM and maximal effects occurred at 1-10 nM ANF. Below 1 nM there was no dissociation between the renal hemodynamic and natriuretic effects of ANF. There was a close agreement between dose-response and binding curves of ANF to cortex. Results demonstrates that binding site occupancy in kidney cortex and renal effects of ANF occur at near physiological concentrations of the hormone

  4. Clinical significance of plasma atrial natriuretic factor and endothelin detection in hyperthyroidism and hypothyroidism

    International Nuclear Information System (INIS)

    Zhu Yalin; Huo Ying; Pan Yunlong

    2005-01-01

    Plasma at rial natriuretic factor (ANF) and endothelin (ET) were detected by RIA in 58 cases of hyperthyroidism and 47 cases of hypothyroidism. Before the ANF and ET concentration of untreatment hyperthyroid patients was much higher than that of treatment hyperthyroid patients, hypothyroid patients before and after treatment and the normal group (P 3 and FT 4 . Compared with the normal group, ANF concentration in treatment hyperthyroid patients, hypothyroid patients before and after treatment was no significantly different (P>0.05), but that in hypothyroid patients before treatment was significantly decreased compared with hypothyroid patients after treatment (P 0.05), but that in hypothyroid patients before treatment was significantly decreased compared with others (P<0.01 and P<0.05). Detection of ANF and ET level may be have a role in supplementary diagnosis and curative effect observation of hyperthyroidism and hypothyroidism. (authors)

  5. Changes in plasma atrial natriuretic factor in patients with idiopathic atrial fibrillation

    International Nuclear Information System (INIS)

    Du Tongxin; Xia Xiaojie; Qu Wei; Wang Shukui; Sun Junjiang

    2002-01-01

    To observe the changes in plasma atrial natriuretic factor (AFN) in patients with idiopathic atrial fibrillation and investigate its mechanism, plasma ANF, platelet count and hematocrit were detected in 21 cases with transient idiopathic atrial fibrillation (group A, A1 representing attack, while A2 termination), 28 with persistent idiopathic atrial fibrillation (group B), 27 suffered from rheumatic heart disease with mitral stenosis and persistent atrial fibrillation (group C), 32 with transient supraventricular tachycardia (group D) and 20 normal controls (group E). It was found that the level of ANF was significantly higher in patients with attacking transient idiopathic atrial fibrillation than that in group A2, D and E (P 0.05), while there was significant difference in hematocrit in group A1 compared with group A2, D, E (P < 0.01). It suggested that ANF and hematocrit play an important role in the attack of idiopathic atrial fibrillation

  6. Comparison of different standards used in radioimmunoassay for atrial natriuretic factor (ANF)

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Nielsen, M. Damkjær; Giese, J.

    1991-01-01

    , estimates of the ANF content in human plasma samples with different standard preparations as the reference showed a considerable variability. With the international standard as the gold reference (plasma ANF concentration 100%) the apparent plasma ANF concentrations measured with the other reference......Six different standards for determination of atrial natriuretic factor (ANF) in human plasma samples have been compared using our radio-immunoassay for ANF: International standard 85/669, National Biological Standard Boards, UK; Bachem standard, Torrance, USA; Bachem standard, Bubendorf......, Switzerland; Bissendorf standard, Wedemark, Germany; Peninsula standard, Belmont, USA; UCB-Bioproducts standard, Brussels, Belgium, Standard curves obtained with different preparations were in parallel but showed considerable quantitative differences. Standard curves referring to the Bissendorf standard...

  7. Pertussis toxin treatment does not block inhibition by atrial natriuretic factor of aldosterone secretion in cultured bovine zona glomerulosa cells

    International Nuclear Information System (INIS)

    De Lean, A.; Cantin, M.

    1986-01-01

    The authors have previously reported that atrial natriuretic factor (ANF) potently inhibits PGE or forskolin-stimulation aldosterone secretion in bovine zona glomerulosa (ZG) by acting through specific high affinity receptors. In order to evaluate the functional role of the regulatory protein N/sub i/ and the inhibition of adenylate cyclase activity (AC) in ZG, the authors have studied the effect of treatment with PT on inhibition by ANF of aldosterone production. Primary cultures of ZG were treated for 18 hours in serum-free F12 medium with (0-100 ng/ml PT). No effect of PT pretreatment was observed either on basal, PGE-stimulated or ANF-inhibited levels of steroidogenesis. When membranes prepared from control ZG were ADP-ribosylated with [ 32 P] NAD in the presence of PT, two toxin-specific bands with 39 Kd and 41 Kd were documented on SDS gel. Cell pretreatment with as low as 1 ng/ml drastically reduced further labelling of these two bands while higher doses completely abolished them. Since PT treatment covalently modifies completely the toxin substrate without altering ANF inhibition of adrenal steroidogenesis, the authors conclude that N/sub i/ is not involved in the mode of action of ANF on aldosterone production

  8. Removal of atrial natriuretic factor by perfused rabbit lungs in situ

    International Nuclear Information System (INIS)

    Turrin, M.; Maack, T.; Gillis, C.N.

    1986-01-01

    Because atrial natriuretic factor (ANF) can be released from the right atrium into pulmonary blood, the authors studied the possibility of uptake of the peptide by rabbit lung, perfused in situ, at 20 ml/min with Krebs-albumin medium. Single pass removal (multiple indicator dilution with 14 C-dextran as reference) of trace amounts (40 pmoles) of 125 I-ANF was 66 +/- 4% (n=12). This was reduced to 8 +/- 4% by co-injection of 10 μM ANF but was unchanged by co-injection of CPAP (340 nM), an inhibitor of angiotensin-converting enzyme (ACE). When 125 I-ANF was re-circulated through lung, uptake reached maximum at 14 min (64 +/- 5%; n=7). Efflux of 125 I-ANF from preloaded lungs was monoexponential with t/sub 1/2/ = 17.7 min. Recovery of 125 I-ANF uptake after block by unlabelled ANF was studied. For this purpose, lungs were loaded with 0.1 μM unlabelled ANF by recirculating for 20 minutes, after which medium was changed to Krebs-albumin and removal of bolus injections of 125 I-ANF was measured every 5 min. Removal of 125 I-ANF, initially 0%, returned to control levels after 20 min. Thus, 125 I-ANF is removed from the pulmonary circulation by a saturable and reversible process which probably does not involve binding to the ACE present on endothelial cells

  9. Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Atrial natriuretic peptide (ANP provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A, is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of

  10. Impairment of the natriuretic peptide system in follitropin receptor knockout mice and reversal by estradiol: implications for obesity-associated hypertension in menopause.

    Science.gov (United States)

    Belo, Najara O; Sairam, M Ram; Dos Reis, Adelina M

    2008-03-01

    Estrogen is considered a major regulator of adipose tissue in females. Estrogen increases circulating levels of atrial natriuretic peptide (ANP), a hormone with renal and cardiovascular effects. The aim of this study was to determine the status of the natriuretic peptide system in female follitropin-receptor knockout (FORKO) mice that could be associated with obesity and hypertension observed in these mutants. Furthermore, estradiol treatment was used to reverse alterations observed. FORKO and wild-type (WT) mice received daily injections of estradiol for 4 d. On the fifth day, blood was collected for determination of plasma ANP levels, and selected tissues were collected for determination of ANP, natriuretic peptide receptor type-A (NPR-A) and type-C (NPR-C) gene expression by RT-PCR and binding of [(125)I]ANP by autoradiography. At 5 months of age, FORKO mice were heavier and had more adipose tissue than WT mice. FORKO mice had lower plasma ANP levels and atrial ANP gene expression and higher renal and adipocyte NPR-C gene expression than WT mice. Estradiol treatment reduced weight gain and increased atrial ANP synthesis as well as decreased ANP clearance NPR-C receptors, resulting in elevation of circulating ANP level. In conclusion, this study shows that FORKO females have an impaired natriuretic peptide system, which may contribute to the susceptibility of FORKO mice to developing age-related hypertension previously shown in these animals. This study establishes a relation between estrogen, adipose tissue, and ANP, which may have important implications in menopausal women.

  11. Removal of atrial natriuretic factor by perfused rabbit lungs in situ

    Energy Technology Data Exchange (ETDEWEB)

    Turrin, M.; Maack, T.; Gillis, C.N.

    1986-03-05

    Because atrial natriuretic factor (ANF) can be released from the right atrium into pulmonary blood, the authors studied the possibility of uptake of the peptide by rabbit lung, perfused in situ, at 20 ml/min with Krebs-albumin medium. Single pass removal (multiple indicator dilution with /sup 14/C-dextran as reference) of trace amounts (40 pmoles) of /sup 125/I-ANF was 66 +/- 4% (n=12). This was reduced to 8 +/- 4% by co-injection of 10 ..mu..M ANF but was unchanged by co-injection of CPAP (340 nM), an inhibitor of angiotensin-converting enzyme (ACE). When /sup 125/I-ANF was re-circulated through lung, uptake reached maximum at 14 min (64 +/- 5%; n=7). Efflux of /sup 125/I-ANF from preloaded lungs was monoexponential with t/sub 1/2/ = 17.7 min. Recovery of /sup 125/I-ANF uptake after block by unlabelled ANF was studied. For this purpose, lungs were loaded with 0.1 ..mu..M unlabelled ANF by recirculating for 20 minutes, after which medium was changed to Krebs-albumin and removal of bolus injections of /sup 125/I-ANF was measured every 5 min. Removal of /sup 125/I-ANF, initially 0%, returned to control levels after 20 min. Thus, /sup 125/I-ANF is removed from the pulmonary circulation by a saturable and reversible process which probably does not involve binding to the ACE present on endothelial cells.

  12. A functional genetic variant (N521D in natriuretic peptide receptor 3 is associated with diastolic dysfunction: the prevalence of asymptomatic ventricular dysfunction study.

    Directory of Open Access Journals (Sweden)

    Naveen L Pereira

    Full Text Available To evaluate the impact of a functional genetic variant in the natriuretic peptide clearance receptor, NPR3, on circulating natriuretic peptides (NPs and myocardial structure and function in the general community.NPR3 plays an important role in the clearance of NPs and through direct signaling mechanisms modulates smooth muscle cell function and cardiac fibroblast proliferation. A NPR3 nonsynonymous single nucleotide polymorphism (SNP rs2270915, resulting in a N521D substitution in the intracellular catalytic domain that interacts with Gi could affect receptor function. Whether this SNP is associated with alterations in NPs levels and altered cardiac structure and function is unknown.DNA samples of 1931 randomly selected residents of Olmsted County, Minnesota were genotyped. Plasma NT-proANP1-98, ANP1-28, proBNP1-108, NT-proBNP1-76, BNP1-32 and BNP3-32 levels were measured. All subjects underwent comprehensive echocardiography.Genotype frequencies for rs2270915 were as follows: (A/A 60%, A/G 36%, G/G 4%. All analyses performed were for homozygotes G/G versus wild type A/A plus the heterozygotes A/G. Diastolic dysfunction was significantly more common (p = 0.007 in the homozygotes G/G (43% than the A/A+A/G (28% group. Multivariate regression adjusted for age, sex, body mass index and hypertension demonstrated rs2270915 to be independently associated with diastolic dysfunction (odds ratio 1.94, p = 0.03. There was no significant difference in NPs levels between the 2 groups suggesting that the clearance function of the receptor was not affected.A nonsynonymous NPR3 SNP is independently associated with diastolic dysfunction and this association does not appear to be related to alterations in circulating levels of natriuretic peptides.

  13. Vasorelaxant potencies and receptor binding affinities of atrial natriuretic hormone (ANH) analogues

    International Nuclear Information System (INIS)

    Bush, E.N.; Green, E.M.; Artman, L.D.; Devine, E.M.; Sarin, V.; Rockway, T.W.; Connolly, P.J.; Kiso, Y.; Holleman, W.H.

    1986-01-01

    ANH (1-28) (α-rat ANP) produces hypotensive effects in vivo, presumably via interaction with specific receptors. Vasorelaxant potencies (pD 2 ) and intrinsic activities of ANH analogues were measured in histamine constricted rabbit aorta rings. Binding affinities (K/sub I/) of the compounds were studied in rabbit aorta renal cortex and adrenal, using the radio-ligand 125 I-Tyr 28 -ANH (1-28). Significant correlations (r 2 s in aorta, and the log D/sub I/s in each of the three tissues were observed for the following cyclic compounds, listed in order of potency: ANH (1-28) greater than or equal to ANH (6-28) greater than or equal to Met 12 -ANH (1-28) (α-human ANP) greater than or equal to cyclohexyl-Ala (Cha) 8 -ANH (5-28) > Lys 11 -ANH (5-28) = ANH (5-28) (atriopeptin III) = ANH (5-27) (atriopeptin II) = Cha 21 -ANH (5-28) greater than or equal to ANH (7-28) > Cha 15 -ANH (5-28) = Pro 10 -ANH (5-28) = ANH (5-25) (atriopeptin I) = Asn 13 -ANH (5-28) = Tyr 9 -ANH (5-28) > des-Gly 9 -ANH (5-28) > ANH (7-23) = Pro 10 -ANH (7-23) greater than or equal to (D)Ala 9 -ANH (7-23) > Pro 9 -ANH (7-13). In summary, the affinities of several ANH analogues for both vascular and nonvascular receptors agree with their vasorelaxant potencies

  14. Natriuretic peptide receptor A inhibition suppresses gastric cancer development through reactive oxygen species-mediated G2/M cell cycle arrest and cell death.

    Science.gov (United States)

    Li, Zheng; Wang, Ji-Wei; Wang, Wei-Zhi; Zhi, Xiao-Fei; Zhang, Qun; Li, Bo-Wen; Wang, Lin-Jun; Xie, Kun-Ling; Tao, Jin-Qiu; Tang, Jie; Wei, Song; Zhu, Yi; Xu, Hao; Zhang, Dian-Cai; Yang, Li; Xu, Ze-Kuan

    2016-10-01

    Natriuretic peptide receptor A (NPRA), the major receptor for atrial natriuretic peptide (ANP), has been implicated in tumorigenesis; however, the role of ANP-NPRA signaling in the development of gastric cancer remains unclear. Immunohistochemical analyses indicated that NPRA expression was positively associated with gastric tumor size and cancer stage. NPRA inhibition by shRNA induced G2/M cell cycle arrest, cell death, and autophagy in gastric cancer cells, due to accumulation of reactive oxygen species (ROS). Either genetic or pharmacologic inhibition of autophagy led to caspase-dependent cell death. Therefore, autophagy induced by NPRA silencing may represent a cytoprotective mechanism. ROS accumulation activated c-Jun N-terminal kinase (JNK) and AMP-activated protein kinase (AMPK). ROS-mediated activation of JNK inhibited cell proliferation by disturbing cell cycle and decreased cell viability. In addition, AMPK activation promoted autophagy in NPRA-downregulated cancer cells. Overall, our results indicate that the inhibition of NPRA suppresses gastric cancer development and targeting NPRA may represent a promising strategy for the treatment of gastric cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora E; Bartels, Emil D; Hunter, Ingrid

    2014-01-01

    decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All...... these conditions can coexist and potentially lead to heart failure, a syndrome associated with a functional natriuretic peptide deficiency despite high circulating concentrations of immunoreactive peptides. Therefore, dysregulation of the natriuretic peptide system, a 'natriuretic handicap', might be an important...... factor in the initiation and progression of metabolic dysfunction and its accompanying cardiovascular complications. This Review provides a summary of the natriuretic peptide system and its involvement in these cardiometabolic conditions. We propose that these peptides might have an integrating role...

  16. Digoxin-like immunoreactivity, endogeneous cardiac glycoside-like factors (s) and natriuretic hormone

    International Nuclear Information System (INIS)

    Clerico, A.

    1987-01-01

    Endogenous factors crossreacting with antidigoxin antibodies (digoxin-like immunoreactive substances=DLIS) have been found in several tissues and body fluids of animals and humans, using commercially avaiable digoxin RIA or EIA methods. Detectable DLIS concentration were found in blood and urine extracts of adults (normal healthy controls, hypertensive patients and salt loaded healthy subjects), while higher levels were generally observed in plasma samples of pregnant women, newborns and patients with renal insufficiency. The chemical characteristics of this endogenous factor are, at present, unknown, although it has been suggested that DLIS could be a substance with low molecular weight. Experimental studies and theoretical consideration suggest that DLIS, in addition to reacting with antibodies, might also bind to the specific cellular receptor of the cardiac glycosides and thus inhibit the membrane Na + /K + ATPase (sodium pump). Therefore, it has been suggested that DLSI is an endogeneous modulator of the membrane sodium-potassium pump and it could play a role in the regulation of fluid and electrolytes muscular tone of myocardial and also in pathogenesis of hypertension

  17. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  18. Sacubitril/valsartan: beyond natriuretic peptides.

    Science.gov (United States)

    Singh, Jagdeep S S; Burrell, Louise M; Cherif, Myriam; Squire, Iain B; Clark, Andrew L; Lang, Chim C

    2017-10-01

    Natriuretic peptides, especially B-type natriuretic peptide (BNP), have primarily been regarded as biomarkers in heart failure (HF). However, they are also possible therapeutic agents due to their potentially beneficial physiological effects. The angiotensin receptor-neprilysin inhibitor, sacubitril/valsartan, simultaneously augments the natriuretic peptide system (NPS) by inhibiting the enzyme neprilysin (NEP) and inhibits the renin-angiotensin-aldosterone system (RAAS) by blocking the angiotensin II receptor. It has been shown to improve mortality and hospitalisation outcomes in patients with HF due to left ventricular systolic dysfunction. The key advantage of sacubitril/valsartan has been perceived to be its ability to augment BNP, while its other effects have largely been overlooked. This review highlights the important effects of sacubitril/valsartan, beyond just the augmentation of BNP. First we discuss how NPS physiology differs between healthy individuals and those with HF by looking at mechanisms like the overwhelming effects of RAAS on the NPS, natriuretic peptide receptor desensitisation and absolute natriuretic deficiency. Second, this review explores other hormones that are augmented by sacubitril/valsartan such as bradykinin, substance P and adrenomedullin that may contribute to the efficacy of sacubitril/valsartan in HF. We also discuss concerns that sacubitril/valsartan may interfere with amyloid-β homeostasis with potential implications on Alzheimer's disease and macular degeneration. Finally, we explore the concept of 'autoinhibition' which is a recently described observation that humans have innate NEP inhibitory capability when natriuretic peptide levels rise above a threshold. There is speculation that autoinhibition may provide a surge of natriuretic and other vasoactive peptides to rapidly reverse decompensation. We contend that by pre-emptively inhibiting NEP, sacubitril/valsartan is inducing this surge earlier during decompensation

  19. Polymorphisms of renin-angiotensin system and natriuretic peptide receptor A genes in patients of Greek origin with a history of myocardial infarction.

    Science.gov (United States)

    Karayannis, George; Tsezou, Aspasia; Giannatou, Eirini; Papanikolaou, Vassilios; Giamouzis, Gregory; Triposkiadis, Filippos

    2010-11-01

    We assessed the association between (CA)n repeat polymorphism of angiotensinogen (AGT), 250 base pair (bp) insertion/deletion (I/D) of angiotensin-converting enzyme (ACE), tetranucleotide repeat polymorphism (TCTG)n of renin (REN), (CT)n repeat polymorphism of the natriuretic peptide receptor A (NPRA) genes, and the presence and extent of coronary artery disease (CAD) in Greek patients with a history of myocardial infarction (MI). A total of 158 post-MI patients referred for coronary angiography were compared with 144 controls. The SS genotype of the AGT gene was related with an increased risk for 3-vessel CAD (odds ratio [OR], 1.94; 95% confidence interval [CI], 1.05-3.61; P = .041), whereas the SL genotype was related with a decreased risk (OR, 0.44; 95% CI, 0.22-0.87; P = .019). Moreover, there was a trend for the SL genotype of the REN gene toward increased risk for CAD. There was a significant association between (CA)n polymorphism of the AGT gene and the extent of CAD in Greek patients with a history of MI.

  20. Solubilization and molecular size of atrial natriuretic hormone (ANH) receptors from rabbit aorta, renal cortex and adrenal

    International Nuclear Information System (INIS)

    Budzik, G.P.; Bush, E.N.; Holleman, W.H.

    1986-01-01

    ANH(1-28) is presumed to regulate blood pressure and fluid balance via membrane receptors coupled to particulate guanylate cyclase. ANH receptors were solubilized from rabbit aorta, renal cortex and adrenal, primary ANH targets. Plasma membranes extracted with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate(CHAPS) yield solubilized receptors with high affinity binding of 125 I-Tyr 28 -ANH. Degradation of hormone was minimized with a broad spectrum of protease inhibitors. 125 I-ANH binding reached maximum by 1 hr at 0 0 C and was stable for at least an additional 2 hrs. Bound was separated from free ligand by HPLC gel filtration on TSK-3000SW in PBS/CHAPS. Bound hormone eluted at a MW of ∼ 200KD in each tissue preparation and was displaced by unlabelled ANH. The concentration of solubilized binding sites was proportional to densities in intact plasma membranes, i.e., adrenal > renal > aorta. Following separation of free hormone, 125 I-ANH-receptors complexes were coupled using bifunctional crosslinking reagents. SDS-PAGE analysis and autoradiography indicated a major labelled band at ∼ 150KD in each tissue preparation. The mobility of this labelled band was not sensitive to reduction before SDS-PAGE. Although these results suggest that solubilized ANH receptors from primary target tissues are very similar, microheterogeneity affecting binding affinity or signal transduction cannot as yet be excluded

  1. Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells.

    Science.gov (United States)

    Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2018-02-07

    We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.

  2. The human endolymphatic sac expresses natriuretic peptides

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2017-01-01

    : Several natriuretic peptides were found expressed significantly in the ES, including uroguanylin and brain natriuretic peptide, but also peptides regulating vascular tone, including adrenomedullin 2. In addition, both neurophysin and oxytocin (OXT) were found significantly expressed. All peptides were...... verified by immunohistochemistry. CONCLUSION: The present data support the hypothesis that the human ES may have an endocrine/paracrine capacity through expression of several peptides with potent natriuretic activity. Furthermore, the ES may influence the hypothalamo-pituitary-adrenal axis and may regulate...... vasopressin receptors and aquaporin-2 channels in the inner ear via OXT expression. We hypothesize that the ES is likely to regulate inner ear endolymphatic homeostasis, possibly through secretion of several peptides, but it may also influence systemic and/or intracranial blood pressure through direct...

  3. Metabolism of 125I-atrial natriuretic factor by vascular smooth muscle cells. Evidence for a peptidase that specifically removes the COOH-terminal tripeptide

    International Nuclear Information System (INIS)

    Johnson, G.R.; Arik, L.; Foster, C.J.

    1989-01-01

    The addition of 200 pM monoiodinated human atrial natriuretic factor-(99-126) (125I-hANF) to cultured bovine aortic smooth muscle cells at 37 degree C resulted in a rapid clearance from the medium (t1/2 approximately 7.5 min). Within 5 min, [125I]iodotyrosine126 (125I-Y), Arg125-[125I]iodotyrosine126 (125I-RY) and Phe124-Arg-[125]iodotyrosine126 (125I-FRY) appeared in the medium. The identities of these degradation products were confirmed by (1) retention time on high performance liquid chromatography (HPLC) relative to standards, (2) products generated by digestion with aminopeptidase M, and (3) the absence of the Met110. Preincubation of the cells with ammonium chloride or chloroquine resulted in a significant increase in the intracellular accumulation of radiolabel, indicative of endocytosis and rapid delivery of 125I-hANF to an acidic intracellular compartment (endosome and/or lysosome). Neither ammonium chloride, chloroquine, nor excess unlabeled hANF blocked the rapid appearance in the medium of 125I-RY or 125I-FRY. Bestatin inhibited the generation of 125I-RY, with a concomitant increase in 125I-FRY, suggesting that the 125I-RY is produced by aminopeptidase action on 125I-FRY. The endopeptidase 24.11 (enkephalinase) inhibitor, SCH 39370, did not inhibit the formation of 125I-FRY. These results provide evidence of a peptidase capable of specifically removing the COOH-terminal tripeptide from 125I-hANF. The COOH-terminal tripeptide, Phe124-Arg-Tyr126, was also isolated from cell digests of hANF by HPLC and its identity confirmed by amino acid analysis. Since it is generally believed that the COOH-terminal tripeptide is critical to many of atrial natriuretic factor-(99-126)'s bioactivities, this enzyme may be involved in the inactivation of atrial natriuretic factor-(99-126) in target tissues

  4. Brain natriuretic peptide:Much more than a biomarker

    OpenAIRE

    Calzetta, Luigino; Orlandi, Augusto; Page, Clive; Rogliani, Paola; Rinaldi, Barbara; Rosano, Giuseppe; Cazzola, Mario; Matera, Maria Gabriella

    2016-01-01

    Brain natriuretic peptide (BNP) modulates several biological processes by activating the natriuretic peptide receptor A (NPR-A). Atria and ventricles secrete BNP. BNP increases natriuresis, diuresis and vasodilatation, thus resulting in a decreased cardiac workload. BNP and NT-proBNP, which is the biologically inactive N-terminal portion of its pro-hormone, are fast and sensitive biomarkers for diagnosing heart failure. The plasma concentrations of both BNP and NT-proBNP also correlate with l...

  5. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP.

    Science.gov (United States)

    Lisy, Ondrej; Huntley, Brenda K; McCormick, Daniel J; Kurlansky, Paul A; Burnett, John C

    2008-07-01

    Our aim was to design, synthesize and test in vivo and in vitro a new chimeric peptide that would combine the beneficial properties of 2 distinct natriuretic peptides with a biological profile that goes beyond native peptides. Studies have established the beneficial vascular and antiproliferative properties of C-type natriuretic peptide (CNP). While lacking renal actions, CNP is less hypotensive than the cardiac peptides atrial natriuretic peptide and B-type natriuretic peptide but unloads the heart due to venodilation. Dendroaspis natriuretic peptide is a potent natriuretic and diuretic peptide that is markedly hypotensive and functions via a separate guanylyl cyclase receptor compared with CNP. Here we engineered a novel chimeric peptide CD-NP that represents the fusion of the 22-amino acid peptide CNP together with the 15-amino acid linear C-terminus of Dendroaspis natriuretic peptide. We also determined in vitro in cardiac fibroblasts cyclic guanosine monophosphate-activating and antiproliferative properties of CD-NP. Our studies demonstrate in vivo that CD-NP is natriuretic and diuretic, glomerular filtration rate enhancing, cardiac unloading, and renin inhibiting. CD-NP also demonstrates less hypotensive properties when compared with B-type natriuretic peptide. In addition, CD-NP in vitro activates cyclic guanosine monophosphate and inhibits cardiac fibroblast proliferation. The current findings advance an innovative design strategy in natriuretic peptide drug discovery and development to create therapeutic peptides with favorable properties that may be preferable to those associated with native natriuretic peptides.

  6. Digoxin-like immunoreactivity, endogeneous cardiac glycoside-like factors (s) and natriuretic hormone. More than a hypothesis. Review article

    Energy Technology Data Exchange (ETDEWEB)

    Clerico, A

    1987-01-01

    Endogenous factors crossreacting with antidigoxin antibodies (digoxin-like immunoreactive substances=DLIS) have been found in several tissues and body fluids of animals and humans, using commercially avaiable digoxin RIA or EIA methods. Detectable DLIS concentration were found in blood and urine extracts of adults (normal healthy controls, hypertensive patients and salt loaded healthy subjects), while higher levels were generally observed in plasma samples of pregnant women, newborns and patients with renal insufficiency. The chemical characteristics of this endogenous factor are, at present, unknown, although it has been suggested that DLIS could be a substance with low molecular weight. Experimental studies and theoretical consideration suggest that DLIS, in addition to reacting with antibodies, might also bind to the specific cellular receptor of the cardiac glycosides and thus inhibit the membrane Na/sup +//K/sup +/ ATPase (sodium pump). Therefore, it has been suggested that DLSI is an endogeneous modulator of the membrane sodium-potassium pump and it could play a role in the regulation of fluid and electrolytes muscular tone of myocardial and also in pathogenesis of hypertension. 91 refs.

  7. Natriuretic peptides stimulate the cardiac sodium pump via NPR-C-coupled NOS activation

    DEFF Research Database (Denmark)

    William, M.; Hamilton, E.J.; Garcia, A.

    2008-01-01

    Natriuretic peptides (NPs) and their receptors (NPRs) are expressed in the heart, but their effects on myocyte function are poorly understood. Because NPRs are coupled to synthesis of cGMP, an activator of the sarcolemmal Na(+)-K(+) pump, we examined whether atrial natriuretic peptide (ANP) regul...

  8. Atrial natriuretic peptide and feeding activity patterns in rats

    Directory of Open Access Journals (Sweden)

    Oliveira M.H.A.

    1997-01-01

    Full Text Available This review presents historical data about atrial natriuretic peptide (ANP from its discovery as an atrial natriuretic factor (ANF to its role as an atrial natriuretic hormone (ANH. As a hormone, ANP can interact with the hypothalamic-pituitary-adrenal axis (HPA-A and is related to feeding activity patterns in the rat. Food restriction proved to be an interesting model to investigate this relationship. The role of ANP must be understood within a context of peripheral and central interactions involving different peptides and pathways

  9. Three molecular forms of atrial natriuretic peptides: quantitative analysis and biological characterization.

    Science.gov (United States)

    Nagai-Okatani, Chiaki; Kangawa, Kenji; Minamino, Naoto

    2017-07-01

    Atrial natriuretic peptide (ANP) is primarily produced in the heart tissue and plays a pivotal role in maintaining cardiovascular homeostasis in endocrine and autocrine/paracrine systems and has clinical applications as a biomarker and a therapeutic agent for cardiac diseases. ANP is synthesized by atrial cardiomyocytes as a preprohormone that is processed by a signal peptidase and stored in secretory granules as a prohormone. Subsequent proteolytic processing of ANP by corin during the secretion process results in a bioactive form consisting of 28 amino acid residues. Mechanical stretch of the atrial wall and multiple humoral factors directly stimulates the transcription and secretion of ANP. Secreted ANP elicits natriuretic and diuretic effects via cyclic guanosine monophosphate produced through binding to the guanylyl cyclase-A/natriuretic peptide receptor-A. Circulating ANP is subjected to rapid clearance by a natriuretic peptide receptor-C-mediated mechanism and proteolytic degradation by neutral endopeptidase. In humans, ANP is present as three endogenous molecular forms: bioactive α-ANP, a homodimer of α-ANP designated as β-ANP, and an ANP precursor designated as proANP (also referred to as γ-ANP). The proANP and especially β-ANP, as minor forms in circulation, are notably increased in patients with cardiac diseases, suggesting the utility of monitoring the pathophysiological conditions that result in abnormal proANP processing that cannot be monitored by inactive N-terminal proANP-related fragments. Emerging plate-based sandwich immunoassays for individual quantitation of the three ANP forms enables evaluation of diagnostic implications and net ANP bioactivity. This new tool may provide further understanding in the pathophysiology of cardiac diseases. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  10. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  11. Influence of atrial fibrillation on plasma von willebrand factor, soluble E-selectin, and N-terminal pro B-type natriuretic peptide levels in systolic heart failure.

    Science.gov (United States)

    Freestone, Bethan; Gustafsson, Finn; Chong, Aun Yeong; Corell, Pernille; Kistorp, Caroline; Hildebrandt, Per; Lip, Gregory Y H

    2008-05-01

    Endothelial dysfunction is present in patients with heart failure (HF) due to left ventricular systolic dysfunction, as well as in patients with atrial fibrillation (AF) who have normal cardiac function. It is unknown whether AF influences the degree of endothelial dysfunction in patients with systolic HF. We measured levels of plasma von Willebrand factor (vWF) and E-selectin (as indexes of endothelial damage/dysfunction and endothelial activation, respectively; both enzyme-linked immunosorbent assay) in patients with AF and HF (AF-HF), who were compared to patients with sinus rhythm and HF (SR-HF), as well as in age-matched, healthy, control subjects. We also assessed the relationship of vWF and E-selectin to plasma N-terminal pro B-type natriuretic peptide (NTpro-BNP), a marker for HF severity and prognosis. One hundred ninety patients (73% men; mean age, 69.0 +/- 10.1 years [+/- SD]) with systolic HF were studied, who were compared to 117 healthy control subjects: 52 subjects (27%) were in AF, while 138 subjects (73%) were in sinus rhythm. AF-HF patients were older than SR-HF patients (p = 0.046), but left ventricular ejection fraction and New York Heart Association class were similar. There were significant differences in NT-proBNP (p NT-proBNP (p NT-proBNP levels (Spearman r = 0.139; p = 0.017). There is evidence of greater endothelial damage/dysfunction in AF-HF patients when compared to SR-HF patients. The clinical significance of this is unclear but may have prognostic value.

  12. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  13. Natriuretic peptides in unstable coronary artery disease.

    Science.gov (United States)

    Jernberg, Tomas; James, Stefan; Lindahl, Bertil; Johnston, Nina; Stridsberg, Mats; Venge, Per; Wallentin, Lars

    2004-09-01

    Patients with unstable coronary artery disease (CAD), i.e., unstable angina or non-ST-elevation myocardial infarction, vary widely in clinical presentation, prognosis and response to treatment. To select appropriate therapy, early risk stratification has become increasingly important. This review focuses on the emerging role of natriuretic peptides in the early assessment of patients with unstable CAD. We conclude that levels of brain natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) are strongly associated to mortality and the risk of future congestive heart failure, and carry important prognostic information independent from previously known risk factors in unstable CAD. There are some data indicating that these markers can also be helpful in the selection of appropriate therapy in these patients but further studies are needed. Before a routine use of BNP or NT-proBNP in unstable CAD can be recommended, the cost-effectiveness of adding these new markers to the currently routine markers and their impact on selection of treatment needs further evaluation. Copyright 2004 Elsevier Ltd

  14. Role of C-type natriuretic peptide in the function of normal human sperm

    Directory of Open Access Journals (Sweden)

    Hui Xia

    2016-01-01

    Full Text Available C-type natriuretic peptide (CNP is a newly discovered type of local regulatory factor that mediates its biological effects through the specific, membrane-bound natriuretic peptide receptor-B (NPR-B. Recent studies have established that CNP is closely related to male reproductive function. The aims of this study were to determine the distribution of CNP/NPR-B in human ejaculated spermatozoa through different methods (such as immunolocalization, real time polymerase chain reaction and Western Blot, and then to evaluate the influence of CNP on sperm function i n vitro, such as motility and acrosome reaction. Human semen samples were collected from consenting donors who met the criteria of the World Health Organization for normozoospermia. Our results show that the specific receptor NPR-B of CNP is localized in the acrosomal region of the head and the membrane of the front-end tail of the sperm, and there is no signal of CNP in human sperm. Compared with the control, CNP can induce a significant dose-dependent increase in spermatozoa motility and acrosome reaction. In summary, CNP/NPR-B can affect sperm motility and acrosome reaction, thus regulating the reproductive function of males. CNP may be a new key factor in regulating sperm function.

  15. Breed differences in natriuretic peptides in healthy dogs

    DEFF Research Database (Denmark)

    Sjöstrand, K.; Wess, G.; Ljungvall, I.

    2014-01-01

    BACKGROUND: Measurement of plasma concentration of natriuretic peptides (NPs) is suggested to be of value in diagnosis of cardiac disease in dogs, but many factors other than cardiac status may influence their concentrations. Dog breed potentially is 1 such factor. OBJECTIVE: To investigate breed...... variation in plasma concentrations of pro-atrial natriuretic peptide 31-67 (proANP 31-67) and N-terminal B-type natriuretic peptide (NT-proBNP) in healthy dogs. ANIMALS: 535 healthy, privately owned dogs of 9 breeds were examined at 5 centers as part of the European Union (EU) LUPA project. METHODS: Absence...... the median concentration in Doberman Pinschers. CONCLUSIONS AND CLINICAL IMPORTANCE: Considerable interbreed variation in plasma NP concentrations was found in healthy dogs. Intrabreed variation was large in several breeds, especially for NT-proBNP. Additional studies are needed to establish breed...

  16. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)

    Introduction: Breast cancer is the most common cancer among women globally. With immunohistochemistry (IHC), breast cancer is classified into four groups based on IHC profile of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2/neu) expression, positive (+) and/or ...

  17. Atrial natriuretic peptide (ANP)-granules: ultrastructure ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-12-29

    Dec 29, 2006 ... morphometry and function. Eliane Florencio ... granules is greatest in the right atrium followed by the left atrium and left auricle and right auricle, in this order. ... family: Atrial natriuretic peptide (ANP), Urodilatin, Brain natriuretic ...

  18. Molecular analysis of the nerve growth factor receptor

    International Nuclear Information System (INIS)

    Hempstead, B.; Patil, N.; Olson, K.; Chao, M.

    1988-01-01

    An essential molecule in the translocation of information by nerve growth factor (NGF) to responsive cells is the cell-surface receptor for NGF. This paper presents information on the genomic structure of the NGF receptor gene, NGF receptor models, and transfection of NGF receptors. Equilibrium binding of [ 125 I]NGF to cells reveals two distinct affinity states for the NGF receptor. The human NGF receptor gene is a single-copy gene, consisting of six exons that span 23 kb. The receptor gene is capable of being transferred to fibroblast cells from human genomic DNA and expressed at high levels. The constitutive nature of the receptor promoter sequence is a partial explanation of why this tissue-specific gene is expressed efficiently in a variety of nonneuronal cells after genomic gene transfer. The two kinetic forms of the NGF receptor appear to be encoded by the same protein, which is the product of a single gene

  19. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  20. Elevated N-terminal pro-brain natriuretic peptide levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of dietary sodium restriction and diuretics, but not angiotensin receptor blockade, in proteinuric renal patients.

    Science.gov (United States)

    Slagman, Maartje C J; Waanders, Femke; Vogt, Liffert; Damman, Kevin; Hemmelder, Marc; Navis, Gerjan; Laverman, Gozewijn D

    2012-03-01

    Renin-angiotensin aldosterone system (RAAS) blockade only partly reduces blood pressure, proteinuria and renal and cardiovascular risk in chronic kidney disease (CKD) but often requires sodium targeting [i.e. low sodium diet (LS) and/or diuretics] for optimal efficacy. However, both under- and overtitration of sodium targeting can easily occur. We evaluated whether N-terminal pro-brain natriuretic peptide (NT-proBNP), a biomarker of volume expansion, predicts the benefits of sodium targeting in CKD patients. In a cross-over randomized controlled trial, 33 non-diabetic CKD patients (proteinuria 3.8 ± 0.4 g/24 h, blood pressure 143/86 ± 3/2 mmHg, creatinine clearance 89 ± 5 mL/min) were treated during 6-week periods with placebo, angiotensin receptor blockade (ARB; losartan 100 mg/day) and ARB plus diuretics (losartan 100 mg/day plus hydrochlorothiazide 25 mg/day), combined with LS (93 ± 52 mmol Na(+)/24 h) and regular sodium diet (RS; 193 ± 62 mmol Na(+)/24 h, P diuretics and was normalized by ARB + diuretic + LS [39 (26-59) pg/mL, P = 0.65 versus controls]. NT-proBNP levels above the upper limit of normal (>125 pg/mL) predicted a larger reduction of blood pressure and proteinuria by LS and diuretics but not by ARB, during all steps of the titration regimen. Elevated NT-proBNP levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of sodium targeting, but not RAAS blockade, in proteinuric CKD patients. Importantly, this applies to the untreated condition, as well as to the subsequent treatment steps, consisting of RAAS blockade and even RAAS blockade combined with diuretics. NT-proBNP can be a useful tool to identify CKD patients in whom sodium targeting can improve blood pressure and proteinuria.

  1. Dexamethasone stimulates expression of C-type Natriuretic Peptide in chondrocytes

    Directory of Open Access Journals (Sweden)

    Beier Frank

    2006-11-01

    Full Text Available Abstract Background Growth of endochondral bones is regulated through the activity of cartilaginous growth plates. Disruption of the physiological patterns of chondrocyte proliferation and differentiation – such as in endocrine disorders or in many different genetic diseases (e.g. chondrodysplasias – generally results in dwarfism and skeletal defects. For example, glucocorticoid administration in children inhibits endochondral bone growth, but the molecular targets of these hormones in chondrocytes remain largely unknown. In contrast, recent studies have shown that C-type Natriuretic Peptide (CNP is an important anabolic regulator of cartilage growth, and loss-of-function mutations in the human CNP receptor gene cause dwarfism. We asked whether glucocorticoids could exert their activities by interfering with the expression of CNP or its downstream signaling components. Methods Primary mouse chondrocytes in monolayer where incubated with the synthetic glucocorticoid Dexamethasone (DEX for 12 to 72 hours. Cell numbers were determined by counting, and real-time PCR was performed to examine regulation of genes in the CNP signaling pathway by DEX. Results We show that DEX does influence expression of key genes in the CNP pathway. Most importantly, DEX significantly increases RNA expression of the gene encoding CNP itself (Nppc. In addition, DEX stimulates expression of Prkg2 (encoding cGMP-dependent protein kinase II and Npr3 (natriuretic peptide decoy receptor genes. Conversely, DEX was found to down-regulate the expression of the gene encoding its receptor, Nr3c1 (glucocorticoid receptor, as well as the Npr2 gene (encoding the CNP receptor. Conclusion Our data suggest that the growth-suppressive activities of DEX are not due to blockade of CNP signaling. This study reveals a novel, unanticipated relationship between glucocorticoid and CNP signaling and provides the first evidence that CNP expression in chondrocytes is regulated by endocrine

  2. N-terminal pro brain natriuretic peptide as a cardiac biomarker in Japanese hemodialysis patients.

    Science.gov (United States)

    Shimizu, Minako; Doi, Shigehiro; Nakashima, Ayumu; Naito, Takayuki; Masaki, Takao

    2018-03-01

    This study examined the clinical significance of N-terminal pro brain natriuretic peptide level as a cardiac marker in Japanese hemodialysis patients. This was a multicenter cross-sectional study involving 1428 Japanese hemodialysis patients. Ultrasonic cardiography data at post-hemodialysis were obtained from 395 patients. We examined whether serum N-terminal pro brain natriuretic peptide levels were associated with cardiac parameters and assessed cut-off values and investigated factors associated with a reduced ratio of N-terminal pro brain natriuretic peptide levels pre- and post-hemodialysis. Multivariate logistic regression analysis showed that pre- and post-hemodialysis N-terminal pro brain natriuretic peptide levels were associated with left ventricular hypertrophy on electrocardiogram (odds ratio: 3.10; p N-terminal pro brain natriuretic peptide levels were also significantly associated with ejection fraction on urine chorionic gonadotrophin (ultrasonic cardiography; odds ratio: 35.83; p N-terminal pro brain natriuretic peptide reduction ratio during a hemodialysis session correlated with Kt/V, membrane area, membrane type, modality, body weight gain ratio, treatment time, and ultrafiltration rate with multiple linear regression ( R: 0.53; p N-terminal pro brain natriuretic peptide are associated with the presence of left ventricular hypertrophy in this population. The post-hemodialysis N-terminal pro brain natriuretic peptide level is a useful marker for systolic dysfunction.

  3. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens Peter; Hansen, Lasse H; Terzic, Dijana

    2014-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  4. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  5. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  6. Radiotherapy and receptor of epidermal growth factor

    International Nuclear Information System (INIS)

    Deberne, M.

    2009-01-01

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  7. Cardiac Hypertrophy and Brain Natriuretic Peptide Levels in an Ovariectomized Rat Model Fed a High-Fat Diet

    Science.gov (United States)

    Goncalves, Gleisy Kelly; de Oliveira, Thiago Henrique Caldeira; de Oliveira Belo, Najara

    2017-01-01

    Background Heart failure in women increases around the time of menopause when high-fat diets may result in obesity. The heart produces brain natriuretic peptide (BNP), also known as B-type natriuretic peptide. This aims of this study were to assess cardiac hypertrophy and BNP levels in ovariectomized rats fed a high-fat diet. Material/Methods Forty-eight female Wistar rats were divided into four groups: sham-operated rats fed a control diet (SC) (n=12); ovariectomized rats fed a control diet (OC) (n=12); sham-operated rats fed a high-fat diet (SF) (n=12); and ovariectomized rats fed a high-fat diet (OF) (n=12). Body weight and blood pressure were measured weekly for 24 weeks. Rats were then euthanized, and plasma samples and heart tissue were studied for gene expression, hydroxyproline levels, and histological examination. Results A high-fat diet and ovariectomy (group OF) increased the weight body and the systolic blood pressure after three months and five months, respectively. Cardiomyocyte hypertrophy was associated with increased expression of ventricular BNP, decreased natriuretic peptide receptor (NPR)-A and increased levels of hydroxyproline and transforming growth factor (TGF)-β. The plasma levels of BNP and estradiol were inversely correlated; expression of estrogen receptor (ER)β and ERα were reduced. Conclusions The findings of this study showed that, in the ovariectomized rats fed a high-fat diet, the BNP-NPR-A receptor complex was involved in cardiac remodeling. BNP may be a marker of cardiac hypertrophy in this animal model. PMID:29249795

  8. Manifold implications of obesity in ischemic heart disease among Japanese patients according to covariance structure analysis: Low reactivity of B-type natriuretic peptide as an intervening risk factor.

    Science.gov (United States)

    Tsutsumi, Joshi; Minai, Kosuke; Kawai, Makoto; Ogawa, Kazuo; Inoue, Yasunori; Morimoto, Satoshi; Tanaka, Toshikazu; Nagoshi, Tomohisa; Ogawa, Takayuki; Yoshimura, Michihiro

    2017-01-01

    Obesity is believed to be one of the major risk factors for cardiovascular disease in Western countries. However, the effects of obesity should be continuously examined in the Japanese population because the average bodily habitus differs among countries. In this study, we collectively examined the significance of obesity and obesity-triggered risk factors including the low reactivity of B-type natriuretic peptide (BNP), for ischemic heart disease (IHD) in Japanese patients. The study patients consisted of 1252 subjects (IHD: n = 970; non-IHD: n = 282). Multiple logistic regression analysis revealed that dyslipidemia, hypertension, diabetes, and the low reactivity of BNP were significant risk factors for IHD, but body mass index (BMI) was not. A theoretical path model was proposed by positioning BMI at the top of the hierarchical model. Exploratory factor analysis revealed that BMI did not play a causative role in IHD (P = NS). BMI was causatively linked to other risk factors (Pobesity per se is not a strong risk factor for IHD in Japanese patients. However, several important risk factors triggered by obesity exhibited a causative role for IHD. The low reactivity of BNP is a substantial risk factor for IHD.

  9. Urodilatin, a natriuretic peptide with clinical implications.

    Science.gov (United States)

    Meyer, M; Richter, R; Forssmann, W G

    1998-02-21

    Natriuretic peptides (NP) constitute hormonal systems of great clinical impact. This report deals with Urodilatin (URO), a renal natriuretic peptide type A. From the gene of NP type A, a message for the preprohormone is transcribed in heart and kidney. The cardiac prohormone CDD/ANP-1-126 is synthesized in the heart atrium and processed during exocytosis forming the circulating hormone CDD/ANP-99-126. URO (CDD/ANP 95-126) is a product from the same gene, but differentially processed in the kidney and detected only in urine. Physiologically, URO acts in a paracrine fashion. After release from distal tubular kidney cells into the tubular lumen, URO binds to luminal receptors (NPR-A) in the collecting duct resulting in a cGMP-dependent signal transduction. cGMP generation is followed by an interaction with the amiloriode-sensitive sodium channel which induces diuresis and natriuresis. In this way, URO physiologically regulates fluid balance and sodium homeostasis. Moreover, URO excretion and natriuresis are in turn dependent on several physiological states, such as directly by sodium homeostasis. Pharmacologically, URO at low dose administered intravenously shows a strong diuretic and natriuretic effect and a low hypotensive effect. Renal, pulmonary, and cardiovascular effects evoked by pharmacological doses indicate that URO is a putative drug for several related diseases. Clinical trials show promising results for various clinical indications. However, the reduction in hemodialysis/hemofiltration in patients suffering from ARF following heart and liver transplantation, derived from preliminary trials recruiting a small number of patients, was not confirmed by a multicenter phase II study. In contrast, data for the prophylactic use of URO in this clinical setting suggest a better outcome for the patients. Furthermore, treatment of asthmatic patients showed a convincingly beneficial effect of URO on pulmonary function. Patients with congestive heart failure may also

  10. Steroid hormone and epidermal growth factor receptors in meningiomas.

    Science.gov (United States)

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  11. N-terminal pro-brain natriuretic peptide and associated factors in the general working population: a baseline survey of the Uranosaki cohort study.

    Science.gov (United States)

    Tanaka, Atsushi; Yoshida, Hisako; Kawaguchi, Atsushi; Oyama, Jun-Ichi; Kotooka, Norihiko; Toyoda, Shigeru; Inoue, Teruo; Natsuaki, Masafumi; Node, Koichi

    2017-07-19

    Few data on clinical characteristics associated with N-terminal pro-brain natriuretic peptide (NT-proBNP) or the clinical value of measuring NT-proBNP in the working population are available. The aim of the present study was to investigate the levels of NT-proBNP and their association with clinical variables in the Japanese general working population by using baseline data from the Uranosaki cohort study. In the study, the plasma concentration of NT-proBNP and some biomarkers were measured in addition to the standard health checkups at the workplace. Questionnaires regarding health-related quality of life (HR-QOL) were also completed. A total of 2140 participants were enrolled in the study. Plasma levels of NT-proBNP were positively associated with age, female sex, systolic blood pressure, pulse pressure, prevalent hypertension, smoking habit, high-density lipoprotein cholesterol (HDL-C), and prevalent proteinuria, and negatively associated with body mass index, lipid profiles except HDL-C, uric acid, renal function, and hemoglobin. Both the plasma concentration of high-molecular weight adiponectin and that of high-sensitivity troponin T were positively and independently associated with NT-proBNP. In addition, the HR-QOL score regarding sleep disorder was independently associated with NT-proBNP. Thus, we have obtained evidence that the plasma NT-proBNP is affected by several clinical variables in the general working population.

  12. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  13. The evolution of the natriuretic peptides - Current applications in human and animal medicine.

    Science.gov (United States)

    van Kimmenade, Roland R J; Januzzi, James L

    2009-05-01

    Although natriuretic peptides have played an important role in the fluid homeostasis of vertebrates for over several million years, their importance has only been noticed in the last few decades. Yet, the family of natriuretic peptides have since their discovery, drawn the attention of a broad spectrum of physicians and researchers involved in the maintenance of fluid homeostasis, including marine biologists, basic scientists, physicians and veterinarians. While all natriuretic peptides share a common phylogenetic background, due to differences in receptor-binding affinities, they have evolved into different hormones with clear distinct functions. B-type natriuretic peptide (BNP) is the most studied member of the natriuretic peptide family, and together with its cleavage equivalent amino-terminal proB-type natriuretic peptide (NT-proBNP) these peptides have emerged as important cardiovascular serum markers. However, since their introduction, physicians involved in human or animal medicine have faced common but also different challenges in order to optimally interpret the diagnostic and prognostic value of these novel cardiovascular biomarkers.

  14. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...... in decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response...

  15. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  16. C-Type Natriuretic Peptide Analog as Therapy for Achondroplasia.

    Science.gov (United States)

    Legeai-Mallet, Laurence

    2016-01-01

    Fibroblast growth factor receptor 3 (FGFR3) is an important regulator of bone formation. Gain-of-function mutations in the FGFR3 gene result in chondrodysplasias which include achondroplasia (ACH), the most common form of dwarfism, in which skull, appendicular and axial skeletons are affected. The skeletal phenotype of patients with ACH showed defective proliferation and differentiation of the chondrocytes in the growth plate cartilage. Both endochondral and membranous ossification processes are disrupted during development. At cellular level, Fgfr3 mutations induce increased phosphorylation of the tyrosine kinase receptor FGFR3, which correlate with an enhanced activation of its downstream signaling pathways. Potential therapeutic strategies have emerged for ACH. Several preclinical studies have been conducted such as the C-type natriuretic peptide (CNP) analog (BMN111), intermittent parathyroid hormone injections, soluble FGFR3 therapy, and meclozine and statin treatments. Among the putative targets to antagonize FGFR3 signaling, CNP (or BMN111) is one of the most promising strategies. BMN111 acts as a key regulator of longitudinal bone growth by downregulating the mitogen-activated protein kinase pathway, which is activated as a result of a FGFR3 gain-of-function mutation. Preclinical studies showed that BMN111 treatment led to a large improvement in skeletal parameters in Fgfr3Y367C/+ mice mimicking ACH. In 2014, a clinical trial (phase 2) of BMN111 in pediatric patients with ACH has started. This first clinical trial marks the first big step towards real treatment for these patients. © 2016 S. Karger AG, Basel.

  17. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  18. Assembly and activation of neurotrophic factor receptor complexes.

    Science.gov (United States)

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  19. Practical use of natriuretic peptide measurement

    DEFF Research Database (Denmark)

    Husby, Simon; Lind, Bent; Goetze, Jens P

    2012-01-01

    To elucidate the knowledge regarding B-type natriuretic peptide (BNP)/N-terminal proBNP (NT-proBNP) measurement among doctors using this biomarker.......To elucidate the knowledge regarding B-type natriuretic peptide (BNP)/N-terminal proBNP (NT-proBNP) measurement among doctors using this biomarker....

  20. [The role of natriuretic peptides in heart failure].

    Science.gov (United States)

    Ancona, R; Limongelli, G; Pacileo, G; Miele, T; Rea, A; Roselli, T; Masarone, D; Messina, S; Palmieri, R; Golia, E; Iacomino, M; Gala, S; Calabrò, P; Di Salvo, G; Calabrò, R

    2007-10-01

    Over the last decades, there has been a significant increase in incidence and prevalence of heart failure, a major cause of cardiac morbidity and mortality. Measurements of neurohormones, in particular B-type natriuretic peptide (BNP), can significantly improve diagnostic accuracy, and also correlate with long-term morbidity and mortality in patients with chronic heart failure presenting to the emergency department. BNP is secreted by cardiac ventricles mainly in response to wall stress and neurohormonal factors like the sympathetic nervous system, endothelins, and the rennin-angiotensin-aldosterone system. BNP increases myocardial relaxation and oppose the vasoconstrictive, sodium retaining, and natriuretic effects caused by vasoconstrictive factors. BNP is the first biomarker to prove its clinical value for the diagnosis of left ventricular systolic and diastolic dysfunction but also for the right ventricular dysfunction, guiding prognosis and therapy management. Emerging clinical data will help further refine biomarker-guided therapeutic and monitoring strategies involving BNP.

  1. Topical administration of adrenergic receptor pharmaceutics and nerve growth factor

    Directory of Open Access Journals (Sweden)

    Jena J Steinle

    2010-06-01

    Full Text Available Jena J SteinleDepartments of Ophthalmology and Anatomy and Neurobiology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USAAbstract: Topical application of nerve growth factor (NGF and adrenergic receptor pharmaceutics are currently in use for corneal ulcers and glaucoma. A recent interest in the neuroprotective abilities of NGF has led to a renewed interest in NGF as a therapeutic for retinal and choroidal diseases. NGF can promote cell proliferation through actions of the TrkA receptor or promote apoptosis through receptor p75NTR. This understanding has led to novel interest in the role of NGF for diseases of the posterior eye. The role of β-adrenergic receptor agonists and antagonists for treatments of glaucoma, diabetic retinopathy, and their potential mechanisms of action, are still under investigation. This review discusses the current knowledge and applications of topical NGF and adrenergic receptor drugs for ocular disease.Keywords: NGF, β-adrenergic receptor agents, α-adrenergic receptor agents, retina, cornea, glaucoma

  2. B-type natriuretic peptide measurement in primary care; magnitude of associations with cardiovascular risk factors and their therapies. Observations from the STOP-HF (St. Vincent's Screening TO Prevent Heart Failure) study.

    LENUS (Irish Health Repository)

    Conlon, Carmel M

    2012-02-01

    BACKGROUND: An effective prevention strategy for heart failure in primary care requires a reliable screening tool for asymptomatic ventricular dysfunction. Preliminary data indicate that B-type natriuretic peptide (BNP) may be suitable for this task. However, for the most effective use of this peptide, the interrelationships between associated risk factors and their therapies on BNP, and in particular their magnitude of effect, needs to be established in a large primary care population. Therefore, the objective of the study was to establish the extent of the association between BNP, cardiovascular risk factors and their therapies. METHODS: BNP measurement and clinical review was preformed on 1122 primary care patients with cardiovascular risk factors. Multivariate analyses identified significant associates of BNP concentrations which were further explored to establish the magnitude of their association. RESULTS: Associates of BNP were age (1.36-fold increase in BNP\\/decade), female (1.28), beta-blockers (1.90), myocardial infarction (1.36), arrhythmia (1.98), diastolic blood pressure; all p<0.01. A novel method was devised that plotted median BNP per sliding decade of age for the various combinations of these principal associates. CONCLUSIONS: The data presented underline the importance of considering several clinical and therapeutic factors when interpreting BNP concentrations. Most of these variables were associated with increased concentrations, which may in part explain the observed false-positive rates for detecting ventricular dysfunction using this peptide. Furthermore, the design of studies or protocols using BNP as an endpoint or a clinical tool should take particular account of these associations. This analysis provides the foundation for age, risk factor and therapy adjusted reference ranges for BNP in this setting.

  3. B-type natriuretic peptide as prognostic marker in tetralogy of Fallot surgery.

    Science.gov (United States)

    Kapoor, Poonam Malhotra; Subramanian, Arun; Malik, Vishwas; Kiran, Usha; Velayoudham, Devagourou

    2015-02-01

    B-type natriuretic peptide has been extensively studied in patients with cardiovascular disease, but its impact on the perioperative outcome of patients with cyanotic congenital heart defects is still unclear. We assessed the perioperative changes in B-type natriuretic peptide levels and their correlation with preoperative factors and clinical outcomes in a large homogenous group of patients with tetralogy of Fallot undergoing definitive repair at a tertiary care center. A prospective study was undertaken in the cardiac operating room and intensive care unit at a single institution; 250 patients with tetralogy of Fallot undergoing intracardiac repair under cardiopulmonary bypass were studied. B-type natriuretic peptide levels were taken at 3 time points and correlated with clinical variables. Baseline B-type natriuretic peptide levels correlated with the degree of cyanosis in all 4 groups. B-type natriuretic peptide levels at 24 h after admission to the intensive care unit correlated with mortality in the adult subset of patients. B-type natriuretic peptide levels > 290 pg mL(-1) in the intensive care unit predicted an increased probability of adverse clinical outcomes. We demonstrated a rise in serum B-type natriuretic peptide levels in patients with tetralogy of Fallot undergoing definitive repair on cardiopulmonary bypass. B-type natriuretic peptide levels may be monitored to identify patients with cyanosis at increased risk of an augmented inflammatory response to cardiopulmonary bypass. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Brain natriuretic peptide: Diagnostic potential in dogs

    Directory of Open Access Journals (Sweden)

    Spasojević-Kosić Ljubica

    2009-01-01

    Full Text Available The endocrine role of the heart is evident in the secretion of noradrenaline and natriuretic peptides. The secretion of natriuretic peptides presents a useful mechanism for different conditions of cardiac dysfunction. Brain natriuretic peptide (BNP has been accepted in human cardiology as a biomarker for cardiac insufficiency and coronary arterial disease. The specificity of the BNP structure is specie-specific, so that the testing of diagnostic and prognostic potential in dogs requires the existence of a test that is a homologue for that animal specie. The existence of an adequate method for measuring BNP concentration makes possible its implementation as a screening test in everyday clinical practice. .

  5. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  6. Distribution of corticotropin-releasing factor receptors in primate brain

    International Nuclear Information System (INIS)

    Millan, M.A.; Jacobowitz, D.M.; Hauger, R.L.; Catt, K.J.; Aguilera, G.

    1986-01-01

    The distribution and properties of receptors for corticotropin-releasing factor (CRF) were analyzed in the brain of cynomolgus monkeys. Binding of [ 125 I]tyrosine-labeled ovine CRF to frontal cortex and amygdala membrane-rich fractions was saturable, specific, and time- and temperature-dependent, reaching equilibrium in 30 min at 23 0 C. Scatchard analysis of the binding data indicated one class of high-affinity sites with a K/sub d/ of 1 nM and a concentration of 125 fmol/mg. As in the rat pituitary and brain, CRF receptors in monkey cerebral cortex and amygdala were coupled to adenylate cyclase. Autoradiographic analysis of specific CRF binding in brain sections revealed that the receptors were widely distributed in the cerebral cortex and limbic system. Receptor density was highest in the pars tuberalis of the pituitary and throughout the cerebral cortex, specifically in the prefrontal, frontal, orbital, cingulate, insular, and temporal areas, and in the cerebellar cortex. A low binding density was present in the superior colliculus, locus coeruleus, substantia gelatinosa, preoptic area, septal area, and bed nucleus of the stria terminalis. These data demonstrate that receptors for CRF are present within the primate brain at areas related to the central control of visceral function and behavior, suggesting that brain CRF may serve as a neurotransmitter in the coordination of endocrine and neural mechanisms involved in the response to stress

  7. Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart.

    Science.gov (United States)

    Izgut-Uysal, Vecihe Nimet; Acar, Nuray; Birsen, Ilknur; Ozcan, Filiz; Ozbey, Ozlem; Soylu, Hakan; Avci, Sema; Tepekoy, Filiz; Akkoyunlu, Gokhan; Yucel, Gultekin; Ustunel, Ismail

    2018-04-01

    The cardiovascular system is a primary target of stress and stress is the most important etiologic factor in cardiovascular diseases. Stressors increase expressions of atrial natriuretic peptide (ANP) and apelin in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in the right atrium of rat heart. The rats were divided into the control, stress and F13A+stress groups. In the stress and F13A+stress groups, the rats were subjected to water immersion and restraint stress (WIRS) for 6h. In the F13A+stress group, apelin receptor antagonist F13A, was injected intravenously immediately before application of WIRS. The plasma samples were obtained for the measurement of corticosterone and atrial natriuretic peptide. The atrial samples were used for immunohistochemistry and western blot analysis. F13A administration prevented the rise of plasma corticosterone and ANP levels induced by WIRS. While WIRS application increased the expressions of apelin, HIF-1α and ANP in atrial tissue, while F13A prevented the stress-induced increase in the expression of HIF-1α and ANP. Stress-induced apelin induces ANP expression in atrial tissue and may play a role in cardiovascular homeostasis by increasing ANP expression under WIRS conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Urodilatin. A renal natriuretic peptide

    International Nuclear Information System (INIS)

    Carstens, Jan

    1998-01-01

    Development and validation of a radioimmunoassay for endogenous URO in urine and synthetic URO in plasma is described. The first obstacle to overcome was to produce an antibody specific for URO. A polyclonal URO antibody with a cross-reactivity with the structural highly homologous atrial natriuretic peptide (ANP) was developed by immunization of rabbits with the whole URO(95-126). Purification of the polyclonal URO antiserum with CNBr-activated Sepharose affinity chromatography was a simple way of producing a URO-specific antibody without cross-reactivity with ANP analogues. A reliable 125 I-labelled URO tracer was made with the Iodo-Gen method. Prior to the assay, the urine samples were prepared by ethanol with a recovery of unlabelled URO between 80 - 100% and the plasma samples were Sep-Pak C 18 extracted with a recovery of about 50%. The radioimmunoassay is performed in 3 days, using polyethylene glycol for separation. The sensitivity of the assay was improved by sample preparation and concentration, reducing the amount of tracer and late addition, reducing the amount of antibody and increasing the incubation time and lowering the temperature of incubation. The infusion rate of 20 ng URO kg -1 min -1 was most potential and well tolerated in healthy subjects. The short-term natriuretic and diuretic effects were closely associated with a significant diminished sodium reabsorption in the distal nephron. Further studies are needed to exploit the therapeutical potential of URO, for example in patients with sodium-water retaining disorders. The therapeutical dose range will probably be narrow due to the blood pressure lowering effect of URO with infusion rates higher than 20-30 ng kg -1 min -1 . (EHS)

  9. Platelet-derived growth factor receptors in the human central nervous system : autoradiographic distribution and receptor densities in multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Wilczak, N

    1997-01-01

    Platelet derived growth factor (PDGF) receptors were studied in postmortem adult human brain and cervical spinal cord using autoradiography with human recombinant I-125-PDGF-BB. PDGF-BB binds to the three different dimers of PDGF receptors (alpha alpha, alpha beta and beta beta) PDGF receptors were

  10. Epidermal growth factor receptor expression in urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Dayalu S.L. Naik

    2011-01-01

    Full Text Available Objective : To evaluate the expression pattern of epidermal growth factor receptor (EGFR in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2, epidermal growth factor (EGF, interleukin-6 (IL-6, and high risk human papilloma virus (HPV types 16 and 18. Materials and Methods : Thirty cases of urothelial carcinoma were analyzed. EGFR, HER2, EGF, and IL-6 expressions in the tissue were evaluated by immunohistochemical staining. For HPV, DNA from tissue samples was extracted and detection of HPV was done by PCR technique. Furthermore, evaluation of different intracellular molecules associated with EGFR signaling pathways was performed by the western blot method using lysates from various cells and tissues. Results : In this study, the frequencies of immunopositivity for EGFR, HER2, EGF, and IL-6 were 23%, 60%, 47%, and 80%, respectively. No cases were positive for HPV-18, whereas HPV-16 was detected in 10% cases. Overall, expression of EGFR did not show any statistically significant association with the studied parameters. However, among male patients, a significant association was found only between EGFR and HER2. Conclusions : Overexpression of EGFR and/or HER2, two important members of the same family of growth factor receptors, was observed in a considerable proportion of cases. Precise knowledge in this subject would be helpful to formulate a rational treatment strategy in patients with urinary bladder cancer.

  11. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure

    OpenAIRE

    Fu, Shihui; Ping, Ping; Wang, Fengqi; Luo, Leiming

    2018-01-01

    As a family of hormones with pleiotropic effects, natriuretic peptide (NP) system includes atrial NP (ANP), B-type NP (BNP), C-type NP (CNP), dendroaspis NP and urodilatin, with NP receptor-A (guanylate cyclase-A), NP receptor-B (guanylate cyclase-B) and NP receptor-C (clearance receptor). These peptides are genetically distinct, but structurally and functionally related for regulating circulatory homeostasis in vertebrates. In humans, ANP and BNP are encoded by NP precursor A (NPPA) and NPPB...

  12. [Natriuretic peptides. History of discovery, chemical structure, mechanism of action and the removal routes. Basis of diagnostic and therapeutic use].

    Science.gov (United States)

    Stryjewski, Piotr J; Nessler, Bohdan; Cubera, Katarzyna; Nessler, Jadwiga

    2013-01-01

    Natriuretic peptides (NP) are the group of proteins synthesized and secreted by the mammalian heart. All the NP are synthesized from prohormones and have 17-amino acid cyclic structures containing two cysteine residues linked by internal disulphide bond. They are characterized by a wide range of actions, mainly through their membrane receptors. The NP regulate the water and electrolyte balance, blood pressure through their diuretic, natriuretic, and relaxating the vascular smooth muscles effects. They also affect the endocrine system and the nervous system. The neurohormonal regulation of blood circulation results are mainly based on antagonism with renin--angiotensin--aldosterone system. The NP representatives are: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), urodilatine and (DNP) Dendroaspis natriuretic peptide, not found in the human body. According to the guidelines of the European Society of Cardiology determination of NT-proBNP level have found a use in the diagnosis of acute and chronic heart failure, risk stratification in acute coronary syndromes and pulmonary embolism. There are reports found in the literature, that demonstrate the usefulness of NT-proBNP determination in valvular, atrial fibrillation, and syncopes. Recombinant human ANP--Carperitid and BNP--Nesiritid, have already found a use in the adjunctive therapy of dyspnea in acute heart failure.

  13. Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance.

    Science.gov (United States)

    Kanai, Yugo; Yasoda, Akihiro; Mori, Keita P; Watanabe-Takano, Haruko; Nagai-Okatani, Chiaki; Yamashita, Yui; Hirota, Keisho; Ueda, Yohei; Yamauchi, Ichiro; Kondo, Eri; Yamanaka, Shigeki; Sakane, Yoriko; Nakao, Kazumasa; Fujii, Toshihito; Yokoi, Hideki; Minamino, Naoto; Mukoyama, Masashi; Mochizuki, Naoki; Inagaki, Nobuya

    2017-11-01

    Although peptides are safe and useful as therapeutics, they are often easily degraded or metabolized. Dampening the clearance system for peptide ligands is a promising strategy for increasing the efficacy of peptide therapies. Natriuretic peptide receptor B (NPR-B) and its naturally occurring ligand, C-type natriuretic peptide (CNP), are potent stimulators of endochondral bone growth, and activating the CNP/NPR-B system is expected to be a powerful strategy for treating impaired skeletal growth. CNP is cleared by natriuretic peptide clearance receptor (NPR-C); therefore, we investigated the effect of reducing the rate of CNP clearance on skeletal growth by limiting the interaction between CNP and NPR-C. Specifically, we generated transgenic mice with increased circulating levels of osteocrin (OSTN) protein, a natural NPR-C ligand without natriuretic activity, and observed a dose-dependent skeletal overgrowth phenotype in these animals. Skeletal overgrowth in OSTN-transgenic mice was diminished in either CNP- or NPR-C-depleted backgrounds, confirming that CNP and NPR-C are indispensable for the bone growth-stimulating effect of OSTN. Interestingly, double-transgenic mice of CNP and OSTN had even higher levels of circulating CNP and additional increases in bone length, as compared with mice with elevated CNP alone. Together, these results support OSTN administration as an adjuvant agent for CNP therapy and provide a potential therapeutic approach for diseases with impaired skeletal growth.

  14. Downregulation of natriuretic peptide system and increased steroidogenesis in rat polycystic ovary.

    Science.gov (United States)

    Pereira, Virginia M; Honorato-Sampaio, Kinulpe; Martins, Almir S; Reis, Fernando M; Reis, Adelina M

    2014-10-01

    Atrial natriuretic peptide (ANP) is known to regulate ovarian functions, such as follicular growth and steroid hormone production. The aim of the present study was to investigate the natriuretic peptide system in a rat model of chronic anovulation, the rat polycystic ovary. Adult female Wistar rats received a single subcutaneous injection of 2mg estradiol valerate to induce polycystic ovaries, while the control group received vehicle injection. Two months later, their ovaries were quickly removed and analyzed. Polycystic ovaries exhibited marked elevation of testosterone and estradiol levels compared to control ovaries. The levels of ANP and the expression of ANP mRNA were highly reduced in the polycystic ovaries compared to controls. By immunohistochemistry, polycystic ovaries showed weaker ANP staining in stroma, theca cells and oocytes compared to controls. Polycystic ovaries also had increased activity of neutral endopeptidase, the main proteolytic enzyme that degrades natriuretic peptides. ANP receptor C mRNA was reduced and ANP binding to this receptor was absent in polycystic ovaries. Collectively, these results indicate a downregulation of the natriuretic peptide system in rat polycystic ovary, an established experimental model of anovulation with high ovarian testosterone and estradiol levels. Together with previous evidence demonstrating that ANP inhibits ovarian steroidogenesis, these findings suggest that low ovarian ANP levels may contribute to the abnormal steroid hormone balance in polycystic ovaries. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. C-type natriuretic peptide plasma levels are elevated in subjects with achondroplasia, hypochondroplasia, and thanatophoric dysplasia.

    Science.gov (United States)

    Olney, Robert C; Prickett, Timothy C R; Espiner, Eric A; Mackenzie, William G; Duker, Angela L; Ditro, Colleen; Zabel, Bernhard; Hasegawa, Tomonobu; Kitoh, Hiroshi; Aylsworth, Arthur S; Bober, Michael B

    2015-02-01

    C-type natriuretic peptide (CNP) is a crucial regulator of endochondral bone growth. In a previous report of a child with acromesomelic dysplasia, Maroteaux type (AMDM), caused by loss-of-function of the CNP receptor (natriuretic peptide receptor-B [NPR-B]), plasma levels of CNP were elevated. In vitro studies have shown that activation of the MAPK kinase (MEK)/ERK MAPK pathway causes functional inhibition of NPR-B. Achondroplasia, hypochondroplasia, and thanatophoric dysplasia are syndromes of short-limbed dwarfism caused by activating mutations of fibroblast growth factor receptor-3, which result in overactivation of the MEK/ERK MAPK pathway. The purpose of this study was to determine whether these syndromes exhibit evidence of CNP resistance as reflected by increases in plasma CNP and its amino-terminal propeptide (NTproCNP). This was a prospective, observational study. Participants were 63 children and 20 adults with achondroplasia, 6 children with hypochondroplasia, 2 children with thanatophoric dysplasia, and 4 children and 1 adult with AMDM. Plasma levels of CNP and NTproCNP were higher in children with achondroplasia with CNP SD scores (SDSs) of 1.0 (0.3-1.4) (median [interquartile range]) and NTproCNP SDSs of 1.4 (0.4-1.8; P achondroplasia (CNP SDSs of 1.5 [0.7-2.1] and NTproCNP SDSs of 0.5 [0.1-1.0], P < .005). In children with hypochondroplasia, CNP SDSs were 1.3 (0.7-1.5) (P = .08) and NTproCNP SDSs were 1.9 (1.8-2.3) (P < .05). In children with AMDM, CNP SDSs were 1.6 (1.4-3.3) and NTproCNP SDSs were 4.2 (2.7-6.2) (P < .01). In these skeletal dysplasias, elevated plasma levels of proCNP products suggest the presence of tissue resistance to CNP.

  16. Topical administration of adrenergic receptor pharmaceutics and nerve growth factor

    OpenAIRE

    Steinle, Jena

    2010-01-01

    Jena J SteinleDepartments of Ophthalmology and Anatomy and Neurobiology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USAAbstract: Topical application of nerve growth factor (NGF) and adrenergic receptor pharmaceutics are currently in use for corneal ulcers and glaucoma. A recent interest in the neuroprotective abilities of NGF has led to a renewed interest in NGF as a therapeutic for retinal and choroidal diseases. NGF can promote cell proliferati...

  17. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  18. Decreased expression of serum and microvascular vascular endothelial growth factor receptor-2 in meningococcal sepsis*.

    NARCIS (Netherlands)

    Flier, M. van der; Baerveldt, E.M.; Miedema, A.; Hartwig, N.G.; Hazelzet, J.A.; Emonts, M.; Groot, R. de; Prens, E.P.; Vught, A.J. van; Jansen, N.J.

    2013-01-01

    OBJECTIVES: To determine the skin microvessel expression of vascular endothelial growth factor receptor 2 and serum-soluble vascular endothelial growth factor receptor 2 levels in children with meningococcal sepsis. DESIGN: Observational study. SETTING: Two tertiary academic children hospital PICUs.

  19. Does the natriuretic peptide system exist throughout the animal and plant kingdom?

    Science.gov (United States)

    Takei, Y

    2001-06-01

    Natriuretic peptides (NPs) and their receptors have been identified in vertebrate species ranging from elasmobranchs to mammals. Atrial, brain and ventricular NP (ANP, BNP and VNP) are endocrine hormones secreted from the heart, while C-type NP (CNP) is principally a paracrine factor in the brain and periphery. In elasmobranchs, only CNP is present in the heart and brain and it functions as a circulating hormone as well as a paracrine factor. Four types of NP receptors are cloned in vertebrates. NPR-A and NPR-B are guanylyl cyclase-coupled receptors, whereas NPR-C and NPR-D have only a short cytoplasmic domain. NPs are hormones important for volume regulation in mammals, while they act more specifically for Na(+) regulation in fishes. The presence of NP and its receptor has also been suggested in the most primitive vertebrate group, cyclostomes, and its molecular identification is in progress. The presence of ANP or its mRNA has been reported in the hearts and ganglia of various invertebrate species such as mollusks and arthropods using either antisera raised against mammalian ANP or rat ANP cDNA as probes. Immunoreactive ANP has also been detected in the unicellular Paramecium and in various species of plants including Metasequoia. Furthermore, the N-terminal prosegments of ANP, whose sequences are scarcely conserved even in vertebrates, have also been detected by the radioimmunoassay for human ANP prosegments in all invertebrate and plant species examined including Paramecium. Although these data are highly attractive, the current evidence is too circumstantial to be convincing that the immunoreactivity truly originates from ANP and its prosegments in such diverse organisms. The caution that has to be exercised in identification of vertebrate hormones from phylogenetically distant organisms is discussed.

  20. Effect of the renal natriuretic peptide, ularitide, alone or combined ...

    African Journals Online (AJOL)

    Effect of the renal natriuretic peptide, ularitide, alone or combined with ... inhibitor, Omapatrilat, on experimental volume overloadinduced congestive heart failure in ... N-terminal pro–brain natriuretic peptide (NT-proBNP) and high-sensitivity ...

  1. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    International Nuclear Information System (INIS)

    Berasain, Carmen; Latasa, María Ujue; Urtasun, Raquel; Goñi, Saioa; Elizalde, María; Garcia-Irigoyen, Oihane; Azcona, María; Prieto, Jesús; Ávila, Matías A.

    2011-01-01

    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment

  2. Epidermal growth factor receptor in primary human lung cancer

    International Nuclear Information System (INIS)

    Yu Xueyan; Hu Guoqiang; Tian Keli; Wang Mingyun

    1996-01-01

    Cell membranes were prepared from 12 human lung cancers for the study of the expression of epidermal growth factor receptors (EGFR). EGFR concentration was estimated by ligand binding studies using 125 I-radiolabeled EGF. The dissociation constants of the high affinity sites were identical, 1.48 nmol and 1.1 nmol in cancer and normal lung tissues, the EGFR contents were higher in lung cancer tissues (range: 2.25 to 19.39 pmol·g -1 membrane protein) than that in normal tissues from the same patients (range: 0.72 to 7.43 pmol·g -1 membrane protein). These results suggest that EGF and its receptor may play a role in the regulatory mechanisms in the control of lung cellular growth and tumor promotion

  3. Plasma natriuretic peptides in children and adolescents with obstructive sleep apnoea and their changes following intervention

    Directory of Open Access Journals (Sweden)

    Albert Martin Li

    2014-03-01

    Full Text Available Objective: This study aimed to evaluate circulating natriuretic peptides (NP concentration in obese and non-obese children and adolescents with and without OSA, and their levels following OSA treatment.Methods: Subjects with habitual snoring and symptoms suggestive of OSA were recruited. They underwent physical examination and overnight polysomnography (PSG. OSA was diagnosed if obstructive apnea hypopnea index (OAHI ≥1/h. Fasting serum atrial natriuretic peptide (ANP and brain natriuretic peptide (BNP were taken after overnight PSG. The subjects were divided into obese, non-obese, with and without OSA groups for comparisons.Results: 114 children (77 were boys with a median (IQR age of 10.8 (8.3-12.7 years (range: 2.4-11.8 years were recruited. Sixty-eight subjects were found to have OSA. Natriuretic peptide levels did not differ between subjects with and without OSA in both obese and non-obese groups. . Stepwise multiple linear regressions revealed that body mass index (BMI z-score was the only independent factor associated with NP concentrations. Fifteen children with moderate-to-severe OSA (OAHI >5/h underwent treatment and there were no significant changes in both ANP and BNP levels after intervention.Conclusion: BMI rather than OSA was the main determinant of natriuretic peptide levels in school-aged children and adolescents.

  4. Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis

    International Nuclear Information System (INIS)

    Ceridono, Mara; Belleudi, Francesca; Ceccarelli, Simona; Torrisi, Maria Rosaria

    2005-01-01

    Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCγ binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCγ as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR

  5. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  6. Chamber-dependent circadian expression of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Georg, Birgitte; Jørgensen, Henrik L

    2010-01-01

    Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) have important local functions within the myocardium, where they protect against accelerated fibrosis. As circadian expression of cardiac natriuretic peptides could be of importance in local cardiac protection against disease, we...

  7. Epidermal growth factor and its receptors in human pancreatic carcinoma

    International Nuclear Information System (INIS)

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N.

    1990-01-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells

  8. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent...

  9. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials

    DEFF Research Database (Denmark)

    Voldborg, B R; Damstrup, L; Spang-Thomsen, M

    1997-01-01

    The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase in the intr...... aspects of therapeutic targeting of EGFR....

  10. C-type natriuretic peptide and its precursor

    DEFF Research Database (Denmark)

    Lippert, Solvej; Iversen, Peter; Brasso, Klaus

    2015-01-01

    AIM: Seminal plasma offer a more organ-specific matrix for markers in prostatic disease. We hypothesized that C-type natriuretic peptide (CNP) expression may constitute such a new target. METHODS: Patients with benign prostatic hyperplasia, clinically localized and metastatic prostate cancer were...... examined for CNP and CNP precursor (proCNP) concentrations in blood and seminal plasma. Furthermore, CNP and the CNP receptor (NPR-B) mRNA contents in tissue from prostate and seminal vesicles were analyzed by qPCR. RESULTS: CNP and NPR-B concentrations decreased with increasing tumor burden (p = 0.......0027 and p = 0.0096, respectively). In contrast, seminal plasma CNP and proCNP concentrations were markedly increased with increased tumor burden (p prostate cancer....

  11. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H.

    1990-01-01

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  12. Expression of nerve growth factor and its receptor, tyrosine kinase receptor A, in rooster testes.

    Science.gov (United States)

    Ma, Wei; Wang, Chunqiang; Su, Yuhong; Tian, Yumin; Zhu, Hongyan

    2015-10-01

    Nerve growth factor (NGF), which is required for the survival and differentiation of the nervous system, is also thought to play an important role in the development of mammalian reproductive tissues. To explore the function of NGF in the male reproductive system of non-mammalian animals, we determined the presence of NGF and its receptor, tyrosine kinase receptor A (TrkA), in rooster testes and investigated the regulation of NGF and TrkA expression by follicle-stimulating hormone (FSH). The mRNA and protein levels of NGF and TrkA in 6-week-old rooster testes were lower than those in 12-, 16- or 20-week age groups; levels were highest in the 16-week group. Immunohistochemistry showed that NGF and TrkA were both detected in spermatogonia, spermatocytes and spermatids. NGF immunoreactivity was observed in Leydig cells and strong TrkA signals were present in Sertoli cells. Meanwhile, FSH increased TrkA transcript levels in rooster testes in a dose-dependent manner. We present novel evidence for the developmental and FSH-regulated expression of the NGF/TrkA system, and our findings suggest that the NGF/TrkA system may play a prominent role in chicken spermatogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Personalized Radiation Oncology: Epidermal Growth Factor Receptor and Other Receptor Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Higgins, Geoff S; Krause, Mechthild; McKenna, W Gillies; Baumann, Michael

    Molecular biomarkers are currently evaluated in preclinical and clinical studies in order to establish predictors for treatment decisions in radiation oncology. The receptor tyrosine kinases (RTK) are described in the following text. Among them, the most data are available for the epidermal growth factor receptor (EGFR) that plays a major role for prognosis of patients after radiotherapy, but seems also to be involved in mechanisms of radioresistance, specifically in repopulation of tumour cells between radiotherapy fractions. Monoclonal antibodies against the EGFR improve locoregional tumour control and survival when applied during radiotherapy, however, the effects are heterogeneous and biomarkers for patient selection are warranted. Also other RTK´s such as c-Met and IGF-1R seem to play important roles in tumour radioresistance. Beside the potential to select patients for molecular targeting approaches combined with radiotherapy, studies are also needed to evluate radiotherapy adaptation approaches for selected patients, i.e. adaptation of radiation dose, or, more sophisticated, of target volumes.

  14. Nerve growth factor receptor immunostaining suggests an extrinsic origin for hypertrophic nerves in Hirschsprung's disease.

    OpenAIRE

    Kobayashi, H; O'Briain, D S; Puri, P

    1994-01-01

    The expression of nerve growth factor receptor in colon from 20 patients with Hirshsprung's disease and 10 controls was studied immunohistochemically. The myenteric and submucous plexuses in the ganglionic bowel and hypertrophic nerve trunks in the aganglionic bowel displayed strong expression of nerve growth factor receptor. The most important finding was the identical localisation of nerve growth factor receptor immunoreactivity on the perineurium of both hypertrophic nerve trunks in Hirshs...

  15. Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; Boonstra, J.; de Laat, S. W.

    1991-01-01

    The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized

  16. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  17. Developmental regulation of human truncated nerve growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. (Abbott Laboratories, Abbott Park, IL (USA))

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  18. Developmental regulation of human truncated nerve growth factor receptor

    International Nuclear Information System (INIS)

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R.

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system

  19. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B

    2000-01-01

    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  20. Brain natriuretic peptide: Much more than a biomarker.

    Science.gov (United States)

    Calzetta, Luigino; Orlandi, Augusto; Page, Clive; Rogliani, Paola; Rinaldi, Barbara; Rosano, Giuseppe; Cazzola, Mario; Matera, Maria Gabriella

    2016-10-15

    Brain natriuretic peptide (BNP) modulates several biological processes by activating the natriuretic peptide receptor A (NPR-A). Atria and ventricles secrete BNP. BNP increases natriuresis, diuresis and vasodilatation, thus resulting in a decreased cardiac workload. BNP and NT-proBNP, which is the biologically inactive N-terminal portion of its pro-hormone, are fast and sensitive biomarkers for diagnosing heart failure. The plasma concentrations of both BNP and NT-proBNP also correlate with left ventricular function in patients with acute exacerbation of COPD, even without history of heart failure. Several studies have been conducted in vitro and in vivo, both in animals and in humans, in order to assess the potential role of the NPR-A activation as a novel therapeutic approach for treating obstructive pulmonary disorders. Unfortunately, these studies have yielded conflicting results. Nevertheless, further recent specific studies, performed in ex vivo models of asthma and COPD, have confirmed the bronchorelaxant effect of BNP and its protective role against bronchial hyperresponsiveness in human airways. These studies have also clarified the intimate mechanism of action of BNP, represented by an autocrine loop elicited by the activation of NPR-A, localized on bronchial epithelium, and the relaxant response of the surrounding ASM, which does not expresses NPR-A. This review explores the teleological activities and paradoxical effects of BNP with regard to chronic obstructive respiratory disorders, and provides an excursus on the main scientific findings that explain why BNP should be considered much more than a biomarker. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  2. Antihypertensive action of non-natriuretic doses of furosemide in Dahl salt-sensitive rats

    DEFF Research Database (Denmark)

    Haugan, Ketil; Petersen, Jørgen Søberg; Spannow, Jesper

    1997-01-01

    Farmakologi, blood pressure, Dahl rats, furosemide, sodium balance, total body sodium, non-natriuretic......Farmakologi, blood pressure, Dahl rats, furosemide, sodium balance, total body sodium, non-natriuretic...

  3. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling

    Directory of Open Access Journals (Sweden)

    Inês Gomes Ferreira

    2018-02-01

    Full Text Available Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1 by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2 through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3 by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.

  4. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: bill.dole@novartis.com [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-07-08

    peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) by 1.4-fold. Treatment of human adipocytes with fatty acids and tumor necrosis factor {alpha} (TNF{alpha}) induced insulin resistance and down-regulation of mitochondrial genes, which was restored by ANP treatment. These results show that ANP regulates lipid catabolism and enhances energy dissipation through AMPK activation in human adipocytes.

  5. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    International Nuclear Information System (INIS)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-01-01

    -activated receptor-γ coactivator-1α (PGC-1α) by 1.4-fold. Treatment of human adipocytes with fatty acids and tumor necrosis factor α (TNFα) induced insulin resistance and down-regulation of mitochondrial genes, which was restored by ANP treatment. These results show that ANP regulates lipid catabolism and enhances energy dissipation through AMPK activation in human adipocytes.

  6. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  7. Association of coatomer proteins with the beta-receptor for platelet-derived growth factor

    DEFF Research Database (Denmark)

    Hansen, Klaus; Rönnstrand, L; Rorsman, C

    1997-01-01

    The nonreceptor tyrosine kinase Src binds to and is activated by the beta-receptor for platelet-derived growth factor (PDGF). The interaction leads to Src phosphorylation of Tyr934 in the kinase domain of the receptor. In the course of the functional characterization of this phosphorylation, we...... of intracellular vesicle transport. In order to explore the functional significance of the interaction between alpha- and beta'-COP and the PDGF receptor, a receptor mutant was made in which the conserved histidine residue 928 was mutated to an alanine residue. The mutant receptor, which was unable to bind alpha...

  8. The Pseudo signal peptide of the corticotropin-releasing factor receptor type 2A prevents receptor oligomerization.

    Science.gov (United States)

    Teichmann, Anke; Rutz, Claudia; Kreuchwig, Annika; Krause, Gerd; Wiesner, Burkhard; Schülein, Ralf

    2012-08-03

    N-terminal signal peptides mediate the interaction of native proteins with the translocon complex of the endoplasmic reticulum membrane and are cleaved off during early protein biogenesis. The corticotropin-releasing factor receptor type 2a (CRF(2(a))R) possesses an N-terminal pseudo signal peptide, which represents a so far unique domain within the large protein family of G protein-coupled receptors (GPCRs). In contrast to a conventional signal peptide, the pseudo signal peptide remains uncleaved and consequently forms a hydrophobic extension at the N terminus of the receptor. The functional consequence of the presence of the pseudo signal peptide is not understood. Here, we have analyzed the significance of this domain for receptor dimerization/oligomerization in detail. To this end, we took the CRF(2(a))R and the homologous corticotropin-releasing factor receptor type 1 (CRF(1)R) possessing a conventional cleaved signal peptide and conducted signal peptide exchange experiments. Using single cell and single molecule imaging methods (fluorescence resonance energy transfer and fluorescence cross-correlation spectroscopy, respectively) as well as biochemical experiments, we obtained two novel findings; we could show that (i) the CRF(2(a))R is expressed exclusively as a monomer, and (ii) the presence of the pseudo signal peptide prevents its oligomerization. Thus, we have identified a novel functional domain within the GPCR protein family, which plays a role in receptor oligomerization and which may be useful to study the functional significance of this process in general.

  9. A transcription factor active on the epidermal growth factor receptor gene

    International Nuclear Information System (INIS)

    Kageyama, R.; Merlino, G.T.; Pastan, I.

    1988-01-01

    The authors have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. They found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO 4 /polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I footprinting and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR

  10. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  11. Host factors that modify Plasmodium falciparum adhesion to endothelial receptors.

    Science.gov (United States)

    Mahamar, Almahamoudou; Attaher, Oumar; Swihart, Bruce; Barry, Amadou; Diarra, Bacary S; Kanoute, Moussa B; Cisse, Kadidia B; Dembele, Adama B; Keita, Sekouba; Gamain, Benoît; Gaoussou, Santara; Issiaka, Djibrilla; Dicko, Alassane; Duffy, Patrick E; Fried, Michal

    2017-10-24

    P. falciparum virulence is related to adhesion and sequestration of infected erythrocytes (IE) in deep vascular beds, but the endothelial receptors involved in severe malaria remain unclear. In the largest ever study of clinical isolates, we surveyed adhesion of freshly collected IE from children under 5 years of age in Mali to identify novel vascular receptors, and examined the effects of host age, hemoglobin type, blood group and severe malaria on levels of IE adhesion to a panel of endothelial receptors. Several novel molecules, including integrin α3β1, VE-cadherin, ICAM-2, junctional adhesion molecule-B (JAM-B), laminin, and cellular fibronectin, supported binding of IE from children. Severe malaria was not significantly associated with levels of IE adhesion to any of the 19 receptors. Hemoglobin AC, which reduces severe malaria risk, reduced IE binding to the receptors CD36 and integrin α5β1, while hemoglobin AS did not modify IE adhesion to any receptors. Blood groups A, AB and B significantly reduced IE binding to ICAM-1. Severe malaria risk varies with age, but age significantly impacted the level of IE binding to only a few receptors: IE binding to JAM-B decreased with age, while binding to CD36 and integrin α5β1 significantly increased with age.

  12. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  13. the natriuretic peptides: an expanding role in clinical medicine

    African Journals Online (AJOL)

    Enrique

    body's defence against hypertension and plasma volume expansion.2 ... brain natriuretic peptide (B-type), secreted by the ventricle, and C-type peptide, ... Natriuretic peptides, on the other hand, are also stimulated in left ventricular dys- .... tions and in healthy controls as a com- .... stretching of the right ventricle causes.

  14. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    International Nuclear Information System (INIS)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-01-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol 125 I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function

  15. Brain natriuretic peptide and insulin resistance in older adults.

    Science.gov (United States)

    Kim, F; Biggs, M L; Kizer, J R; Brutsaert, E F; de Filippi, C; Newman, A B; Kronmal, R A; Tracy, R P; Gottdiener, J S; Djoussé, L; de Boer, I H; Psaty, B M; Siscovick, D S; Mukamal, K J

    2017-02-01

    Higher levels of brain natriuretic peptide (BNP) have been associated with a decreased risk of diabetes in adults, but whether BNP is related to insulin resistance in older adults has not been established. N-terminal of the pro hormone brain natriuretic peptide (NT-pro BNP) was measured among Cardiovascular Health Study participants at the 1989-1990, 1992-1993 and 1996-1997 examinations. We calculated measures of insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), Gutt index, Matsuda index] from fasting and 2-h concentrations of glucose and insulin among 3318 individuals with at least one measure of NT-proBNP and free of heart failure, coronary heart disease and chronic kidney disease, and not taking diabetes medication. We used generalized estimating equations to assess the cross-sectional association of NT-proBNP with measures of insulin resistance. Instrumental variable analysis with an allele score derived from nine genetic variants (single nucleotide polymorphisms) within or near the NPPA and NPPB loci was used to estimate an un-confounded association of NT-proBNP levels on insulin resistance. Lower NT-proBNP levels were associated with higher insulin resistance even after adjustment for BMI, waist circumference and other risk factors (P insulin resistance (P = 0.38; P = 0.01 for comparison with the association of measured levels of NT-proBNP). In older adults, lower NT-proBNP is associated with higher insulin resistance, even after adjustment for traditional risk factors. Because related genetic variants were not associated with insulin resistance, the causal nature of this association will require future study. © 2016 Diabetes UK.

  16. Napsin A and Thyroid Transcription Factor-1-Positive Cerebellar Tumor with Epidermal Growth Factor Receptor Mutation

    Directory of Open Access Journals (Sweden)

    Taiji Kuwata

    2011-12-01

    Full Text Available We present a very rare case of cerebellar metastasis of unknown origin, in which a primary lung adenocarcinoma was diagnosed by pathological examination of a cerebellar metastatic tumor, using immunohistochemical markers and epidermal growth factor receptor (EGFR mutation of primary lung cancer. A 69-year-old woman was admitted to our hospital because of a hemorrhagic cerebellar tumor and multiple small brain tumors. She underwent cerebellar tumor resection. On pathological examination, the tumor was diagnosed as adenocarcinoma. However, the primary tumor site was unidentifiable even with several imaging inspections. On immunohistochemical analysis, the resected tumor was positive for napsin A and thyroid transcription factor-1. In addition, an EGFR mutation was detected in the tumor. Therefore, primary lung cancer was diagnosed and the patient was started on gefitinib (250 mg/day therapy.

  17. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  18. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  19. Receptores do factor estimulante de colónias de macrófagos do robalo

    OpenAIRE

    Oliveira, Márcio Adriano Guiomar de

    2010-01-01

    O receptor do factor estimulante de colónias de macrófagos, também conhecido como receptor do factor estimulante de colónias-1 (CSF1R), é um receptor de um factor de crescimento hematopoiético que é especificamente expresso em células do sistema fagocítico-mononuclear e desempenha um papel essencial no desenvolvimento e regulação destas células. O CSF1R já foi descrito em vários mamíferos e a sua biologia tem sido exaustivamente caracterizada nestes vertebrados mas o conheci...

  20. Multistep change in epidermal growth factor receptors during spontaneous neoplastic progression in Chinese hamster embryo fibroblasts

    International Nuclear Information System (INIS)

    Wakshull, E.; Kraemer, P.M.; Wharton, W.

    1985-01-01

    Whole Chinese hamster embryo lineages have been shown to undergo multistep spontaneous neoplastic progression during serial passage in culture. The authors have studied the binding, internalization, and degradation of 125 I-labeled epidermal growth factor at four different stages of transformation. The whole Chinese hamster embryo cells lost cell surface epidermal growth factor receptors gradually during the course of neoplastic progression until only 10% of the receptor number present in the early-passage cells (precrisis) were retained in the late-passage cells (tumorigenic). No differences in internalization rates, chloroquine sensitivity, or ability to degrade hormone between the various passage levels were seen. No evidence for the presence in conditioned medium of transforming growth factors which might mask or down-regulate epidermal growth factor receptor was obtained. These results suggest that a reduction in cell surface epidermal growth factor receptor might be an early event during spontaneous transformation in whole Chinese hamster embryo cells

  1. Receptors and cGMP signalling mechanism for E. coli enterotoxin in opossum kidney

    International Nuclear Information System (INIS)

    Forte, L.R.; Krause, W.J.; Freeman, R.H.

    1988-01-01

    Receptors for the heat-stable enterotoxin produced by Escherichia coli were found in the kidney and intestine of the North American opossum and in cultured renal cell lines. The enterotoxin markedly increased guanosine 3',5'-cyclic monophosphate (cGMP) production in slices of kidney cortex and medulla, in suspensions of intestinal mucosa, and in the opossum kidney (OK) and rat kangaroo kidney (PtK-2) cell lines. In contrast, atrial natriuretic factor elicited much smaller increases in cGMP levels of kidney, intestine, or cultured kidney cell lines. The enterotoxin receptors in OK cells had a molecular mass of approximately 120 kDa when measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of receptors crosslinked with 125 I-enterotoxin. The occurrence of receptors for the E. coli peptide in OK implies that these receptors may be involved in the regulation of renal tubular function in the opossum. E. coli enterotoxin caused a much larger increase in urine cGMP excretion than did atrial natriuretic factor when these peptides were injected intravenously into opossums. However, atrial natriuretic factor elicited a marked diuresis, natriuresis, and increased urinary excretion of calcium, phosphate, potassium, and magnesium. In contrast, the enterotoxin did not acutely influence OK fluid and electrolyte excretion. Thus the substantial increase in cGMP synthesis produced by the bacterial peptide in OK cortex and medulla in vitro and the increased renal excretion of cGMP in vivo were not associated with changes in electrolyte or water excretion. Whether cGMP represents a second messenger molecule in the kidney is an interesting question that was raised but not answered in this series of experiments

  2. Hierarchical classification strategy for Phenotype extraction from epidermal growth factor receptor endocytosis screening

    NARCIS (Netherlands)

    L. Cao (Lu); M. Graauw (Marjo de); K. Yan (Kuan); L.C.J. Winkel (Leah C.J.); F.J. Verbeek (Fons)

    2016-01-01

    textabstractBackground: Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In

  3. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy

    NARCIS (Netherlands)

    Bremer, Edwin

    2013-01-01

    The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective

  4. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  5. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  6. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  7. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    Science.gov (United States)

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  8. EphA2 is a functional receptor for the growth factor progranulin.

    Science.gov (United States)

    Neill, Thomas; Buraschi, Simone; Goyal, Atul; Sharpe, Catherine; Natkanski, Elizabeth; Schaefer, Liliana; Morrione, Andrea; Iozzo, Renato V

    2016-12-05

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. © 2016 Neill et al.

  9. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy

    2007-01-01

    Phosphorylation-based signaling events happening within the first minute of receptor stimulation have so far only been analyzed by classical cell biological approaches like live-cell microscopy. The development of a quench flow system with a time resolution of one second coupled to a read...

  10. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system.

    Science.gov (United States)

    Walsh, Matthew C; Lee, JangEun; Choi, Yongwon

    2015-07-01

    Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an adapter protein that mediates a wide array of protein-protein interactions via its TRAF domain and a RING finger domain that possesses non-conventional E3 ubiquitin ligase activity. First identified nearly two decades ago as a mediator of interleukin-1 receptor (IL-1R)-mediated activation of NFκB, TRAF6 has since been identified as an actor downstream of multiple receptor families with immunoregulatory functions, including members of the TNFR superfamily, the Toll-like receptor (TLR) family, tumor growth factorreceptors (TGFβR), and T-cell receptor (TCR). In addition to NFκB, TRAF6 may also direct activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor pathways. In the context of the immune system, TRAF6-mediated signals have proven critical for the development, homeostasis, and/or activation of B cells, T cells, and myeloid cells, including macrophages, dendritic cells, and osteoclasts, as well as for organogenesis of thymic and secondary lymphoid tissues. In multiple cellular contexts, TRAF6 function is essential not only for proper activation of the immune system but also for maintaining immune tolerance, and more recent work has begun to identify mechanisms of contextual specificity for TRAF6, involving both regulatory protein interactions, and messenger RNA regulation by microRNAs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Tumor necrosis factor receptor associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system

    Science.gov (United States)

    Walsh, Matthew C.; Lee, JangEun; Choi, Yongwon

    2016-01-01

    Summary Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an adaptor protein that mediates a wide array of protein-protein interactions via its TRAF domain and a RING finger domain that possesses non-conventional E3 ubiquitin ligase activity. First identified nearly two decades ago as a mediator of IL-1 receptor (IL-1R)-mediated activation of NFκB, TRAF6 has since been identified as an actor downstream of multiple receptor families with immunoregulatory functions, including members of the TNFR superfamily, the toll-like receptor (TLR) family, tumor growth factorreceptors (TGFβR), and T cell receptor (TCR). In addition to NFκB, TRAF6 may also direct activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor (IRF) pathways. In the context of the immune system, TRAF6-mediated signals have proven critical for the development, homeostasis, and/or activation of B cells, T cells, and myeloid cells, including macrophages, dendritic cells, and osteoclasts, as well as for organogenesis of thymic and secondary lymphoid tissues. In multiple cellular contexts, TRAF6 function is essential not only for proper activation of the immune system, but also for maintaining immune tolerance, and more recent works have begun to identify mechanisms of contextual specificity for TRAF6, involving both regulatory protein interactions, and messenger RNA regulation by microRNAs. PMID:26085208

  12. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    Science.gov (United States)

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  13. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu

    2004-01-01

    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  14. Immunoautoradiographic analysis of epidermal growth factor receptors: a sensitive method for the in situ identification of receptor proteins and for studying receptor specificity

    International Nuclear Information System (INIS)

    Fernandez-Pol, J.A.

    1982-01-01

    The use of an immunoautoradiographic system for the detection and analysis of epidermal growth factor (EGF) receptors in human epidermoid carcinoma A-431 cells is reported. By utilizing this technique, the interaction between EGF and its membrane receptor in A-431 cells can be rapidly visualized. The procedure is simple, rapid, and very sensitive, and it provides conclusive evidence that the 150K dalton protein is the receptor fo EGF in A-431 cells. In summary, the immunoautoradiographic procedure brings to the analysis of hormone rceptor proteins the power that the radioimmunoassay technique has brought to the analysis of hormones. Thus, this assay system is potentially applicable in a wide spectrum in many fields of nuclear medicine and biology

  15. Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis

    International Nuclear Information System (INIS)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-01-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that [ 125 I]EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers

  16. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  17. Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway.

    Directory of Open Access Journals (Sweden)

    Fernanda A Andrade

    Full Text Available AIMS: C-type natriuretic peptide (CNP and nitric oxide (NO are endothelium-derived factors that play important roles in the regulation of vascular tone and arterial blood pressure. We hypothesized that NO produced by the endothelial NO-synthase (NOS-3 contributes to the relaxation induced by CNP in isolated rat aorta via activation of endothelial NPR-C receptor. Therefore, the aim of this study was to investigate the putative contribution of NO through NPR-C activation in the CNP induced relaxation in isolated conductance artery. MAIN METHODS: Concentration-effect curves for CNP were constructed in aortic rings isolated from rats. Confocal microscopy was used to analyze the cytosolic calcium mobilization induced by CNP. The phosphorylation of the residue Ser1177 of NOS was analyzed by Western blot and the expression and localization of NPR-C receptors was analyzed by immunohistochemistry. KEY FINDINGS: CNP was less potent in inducing relaxation in denuded endothelium aortic rings than in intact ones. L-NAME attenuated the potency of CNP and similar results were obtained in the presence of hydroxocobalamin, an intracellular NO0 scavenger. CNP did not change the phosphorylation of Ser1177, the activation site of NOS-3, when compared with control. The addition of CNP produced an increase in [Ca2+]c in endothelial cells and a decrease in [Ca2+]c in vascular smooth muscle cells. The NPR-C-receptors are expressed in endothelial and adventitial rat aortas. SIGNIFICANCE: These results suggest that CNP-induced relaxation in intact aorta isolated from rats involves NO production due to [Ca2+]c increase in endothelial cells possibly through NPR-C activation expressed in these cells. The present study provides a breakthrough in the understanding of the close relationship between the vascular actions of nitric oxide and CNP.

  18. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  19. Molecular and functional characterization of pigeon (Columba livia) tumor necrosis factor receptor-associated factor 3.

    Science.gov (United States)

    Zhou, Yingying; Kang, Xilong; Xiong, Dan; Zhu, Shanshan; Zheng, Huijuan; Xu, Ying; Guo, Yaxin; Pan, Zhiming; Jiao, Xinan

    2017-04-01

    Tumor necrosis factor receptor-associated factor 3 (TRAF3) plays a key antiviral role by promoting type I interferon production. We cloned the pigeon TRAF3 gene (PiTRAF3) according to its predicted mRNA sequence to investigate its function. The 1704-bp full-length open reading frame encodes a 567-amino acid protein. One Ring finger, two TRAF-type Zinc fingers, one Coiled coil, and one MATH domain were inferred. RT-PCR showed that PiTRAF3 was expressed in all tissues, with relatively weak expression in the heart and liver. In HEK293T cells, over-expression of wild-type, △Ring, △Zinc finger, and △Coiled coil PiTRAF3, but not a △MATH form, significantly increased IFN-β promoter activity. Zinc finger and Coiled coil domains were essential for NF-κB activation. In chicken HD11 cells, PiTRAF3 increased IFN-β promoter activity and four domains were all contributing. R848 stimulation of pigeon peripheral blood mononuclear cells and splenocytes significantly increased expression of PiTRAF3 and the inflammatory cytokine genes CCL5, IL-8, and IL-10. These data demonstrate TRAF3's innate immune function and improve understanding of its involvement in poultry antiviral defense. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Endothelial actions of atrial and B-type natriuretic peptides.

    Science.gov (United States)

    Kuhn, Michaela

    2012-05-01

    The cardiac hormone atrial natriuretic peptide (ANP) is critically involved in the maintenance of arterial blood pressure and intravascular volume homeostasis. Its cGMP-producing GC-A receptor is densely expressed in the microvascular endothelium of the lung and systemic circulation, but the functional relevance is controversial. Some studies reported that ANP stimulates endothelial cell permeability, whereas others described that the peptide attenuates endothelial barrier dysfunction provoked by inflammatory agents such as thrombin or histamine. Many studies in vitro addressed the effects of ANP on endothelial proliferation and migration. Again, both pro- and anti-angiogenic properties were described. To unravel the role of the endothelial actions of ANP in vivo, we inactivated the murine GC-A gene selectively in endothelial cells by homologous loxP/Cre-mediated recombination. Our studies in these mice indicate that ANP, via endothelial GC-A, increases endothelial albumin permeability in the microcirculation of the skin and skeletal muscle. This effect is critically involved in the endocrine hypovolaemic, hypotensive actions of the cardiac hormone. On the other hand the homologous GC-A-activating B-type NP (BNP), which is produced by cardiac myocytes and many other cell types in response to stressors such as hypoxia, possibly exerts more paracrine than endocrine actions. For instance, within the ischaemic skeletal muscle BNP released from activated satellite cells can improve the regeneration of neighbouring endothelia. This review will focus on recent advancements in our understanding of endothelial NP/GC-A signalling in the pulmonary versus systemic circulation. It will discuss possible mechanisms accounting for the discrepant observations made for the endothelial actions of this hormone-receptor system and distinguish between (patho)physiological and pharmacological actions. Lastly it will emphasize the potential therapeutical implications derived from the

  1. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways.

    Science.gov (United States)

    Fantl, W J; Escobedo, J A; Martin, G A; Turck, C W; del Rosario, M; McCormick, F; Williams, L T

    1992-05-01

    The receptor for platelet-derived growth factor (PDGF) binds two proteins containing SH2 domains, GTPase activating protein (GAP) and phosphatidylinositol 3-kinase (PI3-kinase). The sites on the receptor that mediate this interaction were identified by using phosphotyrosine-containing peptides representing receptor sequences to block specifically binding of either PI3-kinase or GAP. These results suggested that PI3-kinase binds two phosphotyrosine residues, each located in a 5 aa motif with an essential methionine at the fourth position C-terminal to the tyrosine. Point mutations at these sites caused a selective elimination of PI3-kinase binding and loss of PDGF-stimulated DNA synthesis. Mutation of the binding site for GAP prevented the receptor from associating with or phosphorylating GAP, but had no effect on PI3-kinase binding and little effect on DNA synthesis. Therefore, GAP and PI3-kinase interact with the receptor by binding to different phosphotyrosine-containing sequence motifs.

  2. Plant natriuretic peptides control of synthesis and systemic effects

    KAUST Repository

    Wang, Yuhua; Donaldson, Lara Elizabeth; Gehring, Christoph A; Irving, Helen R.

    2011-01-01

    Plant natriuretic peptides (PNPs) are signaling molecules that are secreted into the apoplast particularly under conditions of biotic and abiotic stress. At the local level, PNPs modulate their own expression via feed forward and feedback loops

  3. Preoperative B-type natriuretic peptides in patients undergoing ...

    African Journals Online (AJOL)

    Background: A plethora of studies have shown elevated preoperative natriuretic peptide measurements to predict ... In October 2014, we searched the following online databases, ... excluded because they had been retracted due to fraud.

  4. Preoperative B-type natriuretic peptides in patients undergoing ...

    African Journals Online (AJOL)

    Southern African Journal of Anaesthesia and Analgesia ... Preoperative B-type natriuretic peptides in patients undergoing noncardiac surgery: a cumulative ... Future investigation should focus on the clinical implications of these data and the ...

  5. B-type natriuretic peptide secretion following scuba diving

    DEFF Research Database (Denmark)

    Passino, Claudio; Franzino, Enrico; Giannoni, Alberto

    2011-01-01

    To examine the neurohormonal effects of a scuba dive, focusing on the acute changes in the plasma concentrations of the different peptide fragments from the B-type natriuretic peptide (BNP) precursor....

  6. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  7. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    Science.gov (United States)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  8. Growth factor receptors as molecular targets for cancer diagnosis and therapy

    International Nuclear Information System (INIS)

    Zalutsky, M. R.

    1997-01-01

    Growth factor receptors are of great interest as molecular targets for the diagnosis and treatment of cancer. Growth factor receptors are frequently over expressed on malignant cell populations since many cellular oncogenes encode either growth factors of their receptors. The wild-type epidermal growth factor receptor has a molecular weight of 170 kD and is over expressed on gliomas, bladder tumors, squamous cells carcinomas and breast carcinomas. Another growth factor oncogene, c-erb B-2, encodes a 185-kD glycoprotein found on the surface of gliomas, breast and ovarian cancers as well as other carcinomas of epithelial origin. In addition to causing over expression, oncogenic transformation also can result in genomic re-arrangements. An important example from the perspective of targeting is EGFRvIII, a deletion mutant which lacks amino acids 6-273 in the extracellular domain of the epiderma growth factor receptor. The EGFRvIII molecule (145 kD) may be of great value for targeting because it appears to be tumor-specific. Antibodies have been developed with specific reactivity with these growth factor receptors. Since these antibodies are internalized into the cell after receptor binding, it is necessary to use radiolabeling methods which residualize the radioactivity in the tumor cell after intracellular catabolism. To investigate this problem they have evaluated the effect of radioiodination method on the in vitro an in vivo properties of an anti-EGFRvIII antibody. Methods studied were Iodogen, tyramine-cellobiose, and N-succinimidyl 5-iodo-3-pyridine-carboxylate with the last offering optimal localization in a human xenograft model

  9. Atrial Natriuretic Peptide Accelerates Human Endothelial Progenitor Cell-Stimulated Cutaneous Wound Healing and Angiogenesis.

    Science.gov (United States)

    Lee, Tae Wook; Kwon, Yang Woo; Park, Gyu Tae; Do, Eun Kyoung; Yoon, Jung Won; Kim, Seung-Chul; Ko, Hyun-Chang; Kim, Moon-Bum; Kim, Jae Ho

    2018-05-26

    Atrial natriuretic peptide (ANP) is a powerful vasodilating peptide secreted by cardiac muscle cells, and endothelial progenitor cells (EPCs) have been reported to stimulate cutaneous wound healing by mediating angiogenesis. To determine whether ANP can promote the EPC-mediated repair of injured tissues, we examined the effects of ANP on the angiogenic properties of EPCs and on cutaneous wound healing. In vitro, ANP treatment enhanced the migration, proliferation, and endothelial tube-forming abilities of EPCs. Furthermore, small interfering RNA-mediated silencing of natriuretic peptide receptor-1, which is a receptor for ANP, abrogated ANP-induced migration, tube formation, and proliferation of EPCs. In a murine cutaneous wound model, administration of either ANP or EPCs had no significant effect on cutaneous wound healing or angiogenesis in vivo, whereas the co-administration of ANP and EPCs synergistically potentiated wound healing and angiogenesis. In addition, ANP promoted the survival and incorporation of transplanted EPCs into newly formed blood vessels in wounds. These results suggest ANP accelerates EPC-mediated cutaneous wound healing by promoting the angiogenic properties and survival of transplanted EPCs. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  10. Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation

    International Nuclear Information System (INIS)

    An Zhu; Shaeffer, James; Leslie, Susan; Kolm, Paul; El-Mahdi, Anas M.

    1996-01-01

    Purpose: To determine whether the expression of epidermal growth factor receptor (EGFR) protein was predictive of patient survival independently of other prognostic factors in astrocytic tumors. Methods and Materials: Epidermal growth factor receptor protein expression was investigated immunohistochemically in formalin-fixed, paraffin-embedded surgical specimens of 55 glioblastoma multiforme, 14 anaplastic astrocytoma, and 2 astrocytomas given definitive irradiation. We evaluated the relationship of EGFR protein expression and tumor grade, histologic features, age at diagnosis, sex, patient survival, and recurrence-free survival. Results: The percentage of tumor cells which were EGFR positive related to reduced survival by Cox regression analysis in both univariate (p = 0.0424) and multivariate analysis (p = 0.0016). Epidermal growth factor receptor positivity was the only 1 of 11 clinical and histological variables associated with decreased recurrence-free survival by either univariate (p = 0.0353) or multivariate (p = 0.0182) analysis. Epidermal growth factor receptor protein expression was not related to patient age, sex, or histologic features. Conclusion: Epidermal growth factor receptor positivity was a significant and independent prognostic indicator for overall survival and recurrence-free survival for irradiated patients with astrocytic gliomas

  11. Inhibition of the release of soluble tumor necrosis factor receptors in experimental endotoxemia by an anti-tumor necrosis factor-alpha antibody

    NARCIS (Netherlands)

    Jansen, J.; van der Poll, T.; Levi, M. [=Marcel M.; ten Cate, H.; Gallati, H.; ten Cate, J. W.; van Deventer, S. J.

    1995-01-01

    The role of tumor necrosis factor-alpha in the shedding of soluble tumor necrosis factor receptors in endotoxemia was investigated. The appearance of the soluble tumor necrosis factor receptors was assessed in four healthy volunteers following an intravenous injection of tumor necrosis factor-alpha

  12. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    Science.gov (United States)

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  13. ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5.

    Science.gov (United States)

    Hsu, H; Solovyev, I; Colombero, A; Elliott, R; Kelley, M; Boyle, W J

    1997-05-23

    Members of tumor necrosis factor receptor (TNFR) family signal largely through interactions with death domain proteins and TRAF proteins. Here we report the identification of a novel TNFR family member ATAR. Human and mouse ATAR contain 283 and 276 amino acids, respectively, making them the shortest known members of the TNFR superfamily. The receptor is expressed mainly in spleen, thymus, bone marrow, lung, and small intestine. The intracellular domains of human and mouse ATAR share only 25% identity, yet both interact with TRAF5 and TRAF2. This TRAF interaction domain resides at the C-terminal 20 amino acids. Like most other TRAF-interacting receptors, overexpression of ATAR activates the transcription factor NF-kappaB. Co-expression of ATAR with TRAF5, but not TRAF2, results in synergistic activation of NF-kappaB, suggesting potentially different roles for TRAF2 and TRAF5 in post-receptor signaling.

  14. The development of epidermal growth factor receptor molecular imaging in cancer

    International Nuclear Information System (INIS)

    Zhou Xiaoliang; Wang Hao; Shi Peiji; Liu Jianfeng; Meng Aimin

    2013-01-01

    In vivo epidermal growth factor receptor (EGFR) targeted therapy has great potential for cancer diagnosis and the evaluation of curative effects. Enhancement of EGFR-targeted therapy needs a reliable quantitative molecular imaging method which could enable monitoring of receptor drug binding and receptor occupancy in vivo, and identification of the mutation in EGFR. PET or SPECT is the most advanced molecular imaging technology of non-invasively selecting responders, predicting therapeutic outcome and monitoring EGFR-targeted treatment. This review analyzed the present situation and research progress of molecular imaging agents. (authors)

  15. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs

    DEFF Research Database (Denmark)

    Mi, Li-Zhi; Grey, Michael J; Nishida, Noritaka

    2008-01-01

    Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase...... differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane...

  16. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    OpenAIRE

    Smits, A.; Funa, K.; Vassbotn, F. S.; Beausang-Linder, M.; af Ekenstam, F.; Heldin, C. H.; Westermark, B.; Nistér, M.

    1992-01-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protei...

  17. A receptor model for urban aerosols based on oblique factor analysis

    DEFF Research Database (Denmark)

    Keiding, Kristian; Sørensen, Morten S.; Pind, Niels

    1987-01-01

    A procedure is outlined for the construction of receptor models of urban aerosols, based on factor analysis. The advantage of the procedure is that the covariation of source impacts is included in the construction of the models. The results are compared with results obtained by other receptor......-modelling procedures. It was found that procedures based on correlating sources were physically sound as well as in mutual agreement. Procedures based on non-correlating sources were found to generate physically obscure models....

  18. Targeting the epidermal growth factor receptor in solid tumor malignancies

    DEFF Research Database (Denmark)

    Nedergaard, Mette K; Hedegaard, Chris J; Poulsen, Hans S

    2012-01-01

    been proposed as valid targets in many cancer therapy settings. Different strategies have been developed in order to either inhibit EGFR/EGFRvIII activity or to ablate EGFR/EGFRvIII-positive tumor cells. Drugs that inhibit these receptors include monoclonal antibodies (mAbs) that bind...... to the extracellular part of EGFR, blocking the binding sites for the EGFR ligands, and intracellular tyrosine kinase inhibitors (TKIs) that block the ATP binding site of the tyrosine kinase domain. Besides an EGFRvIII-targeted vaccine, conjugated anti-EGFR mAbs have been used in different settings to deliver lethal...... agents to the EGFR/EGFRvIII-positive cells; among these are radio-labelled mAbs and immunotoxins. This article reviews the current status and efficacy of EGFR/EGFRvIII-targeted therapies....

  19. Novel mutations in the transmembrane natriuretic peptide receptor ...

    Indian Academy of Sciences (India)

    The birth weight and length of upper and lower limbs are normal. ... to loss of function impairs skeletal growth and is respon- sible for ... history of any hearing or vision abnormality. He had ... plaint of short stature noticed since early infancy.

  20. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    Science.gov (United States)

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  1. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    Directory of Open Access Journals (Sweden)

    Mili Jeon

    2012-04-01

    The respiratory (tracheal system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs, Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr tyrosine kinase (TK. Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  2. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization.

    Science.gov (United States)

    Lindsey, Stephan; Papoutsakis, Eleftherios T

    2011-02-01

    We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. © 2011 Blackwell Publishing Ltd.

  3. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands

    DEFF Research Database (Denmark)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe

    2013-01-01

    after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist....... Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown...... fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand...

  4. Soluble tumor necrosis factor receptor-1 in preterm infants with chronic lung disease.

    Science.gov (United States)

    Sato, Miho; Mori, Masaaki; Nishimaki, Shigeru; An, Hiromi; Naruto, Takuya; Sugai, Toshiyuki; Shima, Yoshio; Seki, Kazuo; Yokota, Shumpei

    2010-04-01

    It is clear that inflammation plays an important role in developing chronic lung disease in preterm infants. The purpose of the present study is to investigate changes of serum soluble tumor necrosis factor receptor-1 levels over time in infants with chronic lung disease. The serum levels of soluble tumor necrosis factor receptor-1 were measured after delivery, and at 7, 14, 21 and 28 days of age in 10 infants with chronic lung disease and in 18 infants without chronic lung disease. The serum level of soluble tumor necrosis factor receptor-1 was significantly higher in infants with chronic lung disease than in infants without chronic lung disease after delivery. The differences between these two groups remained up to 28 days of age. Prenatal inflammation with persistence into postnatal inflammation may be involved in the onset of chronic lung disease.

  5. Identification of a second putative receptor of platelet activating factor on human polymorphonuclear leukocytes

    International Nuclear Information System (INIS)

    Hwang, S.B.

    1987-01-01

    Due to multiple molecular species of platelet activating factor (PAF) and the existence of high affinity binding sites in a variety of cells and tissues, possible existence of PAF receptor subtypes has been suggested. This report shows differences between specific PAF receptors on human leukocytes and platelets. Human PMN leukocyte membranes showed high affinity binding sites for PAF with an equilibrium dissociation constant (Kd) of 4.7 (+/- 1.4) x 10 -10 M. The maximal number (B/sub max/) of receptor sites was estimated to be 3.13 (+/- 1.4) x 10 -13 mol/mg protein. They compared the relative potencies of several PAF agonists and receptor antagonists between human platelet and human leukocyte membranes. One antagonist (Ono-6240) was found to be 8 times less potent at inhibiting the [ 3 H]PAF specific receptor binding to human leukocytes than to human platelets. Mg 2+ , Ca 2+ and K + ions potentiated the [ 3 H]PAF specific binding in both systems. Na + ions inhibited the [ 3 H]PAF specific binding to human platelets but showed no effects in human leukocytes. K + ions decreased the Mg 2+ -potentiated [ 3 H]PAF binding in human leukocytes but showed no effects in human platelets. These results suggest that the PAF specific receptors in human leukocytes are different structurally and possibly functionally from the receptors identified in human platelets

  6. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  7. Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling

    Directory of Open Access Journals (Sweden)

    Claire J Fenech

    2009-10-01

    Full Text Available Taste receptors for sweet, bitter and umami tastants are G-protein coupled receptors (GPCRs. While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS, RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Gα subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Gα-gustducin and Gαi2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.

  8. Relationship between the actions of atrial natriuretic peptide (ANP, guanylin and uroguanylin on the isolated kidney

    Directory of Open Access Journals (Sweden)

    M.S. Santos-Neto

    1999-08-01

    Full Text Available Guanylin and uroguanylin are peptides that bind to and activate guanylate cyclase C and control salt and water transport in many epithelia in vertebrates, mimicking the action of several heat-stable bacteria enterotoxins. In the kidney, both of them have well-documented natriuretic and kaliuretic effects. Since atrial natriuretic peptide (ANP also has a natriuretic effect mediated by cGMP, experiments were designed in the isolated perfused rat kidney to identify possible synergisms between ANP, guanylin and uroguanylin. Inulin was added to the perfusate and glomerular filtration rate (GFR was determined at 10-min intervals. Sodium was also determined. Electrolyte dynamics were measured by the clearance formula. Guanylin (0.5 µg/ml, N = 12 or uroguanylin (0.5 µg/ml, N = 9 was added to the system after 30 min of perfusion with ANP (0.1 ng/ml. The data were compared at 30-min intervals to a control (N = 12 perfused with modified Krebs-Hanseleit solution and to experiments using guanylin and uroguanylin at the same dose (0.5 µg/ml. After previous introduction of ANP in the system, guanylin promoted a reduction in fractional sodium transport (%TNa+, P<0.05 (from 78.46 ± 0.86 to 64.62 ± 1.92, 120 min. In contrast, ANP blocked uroguanylin-induced increase in urine flow (from 0.21 ± 0.01 to 0.15 ± 0.007 ml g-1 min-1, 120 min, P<0.05 and the reduction in fractional sodium transport (from 72.04 ± 0.86 to 85.19 ± 1.48, %TNa+, at 120 min of perfusion, P<0.05. Thus, the synergism between ANP + guanylin and the antagonism between ANP + uroguanylin indicate the existence of different subtypes of receptors mediating the renal actions of guanylins.

  9. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.; (UPENN-MED)

    2009-09-25

    The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.

  10. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06718.x Abstract Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic...... biologic actions by binding, dimerizing, and activating FGF receptors (FGFRs). The present study reports the physiologic impact of various FGF2-FGFR1 contact sites employing three different synthetic peptides, termed canofins, designed based on structural analysis of the interactions between FGF2 and FGFR1...

  11. Thyroid hormone and retinoic acid nuclear receptors: specific ligand-activated transcription factors

    International Nuclear Information System (INIS)

    Brtko, J.

    1998-01-01

    Transcriptional regulation by both the thyroid hormone and the vitamin A-derived 'retinoid hormones' is a critical component in controlling many aspects of higher vertebrate development and metabolism. Their functions are mediated by nuclear receptors, which comprise a large super-family of ligand-inducible transcription factors. Both the thyroid hormone and the retinoids are involved in a complex arrangement of physiological and development responses in many tissues of higher vertebrates. The functions of 3,5,3'-triiodothyronine (T 3 ), the thyromimetically active metabolite of thyroxine as well as all-trans retinoic acid, the biologically active vitamin A metabolite are mediated by nuclear receptor proteins that are members of the steroid/thyroid/retinoid hormone receptor family. The functions of all members of the receptor super family are discussed. (authors)

  12. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Nørgaard, P; Abrahamsen, N

    1999-01-01

    Transforming growth factor beta (TGF-beta) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-beta due to lack of type II receptor (RII) has been described in some cancer types including small cell lung...

  13. Type-I Insulin-Like Growth Factor Receptor (IGF1R)-Estrogen Receptor (ER) Crosstalk Contributes to Antiestrogen Therapy Resistance in Breast Cancer Cells

    Science.gov (United States)

    2013-02-01

    vitro have downregulated J GF1R making antibodies directed agai nst th is receptor ineffective. Inhlbition of IH may be necessary to manage ...monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol 2009;27:580Q-7. 31. Drury s. Detre s. Leary A, Salter J, Reis-Filho J

  14. Up-regulation of proproliferative genes and the ligand/receptor pair placental growth factor and vascular endothelial growth factor receptor 1 in hepatitis C cirrhosis.

    Science.gov (United States)

    Huang, Xiao X; McCaughan, Geoffrey W; Shackel, Nicholas A; Gorrell, Mark D

    2007-09-01

    Cirrhosis can lead to hepatocellular carcinoma (HCC). Non-diseased liver and hepatitis C virus (HCV)-associated cirrhosis with or without HCC were compared. Proliferation pathway genes, immune response genes and oncogenes were analysed by a quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunostaining. Real-time RT-PCR showed up-regulation of genes in HCV cirrhosis including the proliferation-associated genes bone morphogenetic protein 3 (BMP3), placental growth factor 3 (PGF3), vascular endothelial growth factor receptor 1 (VEGFR1) and soluble VEGFR1, the oncogene FYN, and the immune response-associated genes toll-like receptor 9 (TLR9) and natural killer cell transcript 4 (NK4). Expressions of TLR2 and the oncogenes B-cell CLL/lymphoma 9 (BCL9) and PIM2 were decreased in HCV cirrhosis. In addition, PIM2 and TLR2 were increased in HCV cirrhosis with HCC compared with HCV cirrhosis. The ligand/receptor pair PGF and VEGFR1 was intensely expressed by the portal tract vascular endothelium. VEGFR1 was expressed in reactive biliary epithelial structures in fibrotic septum and in some stellate cells and macrophages. PGF and VEGFR1 may have an important role in the pathogenesis of the neovascular response in cirrhosis.

  15. Characterization of receptors for recombinant human tumor necrosis factor-alpha from human placental membranes

    International Nuclear Information System (INIS)

    Aiyer, R.A.; Aggarwal, B.B.

    1990-01-01

    High affinity receptors for recombinant human tumor necrosis factor-alpha (rhTNF-alpha) were identified on membranes prepared from full term human placenta. Highly purified rhTNF-alpha iodinated by the iodogen method was found to bind placental membranes in a displaceable manner with an approximate dissociation constant (KD) of 1.9 nM. The membrane bound TNF-alpha receptor could be solubilized by several detergents with optimum extraction being obtained with 1% Triton X-100. The binding of 125I-rhTNF-alpha to the solubilized receptor was found to be time and temperature dependent, yielding maximum binding within 1 h, 24 h and 48 h at 37 degrees C, 24 degrees C and 4 degrees C, respectively. However, the maximum binding obtainable at 4 degrees C was only 40% of that at 37 degrees C. The binding 125I-rhTNF-alpha to solubilized placental membrane extracts was displaceable by unlabeled rhTNF-alpha, but not by a related protein recombinant human tumor necrosis factor-beta (rhTNF-beta; previously called lymphotoxin). This is similar to the behavior of TNF-alpha receptors derived from detergent-solubilized cell extracts, although on intact cells, both rhTNF-alpha and rhTNF-beta bind with equal affinity to TNF receptors. The Scatchard analysis of the binding data of the solubilized receptor revealed high affinity binding sites with a KD of approximately 0.5 nM and a receptor concentration of about 1 pmole/mg protein. Gel filtration of the solubilized receptor-ligand complexes on Sephacryl S-300 revealed two different peaks of radioactivity at approximate molecular masses of 50,000 Da and 400,000 Da. The 400,000 dalton peak corresponded to the receptor-ligand complex. Overall, our results suggest that high affinity receptors for TNF-alpha are present on human placental membranes and provide evidence that these receptors may be different from that of rhTNF-beta

  16. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    International Nuclear Information System (INIS)

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-01-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation

  17. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation

    International Nuclear Information System (INIS)

    Yarden, Y.; Schlessinger, J.

    1987-01-01

    The membrane receptor for epidermal growth factor (EGF) is a 170,000 dalton glycoprotein composed of an extracellular EGF-binding domain and a cytoplasmic kinase domain connected by a stretch of 23 amino acids traversing the plasma membrane. The binding of EGF to the extracellular domain activates the cytoplasmic kinase function even in highly purified preparations of EGF receptor, suggesting that the activation occurs exclusively within the EGF receptor moiety. Conceivably, kinase activation may require the transfer of a conformational change through the single transmembrane region from the ligand binding domain to the cytoplasmic kinase region. Alternatively, ligand-induced receptor-receptor interactions may activate the kinase and thus bypass this requirement. Both mechanisms were contrasted by employing independent experimental approaches. On the basis of these results, an allosteric aggregation model is formulated for the activation of the cytoplasmic kinase function of the receptor by EGF. This model may be relevant to the mechanism by which the mitogenic signal of EGF is transferred across the membrane

  18. Sperm Impairment by Sperm Agglutinating Factor Isolated from Escherichia coli: Receptor Specific Interactions

    Directory of Open Access Journals (Sweden)

    Kiranjeet Kaur

    2013-01-01

    Full Text Available In an earlier work done in our laboratory, we have been able to isolate a sperm agglutinating strain of Escherichia coli from the semen sample of a male attending infertility clinic. Further, factor responsible for sperm agglutination (SAF was isolated and purified, and, using SAF as a tool, corresponding SAF binding receptor from human spermatozoa has been purified. Characterization of SAF and SAF binding receptor using MALDI-TOF showed homology to glutamate decarboxylase and MHC class I molecule, respectively. Coincubation of SAF with spermatozoa not only resulted in spermagglutination but could also compromise other sperm parameters, namely, Mg2+ dependent ATPase activity and apoptosis. Intravaginal administration of SAF could lead to infertility in Balb/c mice. SAF induced impairment of sperm parameters, and infertility was observed to be due to interaction of SAF with sperm surface receptor component as, when purified receptor was introduced, receptor completely inhibited all the detrimental effects induced by SAF. From these results, it could be concluded that interaction of SAF with spermatozoa is receptor mediated.

  19. The under-appreciated promiscuity of the epidermal growth factor receptor family.

    Directory of Open Access Journals (Sweden)

    Sean P Kennedy

    2016-08-01

    Full Text Available Each member of the epidermal growth factor receptor (EGFR family plays a key role in normal development, homeostasis and a variety of pathophysiological conditions, most notably in cancer. According to the prevailing dogma, these four receptor tyrosine kinases (RTKs; EGFR, ERBB2, ERBB3 and ERBB4 function exclusively through the formation of homodimers and heterodimers within the EGFR family. These combinatorial receptor interactions are known to generate increased interactome diversity and therefore influence signalling output, subcellular localization and function of the heterodimer. This molecular plasticity is also thought to play a role in the development of resistance towards targeted cancer therapies aimed at these known oncogenes. Interestingly, many studies now challenge this dogma and suggest that the potential for EGFR family receptors to interact with more distantly related RTKs is much greater than currently appreciated. Here we discuss how the promiscuity of these oncogenic receptors may lead to the formation of many unexpected receptor pairings and the significant implications for the efficiency of many targeted cancer therapies.

  20. Association of nerve growth factor receptors with the triton X-100 cytoskeleton of PC12 cells

    International Nuclear Information System (INIS)

    Vale, R.D.; Ignatius, M.J.; Shooter, E.M.

    1985-01-01

    Triton X-100 solubilizes membranes of PC12 cells and leaves behind a nucleus and an array of cytoskeletal filaments. Nerve growth factor (NGF) receptors are associated with this Triton X-100-insoluble residue. Two classes of NGF receptors are found on PC12 cells which display rapid and slow dissociating kinetics. Although rapidly dissociating binding is predominant (greater than 75%) in intact cells, the majority of binding to the Triton X-100 cytoskeleton is slowly dissociating (greater than 75%). Rapidly dissociating NGF binding on intact cells can be converted to a slowly dissociating form by the plant lectin wheat germ agglutinin (WGA). This lectin also increases the number of receptors which associate with the Triton X-100 cytoskeleton by more than 10-fold. 125 I-NGF bound to receptors can be visualized by light microscopy autoradiography in Triton X-100-insoluble residues of cell bodies, as well as growth cones and neurites. The WGA-induced association with the cytoskeleton, however, is not specific for the NGF receptor. Concentrations of WGA which change the Triton X-100 solubility of membrane glycoproteins are similar to those required to alter the kinetic state of the NGF receptor. Both events may be related to the crossbridging of cell surface proteins induced by this multivalent lectin

  1. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    Science.gov (United States)

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  2. Characterization of cell-surface receptors for monoclonal-nonspecific suppressor factor (MNSF)

    International Nuclear Information System (INIS)

    Nakamura, M.; Ogawa, H.; Tsunematsu, T.

    1990-01-01

    Monoclonal-nonspecific suppressor factor (MNSF) is a lymphokine derived from murine T cell hybridoma. The target tissues are both LPS-stimulated B cells and Con A-stimulated T cells. Since the action of MNSF may be mediated by its binding to specific cell surface receptors, we characterized the mode of this binding. The purified MNSF was labeled with 125 I, using the Bolton-Hunter reagent. The labeled MNSF bound specifically to a single class of receptor (300 receptors per cell) on mitogen-stimulated murine B cells or T cells with an affinity of 16 pM at 24 degrees C, in the presence of sodium azide. Competitive experiments showed that MNSF bound to the specific receptor and that the binding was not shared with IL2, IFN-gamma, and TNF. Various cell types were surveyed for the capacity to specifically bind 125 I-MNSF. 125 I-MNSF bound to MOPC-31C (a murine plasmacytoma line) and to EL4 (a murine T lymphoma line). The presence of specific binding correlates with the capacity of the cells to respond to MNSF. These data support the view that like other polypeptide hormones, the action of MNSF is mediated by specific cell surface membrane receptor protein. Identification of these receptors will provide insight into the apparently diverse activities of MNSF

  3. Soluble receptors for tumor necrosis factor as markers of disease activity in visceral leishmaniasis

    NARCIS (Netherlands)

    Zijlstra, E. E.; van der Poll, T.; Mevissen, M.

    1995-01-01

    Serum concentrations of soluble receptors for tumor necrosis factor (sTNFRs) were measured before and after antimony therapy in 25 Sudanese patients with active visceral leishmaniasis (VL). Both sTNFR types I and II were significantly elevated in patients with VL compared with healthy controls from

  4. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    Science.gov (United States)

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  5. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...

  6. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  7. Localization and functional roles of corticotropin-releasing factor receptor type 2 in the cerebellum

    NARCIS (Netherlands)

    Gounko, Natalia V.; Gramsbergen, Albert; van der Want, Johannes J. L.

    The corticotropin-releasing factor (CRF) type 2 receptor has three splice variants alpha, beta, and gamma. In the rodent brain only CRF-R2 alpha is present. In the cerebellum, CRF-R2 alpha has two different isoforms: a full-length form (fl) and truncated (tr). Both forms CRF-R2 have a unique

  8. Orphan nuclear receptor TR4 and fibroblast growth factor 1 in metabolism

    NARCIS (Netherlands)

    Liu, Weilin

    2016-01-01

    Metabolic homeostasis is achieved, in part, through the coordinated activities of members of the Nuclear Receptor (NR) family, a superfamily of ligand-modulated transcription factors (TFs) that mediate responses to a wide range of lipophilic signaling molecules including lipids, steroids, retinoids,

  9. Cell-Cell Adhesion and Insulin-Like Growth Factor I Receptor in Breast Cancer

    National Research Council Canada - National Science Library

    Bartucci, Monica

    2001-01-01

    .... Our goal was to study the role of the insulin-like growth factor I receptor (IGF-IR) in breast cancer. The IGF-IR is a multifunctional tyrosine kinase that has been recently implicated in breast tumor development and progression...

  10. Palliation of bone cancer pain by antagonists of platelet-activating factor receptors.

    Directory of Open Access Journals (Sweden)

    Katsuya Morita

    Full Text Available Bone cancer pain is the most severe among cancer pain and is often resistant to current analgesics. Thus, the development of novel analgesics effective at treating bone cancer pain are desired. Platelet-activating factor (PAF receptor antagonists were recently demonstrated to have effective pain relieving effects on neuropathic pain in several animal models. The present study examined the pain relieving effect of PAF receptor antagonists on bone cancer pain using the femur bone cancer (FBC model in mice. Animals were injected with osteolytic NCTC2472 cells into the tibia, and subsequently the effects of PAF receptor antagonists on pain behaviors were evaluated. Chemical structurally different type of antagonists, TCV-309, BN 50739 and WEB 2086 ameliorated the allodynia and improved pain behaviors such as guarding behavior and limb-use abnormalities in FBC model mice. The pain relieving effects of these antagonists were achieved with low doses and were long lasting. Blockade of spinal PAF receptors by intrathecal injection of TCV-309 and WEB 2086 or knockdown of the expression of spinal PAF receptor protein by intrathecal transfer of PAF receptor siRNA also produced a pain relieving effect. The amount of an inducible PAF synthesis enzyme, lysophosphatidylcholine acyltransferase 2 (LPCAT2 protein significantly increased in the spinal cord after transplantation of NCTC 2472 tumor cells into mouse tibia. The combination of morphine with PAF receptor antagonists develops marked enhancement of the analgesic effect against bone cancer pain without affecting morphine-induced constipation. Repeated administration of TCV-309 suppressed the appearance of pain behaviors and prolonged survival of FBC mice. The present results suggest that PAF receptor antagonists in combination with, or without, opioids may represent a new strategy for the treatment of persistent bone cancer pain and improve the quality of life of patients.

  11. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGF alpha- and beta-receptor signals in cells expressing both receptor types.

    Science.gov (United States)

    Vassbotn, F S; Ostman, A; Siegbahn, A; Holmsen, H; Heldin, C H

    1992-08-05

    The aminoglycoside neomycin has recently been found to affect certain platelet-derived growth factor (PDGF) responses in C3H/10T1/2 C18 fibroblasts. Using porcine aortic endothelial cells transfected with PDGF alpha- or beta-receptors, we explored the possibility that neomycin interferes with the interaction between the different PDGF isoforms and their receptors. We found that neomycin (5 mM) inhibited the binding of 125I-PDGF-BB to the alpha-receptor with only partial effect on the binding of 125I-PDGF-AA; in contrast, the binding of 125I-PDGF-BB to the beta-receptor was not affected by the aminoglycoside. Scatchard analyses showed that neomycin (5 mM) decreased the number of binding sites for PDGF-BB on alpha-receptor-expressing cells by 87%. Together with cross-competition studies with 125I-labeled PDGF homodimers, the effect of neomycin indicates that PDGF-AA and PDGF-BB bind to both common and unique structures on the PDGF alpha-receptor. Neomycin specifically inhibited the autophosphorylation of the alpha-receptor by PDGF-BB, with less effect on the phosphorylation induced by PDGF-AA and no effect on the phosphorylation of the beta-receptor by PDGF-BB. Thus, neomycin is a PDGF isoform- and receptor-specific antagonist that provides a possibility to compare the signal transduction pathways of alpha- and beta-receptors in cells expressing both receptor types. This approach was used to show that activation of PDGF beta-receptors by PDGF-BB mediated a chemotactic response in human fibroblasts, whereas activation of alpha-receptors by the same ligand inhibited chemotaxis.

  12. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    Science.gov (United States)

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  13. Relative Atrial Natriuretic Peptide Deficiency and Inadequate Renin and Angiotensin II Suppression in Obese Hypertensive Men

    DEFF Research Database (Denmark)

    Asferg, Camilla L; Nielsen, Søren J; Andersen, Ulrik B

    2013-01-01

    Obesity is a strong risk factor for hypertension, but the mechanisms by which obesity leads to hypertension are incompletely understood. On this background, we assessed dietary sodium intake, serum levels of natriuretic peptides (NPs), and the activity of the renin-angiotensin system in 63 obese...... hypertensive men (obeseHT: body mass index, ≥30.0 kg/m(2); 24-hour ambulatory blood pressure, ≥130/80 mm Hg), in 40 obese normotensive men (obeseNT: body mass index, ≥30.0 kg/m(2); 24-hour ambulatory blood pressure,...

  14. Wnt signalling via the epidermal growth factor receptor: a role in breast cancer?

    International Nuclear Information System (INIS)

    Musgrove, Elizabeth A

    2004-01-01

    Recent data have suggested the epidermal-growth-factor receptor (EGFR) as a point of convergence for several different classes of receptor. Civenni and colleagues have now demonstrated crosstalk between Wnt signalling and the EGFR, showing that in breast epithelial cells Wnts activate downstream targets of the EGFR, including cyclin D1. Given the role of members of these pathways in the aetiology of breast cancer and as markers of outcome and potential therapeutic targets in breast cancer, this observation has a number of potential implications important for both the basic biology of breast cancer and the clinical management of the disease

  15. The diminished expression of proangiogenic growth factors and their receptors in gastric ulcers of cirrhotic patients.

    Science.gov (United States)

    Luo, Jiing-Chyuan; Peng, Yen-Ling; Hou, Ming-Chih; Huang, Kuang-Wei; Huang, Hui-Chun; Wang, Ying-Wen; Lin, Han-Chieh; Lee, Fa-Yauh; Lu, Ching-Liang

    2013-01-01

    The pathogenesis of the higher occurrence of peptic ulcer disease in cirrhotic patients is complex. Platelets can stimulate angiogenesis and promote gastric ulcer healing. We compared the expressions of proangiogenic growth factors and their receptors in the gastric ulcer margin between cirrhotic patients with thrombocytopenia and those of non-cirrhotic patients to elucidate possible mechanisms. Eligible cirrhotic patients (n = 55) and non-cirrhotic patients (n = 55) who had gastric ulcers were enrolled. Mucosa from the gastric ulcer margin and non-ulcer areas were sampled and the mRNA expressions of the proangiogenic growth factors (vascular endothelial growth factor [VEGF], platelet derived growth factor [PDGF], basic fibroblast growth factor [bFGF]) and their receptors (VEGFR1, VEGFR2, PDGFRA, PDGFRB, FGFR1, FGFR2) were measured and compared. Platelet count and the expressions of these growth factors and their receptors were correlated with each other. The two groups were comparable in terms of gender, ulcer size and infection rate of Helicobacter pylori. However, the cirrhotic group were younger in age, had a lower platelet count than those in the non-cirrhotic group (pexpressions of PDGFB, VEGFR2, FGFR1, and FGFR2 in gastric ulcer margin when compared with those of the non-cirrhotic patients (pexpressions of PDGFB and VEGFR2, FGFR1, and FGFR2 were well correlated with the degree of thrombocytopenia in these cirrhotic patients (ρ>0.5, pimplied that diminished activity of proangiogenic factors and their receptors may contribute to the pathogenesis of gastric ulcers in cirrhotic patients.

  16. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    Science.gov (United States)

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  17. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    International Nuclear Information System (INIS)

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A.

    1990-01-01

    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons

  18. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    Science.gov (United States)

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  19. Structural basis for receptor recognition of vitamin-B(12)-intrinsic factor complexes

    DEFF Research Database (Denmark)

    Andersen, Christian Brix Folsted; Madsen, Mette; Storm, Tina

    2010-01-01

    Cobalamin (Cbl, vitamin B(12)) is a bacterial organic compound and an essential coenzyme in mammals, which take it up from the diet. This occurs by the combined action of the gastric intrinsic factor (IF) and the ileal endocytic cubam receptor formed by the 460-kilodalton (kDa) protein cubilin...... and the 45-kDa transmembrane protein amnionless. Loss of function of any of these proteins ultimately leads to Cbl deficiency in man. Here we present the crystal structure of the complex between IF-Cbl and the cubilin IF-Cbl-binding-region (CUB(5-8)) determined at 3.3 A resolution. The structure provides...... of how Cbl indirectly induces ligand-receptor coupling. Finally, the comparison of Ca(2+)-binding CUB domains and the low-density lipoprotein (LDL) receptor-type A modules suggests that the electrostatic pairing of a basic ligand arginine/lysine residue with Ca(2+)-coordinating acidic aspartates...

  20. FTZ-Factor1 and Fushi tarazu interact via conserved nuclear receptor and coactivator motifs

    Science.gov (United States)

    Schwartz, Carol J.E.; Sampson, Heidi M.; Hlousek, Daniela; Percival-Smith, Anthony; Copeland, John W.R.; Simmonds, Andrew J.; Krause, Henry M.

    2001-01-01

    To activate transcription, most nuclear receptor proteins require coactivators that bind to their ligand-binding domains (LBDs). The Drosophila FTZ-Factor1 (FTZ-F1) protein is a conserved member of the nuclear receptor superfamily, but was previously thought to lack an AF2 motif, a motif that is required for ligand and coactivator binding. Here we show that FTZ-F1 does have an AF2 motif and that it is required to bind a coactivator, the homeodomain-containing protein Fushi tarazu (FTZ). We also show that FTZ contains an AF2-interacting nuclear receptor box, the first to be found in a homeodomain protein. Both interaction motifs are shown to be necessary for physical interactions in vitro and for functional interactions in developing embryos. These unexpected findings have important implications for the conserved homologs of the two proteins. PMID:11157757

  1. Characterization of the epidermal growth factor receptor associated with cytoskeletons of A431 cells

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1989-01-01

    Epidermal growth factor receptors (EGF-R) have been shown to be associated with the detergent-insoluble cytoskeleton of A431 cells, where they retained both a functional ligand-binding domain and tyrosine kinase activity. In the present study we have characterized the tyrosine kinase and ligand binding activities of this cytoskeletally associated EGF-R. The tyrosine kinase activity of the cytoskeletally associated EGF-R was stimulated by EGF treatment of intact cells as evidenced by increased autophosphorylation and phosphorylation of the exogenous substrate angiotensin II (AII). The kinetic behavior of the EGF-R associated with cytoskeletons of EGF-treated cells was similar to that of purified receptors. The stimulation of the receptor kinase activity required EGF treatment of intact cells prior to Triton extraction. If cytoskeletons were prepared from untreated cells and then incubated with EGF, there was no stimulation of the detergent-insoluble receptor kinase activity, indicating that the immobilized receptor was unable to undergo EGF-stimulated activation. Comparison of peptide maps from soluble and cytoskeletally associated EGF-R revealed qualitatively similar patterns; however, they are distinguished by a prominent 46 kD band in digests of the cytoskeletal EGF-R. Saturable binding of 125I-EGF to A431 cytoskeletons prepared from adherent and suspended cells demonstrated the presence of specific receptors on the cytoskeleton. High-affinity EGF-R were preferentially retained upon detergent extraction of adherent cells, whereas both low- and high-affinity receptors were solubilized from the cytoskeletons of suspended cells. Suspension of cells resulted in the solubilization of an additional 15% of the EGF-R to that solubilized in adherent cells, indicating that EGF-R can reversibly associate with the structural elements of the cell

  2. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    Science.gov (United States)

    Smits, A; Funa, K; Vassbotn, F S; Beausang-Linder, M; af Ekenstam, F; Heldin, C H; Westermark, B; Nistér, M

    1992-03-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions.

  3. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    Science.gov (United States)

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line......, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...

  5. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    Science.gov (United States)

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  6. Emerging growth factor receptor antagonists for the treatment of renal cell carcinoma.

    Science.gov (United States)

    Zahoor, Haris; Rini, Brian I

    2016-12-01

    The landscape of systemic treatment for metastatic renal cell carcinoma (RCC) has dramatically changed with the introduction of targeted agents including vascular endothelial growth factor (VEGF) inhibitors. Recently, multiple new agents including growth factor receptor antagonists and a checkpoint inhibitor were approved for the treatment of refractory metastatic RCC based on encouraging benefit shown in clinical trials. Areas covered: The background and biological rationale of existing treatment options including a brief discussion of clinical trials which led to their approval, is presented. This is followed by reviewing the limitations of these therapeutic options, medical need to develop new treatments and major goals of ongoing research. We then discuss two recently approved growth factor receptor antagonists i.e. cabozantinib and lenvatinib, and a recently approved checkpoint inhibitor, nivolumab, and issues pertaining to drug development, and future directions in treatment of metastatic RCC. Expert opinion: Recently approved growth factor receptor antagonists have shown encouraging survival benefit but associated drug toxicity is a major issue. Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, has similarly shown survival benefit and is well tolerated. With multiple options now available in this patient population, the right sequence of these agents remains to be determined.

  7. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  8. Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: Evidence for more than one receptor class

    International Nuclear Information System (INIS)

    Gronwald, R.G.K.; Grant, F.J.; Haldeman, B.A.; Hart, C.E.; O'Hara, P.J.; Hagen, F.S.; Ross, R.; Bowen-Pope, D.F.; Murray, M.J.

    1988-01-01

    The complete nucleotide sequence of a cDNA encoding the human platelet-derived growth factor (PDGF) receptor is presented. The cDNA contains an open reading frame that codes for a protein of 1106 amino acids. Comparison to the mouse PDGF receptor reveals an overall amino acid sequence identity of 86%. This sequence identity rises to 98% in the cytoplasmic split tyrosine kinase domain. RNA blot hybridization analysis of poly(A) + RNA from human dermal fibroblasts detects a major and a minor transcript using the cDNA as a probe. Baby hamster kidney cells, transfected with an expression vector containing the receptor cDNA, express an ∼ 190-kDa cell surface protein that is recognized by an anti-human PDGF receptor antibody. The recombinant PDGF receptor is functional in the transfected baby hamster kidney cells as demonstrated by ligand-induced phosphorylation of the receptor. Binding properties of the recombinant PDGF receptor were also assessed with pure preparations of BB and AB isoforms of PDGF. Unlike human dermal fibroblasts, which bind both isoforms with high affinity, the transfected baby hamster kidney cells bind only the BB isoform of PDGF with high affinity. This observation is consistent with the existence of more than one PDGF receptor class

  9. Metabotropic glutamate receptor 2 and corticotrophin-releasing factor receptor-1 gene expression is differently regulated by BDNF in rat primary cortical neurons

    DEFF Research Database (Denmark)

    Jørgensen, Christinna V; Klein, Anders B; El-Sayed, Mona

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and plasticity. Incorporation of matured receptor proteins is an integral part of synapse formation. However, whether BDNF increases synthesis and integration of receptors in functional synapses directly is unclear. We...... are particularly interested in the regulation of the 5-hydroxytryptamine receptor 2A (5-HT2A R). This receptor form a functional complex with the metabotropic glutamate receptor 2 (mGluR2) and is recruited to the cell membrane by the corticotrophin-releasing factor receptor 1 (CRF-R1). The effect of BDNF on gene...... expression for all these receptors, as well as a number of immediate-early genes, was pharmacologically characterized in primary neurons from rat frontal cortex. BDNF increased CRF-R1 mRNA levels up to fivefold, whereas mGluR2 mRNA levels were proportionally downregulated. No effect on 5-HT2A R mRNA was seen...

  10. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis.

    Directory of Open Access Journals (Sweden)

    Allison L Speer

    Full Text Available The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10 and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b, in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22 except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.

  11. B-type natriuretic peptides and mortality after stroke

    DEFF Research Database (Denmark)

    García-Berrocoso, Teresa; Giralt, Dolors; Bustamante, Alejandro

    2013-01-01

    To measure the association of B-type natriuretic peptide (BNP) and N-terminal fragment of BNP (NT-proBNP) with all-cause mortality after stroke, and to evaluate the additional predictive value of BNP/NT-proBNP over clinical information....

  12. Preoperative B-type natriuretic peptide risk stratification: do ...

    African Journals Online (AJOL)

    2012-09-11

    Sep 11, 2012 ... and noncardiac surgery.6,7 An individual patient data meta- analysis of 850 patients undergoing vascular surgery found that preoperative BNP ..... range. BNP: B-type natriuretic peptide, CVA: cerebrovascular accident, RCRI: revised cardiac risk index ... and avoiding the use of blood stored for >14 days.

  13. Practical application of natriuretic peptides in paediatric cardiology

    DEFF Research Database (Denmark)

    Smith, Julie; Goetze, Jens Peter; B. Andersen, Claus

    2010-01-01

    It is still uncertain if cardiac natriuretic peptides are useful biomarkers in paediatric cardiology. In this review we identify four clinical scenarios in paediatric cardiology, where clinical decision-making can be difficult, and where we feel the paediatric cardiologists need additional...

  14. Preoperative B-type natriuretic peptide risk stratification: Do ...

    African Journals Online (AJOL)

    Objectives: It is unclear if there is value in measuring postoperative B-type natriuretic peptide (BNP) in patients risk-stratified using preoperative BNP. Design: Prospective observational study. Setting and subjects: Patients undergoing vascular surgery at Inkosi Albert Luthuli Hospital, Durban. Data on intraoperative risk ...

  15. Plasma Atrial Natriuretic Peptide as a non-invasive biochemical ...

    African Journals Online (AJOL)

    Plasma Atrial Natriuretic Peptide as a non-invasive biochemical marker of dyspnoea in congestive heart failure patients. ... University of Mauritius Research Journal ... score assessed by a 10 graded visual analogue scale in the control group (mean score = 1) and an increased from 1.6 to 6.4 in the heart failure patients.

  16. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    Science.gov (United States)

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  17. Anti-epidermal growth factor receptor skin toxicity: a matter of topical hydration.

    Science.gov (United States)

    Ferrari, Daris; Codecà, Carla; Bocci, Barbara; Crepaldi, Francesca; Violati, Martina; Viale, Giulia; Careri, Carmela; Caldiera, Sarah; Bordin, Veronica; Luciani, Andrea; Zonato, Sabrina; Cassinelli, Gabriela; Foa, Paolo

    2016-02-01

    Skin toxicity is a frequent complication of anti-epidermal growth factor receptor therapy, which can be an obstacle in maintaining the dose intensity and may negatively impact on the clinical outcome of cancer patients. Skin lesions depend on the disruption of the keratinocyte development pathways and no treatment is clearly effective in resolving the cutaneous alterations frequently found during anti-epidermal growth factor receptor therapy. Among systemic treatments, oral tetracycline proved to be useful in preventing skin manifestations. We describe the case of a patient affected by metastatic colorectal cancer, for whom a combination of chemotherapy and cetuximab was used as second-line treatment. The patient developed a symptomatic papulopustular skin rash that disappeared completely after a twice-daily application of a hydrating and moisturizing cream, mainly consisting of a mixture of paraffin, silicone compounds, and macrogol. The marked cutaneous amelioration allowed the patient to continue cetuximab without any further symptoms and was associated with a partial radiological response.

  18. Clinical value of natriuretic peptides in chronic kidney disease.

    Science.gov (United States)

    Santos-Araújo, Carla; Leite-Moreira, Adelino; Pestana, Manuel

    2015-01-01

    According to several lines of evidence, natriuretic peptides (NP) are the main components of a cardiac-renal axis that operate in clinical conditions of decreased cardiac hemodynamic tolerance to regulate sodium homeostasis, blood pressure and vascular function. Even though it is reasonable to assume that NP may exert a relevant role in the adaptive response to renal mass ablation, evidence gathered so far suggest that this contribution is probably complex and dependent on the type and degree of the functional mass loss. In the last years NP have been increasingly used to diagnose, monitor treatment and define the prognosis of several cardiovascular (CV) diseases. However, in many clinical settings, like chronic kidney disease (CKD), the predictive value of these biomarkers has been questioned. In fact, it is now well established that renal function significantly affects the plasmatic levels of NP and that renal failure is the clinical condition associated with the highest plasmatic levels of these peptides. The complexity of the relation between NP plasmatic levels and CV and renal functions has obvious consequences, as it may limit the predictive value of NP in CV assessment of CKD patients and be a demanding exercise for clinicians involved in the daily management of these patients. This review describes the role of NP in the regulatory response to renal function loss and addresses the main factors involved in the clinical valorization of the peptides in the context of significant renal failure. Copyright © 2015 The Authors. Published by Elsevier España, S.L.U. All rights reserved.

  19. Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity

    Czech Academy of Sciences Publication Activity Database

    Křížková, Květoslava; Chrudinová, Martina; Povalová, Anna; Selicharová, Irena; Collinsová, Michaela; Vaněk, Václav; Brzozowski, A. M.; Jiráček, Jiří; Žáková, Lenka

    2016-01-01

    Roč. 55, č. 21 (2016), s. 2903-2913 ISSN 0006-2960 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 Keywords : alanine scanning mutagenesis * high-affinity binding * type 1 IGF receptor Subject RIV: CE - Biochemistry Impact factor: 2.938, year: 2016 http://pubs.acs.org/doi/pdf/10.1021/acs.biochem.6b00140

  20. Insulin-like Growth Factor Receptor Inhibitors: Baby or the Bathwater?

    OpenAIRE

    Yee, Douglas

    2012-01-01

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response...

  1. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  2. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    Science.gov (United States)

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  3. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  4. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    International Nuclear Information System (INIS)

    Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, Shuli

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P < 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms

  5. Identification of fibroblast growth factor receptor 3 (FGFR3 as a protein receptor for botulinum neurotoxin serotype A (BoNT/A.

    Directory of Open Access Journals (Sweden)

    Birgitte P S Jacky

    Full Text Available Botulinum neurotoxin serotype A (BoNT/A causes transient muscle paralysis by entering motor nerve terminals (MNTs where it cleaves the SNARE protein Synaptosomal-associated protein 25 (SNAP25206 to yield SNAP25197. Cleavage of SNAP25 results in blockage of synaptic vesicle fusion and inhibition of the release of acetylcholine. The specific uptake of BoNT/A into pre-synaptic nerve terminals is a tightly controlled multistep process, involving a combination of high and low affinity receptors. Interestingly, the C-terminal binding domain region of BoNT/A, HC/A, is homologous to fibroblast growth factors (FGFs, making it a possible ligand for Fibroblast Growth Factor Receptors (FGFRs. Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3 as a high affinity receptor for BoNT/A in neuronal cells. HC/A binds with high affinity to the two extra-cellular loops of FGFR3 and acts similar to an agonist ligand for FGFR3, resulting in phosphorylation of the receptor. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A cellular uptake. These findings show that FGFR3 plays a pivotal role in the specific uptake of BoNT/A across the cell membrane being part of a larger receptor complex involving ganglioside- and protein-protein interactions.

  6. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    Science.gov (United States)

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  7. Selective binding and oligomerization of the murine granulocyte colony-stimulating factor receptor by a low molecular weight, nonpeptidyl ligand.

    Science.gov (United States)

    Doyle, Michael L; Tian, Shin-Shay; Miller, Stephen G; Kessler, Linda; Baker, Audrey E; Brigham-Burke, Michael R; Dillon, Susan B; Duffy, Kevin J; Keenan, Richard M; Lehr, Ruth; Rosen, Jon; Schneeweis, Lumelle A; Trill, John; Young, Peter R; Luengo, Juan I; Lamb, Peter

    2003-03-14

    Granulocyte colony-stimulating factor regulates neutrophil production by binding to a specific receptor, the granulocyte colony-stimulating factor receptor, expressed on cells of the granulocytic lineage. Recombinant forms of granulocyte colony-stimulating factor are used clinically to treat neutropenias. As part of an effort to develop granulocyte colony-stimulating factor mimics with the potential for oral bioavailability, we previously identified a nonpeptidyl small molecule (SB-247464) that selectively activates murine granulocyte colony-stimulating factor signal transduction pathways and promotes neutrophil formation in vivo. To elucidate the mechanism of action of SB-247464, a series of cell-based and biochemical assays were performed. The activity of SB-247464 is strictly dependent on the presence of zinc ions. Titration microcalorimetry experiments using a soluble murine granulocyte colony-stimulating factor receptor construct show that SB-247464 binds to the extracellular domain of the receptor in a zinc ion-dependent manner. Analytical ultracentrifugation studies demonstrate that SB-247464 induces self-association of the N-terminal three-domain fragment in a manner that is consistent with dimerization. SB-247464 induces internalization of granulocyte colony-stimulating factor receptor on intact cells, consistent with a mechanism involving receptor oligomerization. These data show that small nonpeptidyl compounds are capable of selectively binding and inducing productive oligomerization of cytokine receptors.

  8. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    International Nuclear Information System (INIS)

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-01-01

    The specific binding of iodinated epidermal growth factor ([ 125 I]iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites [dissociation constant (Kd) = 0.7-1.8 nM]. Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status

  9. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    International Nuclear Information System (INIS)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. [ 3 H]PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 μM. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRPγS and GDPβS, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA)

  10. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils

    International Nuclear Information System (INIS)

    Hanazono, Y.; Hosoi, T.; Kuwaki, T.; Matsuki, S.; Miyazono, K.; Miyagawa, K.; Takaku, F.

    1990-01-01

    We investigated granulocyte colony-stimulating factor (G-CSF) receptors on neutrophils from three patients with chronic myelogenous leukemia (CML) in the chronic phase, in comparison with four normal volunteers. Because we experienced some difficulties in radioiodinating intact recombinant human G-CSF, we developed a new derivative of human G-CSF termed YPY-G-CSF. It was easy to iodinate this protein using the lactoperoxidase method because of two additional tyrosine residues, and its radioactivity was higher than that previously reported. The biological activity of YPY-G-CSF as G-CSF was fully retained. Scatchard analysis demonstrated that CML neutrophils had a single class of binding sites (1400 +/- 685/cell) with a dissociation constant (Kd) of 245 +/- 66 pM. The number of sites and Kd value of CML neutrophils were not significantly different from those of normal neutrophils (p greater than 0.9). Cross-linking studies revealed two specifically labeled bands of [125I]YPY-G-CSF-receptor complexes with apparent molecular masses of 160 and 110 kd on both normal and CML neutrophils. This is the first report describing two receptor proteins on neutrophils. According to the analyses of the proteolytic process of these cross-linked complexes and proteolytic mapping, we assume that alternative splicing or processing from a single gene may generate two distinct receptor proteins that bind specifically to G-CSF but have different fates in intracellular metabolism

  11. Targeting of liposomes to cells bearing nerve growth factor receptors mediated by biotinylated NGF

    International Nuclear Information System (INIS)

    Rosenberg, M.B.

    1986-01-01

    Previous studies of liposome targeting have concentrated on immunological systems, the use of ligand-receptor interactions has received little attention. The protein hormone beta-nerve growth factor (NGF) was modified by biotinylation via carboxyl group substitution (C-bio-NGF) under reaction conditions that yielded an average of 3 biotin additions per NGF subunit. NGF was also biotinylated through amino group substitution to produce derivatives with ratios of 1, 2 and 4 biotin moieties per NGF subunit (N-bio-NGF). These derivatives were compared with native NGF for their ability to compete with 125 I-NGF for binding to NGF receptors on rat pheochromocytoma (PC 12) cells at 4 0 C. C-bio-NGF was as effective as native NGF in binding to NGF receptors, while N-bio-NGF containing 1 biotin per NGF subunit was only 28% as active in binding as native NGF. C-bio-NGF, but not N-bio-NGF, mediated the specific binding of 125 I-streptavidin to PC12 cells. Biocytin-NGF, a derivative of C-bio-NGF with an extended spacer chain, was also synthesized and retained full biological and receptor binding activities. C-bio-NGF and biocytin-NGF were as effective as native NGF in a bioassay involving induction of neurite outgrowth from PC12 cells

  12. Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly; Xu, H. Eric (Van Andel)

    2009-01-15

    The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observed for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.

  13. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection

    International Nuclear Information System (INIS)

    Konnai, Satoru; Usui, Tatsufumi; Ikeda, Manabu; Kohara, Junko; Hirata, Toh-ichi; Okada, Kosuke; Ohashi, Kazuhiko; Onuma, Misao

    2005-01-01

    Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-α and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-α-induced responses, in this study we examined the TNF-α-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-α (rTNF-α) was significantly higher than those from AL cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5 + or sIgM + cells and these cells showed resistance to TNF-α-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-α-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection

  14. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    International Nuclear Information System (INIS)

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-01-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled 239 PuO 2 were evaluated for aberrant expression of transforming growth factor alpha (TGF-α) and epidermal growth factor receptor (EGFR). Expression of TGF-α protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-α. Many neoplasms expressing TGF-α also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-α were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab

  15. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  16. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Szlachcic A

    2016-08-01

    Full Text Available Anna Szlachcic, Malgorzata Zakrzewska, Michal Lobocki, Piotr Jakimowicz, Jacek Otlewski Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland Abstract: Fibroblast growth factor receptors (FGFRs are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V, was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE, and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. Keywords: fibroblast growth factor 1, FGF receptor, targeted cancer therapy, cytotoxic conjugates, FGFR-dependent cancer, MMAE, auristatin

  17. In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe

    Science.gov (United States)

    Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong

    2018-02-01

    Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.

  18. Macrophage colony-stimulating factor, CSF-1, and its proto-oncogene-encoded receptor

    International Nuclear Information System (INIS)

    Sherr, C.J.; Rettenmier, C.W.; Roussel, M.F.

    1988-01-01

    The macrophage colony-stimulating factor, CSF-1, or M-CSF, is one of a family of hematopoietic growth factors that stimulates the proliferation of monocytes, macrophages, and their committed bone marrow progenitors. Unlike pluripotent hemopoietins such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3 or multi-CSF), which affect the growth of myeloid cells of several different hematopoietic lineages, CSF-1 acts only on cells of the mononuclear phagocyte series to stimulate their growth and enhance their survival. Retroviral transduction of the feline c-fms gene in the Susan McDonough and Hardy Zuckerman-5 (HZ-5) strains of feline sarcoma virus (FeSV) led to genetic alterations that endowed the recombined viral oncogene (v-fms) with the ability to transform cells in culture morphologically and to induce firbrosarcomas and hematopoietic neoplasms in susceptible animals. The v-fms oncogene product differs from the normal CSF-1 receptor in certain of its cardinal biochemical properties, most notably in exhibiting constitutively high basal levels of tyrosine kinase activity in the absence of its ligand. Comparative studies of the c-fms and v-fms genes coupled with analyses of engineered mutants and receptor chimeras have begun to pinpoint pertinent genetic alterations in the normal receptor gene that unmask its latent oncogenic potential. In addition, the availability of biologically active c-fms, v-fms, and CSF-1 cDNAs has allowed these genes to be mobilized and expressed in naive cells, thereby facilitating assays for receptor coupling with downstream components of the mitogenic pathway in diverse cell types

  19. Antibody-induced activation of the epidermal growth factor receptor tyrosine kinase requires the presence of detergent

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; de Laat, S. W.; Boonstra, J.

    1990-01-01

    Activation of the epidermal growth factor receptor (EGF-R) tyrosine kinase was investigated in membrane preparations as well as intact A431 cells, using anti-EGF-R antibodies directed against extra- and intracellular receptor domains. In vitro assay conditions were mimicked on whole cells by a mild

  20. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L

    NARCIS (Netherlands)

    Real, PJ; Benito, A; Cuevas, J; Berciano, MT; de Juan, A; Coffer, P; Gomez-Roman, J; Lafarga, M; Lopez-Vega, JM; Fernandez-Luna, JL

    2005-01-01

    Epidermal growth factor receptor-1 (EGFR) and EGFR-2 (HER2) have become major targets for cancer treatment. Blocking antibodies and small-molecule inhibitors are being used to silence the activity of these receptors in different tumors with varying efficacy. Thus, a better knowledge on the signaling

  1. Prognostic factors in advanced breast cancer: Race and receptor status are significant after development of metastasis.

    Science.gov (United States)

    Ren, Zhiyong; Li, Yufeng; Shen, Tiansheng; Hameed, Omar; Siegal, Gene P; Wei, Shi

    2016-01-01

    Prognostic factors are well established in early-stage breast cancer (BC), but less well-defined in advanced disease. We analyzed 323 BC patients who had distant relapse during follow-up from 1997 to 2010 to determine the significant clinicopathologic factors predicting survival outcomes. By univariate analysis, race, tumor grade, estrogen and progesterone receptors (ER/PR) and HER2 status were significantly associated with overall survival (OS) and post-metastasis survival (PMS). Applying a Cox regression model revealed that all these factors remained significant for PMS, while race, tumor grade and HER2 were independent factors for OS. Tumor grade was the only significant factor for metastasis-free survival by univariate and multivariate analyses. Our findings demonstrated that being Caucasian, hormonal receptor positive (HR+) and HER2 positive (HER2+) were all associated with a decreased hazard of death and that patients with HR+/HER2+ tumors had superior outcomes to those with HR+/HER2- disease. Further, PR status held a prognostic value over ER, thus reflecting the biologic mechanism of the importance of the functional ER pathway and the heterogeneity in the response to endocrine therapy. These observations indicate that the patients' genetic makeup and the intrinsic nature of the tumor principally govern BC progression and prognosticate the long-term outcomes in advanced disease. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... intracellular signaling. This cytokine exerts its functions via interaction with two receptors: type-1 receptor (TNFR1) and type-2 receptor (TNFR2). In this work, the inflammatory response after a freeze injury (cryolesion) in the cortex was studied in wild-type (WT) animals and in mice lacking TNFR1 (TNFR1 KO...... signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected...

  3. Expression, purification, and characterization of a diabody against the most important angiogenesis cell receptor: Vascular endothelial growth factor receptor 2

    Directory of Open Access Journals (Sweden)

    Mahdi Behdani

    2012-01-01

    Full Text Available Antibodies and their derivative fragments have long been used as tools in a variety of applications, in fundamental research work, biotechnology, diagnosis, and therapy. Camels produce single heavy-chain antibodies (VHH in addition to usual antibodies. These minimal-sized binders are very robust and bind the antigen with high affinity in a monomeric state. Vascular endothelial growth factor recepror-2 (VEGFR2 is an important tumor-associated receptor that blockade of its signaling can lead to the inhibition of neovascularization and tumor metastasis. Here, we describe the construction, expression, and purification VEGFR2-specific Diabody. Two variable fragments of a same camel anti-VEGFR2 antibody were linked together by the upper hinge segment of antibody to make a diabody. We showed the ability of diabody to recognition of VEGFR2 on the cell surface by FACS. Diabodies can be produced in the low-cost prokaryotic expression system, so they are suitable molecules for diagnostic and therapeutic issues.

  4. Purification of rat intestinal receptor for intrinsic factor-vitamin B12 complex

    International Nuclear Information System (INIS)

    Yamada, Shoji; Itaya, Harutaka; Nakazawa, Osamu; Fukuda, Morimichi.

    1977-01-01

    The intrinsic factor (IF) in a rat gastric mucosal extract was bound efficiently to vitamin B 12 -sepharose without significant change in its nature to produce IF-vitamin B 12 -sepharose. The purification of the intestinal receptor for the IF-vitamin B 12 complex was performed by the affinity chromatography using the IF-vitamin B 12 -sepharose as the affinity adsorbent. As a result of admixing the gastric mucosal extract sample with B 12 -sepharose while stirring for 4 hours, the adsorption was performed without any break through. Further, it was recognized that the B 12 -bound protein purified by the affinity chromatography using B 12 -sepharose was not much changed as compared with that before purification. Furthermore, it was recognized that IF-B 12 -sepharose was able to be made by binding IF with B 12 -sepharose which was made by coupling B 12 with the market-available AH-sepharose. The IF-B 12 -sepharose was washed with buffer solution, and then was loaded with the small intestine mucosal extract. Thereafter, the receptor was eluted by making di-valent cation inert with the buffer solution. After the removal of EDTA in the eluted solution by dialysis, the activity of the receptor was measured. 48.5% of the receptor activity loaded was recovered by the elution with EDTA. The specific activity of the receptor represented by the final amount of B 12 (pg)/the amount of protein (mg) in the purified substance was 335 folds of the original activity. (Iwakiri, K.)

  5. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  6. Flow cytometric detection of growth factor receptors in autografts and analysis of growth factor concentrations in autologous stem cell transplantation: possible significance for platelet recovery

    DEFF Research Database (Denmark)

    Schiødt, I; Jensen, Charlotte Harken; Kjaersgaard, E

    2000-01-01

    In order to improve prediction of hematopoietic recovery, we conducted a pilot study, analyzing the significance of growth factor receptor expression in autografts as well as endogenous growth factor levels in blood before, during and after stem cell transplantation. Three early acting (stem cell......-CSF receptor positive, CD34+ progenitor cells were measured by flow cytometry in the leukapheresis product used for transplantation in a subgroup of 15 patients (NHL, n = 8, MM, n = 7). Three factors were identified as having a significant impact on platelet recovery. First, the level of Tpo in blood...... at the time of the nadir (day +7). Second, the percentage of re-infused thrombopoietin receptor positive progenitors and finally, the percentage of Flt3 receptor positive progenitors. On the other hand, none of the analyzed factors significantly predicted myeloid or erythroid recovery. These findings need...

  7. A Premature Termination of Human Epidermal Growth Factor Receptor Transcription in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jihene Elloumi-Mseddi

    2014-01-01

    Full Text Available Our success in producing an active epidermal growth factor receptor (EGFR tyrosine kinase in Escherichia coli encouraged us to express the full-length receptor in the same host. Despite its large size, we were successful at producing the full-length EGFR protein fused to glutathione S-transferase (GST that was detected by Western blot analysis. Moreover, we obtained a majoritarian truncated GST-EGFR form detectable by gel electrophoresis and Western blot. This truncated protein was purified and confirmed by MALDI-TOF/TOF analysis to belong to the N-terminal extracellular region of the EGFR fused to GST. Northern blot analysis showed two transcripts suggesting the occurrence of a transcriptional arrest.

  8. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors.

    Science.gov (United States)

    El-Gamal, Mohammed I; Al-Ameen, Shahad K; Al-Koumi, Dania M; Hamad, Mawadda G; Jalal, Nouran A; Oh, Chang-Hyun

    2018-01-17

    Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.

  9. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    , in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what...... of the Drosophila Insulin Receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  10. Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells.

    Science.gov (United States)

    Fearnley, Gareth W; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-01-01

    Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.

  11. Receptors for insulin-like growth factors I and II: autoradiographic localization in rat brain and comparison to receptors for insulin

    International Nuclear Information System (INIS)

    Lesniak, M.A.; Hill, J.M.; Kiess, W.; Rojeski, M.; Pert, C.B.; Roth, J.

    1988-01-01

    Receptors for insulin-like growth factor I (IGF-I) in rat brain were visualized using autoradiography with [125I]IGF-I. The binding of the labeled peptide was competed for fully by high concentrations of unlabeled IGF-I. At intermediate concentrations of unlabeled peptide the binding of [125I]IGF-I was competed for by unlabeled IGF-I more effectively than by IGF-II or insulin, which is typical of receptors for IGF-I. Essentially every brain section shows specific binding of IGF-I, and the pattern of binding of IGF-I to its receptors correlated well with the cytoarchitectonic structures. In parallel studies we showed that [125I]IGF-II was bound to tissue sections of rat brain and that the binding was competed for by an excess of unlabeled IGF-II. However, intermediate concentrations of unlabeled peptides gave inconclusive results. To confirm that the binding of [125I]IGF-II was to IGF-II receptors, we showed that antibodies specific for the IGF-II receptor inhibited the binding of labeled IGF-II. Furthermore, the binding of the antibody to regions of the brain section, visualized by the application of [125I]protein-A, gave patterns indistinguishable from those obtained with [125I]IGF-II alone. Again, the binding was very widely distributed throughout the central nervous system, and the patterns of distribution corresponded well to the underlying neural structures. Densitometric analysis of the receptors enabled us to compare the distribution of IGF-I receptors with that of IGF-II receptors as well as retrospectively with that of insulin receptors

  12. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  13. Advanced Research of Fibroblast Growth Factor Receptor 
in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Dan PU

    2013-11-01

    Full Text Available Lung cancer is severely threatening human health. In recent years, the treatment for lung adenocarcinoma has made a great progress, targeted therapy has been widely applied in clinic, and benefits amount of patients. However, in squamous cell lung cancer, the incidence of epidermal growth factor receptor (EGFR gene mutant and ALK fusion gene are low,and targeted therapy like Tarceva and crizotinib, can hardly work. Since the fibroblast growth factors (fibroblast growth factor, FGF pathway is considered to be related to tumor cell proliferation, metastasis and angiogenesis, more and more researches proved the amplification of fibroblast growth factor receptor (FGFR in squamous cell lung cancer. Experiments in vivo and in vitro found that blocking FGF pathway could reduce the proliferation of tumor cells and inhibit metastasis. The FGF pathway might be a new target for treatment of squamous cell lung cancer. This article reviews the effect of FGFR in tumorigenesis,as well as the prospect as a therapeutic target in non-small cell lung cancer.

  14. C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice.

    Science.gov (United States)

    Kimura, Toru; Nojiri, Takashi; Hino, Jun; Hosoda, Hiroshi; Miura, Koichi; Shintani, Yasushi; Inoue, Masayoshi; Zenitani, Masahiro; Takabatake, Hiroyuki; Miyazato, Mikiya; Okumura, Meinoshin; Kangawa, Kenji

    2016-02-19

    Pulmonary fibrosis has high rates of mortality and morbidity; however, no effective pharmacological therapy has been established. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, selectively binds to the transmembrane guanylyl cyclase (GC)-B receptor and exerts anti-inflammatory and anti-fibrotic effects in various organs through vascular endothelial cells and fibroblasts that have a cell-surface GC-B receptor. Given the pathophysiological importance of fibroblast activation in pulmonary fibrosis, we hypothesized that the anti-fibrotic and anti-inflammatory effects of exogenous CNP against bleomycin (BLM)-induced pulmonary fibrosis were exerted in part by the effect of CNP on pulmonary fibroblasts. C57BL/6 mice were divided into two groups, CNP-treated (2.5 μg/kg/min) and vehicle, to evaluate BLM-induced (1 mg/kg) pulmonary fibrosis and inflammation. A periostin-CNP transgenic mouse model exhibiting CNP overexpression in fibroblasts was generated and examined for the anti-inflammatory and anti-fibrotic effects of CNP via fibroblasts in vivo. Additionally, we assessed CNP attenuation of TGF-β-induced differentiation into myofibroblasts by using immortalized human lung fibroblasts stably expressing GC-B receptors. Furthermore, to investigate whether CNP acts on human lung fibroblasts in a clinical setting, we obtained primary-cultured fibroblasts from surgically resected lungs of patients with lung cancer and analyzed levels of GC-B mRNA transcription. CNP reduced mRNA levels of the profibrotic cytokines interleukin (IL)-1β and IL-6, as well as collagen deposition and the fibrotic area in lungs of mice with bleomycin-induced pulmonary fibrosis. Furthermore, similar CNP effects were observed in transgenic mice exhibiting fibroblast-specific CNP overexpression. In cultured-lung fibroblasts, CNP treatment attenuated TGF-β-induced phosphorylation of Smad2 and increased mRNA and protein expression of α-smooth muscle actin and SM22

  15. Stimulation of LDL receptor activity in Hep-G2 cells by a serum factor(s)

    International Nuclear Information System (INIS)

    Ellsworth, J.L.; Brown, C.; Cooper, A.D.

    1988-01-01

    The regulation of low-density lipoprotein (LDL) receptor activity in the human hepatoma cell line Hep-G2 by serum components was examined. Incubation of dense monolayers of Hep-G2 cells with fresh medium containing 10% fetal calf serum (FM) produced a time-dependent increase in LDL receptor activity. Uptake and degradation of 125I-LDL was stimulated two- to four-fold, as compared with that of Hep-G2 cells cultured in the same media in which they had been grown to confluence (CM); the maximal 125I-LDL uptake plus degradation increased from 0.2 microgram/mg cell protein/4 h to 0.8 microgram/mg cell protein/4 h. In addition, a two-fold increase in cell surface binding of 125I-LDL to Hep-G2 cells was observed when binding was measured at 4 degrees C. There was no change in the apparent Kd. The stimulation of LDL receptor activity was suppressed in a concentration-dependent manner by the addition of cholesterol, as LDL, to the cell medium. In contrast to the stimulation of LDL receptor activity, FM did not affect the uptake or degradation of 125I-asialoorosomucoid. Addition of FM increased the protein content per dish, and DNA synthesis was stimulated approximately five-fold, as measured by [3H]thymidine incorporation into DNA; however, the cell number did not change. Cellular cholesterol biosynthesis was also stimulated by FM; [14C]acetate incorporation into unesterified and esterified cholesterol was increased approximately five-fold. Incubation of Hep-G2 cells with high-density lipoproteins (200 micrograms protein/ml) or albumin (8.0 mg/ml) in the absence of the serum factor did not significantly increase the total processed 125I-LDL. Stimulation of LDL receptor activity was dependent on a heat-stable, nondialyzable serum component that eluted in the inclusion volume of a Sephadex G-75 column

  16. Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein

    International Nuclear Information System (INIS)

    Gray, P.W.; Barrett, K.; Chantry, D.; Turner, M.; Feldmann, M.

    1990-01-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extracellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10 -9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ)

  17. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  18. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  19. Mammary tumors that become independent of the type I insulin-like growth factor receptor express elevated levels of platelet-derived growth factor receptors

    Directory of Open Access Journals (Sweden)

    Campbell Craig I

    2011-11-01

    Full Text Available Abstract Background Targeted therapies are becoming an essential part of breast cancer treatment and agents targeting the type I insulin-like growth factor receptor (IGF-IR are currently being investigated in clinical trials. One of the limitations of targeted therapies is the development of resistant variants and these variants typically present with unique gene expression patterns and characteristics compared to the original tumor. Results MTB-IGFIR transgenic mice, with inducible overexpression of the IGF-IR were used to model mammary tumors that develop resistance to IGF-IR targeting agents. IGF-IR independent mammary tumors, previously shown to possess characteristics associated with EMT, were found to express elevated levels of PDGFRα and PDGFRβ. Furthermore, these receptors were shown to be inversely expressed with the IGF-IR in this model. Using cell lines derived from IGF-IR-independent mammary tumors (from MTB-IGFIR mice, it was demonstrated that PDGFRα and to a lesser extent PDGFRβ was important for cell migration and invasion as RNAi knockdown of PDGFRα alone or PDGFRα and PDGFRβ in combination, significantly decreased tumor cell migration in Boyden chamber assays and suppressed cell migration in scratch wound assays. Somewhat surprisingly, concomitant knockdown of PDGFRα and PDGFRβ resulted in a modest increase in cell proliferation and a decrease in apoptosis. Conclusion During IGF-IR independence, PDGFRs are upregulated and function to enhance tumor cell motility. These results demonstrate a novel interaction between the IGF-IR and PDGFRs and highlight an important, therapeutically relevant pathway, for tumor cell migration and invasion.

  20. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    International Nuclear Information System (INIS)

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D.

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using [3H]dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor

  1. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion.

    Directory of Open Access Journals (Sweden)

    Bochra Tourki

    Full Text Available Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2 is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP. Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR. We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial

  2. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    Science.gov (United States)

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  3. N-terminal Pro-B-type natriuretic peptide: a measure of significant patent cuctus arteriosus

    LENUS (Irish Health Repository)

    OFarombi-Oghuvbu, IO

    2008-01-24

    Background: B type natriuretic peptide (BNP) is a marker for ventricular dysfunction secreted as a pre-prohormone, Pro-B-type natriuretic peptide (ProBNP), and cleaved into BNP and a biologically inactive fragment, N-terminal pro-B-type natriuretic peptide (NT-proBNP). Little is known about the clinical usefulness of NT-proBNP in preterm infants.\\r\

  4. Natriuretic peptides and integrated risk assessment for cardiovascular disease

    DEFF Research Database (Denmark)

    Willeit, Peter; Kaptoge, S; Welsh, P.

    2016-01-01

    samples and collection of data from studies identified through a systematic search of the literature (PubMed, Scientific Citation Index Expanded, and Embase) for articles published up to Sept 4, 2014, using search terms related to natriuretic peptide family members and the primary outcomes......BACKGROUND: Guidelines for primary prevention of cardiovascular diseases focus on prediction of coronary heart disease and stroke. We assessed whether or not measurement of N-terminal-pro-B-type natriuretic peptide (NT-proBNP) concentration could enable a more integrated approach than at present...... by predicting heart failure and enhancing coronary heart disease and stroke risk assessment. METHODS: In this individual-participant-data meta-analysis, we generated and harmonised individual-participant data from relevant prospective studies via both de-novo NT-proBNP concentration measurement of stored...

  5. Specificity of B-type natriuretic peptide assays

    DEFF Research Database (Denmark)

    Saenger, Amy K.; Rodriguez-Fraga, Olaia; Ler, Ranka

    2017-01-01

    BACKGROUND: B-type natriuretic peptides (BNPs) are used clinically to diagnose and monitor heart failure and are present in the circulation as multiple proBNP-derived fragments. We investigated the specificity of BNP immunoassays with glycosylated and nonglycosylated BNP, N-terminal proBNP (NT......-proBNP), and proBNP peptides to probe the cross-reactivity of each assay. METHODS: Nine B-type natriuretic peptides were studied, including synthetic and recombinant BNP (Shionogi, Scios, Mayo), human and synthetic glycosylated and nonglycosylated NT-proBNP (HyTest, Roche Diagnostics), and human glycosylated......-Rad, Goetze] were evaluated. Specificity was assessed by calculating the recovery between baseline and peptide-spiked human plasma pools at target concentrations of 100 ng/L BNP, 300 ng/L proBNP, or 450 ng/L NT-proBNP. All assays were performed in duplicate. RESULTS: BNP and NT-proBNP assays demonstrated...

  6. Clinical implications of B-type natriuretic peptide and N-terminal pro--B-type natriuretic peptide in the care of the vascular surgery patient.

    Science.gov (United States)

    Wayne Causey, Marlin; Singh, Niten

    2014-12-01

    B-type natriuretic peptide (also known as brain natriuretic peptide or BNP) is a physiologic marker that is often used to assess a patient's global cardiovascular health. BNP is secreted from the ventricular cardiac myocytes in response to stretch that occurs due to increased intravascular volume. PreproBNP is cleaved into BNP and N-terminal proBNP (NT proBNP) to cause diuresis, natriuresis, and vasodilation, and can be measured with a blood laboratory assay test or point-of-care testing. BNP/NT proBNP has been most extensively studied in the diagnosis and management of heart failure, but within the past 5 years, interest has carried over to vascular surgery patients. Studies have demonstrated that elevated levels of BNP/NT-proBNP (typically >100 pg/mL/>300 pg/mL) are associated with major adverse cardiac events at 30 and 180 days. Additional analysis of BNP/NT-proBNP has demonstrated that patients can be classified as very low risk (400 pg/mL). BNP/NT-proBNP in the low- and very-low-risk groups suggests patients are unlikely to have a major adverse cardiac event. An elevated BNP/NT-proBNP, excluding those with reasons for abnormal values, suggests the need for additional risk stratification and medical risk factor optimization. A preoperative measure of BNP or NT-proBNP affords an easy and rapid opportunity to individually and objectively quantify perioperative cardiovascular risk. Recent studies have also identified other biomarkers, none superior to BNP or NT-proBNP, but that, when used concomitantly, aid in further stratifying perioperative risk and will likely be the focus of future investigations. Published by Elsevier Inc.

  7. Involvement of macrophage migration inhibitory factor and its receptor (CD74) in human breast cancer.

    Science.gov (United States)

    Richard, Vincent; Kindt, Nadège; Decaestecker, Christine; Gabius, Hans-Joachim; Laurent, Guy; Noël, Jean-Christophe; Saussez, Sven

    2014-08-01

    Macrophage migration inhibitory factor (MIF) and its receptor CD74 appear to be involved in tumorigenesis. We evaluated, by immunohistochemical staining, the tissue expression and distribution of MIF and CD74 in serial sections of human invasive breast cancer tumor specimens. The serum MIF level was also determined in breast cancer patients. We showed a significant increase in serum MIF average levels in breast cancer patients compared to healthy individuals. MIF tissue expression, quantified by a modified Allred score, was strongly increased in carcinoma compared to tumor-free specimens, in the cancer cells and in the peritumoral stroma, with fibroblasts the most intensely stained. We did not find any significant correlation with histoprognostic factors, except for a significant inverse correlation between tumor size and MIF stromal positivity. CD74 staining was heterogeneous and significantly decreased in cancer cells but increased in the surrounding stroma, namely in lymphocytes, macrophages and vessel endothelium. There was no significant variation according to classical histoprognostic factors, except that CD74 stromal expression was significantly correlated with triple-negative receptor (TRN) status and the absence of estrogen receptors. In conclusion, our data support the concept of a functional role of MIF in human breast cancer. In addition to auto- and paracrine effects on cancer cells, MIF could contribute to shape the tumor microenvironment leading to immunomodulation and angiogenesis. Interfering with MIF effects in breast tumors in a therapeutic perspective remains an attractive but complex challenge. Level of co-expression of MIF and CD74 could be a surrogate marker for efficacy of anti-angiogenic drugs, particularly in TRN breast cancer tumor.

  8. Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in anti-lipopolysaccharide factors (ALFs) gene expression in mud crab.

    Science.gov (United States)

    Sun, Wan-Wei; Zhang, Xin-Xu; Wan, Wei-Song; Wang, Shu-Qi; Wen, Xiao-Bo; Zheng, Huai-Ping; Zhang, Yue-Ling; Li, Sheng-Kang

    2017-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a key cytoplasm signal adaptor that mediates signals activated by tumor necrosis factor receptor (TNFR) superfamily and the Interleukin-1 receptor/Toll-like receptor (IL-1/TLR) superfamily. The full-length 2492 bp TRAF6 (Sp-TRAF6) from Scylla paramamosain contains 1800 bp of open reading frame (ORF) encoding 598 amino acids, including an N-terminal RING-type zinc finger, two TRAF-type zinc fingers and a conserved C-terminal meprin and TRAF homology (MATH) domain. Multiple alignment analysis shows that the putative amino acid sequence of Sp-TRAf6 has highest identity of 88% with Pt-TRAF6 from Portunus trituberculatus, while the similarity of Sp-TRAF6 with other crustacean sequences was 54-55%. RT-PCR analysis indicated that Sp-TRAF6 transcripts were predominantly expressed in the hepatopancreas and stomach, whereas it was barely detected in the heart and hemocytes in our study. Moreover, Sp-TRAF6 transcripts were significantly up-regulated after Vibrio parahemolyticus and LPS challenges. RNA interference assay was carried out used by siRNA to investigate the genes expression patterns regulated by Sp-TRAF6. The qRT-PCR results showed that silencing Sp-TRAF6 gene could inhibit SpALF1, SpALF2, SpALF5 and SpALF6 expression in hemocytes, while inhibit SpALF1, SpALF3, SpALF4, SpALF5 and SpALF6 expression in hepatopancreas. Taken together, the acute-phase response to immune challenges and the inhibition of SpALFs gene expression indicate that Sp-TRAF6 plays an important role in host defense against pathogen invasions via regulation of ALF gene expression in S. paramamosain. Copyright © 2016. Published by Elsevier Ltd.

  9. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  10. Orexin–Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine

    Science.gov (United States)

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A.; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I.

    2015-01-01

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R–OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R–OX1R heteromer. Cocaine binding to the σ1R–CRF1R–OX1R complex promotes a long-term disruption of the orexin-A–CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. PMID:25926444

  11. Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine.

    Science.gov (United States)

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I; Ferré, Sergi; McCormick, Peter J

    2015-04-29

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. Copyright © 2015 the authors 0270-6474/15/356639-15$15.00/0.

  12. Receptors for insulin-like growth factor II (IGF-II) in the rat kidney glomerulus

    International Nuclear Information System (INIS)

    Haskell, J.F.; Pillion, D.J.; Meezan, E.

    1986-01-01

    Renal glomeruli were isolated by a technique involving renal perfusion with a solution containing magnetic iron oxide particles, followed by homogenization, sieving and isolation over a strong magnet. Isolated glomeruli were treated with 1% Triton X-100 to solubilize plasma membrane components while insoluble basement membrane components were removed by centrifugation. [ 125 I]Insulin-like growth factor-II (IGF-II) binding to this preparation was competitively inhibited by increasing amounts of unlabelled IGF-II, with 50% inhibition of binding observed at an IGF-II concentration of 1 ng/ml. [ 125 I]IGF-II was covalently cross-linked to its receptor with disuccinimidyl suberate in two tissues known to contain IGF-II receptors, the rat chondrosarcoma chondrocyte and the rat kidney tubule, as well as in rat renal glomeruli. In all three cases, a specific high-molecular weight (Mr = 255,000) band could be identified on autoradiograms of dodecyl sulfate polyacrylamide gels. These results indicate that the rat glomerulus contains a high-affinity receptor for IGF-II. This finding is consistent with the hypothesis that IGF-II plays a role in glomerular growth and differentiation

  13. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  14. Specific, high affinity receptors for insulin-like growth factor II in the rat kidney glomerulus

    International Nuclear Information System (INIS)

    Haskell, J.F.; Pillion, D.J.; Meezan, E.

    1988-01-01

    Rat renal glomeruli were isolated by a technique involving kidney perfusion with a solution containing magnetic iron oxide particles, followed by homogenization, sieving, and concentration over a strong magnet. Isolated glomeruli were treated with 1% Triton X-100 to solubilize plasma membrane components, while insoluble basement membrane components were removed by centrifugation. [ 125 I]Insulin-like growth factor II (IGF-II) binding to this preparation was competitively inhibited by increasing amounts of unlabeled IGF-II, with 50% inhibition at an IGF-II concentration of 1 ng/ml. [ 125 I]IGF-II was covalently cross-linked with disuccinimidyl suberate to its receptor in rat renal glomeruli and a specific high mol wt (255,000) band could be identified on autoradiograms of dodecyl sulfate-polyacrylamide gels. [ 125 I]IGF-II binding and cross-linking to this band was inhibited by a polyclonal antibody against the type II IGF receptor. These results demonstrate for the first time that the isolated rat renal glomerulus contains a high affinity receptor for IGF-II

  15. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  16. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin levels in gingival crevicular fluid

    Science.gov (United States)

    Sarlati, Fatemeh; Sattari, Mandana; Razzaghi, Shilan; Nasiri, Malihe

    2012-01-01

    Background: Osteoclastogenesis is coordinated by the interaction of three members of the tumor necrosis factor (TNF) superfamily: Osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK). The aim of this study was to investigate RANKL and OPG levels, and their relative ratio in gingival crevicular fluid (GCF) of patients with chronic and aggressive periodontitis, as well as healthy controls. Materials and Methods: In this analytical study, GCF was obtained from healthy (n = 10), mild chronic periodontitis (n = 18), moderate chronic periodontitis (n = 18), severe chronic periodontitis (n = 20), and generalized aggressive periodontitis (n = 20) subjects. RANKL and OPG concentrations were measured by enzyme-linked immunosorbent assay. Statistical tests used were Kruskal–Wallis test, Mann–Whitney U rank sum test, and Spearman's rank correlation analysis. The level of statistical significance was set at P chronic periodontitis (mild, moderate, severe), and aggressive periodontitis (P = 0.41). There was statistically significant correlation between the concentration of sRANKL and Clinical Attachment Level (CAL) in moderate chronic periodontitis patients (R = 0.48, P = 0.04). There was also negative correlation between OPG concentration and CAL in moderate chronic periodontitis patients, although not significant (R = −0.13). Conclusion: RANKL was prominent in periodontitis sites, especially in moderate periodontitis patients, whereas OPG was not detectable in some diseased sites with bleeding on probing, supporting the role of these two molecules in the bone loss developed in this disease. PMID:23559954

  17. Involvement of growth factors and their receptors in radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Leung, F.C.; Dagle, G.E.; Cross, F.T.

    1992-01-01

    In this paper we examine the role of growth factors (GF) and their receptors (GFR) in radon-induced rat lung tumors. Inhalation exposure of radon and its daughters induced lung tumors in rats, but the molecule/cellular mechanisms are not known. Recent evidence suggests that GF/GFR play a critical role in the growth and development of lung cancer in humans and animals. We have developed immunocytochemical methods for identifying sites of production and action of GF/GFR at the cellular level; for example, the avidin-biotin horseradish peroxidase technique. In radon-induced rat epidermoid carcinomas, epidermal growth factor (EGF), EGF-receptors (EGF-R), transforming growth factor alpha (TGF-α), and bombesin were found to be abnormally expressed. These abnormal expressions, mainly associated with epidermoid carcinomas of the lung, were not found in any other lung tumor types. Our data suggest that EGF, EGF-R, TGF-α, and bombesin are involved in radon oncogenesis in rat lungs, especially in epidermoid carcinomas, possibly through the autocrine/paracrine pathway

  18. Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization

    DEFF Research Database (Denmark)

    Torrisi, M R; Lotti, L V; Belleudi, F

    1999-01-01

    Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential...

  19. Divergent effects of insulin-like growth factor-1 receptor expression on prognosis of estrogen receptor positive versus triple negative invasive ductal breast carcinoma

    NARCIS (Netherlands)

    Hartog, Hermien; Horlings, Hugo M; van der Vegt, Bert; Kreike, Bas; Ajouaou, Abderrahim; van de Vijver, Marc J; Boezen, Hendrika; de Bock, Geertruida H; van der Graaf, Wilhelmina; Wesseling, Jelle

    2011-01-01

    The insulin-like growth factor type 1 receptor (IGF1R) is involved in progression of breast cancer and resistance to systemic treatment. Targeting IGF1R signaling may, therefore, be beneficial in systemic treatment. We report the effect of IGF1R expression on prognosis in invasive ductal breast

  20. P55 tumour necrosis factor receptor in bone marrow-derived cells promotes atherosclerosis development in low-density lipoprotein receptor knock-out mice

    NARCIS (Netherlands)

    Xanthoulea, Sofia; Gijbels, Marion J. J.; van der Made, Ingeborg; Mujcic, Hilda; Thelen, Melanie; Vergouwe, Monique N.; Ambagts, Matheus H. C.; Hofker, Marten H.; de Winther, Menno P. J.

    2008-01-01

    Tumour necrosis factor (TNF) is a pivotal pro-inflammatory cytokine with a clear pathogenic role in many chronic inflammatory diseases, and p55 TNF receptor (TNFR) mediates the majority of TNF responses. The aim of the current study was to investigate the role of p55 TNFR expression in bone

  1. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Matthews, Jason, E-mail: jason.matthews@utoronto.ca

    2013-07-15

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  2. Lack of Evidence for a Direct Interaction of Progranulin and Tumor Necrosis Factor Receptor-1 and Tumor Necrosis Factor Receptor-2 From Cellular Binding Studies

    Directory of Open Access Journals (Sweden)

    Isabell Lang

    2018-04-01

    Full Text Available Progranulin (PGRN is a secreted anti-inflammatory protein which can be processed by neutrophil proteases to various granulins. It has been reported that at least a significant portion of the anti-inflammatory effects of PGRN is due to direct high affinity binding to tumor necrosis factor receptor-1 (TNFR1 and TNFR2 and inhibition of tumor necrosis factor (TNF-induced TNFR1/2 signaling. Two studies failed to reproduce the interaction of TNFR1 and TNFR2 with PGRN, but follow up reports speculated that this was due to varying experimental circumstances and/or the use of PGRN from different sources. However, even under consideration of these speculations, there is still a striking discrepancy in the literature between the concentrations of PGRN needed to inhibit TNF signaling and the concentrations required to block TNF binding to TNFR1 and TNFR2. While signaling events induced by 0.2–2 nM of TNF have been efficiently inhibited by low, near to equimolar concentrations (0.5–2.5 nM of PGRN in various studies, the reported inhibitory effects of PGRN on TNF-binding to TNFR1/2 required a huge excess of PGRN (100–1,000-fold. Therefore, we investigated the effect of PGRN on TNF binding to TNFR1 and TNFR2 in highly sensitive cellular binding studies. Unlabeled TNF inhibited >95% of the specific binding of a Gaussia princeps luciferase (GpL fusion protein of TNF to TNFR1 and TNFR2 and blocked binding of soluble GpL fusion proteins of TNFR1 and TNFR2 to membrane TNF expressing cells to >95%, too. Purified PGRN, however, showed in both assays no effect on TNF–TNFR1/2 interaction even when applied in huge excess. To rule out that tags and purification- or storage-related effects compromise the potential ability of PGRN to bind TNF receptors, we directly co-expressed PGRN, and as control TNF, in TNFR1- and TNFR2-expressing cells and looked for binding of GpL-TNF. While expression of TNF strongly inhibited binding of GpL-TNF to TNFR1/2, co

  3. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Lo, Raymond; Matthews, Jason

    2013-01-01

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  4. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  5. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  6. Strong association of epidermal growth factor receptor status with breast cancer FDG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joohee; Moon, Seung Hwan; Hyun, Seung Hyup; Cho, Young Seok; Choi, Joon Young; Kim, Byung-Tae; Lee, Kyung-Han [Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Lee, Eun Jeong [Seoul Medical Center, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kim, Seokhwi [Sungkyunkwan University School of Medicine, Department of Pathology, Samsung Medical Center, Seoul (Korea, Republic of)

    2017-08-15

    Imaging tumor FDG uptake could complement breast cancer biomarkers of risk and treatment response. Although breast cancer FDG uptake is reputedly influenced by major biomarker states, the role of epidermal growth factor receptor (EGFR) expression remains largely unexplored. This is a retrospective study that included 499 patients with primary breast cancer at initial presentation. Tumor FDG uptake was measured on pretreatment PET/CT as maximum standardized uptake value (SUVmax), and biomarkers were assessed by immunohistochemistry of tumor tissue. Regression analysis was performed for predictors of high tumor FDG uptake (SUVmax ≥ 8.6). SUVmax was higher in ER- (36.5%; 11.2 ± 6.0 vs. 8.3 ± 5.3), PR- (42.3%; 10.9 ± 6.0 vs. 8.2 ± 5.2), and triple-negative tumors (19.8%; 12.0 ± 6.9 vs. 8.7 ± 5.2; all p < 0.0001). EGFR expression (28.5%) was more frequent in ER-, PR-, triple-negative, cytokeratin 5/6 (CK5/6) + and mutant P53 (mP53) + tumors (all p < 0.0001). EGFR+ was associated with higher SUVmax among all tumors (11.9 ± 6.0 vs. 8.3 ± 5.3), ER- tumors (p < 0.0001), PR- and + tumors (p < 0.0001 and 0.027), hormone receptor- and + tumors (p < 0.0001 and 0.004), human epidermal growth factor receptor 2 (HER2)- and + tumors (p < 0.0001 and 0.006), non-triple negative tumors (p < 0.0001), CK5/6- and + tumors (p = 0.021 and <0.0001), and mP53- and + tumors (p < 0.0001 and 0.008). Tumors had high FDG uptake in 73.2% of EGFR+ and 40.6% of EGFR- tumors. On regression analysis, significant multivariate predictors of high tumor FDG uptake were large size, EGFR+ and CK5/6+ for the entire subjects, and EGFR+ and CK5/6+ for ER- and hormone receptor negative subgroups. High FDG uptake was able to sub-stratify EGFR+ tumors that were more likely to be ER- and CK5/6+, and EGFR- tumors more likely to be mP53 +. Primary breast tumor FDG uptake is strongly influenced by EGFR status beyond that by other major biomarkers including hormone receptor and HER2 status, and EGFR

  7. Rab GTPases Regulate Endothelial Cell Protein C Receptor-Mediated Endocytosis and Trafficking of Factor VIIa

    Science.gov (United States)

    Nayak, Ramesh C.; Keshava, Shiva; Esmon, Charles T.; Pendurthi, Usha R.; Rao, L. Vijaya Mohan

    2013-01-01

    Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa. PMID:23555015

  8. Natriuretic Peptides as Biomarkers for Congestive States: The Cardiorenal Divergence

    Directory of Open Access Journals (Sweden)

    Abhilash Koratala

    2017-01-01

    Full Text Available Congestion represents the primary reason for hospitalization of patients with heart failure and is associated with adverse outcomes. Fluid overload has been shown to be inadequately addressed in a significant subset of these patients in part due to lack of robust, reliable, and readily available biomarkers for objective assessment and monitoring of therapy. Natriuretic peptides have long been used in this setting, often in conjunction with other assessment tools such as imaging studies. Patients presenting with concomitant cardiac and renal dysfunction represent a unique population with regard to congestion in that the interactions between the heart and the kidney can affect the utility and performance of biomarkers of fluid overload. Herein, we provide an overview of the currently available evidence on the utility of natriuretic peptides in these patients and discuss the clinical conundrum associated with their use in the setting of renal dysfunction. We highlight the potential divergence in the role of natriuretic peptides for assessment of volume status in a subset of patients with renal dysfunction who receive renal replacement therapy and call for future research to elucidate the utility of the biomarkers in this setting.

  9. Expression of Vascular Endothelial Growth Factor Receptors in Benign Vascular Lesions of the Orbit: A Case Series.

    Science.gov (United States)

    Atchison, Elizabeth A; Garrity, James A; Castillo, Francisco; Engman, Steven J; Couch, Steven M; Salomão, Diva R

    2016-01-01

    Vascular lesions of the orbit, although not malignant, can cause morbidity because of their location near critical structures in the orbit. For the same reason, they can be challenging to remove surgically. Anti-vascular endothelial growth factor (VEGF) drugs are increasingly being used to treat diseases with prominent angiogenesis. Our study aimed to determine to what extent VEGF receptors and their subtypes are expressed on selected vascular lesions of the orbit. Retrospective case series of all orbital vascular lesions removed by one of the authors (JAG) at the Mayo Clinic. A total of 52 patients who underwent removal of vascular orbital lesions. The pathology specimens from the patients were retrieved, their pathologic diagnosis was confirmed, demographic and clinical information were gathered, and sections from vascular tumors were stained with vascular endothelial growth factor receptor (VEGFR), vascular endothelial growth factor receptor type 1 (VEGFR1), vascular endothelial growth factor receptor type 2 (VEGFR2), and vascular endothelial growth factor receptor type 3 (VEGFR3). The existence and pattern of staining with VEGF and its subtypes on these lesions. There were 28 specimens of venous malformations, 4 capillary hemangiomas, 7 lymphatic malformations, and 6 lymphaticovenous malformations. All samples stained with VEGF, 55% stained with VEGFR1, 98% stained with VEGFR2, and 96% stained with VEGFR3. Most (94%) of the VEGFR2 staining was diffuse. Most orbital vascular lesions express VEGF receptors, which may suggest a future target for nonsurgical treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  10. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  11. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice.

    Science.gov (United States)

    Brooks, Nicole E; Hjortebjerg, Rikke; Henry, Brooke E; List, Edward O; Kopchick, John J; Berryman, Darlene E

    Although growth hormone (GH) and fibroblast growth factor 21 (FGF21) have a reported relationship, FGF21 and its receptor, fibroblast growth factor receptor 1 (FGFR1) and cofactor β-Klotho (KLB), have not been analyzed in chronic states of altered GH action. The objective of this study was to quantify circulating FGF21 and tissue specific expression of Fgf21, Fgfr1, and Klb in mice with modified GH action. Based on previous studies, we hypothesized that bovine GH transgenic (bGH) mice will be FGF21 resistant and GH receptor knockout (GHR-/-) mice will have normal FGF21 action. Seven-month-old male bGH mice (n=9) and wild type (WT) controls (n=10), and GHR-/- mice (n=8) and WT controls (n=8) were used for all measurements. Body composition was determined before dissection, and tissue weights were measured at the time of dissection. Serum FGF21 levels were evaluated by ELISA. Expression of Fgf21, Fgfr1, and Klb mRNA in white adipose tissue (AT), brown AT, and liver were evaluated by reverse transcription quantitative PCR. As expected, bGH mice had increased body weight (p=3.70E -8 ) but decreased percent fat mass (p=4.87E -4 ). Likewise, GHR-/- mice had decreased body weight (p=1.78E -10 ) but increased percent fat mass (p=1.52E -9 ), due to increased size of the subcutaneous AT depot when normalized to body weight (p=1.60E -10 ). Serum FGF21 levels were significantly elevated in bGH mice (p=0.041) and unchanged in GHR-/- mice (p=0.88). Expression of Fgf21, Fgfr1, and Klb mRNA in white AT and liver were downregulated or unchanged in both bGH and GHR-/- mice. The only exception was Fgf21 expression in brown AT of GHR-/-, which trended toward increased expression (p=0.075). In accordance with our hypothesis, we provide evidence that circulating FGF21 is increased in bGH animals, but remains unchanged in GHR-/- mice. Downregulation or no change in Fgf21, Fgfr1, and Klb expression are seen in white AT, brown AT, and liver of bGH and GHR-/- mice when compared to their

  12. Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.

    Science.gov (United States)

    Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram

    2002-02-01

    We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.

  13. Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation

    DEFF Research Database (Denmark)

    Sugiyama, Nami; Varjosalo, Markku; Meller, Pipsa

    2010-01-01

    /stroma border and tumor invasion front. The strongest overall coexpression was found in prostate carcinoma. Studies with cultured prostate carcinoma cell lines showed that the FGFR4-R388 variant, which has previously been associated with poor cancer prognosis, increased MT1-MMP-dependent collagen invasion......Aberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response...... to membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14) induction at the edge of tumors expressing the FGFR4-R388 risk variant. Both FGFR4 and MT1-MMP were upregulated in tissue biopsies from several human cancer types including breast adenocarcinomas, where they were partially coexpressed at the tumor...

  14. Development of epidermal growth factor receptor targeted therapy in pancreatic cancer.

    Science.gov (United States)

    Qing, Liu; Qing, Wang

    2018-02-01

    The epidermal growth factor receptor (EGFR) family are a series of important cancer therapeutic targets involved in cancer biology. These genes play an important role in tumor biological characteristics including angiogenesis, cell survival, invasion and glucose metabolism. In recent years, progresses have been achieved upon the cellular and molecular biological characteristics of EGFR and its role in cancer development based on the study of tumor specimens and experimental animal model. EGFR(HER1/ErbB) is overexpressed in over sixty percent of triple-negative breast cancers and occurs in pancreatic, bladder, lung and head-and-neck cancers. Up to now, EGFR inhibitors have been applied in various of cancer, such as lung, breast, bladder and head and neck cancers etc., in which the combination of EGFR inhibitors plus chemotherapeutic agents is now seen as the standard of care for advanced/metastatic pancreatic cancer. For these reasons, EGFR inhibitors and their therapeutic effect for pancreatic cancer is becoming the focus in Laboratory and clinical research. In this paper, research progress of the development of epidermal growth factor receptor targeted therapy in pancreatic cancer is introduced.

  15. Therapies based on inhibitors of the epidermal growth factor receptor: enclosing the future

    International Nuclear Information System (INIS)

    Diaz, Arlhee; Lage, Agustin

    2007-01-01

    The Epidermal Growth Factor Receptor (EGFR) is considered an important target for rational drug design due to its key role in numerous tumors. Potential contribution of EGFR-related signaling pathways to promote tumorigenic processes, including cell proliferation, angiogenesis, and resistance to apoptosis has been well established. Two classes of anti-EGFR agents in late-stage clinical testing include monoclonal antibodies against extracellular EGFR domain (Cetuximab, Nimotuzumab) and small molecules tyrosine kinase inhibitors, which inhibit the receptor enzyme activity (Gefitinib, Erlotinib). A considerable body of evidence has emerged since its introduction in the treatment of cancer patients. However, important questions such as reliable surrogate markers to predict response to the treatment, or optimal sequence and combination of these agents with conventional therapies remain to be addressed. Identify and validate predictive factors to select patients likely to respond to EGFR inhibitors, such as mutations that confer resistance versus those associated with sensitivity is required. A better understanding of molecular mechanisms associated with antitumor activity will useful to predict the interaction of these agents with other therapies in order to avoid antagonisms or overlapping effects resulting in no adding effects. Finally, the benefits derived from EGFR inhibitors as first-line therapy in selected populations, and the optimal doses and ways to delivery to the tumor site resulting in optimal target modulation should be established by the ongoing investigation. (Author)

  16. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  17. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  18. Stepwise Progress in Epidermal Growth Factor Receptor/Radiation Studies for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Harari, Paul M.

    2007-01-01

    The U.S. Food and Drug Administration approval of four new epidermal growth factor receptor (EGFR) inhibitors for cancer therapy (cetuximab, panitumumab, gefitinib, and erlotinib) over the last 3 years is a remarkable milestone in oncology. Indeed, molecular inhibition of EGFR signaling represents one of the most promising current arenas for the development of molecular-targeted cancer therapies. Epidermal growth factor receptor inhibitors from both the monoclonal antibody and tyrosine kinase inhibitor class have demonstrated clinical activity in the treatment of a broad spectrum of common human malignancies. For the discipline of radiation oncology, the 2006 report of a phase III trial demonstrating a survival advantage for advanced head and neck cancer patients with the addition of weekly cetuximab during a 7-week course of radiation is particularly gratifying. Indeed, this is the first phase III trial to confirm a survival advantage with the addition of a molecular-targeted agent to radiation. Furthermore, this result seems to have been achieved with only a modest increment in overall treatment toxicity and with very high compliance to the prescribed treatment regimen. Nevertheless, much remains to be learned regarding the rational integration of EGFR inhibitors into cancer treatment regimens, as well as methods to optimize the selection of patients most likely to benefit from EGFR inhibitor strategies

  19. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  20. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Directory of Open Access Journals (Sweden)

    Béatrice Marquèze-Pouey

    Full Text Available Signaling mediated by the epidermal growth factor (EGF is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer. In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  1. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Science.gov (United States)

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  2. Insulin-like growth factor receptor inhibitors: baby or the bathwater?

    Science.gov (United States)

    Yee, Douglas

    2012-07-03

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response, larger randomized phase III trials have not shown clear clinical benefit of targeting this pathway in combination with conventional strategies. These disappointing results have resulted in the discontinuation of several anti-IGF1R programs. However, the conduct of these trials has brought to the forefront several important factors that need to be considered in the conduct of future clinical trials. The need to develop biomarkers, a clearer understanding of insulin receptor function, and defining rational combination regimens all require further consideration. In this commentary, the current state of IGF1R inhibitors in cancer therapy is reviewed.

  3. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Yongjun Yin

    2016-05-01

    Full Text Available Activating mutations in fibroblast growth factor receptor 3 (FGFR3 have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9, a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11 with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3.

  4. Immunohistochemical detection of epidermal growth factor receptor in radiation-induced lung tumors in Beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, N A; Haley, P J; Hahn, F F

    1988-12-01

    Increased levels of epidermal growth factor receptor have been reported in a variety of tumors, including pulmonary squamous cell carcinomas in man. The purpose of this study was to determine if increased levels of epidermal growth factor (EGFR) were present in lung tumors from Beagle dogs that had been exposed to {sup 239}PuO{sub 2}- Using immunohistochemical techniques, sections from 17 lung tumors were examined for the presence of EGFR. Seven of the tumors were strongly positive for EGFR; the remainder of the tumors and the normal lung sections were negative. The positive immunostaining could not be correlated with the histologic phenotype of the tumors. Work is in progress to determine the level of EGFR in preneoplastic, proliferative epithelial foci in the Iung. (author)

  5. Sex, Receptors and Attachment: A Review of Individual Factors Influencing Response to Oxytocin

    Directory of Open Access Journals (Sweden)

    Kai S Macdonald

    2013-01-01

    Full Text Available As discussed in the larger review in this special issue (MacDonald and Feifel, intranasal oxytocin (IN OT is demonstrating a growing potential as a therapeutic agent in psychiatry. Importantly, research suggests that a variety of individual factors may influence a person’s response to OT. In this mini-review, I provides a review of three: (1 sex and hormonal status; (2 genetic variation in aspects of the OT system (i.e. OT receptors; and (3 attachment history. Each of these factors will be important to monitor as we strive to develop a richer understanding of OT's role in human development, brain-based disease, and the potential for individualized, OT-targeted treatments.

  6. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  7. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.

    Science.gov (United States)

    Rivier, J; Gulyas, J; Kirby, D; Low, W; Perrin, M H; Kunitake, K; DiGruccio, M; Vaughan, J; Reubi, J C; Waser, B; Koerber, S C; Martinez, V; Wang, L; Taché, Y; Vale, W

    2002-10-10

    We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in

  8. Coagulation factor VII is regulated by androgen receptor in breast cancer.

    Science.gov (United States)

    Naderi, Ali

    2015-02-01

    Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    International Nuclear Information System (INIS)

    Guo, Li-Juan; Liao, Lan; Yang, Li; Li, Yu; Jiang, Tie-Jian

    2014-01-01

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and block of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis

  10. Endogenous Digitalis-like Factors: An Overview of the History

    Directory of Open Access Journals (Sweden)

    Vardaman eBuckalew

    2015-04-01

    Full Text Available The sodium pump is a ubiquitous cell surface enzyme, a Na, K ATPase, which maintains ion gradients between cells and the extracellular fluid (ECF. The extracellular domain of this enzyme contains a highly conserved binding site, a receptor for a plant derived family of compounds, the digitalis glycosides. These compounds inhibit the enzyme and are used in the treatment of congestive heart failure, and certain cardiac arrhythmias. The highly conserved nature of this enzyme and its digitalis receptor led to early suggestions that endogenous regulators might exist. Recent examination of this hypothesis emerged from research in two separate areas: the regulation of ECF volume by a natriuretic hormone (NH, and the regulation of peripheral vascular resistance by a circulating inhibitor of vascular Na, K ATPase. These two areas merged with the hypothesis that NH and the vascular Na, K ATPase inhibitor were in fact the same entity, and that it played a causative role in the pathophysiology of certain types of hypertension. The possibility that multiple endogenous digitalis-like factors (EDLFs exist emerged from efforts to characterize the circulating enzyme inhibitory activity. In this review, the development of this field from its beginnings is traced, the current status of the structure of EDLFs is briefly discussed, and areas for future development are suggested. Key Words: natriuretic hormone, digitalis-like factor, hypertension, Na, K ATPase, ouabain, marinobufagenin, bufodienolides, cardenolides

  11. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    Science.gov (United States)

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  12. Nature and regulation of the receptors for insulin-like growth factors

    International Nuclear Information System (INIS)

    Rechler, M.M.; Nissley, S.P.

    1985-01-01

    Two subtypes of IGF receptors have been identified. Type I IGF receptors have a Mr greater than 300,000 and are composed of disulfide-linked 130,000-dalton (alpha) and approximately 90,000-dalton (beta) subunits. Type I receptors preferentially bind IGF-I but also bind IGF-II and, more weakly, insulin. Type II IGF receptors consist of a 250,000-dalton protein that contains internal disulfide bonds but is not linked to other membrane components. Type II receptors bind IGF-II with higher affinity than IGF-I. They do not interact with even very high concentrations of insulin. Type I IGF receptors and insulin receptors are homologous structures. Type II IGF receptors do not appear to be homologous to type I receptors. Type II receptors do not appear to be downregulated. Insulin acutely upregulates type II IGF receptors in intact rat adipose cells by effecting a redistribution of receptors cycling between a large intracellular pool and the plasma membrane. Insulin and the IGFs elicit the same biological responses, either by cross-reacting with one of the receptors for the heterologous ligand or by concurrent activation of convergent effector pathways by binding to the homologous receptor. Which mechanism is utilized appears to depend more on the tissue than on the biological response. Insulin desensitizes rat hepatoma cells to the actions of insulin and IGFs, mediated by both insulin and IGF receptors, by mechanisms distal to hormone binding and possibly common to IGF and insulin effector pathways

  13. Direct demonstration of rapid insulin-like growth factor II receptor internalization and recycling in rat adipocytes. Insulin stimulates 125I-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process

    International Nuclear Information System (INIS)

    Oka, Y.; Rozek, L.M.; Czech, M.P.

    1985-01-01

    The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl- 125 I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl- 125 I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time; and 3) increases the rate of cellular 125 I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody

  14. Natriuretic peptides in developing medaka embryos: implications in cardiac development by loss-of-function studies.

    Science.gov (United States)

    Miyanishi, Hiroshi; Okubo, Kataaki; Nobata, Shigenori; Takei, Yoshio

    2013-01-01

    Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP), and their receptor, guanylyl cyclase (GC)-A have attracted attention of many basic and clinical researchers because of their potent renal and cardiovascular actions. In this study, we used medaka, Oryzias latipes, as a model species to pursue the physiological functions of NPs because it is a suitable model for developmental analyses. Medaka has two ligands, BNP and C-type NP3 (CNP3) (but not ANP), that have greater affinity for the two O. latipes GC-A receptors (OLGC), OLGC7 and OLGC2, respectively. CNP3 is the ancestral molecule of cardiac NPs. Initially, we examined developmental expression of cardiac NP/receptor combinations, BNP/OLGC7 and CNP3/OLGC2, using quantitative real-time PCR and in situ hybridization. BNP and CNP3 mRNA increased at stages 25 (onset of ventricular formation) and 22 (appearance of heart anlage), respectively, whereas both receptor mRNAs increased at as early as stage 12. BNP/OLGC7 transcripts were found in arterial/ventricular tissues and CNP3/OLGC2 transcripts in venous/atrial tissues by in situ hybridization. Thus, BNP and CNP3 can act locally on cardiac myocytes in a paracrine/autocrine fashion. Double knockdown of BNP/OLGC7 genes impaired ventricular development by causing hypoplasia of ventricular myocytes as evidenced by reduced bromodeoxyuridine incorporation. CNP3 knockdown induced hypertrophy of atria and activated the renin-angiotensin system. Collectively, it appears that BNP is important for normal ventricular, whereas CNP3 is important for normal atrial development and performance, a role usually taken by ANP in other vertebrates. The current study provides new insights into the role of cardiac NPs in cardiac development in vertebrates.

  15. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    OpenAIRE

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-01-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth fac...

  16. Functional variation in the arginine vasopressin 2 receptor as a modifier of human plasma von Willebrand factor levels

    DEFF Research Database (Denmark)

    Nossent, Anne Yaël; Robben, J H; Deen, P M T

    2010-01-01

    SUMMARY OBJECTIVES: Stimulation of arginine vasopressin 2 receptor (V2R) with arginine vasopressin (AVP) results in a rise in von Willebrand factor (VWF) and factor VIII plasma levels. We hypothesized that gain-of-function variations in the V2R gene (AVPR2) would lead to higher plasma levels of V...

  17. Expression and Regulation of Corticotropin-Releasing Factor Receptor Type 2 beta in Developing and Mature Mouse Skeletal Muscle

    NARCIS (Netherlands)

    Kuperman, Yael; Issler, Orna; Vaughan, Joan; Bilezikjian, Louise; Vale, Wylie; Chen, Alon

    Corticotropin-releasing factor receptor type 2 (CRFR2) is highly expressed in skeletal muscle (SM) tissue where it is suggested to inhibit interactions between insulin signaling pathway components affecting whole-body glucose homeostasis. However, little is known about factors regulating SM CRFR2

  18. Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc.

    Science.gov (United States)

    Le Maitre, Christine L; Richardson, Stephen M A; Baird, Pauline; Freemont, Anthony J; Hoyland, Judith A

    2005-12-01

    Low back pain (LBP) is a common, debilitating and economically important disorder. Current evidence implicates loss of intervertebral disc (IVD) matrix consequent upon 'degeneration' as a major cause of LBP. Degeneration of the IVD involves increases in degradative enzymes and decreases in the extracellular matrix (ECM) component in a process that is controlled by a range of cytokines and growth factors. Studies have suggested using anabolic growth factors to regenerate the normal matrix of the IVD, hence restoring disc height and reversing degenerative disc disease. However, for such therapies to be successful it is vital that the target cells (i.e. the disc cells) express the appropriate receptors. This immunohistochemical study has for the first time investigated the expression and localization of four potentially beneficial growth factor receptors (i.e. TGFbetaRII, BMPRII, FGFR3 and IGFRI) in non-degenerate and degenerate human IVDs. Receptor expression was quantified across regions of the normal and degenerate disc and showed that cells of the nucleus pulposus (NP) and inner annulus fibrosus (IAF) expressed significantly higher levels of the four growth factor receptors investigated. There were no significant differences between the four growth factor expression in non-degenerate and degenerate biopsies. However, expression of TGFbetaRII, FGFR3 and IGFRI, but not BMP RII, were observed in the ingrowing blood vessels that characterize part of the disease aetiology. In conclusion, this study has demonstrated the expression of the four growth factor receptors at similar levels in the chondrocyte-like cells of the NP and IAF in both non-degenerate and degenerate discs, implicating a role in normal disc homeostasis and suggesting that the application of these growth factors to the degenerate human IVD would stimulate matrix production. However, the expression of some of the growth factor receptors on ingrowing blood vessels might be problematic in a therapeutic

  19. Influence of Prostanoids in the Diuretic and Natriuretic Effects of Extracts and Kaempferitrin from Bauhinia forficata Link Leaves in Rats.

    Science.gov (United States)

    de Souza, Priscila; da Silva, Luisa Mota; Boeing, Thaise; Somensi, Lincon Bordignon; Cechinel-Zanchett, Camile Cecconi; Campos, Adriana; Krueger, Clarissa de Medeiros Amorim; Bastos, Jairo Kenupp; Cechinel-Filho, Valdir; Andrade, Sérgio Faloni de

    2017-10-01

    Although Bauhinia forficata Link is popularly used in Brazil to induce diuresis, no scientific investigation has focused on demonstrating its efficacy in preclinical trials. For that, normotensive male Wistar and spontaneously hypertensive rats were used to test the effect of extracts and kaempferitrin obtained from Bauhinia forficata leaves in the experimental model of diuresis. Cumulative urine volume, Na + and K + excretion, calcium, creatinine, prostaglandin E 2 , pH, density, and conductivity were measured at the end of the experiment (after 8 or 24 h). The treatment with aqueous infusion, methanolic extract, trichloromethane, or ethyl acetate-butanolic fractions significantly increase urinary volume and electrolytes levels when orally given to rats, without altering the pH or density parameters. Kaempferitrin induced diuretic, natriuretic, but not kaliuretic effects in both normotensive and hypertensive rats. In addition, kaempferitrin enhanced urinary creatinine and prostaglandin E 2 excretion, without modifying calcium levels. Kaempferitrin-induced diuresis was unaffected by previous treatment with a nonselective inhibitor of nitric oxide synthase and neither with a nonselective muscarinic receptor antagonist. On the other hand, a cyclooxygenase inhibitor was able to decrease its effect when compared with vehicle-treated rats, suggesting that the diuretic and natriuretic properties from kaempferitrin are associated with endogenous prostanoids generation. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. NF-κB Protects NKT Cells from Tumor Necrosis Factor Receptor 1-induced Death.

    Science.gov (United States)

    Kumar, Amrendra; Gordy, Laura E; Bezbradica, Jelena S; Stanic, Aleksandar K; Hill, Timothy M; Boothby, Mark R; Van Kaer, Luc; Joyce, Sebastian

    2017-11-15

    Semi-invariant natural killer T (NKT) cells are innate-like lymphocytes with immunoregulatory properties. NKT cell survival during development requires signal processing by activated RelA/NF-κB. Nonetheless, the upstream signal(s) integrated by NF-κB in developing NKT cells remains incompletely defined. We show that the introgression of Bcl-x L -coding Bcl2l1 transgene into NF-κB signalling-deficient IκBΔN transgenic mouse rescues NKT cell development and differentiation in this mouse model. We reasoned that NF-κB activation was protecting developing NKT cells from death signals emanating either from high affinity agonist recognition by the T cell receptor (TCR) or from a death receptor, such as tumor necrosis factor receptor 1 (TNFR1) or Fas. Surprisingly, the single and combined deficiency in PKC-θ or CARMA-1-the two signal transducers at the NKT TCR proximal signalling node-only partially recapitulated the NKT cell deficiency observed in IκBΔN tg mouse. Accordingly, introgression of the Bcl2l1 transgene into PKC-θ null mouse failed to rescue NKT cell development. Instead, TNFR1-deficiency, but not the Fas-deficiency, rescued NKT cell development in IκBΔN tg mice. Consistent with this finding, treatment of thymocytes with an antagonist of the inhibitor of κB kinase -which blocks downstream NF-κB activation- sensitized NKT cells to TNF-α-induced cell death in vitro. Hence, we conclude that signal integration by NF-κB protects developing NKT cells from death signals emanating from TNFR1, but not from the NKT TCR or Fas.

  1. Effect of corticotropin-releasing factor receptor antagonist on psychologically suppressed masculine sexual behavior in rats.

    Science.gov (United States)

    Miwa, Yoshiji; Nagase, Keiko; Oyama, Nobuyuki; Akino, Hironobu; Yokoyama, Osamu

    2011-03-01

    Corticotropin-releasing factor (CRF) coordinates various responses of the body to stress, and CRF receptors are important targets of treatment for stress-related disorders. To investigate the effect of a nonselective CRF receptor antagonist, astressin, on suppression of masculine sexual behavior by psychological stress in rats. First, we investigated the influence of psychological stress, induced 2 hours per day for three consecutive days, on sexual behavior. Then, rats were divided into 4 groups: a control group, an astressin administration group (A), a psychological stress loading group (PS), and a psychological stress loading and astressin administration group (PS + A). The rats were exposed to sham or psychological stress for three consecutive days. After the last stress loading, the rats were injected with vehicle or astressin, and their sexual behavior was observed. We also measured serum levels of adrenocorticotropic hormone (ACTH). The effects of astressin on sexual behavior and serum levels of ACTH in rats affected by psychological stress were determined. Sexual behavior was reduced after psychological stress loading. The PS rats had significantly longer mount, intromission, and ejaculation latencies and lower ejaculation frequency than did the control, A, and PS + A rats. The intromission latency and ejaculation frequency in the PS + A rats did not achieve the level observed in the controls. There was no significant difference in these parameters between the control and A rats. Serum ACTH levels were significantly lower in PS + A rats than in PS rats. Psychologically suppressed masculine sexual behavior could be partially recovered with astressin administration in rats. These data provide a rationale for the further study of CRF receptor antagonists as novel agents for treating psychological sexual disorders. © 2010 International Society for Sexual Medicine.

  2. Characterization of germ cell-specific expression of the orphan nuclear receptor, germ cell nuclear factor.

    Science.gov (United States)

    Katz, D; Niederberger, C; Slaughter, G R; Cooney, A J

    1997-10-01

    Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.

  3. Oncogenic role of fibroblast growth factor receptor 3 in tumorigenesis of urinary bladder cancer.

    Science.gov (United States)

    Pandith, Arshad A; Shah, Zafar A; Siddiqi, Mushtaq A

    2013-05-01

    Bladder cancer is the second most common genitourinary tumor and constitutes a very heterogeneous disease. Molecular and pathologic studies suggest that low-grade noninvasive and high-grade invasive urothelial cell carcinoma (UCC) arise via distinct pathways. Low-grade noninvasive UCC represent the majority of tumors at presentation. A high proportion of patients with low-grade UCC develop recurrences but usually with no progression to invasive disease. At presentation, a majority of the bladder tumors (70%-80%) are low-grade noninvasive (pTa). Several genetic changes may occur in bladder cancer, but activating mutations in the fibroblast growth factor receptor 3 (FGFR3) genes are the most common and most specific genetic abnormality in bladder cancer. Interestingly, these mutations are associated with bladder tumors of low stage and grade, which makes the FGFR3 mutation the first marker that can be used for diagnosis of noninvasive bladder tumors. Since the first report of FGFR3 involvement in bladder tumors, numerous studies have been conducted to understand its function and thereby confirm the oncogenic role of this receptor particularly in noninvasive groups. Efforts are on to exploit this receptor as a therapeutic target, which holds much promise in the treatment of bladder cancer, particularly low-grade noninvasive tumors. Further studies need to explore the potential use of FGFR3 mutations in bladder cancer diagnosis, prognosis, and in surveillance of patients with bladder cancer. This review focuses on the role of FGFR3 in bladder tumors in the backdrop of various studies published. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The epidermal growth factor receptor as a target for gastrointestinal cancer therapy.

    Science.gov (United States)

    Tedesco, Karen L; Lockhart, A Craig; Berlin, Jordan D

    2004-10-01

    The epidermal growth factor receptor (EGFR) is a member of the family of transmembrane protein kinase receptors known as the erbB or HER receptor family. When activated, EGFR phosphorylates and activates other intracellular proteins that affect cell signaling pathways, cellular proliferation, control of apoptosis and angiogenesis. EGFR signaling is best thought of as a network of activating and inactivating proteins with EGFR as the entry point into the network. EGFR overexpression occurs in most GI malignancies and while data are not entirely consistent, EGFR overexpression often confers a poor prognosis in those GI malignancies that have been studied. It often correlates with poorly differentiated histology, more advanced stage and other known poor prognostic markers. The EGFR is a tempting target because of its presence and overexpression on so many tumor types. However, downstream of the EGFR are several proteins that may be activated without EGFR thus allowing blockade to be overcome. Therefore, while blocking the activity of the EGFR protein appears to be a promising anticancer strategy, a simplistic strategy of blocking only EGFR is likely to only impact a minority of patients. It is time for the laboratory and clinical researchers to work closely together to develop this treatment strategy, moving back and forth from clinical to laboratory to best understand how to block this network effectively enough to produce a broader antitumor effect. While multiple methods of targeting the EGFR pathway are under development, including the inhibition of downstream proteins, only two modalities have entered clinical trials in GI malignancies: small molecule inhibitors of the intracellular kinase domain of EGFR and antibodies designed to block the extracellular ligand-binding domain of EGFR. EGFR inhibitors are still experimental in every GI malignancy with the notable exception of cetuximab that is approved for second or third-line therapy of metastatic colorectal

  5. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild

    2004-01-01

    Background and purpose: Inhibition of the epidermal growth factor receptor (EGFR) is a fastly developing field in preclinical and clinical cancer research. This review presents the current status of knowledge and discusses radiobiological mechanisms which may underly the efficacy of EGFR inhibitors combined with irradiation. Materials and methods: Preclinical and clinical results on combined targeting of the EGFR and irradiation from the literature and from this laboratory are reviewed. Focus is given to the radiobiological rationale of this approach and to endpoints of experimental radiotherapy. Results: Overexpression of the EGFR is associated with decreased local tumour control after radiotherapy, especially when the overall treatment time is long. Inhibition of the EGFR either alone or in combination with irradiation decreases the growth rate of tumours expressing this receptor. Preclinical data provide proof-of-principle that local tumour control may be improved by combining irradiation with C225 mAb. In a randomised phase III clinical trial, simultaneous irradiation and treatment with the EGFR antibody Cetuximab (Erbitux[reg]; C225) in head and neck cancer patients resulted in significantly improved locoregional tumour control and survival compared to curative irradiation alone. Acute skin reactions increased in the experimental arm. The underlying mechanisms of enhanced radiation effects of combined EGFR inhibition with irradiation and of the partly conflicting results in different studies are poorly understood. There is increasing evidence, that important intertumoral heterogeneity in the response to EGFR inhibition alone and combined with irradiation exists, which appears to be at least partly dependent on specific mutations of the receptor as well as of molecules that are involved in the intracellular signal transduction pathway. Conclusions and outlook: Further investigations at all levels of the translational research chain exploring the mechanisms of

  6. DMPD: The atrial natriuretic peptide regulates the production of inflammatorymediators in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11890659 The atrial natriuretic peptide regulates the production of inflammatorymed...tml) (.csml) Show The atrial natriuretic peptide regulates the production of inflammatorymediators in macrop...hages. PubmedID 11890659 Title The atrial natriuretic peptide regulates the produ

  7. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Pathophysiology, prognostic significance and clinical utility of B-type natriuretic peptide in acute coronary syndromes.

    Science.gov (United States)

    Wiviott, Stephen D; de Lemos, James A; Morrow, David A

    2004-08-16

    The natriuretic hormones are a family of vasoactive peptides that can be measured circulating in the blood. Because they serve as markers of hemodynamic stress, the major focus of the use of natriuretic peptide levels [predominantly B-type natriuretic peptide (BNP) and N-terminal (NT)-pro-BNP] has been as an aid to the clinical diagnosis and management of congestive heart failure (CHF). Recently, however, the measurement of natriuretic peptides in the acute coronary syndromes (ACS) has been shown to provide information complementary to traditional biomarkers (of necrosis) such as cardiac troponins and creatine kinase (CK). Studies in several types of acute coronary syndromes [ST-segment elevation myocardial infarction (STEMI), non-ST elevation MI (NSTEMI) and unstable angina (UA)] have shown that elevated levels of natriuretic peptides are independently associated with adverse outcomes, particularly mortality. Additional information is obtained from the use natriuretic peptides in combination with other markers of risk including biomarkers of necrosis and inflammation. This review will summarize the scientific rationale and clinical evidence supporting measurement of natriuretic peptides for risk stratification in acute coronary syndromes. Future research is needed to identify therapies of particular benefit for patients with ACS and natriuretic peptide elevation.

  9. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  10. Association of Polymorphisms in Connective Tissue Growth Factor and Epidermal Growth Factor Receptor Genes With Human Longevity.

    Science.gov (United States)

    Donlon, Timothy A; Morris, Brian J; He, Qimei; Chen, Randi; Masaki, Kamal H; Allsopp, Richard C; Willcox, D Craig; Tranah, Gregory J; Parimi, Neeta; Evans, Daniel S; Flachsbart, Friederike; Nebel, Almut; Kim, Duk-Hwan; Park, Joobae; Willcox, Bradley J

    2017-08-01

    Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-09-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations.

  12. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    International Nuclear Information System (INIS)

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-01-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations

  13. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  14. Relationship between natriuretic peptides and inflammation: proteomic evidence obtained during acute cellular cardiac allograft rejection in humans.

    Science.gov (United States)

    Meirovich, Yael F; Veinot, John P; de Bold, Mercedes L Kuroski; Haddad, Haissam; Davies, Ross A; Masters, Roy G; Hendry, Paul J; de Bold, Adolfo J

    2008-01-01

    Cardiac natriuretic peptides (NPs) atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) are polypeptide hormones secreted by the heart. Previously, we found that BNP, but not ANF, plasma levels may increase during an acute cellular cardiac allograft rejection episode. In vitro, the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) produced a selective increase of BNP gene expression and secretion. Other pro-inflammatory cytokines had no such effects. We identified cytokines associated with the selective upregulation of BNP during cardiac allograft rejection using a proteomics approach to measure 120 cytokines and related substances in the plasma of 16 transplant patients before, during and after an acute rejection episode. The values obtained were correlated with BNP plasma levels. Cytokines identified as being significantly related to BNP plasma levels were tested in neonatal rat ventricular cardiocytes in culture for their ability to selectively promote BNP secretion. The signaling pathway related to this phenomenon was pharmacologically characterized. Regulated-on-activation, normal T-expressed and secreted (RANTES), neutrophil-activating protein-2 (NAP-2) and insulin growth factor binding protein-1 (IGFBP-1) had significant correlations with BNP plasma levels during Grade 3A (Grade 2 revised [2R]) or above rejection as diagnosed by endomyocardial biopsy score according to the International Society for Heart and Lung Transplantation (ISHLT) grading system. In rat neonatal ventricular cardiocyte cultures, IGFBP-1 and RANTES were capable of promoting BNP, but not ANF secretion, as observed in rejecting patients. The BNP-promoting secretion activity of the identified cytokines was abolished by SB203580, a specific p38 MAP kinase inhibitor. This work shows that cytokines other than pro-inflammatory cytokines correlate with BNP plasma levels observed during acute cardiac allograft rejection, and that

  15. Increased expression of protease-activated receptor 4 and Trefoil factor 2 in human colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Guoyu Yu

    Full Text Available Protease-activated receptor 4 (PAR4, a member of G-protein coupled receptors family, was recently reported to exhibit decreased expression in gastric cancer and esophageal squamous cancer, yet increased expression during the progression of prostate cancer. Trefoil factor 2 (TFF2, a small peptide constitutively expressed in the gastric mucosa, plays a protective role in restitution of gastric mucosa. Altered TFF2 expression was also related to the development of gastrointestinal cancer. TFF2 has been verified to promote cell migration via PAR4, but the roles of PAR4 and TFF2 in the progress of colorectal cancer are still unknown. In this study, the expression level of PAR4 and TFF2 in colorectal cancer tissues was measured using real-time PCR (n = 38, western blotting (n=38 and tissue microarrays (n = 66. The mRNA and protein expression levels of PAR4 and TFF2 were remarkably increased in colorectal cancer compared with matched noncancerous tissues, especially in positive lymph node and poorly differentiated cancers. The colorectal carcinoma cell LoVo showed an increased response to TFF2 as assessed by cell invasion upon PAR4 expression. However, after intervention of PAR4 expression, PAR4 positive colorectal carcinoma cell HT-29 was less responsive to TFF2 in cell invasion. Genomic bisulfite sequencing showed the hypomethylation of PAR4 promoter in colorectal cancer tissues and the hypermethylation in the normal mucosa that suggested the low methylation of promoter was correlated to the increased PAR4 expression. Taken together, the results demonstrated that the up-regulated expression of PAR4 and TFF2 frequently occurs in colorectal cancer tissues, and that overexpression of PAR4 may be resulted from promoter hypomethylation. While TFF2 promotes invasion activity of LoVo cells overexpressing PAR4, and this effect was significantly decreased when PAR4 was knockdowned in HT-29 cells. Our findings will be helpful in further investigations into the

  16. Emerging role of epidermal growth factor receptor inhibition in therapy for advanced malignancy: focus on NSCLC

    International Nuclear Information System (INIS)

    Langer, Corey J.

    2004-01-01

    Combination chemotherapy regimens have emerged as the standard approach in advanced non-small-cell lung cancer. Meta-analyses have demonstrated a 2-month increase in median survival after platinum-based therapy vs. best supportive care, and an absolute 10% improvement in the 1-year survival rate. Just as importantly, cytotoxic therapy has produced benefits in symptom control and quality of life. Newer agents, including the taxanes, vinorelbine, gemcitabine, and irinotecan, have expanded our therapeutic options in the treatment of advanced non-small-cell lung cancer. Despite their contributions, we have reached a therapeutic plateau, with response rates seldom exceeding 30-40% in cooperative group studies and 1-year survival rates stable between 30% and 40%. It is doubtful that substituting one agent for another in various combinations will lead to any further improvement in these rates. The thrust of current research has focused on targeted therapy, and epidermal growth factor receptor inhibition is one of the most promising clinical strategies. Epidermal growth factor receptor inhibitors currently under investigation include the small molecules gefitinib (Iressa, ZD1839) and erlotinib (Tarceva, OSI-774), as well as monoclonal antibodies such as cetuximab (IMC-225, Erbitux). Agents that have only begun to undergo clinical evaluation include CI-1033, an irreversible pan-erbB tyrosine kinase inhibitor, and PKI166 and GW572016, both examples of dual kinase inhibitors (inhibiting epidermal growth factor receptor and Her2). Preclinical models have demonstrated synergy for all these agents in combination with either chemotherapy or radiotherapy, leading to great enthusiasm regarding their ultimate contribution to lung cancer therapy. However, serious clinical challenges persist. These include the identification of the optimal dose(s); the proper integration of these agents into popular, established cytotoxic regimens; and the selection of the optimal setting(s) in which

  17. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  18. Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects.

    Science.gov (United States)

    Werner, Haim; LeRoith, Derek

    2014-12-01

    The involvement of insulin, the insulin-like growth factors (IGF1, IGF2) and their receptors in central nervous system development and function has been the focus of scientific interest for more than 30 years. The insulin-like peptides, both locally-produced proteins as well as those transported from the circulation into the brain via the blood-brain barrier, are involved in a myriad of biological activities. These actions include, among others, neuronal survival, neurogenes, angiogenesis, excitatory and inhibitory neurotransmission, regulation of food intake, and cognition. In recent years, a linkage between brain insulin/IGF1 and certain neuropathologies has been identified. Epidemiological studies have demonstrated a correlation between diabetes (mainly type 2) and Alzheimer׳s disease. In addition, an aberrant decline in IGF1 values was suggested to play a role in the development of Alzheimer׳s disease. The present review focuses on the expression and function of insulin, IGFs and their receptors in the brain in physiological and pathological conditions. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  19. DNA homologous recombination factor SFR1 physically and functionally interacts with estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Yuxin Feng

    Full Text Available Estrogen receptor alpha (ERα, a ligand-dependent transcription factor, mediates the expression of its target genes by interacting with corepressors and coactivators. Since the first cloning of SRC1, more than 280 nuclear receptor cofactors have been identified, which orchestrate target gene transcription. Aberrant activity of ER or its accessory proteins results in a number of diseases including breast cancer. Here we identified SFR1, a protein involved in DNA homologous recombination, as a novel binding partner of ERα. Initially isolated in a yeast two-hybrid screen, the interaction of SFR1 and ERα was confirmed in vivo by immunoprecipitation and mammalian one-hybrid assays. SFR1 co-localized with ERα in the nucleus, potentiated ER's ligand-dependent and ligand-independent transcriptional activity, and occupied the ER binding sites of its target gene promoters. Knockdown of SFR1 diminished ER's transcriptional activity. Manipulating SFR1 expression by knockdown and overexpression revealed a role for SFR1 in ER-dependent and -independent cancer cell proliferation. SFR1 differs from SRC1 by the lack of an intrinsic activation function. Taken together, we propose that SFR1 is a novel transcriptional modulator for ERα and a potential target in breast cancer therapy.

  20. The transcription factor ERG increases expression of neurotransmitter receptors on prostate cancer cells

    International Nuclear Information System (INIS)

    Kissick, Haydn T.; On, Seung T.; Dunn, Laura K.; Sanda, Martin G.; Asara, John M.; Pellegrini, Kathryn L.; Noel, Jonathan K.; Arredouani, Mohamed S.

    2015-01-01

    The TMPRSS2-ERG gene fusion occurs in about half of prostate cancer (PCa) cases and results in overexpression of the transcription factor ERG. Overexpression of ERG has many effects on cellular function. However, how these changes enhance cell growth and promote tumor development is unclear. To investigate the role of ERG, LNCaP and PC3 cells were transfected with ERG and gene expression and metabolic profile were analyzed. Our data show that expression of ERG induces overexpression of many nicotinicacetylcholine receptors (nAChRs). In addition, metabolic profiling by LC-MS/MS revealed elevated production of several neurotransmitters in cells expressing ERG. Consistently, treatment of ERG-expressing cells with nicotine induced elevated calcium influx, GSK3β (Ser9) phosphorylation and cell proliferation. Finally, we show that PCa patientswho are smokers have larger tumors if their tumors are TMPRSS2-ERG gene fusion positive. Collectively, our data suggest that ERG sensitizes prostate tumor cells to neurotransmitter receptor agonists like nicotine. The online version of this article (doi:10.1186/s12885-015-1612-3) contains supplementary material, which is available to authorized users

  1. Characterization of the receptors for mycobacterial cord factor in Guinea pig.

    Directory of Open Access Journals (Sweden)

    Kenji Toyonaga

    Full Text Available Guinea pig is a widely used animal for research and development of tuberculosis vaccines, since its pathological disease process is similar to that present in humans. We have previously reported that two C-type lectin receptors, Mincle (macrophage inducible C-type lectin, also called Clec4e and MCL (macrophage C-type lectin, also called Clec4d, recognize the mycobacterial cord factor, trehalose-6,6'-dimycolate (TDM. Here, we characterized the function of the guinea pig homologue of Mincle (gpMincle and MCL (gpMCL. gpMincle directly bound to TDM and transduced an activating signal through ITAM-bearing adaptor molecule, FcRγ. Whereas, gpMCL lacked C-terminus and failed to bind to TDM. mRNA expression of gpMincle was detected in the spleen, lymph nodes and peritoneal macrophages and it was strongly up-regulated upon stimulation of zymosan and TDM. The surface expression of gpMincle was detected on activated macrophages by a newly established monoclonal antibody that also possesses a blocking activity. This antibody potently suppressed TNF production in BCG-infected macrophages. Collectively, gpMincle is the TDM receptor in the guinea pig and TDM-Mincle axis is involved in host immune responses against mycobacteria.

  2. Characterization of the receptors for mycobacterial cord factor in Guinea pig.

    Science.gov (United States)

    Toyonaga, Kenji; Miyake, Yasunobu; Yamasaki, Sho

    2014-01-01

    Guinea pig is a widely used animal for research and development of tuberculosis vaccines, since its pathological disease process is similar to that present in humans. We have previously reported that two C-type lectin receptors, Mincle (macrophage inducible C-type lectin, also called Clec4e) and MCL (macrophage C-type lectin, also called Clec4d), recognize the mycobacterial cord factor, trehalose-6,6'-dimycolate (TDM). Here, we characterized the function of the guinea pig homologue of Mincle (gpMincle) and MCL (gpMCL). gpMincle directly bound to TDM and transduced an activating signal through ITAM-bearing adaptor molecule, FcRγ. Whereas, gpMCL lacked C-terminus and failed to bind to TDM. mRNA expression of gpMincle was detected in the spleen, lymph nodes and peritoneal macrophages and it was strongly up-regulated upon stimulation of zymosan and TDM. The surface expression of gpMincle was detected on activated macrophages by a newly established monoclonal antibody that also possesses a blocking activity. This antibody potently suppressed TNF production in BCG-infected macrophages. Collectively, gpMincle is the TDM receptor in the guinea pig and TDM-Mincle axis is involved in host immune responses against mycobacteria.

  3. Regulation of granulocyte colony-stimulating factor receptor-mediated granulocytic differentiation by C-mannosylation.

    Science.gov (United States)

    Otani, Kei; Niwa, Yuki; Suzuki, Takehiro; Sato, Natsumi; Sasazawa, Yukiko; Dohmae, Naoshi; Simizu, Siro

    2018-04-06

    Granulocyte colony-stimulating factor (G-CSF) receptor (G-CSFR) is a type I cytokine receptor which is involved in hematopoietic cell maturation. G-CSFR has three putative C-mannosylation sites at W253, W318, and W446; however, it is not elucidated whether G-CSFR is C-mannosylated or not. In this study, we first demonstrated that G-CSFR was C-mannosylated at only W318. We also revealed that C-mannosylation of G-CSFR affects G-CSF-dependent downstream signaling through changing ligand binding capability but not cell surface localization. Moreover, C-mannosylation of G-CSFR was functional and regulated granulocytic differentiation in myeloid 32D cells. In conclusion, we found that G-CSFR is C-mannosylated at W318 and that this C-mannosylation has role(s) for myeloid cell differentiation through regulating downstream signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    Science.gov (United States)

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  5. Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation

    International Nuclear Information System (INIS)

    Diermeier, Simone; Horvath, Gabor; Knuechel-Clarke, Ruth; Hofstaedter, Ferdinand; Szoellosi, Janos; Brockhoff, Gero

    2005-01-01

    Background: Growth factors and Herceptin specifically and differentially modulate cell proliferation of tumor cells. However, the mechanism of action on erbB-receptor level is incompletely understood. We evaluated Herceptin's capacity to modulate erbB-receptor activation and interaction on the cell surface level and thereby potentially impair cell proliferation of HER2/neu (c-erbB2) overexpressing breast cancer cells, both in the presence and absence of relevant growth factors. Methods: BT474 and SK-BR-3 breast cancer cell lines were treated with Epidermal Growth Factor (EGF), Heregulin, and with Herceptin in different combinations. Kinetics of cell proliferation were evaluated flow cytometrically based on BrdU-labeling. Fluorescence Resonance Energy Transfer, ELISAs and phosphorylation site specific Western Blotting was performed to investigate erbB-receptor interaction and activation. Results: EGF induced EGFR/EGFR and EGFR/c-erbB2 interactions correlate with stimulation of cell proliferation in BT474 cells. Both homo- and heterodimerization are considerably less pronounced in SK-BR-3 cells and heterointeraction is additionally reduced by EGF treatment, causing inhibition of cell proliferation. Heregulin stimulates cell proliferation extensively in both cell lines. Herceptin drives BT474 cells more efficiently into quiescence than it does with SK-BR-3 cells and thereby blocks cell cycle progress. In SK-BR-3 Herceptin treatment causes c-erbB2 phosphorylation of Y877 and Y1248, EGF induces Y877 and Y1112 phosphorylation. The Y1112 phosphorylation site, activated by EGF in SK-BR-3 cell, is bypassed in BT474. In addition the inhibitory capacity of Herceptin on BT474 and SK-BR-3 cell proliferation depends on the presence and absence of growth factors to a various extent. Conclusion: The growth inhibitory effect of Herceptin on c-erbB2 overexpressing breast cancer cells is considerably modulated by EGFR coexpression and consequently EGFR/c-erbB2 homo- and

  6. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  7. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    Science.gov (United States)

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    Recent research indicates that the C-terminal Eps15 homology domain 1 is associated with epithelial growth factor receptor-mediated endocytosis recycling in non-small-cell lung cancer. The aim of this study was to determine the clinical significance of Eps15 homology domain 1 gene expression in relation to phosphorylation of epithelial growth factor receptor expression in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Eps15 homology domain 1, RAB11FIP3, and phosphorylation of epithelial growth factor receptor expression via immunohistochemistry. The clinical significance was assessed via a multivariate Cox regression analysis, Kaplan-Meier curves, and the log-rank test. Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor were upregulated in 60.46% (185/306) and 53.92% (165/306) of tumor tissues, respectively, as assessed by immunohistochemistry. The statistical correlation analysis indicated that Eps15 homology domain 1 overexpression was positively correlated with the increases in phosphorylation of epithelial growth factor receptor ( r = 0.242, p breast cancer for the overall survival in the total, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. However, the use of combined expression of Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor markers is more effective for the disease-free survival in the overall population, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. Moreover, the combined markers are also significant prognostic markers of breast cancer in the human epidermal growth factor receptor 2 (+), estrogen receptor (+), and estrogen receptor (-) groups. Eps15 homology domain 1 has a tumor suppressor function, and the combined marker of Eps15 homology domain 1/phosphorylation of epithelial growth factor receptor expression was identified as a better prognostic marker in breast cancer diagnosis

  8. Troponin T and N-terminal pro B-Type natriuretic peptide and presence of coronary artery disease

    DEFF Research Database (Denmark)

    Mouridsen, Mette R; Sajadieh, Ahmad; Carlsen, Christian M

    2015-01-01

    BACKGROUND: We tested the effects of exercise intensity, sampling intervals, degree of coronary artery stenosis, and demographic factors on circulating N-terminal pro B-Type natriuretic peptide (NT-pro-BNP) and cardiac Troponin T (cTnT) in subjects suspected of coronary artery disease (CAD). MATE...... = 0.4067 p = 0.046). CONCLUSIONS: Baseline cTnT and ΔcTnT were found to be independently associated with CAD and also with exercise intensity in stable chest pain subjects. These properties were not identified for NT-pro-BNP....

  9. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    Energy Technology Data Exchange (ETDEWEB)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Marco, Ario de, E-mail: ario.demarco@ung.si [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Dept. Environmental Sciences, University of Nova Gorica (UNG), Vipavska 13, P.O. Box 301-SI-5000, Rozna Dolina, Nova Gorica (Slovenia)

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  10. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    International Nuclear Information System (INIS)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo; Marco, Ario de

    2011-01-01

    Highlights: → Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. → These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. → The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  11. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    OpenAIRE

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine r...

  12. 99m Tc-anti-epidermal growth factor receptor nanobody for tumor imaging.

    Science.gov (United States)

    Piramoon, Majid; Hosseinimehr, Seyed Jalal; Omidfar, Kobra; Noaparast, Zohreh; Abedi, Seyed Mohammad

    2017-04-01

    Nanobodies are important biomolecules for tumor targeting. In this study, we synthesized and labeled anti-epidermal growth factor receptor (EGFR) nanobody OA-cb6 with 99m Tc(CO) 3 + and evaluated its characteristics for targeting the EGFR in the A431 human epidermal carcinoma cell line. Nanobody radiolabeling was achieved with high yield and radiochemical purity, and the radioconjugate was stable. Biodistribution results in nude mice exhibited a favorable tumor-to-muscle ratio at 4-hr postinjection, and tumor location was visualized at 4 hr after injection of radiolabeled nanobody. Our result showed that the OA-cb6- 99m Tc-tricarbonyl radiolabeled nanobody is a promising radiolabeled biomolecule for tumor imaging in cancers with high EGFR overexpression. © 2016 John Wiley & Sons A/S.

  13. No evidence for a role of the serotonin 4 receptor in five-factor personality traits

    DEFF Research Database (Denmark)

    Stenbæk, Dea Siggaard; Dam, Vibeke Høyrup; Fisher, Patrick MacDonald

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo...... serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone...... in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated...

  14. Urokinase plasminogen activator receptor on invasive cancer cells: A prognostic factor in distal gastric adenocarcinoma

    DEFF Research Database (Denmark)

    Alpizar, Warner Enrique Alpizar; Christensen, Ib Jarle; Santoni-Rugiu, Eric

    2012-01-01

    Gastric cancer is the second cancer causing death worldwide. The five-year survival for this malignancy is below 25% and few parameters have shown an impact on the prognosis of the disease. The receptor for urokinase plasminogen activator (uPAR) is involved in extracellular matrix degradation...... by mediating cell surface associated plasminogen activation, and its presence on gastric cancer cells is linked to micrometastasis and poor prognosis. Using immunohistochemistry, the prognostic significance of uPAR was evaluated in tissue samples from a retrospective series of 95 gastric cancer patients. u...... association between the expression of uPAR on tumor cells in the peripheral invasion zone and overall survival of gastric cancer patients (HR = 2.16; 95% CI: 1.13-4.14; p = 0.02). Multivariate analysis showed that uPAR immunoreactivity in cancer cells at the invasive front is an independent prognostic factor...

  15. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  16. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins.

    Science.gov (United States)

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-10-01

    Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. Copyright © 2015. Published by Elsevier Ltd.

  17. Upregulation of vascular endothelial growth factor receptor-1 contributes to sevoflurane preconditioning–mediated cardioprotection

    Directory of Open Access Journals (Sweden)

    Qian B

    2018-04-01

    Full Text Available Bin Qian,1 Yang Yang,2 Yusheng Yao,3 Yanling Liao,3 Ying Lin3 1Department of Anesthesiology, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; 2Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; 3Department of Anesthesiology, The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China Purpose: Sevoflurane preconditioning (SPC can provide myocardial protective effects similar to ischemic preconditioning. However, the exact mechanism of SPC remains unclear. Previous studies indicate that vascular endothelial growth factor receptor 1 (VEGFR-1 is involved in ischemic preconditioning-mediated cardioprotection. This study was designed to determine the significance of VEGFR-1 signaling in SPC-mediated cardioprotection.Materials and methods: Myocardial ischemia–reperfusion (I/R rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, after 15 min of baseline equilibration, the isolated hearts were pretreated with 2.5% sevoflurane, 2.5% sevoflurane+MF1 10 µmol/L, or 2.5% sevoflurane+placental growth factor 10 µmol/L, and then subjected to 30 min of global ischemia and 120 min of reperfusion. The changes in hemodynamic parameters, myocardial infarct size, and the levels of creatine kinase-MB, lactate dehydrogenase, cardiac troponin-I, tumor necrosis factor-α, and interleukin 6 in the myocardium were evaluated.Results: Compared to the I/R group, pretreatment with 2.5% sevoflurane significantly improved the cardiac function, limited myocardial infarct size, reduced cardiac enzyme release, upregulated VEGFR-1 expression, and decreased inflammation. In addition, the selective VEGFR-1 agonist, placental growth factor, did not enhance the cardioprotection and anti-inflammation effects of sevoflurane, while the specific VEGFR-1 inhibitor, MF1, completely reversed these effects

  18. Mechanisms of Inhibition of the Epidermal Growth Factor Receptor: Implications for Novel Anti-Cancer Therapies

    National Research Council Canada - National Science Library

    Klein, Daryl E

    2005-01-01

    .... No secreted or extracellular ErbB receptor inhibitors have been reported in mammals. However, two natural inhibitors of the highly homologous Drosophila EGF receptor are found in Drosophila melanogaster...

  19. Epidermal Growth Factor Receptor Activating Mutations in Squamous Histology of Lung Cancer Patients of Southern Bulgaria

    Directory of Open Access Journals (Sweden)

    Genova Silvia N.

    2015-12-01

    Full Text Available There is only limited data on the prevalence of epidermal growth factor receptor (EGFR activating mutations in squamous cell carcinomas and adenosquamous carcinomas of the lung in patients of the Southern Bulgarian region and the efficacy of EGFR tyrosine kinase inhibitors. AIM: Previous reports for Bulgarian population showed high incidence of EGFR mutations in the squamous cell carcinomas, so we set the goal to investigate their frequency in Southern Bulgaria, after precise immunohistochemical verification of lung cancers. MATERIALS AND METHODS: Two hundred and thirty-six lung carcinomas were included in this prospective study. All biopsies were initially analysed with p63, TTF1, Napsin A, CK7, CK34βE12, synaptophysin, CK20 and CDX2. Two hundred and twenty-five non-small cell lung carcinomas were studied with real-time PCR technology to assess the status of the EGFR gene. RESULTS: We detected 132 adenocarcinomas (58.7%, 89 squamous cell carcinomas (39.2%, 4 adenosquamous carcinomas (1.8%, 9 large cell neuroendocrine carcinomas (3.8% and 2 metastatic colorectal adenocarcinomas (0.8%. Activating mutations in the EGF receptor had 3 out of 89 squamous cell carcinomas (3.37%. We have established mutations in L858R, deletion in exon 19 and rare mutation in S7681. One out of four adenosquamous carcinomas had a point mutation in the L858R (25%. CONCLUSIONS: The frequency of EGFR mutations we found in lung squamous cell carcinomas in a Southern Bulgarian region is lower than that in European countries. Ethnic diversity in the region does not play role of an independent predictive factor in terms of mutation frequency.

  20. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Do, Ji Yeon; Choi, Young Keun [Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kook, Hyun [Department of Pharmacology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Lee, In-Kyu [Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Park, Dong Ho, E-mail: sarasate2222@gmail.com [Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O{sub 2}). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice.

  1. Molecular Cloning and Characterization of Growth Factor Receptor Bound-Protein in Clonorchis sinensis

    Science.gov (United States)

    Bai, Xuelian; Lee, Ji-Yun; Kim, Tae Im; Dai, Fuhong; Lee, Tae-Jin; Hong, Sung-Jong

    2014-01-01

    Background Clonorchis sinensis causes clonorchiasis, a potentially serious disease. Growth factor receptor-bound protein 2 (Grb2) is a cytosolic protein conserved among animals and plays roles in cellular functions such as meiosis, organogenesis and energy metabolism. In the present study, we report first molecular characters of growth factor receptor bound-protein (CsGrb2) from C. sinensis as counter part of Grb2 from animals and its possible functions in development and organogenesis of C. sinensis. Methodology/Principal Findings A CsGrb2 cDNA clone retrieved from the C. sinensis transcriptome encoded a polypeptide with a SH3-SH2-SH3 structure. Recombinant CsGrb2 was bacterially produced and purified to homogeneity. Native CsGrb2 with estimated molecular weight was identified from C. sinensis adult extract by western blotting using a mouse immune serum to recombinant CsGrb2. CsGrb2 transcripts was more abundant in the metacercariae than in the adults. Immunohistochemical staining showed that CsGrb2 was localized to the suckers, mesenchymal tissues, sperms in seminal receptacle and ovary in the adults, and abundantly expressed in most organs of the metacercariae. Recombinant CsGrb2 was evaluated to be little useful as a serodiagnostic reagent for C. sinesis human infections. Conclusion Grb2 protein found in C. sinensis was conserved among animals and suggested to play a role in the organogenesis, energy metabolism and mitotic spermatogenesis of C. sinensis. These findings from C. sinensis provide wider understanding on diverse function of Grb2 in lower animals such as platyhelminths. PMID:24454892

  2. Molecular cloning and characterization of growth factor receptor bound-protein in Clonorchis sinensis.

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    Full Text Available BACKGROUND: Clonorchis sinensis causes clonorchiasis, a potentially serious disease. Growth factor receptor-bound protein 2 (Grb2 is a cytosolic protein conserved among animals and plays roles in cellular functions such as meiosis, organogenesis and energy metabolism. In the present study, we report first molecular characters of growth factor receptor bound-protein (CsGrb2 from C. sinensis as counter part of Grb2 from animals and its possible functions in development and organogenesis of C. sinensis. METHODOLOGY/PRINCIPAL FINDINGS: A CsGrb2 cDNA clone retrieved from the C. sinensis transcriptome encoded a polypeptide with a SH3-SH2-SH3 structure. Recombinant CsGrb2 was bacterially produced and purified to homogeneity. Native CsGrb2 with estimated molecular weight was identified from C. sinensis adult extract by western blotting using a mouse immune serum to recombinant CsGrb2. CsGrb2 transcripts was more abundant in the metacercariae than in the adults. Immunohistochemical staining showed that CsGrb2 was localized to the suckers, mesenchymal tissues, sperms in seminal receptacle and ovary in the adults, and abundantly expressed in most organs of the metacercariae. Recombinant CsGrb2 was evaluated to be little useful as a serodiagnostic reagent for C. sinesis human infections. CONCLUSION: Grb2 protein found in C. sinensis was conserved among animals and suggested to play a role in the organogenesis, energy metabolism and mitotic spermatogenesis of C. sinensis. These findings from C. sinensis provide wider understanding on diverse function of Grb2 in lower animals such as platyhelminths.

  3. Inhibition of fibroblast growth factor receptor with AZD4547 mitigates juvenile nasopharyngeal angiofibroma.

    Science.gov (United States)

    Le, Tran; New, Jacob; Jones, Joel W; Usman, Shireen; Yalamanchali, Sreeya; Tawfik, Ossama; Hoover, Larry; Bruegger, Dan E; Thomas, Sufi Mary

    2017-10-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a benign tumor that presents in adolescent males. Although surgical excision is the mainstay of treatment, recurrences complicate treatment. There is a need to develop less invasive approaches for management. JNA tumors are composed of fibroblasts and vascular endothelial cells. We identified fibroblast growth factor receptor (FGFR) and vascular endothelial growth factor (VEGF) expression in JNA-derived fibroblasts. FGFR influences fibroblast proliferation and VEGF is necessary for angiogenesis. We hypothesized that targeting FGFR would mitigate JNA fibroblast proliferation, invasion, and migration, and that targeting the VEGF receptor would attenuate endothelial tubule formation. After informed consent, fibroblasts from JNA explants of 3 patients were isolated. Fibroblasts were treated with FGFR inhibitor AZD4547, 0 to 25 μg/mL for 72 hours and proliferation was quantified using CyQuant assay. Migration and invasion of JNA were assessed using 24-hour transwell assays with subsequent fixation and quantification. Mitigation of FGFR and downstream signaling was evaluated by immunoblotting. Tubule formation was assessed in human umbilical vein endothelial cells (HUVECs) treated with vehicle control (dimethylsulfoxide [DMSO]) or semaxanib (SU5416) as well as in serum-free media (SFM) or JNA conditioned media (CM). Tubule length was compared between treatment groups. Compared to control, AZD4547 inhibited JNA fibroblast proliferation, migration, and invasion through inhibition of FGFR and downstream signaling, specifically phosphorylation of - p44/42 mitogen activated protein kinase (p44/42 MAPK). JNA fibroblast CM significantly increased HUVEC tubule formation (p = 0.0039). AZD4547 effectively mitigates FGFR signaling and decreases JNA fibroblast proliferation, migration, and invasion. SU5416 attenuated JNA fibroblast-induced tubule formation. AZD4547 may have therapeutic potential in the treatment of JNA. © 2017 ARS

  4. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    International Nuclear Information System (INIS)

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun; Suk, Kyoungho; Lee, In-Kyu; Park, Dong Ho

    2015-01-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O 2 ). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice

  5. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    Directory of Open Access Journals (Sweden)

    Chen Qian

    Full Text Available Platelet-derived growth factor receptor alpha (PDGFRα is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures.To address the temporal requirement of Pdgfra in embryonic development.We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies.Current study showed that (i conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5 resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives.Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b if mutations / sequence variations of these regulatory elements cause these anomalies.

  6. Plant natriuretic peptides control of synthesis and systemic effects

    KAUST Repository

    Wang, Yuhua

    2011-10-01

    Plant natriuretic peptides (PNPs) are signaling molecules that are secreted into the apoplast particularly under conditions of biotic and abiotic stress. At the local level, PNPs modulate their own expression via feed forward and feedback loops to enable tuning of the response at the transcript and protein level and to prevent overexpression. PNPs also employ a systemic signal, possibly electrical, to rapidly alter photosynthesis and respiration not only in treated leaves but also in upper and lower leaves thereby modulating and integrating physiological responses at the level of the whole plant. © 2011 Landes Bioscience.

  7. Epidermal growth factor treatment of A431 cells alters the binding capacity and electrophoretic mobility of the cytoskeletally associated epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1991-01-01

    Epidermal growth factor receptor interacts with structural elements of A431 cells and remains associated with the cytoskeleton following extraction with nonionic detergents. Extraction of cells with 0.15% Triton X-100 resulted in detection of only approximately 40% of the EGF binding sites on the cytoskeleton. If the cells were exposed to EGF prior to extraction, approximately twofold higher levels of low-affinity EGF binding sites were detected. The difference in number of EGF binding sites was not a consequence of differences in numbers of EGF receptors associated with the cytoskeleton; equal amounts of 35S-labeled receptor were immunoprecipitated from the cytoskeletons of both control and EGF-treated cells. The effect of EGF pretreatment on binding activity was coincident with a change in the mobility of the receptor from a doublet of Mr approximately 160-180 kDa to a single sharp band at 180 kDa. The alteration in receptor mobility was not a simple consequence of receptor phosphorylation in that the alteration was not reversed by alkaline phosphatase treatment, nor was the shift produced by treatment of the cells with phorbol ester. The two EGF receptor species demonstrated differential susceptibility to V8 proteinase digestion. The EGF-induced 180 kDa species was preferentially digested by the proteinase relative to the 160 kDa species, indicating that EGF binding results in a conformational change in the receptor. The EGF-mediated preservation of binding activity and altered conformation may be related to receptor oligomerization

  8. Structure and function of the Juxta membrane domain of the human epidermal growth factor receptor by NMR spectroscopy

    International Nuclear Information System (INIS)

    Choowongkomon, Kiattawee; Carlin, Cathleen; Sonnichsen, Frank D.

    2005-10-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family involved in the regulation of cellular proliferation and differentiation. Its juxta membrane domain (JX), the region located between the transmembrane and kinase domains, plays important roles in receptor trafficking since both basolateral sorting in polarized epithelial cells and lysosomal sorting signals are identified in this region. In order to understand the regulation of these signals, we characterized the structural properties of recombinant JX domain in dodecyl phosphocholine detergent (DPC) by nuclear magnetic resonance (NMR) spectroscopy. In DPC micelles, structures derived from NMR data showed three amphipathic, helical segments. Two equivalent average structural models on the surface of micelles were obtained that differ only in the relative orientation between the first and second helices. Our data suggests that the activity of sorting signals may be regulated by their membrane association and restricted accessibility in the intact receptor

  9. Transmembrane signalling at the epidermal growth factor receptor. Positive regulation by the C-terminal phosphotyrosine residues

    DEFF Research Database (Denmark)

    Magni, M; Pandiella, A; Helin, K

    1991-01-01

    a positive role in the regulation of transmembrane signalling at the EGF receptor. The stepwise decrease in signal generation observed in single, double and triple point mutants suggest that the role of phosphotyrosine residues is not in the participation in specific amino acid sequences, but rather...... in the double and the triple mutants. In the latter mutant, expression of the EGF-receptor-activated lipolytic enzyme phospholipase C gamma was unchanged, whereas its tyrosine phosphorylation induced by the growth factor was lowered to approx. 25% of that in the controls. In all of the cell clones employed......, the accumulation of inositol phosphates induced by treatment with fetal calf serum varied only slightly, whereas the same effect induced by EGF was consistently lowered in those lines expressing mutated receptors. This decrease was moderate for those receptors missing only the distal tyrosine (point and deletion...

  10. Frequency of Epidermal Growth Factor Receptor Mutation in Smokers with Lung Cancer Without Pulmonary Emphysema.

    Science.gov (United States)

    Takeda, Kenichi; Yamasaki, Akira; Igishi, Tadashi; Kawasaki, Yuji; Ito-Nishii, Shizuka; Izumi, Hiroki; Sakamoto, Tomohiro; Touge, Hirokazu; Kodani, Masahiro; Makino, Haruhiko; Yanai, Masaaki; Tanaka, Natsumi; Matsumoto, Shingo; Araki, Kunio; Nakamura, Hiroshige; Shimizu, Eiji

    2017-02-01

    Chronic obstructive pulmonary disease is a smoking-related disease, and is categorized into the emphysema and airway dominant phenotypes. We examined the relationship between emphysematous changes and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma. The medical records for 250 patients with lung adenocarcinoma were retrospectively reviewed. All patients were categorized into the emphysema or non-emphysema group. Wild-type EGFR was detected in 136 (54%) and mutant EGFR in 48 (19%). Emphysematous changes were observed in 87 (36%) patients. EGFR mutation was highly frequent in the non-emphysema group (p=0.0014). Multivariate logistic regression analysis showed that emphysema was an independent risk factor for reduced frequency of EGFR mutation (Odds Ratio=3.47, p=0.005). Our data showed a relationship between emphysematous changes and EGFR mutation status. There might be mutually exclusive genetic risk factors for carcinogenesis and development of emphysematous changes. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Tumor necrosis factor-alpha induces activation of coagulation and fibrinolysis in baboons through an exclusive effect on the p55 receptor

    NARCIS (Netherlands)

    van der Poll, T.; Jansen, P. M.; van Zee, K. J.; Welborn, M. B.; de Jong, I.; Hack, C. E.; Loetscher, H.; Lesslauer, W.; Lowry, S. F.; Moldawer, L. L.

    1996-01-01

    Tumor necrosis factor-alpha (TNF-alpha) can bind to two distinct transmembrane receptors, the p55 and p75 TNF receptors. We compared the capability of two mutant TNF proteins with exclusive affinity for the p55 or p75 TNF receptor with that of wild type TNF, to activate the hemostatic mechanism in

  12. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer?

    Science.gov (United States)

    Wu, Victoria Shang; Kanaya, Noriko; Lo, Chiao; Mortimer, Joanne; Chen, Shiuan

    2015-09-01

    Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Diagnostic values of vascular endothelial growth factor and epidermal growth factor receptor for benign and malignant hydrothorax.

    Science.gov (United States)

    Gu, Yan; Zhang, Min; Li, Guo-Hua; Gao, Jun-Zhen; Guo, Liping; Qiao, Xiao-Juan; Wang, Li-Hong; He, Lan; Wang, Mei-Ling; Yan, Li; Fu, Xiu-Hua

    2015-02-05

    Hydrothorax, as one of the common complications of malignant tumors, still cannot be sensitively detected in clinical practice, thus requiring a sensitive, specific method for diagnosis. The aim of this study was to analyze the correlation between levels of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in patients with benign and malignant hydrothorax. The contents of VEGF in the pleural effusion and serum of the patients with malignant pleural effusion (n = 35) and benign pleural effusion (n = 30) were detected by double antibody sandwich enzyme linked immunosorbent assay. The gene copy number level of EGFR in pleural effusion was detected by fluorescence in situ hybridization (FISH). The points with the highest sensitivity and specificity were selected as the critical values to calculate the diagnostic value of the VEGF in pleural effusion and serum, and EGFR gene copy number in pleural effusion. The contents of VEGF in pleural effusion and serum of patients with malignant hydrothorax were (384.91 ± 120.18), and (129.62 ± 46.35) ng/L, respectively, which were significantly higher than those of the patients with benign hydrothorax (207.97 ± 64.04), (63.49 ± 24.58) ng/L (P benign and malignant hydrothorax. The sensitivity and specificity of serum were 74.3% and 96.7%, respectively (the boundary value was 99.21 ng/L) for diagnosing benign and malignant hydrothorax. The diagnostic efficiencies of EGFR and VEGF in hydrothorax were similar. There was a significant correlation between EGFR and VEGF in hydrothorax (P benign and malignant pleural effusions, which contributed to differential diagnosis results of benign and malignant pleural effusions. It is feasible to detect the gene copy number of the pleural effusion cell mass EGFR by FISH technique. Joint detection can improve the diagnostic sensitivity.

  14. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  15. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    Science.gov (United States)

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  16. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure.

    Science.gov (United States)

    Fu, Shihui; Ping, Ping; Wang, Fengqi; Luo, Leiming

    2018-01-01

    As a family of hormones with pleiotropic effects, natriuretic peptide (NP) system includes atrial NP (ANP), B-type NP (BNP), C-type NP (CNP), dendroaspis NP and urodilatin, with NP receptor-A (guanylate cyclase-A), NP receptor-B (guanylate cyclase-B) and NP receptor-C (clearance receptor). These peptides are genetically distinct, but structurally and functionally related for regulating circulatory homeostasis in vertebrates. In humans, ANP and BNP are encoded by NP precursor A (NPPA) and NPPB genes on chromosome 1, whereas CNP is encoded by NPPC on chromosome 2. NPs are synthesized and secreted through certain mechanisms by cardiomyocytes, fibroblasts, endotheliocytes, immune cells (neutrophils, T-cells and macrophages) and immature cells (embryonic stem cells, muscle satellite cells and cardiac precursor cells). They are mainly produced by cardiovascular, brain and renal tissues in response to wall stretch and other causes. NPs provide natriuresis, diuresis, vasodilation, antiproliferation, antihypertrophy, antifibrosis and other cardiometabolic protection. NPs represent body's own antihypertensive system, and provide compensatory protection to counterbalance vasoconstrictor-mitogenic-sodium retaining hormones, released by renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). NPs play central roles in regulation of heart failure (HF), and are inactivated through not only NP receptor-C, but also neutral endopeptidase (NEP), dipeptidyl peptidase-4 and insulin degrading enzyme. Both BNP and N-terminal proBNP are useful biomarkers to not only make the diagnosis and assess the severity of HF, but also guide the therapy and predict the prognosis in patients with HF. Current NP-augmenting strategies include the synthesis of NPs or agonists to increase NP bioactivity and inhibition of NEP to reduce NP breakdown. Nesiritide has been established as an available therapy, and angiotensin receptor blocker NEP inhibitor (ARNI, LCZ696) has obtained

  17. Lipid mobilization in subcutaneous adipose tissue during exercise in lean and obese humans. Roles of insulin and natriuretic peptides

    DEFF Research Database (Denmark)

    Koppo, Katrien; Larrouy, Dominique; Marques, Marie A

    2010-01-01

    The aim of this study was to evaluate the relative contributions of various hormones involved in the regulation of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise and to assess the impact of obesity on this regulation. Eight lean and eight obese men performed a 60-min cycle...... phentolamine and propranolol while another probe was perfused with the phosphodiesterase and adenosine receptor inhibitor aminophylline. Compared with the control condition, infusion of octreotide reduced plasma insulin levels in lean (from approximately 3.5 to 0.5 microU/ml) and in obese (from approximately 9...... to 2 microU/ml), blunted the exercise-induced rise in plasma GH and epinephrine levels in both groups, and enhanced the exercise-induced natriuretic peptide (NP) levels in lean but not in obese subjects. In both groups, octreotide infusion resulted in higher exercise-induced increases in dialysate...

  18. Identification and Functional Characterisation of Nod Factor Receptor (NFR) Paralogs in Lotus japonicus

    DEFF Research Database (Denmark)

    Vestergaard, Gitte; Radutoiu, Elena Simona; Stougaard, Jens

    an important missing link in plant-bacterial communication. This picture changed with the cloning of LysM-domain containing receptor-like kinases (LysM-RLKs) in different legume species. In Lotus japonicus, two LysM-RLKs, Nod Factor Receptor 1 (NFR1) and Nod Factor Receptor 5 (NFR5), are believed to bind Nod...... using the sequences of NFR1 and NFR5. Microsattelite markers were developed from each TAC clone containing the LysM-RLK, permitting us to locate the genes on a genetic map of Lotus japonicus. In order to get more insight into the function of these genes an inverse genetic approach using RNAi has been...

  19. Systemic factors related to soluble (prorenin receptor in plasma of patients with proliferative diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Keitaro Hase

    Full Text Available (Prorenin receptor [(PRR], a new component of the tissue renin-angiotensin system (RAS, plays a crucial role in inflammation and angiogenesis in the eye, thus contributing to the development of proliferative diabetic retinopathy (PDR. In this study, we investigated systemic factors related to plasma levels of soluble form of (PRR [s(PRR] in patients with PDR. Twenty type II diabetic patients with PDR and 20 age-matched, non-diabetic patients with idiopathic macular diseases were enrolled, and plasma levels of various molecules were measured by enzyme-linked immunosorbent assays. Human retinal microvascular endothelial cells were stimulated with several diabetes-related conditions to evaluate changes in gene expression using real-time quantitative PCR. Of various systemic parameters examined, the PDR patients had significantly higher blood sugar and serum creatinine levels than non-diabetic controls. Protein levels of s(PRR, prorenin, tumor necrosis factor (TNF-α, complement factor D (CFD, and leucine-rich α-2-glycoprotein 1 (LRG1 significantly increased in the plasma of PDR subjects as compared to non-diabetes, with positive correlations detected between s(PRR and these inflammatory molecules but not prorenin. Estimated glomerular filtration rate and serum creatinine were also correlated with plasma s(PRR, but not prorenin, levels. Among the inflammatory molecules correlated with s(PRR in the plasma, TNF-α, but not CFD or LRG1, application to retinal endothelial cells upregulated the mRNA expression of (PRR but not prorenin, while stimulation with high glucose enhanced both (PRR and prorenin expression. These findings suggested close relationships between plasma s(PRR and diabetes-induced factors including chronic inflammation, renal dysfunction, and hyperglycemia in patients with PDR.

  20. Matrix metalloproteinase-3, vitamin D receptor gene polymorphisms, and occupational risk factors in lumbar disc degeneration.

    Science.gov (United States)

    Zawilla, N H; Darweesh, H; Mansour, N; Helal, S; Taha, F M; Awadallah, M; El Shazly, R

    2014-06-01

    Lumbar disc degeneration (LDD) is a process that begins early in life, contributing to the development of low back pain. LDD is a consequence of a variety of factors, and its etiology remains poorly understood. Objectives to investigate occupational and genetic risk factors inducing lumbar disc degeneration, and to evaluate the possible association of genetic polymorphisms of matrix metalloproteinase 3 (MMP-3) and vitamin D receptor (VDR) with the severity of LDD in an Egyptian population. A case control study involving 84 LDD and 60 controls was carried out. Five types of work related factors were investigated by questionnaire, complete neurological examination for all subjects and MRI for the cases. Polymerase chain reaction and restriction fragment length polymorphism methods were applied to detect polymorphisms in MMP-3 Promoter (-1,171 6A/5A) (rs 731236) and VDR-Apa (rs 35068180). We found that family history, back injury, smoking, high level of sitting, bending/twisting, physical workload, lifting, whole body vibration, mutant allele 5A of MMP-3 and mutant allele T of VDR were significantly associated with LDD (OR = 2.9, 3.1, 2.1, 11.1, 15.9, 11.7, 8.2, 12.6, 2.5 and 3.1 respectively, p < 0.05). Cases that carry allele 5A and/or allele T were associated with LDD severity. LDD is closely associated in occurrence and severity with occupational, environmental risk factors and susceptibility genes namely MMP-3, and VDR (ApaI). This study throws light on the importance of screening for early detection of susceptible individuals and disease prevention.

  1. Expression of tumor necrosis factor-alpha and receptor I(P55in pterygium

    Directory of Open Access Journals (Sweden)

    Bing Wu

    2014-06-01

    Full Text Available AIM:To observe the expression of tumor necrosis factor- alpha(TNF-αand its receptor I(P55in different pterygium and discuss the role of TNF-α and receptor I(P55in pterygium.METHODS: Immunohistochemistical staining method(PVwas adopted to detect the expression of TNF-α and receptor I in pterygium(72 eyesand para-pterygium conjunctival tissue(30 eyes. The relationship between the expression and clinical-pathological parameters was also analyzed. RESULTS: The positive rates of TNF-α were 65.3%(47/72, 26.7%(8/30in pterygium and para-pterygium conjunctival tissue. The positive expression of TNF-α had statistic difference between the two groups(χ2=12.706, Pχ2=13.875, Pχ2=6.547, P=0.011. There had no statistically significance of the expression intensity between the two groups(F=1.288, P=0.393; the positive rate in advanced pterygium group was higher than quiescent pterygium group(χ2=4.082, P=0.043. The expression intensity had no statistically significance between the two groups(F=0.489, P=0.708. The positive rate of P55 in recurrent pterygium group was higher than primary pterygium group(χ2=9.907, P=0.002. There had no statistically significance of the two group's expression intensity(F=1.175, P=0.424; the positive rate in advanced pterygium group was higher than in quiescent pterygium group(χ2=11.140, P=0.001. The expression intensity had no statistically significance between the two groups(F=0.665, P=0.621. CONCLUSION:The expression of TNF-α and P55 are changing according to the development of clinical staging and onset. The expression of TNF-α and P55 may be related to clinical classification, staging and patient's working conditions of pterygium. There has no significant difference expression intensity of TNF-α and P55 in clinical staging and onset of pterygium.

  2. Vascular endothelial growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase to regulate lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Sanja Coso

    Full Text Available BACKGROUND: Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF family is a major regulator of lymphatic endothelial cell (LEC function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. METHODS AND RESULTS: Here we delineate the VEGF-C/VEGF receptor (VEGFR-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCγ1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. CONCLUSIONS: Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis.

  3. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    Science.gov (United States)

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  4. Osteoblast-specific transcription factor Osterix increases vitamin D receptor gene expression in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available Osterix (Osx is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by Osx in osteoblasts. For example, calvaria obtained from Osx-null embryos displayed dramatic reductions in VDR expression compared to wild-type calvaria. Stable overexpression of Osx stimulated VDR expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of VDR. In contrast, Osx levels remained unchanged in osteoblasts in VDR-null mice. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the VDR promoter in a dose-dependent manner. To define the region of the VDR promoter that was responsive to Osx, a series of VDR promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 120 bp of the VDR promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VDR promoter activation by Osx. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native VDR promoter in primary osteoblasts in vivo. Cumulatively, these data strongly support a direct regulatory role for Osx in VDR gene expression. They further provide new insight into potential mechanisms and pathways that Osx controls in osteoblasts and during the process of osteoblastic cell differentiation.

  5. The pluripotency factor Nanog is directly upregulated by the androgen receptor in prostate cancer cells.

    Science.gov (United States)

    Kregel, Steven; Szmulewitz, Russell Z; Vander Griend, Donald J

    2014-11-01

    The Androgen Receptor (AR) is a nuclear hormone receptor that functions as a critical oncogene in all stages of prostate cancer progression, including progression to castration-resistance following androgen-deprivation therapy. Thus, identifying and targeting critical AR-regulated genes is one potential method to block castration-resistant cancer proliferation. Of particular importance are transcription factors that regulate stem cell pluripotency; many of these genes are emerging as critical oncogenes in numerous tumor cell types. Of these, Nanog has been previously shown to increase the self-renewal and stem-like properties of prostate cancer cells. Thus, we hypothesized that Nanog is a candidate AR target gene that may impart castration-resistance. We modulated AR signaling in LNCaP prostate cancer cells and assayed for Nanog expression. Direct AR binding to the NANOG promoter was tested using AR Chromatin Immunoprecipation (ChIP) and analyses of publically available AR ChIP-sequencing data-sets. Nanog over-expressing cells were analyzed for cell growth and cytotoxicity in response to the AR antagonist enzalutamide and the microtubule stabilizing agent docetaxel. AR signaling upregulates Nanog mRNA and protein. AR binds directly to the NANOG promoter, and was not identified within 75 kb of the NANOGP8 pseudogene, suggesting the NANOG gene locus was preferentially activated. Nanog overexpression in LNCaP cells increases overall growth, but does not increase resistance to enzalutamide or docetaxel. Nanog is a novel oncogenic AR target gene in prostate cancer cells, and stable expression of Nanog increases proliferation and growth of prostate cancer cells, but not resistance to enzalutamide or docetaxel. © 2014 Wiley Periodicals, Inc.

  6. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Tomblin, Justin K.; Salisbury, Travis B.

    2014-01-01

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR

  7. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  8. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  9. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  10. Comparative Biochemical and Functional Analysis of Viral and Human Secreted Tumor Necrosis Factor (TNF) Decoy Receptors*

    Science.gov (United States)

    Pontejo, Sergio M.; Alejo, Ali; Alcami, Antonio

    2015-01-01

    The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin β. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin β. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs. PMID:25940088

  11. Comparative Biochemical and Functional Analysis of Viral and Human Secreted Tumor Necrosis Factor (TNF) Decoy Receptors.

    Science.gov (United States)

    Pontejo, Sergio M; Alejo, Ali; Alcami, Antonio

    2015-06-26

    The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin β. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin β. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Normal epidermal growth factor receptor signaling is dispensable for bone anabolic effects of parathyroid hormone.

    Science.gov (United States)

    Schneider, Marlon R; Dahlhoff, Maik; Andrukhova, Olena; Grill, Jessica; Glösmann, Martin; Schüler, Christiane; Weber, Karin; Wolf, Eckhard; Erben, Reinhold G

    2012-01-01

    Although the bone anabolic properties of intermittent parathyroid hormone (PTH) have long been employed in the treatment of osteoporosis, the molecular mechanisms behind this action remain largely unknown. Previous studies showed that PTH increases the expression and the activity of epidermal growth factor receptor (EGFR) in osteoblasts, and activation of ERK1/2 by PTH in osteoblasts was demonstrated to induce the proteolytical release of EGFR ligands and EGFR transactivation. However, conclusive evidence for an important role of the EGFR system in mediating the anabolic actions of intermittent PTH on bone in vivo is lacking. Here, we evaluated the effects of intermittent PTH on bone in Waved-5 (Wa5) mice which carry an antimorphic Egfr allele whose product acts as a dominant negative receptor. Heterozygous Wa5 females and control littermates received a subcutaneous injection of PTH (80 μg/kg) or buffer on 5 days per week for 4 weeks. Wa5 mice had slightly lower total bone mineral density (BMD), but normal cancellous bone volume and turnover in the distal femoral metaphysis. The presence of the antimorphic Egfr allele neither influenced the PTH-induced increase in serum osteocalcin nor the increases in distal femoral BMD, cortical thickness, cancellous bone volume, and cancellous bone formation rate. Similarly, the PTH-induced rise in lumbar vertebral BMD was unchanged in Wa5 relative to wild-type mice. Wa5-derived osteoblasts showed considerably lower basal extracellular signal-regulated kinase 1/2 (ERK1/2) activation as compared to control osteoblasts. Whereas activation of ERK1/2 by the EGFR ligand amphiregulin was largely blocked in Wa5 osteoblasts, treatment with PTH induced ERK1/2 activation comparable to that observed in control osteoblasts, relative to baseline levels. Our data indicate that impairment of EGFR signaling does not affect the anabolic action of intermittent PTH on cancellous and cortical bone. Copyright © 2011. Published by Elsevier Inc.

  13. Human epidermal growth factor receptor2 expression in unresectable gastric cancers: Relationship with CT characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Sub [Dept. of Radiology, Jeju National University Hospital, Jeju (Korea, Republic of); Kim, Se Hyung; Im, Seock Ah; Kim, Min A; Han, Joon Koo [Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-09-15

    To retrospectively analyze the qualitative CT features that correlate with human epidermal growth factor receptor 2 (HER2)-expression in pathologically-proven gastric cancers. A total of 181 patients with pathologically-proven unresectable gastric cancers with HER2-expression (HER2-positive [n = 32] and negative [n = 149]) were included. CT features of primary gastric and metastatic tumors were reviewed. The prevalence of each CT finding was compared in both groups. Thereafter, binary logistic regression determined the most significant differential CT features. Clinical outcomes were compared using Kaplan-Meier method. HER2-postive cancers showed lower clinical T stage (21.9% vs. 8.1%; p = 0.015), hyperattenuation on portal phase (62.5% vs. 30.9%; p = 0.003), and was more frequently metastasized to the liver (62.5% vs. 32.2%; p = 0.001), than HER2-negative cancers. On binary regression analysis, hyperattenuation of the tumor (odds ratio [OR], 4.68; p < 0.001) and hepatic metastasis (OR, 4.43; p = 0.001) were significant independent factors that predict HER2-positive cancers. Median survival of HER2-positive cancers (13.7 months) was significantly longer than HER2-negative cancers (9.6 months) (p = 0.035). HER2-positive gastric cancers show less-advanced T stage, hyperattenuation on the portal phase, and frequently metastasize to the liver, as compared to HER2-negative cancers.

  14. Optical Molecular Imaging of Epidermal Growth Factor Receptor Expression to Improve Detection of Oral Neoplasia

    Directory of Open Access Journals (Sweden)

    Nitin Nitin

    2009-06-01

    Full Text Available Background: The development of noninvasive molecular imaging approaches has the potential to improve management of cancer. Methods: In this study, we demonstrate the potential of noninvasive topical delivery of an epidermal growth factor-Alexa 647 (EGF-Alexa 647 conjugate to image changes in epidermal growth factor receptor expression associated with oral neoplasia. We report a series of preclinical analyses to evaluate the optical contrast achieved after topical delivery of EGF-Alexa 647 in a variety of model systems, including cells, three-dimensional tissue cultures, and intact human tissue specimens using wide-field and high-resolution fluorescence imaging. Data were collected from 17 different oral cancer patients: eight pairs of normal and abnormal biopsies and nine resected tumors were examined. Results: The EGF-dye conjugate can be uniformly delivered throughout the oral epithelium with a penetration depth exceeding 500 µm and incubation time of less than 30 minutes. After EGF-Alexa 647 incubation, the presence of oral neoplasia is associated with a 1.5- to 6.9-fold increase in fluorescence contrast compared with grossly normal mucosa from the same patient with both wide-field and high-resolution fluorescence imaging. Conclusions: Results illustrate the potential of EGF-targeted fluorescent agents for in vivo molecular imaging, a technique that may aid in the diagnosis and characterization of oral neoplasia and allow real-time detection of tumor margins.

  15. Involvement of Corticotropin-Releasing Factor and Receptors in Immune Cells in Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Mahanand Chatoo

    2018-02-01

    Full Text Available Irritable bowel syndrome (IBS is a common functional gastrointestinal disorder defined by ROME IV criteria as pain in the lower abdominal region, which is associated with altered bowel habit or defecation. The underlying mechanism of IBS is not completely understood. IBS seems to be a product of interactions between various factors with genetics, dietary/intestinal microbiota, low-grade inflammation, and stress playing a key role in the pathogenesis of this disease. The crosstalk between the immune system and stress in IBS mechanism is increasingly recognized. Corticotropin-releasing factor (CRF, a major mediator in the stress response, is involved in altered function in GI, including inflammatory processes, colonic transit time, contractile activity, defecation pattern, pain threshold, mucosal secretory function, and barrier functions. This mini review focuses on the recently establish local GI-CRF system, its involvement in modulating the immune response in IBS, and summarizes current IBS animal models and mapping of CRF, CRFR1, and CRFR2 expression in colon tissues. CRF and receptors might be a key molecule involving the immune and movement function via brain–gut axis in IBS.

  16. Relationship between serum response factor and androgen receptor in prostate cancer.

    Science.gov (United States)

    Prencipe, Maria; O'Neill, Amanda; O'Hurley, Gillian; Nguyen, Lan K; Fabre, Aurelie; Bjartell, Anders; Gallagher, William M; Morrissey, Colm; Kay, Elaine W; Watson, R William

    2015-11-01

    Serum response factor (SRF) is an important transcription factor in castrate-resistant prostate cancer (CRPC). Since CRPC is associated with androgen receptor (AR) hypersensitivity, we investigated the relationship between SRF and AR. Transcriptional activity was assessed by luciferase assay. Cell proliferation was measured by MTT and flow cytometry. Protein expression in patients was assessed by immunohistochemistry. To investigate AR involvement in SRF response to androgen, AR expression was down-regulated using siRNA. This resulted in the abrogation of SRF induction post-DHT. Moreover, DHT stimulation failed to induce SRF transcriptional activity in AR-negative PC346 DCC cells, which was only restored following AR over-expression. Next, SRF expression was down-regulated by siRNA, resulting in AR increased transcriptional activity in castrate-resistant LNCaP Abl cells but not in the parental LNCaP. This negative feedback loop in the resistant cells was confirmed by immunohistochemistry which showed a negative correlation between AR and SRF expression in CRPC bone metastases and a positive correlation in androgen-naïve prostatectomies. Cell proliferation was next assessed following SRF inhibition, demonstrating that SRF inhibition is more effective than AR inhibition in castrate-resistant cells. Our data support SRF as a promising therapeutic target in combination with current treatments. © 2015 Wiley Periodicals, Inc.

  17. Human epidermal growth factor receptor2 expression in unresectable gastric cancers: Relationship with CT characteristics

    International Nuclear Information System (INIS)

    Lee, Jeong Sub; Kim, Se Hyung; Im, Seock Ah; Kim, Min A; Han, Joon Koo

    2017-01-01

    To retrospectively analyze the qualitative CT features that correlate with human epidermal growth factor receptor 2 (HER2)-expression in pathologically-proven gastric cancers. A total of 181 patients with pathologically-proven unresectable gastric cancers with HER2-expression (HER2-positive [n = 32] and negative [n = 149]) were included. CT features of primary gastric and metastatic tumors were reviewed. The prevalence of each CT finding was compared in both groups. Thereafter, binary logistic regression determined the most significant differential CT features. Clinical outcomes were compared using Kaplan-Meier method. HER2-postive cancers showed lower clinical T stage (21.9% vs. 8.1%; p = 0.015), hyperattenuation on portal phase (62.5% vs. 30.9%; p = 0.003), and was more frequently metastasized to the liver (62.5% vs. 32.2%; p = 0.001), than HER2-negative cancers. On binary regression analysis, hyperattenuation of the tumor (odds ratio [OR], 4.68; p < 0.001) and hepatic metastasis (OR, 4.43; p = 0.001) were significant independent factors that predict HER2-positive cancers. Median survival of HER2-positive cancers (13.7 months) was significantly longer than HER2-negative cancers (9.6 months) (p = 0.035). HER2-positive gastric cancers show less-advanced T stage, hyperattenuation on the portal phase, and frequently metastasize to the liver, as compared to HER2-negative cancers

  18. Fibroblast growth factor receptor 4 polymorphism is associated with liver cirrhosis in hepatocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ming-Jen Sheu

    Full Text Available Fibroblast growth factor receptor 4 (FGFR4 polymorphisms are positively correlated with tumor progression in numerous malignant tumors. However, the association between FGFR4 genetic variants and the risk of hepatocellular carcinoma (HCC has not yet been determined. In this study, we investigated the potential associations of FGFR4 single nucleotide polymorphisms (SNPs with HCC susceptibility and its clinicopathological characteristics.Four SNPs in FGFR4 (rs1966265, rs351855, rs2011077, and rs7708357 were analyzed among 884 participants, including 595 controls and 289 patients with HCC. The samples were further analyzed to clarify the associations between these gene polymorphisms and the risk of HCC, and the impact of these SNPs on the susceptibility and clinicopathological characteristics of HCC. After adjusting for other covariants, HCC patients who carrying at least one A genotype (GA and AA at rs351855 were observed to have a higher risk of liver cirrhosis compared with those carrying the wild-type genotype (GG (OR: 2.113, 95% CI: 1.188-3.831. Moreover, the patients with at least one A genotype were particularly showed a high level of alpha-fetoprotein (AFP.Our findings suggest that genetic polymorphism in FGFR4 rs351855 may be associated with the risk of HCC coupled with liver cirrhosis and may markedly increase the AFP level in Taiwanese patients with HCC. In addition, this is the first study that evaluated the risk factors associated with FGFR4 polymorphism variants in Taiwanese patients with HCC.

  19. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    International Nuclear Information System (INIS)

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed

  20. Nutrition, anthropometry, gastrointestinal dysfunction, and circulating levels of tumour necrosis factor alpha receptor I and interleukin-1 receptor antagonist in children during stem cell transplantation

    DEFF Research Database (Denmark)

    Andreassen, B. U.; Pærregaard, Anders; Michaelsen, Kim F.

    2008-01-01

    To evaluate anthropometry, nutrition and gastrointestinal dysfunction, and to characterize the relation between these parameters and the inflammatory activity evaluated by plasma levels of soluble tumour necrosis factor alpha receptor I (sTNFRI) and interleukin-1 receptor antagonist (IL-1Ra) levels...... during stem cell transplantation (SCT) in children. Clinical assessments and blood sampling were performed on days -3, 0, +7, +15 and +31 in eight children undergoing SCT. Energy intake, anthropometry, gastrointestinal dysfunction (WHO toxicity score) and sTNFRI and IL-1Ra were evaluated. The energy...... intake was below recommended levels. There was a loss of lean body mass (arm muscle area)(median, 2031 mm(2) (day -3) vs 1477 mm(2) (day 31); p = 0.04), and of fat mass (arm fat area) (791 mm(2) (day -3) vs 648 mm(2) (day +31); p = 0.04). sTNFRI was elevated throughout the course of transplantation...

  1. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-01-01

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe -1 , Val 1 , Asn 2 , Gln 3 , His 4 , Ser 8 , His 9 , Glu 12 , Tyr 15 , Leu 16 ]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln 3 , Ala 4 ] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr 15 , Leu 16 ] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln 3 , Ala 4 , Tyr 15 ,Leu 16 ]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  2. Triiodothyronine and brain natriuretic peptide: similar long-term prognostic values for chronic heart failure.

    Science.gov (United States)

    Kozdag, Guliz; Ertas, Gokhan; Kilic, Teoman; Acar, Eser; Sahin, Tayfun; Ural, Dilek

    2010-01-01

    Although low levels of free triiodothyronine and high levels of brain natriuretic peptide have been shown as independent predictors of death in chronic heart failure patients, few studies have compared their prognostic values. The aim of this prospective study was to measure free triiodothyronine and brain natriuretic peptide levels and to compare their prognostic values among such patients.A total of 334 patients (mean age, 62 ± 13 yr; 218 men) with ischemic and nonischemic dilated cardiomyopathy were included in the study. The primary endpoint was a major cardiac event.During the follow-up period, 92 patients (28%) experienced a major cardiac event. Mean free triiodothyronine levels were lower and median brain natriuretic peptide levels were higher in patients with major cardiac events than in those without. A significant negative correlation was found between free triiodothyronine and brain natriuretic peptide levels. Receiver operating characteristic curve analysis showed that the predictive cutoff values were triiodothyronine and > 686 pg/mL for brain natriuretic peptide. Cumulative survival was significantly lower among patients with free triiodothyronine 686 pg/mL. In multivariate analysis, the significant independent predictors of major cardiac events were age, free triiodothyronine, and brain natriuretic peptide.In the present study, free triiodothyronine and brain natriuretic peptide had similar prognostic values for predicting long-term prognosis in chronic heart failure patients. These results also suggested that combining these biomarkers may provide an important risk indicator for patients with heart failure.

  3. Tumor necrosis factor α sensitizes spinal cord TRPV1 receptors to the endogenous agonist N-oleoyldopamine

    Directory of Open Access Journals (Sweden)

    Spicarova Diana

    2010-08-01

    Full Text Available Abstract Modulation of synaptic transmission in the spinal cord dorsal horn is thought to be involved in the development and maintenance of different pathological pain states. The proinflamatory cytokine, tumor necrosis factor α (TNFα, is an established pain modulator in both the peripheral and the central nervous system. Up-regulation of TNFα and its receptors (TNFR in dorsal root ganglion (DRG cells and in the spinal cord has been shown to play an important role in neuropathic and inflammatory pain conditions. Transient receptor potential vanilloid 1 (TRPV1 receptors are known as molecular integrators of nociceptive stimuli in the periphery, but their role on the spinal endings of nociceptive DRG neurons is unclear. The endogenous TRPV1 receptor agonist N-oleoyldopamine (OLDA was shown previously to activate spinal TRPV1 receptors. In our experiments the possible influence of TNFα on presynaptic spinal cord TRPV1 receptor function was investigated. Using the patch-clamp technique, miniature excitatory postsynaptic currents (mEPSCs were recorded in superficial dorsal horn neurons in acute slices after incubation with 60 nM TNFα. A population of dorsal horn neurons with capsaicin sensitive primary afferent input recorded after the TNFα pretreatment had a basal mEPSC frequency of 1.35 ± 0.20 Hz (n = 13, which was significantly higher when compared to a similar population of neurons in control slices (0.76 ± 0.08 Hz; n = 53; P

  4. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  5. Regulation of endothelial cell shape and monolayer permeability by atrial natriuretic peptide

    International Nuclear Information System (INIS)

    Lofton-Day, C.E.

    1989-01-01

    Atrial natriuretic peptide (ANP), considered to be an important regulator of intravascular fluid volume, binds specifically to receptors on endothelial cells. In this study, the role of ANP-specific binding was investigated by examining the effect of ANP on the morphology and macromolecular permeability of monolayer cultures of bovine aortic endothelial cells. ANP alone had no observable effect on the monolayers. However, incubation of monolayers with ANP antagonized thrombin- or glucose oxidase-induced cell shape changes and intercellular gap formation. ANP pretreatment also opposed the effect of thrombin and glucose oxidase on actin filament distribution as observed by rhodamine-phalloidin staining and digital image analysis of F0actin staining. In addition, ANP reversed cell shape changes and cytoskeletal alterations induced by thrombin treatment but did not reverse alternations induced by glucose oxidase treatment. ANP significantly reduced increases in monolayer permeability to albumin resulting from thrombin or glucose oxidases treatment. Thrombin caused a 2-fold increase in monolayer permeability to 125 I-labeled albumin, which was abolished by 10 -8 -10 -6 M ANP pretreatment. Glucose oxidase caused similar increases in permeability and was inhibited by ANP at slightly shorter time periods

  6. Atrial natriuretic peptide: a possible mediator involved in dexamethasone's inhibition of cell proliferation in multiple myeloma.

    Science.gov (United States)

    Ding, Jiang-Hua; Chang, Yu-Sui

    2012-08-01

    Atrial natriuretic peptide (ANP) has been recognized for several decades for its role of regulating blood pressure. Recently, cumulating evidences show that ANP plays an anticancer role in various solid tumors via blocking the kinase cascade of Ras-MEK1/2-ERK1/2 with the result of inhibition of DNA synthesis. ANP, as well as its receptors (NPR-A and NPR-C) has been identified present in the embryonic stem cell and a wide range of cancer cells. Various lymphoid organs, such as lymph nodes, have been detected the presence of ANP. Multiple myeloma (MM), though the therapies have evolved significantly, is still an incurable disease as B lymphocyte cell neoplasm. Dexamethasone is the cornerstone in treatment of MM via inactivation of Ras-MEK1/2-ERK1/2 cascade reaction. Coincidently, dexamethasone can increase the expression of ANP markedly. Nevertheless, the role of ANP in MM is unclear. Based on these results above, we raise the hypothesis that ANP is involved in mediating dexamethasone's inhibition of proliferation in MM cells, which suggests that ANP may be a potential agent to treat MM. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Radiotherapy and receptor of epidermal growth factor; Radiotherapie et recepteur de l'Epidermal Growth Factor

    Energy Technology Data Exchange (ETDEWEB)

    Deberne, M. [Institut Gustave-Roussy, 94 - Villejuif (France)

    2009-10-15

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  8. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent Anti-epidermal growth factor receptor nanobody

    NARCIS (Netherlands)

    Van Driel, P.B.A.A.; Van Der Vorst, J.R.; Verbeek, F.P.R.; Oliveira, S.|info:eu-repo/dai/nl/304841455; Snoeks, T.J.A.; Keereweer, S.; Chan, B.; Boonstra, M.C.; Frangioni, J.V.; Van Bergen En Henegouwen, P.M.P.|info:eu-repo/dai/nl/071919481; Vahrmeijer, A.L.; Lowik, C.W.G.M.

    2014-01-01

    Intraoperative near-infrared (NIR) fluorescence imaging is a technology with high potential to provide the surgeon with real-time visualization of tumors during surgery. Our study explores the feasibility for clinical translation of an epidermal growth factor receptor (EGFR)-targeting nanobody for

  9. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  10. Radiolabeled cetuximab: dose optimization for epidermal growth factor receptor imaging in a head-and-neck squamous cell carcinoma model

    NARCIS (Netherlands)

    Hoeben, B.A.W.; Molkenboer-Kuenen, J.D.M.; Oyen, W.J.G.; Peeters, W.J.M.; Kaanders, J.H.A.M.; Bussink, J.; Boerman, O.C.

    2011-01-01

    Noninvasive imaging of the epidermal growth factor receptor (EGFR) in head-and-neck squamous cell carcinoma could be of value to select patients for EGFR-targeted therapy. We assessed dose optimization of (111) Indium-DTPA-cetuximab ((111) In-cetuximab) for EGFR imaging in a head-and-neck squamous

  11. Limited human epidermal growth factor receptor 2 discordance in metastatic breast cancer patients treated with trastuzumab, a population based study

    NARCIS (Netherlands)

    van Rooijen, J.M.; de Munck, L.; de Graaf, J.C.; Siesling, Sabine; de Vries, Erik G.; Boers, J.E.

    2014-01-01

    Background Accurate assessment of the human epidermal growth factor receptor 2 (HER2) in breast cancer is essential for proper treatment decisions. HER2 positivity confirmation rates in breast cancer trials by central testing pathology laboratories were reported to be approximately 85%. The aim of

  12. Molecular cloning and functional characterization of the human platelet-derived growth factor alpha receptor gene promoter

    NARCIS (Netherlands)

    Afink, G. B.; Nistér, M.; Stassen, B. H.; Joosten, P. H.; Rademakers, P. J.; Bongcam-Rudloff, E.; van Zoelen, E. J.; Mosselman, S.

    1995-01-01

    Expression of the platelet-derived growth factor alpha receptor (PDGF alpha R) is strictly regulated during mammalian development and tumorigenesis. The molecular mechanisms involved in the specific regulation of PDGF alpha R expression are unknown, but transcriptional regulation of the PDGF alpha R

  13. Expression of hepatocyte growth factor and the proto-oncogenic receptor c-Met in canine osteosarcoma

    NARCIS (Netherlands)

    Fieten, H; Spee, B; Ijzer, J; Kik, M J; Penning, L C; Kirpensteijn, J

    Hepatocyte growth factor (HGF) and the proto-oncogenic receptor c-Met are implicated in growth, invasion, and metastasis in human cancer. Little information is available on the expression and role of both gene products in canine osteosarcoma. We hypothesized that the expression of c-Met is

  14. Positive fibroblast growth factor receptor 3 immunoreactivity is associated with low-grade non-invasive urothelial bladder cancer

    NARCIS (Netherlands)

    C. Poyet (Cédric); T. Hermanns (Thomas); Q. Zhong (Qing); E. Drescher (Eva); D. Eberli (Daniel); M. Burger (Maximilian); F. Hofstaedter (Ferdinand); A. Hartmann (Arndt); R. Stöhr (Robert); E.C. Zwarthoff (Ellen); T. Sulser (Tullio); P.J. Wild (Peter J.)

    2015-01-01

    textabstractIn addition to conventional clinicopathological parameters, molecular markers are also required in order to predict the course of disease in patients with urothelial bladder cancer (BC). Little is known about fibroblast growth factor receptor 3 (FGFR3) immunoreactivity and the clinical

  15. Limited human epidermal growth factor receptor 2 discordance in metastatic breast cancer patients treated with trastuzumab, a population based study

    NARCIS (Netherlands)

    van Rooijen, J. M.; de Munck, L.; de Graaf, J. C.; Siesling, S.; de Vries, E. G.; Boers, J. E.

    Background: Accurate assessment of the human epidermal growth factor receptor 2 (HER2) in breast cancer is essential for proper treatment decisions. HER2 positivity confirmation rates in breast cancer trials by central testing pathology laboratories were reported to be approximately 85%. The aim of

  16. Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Morthorst, Stine Kjær; Mogensen, Johanne Bay

    2017-01-01

    are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Further, we discuss how defects in the coordination...

  17. A nomogram for predicting pathological complete response in patients with human epidermal growth factor receptor 2 negative breast cancer

    International Nuclear Information System (INIS)

    Jin, Xi; Jiang, Yi-Zhou; Chen, Sheng; Yu, Ke-Da; Ma, Ding; Sun, Wei; Shao, Zhi-Min; Di, Gen-Hong

    2016-01-01

    The response to neoadjuvant chemotherapy has been proven to predict long-term clinical benefits for patients. Our research is to construct a nomogram to predict pathological complete response of human epidermal growth factor receptor 2 negative breast cancer patients. We enrolled 815 patients who received neoadjuvant chemotherapy from 2003 to 2015 and divided them into a training set and a validation set. Univariate logistic regression was performed to screen for predictors and construct the nomogram; multivariate logistic regression was performed to identify independent predictors. After performing the univariate logistic regression analysis in the training set, tumor size, hormone receptor status, regimens of neoadjuvant chemotherapy and cycles of neoadjuvant chemotherapy were the final predictors for the construction of the nomogram. The multivariate logistic regression analysis demonstrated that T4 status, hormone receptor status and receiving regimen of paclitaxel and carboplatin were independent predictors of pathological complete response. The area under the receiver operating characteristic curve of the training set and the validation set was 0.779 and 0.701, respectively. We constructed and validated a nomogram to predict pathological complete response in human epidermal growth factor receptor 2 negative breast cancer patients. We also identified tumor size, hormone receptor status and paclitaxel and carboplatin regimen as independent predictors of pathological complete response. The online version of this article (doi:10.1186/s12885-016-2652-z) contains supplementary material, which is available to authorized users

  18. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    Science.gov (United States)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  19. Decreased numbers of chemotactic factor receptors in chronic neutropenia with defective chemotaxis: spontaneous recovery from the neutrophil abnormalities during early childhood

    International Nuclear Information System (INIS)

    Yasui, K.; Yamazaki, M.; Miyagawa, Y.; Komiyama, A.; Akabane, T.

    1987-01-01

    Childhood chronic neutropenia with decreased numbers of chemotactic factor receptors as well as defective chemotaxis was first demonstrated in an 8-month-old girl. Chemotactic factor receptors on neutrophils were assayed using tritiated N-formyl-methionyl-leucyl-phenylalanine ( 3 H-FMLP). The patient's neutrophils had decreased numbers of the receptors: numbers of the receptors were 20,000 (less than 3 SD) as compared with those of control cells of 52,000 +/- 6000 (mean +/- SD) (n = 10). The neutropenia disappeared spontaneously by 28 months of age parallel with the improvement of chemotaxis and increase in numbers of chemotactic factor receptors. These results demonstrate a transient decrease of neutrophil chemotactic factor receptors as one of the pathophysiological bases of a transient defect of neutrophil chemotaxis in this disorder

  20. Experimental diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney

    International Nuclear Information System (INIS)

    Werner, H.; Shen-Orr, Z.; Stannard, B.; Burguera, B.; Roberts, C.T. Jr.; LeRoith, D.

    1990-01-01

    Insulinlike growth factor I (IGF-I) is a mitogenic hormone with important regulatory roles in growth and development. One of the target organs for IGF-I action is the kidney, which synthesizes abundant IGF-I receptors and IGF-I itself. To study the involvement of IGF-I and the IGF-I receptor in the development of nephropathy, one of the major complications of diabetes mellitus, we measured the expression of these genes in the kidney and in other tissues of the streptozocin-induced diabetic rat. The binding of 125I-labeled IGF-I to crude membranes was measured in the same tissues. We observed a 2.5-fold increase in the steady-state level of IGF-I-receptor mRNA in the diabetic kidney, which was accompanied by a 2.3-fold increase in IGF-I binding. In addition to this increase in IGF-I binding to the IGF-I receptor, there was also binding to a lower-molecular-weight material that may represent an IGF-binding protein. No change was detected in the level of IGF-I-peptide mRNA. Similarly, IGF-II-receptor mRNA levels and IGF-II binding were significantly increased in the diabetic kidney. IGF-I- and IGF-II-receptor mRNA levels and IGF-I and IGF-II binding returned to control values after insulin treatment. Because the IGF-I receptor is able to transduce mitogenic signals on activation of its tyrosine kinase domain, we hypothesize that, among other factors, high levels of receptor in the diabetic kidney may also be involved in the development of diabetic nephropathy. Increased IGF-II-receptor expression in the diabetic kidney may be important for the intracellular transport and packaging of lysosomal enzymes, although a role for this receptor in signal transduction cannot be excluded. Finally, the possible role of IGF-binding proteins requires further study

  1. Reproductive factors and risk of hormone receptor positive and negative breast cancer: a cohort study

    International Nuclear Information System (INIS)

    Ritte, Rebecca; Grote, Verena; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Berrino, Franco; Mattiello, Amalia; Tumino, Rosario; Tikk, Kaja; Sacerdote, Carlotta; Quirós, José Ramón; Buckland, Genevieve; Molina-Montes, Esther; Chirlaque, María-Dolores; Ardanaz, Eva; Amiano, Pilar; Bueno-de-Mesquita, H Bas; Gils, Carla H van; Peeters, Petra HM; Lukanova, Annekatrin; Wareham, Nick; Khaw, Kay-Tee; Key, Timothy J; Travis, Ruth C; Weiderpass, Elisabete; Dumeaux, Vanessa; Lund, Eliv; Sund, Malin; Andersson, Anne; Romieu, Isabelle; Tjønneland, Anne; Rinaldi, Sabina; Vineis, Paulo; Merritt, Melissa A; Riboli, Elio; Kaaks, Rudolf; Olsen, Anja; Overvad, Kim; Dossus, Laure; Fournier, Agnès; Clavel-Chapelon, Françoise

    2013-01-01

    The association of reproductive factors with hormone receptor (HR)-negative breast tumors remains uncertain. Within the EPIC cohort, Cox proportional hazards models were used to describe the relationships of reproductive factors (menarcheal age, time between menarche and first pregnancy, parity, number of children, age at first and last pregnancies, time since last full-term childbirth, breastfeeding, age at menopause, ever having an abortion and use of oral contraceptives [OC]) with risk of ER-PR- (n = 998) and ER+PR+ (n = 3,567) breast tumors. A later first full-term childbirth was associated with increased risk of ER+PR+ tumors but not with risk of ER-PR- tumors (≥35 vs. ≤19 years HR: 1.47 [95% CI 1.15-1.88] p trend < 0.001 for ER+PR+ tumors; ≥35 vs. ≤19 years HR: 0.93 [95% CI 0.53-1.65] p trend = 0.96 for ER-PR- tumors; P het = 0.03). The risk associations of menarcheal age, and time period between menarche and first full-term childbirth with ER-PR-tumors were in the similar direction with risk of ER+PR+ tumors (p het = 0.50), although weaker in magnitude and statistically only borderline significant. Other parity related factors such as ever a full-term birth, number of births, age- and time since last birth were associated only with ER+PR+ malignancies, however no statistical heterogeneity between breast cancer subtypes was observed. Breastfeeding and OC use were generally not associated with breast cancer subtype risk. Our study provides possible evidence that age at menarche, and time between menarche and first full-term childbirth may be associated with the etiology of both HR-negative and HR-positive malignancies, although the associations with HR-negative breast cancer were only borderline significant

  2. Human Epidermal Growth Factor Receptor 2 Overexpression in Micropapillary and Other Variants of Urothelial Carcinoma.

    Science.gov (United States)

    Behzatoğlu, Kemal; Yörükoğlu, Kutsal; Demir, Hale; Bal, Nebil

    2016-06-21

    Human epidermal growth factor receptor 2 (HER2) protein overexpression or gene amplification has been shown in urothelial bladder cancer. This could be helpful when using targeted anti-HER2 therapy on these tumors. To evaluate HER2 immunohistochemical expression in conventional urothelial carcinoma (UC), in situ UC, and UC variants primarily in micropapillary urothelial carcinoma (MPUC). The study evaluated 60 MPUC cases; 25 invasive, 20 low-grade noninvasive, and 10 high-grade noninvasive UC cases; 8 in situ UC cases; and 69 UC variant cases. The immunohistochemistry staining was scored according to recommendations of the American Society of Clinical Oncology/College of American Pathologists 2013 HER2 test guideline established for breast cancer and only 3+ staining was considered HER2 overexpression. HER2 overexpression was determined by 3+ staining. 34 of 60 MPUC cases (56%) showed HER2 overexpression (3+ staining). We observed 3+ staining HER2 overexpression in nine of 25 conventional invasive UC cases (36%), four of eight in situ UC cases (50%), and three of six lipid cell variant cases (50%). 3+ staining HER2 overexpression was not seen in eight glandular, six small cell, and five sarcomatoid variant cases. HER2 overexpression was negative in the 20 low-grade noninvasive UC cases but positive in two of the 10 high-grade noninvasive UC cases (20%). We observed HER2 overexpression most commonly in MPUC cases. We also found HER2 overexpression in conventional invasive and in situ UC cases. Pure in situ UC and conventional invasive UC, especially MPUC, could be candidate tumors for treatment with anti-HER2 antibody (trastuzumab therapy). Targeted therapy has a limited place in treatment of bladder cancer. In this study, human epidermal growth factor receptor 2 (HER2) overexpression in bladder carcinomas was evaluated in a large number of cases. Anti-HER2 therapy could be used in bladder cancers, as in breast and gastric cancers. Copyright © 2016 European

  3. Significance of epidermal growth factor receptor signaling for acquisition of meiotic and developmental competence in mammalian oocytes

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Blaha, Milan; Němcová, Lucie

    2017-01-01

    Roč. 97, č. 4 (2017), s. 537-549 ISSN 0006-3363 R&D Projects: GA MZe(CZ) QJ1510138; GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : amphiregulin * cumulus cells * epidermal growth factor receptor Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Reproductive biology (medical aspects to be 3) Impact factor: 3.432, year: 2016

  4. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    International Nuclear Information System (INIS)

    Sara, V.; Prisell, Per; Sjoegren, Barbro; Enberg, Goesta

    1986-01-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of 125 1-IGF-2 but not 125 1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. (author)

  5. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Sara, V; Prisell, P; Sjoegren, B; Persson, L; Boethius, J; Enberg, G

    1986-09-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of /sup 125/1-IGF-2 but not /sup 125/1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. 14 refs.

  6. N-terminal pro-brain natriuretic peptide and abnormal brain aging: The AGES-Reykjavik Study.

    Science.gov (United States)

    Sabayan, Behnam; van Buchem, Mark A; de Craen, Anton J M; Sigurdsson, Sigurdur; Zhang, Qian; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J

    2015-09-01

    To investigate the independent association of serum N-terminal fragment of the prohormone natriuretic peptide (NT-proBNP) with structural and functional features of abnormal brain aging in older individuals. In this cross-sectional study based on the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study, we included 4,029 older community-dwelling individuals (born 1907 to 1935) with a measured serum level of NT-proBNP. Outcomes included parenchymal brain volumes estimated from brain MRI, cognitive function measured by tests of memory, processing speed, and executive functioning, and presence of depressive symptoms measured using the Geriatric Depression Scale. In a substudy, cardiac output of 857 participants was assessed using cardiac MRI. In multivariate analyses, adjusted for sociodemographic and cardiovascular factors, higher levels of NT-proBNP were independently associated with lower total (p brain volumes. Likewise, in multivariate analyses, higher levels of NT-proBNP were associated with worse scores in memory (p = 0.005), processing speed (p = 0.001), executive functioning (p brain parenchymal volumes, impaired executive function and processing speed, and higher depressive symptoms were independent of the level of cardiac output. Higher serum levels of NT-proBNP, independent of cardiovascular risk factors and a measure of cardiac function, are linked with alterations in brain structure and function. Roles of natriuretic peptides in the process of brain aging need to be further elucidated. © 2015 American Academy of Neurology.

  7. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  8. Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity

    DEFF Research Database (Denmark)

    Engelmann, H; Holtmann, H; Brakebusch, C

    1990-01-01

    Immunological cross-reactivity between tumor necrosis factor (TNF) binding proteins which are present in human urine (designated TBPI and TBPII) and two molecular species of the cell surface receptors for TNF is demonstrated. The two TNF receptors are shown to be immunologically distinct, to differ....... These antibodies are cytotoxic to cells which are sensitive to TNF toxicity, induce resistance to TNF toxicity, enhance the incorporation of thymidine into normal fibroblasts, inhibit the growth of chlamydiae, and induce the synthesis of prostaglandin E2. Monovalent F(ab) fragments of the polyclonal antibodies...

  9. Overexpression of Insulin-like Growth Factor-1 Receptor Is Associated With Penile Cancer Progression.

    Science.gov (United States)

    Ball, Mark W; Bezerra, Stephania M; Chaux, Alcides; Faraj, Sheila F; Gonzalez-Roibon, Nilda; Munari, Enrico; Sharma, Rajni; Bivalacqua, Trinity J; Netto, George J; Burnett, Arthur L

    2016-06-01

    To evaluate insulin-like growth factor-1 receptor (IGF1R) expression in penile cancer and its association with oncologic outcomes. Tissue microarrays were constructed from 53 patients treated at our institution. Expression of IGF1R was evaluated using a Her2-like scoring system. Overexpression was defined as 1+ or greater membranous staining. Association of IGF1R expression with pathologic features was assessed with comparative statistics, and association with local recurrence, progression to nodal or distance metastases, or death was assessed with Kaplan-Meier survival analysis and Cox proportional hazard regression models. Overall, IGF1R overexpression was seen in 33 (62%) cases. With a median follow-up of 27.8 months, IGF1R overexpression was associated with inferior progression-free survival (PFS) (P  =  .003). In a multivariable model controlling for grade, T stage, perineural invasion, and lymphovascular invasion, IGF1R expression was independently associated with disease progression (hazard ratio 2.3, 95% confidence interval 1.1-5.1, P  =  .03. Comparing patients without IGF1R overexpression to those with overexpression, 5-year PFS was 94.1% vs 45.8%. IGF1R overexpression was associated with inferior PFS in penile cancer. Drugs that target IGF1R and downstream messengers may have a therapeutic benefit in patients that exhibit IGF1R overexpression. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Critical role of tumor necrosis factor receptor 1 in the pathogenesis of pulmonary emphysema in mice.

    Science.gov (United States)

    Fujita, Masaki; Ouchi, Hiroshi; Ikegame, Satoshi; Harada, Eiji; Matsumoto, Takemasa; Uchino, Junji; Nakanishi, Yoichi; Watanabe, Kentaro

    2016-01-01

    COPD is a major cause of chronic morbidity and mortality throughout the world. Although tumor necrosis factor-α (TNF-α) has a critical role in the development of COPD, the role of different TNF receptors (TNFRs) in pulmonary emphysema has not been resolved. We aimed to clarify the role of TNFRs in the development of pulmonary emphysema. TNF-α transgenic mice, a murine model of COPD in which the mice spontaneously develop emphysema with a large increase in lung volume and pulmonary hypertension, were crossed with either TNFR1-deficient mice or TNFR2-deficient mice. After 6 months, the gross appearance of the lung, lung histology, and pulmonary and cardiac physiology were determined. In addition, the relationship between apoptosis and emphysema was investigated. Pulmonary emphysema-like changes disappeared with deletion of TNFR1. However, slight improvements were attained with deletion of TNFR2. Apoptotic cells in the interstitium of the lung were observed in TNF-α transgenic mice. The apoptotic signals through TNFR1 appear critical for the pathogenesis of pulmonary emphysema. In contrast, the inflammatory process has a less important role for the development of emphysema.

  11. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  12. Leukemia inhibitory factor promote trophoblast invasion via urokinase-type plasminogen activator receptor in preeclampsia.

    Science.gov (United States)

    Zheng, Qin; Dai, Kuixing; Cui, Xinyuan; Yu, Ming; Yang, Xuesong; Yan, Bin; Liu, Shuai; Yan, Qiu

    2016-05-01

    Preeclampsia is a pregnancy-related syndrome which can cause perinatal mortality and morbidity. Inadequate invasion by trophoblast cells may lead to poor perfusion of the placenta, even result in preeclampsia. Understanding the molecular mechanisms underlying placentation facilitates the better intervention of preeclampsia. Urokinase-type plasminogen activator receptor (uPAR) is involved in the physiological and pathological processes. Leukemia inhibitory factor (LIF) is an important regulator in the establishment of pregnancy. However, the expression of uPAR in preeclamptic patients and its relationship with LIF remains unclear. In the current study, we found that the level of uPAR was relatively lower in the placentas from preeclamptic patients as compared with normal pregnant women. LIF promoted trophoblast cell outgrowth by upregulating uPAR in an explants culture, and LIF also enhanced migration and invasion potential through uPAR in trophoblast JAR and JEG-3 cell lines, and with increased gelatinolytic activities of matrix metalloproteinase 2 (MMP-2). The effect of LIF and uPAR on trophoblast migration and invasion was mediated by PI3K/AKT signaling pathway. Our data indicates the roles of LIF in promoting trophoblast migration and invasion through uPAR and suggest that abnormal expression of uPAR might be associated with the etiology of preeclampsia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Receptor activator of nuclear factor kappa B (RANK as a determinant of peri-implantitis

    Directory of Open Access Journals (Sweden)

    Rakić Mia

    2013-01-01

    Full Text Available Background/Aim. Peri-implantitis presents inflammatory process that affects soft and hard supporting tissues of osseointegrated implant based on inflammatory osteoclastogenesis. The aim of this study was to investigate whether receptor activator of nuclear factor kappa B (RANK concentrations in peri-implant crevicular fluid could be associated with clinical parameters that reflect inflammatory nature of peri-implantitis. Methods. The study included 67 patients, 22 with diagnosed peri-implantitis, 22 persons with healthy peri-implant tissues and 23 patients with periodontitis. Clinical parameters from each patient were recorded and samples of peri-implant/gingival crevicular fluid were collected for the enzyme-linked immunosorbent assay (ELISA analysis. Results. RANK concentration was significantly increased in samples from the patients with periimplantitis when compared to healthy implants (p < 0.0001, where the average levels were 9 times higher. At the same time RANK concentration was significantly higher in periimplantitis than in periodontitis sites (p < 0.0001. In implant patients pocket depths and bleeding on probing values were positively associated with high RANK concentrations (p < 0.0001. Conclusion. These results revealed association of increased RANK concentration in samples of periimplant/ gingival crevicular fluid with peri-implant inflammation and suggests that RANK could be a pathologic determinant of peri-implantitis, thereby a potential parameter in assessment of peri-implant tissue inflammation and a potential target in designing treatment strategies.

  14. Inhibitors of the epidermal growth factor receptor in apple juice extract.

    Science.gov (United States)

    Kern, Melanie; Tjaden, Zeina; Ngiewih, Yufanyi; Puppel, Nicole; Will, Frank; Dietrich, Helmut; Pahlke, Gudrun; Marko, Doris

    2005-04-01

    The polyphenol-rich extract of a consumer-relevant apple juice blend was found to potently inhibit the growth of the human colon cancer cell line HT29 in vitro. The epidermal growth factor receptor (EGFR) and its subsequent signaling cascade play an important role in the regulation of cell proliferation in HT29 cells. The protein tyrosine kinase activity of an EGFR preparation was effectively inhibited by the polyphenol-rich apple juice extract. Treatment of intact cells with this extract resulted in the suppression of the subsequent mitogen-activated protein kinase cascade. Amongst the so far identified apple juice constituents, the proanthocyanidins B1 and B2 as well as quercetin-3-glc (isoquercitrin) and quercetin-3-gal (hyperoside) were found to possess substantial EGFR-inhibitory properties. However, as to be expected from the final concentration of these potential EGFR inhibitors in the original polyphenol-rich extract, a synthetic mixture of the apple juice constituents identified and available so far, including both proanthocyanidins and the quercetin glycosides, showed only marginal inhibitory effects on the EGFR. These results permit the assumption that yet unknown constituents contribute substantially to the potent EGFR-inhibitory properties of polyphenol-rich apple juice extract. In summary, the polyphenol composition of apple juice possesses promising growth-inhibitory properties, affecting proliferation-associated signaling cascades in colon tumor cells.

  15. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. [Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology/Oncology, Boston, MA (United States)

    2014-09-05

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  16. Expression of granulocyte colony-stimulating factor receptor correlates with prognosis in oral and mesopharyngeal carcinoma.

    Science.gov (United States)

    Tsuzuki, H; Fujieda, S; Sunaga, H; Noda, I; Saito, H

    1998-02-15

    Granulocyte colony-stimulating factor receptors (G-CSFRs) have been observed on the surface of not only hematopoietic cells but also several cancer cells. The stimulation of G-CSF has been demonstrated to induce proliferation and activation of G-CSFR-positive cells. In this study, we investigated the expression of G-CSFR on the surface of tumor cells and G-CSF production in oral and mesopharyngeal squamous cell carcinoma (SCC) by an immunohistochemical approach. Of 58 oral and mesopharyngeal SCCs, 31 cases (53.4%) and 36 cases (62.1%) were positive for G-CSFR and G-CSF, respectively. There was no association between G-CSFR expression and G-CSF staining. In the group positive for G-CSFR expression, relapse was significantly more likely after primary treatment (P = 0.0069), whereas there was no association between G-CSFR expression and age, sex, tumor size, lymph node metastasis, and clinical stage. Also, the G-CSFR-positive groups had a significantly lower disease-free and overall survival rate than the G-CSFR-negative groups (P = 0.0172 and 0.0188, respectively). However, none of the clinical markers correlated significantly with G-CSF staining, nor did the status of G-CSF production influence the overall survival. The results imply that assessment of G-CSFR may prove valuable in selecting patients with oral and mesopharyngeal SCC for aggressive therapy.

  17. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease.

    Science.gov (United States)

    Cortés-Ramírez, Dionisio-Alejandro; Rodríguez-Tojo, María-Jose; Coca-Meneses, Juan-Carlos; Marichalar-Mendia, Xabier; Aguirre-Urizar, José-Manuel

    2014-09-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk.

  18. Involvement of Fibroblast Growth Factor Receptor Genes in Benign Prostate Hyperplasia in a Korean Population

    Directory of Open Access Journals (Sweden)

    Hae Jeong Park

    2013-01-01

    Full Text Available Fibroblast growth factors (FGFs and their receptors (FGFRs have been implicated in prostate growth and are overexpressed in benign prostatic hyperplasia (BPH. In this study, we investigated whether single nucleotide polymorphisms (SNPs of the FGFR genes (FGFR1 and FGFR2 were associated with BPH and its clinical phenotypes in a population of Korean men. We genotyped four SNPs in the exons of FGFR1 and FGFR2 (rs13317 in FGFR1; rs755793, rs1047100, and rs3135831 in FGFR2 using direct sequencing in 218 BPH patients and 213 control subjects. No SNPs of FGFR1 or FGFR2 genes were associated with BPH. However, analysis according to clinical phenotypes showed that rs1047100 of FGFR2 was associated with prostate volume in BPH in the dominant model (GA/AA versus GG, P = 0.010. In addition, a significant association was observed between rs13317 of FGFR1 and international prostate symptom score (IPSS in the additive (TC versus CC versus TT, P = 0.0022 and dominant models (TC/CC versus TT, P = 0.005. Allele frequency analysis also showed significant association between rs13317 and IPSS (P = 0.005. These results suggested that FGFR genes could be related to progression of BPH.

  19. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    International Nuclear Information System (INIS)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B.

    2014-01-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC

  20. Systemic Hypoxia Changes the Organ-Specific Distribution of Vascular Endothelial Growth Factor and Its Receptors

    Science.gov (United States)

    Marti, Hugo H.; Risau, Werner

    1998-12-01

    Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.

  1. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Optimization of 1H-indazol-3-amine derivatives as potent fibroblast growth factor receptor inhibitors.

    Science.gov (United States)

    Cui, Jing; Peng, Xia; Gao, Dingding; Dai, Yang; Ai, Jing; Li, Yingxia

    2017-08-15

    Fibroblast growth factor receptor (FGFR) is a potential target for cancer therapy because of its critical role in promoting cancer formation and progression. In a continuing effort to improve the cellular activity of hit compound 7r bearing an indazole scaffold, which was previously discovered by our group, several compounds harnessing fluorine substituents were designed, synthesized and biological evaluated. Besides, the region extended out to the ATP binding pocket toward solvent was also explored. Among them, compound 2a containing 2,6-difluoro-3-methoxyphenyl residue exhibited the most potent activities (FGFR1: less than 4.1nM, FGFR2: 2.0±0.8nM). More importantly, compound 2a showed an improved antiproliferative effect against KG1 cell lines and SNU16 cell lines with IC 50 values of 25.3±4.6nM and 77.4±6.2nM respectively. Copyright © 2017. Published by Elsevier Ltd.

  3. Catalase reverses tumorigenicity in a malignant cell line by an epidermal growth factor receptor pathway.

    Science.gov (United States)

    Finch, Joanne S; Tome, Margaret E; Kwei, Kevin A; Bowden, G Tim

    2006-03-01

    We have used a keratinocyte in vivo/in vitro cell model to test the hypothesis that hydrogen peroxide acts as a signaling molecule, contributing to proliferation and tumorigenesis. A cell line, 6M90, that produces squamous cell carcinoma (SCC), has high levels of ROS and low levels of catalase. A new cell line, MTOC2, generated from parental 6M90 cells by introduction of a Tet-responsive catalase transgene, effectively expressed higher peroxisomal catalase. Increased catalase expression diminished constitutive ROS and enhanced viability after treatment with hydrogen peroxide. Protein tyrosine phosphatase activity was higher in the MTOC2 cells with high catalase, consistent with detection of a lower level of phosphorylation at tyrosine 1068 of the epidermal growth factor receptor (EGF-R). Transcription of downstream c-fos, AP-1 transactivation and cell proliferation were higher in the low catalase cells. An EGF-R inhibitor, AG1478, blocks the higher AP-1 transactivation and cell proliferation of the low catalase 6M90 cells. Tumorigenesis in SCID mice was greatly diminished in the high catalase cells. Our data suggest that hydrogen peroxide functions as a signaling molecule that can modulate activity of a protein tyrosine phosphatase/(s) resulting in phosphorylation of tryrosine/(s) on the EGF-R. Therefore, catalase acts as a tumor-suppressor gene in part by decreasing EGF-R signaling.

  4. Molecular Imaging of Hepatocellular Carcinoma Xenografts with Epidermal Growth Factor Receptor Targeted Affibody Probes

    Directory of Open Access Journals (Sweden)

    Ping Zhao

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is a highly aggressive and lethal cancer. It is typically asymptomatic at the early stage, with only 10%–20% of HCC patients being diagnosed early enough for appropriate surgical treatment. The delayed diagnosis of HCC is associated with limited treatment options and much lower survival rates. Therefore, the early and accurate detection of HCC is crucial to improve its currently dismal prognosis. The epidermal growth factor receptor (EGFR has been reported to be involved in HCC tumorigenesis and to represent an attractive target for HCC imaging and therapy. In this study, an affibody molecule, Ac-Cys-ZEGFR:1907, targeting the extracellular domain of EGFR, was used for the first time to assess its potential to detect HCC xenografts. By evaluating radio- or fluorescent-labeled Ac-Cys-ZEGFR:1907 as a probe for positron emission tomography (PET or optical imaging of HCC, subcutaneous EGFR-positive HCC xenografts were found to be successfully imaged by the PET probe. Thus, affibody-based PET imaging of EGFR provides a promising approach for detecting HCC in vivo.

  5. Epidermal Growth Factor Receptor Is Related to Poor Survival in Glioblastomas: Single-Institution Experience

    Science.gov (United States)

    Choi, Youngmin; Lee, Hyung-Sik; Hur, Won-Joo; Sung, Ki-Han; Kim, Ki-Uk; Choi, Sun-Seob; Kim, Su-Jin; Kim, Dae-Cheol

    2013-01-01

    Purpose There are conflicting results surrounding the prognostic significance of epidermal growth factor receptor (EGFR) status in glioblastoma (GBM) patients. Accordingly, we attempted to assess the influence of EGFR expression on the survival of GBM patients receiving postoperative radiotherapy. Materials and Methods Thirty three GBM patients who had received surgery and postoperative radiotherapy at our institute, between March 1997 and February 2006, were included. The evaluation of EGFR expression with immunohistochemistry was available for 30 patients. Kaplan-Meier survival analysis and Cox regression were used for statistical analysis. Results EGFR was expressed in 23 patients (76.7%), and not expressed in seven (23.3%). Survival in EGFR expressing GBM patients was significantly less than that in non-expressing patients (median survival: 12.5 versus 17.5 months, p=0.013). Patients who received more than 60 Gy showed improved survival over those who received up to 60 Gy (median survival: 17.0 versus 9.0 months, p=0.000). Negative EGFR expression and a higher radiation dose were significantly correlated with improved survival on multivariate analysis. Survival rates showed no differences according to age, sex, and surgical extent. Conclusion The expression of EGFR demonstrated a significantly deleterious effect on the survival of GBM patients. Therefore, approaches targeting EGFR should be considered in potential treatment methods for GBM patients, in addition to current management strategies. PMID:23225805

  6. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Su Jin [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Kim, Tae Jung [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Samsung Medical Center, Department of Radiology, Seoul (Korea, Republic of); Choi, Yo Won [Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Park, Jeong-Soo [Dankook Universicity, Department of Biochemistry, College of Medicine, Cheonan (Korea, Republic of); Chung, Jin-Haeng [Seoul National University Bundang Hospital, Department of Pathology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Kyung Won [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of)

    2016-10-15

    To correlate imaging features of resected lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutation and the IASLC/ATS/ERS classification histological subtypes. In 250 consecutive patients with resected lung adenocarcinoma, EGFR mutation status was correlated with demographics, imaging features including ground-glass opacity (GGO) proportion and the IASLC/ATS/ERS classification histological subtypes. EGFR mutations were significantly more frequent in women (54.5 % vs. 38.1 %, p = 0.011) and in never-smokers (54.7 % vs. 35.3 %, p = 0.003). GGO proportion was significantly higher in tumours with EGFR mutation than in those without (30.3 ± 33.8 % vs. 19.0 ± 29.3 %, p = 0.005). EGFR mutation was significantly more frequent in tumours with GGO ≥ 50 % and tumours with any GGO (p = 0.026 and 0.008, respectively). Adenocarcinomas with exon 19 or 21 mutation showed significantly higher GGO proportion than that in EGFR wild-type tumours (p = 0.009 and 0.029, respectively). Absence of GGO was an independent predictor of negative EGFR mutation (odds ratio, 1.81; 95 % confidence interval, 1.16-3.04; p = 0.018). GGO proportion in adenocarcinomas with EGFR mutation was significantly higher than that in EGFR wild-type tumours, and the absence of GGO on CT was an independent predictor of negative EGFR mutation. (orig.)

  7. Dialkoxyquinazolines: Screening Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    International Nuclear Information System (INIS)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom, Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor, Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-01-01

    The epidermal growth factor receptor (EGFR), a long-standing drug development target, is also a desirable target for imaging. Sixteen dialkoxyquinazoline analogs, suitable for labeling with positron-emitting isotopes, have been synthesized and evaluated in a battery of in vitro assays to ascertain their chemical and biological properties. These characteristics provided the basis for the adoption of a selection schema to identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of the compounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFR tyrosine kinase. All of the analogs inhibited ligand-induced EGFR tyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimated octanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline as well as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the best combination of characteristics that warrant radioisotope labeling and further evaluation in tumor-bearing mice

  8. Prognostic significance of epidermal growth factor receptor (EGFR) over expression in urothelial carcinoma of urinary bladder.

    Science.gov (United States)

    Hashmi, Atif Ali; Hussain, Zubaida Fida; Irfan, Muhammad; Khan, Erum Yousuf; Faridi, Naveen; Naqvi, Hanna; Khan, Amir; Edhi, Muhammad Muzzammil

    2018-06-07

    Epidermal growth factor receptor (EGFR) has been shown to have abnormal expression in many human cancers and is considered as a marker of poor prognosis. Frequency of over expression in bladder cancer has not been studied in our population; therefore we aimed to evaluate the frequency and prognostic significance of EGFR immunohistochemical expression in locoregional population. We performed EGFR immunohistochemistry on 126 cases of bladder cancer and association of EGFR expression with tumor grade, lamina propria invasion, deep muscle invasion and recurrence of disease was evaluated. High EGFR expression was noted in 26.2% (33 cases), 15.1% (19 cases) and 58.7% (74 cases) revealed low and no EGFR expression respectively. Significant association of EGFR expression was noted with tumor grade, lamina propria invasion, deep muscle invasion and recurrence status while no significant association was seen with age, gender and overall survival. Kaplan- Meier curves revealed significant association of EGFR expression with recurrence while no significant association was seen with overall survival. Significant association of EGFR overexpression with tumor grade, muscularis propria invasion and recurrence signifies its prognostic value; therefore EGFR can be used as a prognostic biomarker in Urothelial bladder carcinoma.

  9. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  10. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  11. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Tae Ryool [Dept. of Radiation Oncology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon (Korea, Republic of); Kim, In Ah [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-03-15

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents.

  12. Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.

    Science.gov (United States)

    Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B

    2012-03-16

    To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.

  13. Humanized versus murine anti-human epidermal growth factor receptor monoclonal antibodies for immunoscintigraphic studies

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alejo A. Morales; Duconge, Jorge; Alvarez-Ruiz, Daniel; Becquer-Viart, Maria de Los Angeles; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Caballero-Torres, Idania; Iznaga-Escobar, Normando

    2000-02-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized antibody h-R3 (IgG{sub 1}), which binds to an extracellular domain of EGF-R, was used to evaluate the biodistribution on nude mice xenografted with A431 epidermoid carcinoma cell line. Results are compared with its murine version ior egf/r3 monoclonal antibody (mAb). Twenty-one athymic female 4NMRI nu/nu mice were injected intravenously with 10 {mu}g/100 {mu}Ci of {sup 99m}Tc-labeled mAbs. The mAb ior C5 that recognizes an antigen expressed preferentially on the surface of malignant and cytoplasm of normal colorectal cells was used as negative control. Immunoreactivity of {sup 99m}Tc-labeled mAbs was measured by enzyme linked immunosorbent assay on A431 cell line and the immunoreactive fractions determined by Lindmo method. Among all organs significant accumulation was found in tumor (6.14{+-}2.50 %ID/g, 5.06{+-}2.61 %ID/g for murine and humanized mAbs, respectively) 4 h after injection. The immunoreactive fractions were found to be 0.88 and 0.81 for murine and humanized mAb, respectively. Thus, we expect better results using the humanized mAb h-R3 for diagnostic immunoscintigraphy.

  14. Humanized versus murine anti-human epidermal growth factor receptor monoclonal ant