WorldWideScience

Sample records for native woody species

  1. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  2. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    Science.gov (United States)

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  3. PHYTOSOCIOLOGY AND STRUCTURAL CHARACTERIZATION OF WOODY REGENERATION FROM A REFORESTATION WITH NATIVE SPECIES IN SOUTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Michel Anderson Almeida Colmanetti

    2016-04-01

    Full Text Available ABSTRACT In Brazil, specifically in São Paulo State, there are guidelines based on the high diversity of tropical forests that instructs the restoration projects in the state (current SMA 32/2014. The main goal of this study was verify the importance and effectiveness of the high diversity of arboreal species originated from a reforestation, and its influence in a woody regenerating composition. We developed a phytosociologic study in a woody regenerating stratum of a nine year old reforestation at a Private Reserve of Natural Heritage (RPPN, in Mogi-Guaçu, São Paulo State. All specimens with height > 30 cm and Diameter at Breast Height (DBH < 5 cm were evaluated. The woody regenerating diversity was smaller than the overstory diversity and the species composition was similar to the overstory. The Simpson index (1-D was 0.85, Shannon index (H' was 2.46 and the Pielou index (J' was 0.60. The zoochoric dispersion syndrome was major among the species. Our results suggest that the use of high diversity of native seedlings in a reforestation leads to high diversity of species in woody regeneration stratum, after one decade of planting.

  4. Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species.

    Science.gov (United States)

    Feng, Yu-Long; Auge, Harald; Ebeling, Susan K

    2007-09-01

    The general-purpose genotype hypothesis and the hypothesis of the evolution of invasiveness predict that invasive species are characterized by particular traits that confer invasiveness. However, these traits are still not well-defined. In this study, ecophysiological traits of eight populations of the invasive shrub Buddleja davidii from a wide range of European locations and five co-occurring native woody species in Germany were compared in a common garden experiment. We hypothesized that the invader has higher resource capture ability and utilization efficiency than the natives. No differences were detected among the eight populations of B. davidii in any of the traits evaluated, indicating that the invader did not evolve during range expansion, thus providing support to the general-purpose genotype hypothesis. The invader showed significantly higher maximum electron transport rate, maximum carboxylation rate, carboxylation efficiency, light-saturated photosynthetic rate (P(max)) and photosynthetic nitrogen utilization efficiency (PNUE) than the five natives. Leaf nitrogen content was not significantly different between the invader and the natives, but the invader allocated more nitrogen to the photosynthetic machinery than the natives. The increased nitrogen content in the photosynthetic machinery resulted in a higher resource capture ability and utilization efficiency in the invader. At the same intercellular CO(2) concentration, P (max) was significantly higher in the invader than in the natives, again confirming the importance of the higher nitrogen allocation to photosynthesis. The invader reduced metabolic cost by increasing the ratio of P (max) to dark respiration rate (R (d)), but it did not reduce carbon cost by increasing the specific leaf area and decreasing leaf construction cost. The higher nitrogen allocation to the photosynthetic machinery, P(max), PNUE and P(max)/R(d) may facilitate B. davidii invasion, although studies involving a wide range of

  5. Mechanisms of salt tolerance in seedlings of six woody native species of the Brazilian semi-arid

    Directory of Open Access Journals (Sweden)

    Michele Campos Bessa

    Full Text Available ABSTRACT The aim of this study was to evaluate the salt tolerance and physiological responses of six woody native species of the Caatinga ecosystem, on a soil salinity gradient in a greenhouse. The experimental design was of randomized blocks in a split-plot scheme; six plant species native of the Caatinga in the plots, and five levels of soil salinity in the sub-plots (1.2, 2.7, 4.7, 6.7 and 8.4 dS m-1, with five replications. The results demonstrate that species of the Caatinga ecosystem display a high capacity for adaptation in soils of low and moderate salinity. However, considering the reduction in total dry matter production at the highest salinity level, it was seen that only the species M. urundeuva was tolerant to salinity, and H. impetiginosus and E. velutina behaved as moderately tolerant. In the present study, it was also not possible to establish a clear relationship between the leaf gas exchange or the accumulation of organic solutes in the leaves with the degrees of salt tolerance. On the other hand, a strong relationship was seen between the Na+/K+ ratio and the degree of tolerance of the species under study, with the more tolerant species displaying less variation and lower values with the increases in soil salinity. These species, however, showed a low capacity for retaining Na+ in the stems, which may be a limiting factor on their use in revegetation projects of those areas degraded by secondary salinization.

  6. Impacts of Stream Flow and Climate Variability on Native and Invasive Woody Species in a Riparian Ecosystem of a Semi-Arid Region of the Great Plains, USA

    Science.gov (United States)

    Skolaut, K.; Awada, T.; Cherubini, P.; Schapaugh, A.

    2012-12-01

    Riparian ecosystems support diverse plant communities that exert direct and indirect biological, physical and chemical influence on, and are influenced by, adjacent water through both above and below-ground interactions. Historically, riparian areas of the northern Great Plains, US have been dominated by the native Populus deltoides (eastern cottonwood). This species relies on regular floods for regeneration and groundwater access for success. Over the past sixty years, changes in flow management and agricultural practices, coupled with climate variability and drought have altered stream flow and caused a dramatic decline in stream water yields and levels of groundwater. These and other biotic and biotic factors have promoted the expansion of the upland native woody species Juniperus virginiana (eastern redcedar), and the invasion of the non-native (introduced) Elaeagnus angustifolia (Russian olive) into riparian ecosystems. This invasion has further altered the water balance in the system and exasperated the problem of water scarcity with negative feedback on ecosystem services and growth of native woody species. The ability of P. deltoides to re-establish and grow is of concern for natural resource managers. Tree ring analysis of annual growth rates were used to determine 1) the responses P. deltoides and invasive J. virginiana and E. angustifulia to climate variability and stream flow regulation, and 2) the impacts of the two invasive species on the growth of native P. deltoides. Results show a dependency of growth for P. deltoides on the previous year summer temperature, and a less significant correlation to annual stream flow. J. virginiana showed the highest correlation to annual stream flow, as well as some dependency on the previous growing season precipitation. While the growth of both P. deltoides and J. virginiana displayed greater dependence on climatic factors, E. angustifolia displayed the lowest mean basal area growth and deviation from the growth. E

  7. Native and exotic woody vegetation communities in domestic gardens in relation to social and environmental factors

    Directory of Open Access Journals (Sweden)

    Yolanda M. van Heezik

    2014-12-01

    Full Text Available Vegetation in private gardens contributes significantly to plant species richness and vegetation volume across urban areas. Drivers of garden diversity and structure are complex, reflecting the diversity of social, cultural, and socioeconomic characteristics of the householders who manage their gardens, as well as their predecessors. Here we investigate the woodiness of gardens, and focus on (1 the prevalence of native versus exotic woody plants and (2 the influence of characteristics of garden owners, the gardens, and their proximity to neighborhood green spaces to identify the degree to which these factors explain patterns in native and exotic woody species communities in entire (back and front gardens in southern temperate New Zealand. We found few consistent patterns in structure in woody species community composition. Outlying gardens were characterized by low species richness and abundance. Thirty-seven species commonly occurred across most gardens: most of these were exotic. Twelve native species were common throughout most gardens. There was significant but weak matching to social and environmental variables: vegetated area, species knowledge, and education explained pattern in native communities, whereas vegetated area, species knowledge, and householder age explained variation in exotic communities. Native trees > 5 m tall occurred in only 58% of gardens. Tall tree density was 10/ha, and 29% of gardens lacked any trees > 5 m. Tree presence was weakly (positively associated with extent and proximity of neighborhood green space. We suggest that the legacy of previous owners' gardening practices is important to consider when identifying drivers of garden plant community structure.

  8. Determination of native woody landscape plants in Bursa and Uludag

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Around Bursa and Uludag is a wide range of native woody plants of which are commonly used for landscape planning ... such as wet or dry, sun or shade, high or low fertility soils ... role on rural and urban landscape planning.

  9. Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India

    Institute of Scientific and Technical Information of China (English)

    Anand N. Singh; ZEHG De-hui; CHEN Fu-sheng

    2005-01-01

    Total concentration of heavy metals(Cd, Cr, Cu, Fe, Pb, Ni, Mn and Zn) was estimated in the redeveloping soil of mine spoil under 5-yr old plantations of four woody species namely: Albizia lebbeck, Albizia procera, Tectona grandis and Dendrocalamus strictus.The data recorded in the present study were compared with other unplanted coal mine spoil colliery, which was around to the study site and adjoining area of dry tropical forest. Among all the heavy metals, the maximum concentration was found for Fe and minimum for Cd.However, among all four species, total concentrations of these heavy metals were recorded maximally in the plantation plots of T. grandis except for Fe, while minimally in A. lebbeck except for Zn, whereas, the maximum concentration of Fe and Zn was in the plantation plots of D. strictus and A. procera. Statistical analysis revealed significant differences due to species for all the heavy metals except Cu.Among four species, A. lebbeck, A. procera and D. strictus showed more efficient for reducing heavy metal concentrations whereas T. grandis was not more effective to reduce heavy metal concentrations in redeveloping soil of mine spoil.

  10. Energy product options for Eucalyptus species grown as short rotation woody crops

    Science.gov (United States)

    Donald Rockwood; Alan W. Rudie; Sally A. Ralph; J.Y. Zhu; Jerrold E. Winandy

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida...

  11. Species composition and diversity of non-forest woody vegetation along roads in the agricultural landscape

    Directory of Open Access Journals (Sweden)

    Tóth Attila

    2016-03-01

    Full Text Available Non-forest woody vegetation represents an important component of green infrastructure in the agricultural landscape, where natural and semi-natural forest cover has only a low land use proportion. This paper focuses on linear woody vegetation structures along roads in the agricultural landscape and analyses them in three study areas in the Nitra Region, Slovakia. We evaluate species composition and diversity, species occurrence frequency or spatial distribution, their structure according to relatively achievable age and origin. For the evaluation of occurrence frequency, a Frequency Factor was proposed and applied. This factor allows a better comparison of different study areas and results in more representative findings. The study areas were divided into sectors based on visual landscape features, which are easily identifiable in the field, such as intersections and curves in roads, and intersections of roads with other features, such as cadastral or land boundaries, watercourses, etc. Based on the species abundance, woody plants present within the sectors were categorised into 1 predominant, 2 complementary and 3 mixed-in species; and with regard to their origin into 1 autochthonous and 2 allochthonous. Further, trees were categorised into 1 long-lived, 2 medium-lived and 3 short-lived tree species. The main finding is that among trees, mainly allochthonous species dominated. Robinia pseudoacacia L. was the predominant tree species in all three study areas. It was up to 4 times more frequent than other predominant tree species. Introduced tree species prevailed also among complementary and mixed-in species. Among shrubs, mainly native species dominated, while non-native species had a significantly lower proportion and spatial distribution. Based on these findings, several measures have been proposed to improve the overall ecological stability, the proportion and spatial distribution of native woody plant species. The recommendations and

  12. Multiple strategies for drought survival among woody plant species

    OpenAIRE

    Pivovaroff, AL; Pasquini, SC; De Guzman, ME; Alstad, KP; Stemke, JS; Santiago, LS

    2015-01-01

    © 2015 British Ecological Society Drought-induced mortality and regional dieback of woody vegetation are reported from numerous locations around the world. Yet within any one site, predicting which species are most likely to survive global change-type drought is a challenge. We studied the diversity of drought survival traits of a community of 15 woody plant species in a desert-chaparral ecotone. The vegetation was a mix of chaparral and desert shrubs, as well as endemic species that only occ...

  13. Photosynthetic and physiological responses of native and exotic tidal woody seedlings to simulated tidal immersion

    Science.gov (United States)

    Wu, Tonggui; Gu, Shenhua; Zhou, Hefeng; Wang, G. Geoff; Cheng, Xiangrong; Yu, Mukui

    2013-12-01

    Hibiscus hamabo, a native tidal woody species, and Myrica cerifera, an exotic tidal woody species, have been widely planted on coastal beaches in subtropical China. However, whether there are differences in physiological response and tolerance to immersion between the two tidal species is still unknown. Our objectives were to evaluate differences in the photosynthetic and physiological responses to tidal immersion for the two species in the context of sea level rise. With increasing immersion, net photosynthesis, stomatal conductance, intercellular CO2 concentration, and light saturation point declined progressively for both species, whereas dark respiration and light compensation point showed the reverse trend. Lower variation was observed in H. hamabo than in M. cerifera for each index in the same treatment. Photosynthetic ability and utilization of light, especially under high light intensity, decreased for both species. Leaf soluble sugar and protein contents, and glycolate oxidase activity first increased and then decreased with increasing of immersion degree, with the higher values observed in the W4 (4 h duration, 15 cm depth) and W6 (6 h duration, 25 cm depth) treatments for H. hamabo, and W2 (2 h duration, 5 cm depth) and W4 treatments for M. cerifera. These findings indicate that H. hamabo has a better ability to keep the reduction of photosynthesis at a minimum through soluble substance regulated osmotic potential and avoiding excess light damage to the photosynthetic system through increased photorespiration, heat dissipation, chlorophyll fluorescence. Our results suggest that H. hamabo is more tolerant to tidal immersion than M. cerifera, and therefore it is better adapted to the anticipated sea level rise in future.

  14. Increasing Woody Species Diversity for Sustainable Limestone Quarry Reclamation in Canada

    Directory of Open Access Journals (Sweden)

    M. Anne Naeth

    2013-03-01

    Full Text Available Environmental sustainability of post mined limestone quarries often requires reclamation to a diverse woody plant community. Woody species diversity may be severely limited if only nursery stock is relied on for propagation material; thus other sources must be evaluated. To address woody species establishment and survival from different propagule sources at a limestone quarry in western Canada, native trees (4 and shrubs (3 were seeded and transplanted into amended substrates (wood shavings, clean fill, unamended control in two seasons (spring, fall. Plant sources were nursery stock, local forest wildlings, seeds and forest soil (LFH mineral soil mix. Plant emergence, survival, height, health and browsing were evaluated over four years. Survival was greater with fall transplanted seedlings than with spring transplanted. Survival was greater for Picea glauca, Pseudotsuga menziesii and Populus tremuloides from nursery than local source stock. Seedlings from seeds and LFH did not survive for any of the species. Growth and survival were affected by bighorn sheep. Amendments did not improve plant establishment. Diversity of the woody plant community was increased at the quarry in spite of the severe conditions.

  15. Sensitivity to zinc of Mediterranean woody species important for restoration.

    Science.gov (United States)

    Disante, Karen B; Fuentes, David; Cortina, Jordi

    2010-04-15

    Heavy metals have increased in natural woodlands and shrublands over the last several decades as a consequence of anthropogenic activities. However, our knowledge of the effects of these elements on woody species is scarce. In this study, we examined the responses of six Mediterranean woody species to increasing levels of zinc in hydroponic culture and discussed the possible implications for the restoration of contaminated sites. The species used, Pinus pinea L., Pinus pinaster Ait., Pinus halepensis Mill., Tetraclinis articulata (Vahl) Mast., Rhamnus alaternus L. and Quercus suber L. represent a climatic gradient from dry sub-humid to semi-arid conditions. Zinc concentrations in shoots ranged from 53 microg g(-1) in Q. suber to 382 microg g(-1) in T. articulata and were well below the levels found in roots. Zinc inhibited root elongation and root biomass and changed the root length distribution per diameter class, but the magnitude of the effects was species-specific. Only P. halepensis and Q. suber showed toxicity symptoms in aboveground parts. Species more characteristic from xeric environments (T. articulata, R. alaternus and P. halepensis) were more sensitive to zinc than species from mesic environments (Q. suber, P. pinaster and P. pinea). According to the Zn responses and bioaccumulation, Q. suber P. pinea and P. halepensis are the best candidates for field trials to test the value of woody species to restore contaminated sites. None of the species tested seemed suitable for phytoremediation.

  16. The secret life of woody species. A study on woody species establishment, interactions with herbivores and vegetation succession

    NARCIS (Netherlands)

    Smit, R.

    2002-01-01

    Woody species are generally known to be among the most successful plant strategist in the world. They play a prominent role in vegetation dynamics because of their size, longevity and ability to survive under stressful conditions. Nevertheless, the establishment stage, i

  17. Allelopathic Effects of Invasive Woody Plant Species in Hungary

    Directory of Open Access Journals (Sweden)

    CSISZÁR, Ágnes

    2009-01-01

    Full Text Available Allelopathy may play an important role in the invasion success of adventive plant species.The aim of this study was to determine the allelopathic potential of invasive woody plant species occurringin Hungary. Juglone index of fourteen invasive woody plant species in Hungary was determined by themethod of Szabó (1997, comparing the effects of juglone and substance extracted of plant species withunknown allelopathic potential on the germination rate, shoot length and rooth length of white mustard(Sinapis alba L. used as receiver species. Results have proven a more or less expressed allelopathicpotential in case of all species. The juglone index at higher concentration extracts (5 g dry plant materialextracted with 100 ml distilled water of almost every studied species approaches to 1 or is above 1, thismeans the effect of the extracts is similar to juglone or surpasses it. In terms of juglone index, theallelopathic potential of false indigo (Amorpha fruticosa L., tree-of-heaven (Ailanthus altissima (Mill.Swingle and hackberry (Celtis occidentalis L. were the highest. Besides these species the treatment withthe extracts of black walnut (Juglans nigra L., black cherry (Prunus serotina Ehrh. and green ash(Fraxinus pennsylvanica MARSH. var. subintegerrima (Vahl Fern. reduced extremely significantly thegermination rate, shoot and root length, compared to the control.

  18. Chemical Characteristics of Six Woody Species for Alley Cropping

    Directory of Open Access Journals (Sweden)

    Mosango, M.

    1999-01-01

    Full Text Available Leaves of six woody species (Leguminosae for alley cropping have been chemically analysed in order to evaluate their potentiality in the restoration of soil fertility. These species are : Acacia mangium, Cajanus cajan, Flemingia grahamiana, F. macrophylla, Leucaena leucocephala and Sesbania sesban. Nitrogen, carbon, cellulose, hemicellulose, lignin, active fraction and ash contents were determined as well as C/N and L/N ratios. AH these species appear to be rich in N and C. Fiber contents (cellulose, hemicellulose and lignin are globally low but variable from one species to another. C/N and L/N ratios are globally low. Among these species, Leucaena leucocephala and Senna spectabilis show the lowest C/N and LIN ratios. Such low values of C/N and L/N are normally found in species with rapid decomposition of organic matter.

  19. Species screening and biomass trials of woody plants in the semi-arid Southwest United States

    Energy Technology Data Exchange (ETDEWEB)

    Kirmse, R.D.; Fisher, J.T.

    1989-01-01

    Species screening and selection trials are being conducted to identify appropriate woody species and technology for biofuel farming in the southwest United States. During the initial phase of the program, 26 native and exotic species have been tested at sites in Texas, New Mexico and Arizona. Second season biomass estimates indicate that initial yields of 3.2-8.5 dry Mg ha/sup -1/ year/sup -1/ are possible without post-establishment irrigation. The species Atriplex canescens (Pursh) Nutt., Prosopis alba Griseb. and Leucaena leucocephala (Lam.) de Wit reached canopy closure within two seasons of growth and are identified as rapid initial biomass producers under the semi-arid conditions of the study area. (author).

  20. Native Terrestrial Animal Species Richness

    Science.gov (United States)

    These data represent predicted current distributions of all native mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each spatial unit. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  1. Ecological impacts of non-native species

    Science.gov (United States)

    Wilkinson, John W.

    2012-01-01

    Non-native species are considered one of the greatest threats to freshwater biodiversity worldwide (Drake et al. 1989; Allen and Flecker 1993; Dudgeon et al. 2005). Some of the first hypotheses proposed to explain global patterns of amphibian declines included the effects of non-native species (Barinaga 1990; Blaustein and Wake 1990; Wake and Morowitz 1991). Evidence for the impact of non-native species on amphibians stems (1) from correlative research that relates the distribution or abundance of a species to that of a putative non-native species, and (2) from experimental tests of the effects of a non-native species on survival, growth, development or behaviour of a target species (Kats and Ferrer 2003). Over the past two decades, research on the effects of non-native species on amphibians has mostly focused on introduced aquatic predators, particularly fish. Recent research has shifted to more complex ecological relationships such as influences of sub-lethal stressors (e.g. contaminants) on the effects of non-native species (Linder et al. 2003; Sih et al. 2004), non-native species as vectors of disease (Daszak et al. 2004; Garner et al. 2006), hybridization between non-natives and native congeners (Riley et al. 2003; Storfer et al. 2004), and the alteration of food-webs by non-native species (Nystrom et al. 2001). Other research has examined the interaction of non-native species in terms of facilitation (i.e. one non-native enabling another to become established or spread) or the synergistic effects of multiple non-native species on native amphibians, the so-called invasional meltdown hypothesis (Simerloff and Von Holle 1999). Although there is evidence that some non-native species may interact (Ricciardi 2001), there has yet to be convincing evidence that such interactions have led to an accelerated increase in the number of non-native species and cumulative impacts are still uncertain (Simberloff 2006). Applied research on the control, eradication, and

  2. Raman microprobe investigation of molecular structure and organization in the native state of woody tissue

    Energy Technology Data Exchange (ETDEWEB)

    Atalla, R.H.

    1989-08-01

    Although the primary emphasis of our program has remained with the application of Raman spectroscopy to the study of native tissue, the scope of the work has been expanded to include a number of complementary approaches. These have included Solid State 13C NMR, autoradiography of radiolabeled woody tissue sections, and the generation of biomimetic tertiary aggregates which simulate states of aggregation characteristic of cell walls. Our Raman spectroscopic studies have resulted in progress in the areas of interpretation of the spectral features, and confirmation of the variability of the patterns of orientation of lignin reported earlier. We have assembled and made operational our new microprobe and spectrometer systems acquired under the DOE-URIP program. We have also demonstrated that, operating with gated detection and pulsed laser excitation, we can discriminate against the laser-excited fluorescence characteristic of most woody tissue. Our studies of celluloses, which combine Raman spectroscopy and 13C NMR have shown that all native celluloses are composites of two forms which have the same secondary structure but different tertiary structures.

  3. Characterization of fast pyrolysis products generated from several western USA woody species

    Science.gov (United States)

    Jacqueline M. Jarvis; Deborah S. Page-Dumroese; Nathaniel M. Anderson; Yuri Corilo; Ryan P. Rodgers

    2014-01-01

    Woody biomass has the potential to be utilized at an alternative fuel source through its pyrolytic conversion. Here, fast pyrolysis bio-oils derived from several western USA woody species are characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to determine molecular-level composition. The...

  4. Effects of woody species encroachment and fire on the soil seed bank of Transylvanian dry basiphilous grasslands - perspectives for their restoration

    Science.gov (United States)

    Görzen, Eugen; Borisova, Karina; Ruprecht, Eszter; Fenesi, Annamária; Lukács, Katalin; Bertram, Anna; Donath, Tobias W.

    2017-04-01

    Background: Semi-natural dry basiphilous grasslands in the Transylvanian Basin of Romania are among the most species-rich grasslands worldwide and protected according to the Habitats Directive of the European Union. They evolved in response to human impact over millennia (grazing and cutting) and to prevailing environmental conditions. Currently, they are under threat due to land use changes: abandonment and intensification of sheep farming. As soon as the management of the grassland ceases, litter accumulation begins, followed by the invasion and establishment of native and non-native shrubs and trees. In order to halt secondary succession, the deliberate burning of shrub-encroached grasslands has progressively been applied. Questions: The establishment of woody species in grassland as well as the application of fire management to prevent the further spread of shrubs has recently increased in Transylvania. Still, little is known about the underlying mechanisms and the specific effects of encroachment by native and non-native woody species as well as fire on plant species and functional diversity of these grasslands. Likewise, there is a lack in efficient measures in Transylvania to restore grassland already invaded by woody plants. Consequently, we ask: (i) In which ways does woody species encroachment affect plant species and functional diversity, (ii) do native and non-native woody species differ with respect to their impact on grassland species composition and structure, (iii) is controlled burning a useful management tool to control shrub encroachment and to preserve biodiversity of these grasslands, and (iv) can soil seed banks contribute to the restoration of dry basiphilous grasslands in Transylvania? Methods: We collected data on plant species richness, composition and structure, topsoil conditions and soil seed bank composition in 16 shrub encroached grassland sites in the Transylvanian Basin, Romania, from June to August 2016. We compared uninvaded

  5. Mapping invasive species and spectral mixture relationships with neotropical woody formations in southeastern Brazil

    Science.gov (United States)

    Amaral, Cibele H.; Roberts, Dar A.; Almeida, Teodoro I. R.; Souza Filho, Carlos R.

    2015-10-01

    Biological invasion substantially contributes to the increasing extinction rates of native vegetative species. The remote detection and mapping of invasive species is critical for environmental monitoring. This study aims to assess the performance of a Multiple Endmember Spectral Mixture Analysis (MESMA) applied to imaging spectroscopy data for mapping Dendrocalamus sp. (bamboo) and Pinus elliottii L. (slash pine), which are invasive plant species, in a Brazilian neotropical landscape within the tropical Brazilian savanna biome. The work also investigates the spectral mixture between these exotic species and the native woody formations, including woodland savanna, submontane and alluvial seasonal semideciduous forests (SSF). Visible to Shortwave Infrared (VSWIR) imaging spectroscopy data at one-meter spatial resolution were atmospherically corrected and subset into the different spectral ranges (VIS-NIR1: 530-919 nm; and NIR2-SWIR: 1141-2352 nm). The data were further normalized via continuum removal (CR). Multiple endmember selection methods, including Interactive Endmember Selection (IES), Endmember average root mean square error (EAR), Minimum average spectral angle (MASA) and Count-based (CoB) (collectively called EMC), were employed to create endmember libraries for the targeted vegetation classes. The performance of the MESMA was assessed at the pixel and crown scales. Statistically significant differences (α = 0.05) were observed between overall accuracies that were obtained at various spectral ranges. The infrared region (IR) was critical for detecting the vegetation classes using spectral data. The invasive species endmembers exhibited spectral patterns in the IR that were not observed in the native formations. Bamboo was characterized as having a high green vegetation (GV) fraction, lower non-photosynthetic vegetation (NPV) and a low shade fraction, while pine exhibited higher NPV and shade fractions. The invasive species showed a statistically

  6. Establishment of woody riparian species from natural seedfall at a former gravel pit

    Science.gov (United States)

    Roelle, J.E.; Gladwin, D.N.

    1999-01-01

    Establishment of native riparian communities through natural seedfall may be a viable reclamation alternative at some alluvial sand and gravel mines where water level can be controlled in the abandoned pit. We experimented with this approach at a pit in Fort Collins, Colorado, where a drain culvert equipped with a screw gate allows water levels to be manipulated. From 1994 to 1996 we conducted a series of annual drawdowns during the period of natural seedfall of Populus deltoides subsp. monilifera (plains cottonwood), Salix amygdaloides (peachleaf willow), and S. exigua (sand-bar willow), thus providing the bare, moist substrate conducive to establishment of these species. Establishment was highly variable from year to year; in the fall following establishment, frequency of occurrence on 0.5-m2 sample plots ranged from 8.6% to 50.6% for cottonwood, 15.9% to 22.0% for peachleaf willow, and 21.7% to 50.0% for sandbar willow. Mean densities, however, were comparable to those reported for other locations. Concurrent establishment of the undesirable exotic Tamarix ramosissima (saltcedar) was a problem, but we were able to eradicate most saltcedar seedlings by reflooding the lower elevations of the annual drawdown zones each fall. At the end of the 3-year period, at least one of the three native woody species survived on 41.1% of the plots, while saltcedar was present on only 6.1%. In addition to the potential for establishing valuable native habitats, adaptations of the techniques described may require less earth moving than other reclamation approaches.

  7. The carbon fertilization effect over a century of anthropogenic CO2 emissions: higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody plants in the US Southwest.

    Science.gov (United States)

    Drake, Brandon L; Hanson, David T; Lowrey, Timothy K; Sharp, Zachary D

    2017-02-01

    From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO2 concentrations from 270 to 400 mol mol(-1) . The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of free-air CO2 enrichment (FACE) experiments. These experiments have found (i) an increase in internal CO2 partial pressure (ci ) alongside acclimation of photosynthetic capacity, (ii) variable decreases in stomatal conductance, and (iii) that increases in yield do not increase commensurate with CO2 concentrations. Our data set, which includes a 115-year-long selection of grasses collected in New Mexico since 1892, is consistent with an increased ci as a response to historical CO2 increase in the atmosphere, with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity Index (PDSI) for New Mexico indicates a moderate correlation with Δ(13) C (r(2)  = 0.32, P CO2 in the event of reduced stomatal conductance in response to short-term water shortage. Comparison with C3 trees from arid environments (Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments (Bromus and Poa grasses in New Mexico) suggests differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO2 while wetter environments see increased ci . This study suggests that (i) the observed increases in ci in FACE experiments are consistent with historical CO2 increases and (ii) the CO2 increase influences plant sensitivity to water shortage, through either increased WUE or ci in arid and wet environments, respectively.

  8. Native Terrestrial Animal Species Richness

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted current distributions of all native mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. The data are...

  9. Species choice, provenance and species trials among native Brazilian species

    Energy Technology Data Exchange (ETDEWEB)

    Drumond, M.A.

    1982-01-01

    Six papers from the conference are presented. Drumond, M.A., Potential of species native to the semi-arid tropics, 766-781, (Refs. 18), reports on Anadenanthera macrocarpa, Mimosa species, Schinopsis brasiliensis, Spondias tuberosa, Ziziphus joazeiro, Cnidoscolus phyllacanthus, Bursera leptophleos (leptophloeos), Tabebuia impetiginosa, Astronium urundeuva, and Mimosa caesalpinia. Monteiro, R.F.R., Speltz, R.M., Gurgel, J.T. do A.; Silvicultural performance of 24 provenances of Araucaria angustifolia in Parana, 814-824, (Refs. 8). Pires, C.L. da S., Kalil Filho, A.N., Rosa, P.R.F. da, Parente, P.R., Zanatto, A.C.S.; Provenance trials of Cordia alliodora in the State of Sao Paulo, 988-995, (Refs. 9). Nogueira, J.C.B., Siqueira, A.C.M.F., Garrido, M.A.O., Gurgel Garrido, L.M. do A., Rosa, P.R.F., Moraes, J.L. de, Zandarin, M.A., Gurgel Filho, O.A., Trials of some native species in various regions of the State of Sao Paulo, 1051-1063, (Refs. 9) describes Centrolobium tomentosum, Peltophorum dubium, Tabebuia vellosoi, Cariniana legalis, and Balfourodendron riedelianum. Batista, M.P., Borges, J.F., Franco, M.A.B.; Early growth of a native species in comparison with exotics in northeastern Para, Brazil, 1105-1110, (Refs. 3). Jacaranda copaia is compared with Gmelina arborea, Pinus caribaea various hondurensis, Eucalyptus deglupta, and E. urophylla. Lima, P.C.F., Souza, S.M. de, Drumond, M.A.; Trials of native forest species at Petrolina, Pernambuco, 1139-1148, (Refs. 8), deals with Anadenanthera macrocarpa, Piptadenia obliqua, Pithecellobium foliolosum, Astronium urundeuva, Schinopsis brasiliensis, Cassia excelsa, Caesalpinia pyramidalis, Parkia platycephala, Pseudobombax simplicifolium, Tabebuia impetiginosa, Caesalpinia ferrea, and Aspidosperma pyrifolium. 18 references.

  10. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  11. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  12. Bryophyte species associations with coarse woody debris and stand ages in Oregon

    Science.gov (United States)

    Rambo, T.; Muir, Patricia S.

    1998-01-01

    We quantified the relationships of 93 forest floor bryophyte species, including epiphytes from incorporated litterfall, to substrate and stand age in Pseudotsuga menziesii-Tsuga heterophylla stands at two sites in western Oregon. We used the method of Dufr??ne and Legendre that combines a species' relative abundance and relative frequency, to calculate that species' importance in relation to environmental variables. The resulting 'indicator value' describes a species' reliability for indicating the given environmental parameter. Thirty-nine species were indicative of either humus, a decay class of coarse woody debris, or stand age. Bryophyte community composition changed along the continuum of coarse woody debris decomposition from recently fallen trees with intact bark to forest floor humus. Richness of forest floor bryophytes will be enhanced when a full range of coarse woody debris decay classes is present. A suite of bryophytes indicated old-growth forest. These were mainly either epiphytes associated with older conifers or liverworts associated with coarse woody debris. Hardwood-associated epiphytes mainly indicated young stands. Mature conifers, hardwoods, and coarse woody debris are biological legacies that can be protected when thinning managed stands to foster habitat complexity and biodiversity, consistent with an ecosystem approach to forest management.

  13. Photosynthetic acclimation to light changes in tropical monsoon forest woody species differing in adult stature

    NARCIS (Netherlands)

    Cai, Z.Q.; Rijkers, A.J.M.; Bongers, F.J.J.M.

    2005-01-01

    We studied morphological and physiological leaf and whole-plant features of seedlings of six late-successional woody species common in the Xishuangbanna lowland rain forest in southwest China. Study species differed in adult stature and shade tolerance and included the shrubs Lasianthus attenuatus J

  14. Aboveground biomass subdivisions in woody species of the savanna ecosystem project study area, Nylsvley

    CSIR Research Space (South Africa)

    Rutherford, MC

    1979-01-01

    Full Text Available Aboveground peak season biomass is given for 11 woody species in each of five belt transects under study. Mean aerial biomass for all species was 16 273 kg ha, made up of 14 937 kg ha wood, 236 kg ha current season's twigs and 1 100 kg ha leaves...

  15. Studies on cambial activity: advances and challenges in the knowledge of growth dynamics of Brazilian woody species

    Directory of Open Access Journals (Sweden)

    CÁTIA H. CALLADO

    2014-03-01

    Full Text Available The lack of specific research on the sequence of events that determine plant growth from meristem until wood formation represents a gap in the knowledge of growth dynamics in woody species. In this work, we surveyed published studies concerning cambial activity of Brazilian native species aiming at allowing the comparison of applied methods and obtained results. The annual cambial seasonality was observed in all the investigated species. Nevertheless, we found high heterogeneity in the used methodologies. As a result from this analysis, our opinion points to the need for standardizing sampling protocols and for discussing the suitability of experimental designs. This will help to define with greater precision the factors that determine the radial growth in the different tropical ecosystems.

  16. Species-Specific Effects of Woody Litter on Seedling Emergence and Growth of Herbaceous Plants

    OpenAIRE

    Kadri Koorem; Price, Jodi N; Mari Moora

    2011-01-01

    The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest--evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two specie...

  17. Native species that can replace exotic species in landscaping

    Directory of Open Access Journals (Sweden)

    Elisabeth Regina Tempel Stumpf

    2015-08-01

    Full Text Available Beyond aesthetics, the contemporary landscaping intends to provide other benefits for humans and environment, especially related to the environmental quality of urban spaces and conservation of the species. A trend in this direction is the reduction in the use of exotic plants in their designs, since, over time, they can become agents of replacement of native flora, as it has occurred in Rio Grande do Sul with many species introduced by settlers. However, the use of exotic species is unjustifiable, because the flora diversity of the Bioma Pampa offers many native species with appropriate features to the ornamental use. The commercial cultivation and the implantation of native species in landscaped areas constitute innovations for plant nurseries and landscapers and can provide a positive reduction in extractivism, contributing to dissemination, exploitation and preservation of native flora, and also decrease the impact of chemical products on environment. So, this work intends to identify native species of Bioma Pampa with features and uses similar to the most used exotic species at Brazilian landscaping. The species were selected from consulting books about native plants of Bioma Pampa and plants used at Brazilian landscaping, considering the similarity on habit and architecture, as well as characteristics of leafs, flowers and/or fruits and environmental conditions of occurrence and cultivation. There were identified 34 native species able to properly replace exotic species commonly used. The results show that many native species of Bioma Pampa have interesting ornamental features to landscape gardening, allowing them to replace exotic species that are traditionally cultivated.

  18. Leaf structural traits of tropical woody species resistant to cement dust.

    Science.gov (United States)

    Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa

    2016-08-01

    Cement industries located nearby limestone outcrops in Brazil have contributed to the coating of cement dust over native plant species. However, little is known about the extent of the response of tropical woody plants to such environmental pollutant particularly during the first stages of plant development and establishment. This work focused on the investigation of possible alterations in leaf structural and ultrastructural traits of 5-month-old Guazuma ulmifolia Lam. (Malvaceae), 6-month-old Myracrodruon urundeuva Allemão (Anacardiaceae), and 9-month-old Trichilia hirta L. (Meliaceae) challenged superficially with cement dust during new leaf development. Leaf surface of plants, the soil or both (leaf plus soil), were treated (or not) for 60 days, under controlled conditions, with cement dust at 2.5 or 5.0 mg cm(-2). After exposure, no significant structural changes were observed in plant leaves. Also, no plant death was recorded by the end of the experiment. There was also some evidence of localized leaf necrosis in G. ulmifolia and T. hirta, leaf curling in M. urundeuva and T. hirta, and bulges formation on epidermal surface of T. hirta, after cement dust contact with plant shoots. All species studied exhibited stomata obliteration while T. hirta, in particular, presented early leaf abscission, changes in cellular relief, and organization and content of midrib cells. No significant ultrastructural alterations were detected under the experimental conditions studied. Indeed, mesophyll cells presented plastids with intact membrane systems. The high plant survival rates, together with mild morphoanatomic traits alterations in leaves, indicate that G. ulmifolia is more resistant to cement dust pollutant, followed by M. urundeuva and T. hirta. Thus, the three plant species are promising for being used to revegetate areas impacted by cement industries activities.

  19. Historical climates explain contrasting dormancy-breaking requirements in North American, Asian, and European woody species

    Science.gov (United States)

    Zohner, Constantin M.; Benito, Blas M.; Fridley, Jason D.; Svenning, Jens-Christian; Renner, Susanne S.

    2016-04-01

    Leaf-out times in temperate woody species are determined by winter chilling and spring warming, with day length playing a minor role. The species-specific relative importance of these phenological cues determines the sensitivity of leaf unfolding to climate warming in the globe's temperate forests. Using experimental and monitoring data on leaf-out cues in 495 woody species [about 1/3rd each from Asia, Europe, and North America (NA)], we show that NA species have higher winter chilling and spring warming requirements than do European and Asian species of similar genetic stock. The continent effect remained significant when controlling for the modern climates that species are adapted to, suggesting that contrasting historic climate conditions led to the differentiation of leaf-out strategies among NA, European, and Asian plants. The NA flora experienced more and longer periods of climatic instability and harshness (esp. since the Pliocene) than did southern Europe and East Asia, which may explain why NA species have higher dormancy requirements and leaf-out later than Asian species, which are characterized by a more shallow dormancy. That species from Asia require significantly less chilling than their NA relatives suggests contrasting responses of NA and Asian temperate forests to continued climate warming. Earlier leaf-out in NA trees and shrubs will be constrained by unmet chilling requirements as winters get warmer, whereas Asian woody species generally lack such temperature limitations.

  20. Patterns of Genetic Variation in Woody Plant Species in the Missouri Ozark Forest Ecosystem Project

    Science.gov (United States)

    Victoria L. Sork; Anthony Koop; Marie Ann de la Fuente; Paul Foster; Jay. Raveill

    1997-01-01

    We quantified current patterns of genetic variation of three woody plant species—Carya tomentosa (Juglandaceae), Quercus alba (Fagaceae), and Sassafras albidum (Lauraceae)—distributed throughout the nine Missouri Ozark Forest Ecosystem Project (MOFEP) study sites and evaluated the data in light of the MOFEP...

  1. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    Directory of Open Access Journals (Sweden)

    C. Máguas

    2011-12-01

    Full Text Available In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy. Species comparison revealed that variability in pre-dawn water potential (Ψpre and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya and phreatophyte (Salix repens species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic

  2. Stem growth of woody species at the Nkuhlu exclosures, Kruger National Park: 2006–2010

    Directory of Open Access Journals (Sweden)

    Peter F. Scogings

    2011-03-01

    Full Text Available An important aspect of managing African conservation areas involves understanding how large herbivores affect woody plant growth. Yet, data on growth rates of woody species in savannas are scarce, despite its critical importance for developing models to guide ecosystem management. What effect do browsing and season have on woody stem growth? Assuming no growth happens in the dry season, browsing should reduce stem growth in the wet season only. Secondly, do functional species groups differ in stem growth? For example, assuming fine-leaved, spiny species’ growth is not compromised by carbon-based chemical defences, they should grow faster than broad-leaved, chemically defended species. Dendrometers were fixed at 20 cm in height on the main stems of 244 random plants of six woody species in three plots (all large herbivores excluded, partial exclusion, and control and observed from late 2006 to early 2010. Average monthly increment (AMI per dendrometer and season (dry, wet was calculated and the interaction between plot and season tested per species, controlling for initial stem girth. AMIs of Combretum apiculatum, Dichrostachys cinerea and Grewia flavescens were zero in the dry season, whilst those of Acacia exuvialis, Acacia grandicornuta and Euclea divinorum were either positive or negative in the dry season. Wet-season AMI of D. cinerea and dry-season AMI of G. flavescens tended to be reduced by browser exclusion. Net AMI (sum of the seasonal AMIs was tested per species, but results suggested that only D. cinerea tended to be affected by browser exclusion. The results also suggested that stem radial growth of some fast-growing species is more prone to reduction by browser exclusion than the growth of other species, potentially reducing their competitiveness and increasing their risk of extirpation. Finally, the usefulness of grouping woody species into simple functional groups (e.g. fine-leaved vs. broad-leaved for ecosystem management

  3. Linking biodiversity to mutualistic networks – woody species and ectomycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2013-05-01

    Full Text Available Mutualistic interactions are currently mapped by bipartite networkswith particular architecture and properties. The mycorrhizae connectthe trees and permit them to share resources, therefore relaxing thecompetition. Ectomycorrhizal macrofungi associated with woody species(Quercus robur, Q. cerris, Q. petraea, Tilia tomentosa, Carpinus betulus, Corylus avellana, and Q. pubescens growing in a temperate, broadleaved mixed forest, from a hilly area near the city of Cluj–Napoca, central Romania were included in a bipartite mutualistic network. Community structure was investigated using several network metrics, modularity and nestedness algorithms in conjunction with C-score index cluster analysis and nonmetric multidimensional scaling (the Kulczynski similarity was index used as most appropriate metric selected by minimal stress criterion. The results indicate that the network presents high asymmetry (hosts are outnumbered by mycobionts at a great extent, high connectance, low modularity, andhigh nestedness, competition playing a secondary role in community assemblage (non significant difference between simulated and observed Cscore.The nestedness pattern is non-random and is comparable to previouslypublished results for other similar interactions containing plants. Inthe proposed network, woody species function exclusively as generalists. Modularity analysis is a finer tool were identifying species roles than centrality measures, however, the two types of algorithms permit the separation of species according to their roles as for example connectors (generalist species and ultraperipheral species (specialists. Supergeneralist woody species function as hubs for the diverse ectomycorrhizal community while supergeneralistectomycorrhizal fungi glue the hubs into a coherent aggregate.

  4. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Science.gov (United States)

    Yang, Fan; Wang, Yong; Chan, Zhulong

    2014-01-01

    The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well

  5. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available The establishment of riparian protection forests in the Three Gorges Reservoir (TGR is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ. Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress

  6. Scaling Chromosomes for an Evolutionary Karyotype: A Chromosomal Tradeoff between Size and Number across Woody Species.

    Science.gov (United States)

    Liang, Guolu; Chen, Hong

    2015-01-01

    This study aims to examine the expected scaling relationships between chromosome size and number across woody species and to clarify the importance of the scaling for the maintenance of chromosome diversity by analyzing the scaling at the inter- & intra-chromosomal level. To achieve for the goals, chromosome trait data were extracted for 191 woody species (including 56 evergreen species and 135 deciduous species) from the available literature. Cross-species analyses revealed a tradeoff among chromosomes between chromosome size and number, demonstrating there is selective mechanism crossing chromosomes among woody species. And the explanations for the result were presented from intra- to inter-chromosome contexts that the scaling may be compromises among scale symmetry, mechanical requirements, and resource allocation across chromosomes. Therein, a 3/4 scaling pattern was observed between total chromosomes and m-chromosomes within nucleus which may imply total chromosomes may evolve from more to less. In addition, the primary evolutionary trend of karyotype and the role of m-chromosomes in the process of karyotype evolution were also discussed.

  7. Transition of a Sambucus nigra L. dominated woody vegetation into grassland by a self regulating multi-species herbivore assemblage

    NARCIS (Netherlands)

    Cornelissen, P.; Gresnigt, M.C.; Vermeulen, R.A.; Bokdam, J.; Smit, R.

    2014-01-01

    We describe and analyse how large herbivores strongly diminished a woody vegetation, dominated by the unpalatable shrub Sambucus nigra L. and changed it into grassland. Density of woody species and cover of vegetation were measured in 1996, 2002 and 2012 in the grazed Oostvaardersplassen. In 2002 an

  8. Long-term effects of burning on woody plant species sprouting on the False thornveld of Eastern Cape

    CSIR Research Space (South Africa)

    Ratsele, C

    2010-11-01

    Full Text Available Sprouting allows woody plant species to persist in a site after a wide range of disturbances (e.g. prolonged fire), where opportunities for seedling establishment are limited. A study to investigate long-term effects of fire sprouting of woody...

  9. Ethnobotanical inventory and medicinal uses of some important woody plant species of Kotli, Azad Kashmir, Pakistan

    Institute of Scientific and Technical Information of China (English)

    Muhammad ShoaibAmjad; MuhammadArshad

    2014-01-01

    To document ethnobotanical informations of useful woody plant species in the region of Kotli, Azad Kashmir. Methods: An ethnobotanical survey was conducted in Kotli. Data were collected by interview and semi structured questionnaire from selected local informants and traditional practitioners as well as by field assessment. Results: The present study documented the etnobotanical uses of 33 woody plant species. Most of the species have been used for dual purpose. Only 5 species are used for one purpose. Study revealed all species have medicinal value, among which 21 were used as fuel wood species, 16 as fodder species, 4 as timber wood species, 12 as edible fruit species, 6 as fence or hedge plant, 7 as ornamental species and 12 species had other uses. Conclusions: Medicinal plants are still widely used for health care by locals of Kotli. Some species of woodlands seem to be vulnerable to overcollection and deforestation. As the young generation is diverted toward allelopathic medicines, ethnobotanical knowledges of important medicinal plants are restricted to the old people only. It is suggested to close the forest of district Kotli for next two to three decades for the conservation of plant biodiversity.

  10. Diversity of Ancient Woody Species in Urban Forests

    Directory of Open Access Journals (Sweden)

    Fornal-Pieniak Beata

    2014-06-01

    Full Text Available Mostly parks and forest are the most important ‘green islands’ in urban ecological network. Urban forests are belong to green areas and collected many plant species. The main aim of the article was characteristic of ancient plant species in urban forests in Tarnów. The field studies were carried out in years 2011-2012. It covered 80 phytosociological records on the area 500 m2 in herb layer of urban forests and in forest nature on oak-hornbeam. The results showed that many ancient plant species were growing in urban forest but less than in nature reserves

  11. Direct seeding woody species for restoration of bottomlands

    Science.gov (United States)

    Twedt, D.J.; Connor, Kristina F

    2006-01-01

    I direct seeded (broadcast) seeds of 39 species of trees and shrubs using an ATV-mounted rotary spreader to initiate restoration of bottomland forest on retired agricultural sites. Four sites were planted during February, 2000, and 13 additional sites were planted during April and May, 2001. After two growing seasons, stem density of direct-seeded species varied greatly among study plots (range = 0 to 888 stems/ha) but averaged only 110 stems/ha. I recommend that future efforts at direct seeding focus on seven shrub species (Amorpha fruticosa L., Cephalanthus occidentalis L., Cornus spp., Crataegus spp., Ilex decidua Walt., Morus rubra L., and Prunus spp.) and seven tree species (Celtis laevigata Willd., Diospyros virginiana L., Fraxinus spp., Gleditsia triacanthos L., Robinia pseudoacacia L., Taxodium distichum (L.) Rich, and Ulmus spp.) that successfully established in these trials.

  12. woody species composition and structure of the gurra farda forest ...

    African Journals Online (AJOL)

    *

    2008-03-02

    Mar 2, 2008 ... Deforestation have been taking place in Ethiopia for hundreds of years. The chief reasons ... From the identified plants five species were climbers, 32 shrubs and 29 trees. Tree density was ..... Botanical name. Family. Habit. 1.

  13. Woody-Herbaceous Species Coexistence in Mulga Hillslopes: Modelling Structure and Function

    Science.gov (United States)

    Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.

    2016-12-01

    The fundamental processes underlying the coexistence of woody and herbaceous species in arid and semi-arid areas have been a topic of intense research during the last few decades. Experimental and modelling studies have both supported and disputed alternative hypotheses explaining this phenomenon. Vegetation models including the key processes that drive coexistence can be used to understand vegetation pattern dynamics and structure under current climate conditions, and to predict changes under future conditions. Here we present work done towards linking the observations to modelling. The model captures woody-herbaceous coexistence along a rainfall gradient characteristic of typical conditions on Mulga ecosystems in Australia. The dynamic vegetation model simulates the spatial dynamics of overland flow, soil moisture and vegetation growth of two species. It incorporates key mechanisms for coexistence and pattern formation, including facilitation by evaporation reduction through shading, and infiltration feedbacks, local and non-local seed dispersal, competition for water uptake. Model outcomes, obtained including diflerent mechanisms, are qualitatively compared to typical vegetation cover patterns in the Australian Mulga bioregion where bush fire is very infrequent and the fate of vegetation cover is mostly determined by intra- and interspecies interactions. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the dynamics of such ecosystems, we identify main mechanisms that need an improved representation in the dynamic vegetation models. We show that a realistic parameterization of the model leads to results which are aligned with the observations reported in the literature. At the lower end of the rainfall gradient woody species coexist with herbaceous species within a sparse banded pattern, while at higher rainfall woody species tend to dominate the landscape.

  14. Soils mediate the impact of fine woody debris on invasive and native grasses as whole trees are mechanically shredded into firebreaks in piñon-juniper woodlands

    Science.gov (United States)

    Aanderud, Zachary T.; Schoolmaster, Donald R.; Rigby, Deborah; Bybee, Jordon; Campbell, Tayte; Roundy, Bruce A.

    2017-01-01

    To stem wildfires, trees are being mechanically shredded into firebreaks with the resulting fine woody debris (FWD) potentially exerting immense control over soil and plants. We linked FWD-induced changes in microbial activity and nutrient availability to the frequency of Bromus tectorum and three native, perennial grasses across 31 piñon-juniper woodlands, UT, USA. Using a series of mixed models, we found that FWD increased the frequency of three of the four grasses by at least 12%. Deep, as opposed to shallow, soils mediated frequencies following FWD additions but only partially explained the variation in Bromus and Pseudoroegneria spicata. Although fertile areas associated with tree-islands elicited no response, FWD-induced increases in nitrogen mineralization in deep soils (15–17 cm) caused the frequency of the exotic and Pseudoroegneria to rise. Higher phosphorus availability in FWD-covered surface soils (0–2 cm) had no impact on grasses. FWD altered deep soil respiration, and deep and shallow microbial biomass structuring Pseudoroegneria frequencies, suggesting that microorganism themselves regulated Pseudoroegneria. The positive effects of FWD on grass frequencies intensified over time for natives but diminished for Bromus. Our results demonstrate that microorganisms in deeper soils helped mediate species-specific responses to disturbance both facilitating exotic invasion and promoting native establishment.

  15. Woody-biomass production in Michigan: species, genotype, and cultural investigations

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.O.

    1984-01-01

    A stepwise approach was adopted in 1978 for developing a comprehensive woody-biomass production system for Michigan. The program consisted of four phases: 1) identification of the most promising biomass species through trial plantings on abandoned agricultural fields and cleared forest stands, 2) preliminary yield comparisons of several species growing in existing experimental plantations, 3) species improvement using standard tree improvement techniques, and 4) development of cultural techniques designed to optimize woody-biomass yield from energy plantations. This dissertation summarizes results of research in each of these areas. Species recommendations for each of three climatic zones in Michigan are based on survival and growth of 23 species at nine oil-field sites after four growing seasons. Pinus sylvestris, P. banksiana, P. resinosa, P. nigra x P. densiflora, Larix leptolepis, Alnus glutinosa, and Picea abies are recommended for use in the Upper Peninsula; Pinus sylvestris, P. resinosa, P. nigra x P. densiflora, Larix leptolepis, Alnus glutinosa, Picea abies, and Quercus robur are recommended for use in the northern Lower Peninsula; and Pinus sylvestris, Alnus glutinosa, Larix leptolepis, Populus, Quercus robur, Fraxinus pennsylvanica, and Salix are recommended for use in the southern Lower Peninsula of Michigan. Yield predictor equations were developed and yields analyzed for 13 species. The best yielding species in the older plantations (14- 16-years old) were Pinus nigra x P. densiflora and Betula alleghaniensis. The best species in the group of younger plantations (five- to nine-years old) were a Populus hybrid mixture and Ailanthus altissima.

  16. New Biotechnological Tools for the Genetic Improvement of Major Woody Fruit Species.

    Science.gov (United States)

    Limera, Cecilia; Sabbadini, Silvia; Sweet, Jeremy B; Mezzetti, Bruno

    2017-01-01

    The improvement of woody fruit species by traditional plant breeding techniques has several limitations mainly caused by their high degree of heterozygosity, the length of their juvenile phase and auto-incompatibility. The development of new biotechnological tools (NBTs), such as RNA interference (RNAi), trans-grafting, cisgenesis/intragenesis, and genome editing tools, like zinc-finger and CRISPR/Cas9, has introduced the possibility of more precise and faster genetic modifications of plants. This aspect is of particular importance for the introduction or modification of specific traits in woody fruit species while maintaining unchanged general characteristics of a selected cultivar. Moreover, some of these new tools give the possibility to obtain transgene-free modified fruit tree genomes, which should increase consumer's acceptance. Over the decades biotechnological tools have undergone rapid development and there is a continuous addition of new and valuable techniques for plant breeders. This makes it possible to create desirable woody fruit varieties in a fast and more efficient way to meet the demand for sustainable agricultural productivity. Although, NBTs have a common goal i.e., precise, fast, and efficient crop improvement, individually they are markedly different in approach and characteristics from each other. In this review we describe in detail their mechanisms and applications for the improvement of fruit trees and consider the relationship between these biotechnological tools and the EU biosafety regulations applied to the plants and products obtained through these techniques.

  17. Native Australian species are effective in extracting multiple heavy metals from biosolids.

    Science.gov (United States)

    Mok, Hoi-Fei; Majumder, Ramaprasad; Laidlaw, W Scott; Gregory, David; Baker, Alan J M; Arndt, Stefan K

    2013-01-01

    Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species.

  18. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    Full Text Available The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr., planted larch (Larix principis-rupprechtii Mayr., and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer, while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  19. Growth and photosynthetic capacity in two woody species of cerrado vegetation under different radiation availability

    Directory of Open Access Journals (Sweden)

    Ronquim Carlos Cesar

    2003-01-01

    Full Text Available Seedlings of two woody species of cerrado vegetation, Copaifera langsdorffii and Eriotheca gracilipes, were studied under three different radiation availability (100, 80 and 30% transmittance. Full solar radiation brought about more biomass, higher total leaf area, higher maximal photosynthesis per crown on area or on mass bases and higher photosynthetic capacity on area bases. Only the photosynthetic capacity values on leaf mass bases were higher in both species under low radiation availability (80 and 30% transmittance. The differences of accumulated biomass appeared more clearly after 4 months of sowing but the root/shoot dry biomass ratio and height were maintained constant for both species independently of the available radiation. Cultivated under full solar radiation both species will be able to cover more suitable the two processes during seedling's phase: growth and defense.

  20. The introduced tree Prosopis juliflora is a serious threat to native species of the Brazilian Caatinga vegetation.

    Science.gov (United States)

    de Souza Nascimento, Clóvis Eduardo; Tabarelli, Marcelo; da Silva, Carlos Alberto Domingues; Leal, Inara Roberta; de Souza Tavares, Wagner; Serrão, José Eduardo; Zanuncio, José Cola

    2014-05-15

    Despite its economic importance in the rural context, the Prosopis juliflora tree species has already invaded millions of hectares globally (particularly rangelands), threatening native biodiversity and rural sustainability. Here we examine seedling growth (leaf area, stem diameter, plant height) and seedling mortality across five native plant species of the Caatinga vegetation in response to competition with P. juliflora. Two sowing treatments with 10 replications were adopted within a factorial 2 × 5 randomized block design. Treatments consisted of P. juliflora seeds sowed with seeds of Caesalpinia ferrea, Caesalpinia microphylla, Erythrina velutina, Mimosa bimucronata and Mimosa tenuiflora (one single native species per treatment), while seeds of native species sowed without P. juliflora were adopted as controls. Overall, our results suggest that P. juliflora can reduce seedling growth by half and cause increased seedling mortality among woody plant species. Moreover, native species exhibit different levels of susceptibility to competition with P. juliflora, particularly in terms of plant growth. Such a superior competitive ability apparently permits P. juliflora to establish monospecific stands of adult trees, locally displacing native species or limiting their recruitment. The use of less sensitive species, such as C. ferrea and M. tenuiflora, to restore native vegetation before intensive colonization by P. juliflora should be investigated as an effective approach for avoiding its continuous spread across the Caatinga region. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Woody species composition, diversity and structure of riparian forests of four watercourses types in Burkina Faso

    Institute of Scientific and Technical Information of China (English)

    Oumarou Sambaré; Fidèle Bognounou; Rüdiger Wittig; Adjima Thiombiano

    2011-01-01

    Riparian forests are classified as endangered ecosystems in general, particularly in sahelian countries like Burkina Faso because of human-induced alterations and civil engineering works. The modification of this important habitat is continuing, with little attention being paid to the ecological or human consequences of these changes. The objective of this study is to describe the variation of woody species diversity and dynamic in riparian forests on different type of watercourse banks along phytogeographical gradient in Burkina Faso. All woody species were systematically measured in 90 sample plots with sides of 50 m × 20 m.Density, dominance, frequency and species and family importance values were computed to characterize the species composition. Different diversity indices were calculated to examine the heterogeneity of riparian forests. A total of 196 species representing 139 genera and 51 families were recorded in the overall riparian forests. The species richness of individuals with dbh ≥ 5cm increased significantly from the North to the South along the phytogeographical gradient and varied significantly between the different types of riparian forests. Similarity in tree species composition between riparian forests was low, which indicates high beta diversity and reflects differences in habitat conditions and topography.The structural characteristics varied significantly along the phytogeographical gradient and between the different types of riparian forests.The diameter class distribution of trees in all riparian forests showed a reverse “J” shaped curve except riparian forest of stream indicating vegetation dominated by juvenile individuals. Considering the ecological importance of riparian forest, there is a need to delineate and classify them along watercourses throughout the country.

  2. Individual species-area relationship of woody plant communities in a heterogeneous subtropical monsoon rainforest.

    Directory of Open Access Journals (Sweden)

    Cheng-Han Tsai

    Full Text Available The spatial structure of species richness is often characterized by the species-area relationship (SAR. However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha, northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals of target species departs (i.e., positively, negatively, or with no obvious trend from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate or decreases (repel neighborhood species richness. We found that (i accumulators were dominant at small interaction distances (30 m; (iii repellers were rarely detected; and (iv large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow might create the spatial heterogeneity of species richness and promote positive species interactions.

  3. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees.

    Science.gov (United States)

    He, Wei-Ming; Sun, Zhen-Kai

    2016-02-08

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints.

  4. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Science.gov (United States)

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  5. Duck Productivity in Restored Species-Rich Native and Species-Poor Non-Native Plantings

    Science.gov (United States)

    Haffele, Ryan D.; Eichholz, Michael W.; Dixon, Cami S.

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010–2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  6. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Directory of Open Access Journals (Sweden)

    Ryan D Haffele

    Full Text Available Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5 mixtures of introduced cool season vegetation often termed dense nesting cover (DNC. The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32 plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  7. Defining the Impact of Non-Native Species

    OpenAIRE

    Jeschke, Jonathan M; Bacher, Sven; Tim M Blackburn; Dick, Jaimie T. A.; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E.; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.

    2014-01-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward ...

  8. Diversity and regeneration status of woody species in Tara Gedam and Abebaye forests, northwestern Ethiopia

    Institute of Scientific and Technical Information of China (English)

    Haileab Zegeye; Demel Teketay; Ensermu Kelbessa

    2011-01-01

    A study was conducted in Tara Gedam and Abebaye forests 1,northwestern Ethiopia to investigate the diversity, regeneration status,socio-economic importance and the factors causing destruction of theforests. A total of 30 plots, measuring 20 m x20 m, were establishedalong line transects laid across the forests. Participatory Rural Appraisal(PRA) method was employed to generate the socio-economic data. Pri-mary data were collected by field observation, semi-structured interviewwith key informants and discussion with relevant stakeholders. A total of143 woody species belonging to 114 genera and 57 families were re-corded, and of all the species 44 (30.8%) were trees, 57 (39.9%)trees/shrubs, 33 (23.1%) shrubs and 9 (6.3%) lianas. The diversity andevenness of woody species in Tara Gedam forest are 2.98 and 0.65, re-spectively, and in Abebaye forest they are 1.31 and 0.31, respectively.The total density and basal area of woody species in Tara Gedam forestare 3001 individuals.ha and 115.36 m·ha, respectively, and in Abe-baye forest the values are 2850 individuals·ha and 49.45 m.ha, re-spectively. The results on the importance value index (IVI) and DBHclass distributions suggest that the species with low IVI value and poorregeneration status need to be prioritized for conservation. In thesocio-economic survey, the responses from the key informants indicatedthat the forests are the major sources of fuelwood (90%), constructionmaterial (80%), timber (75%) and farm implements (55%). The forestsare also sources of medicines, animal fodder, bee forage and edible fruits.Tara Gedam monastery, assisted by the local people who have strongreligious belief and high respect to the monastery, has played a great rolein the maintenance of the sacred forest since a long time. At present, theconservation efforts are made jointly by the monastery and institutionsconcerned with conservation. The major factors that cause destruction of the forests are livestock grazing, tree cutting for

  9. Effects of environment and space on species turnover of woody plants across multiple forest dynamic plots in East Asia

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2016-10-01

    Full Text Available Species turnover is fundamental for understanding the mechanisms that influence large-scale species richness patterns. However, few studies have described and interpreted large-scale spatial variation in plant species turnover, and the causes of this variation remain elusive. In addition, the determinants of species turnover depend on the dispersal ability of growth forms. In this study, we explored the large-scale patterns of woody species turnover across the latitude gradient based on eight large stem-mapping plots (covering 184 ha forest in East Asia. The patterns of woody species turnover increased significantly with increasing latitude differences in East Asia. For overall woody species, environment explained 36.30%, 37.20%, and 48.48% of the total variance in Jaccard’s (βj, Sorenson’s, (βs, and Simpson’s dissimilarity (βsim. Spatial factors explained 47.92%, 48.39%, and 41.38% of the total variance in βj, βs, and βsim, respectively. The effects of pure spatial and spatially structured environments were stronger than pure environmental effects for overall woody species. Our results support the hypothesis that the effect of neutral processes on woody species turnover is more important than the effect of the environment. Neutral processes explained more variation for turnover of tree species, and environmental factors explained more variation for the turnover of shrub species on a large scale. Therefore, trees and shrubs should be subjected to different protection strategies in future biodiversity conservation efforts.

  10. Effects of Environment and Space on Species Turnover of Woody Plants across Multiple Forest Dynamic Plots in East Asia

    Science.gov (United States)

    Chen, Yun; Yuan, Zhiliang; Li, Peikun; Cao, Ruofan; Jia, Hongru; Ye, Yongzhong

    2016-01-01

    Species turnover is fundamental for understanding the mechanisms that influence large-scale species richness patterns. However, few studies have described and interpreted large-scale spatial variation in plant species turnover, and the causes of this variation remain elusive. In addition, the determinants of species turnover depend on the dispersal ability of growth forms. In this study, we explored the large-scale patterns of woody species turnover across the latitude gradient based on eight large stem-mapping plots (covering 184 ha forest) in East Asia. The patterns of woody species turnover increased significantly with increasing latitude differences in East Asia. For overall woody species, environment explained 36.30, 37.20, and 48.48% of the total variance in Jaccard’s (βj), Sorenson’s, (βs), and Simpson’s dissimilarity (βsim). Spatial factors explained 47.92, 48.39, and 41.38% of the total variance in βj, βs, and βsim, respectively. The effects of pure spatial and spatially structured environments were stronger than pure environmental effects for overall woody species. Our results support the hypothesis that the effect of neutral processes on woody species turnover is more important than the effect of the environment. Neutral processes explained more variation for turnover of tree species, and environmental factors explained more variation for the turnover of shrub species on a large scale. Therefore, trees and shrubs should be subjected to different protection strategies in future biodiversity conservation efforts. PMID:27790236

  11. Wood Volume Production and Use of 10 Woody Species in Semiarid Zones of Northeastern Mexico

    OpenAIRE

    Rahim Foroughbakhch; Artemio Carrillo Parra; Jorge Luis Hernández Piñero; Marco Antonio Alvarado Vázquez; Alejandra Rocha Estrada; Ma Luisa Cardenas

    2012-01-01

    A research strategy was established to analyze the structure of timber trees in terms of forest productivity (volume and wood density) of 10 species. The native species Acacia farnesiana, Acacia schaffneri, Bumelia celastrina, Cercidium macrun, Condalia hookeri, Ebenopsis ebano, Helietta parvifolia, and Prosopis laevigata and the exotic species Eucalyptus camaldulensis and Leucaena leucocephala were chosen due to their ecological and economic importance to the rural villages of northeastern M...

  12. Functional traits predict drought performance and distribution of Mediterranean woody species

    Science.gov (United States)

    Lopez-Iglesias, Bárbara; Villar, Rafael; Poorter, Lourens

    2014-04-01

    Water availability is one of the key environmental factors that affect plant establishment and distribution. In many regions water availability will decline with climate change, exposing small seedlings to a greater likelihood of drought. In this study, 17 leaves, stem, root, and whole-plant traits of ten woody Mediterranean species were measured under favourable growing conditions and seedling drought survival was evaluated during a simulated dry-down episode. The aims of this study were: i) to assess drought survival of different species, ii) to analyse which functional traits predict drought survival time, and iii) to explain species distribution in the field, based on species drought survival and drought strategies. Drought survival time varied ten-fold across species, from 19 to 192 days. Across species, drought survival was positively related to the rooting depth per leaf area, i.e., the ability to acquire water from deeper soil layers while reducing transpiring leaf area. Drought survival time was negatively related to species ability to grow quickly, as indicated by high relative growth and net assimilation rates. Drought survival also explained species distribution in the field. It was found that species were sorted along a continuum, ranging between two contrasting species functional extremes based on functional traits and drought performance. One extreme consisted of acquisitive fast-growing deciduous species, with thin, soft metabolically active leaves, with high resource use and vulnerability to drought. The opposite extreme consisted of conservative slow-growing evergreen species with sclerophyllous leaves, deep roots, a low transpiring area, and low water use, resulting in high drought survival and drought tolerance. The results show that these drought strategies shape species distribution in this Mediterranean area.

  13. Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms.

    Science.gov (United States)

    Blackman, Chris J; Brodribb, Tim J; Jordan, Gregory J

    2012-01-01

    The ability of plants to maintain water flow through leaves under water stress-induced tension (assessed as the leaf hydraulic vulnerability; P50(leaf)) is intimately linked with survival. We examined the significance of P50(leaf) as an adaptive trait in influencing the dry-end distributional limits of cool temperate woody angiosperm species. We also examined differences in within-site variability in P50(leaf) between two high-rainfall montane rainforest sites in Tasmania and Peru, respectively. A significant relationship between P50(leaf) and the 5th percentile of mean annual rainfall across each species distribution was found in Tasmania, suggesting that P50(leaf) influences species climatic limits. Furthermore, a strong correlation between P50(leaf) and the minimum rainfall availability was found using five phylogenetically independent species pairs in wet and dry evergreen tree species, suggesting that rainfall is an important selective agent in the evolution of leaf hydraulic vulnerability. Greater within-site variability in P50(leaf) was found among dominant montane rainforest species in Tasmania than in Peru and this result is discussed within the context of differences in spatial and temporal environmental heterogeneity and parochial historical ecology.

  14. Wood Volume Production and Use of 10 Woody Species in Semiarid Zones of Northeastern Mexico

    Directory of Open Access Journals (Sweden)

    Rahim Foroughbakhch

    2012-01-01

    Full Text Available A research strategy was established to analyze the structure of timber trees in terms of forest productivity (volume and wood density of 10 species. The native species Acacia farnesiana, Acacia schaffneri, Bumelia celastrina, Cercidium macrun, Condalia hookeri, Ebenopsis ebano, Helietta parvifolia, and Prosopis laevigata and the exotic species Eucalyptus camaldulensis and Leucaena leucocephala were chosen due to their ecological and economic importance to the rural villages of northeastern Mexico. Measurements of different growth parameters and volume of trees were evaluated. The introduced species E. camaldulensis and L. leucocephala showed the best performance in wood volume production per tree and per hectare when compared to the native species. Likewise, among the native species, E. ebano, P. laevigata, C. hookeri, and A. farnesiana tended to show better characteristics in terms of wood volume production in comparison to H. parvifolia, A. schaffneri, C. macrum, and B. celastrina. Results showed a high diversity on the properties studied. The high biomass produced by most of the species considered in this study revealed their great energetic potential when used as wood and firewood or vegetal charcoal.

  15. The structure and function of roots of woody species on the Edwards Plateau, Texas, USA

    Science.gov (United States)

    Pockman, W. T.; McElrone, A. J.; Bleby, T. M.; Jackson, R. B.

    2008-05-01

    The Edwards Plateau in central Texas USA, supports woody vegetation in savannas and woodlands despite characteristically shallow soils. Surveys using caves to access greater depths have shown that roots of all dominant woody species can reach 7 m below the surface while some species reliably reach depths as great as 20 m. Comparative studies showed that deep roots were structurally distinct from shallow roots of similar diameter. Deep roots had larger xylem conducting elements resulting in more than 2-fold greater hydraulic conductance than their shallow counterparts. To understand the relationship between environmental fluctuations and deep root function in these species, we directly measured water transport in deep roots accessed via caves for comparison with similar measurements in shallow roots and stems. Long term measurements of Juniperus ashei, one of the most abundant species on the Edwards plateau, showed that the contribution of roots 7 m below the surface fluctuated with the volumetric water content (VWC) of surface soils. During prolonged drought, upward flow in deep roots accounted for as much as 60% of total daily transpiration and occurred not only during the day when the canopy was transpiring but also throughout the night when hydraulic redistribution from deep to shallow soil maintained flow through the roots. Hydraulic redistribution was suppressed immediately after precipitation until nocturnal flow gradually increased as VWC decreased. In a cave system where roots reach a stream 18-20 m below the surface, hydraulic redistribution was observed year-round in all measured individuals of three additional dominant species (Quercus fusiformis, Bumelia lanuginosa and Prosopis glandulosa). Like J. ashei, upward hydraulic redistribution was observed when surface soils were dry. More complex patterns of redistribution were also observed, including downward redistribution of soil water following precipitation, and continuing redistribution of soil water

  16. Native Freshwater Fish and Mussel Species Richness

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted current distributions of all native freshwater fish and freshwater mussels in the Middle-Atlantic region. The data are available for...

  17. Cultural treatment of selected species for woody biomass production in the Pacific northwest. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Progress was made toward establishing two sites to study the effect of cultural treatment on two selected species, black cottonwood and red alder, for woody biomass production. The first study area (the dry site), located on the City of Seattle's Cedar River Watershed, at North Bend, Washington, was established and put into production during late winter 1978 and spring of 1979. Cottonwood cuttings obtained from US Forest Service land near Skykomish, Washington, were cut into 18 to 20 inch lengths and outplanted in March and April. Alder was obtained from logging roads near the plantation site as wildlings and transplanted immediately after pulling. Both species were planted in pure plots, mixes of 1:1, and mixes of 2:1 with spacings of 2x4, 4x6 and 6x8 feet. Row cultivation was performed three times during the growing season. Fertilizer and irrigation were not applied due to logistical problems. Survival for both species exceeded 98%. Growth was moderate to poor because of an extremely dry summer. The second area (the wet site) is being established on the University of Washington's Lee Experimental Forest north of Woodinville, Washington. The area was clearcut logged in September and October of 1979. Stumps were removed shortly thereafter.

  18. Abundance of Woody Riparian Species in the Western USA in Relation to Phenology, Climate, and Flow Regime

    Science.gov (United States)

    Auble, G. T.; Friedman, J. M.; Scott, M. L.; Shafroth, P. B.; Merigliano, M. M.; Freehling, M. D.; Evans, R. E.; Griffin, E. R.

    2004-12-01

    We randomly selected 475 long-term U.S. Geological Survey stream gaging stations in 17 western states to relate the presence and abundance of woody species to environmental factors. Along a 1.3-km reach near each station we measured the cover of all species on a list of the 44 most abundant large woody riparian species in the region. We used logistic regression to fit the response of four abundant species to growing degree days and mean precipitation. Then we related relative abundance of these 4 species to timing of the flood peak in sites where the likelihood of occurrence was greater than 0.5. The exotics Tamarix ramosissima (saltcedar) and Elaeagnus angustifolia (Russian-olive) are now the third and fourth most frequently occurring large woody riparian species in the western U.S. and the second and fifth most abundant. In climatically suitable areas, species differences in reproductive phenology produce different relations of abundance to flow regime. Because of its limited period of seed release and viability in early summer, cottonwood (Populus deltoides) is disadvantaged where floods occur in the spring or fall. Abundances of saltcedar, because of its long period of seed release; Russian-olive, because of seed dormancy; and Salix exigua, because of the importance of vegetative spread, are much less sensitive to flood timing.

  19. Effects of Topographic and Soil Factors on Woody Species Assembly in a Chinese Subtropical Evergreen Broadleaved Forest

    Directory of Open Access Journals (Sweden)

    Lijuan Zhao

    2015-03-01

    Full Text Available Evergreen broadleaved forests in subtropical China contain a complicated structure of diverse species. The impact of topographic and soil factors on the assembly of woody species in the forest has been poorly understood. We used Ripley’s K(t function to analyze the spatial patterns and associations of dominant species and residual analysis (RDA to quantify the contribution of topography and soil to species assembly. The 1 ha plot investigated had 4797 stems with a diameter at breast height (dbh larger than 1 cm that belong to 73 species, 55 genera, and 38 families. All stems of the entire forest and four late successional species exhibited a reversed J shape for dbh distribution, while two early successional species showed a unimodal shape. Aggregation was the major spatial pattern for entire forests and dominant species across vertical layers. Spatial associations between inter- and intra-species were mostly independent. Topographic and soil factors explained 28.1% of species assembly. The forest was close to late succession and showed the characteristics of diverse woody species, high regeneration capacity, and aggregated spatial patterns. Topographic and soil factors affected species assembly, but together they could only explain a small part of total variance.

  20. Ethnobotanical inventory and medicinal uses of some important woody plant species of Kotli,Azad Kashmir,Pakistan

    Institute of Scientific and Technical Information of China (English)

    Muhammad; Shoaib; Amjad; Muhammad; Arshad

    2014-01-01

    Objective:To document ethnobotanical informations of useful woody plant species in the region of Kotli,Azad Kashmir.Methods:An ethnobotanical survey was conducted in Kotli.Data were collected by interview and semi structured questionnaire from selected local informants and traditional practitioners as well as by field assessment.Results:The present study documented the etnobotanical uses of 33 woody plant species.Most of the species have been used for dual purpose.Only 5 species are used for one purpose.Study revealed all species have medicinal value,among which 21 were used as fuel wood species,16 as fodder species,4 as timber wood species,12 as edible fruit species,6 as fence or hedge plant,7 as ornamental species and 12 species had other uses.Conclusions:Medicinal plants are still widely used for health care by locals of Kotli.Some species of woodlands seem to be vulnerable to overcollection and deforestation.As the young generation is diverted toward allelopathic medicines,ethnobotanical knowledges of important medicinal plants are restricted to the old people only.It is suggested to close the forest of district Kotli for next two to three decades for the conservation of plant biodiversity.

  1. The most commonly available woody plant species are the most useful for human populations: a meta-analysis.

    Science.gov (United States)

    Gonçalves, Paulo Henrique Santos; Albuquerque, Ulysses Paulino; Medeiros, Patrícia Muniz de

    2016-10-01

    An increasing number of studies have aimed to clarify the factors leading human groups to prioritize the use of some woody plant species compared to others. Some of these studies have tested the apparency hypothesis in aiming to understand this phenomenon. According to the apparency hypothesis, the most commonly available local plant species on a forest path are the most useful to that local human population. However, the sparse and diverse nature of the results from studies investigating the factors that influence human exploitation of plant resources motivated us to perform a meta-analysis on the apparency hypothesis. We searched in the main databases (Scopus, ScienceDirect, Google Scholar, and Scielo) for studies that correlated the environmental availability of woody species (estimated through vegetation parameters) with the degree of importance of such species to the local human population (estimated by means of the use value index). Overall, this meta-analysis supported the apparency hypothesis, although we also found high levels of heterogeneity in these studies. When the distinct uses of woody flora were considered separately, we found that local species availability is important for fuelwood (firewood and charcoal) and construction (houses, fences, etc.) purposes but does not explain medicinal and technological (object manufacture) plant use. We found no important differences in correlation values between the degree of species importance for people and the different vegetation parameters, although correlations are slightly higher for the dominance and importance value index. Our findings suggest that the exploitation of woody flora is influenced by local availability.

  2. Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings.

    Science.gov (United States)

    Shi, Xiang; Zhang, Xiaolei; Chen, Guangcai; Chen, Yitai; Wang, Ling; Shan, Xiaoquan

    2011-01-01

    A greenhouse pot experiment was conducted to evaluate the potential of selected woody plants for revegetation in copper (Cu) and lead/zinc (Pb/Zn) mine tailing areas. Five woody species (Amorpha fruticosa Linn, Vitex trifolia Linn. var. simplicifolia Cham, Glochidion puberum (Linn.) Hutch, Broussonetia papyrifera, and Styrax tonkinensis) and one herbaceous species (Sesbania cannabina Pers) were planted in Cu and Pb/Zn tailings to assess their growth, root morphology, nutrition uptake, metal accumulation, and translocation in plants. Amorpha fruticosa maintained normal growth, while the other species demonstrated stress related growth and root development. Sesbania cannabina showed the highest biomass among the plants, although it decreased by 30% in Cu tailings and 40% in Pb/Zn tailings. Calculated tolerance index (TI) values suggested that A. fruticosa, an N-fixing shrub, was the most tolerant species to both tailings (TI values 0.92-1.01), while S. cannabina had a moderate TI of 0.65-0.81 and B. papyrifera was the most sensitive species, especially to Pb/Zn tailings (TI values 0.15-0.19). Despite the high concentrations of heavy metals in the mine tailings and plants roots, only a small transfer of these elements to the aboveground parts of the woody plants was evident from the low translocation factor (TF) values. Among the woody plants, V. trifolia var. simplicifolia had the highest TF values for Zn (1.32), Cu (0.78), and Pb/Zn (0.78). The results suggested that A. fruticosa and S. cannabina, which have the highest tolerance and biomass production, respectively, demonstrated the potential for tailings revegetation in southern China.

  3. Disparate radiocesium leaching from two woody species by acceleration of litter decomposition using microbial inoculation.

    Science.gov (United States)

    Hashida, Shin-Nosuke; Yoshihara, Toshihiro

    2016-10-01

    Studies focusing on the migration of radionuclides in the forest floor have demonstrated that the ecological half-life of radiocesium on organic layer containing the debris of plant litter with various fungi and microorganisms is shorter than that in the deeper soil zone, suggesting that the litter decomposition affects radiocesium mobilization. Here, we showed the involvement of lignin, one of the major cell wall components of plant litter, in the fate of contaminated radiocesium during the process of fungal litter decomposition. In this study, litter decomposition of two different woody species, broadleaf deciduous Japanese cherry consisted of hardwood lignin and coniferous evergreen Japanese cedar with softwood lignin, were accelerated by in vitro fungal inoculation. In vitro inoculation exhibited 1.93- to 2.59-times faster decomposition than field experiment. Then, the cherry litter lost approximately 25% of initially contaminated radiocesium within 1 month of in vitro decomposition, whereas the cedar litter kept initial level at least for 6 month. The retention of radiocesium correlated with thioglycolate lignin content in cedar litter but not in cherry litter. Consequently, the behavior of radiocesium contaminated in litter fall may vary depending on the contamination pathway or the manner of nutrient mobilization at the stage of abscission between evergreen and deciduous trees.

  4. Woody species for biomass production in Florida: Final report, 1983-1988

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, D.L.; Dippon, D.R.; Lesney, M.S.

    1988-02-01

    From 1983 to 1988, this project's short rotation woody crop research enhanced the potential of Eucalyptus species in Florida. A fourth-generation E. grandis seed orchard could produce over 100 million seedlings annually for use in southern Florida. Seed from the 50 best trees in the orchard may double the average productivity in the preceding genetic base population. Three frost-resilient and rapid-growing E. grandis clones are being commercially propagated by tissue culture, and over 250 additional clonal candidates are under test. While rooted cuttings of selected clones could be mass produced in less than seven months, micropropagation may reduce the cost of vegetative propagation. Eucalyptus tereticornis and E. camaldulensis demonstrated vigor and frost-hardiness and may be suitable for sandhills sites in central Florida and wetter sites further south. For northern Florida, E. amplifolia had good frost-resilience and remained vigorous through four coppice rotations. Coppicing of other eucalypts, notably E. grandis, is very dependent on climatic factors. Biomass properties of the eucalypts vary due to genetics and age but appear suitable for certain fermentation and pulping processes. Economic analyses suggest that E. grandis and E. amplifolia may be profitably grown and that short rotation culture appears feasible for slash pine, but cannot yet be advised for sand pine. 126 refs., 24 figs., 67 tabs.

  5. About the species composition of microscopic fungi in soils and woody plant roots in urban environment

    Directory of Open Access Journals (Sweden)

    Bukharina Irina,

    2016-11-01

    Full Text Available The living state and the presence of mycorrhizal fungi in the roots of woody plants in relation to the level of soil pollution in the urban environment have been studied. The DNA analysis of the roots and soil revealed that in a more severe pollution in the roots of woody plants in a good living state the DNA of end trophic mycorrhizal fungi was detected.

  6. Trophic Strategies of a Non-Native and a Native Amphibian Species in Shared Ponds.

    Directory of Open Access Journals (Sweden)

    Olatz San Sebastián

    Full Text Available One of the critical factors for understanding the establishment, success and potential impact on native species of an introduced species is a thorough knowledge of how these species manage trophic resources. Two main trophic strategies for resource acquisition have been described: competition and opportunism. In the present study our objective was to identify the main trophic strategies of the non-native amphibian Discoglossus pictus and its potential trophic impact on the native amphibian Bufo calamita. We determine whether D. pictus exploits similar trophic resources to those exploited by the native B. calamita (competition hypothesis or alternative resources (opportunistic hypothesis. To this end, we analyzed the stable isotope values of nitrogen and carbon in larvae of both species, in natural ponds and in controlled laboratory conditions. The similarity of the δ15N and δ13C values in the two species coupled with isotopic signal variation according to pond conditions and niche partitioning when they co-occurred indicated dietary competition. Additionally, the non-native species was located at higher levels of trophic niches than the native species and B. calamita suffered an increase in its standard ellipse area when it shared ponds with D. pictus. These results suggest niche displacement of B. calamita to non-preferred resources and greater competitive capacity of D. pictus in field conditions. Moreover, D. pictus showed a broader niche than the native species in all conditions, indicating increased capacity to exploit the diversity of resources; this may indirectly favor its invasiveness. Despite the limitations of this study (derived from potential variability in pond isotopic signals, the results support previous experimental studies. All the studies indicate that D. pictus competes with B. calamita for trophic resources with potential negative effects on the fitness of the latter.

  7. Tolerance of native and non-native fish species to chemical stress: a case study for the River Rhine

    NARCIS (Netherlands)

    A. Fedorenkova; J.A. Vonk; A.M. Breure; A.J. Hendriks; R.S.E.W. Leuven

    2013-01-01

    Freshwater ecosystems can be impacted by invasive species. Non-native species can become invasive due to their high tolerance to environmental stressors (e.g., pollution and habitat modifications). Yet, tolerance of native and non-native fish species exposed simultaneously to multiple chemical stres

  8. Effect of Small-Scale Variations in Environmental Factors on the Distribution of Woody Species in Tropical Deciduous Forests of Vindhyan Highlands, India

    Directory of Open Access Journals (Sweden)

    R. K. Chaturvedi

    2011-01-01

    Full Text Available The aim of this study is to investigate the changes in the composition of mature, naturally established and unmanaged TDF in response to small-scale variations in environmental factors. All woody species with a minimum circumference of 10 cm at 1.37 m height were surveyed in forty-five 20×50 m plots distributed over 5 sites in the TDF of Vindhyan highlands, India. Cluster analysis identified two distinct groups of plots. Group 1 plots had higher soil moisture content (SMC, clay, organic C, total N, total P, and light attenuation than group 2 plots. A total of 48 native species belonging to 25 families were encountered in the sampled area. High eigenvalues for the first two Canonical Correspondence Analysis (CCA axes indicated the occurrence of species in distinct groups, and significant correlations of the axes with environmental variables indicated the effect of these variables on species grouping. In conclusion, patchiness in the soil resources needs to be considered in restoration efforts. The results of this study are expected to facilitate the decision regarding choice of species in afforestation programmes for restoring the TDF.

  9. Species composition and correlation of understory woody plants in Chinese fir plantation in the lower subtropical area

    Institute of Scientific and Technical Information of China (English)

    KANG Bing; LIU Shirong; CAI Daoxiong; WEN Yuanguang

    2006-01-01

    There are 71 species in the shrub layer of the Cunninghamia lanceolata plantation after natural succession.The species richness and diversity have increased with slight anthropogenic disturbance.The status and function of tmderstory woody species were judged by the analysis of the important value (IV).X2 statistics and r test were used for testing the significance of interspecific association and correlation among 25 main understory woody plants selected from the woody population.The results clearly showed their interspecific relationships and their differences in resource utilization.Species-pairs of positive association were in the majority.Most species were accommodated in the shady habitat.There was a positive correlation between the IV of the species and the interspecific association.The higher the IV of the species,the closer and more significant was the interspecific association.Based on analytical results of interspecitic association and correlation,25 woody plants in the shrub layer could be divided into four ecological species groups:I.Ficus hispida +Antidesma bunius+Mallotus barbatus+Ficus cunia+Saurauia tristyla+Mallotus philippinensis+Maesa japonica +Ficus hirta+Alchornea rugosa+Ficus fulva+Mallotus apelta;II.Cudrania tricuspidata+Schefflera octopylla;III.Cunninghamia lanceolata+Clerodendron cytophyllum +Millettia semicastrata+Randia spinosa+Litsea cubeba +Litsea pungens;IV.Ardisia japonica+Psychotria rubra +Vitex quinata+Cephalanthus occidentalis+ Pithecellobium lucidum+Mycetia sinensis.If species group III or II is the advantaged species in the shrub layer,the community would change from a coniferous forest to a sparse evergreen broad-leaved forest.For group IV,the community would be relatively stable.For group I,the coniferous forest would be mixed with coniferous-broad leaved forest.The classification of ecological species groups would provide a theoretical basis on judging its ecological function,adjusting the stand structure of the plantation and

  10. Raman microprobe investigation of molecular structure and organization in the native state of woody tissue. Progress report, April 1, 1987--July 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Atalla, R.H.

    1989-08-01

    Although the primary emphasis of our program has remained with the application of Raman spectroscopy to the study of native tissue, the scope of the work has been expanded to include a number of complementary approaches. These have included Solid State 13C NMR, autoradiography of radiolabeled woody tissue sections, and the generation of biomimetic tertiary aggregates which simulate states of aggregation characteristic of cell walls. Our Raman spectroscopic studies have resulted in progress in the areas of interpretation of the spectral features, and confirmation of the variability of the patterns of orientation of lignin reported earlier. We have assembled and made operational our new microprobe and spectrometer systems acquired under the DOE-URIP program. We have also demonstrated that, operating with gated detection and pulsed laser excitation, we can discriminate against the laser-excited fluorescence characteristic of most woody tissue. Our studies of celluloses, which combine Raman spectroscopy and 13C NMR have shown that all native celluloses are composites of two forms which have the same secondary structure but different tertiary structures.

  11. Defining the impact of non-native species.

    Science.gov (United States)

    Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; Vilà, Montserrat; Winter, Marten; Kumschick, Sabrina

    2014-10-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  12. Dna c-values of 20 invasive alien species and 3 native species in south china

    Directory of Open Access Journals (Sweden)

    Gong Ni

    2014-01-01

    Full Text Available Cultivated fields and forests in South China are experiencing serious damage due to invasive alien plants. We investigated the relation between DNA C-values and invasiveness. The DNA C-values of 23 species ranged from 0.39 pg to 3.37 pg. Herbs, perennials and native species had higher mean DNA C-values than shrubs, annuals and invasive alien species. DNA C-values decreased with increasing invasiveness. Paederia scandens, a harmful native species, has the lowest DNA C-value among the perennials, indicating that native species with low nuclear content may also possess an invasive potential.

  13. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  14. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  15. Woody plants and woody plant management: ecology, safety, environmental impact

    Science.gov (United States)

    James H. Miller

    2001-01-01

    Wise and effective woody plant management is an increasing necessity for many land uses and conservation practices, especially on forests and rangelands where native or exotic plants are affecting productivity, access, or critical habitat. Tools and approaches for managing woody plants have been under concerted development for the past 50 years, integrating mechanical...

  16. Diversity, regeneration status and population structure of gum- and resin-bearing woody species in south Omo zone, southern Ethiopia

    Institute of Scientific and Technical Information of China (English)

    Muhamed Adem; Adefires Worku; Mulugeta Lemenih; Wubalem Tadesse; Jürgen Pretzsch

    2014-01-01

    South Omo Administrative Zone in Ethiopia is home to 18 indigenous ethnic groups whose livelihood is vulnerable due to recurrent drought and degradation. Despite the preliminary observation showing the rich dry-forest resource base that, if sustainably managed could enhance livelihoods and biodiversity conservation, there is lack of empirical data on its current status. We conducted a study aiming at quantifying the population status of gum- and resin-bearing species in two randomly selected districts, Hamer and Bena-Tsemay. Seventy-five quadrats (35 at Hamer and 40 at Bena-Tsemay) each measuring 400 m2 were established along line transects to assess species diversity and equitability, density, frequency, dominance, importance value and population structure. We recorded a total of 27 woody species of 12 families and 14 genera. Fifteen species (9 at Hamer and 14 at Bena-Tsemay) of the genera Acacia, Boswellia, Commiphora and Sterculia, were identified as either major sources of commercial gums and resins or their adulterants. Gum-and resin-bearing species comprised 56%and 57%of species richness, 48%and 50%of total density per ha, 95%and 98%of basal area, and 64%and 56%of importance values at Hamer and Bena-Tsemay, respectively. Diversity of the entire woody species assemblage and of the gum- and resin-bearing species was slightly higher at Bena-Tsemay (H=2.61, 1.4) than at Hamer (H′=2.48, 1.28), respectively. The diversity and abundance of the resource base suggest potential for development of value-added commercialization of gum and resins to enhance livelihoods and encourage sustainable management of the forest at these study areas. We recorded, however, declining natural regeneration of most gum- and resin-bearing species, and this calls for integrated and participatory species management and landscape rehabilitation.

  17. Post-dispersal seed predation of woody forest species limits recolonization of forest plantations on ex-arable land

    DEFF Research Database (Denmark)

    Bruun, Hans Henrik; Valtinat, Karin; Kollmann, Johannes

    2010-01-01

    be differences in recruitment. The present study addresses post-dispersal seed predation, mainly of woody plants, as the factor limiting the recolonization of young oak plantations in southern Sweden. Our objectives were to investigate differences in dispersal and post-dispersal seed predation between first......, the colonization of forest plantations by native shrubs and trees appears to be habitat-limited; the only exception being Rhamnus catharticus, for which poor dispersal ability may be more important. Post-dispersal seed predation of forest shrubs and trees was marked, especially in relatively small and isolated...... plantations on ex-arable land. There was a high seed predation of Crataegus monogyna, Sorbus aucuparia and Viburnum opulus on ex-arable land, while that of Frangula alnus and Sambucus racemosa was not associated with site placement and land-use history. Seed predation is probably a more important factor...

  18. The floral transcriptomes of four bamboo species (Bambusoideae; Poaceae): support for common ancestry among woody bamboos.

    Science.gov (United States)

    Wysocki, William P; Ruiz-Sanchez, Eduardo; Yin, Yanbin; Duvall, Melvin R

    2016-05-20

    Next-generation sequencing now allows for total RNA extracts to be sequenced in non-model organisms such as bamboos, an economically and ecologically important group of grasses. Bamboos are divided into three lineages, two of which are woody perennials with bisexual flowers, which undergo gregarious monocarpy. The third lineage, which are herbaceous perennials, possesses unisexual flowers that undergo annual flowering events. Transcriptomes were assembled using both reference-based and de novo methods. These two methods were tested by characterizing transcriptome content using sequence alignment to previously characterized reference proteomes and by identifying Pfam domains. Because of the striking differences in floral morphology and phenology between the herbaceous and woody bamboo lineages, MADS-box genes, transcription factors that control floral development and timing, were characterized and analyzed in this study. Transcripts were identified using phylogenetic methods and categorized as A, B, C, D or E-class genes, which control floral development, or SOC or SVP-like genes, which control the timing of flowering events. Putative nuclear orthologues were also identified in bamboos to use as phylogenetic markers. Instances of gene copies exhibiting topological patterns that correspond to shared phenotypes were observed in several gene families including floral development and timing genes. Alignments and phylogenetic trees were generated for 3,878 genes and for all genes in a concatenated analysis. Both the concatenated analysis and those of 2,412 separate gene trees supported monophyly among the woody bamboos, which is incongruent with previous phylogenetic studies using plastid markers.

  19. Eficiência de fungos micorrízicos arbusculares isolados de solos de áreas de mineração de bauxita no crescimento inicial de espécies nativas Efficiency of arbuscular mycorrhizal fungi isolated from bauxite mine spoils on seedling growth of native woody species

    Directory of Open Access Journals (Sweden)

    José Geraldo Donizetti Santos

    2008-02-01

    sp. não foi eficiente. Para o açoita-cavalo, os dois isolados de Glomus sp. estudados foram ineficientes. Nenhum dos FMAs isolados da área de mineração de bauxita promoveu crescimento superior ao obtido com o tratamento-referência com G. etunicatum. No entanto, os isolados do campo Gigaspora sp., Paraglomus occultum e Acaulospora spinosa foram tão eficientes quanto G. etunicatum em promover crescimento das quatro espécies vegetais. Os resultados indicam que mesmo áreas tão degradadas como aquelas submetidas à mineração de bauxita podem conter populações de FMA eficientes, que podem contribuir para reabilitação da área.Arbuscular mycorrhizal fungi (AMF establishing efficient symbiosis with plants play an important role on ecosystem sustainability and can be useful for revegetation of degraded lands. Symbiotic efficiency is related to AMF genotypes and plant species, as well as to environmental conditions that may affect the expression of symbiotic relationships. Thus, the first step to an efficient AMF symbiosis management is to study fungal variability regarding the efficiency with different host species. In this study root colonization and efficiency of several AMF isolates, obtained from bauxite minespoil areas from two distinct environments ("serra" and "campo", were evaluated for seedling growth of pioneer species [aroeira (Schinus terebenthifolius and trema (Trema micrantha], and secondary species [açoita-cavalo (Luehea grandiflora and sesbânia (Sesbania virgata], in a low fertility soil. The experiment was carried out under greenhouse conditions, for 120 days. Each plant species, was treated with ten AMF inoculation types (AMF isolates or their mixtures: Acaulospora longula, Paraglomus occultum, Glomus sp., Gigaspora sp., Acaulospora spinosa, and the mixture of all "campo" species; Acaulospora scrobiculata, Paraglomus occultum, Glomus sp. and the mixture of all "serra" species. For a comparison two additional treatments were included: one

  20. Drivers of Non-Native Aquatic Species Invasions across the ...

    Science.gov (United States)

    Background/Question/Methods Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to a single taxa, missing the opportunity to observe and understand the drivers of macroscale invasion patterns at sub-continental or continental scales. Here we map the distribution of exotic freshwater species richness across the continental United States using publicly accessible species occurrence data (e.g GBIF) and investigate the role of human activity in driving macroscale patterns of aquatic invasion. Using a dasymetric model of human population density and a spatially explicit model of recreational freshwater fishing demand, we analyzed the effect of these metrics of human influence on non-native aquatic species richness at the watershed scale, while controlling for spatial and sampling bias. We also assessed the effects that a temporal mismatch between occurrence data (collected since 1815) and cross-sectional predictors (developed using 2010 data) may have on model fit. Results/Conclusions Our results indicated that non-native aquatic species richness exhibits a highly patchy distribution, with hotspots in the Northeast, Great Lakes, Florida, and human population centers on the Pacific coast. These richness patterns are correlated with population density, but are m

  1. Atmospheric dust accumulation on native and non-native species: effects on gas exchange parameters.

    Science.gov (United States)

    González, Juan A; Prado, Fernando E; Piacentini, Ruben D

    2014-05-01

    Plants are continuously exposed to atmospheric particulate matter (dust), and their leaves are the main receptors of deposited dust. The objective of this study was to assess the effects of dust deposition on leaf gas exchange parameters of 17 native and non-native tree and shrub species growing in Gran San Miguel de Tucumán in northwestern Argentina. Maximum assimilation rate (), stomatal conductance (), transpiration rate (), internal CO concentration (), and instantaneous water-use efficiency (WUE) were measured in cleaned leaves (CL) and dusted leaves (DL) of different species on November 2010, July 2011, and September 2011. In almost all studied species, gas exchange parameters were significantly affected by dust deposition. Values for , , and of DL were significantly reduced in 11, 12, and 14 species compared with CL. Morphological leaf traits seem to be related to reduction. Indeed, L. and (Mart. ex DC.) Standl. species with pubescent leaves and thick ribs showed the highest reduction percentages. Contrarily, and WUE were increased in DL but were less responsive to dust deposition than other parameters. Increases of and WUE were significant in 5 and 11 species, respectively. Correlation analyses between /, /, and / pairs showed significant positive linear correlations in CL and DL of many studied species, including small and tall plants. These results suggest that leaf stomatal factors and shade-induced effect by accumulated dust are primarily responsible for the observed reductions in photosynthesis rate of DL.

  2. Are introduced species better dispersers than native species? A global comparative study of seed dispersal distance.

    Science.gov (United States)

    Flores-Moreno, Habacuc; Thomson, Fiona J; Warton, David I; Moles, Angela T

    2013-01-01

    We provide the first global test of the idea that introduced species have greater seed dispersal distances than do native species, using data for 51 introduced and 360 native species from the global literature. Counter to our expectations, there was no significant difference in mean or maximum dispersal distance between introduced and native species. Next, we asked whether differences in dispersal distance might have been obscured by differences in seed mass, plant height and dispersal syndrome, all traits that affect dispersal distance and which can differ between native and introduced species. When we included all three variables in the model, there was no clear difference in dispersal distance between introduced and native species. These results remained consistent when we performed analyses including a random effect for site. Analyses also showed that the lack of a significant difference in dispersal distance was not due to differences in biome, taxonomic composition, growth form, nitrogen fixation, our inclusion of non-invasive introduced species, or our exclusion of species with human-assisted dispersal. Thus, if introduced species do have higher spread rates, it seems likely that these are driven by differences in post-dispersal processes such as germination, seedling survival, and survival to reproduction.

  3. Detection of two intermixed invasive woody species using color infrared aerial imagery and the support vector machine classifier

    Science.gov (United States)

    Mirik, Mustafa; Chaudhuri, Sriroop; Surber, Brady; Ale, Srinivasulu; James Ansley, R.

    2013-01-01

    Both the evergreen redberry juniper (Juniperus pinchotii Sudw.) and deciduous honey mesquite (Prosopis glandulosa Torr.) are destructive and aggressive invaders that affect rangelands and grasslands of the southern Great Plains of the United States. However, their current spatial extent and future expansion trends are unknown. This study was aimed at: (1) exploring the utility of aerial imagery for detecting and mapping intermixed redberry juniper and honey mesquite while both are in full foliage using the support vector machine classifier at two sites in north central Texas and, (2) assessing and comparing the mapping accuracies between sites. Accuracy assessments revealed that the overall accuracies were 90% with the associated kappa coefficient of 0.86% and 89% with the associated kappa coefficient of 0.85 for sites 1 and 2, respectively. Z-statistics (0.102<1.96) used to compare the classification results for both sites indicated an insignificant difference between classifications at 95% probability level. In most instances, juniper and mesquite were identified correctly with <7% being mistaken for the other woody species. These results indicated that assessment of the current infestation extent and severity of these two woody species in a spatial context is possible using aerial remote sensing imagery.

  4. Assessing the impact of non-native freshwater fishes on native species using relative weight

    Directory of Open Access Journals (Sweden)

    Giannetto D.

    2012-01-01

    Full Text Available The aim of the research was to test relative weight (Wr, a condition index which allows evaluation of fish well-being, as a tool to investigate the impact of the presence of non native species (NNS on the condition of the key native species (NS of the Tiber River basin (Italy: Barbustyberinus Bonaparte, Leuciscus cephalus (Linnaeus, Leuciscus lucumonis Bianco, Rutilus rubilio (Bonaparte and Telestes muticellus (Bonaparte. By means of Canonical Correlation Analysis, data from 130 sampling sites, distributed throughout Tiber River basin, were examined. Wr of NS was related to densities of NNS and to environmental variables. Moreover, the correlation between Wr of NS and density of NNS was investigated through linear regression analysis and covariance analysis. Preliminary results encourage the use of Wr as a tool to assess the relationship between NS and ecological factors (such as the presence of NNS and to explain the changes that occur along the longitudinal gradient of a river.

  5. Effects of flooding duration, -frequency and -depth on the presence of saplings of six woody species in north-west Europe

    NARCIS (Netherlands)

    Vreugdenhil, S.J.; Kramer, K.; Pelsma, T.

    2006-01-01

    Under natural conditions the zonation of woody species in floodplains is to a large extent determined by hydrological conditions. Flood survival varies even among closely related species of the same genus. Most studies that quantify flood survival of seedlings and saplings of European floodplain

  6. MORPHOLOGY OF EMBRYOS AND SEEDLINGS OF WOODY SPECIES NORTHEASTERN ARGENTINA MORFOLOGÍA DE EMBRIONES Y PLÁNTULAS DE ESPECIES LEÑOSAS DEL NORDESTE ARGENTINO

    Directory of Open Access Journals (Sweden)

    María C Franceschini

    2010-11-01

    Full Text Available

    In this paper embryos and seedlings of six native woody species of Northeast of Argentina are studied: Chrysophyllum marginatum (Hook. et Arn. Radlk. subsp. marginatum (Sapotaceae,
    Eugenia uniflora L., Hexachlamys edulis (O. Berg Kausel et D. Legrand (Myrtaceae, Polygala albicans (A.W. Benn. Grondona (Polygalaceae, Sapium haematospermun Müll. Arg. and Sebastiania brasiliensis Spreng. (Euphorbiaceae. Descriptions and illustrations of seeds, embryos, germination and seedlings are given
    En este documento se estudian embriones y plántulas de seis especies leñosas nativas del nordeste de Argentina: Chrysophyllum marginatum (Hook. et Arn. Radlk. subsp. marginatum (Sapotaceae, Eugenia uniflora L., edulis Hexachlamys (O. Berg Kausel et D. Legrand (Myrtaceae, Polygala albicans (AW Benn. Grondona (Polygalaceae, Sapium haematospermun Müll. Arg. y Sebastiania brasiliensis Spreng. (Euphorbiaceae. Comprende las descripciones e ilustraciones de las semillas, embriones, germinación y plántulas

  7. Soil fertility and disturbance interact to drive contrasting responses of co-occurring native and nonnative species.

    Science.gov (United States)

    Peltzer, Duane A; Kurokawa, Hiroko; Wardle, David A

    2016-02-01

    Some plant functional groups such as nonnative invasive and nitrogen (N)-fixing plants are widely thought to have consistent, coordinated differences in their functional traits relative to other groups such as native and non -N-fixing plants. Recent evidence suggests that these trait differences between groups can be context dependent, varying with environmental factors such as resource availability and disturbance. However, many previous comparisons among plant groups differing in invasion status have not standardized growth form between groups or have compared species that do not co-occur, which could result in invasion status per se being confounded with other factors. We determined growth and leaf functional trait responses of 20 co-occurring woody species, that is, five species within each of four functional groups (native N-fixers, native non -N-fixers, nonnative [invasive] N-fixers and nonnative [invasive] non-N-fixers), to factorial combinations of soil fertility and defoliation treatments in a mesocosm experiment to test each of two hypotheses. First, we hypothesized that nonnative invasive and N-fixing species will have functional traits associated with rapid resource acquisition whereas natives and non -N-fixing species will have traits linked to resource conservation. Second, we hypothesized that plant growth and leaf traits of nonnative and N-fixing species will be more strongly influenced by environmental factors (i.e., soil fertility and disturbance) than will natives and non-N-fixers. Plant growth, foliar nutrients, and leaf structural traits varied among plant functional groups in a manner consistent with our first hypothesis. Support for our second hypothesis was mixed; origin (native vs. nonnative) and soil fertility rarely interacted to determine plant growth or variation in leaf traits whereas interactions involving N-fixing ability and soil fertility were common. Further, there were no consistent interactive effects between plant groupings and

  8. LEAF ANATOMICAL VARIATION IN RELATION TO STRESS TOLERANCE AMONG SOME WOODY SPECIES ON THE ACCRA PLAINS OF GHANA

    Directory of Open Access Journals (Sweden)

    DZOMEKU BELOVED MENSAH

    2012-12-01

    Full Text Available Leaf anatomical study was conducted on some woody species on the Accra Plains of Ghana. Leaf epidermal strips and transverse sections were mounted in Canada balsam and studied. The anatomical studies revealed numerous stomata on the lower epidermis of Azadirachta indica. The anatomical studies revealed the presence of thick cuticles, double-layered palisade mesophyll in most species and the presence of epidermal hairs in some species. Ficus capensis showed the presence of cystolith in the lower epidermis whereas Zanthoxylum zanthoxyloides showed the presence of mucilage gland in the upper epidermis. Epidermal cell of Chromolaena odorata are very large with undulating cell walls. The species studied had various adaptive anatomical features. The stomatal frequency of Azadirachta indica was very high. With the exception of Chromolaena odorata the stomatal frequencies of the species were relatively high. The stomatal dimensions showed that most of the species maintained constant stomatal length during the study period except Griffonia simplicifolia that increased the stomatal width during the afternoon. Unlike Morinda lucida, Griffonia simplicifolia and Chromolaena odorata, that showed reduction in the breadth of stomata, the other species maintained constant stomatal width.

  9. Effects of uprooting tree on herbaceous species diversity, woody species regeneration status and soft physical characteristics in a temperate mixed forest of Iran

    Institute of Scientific and Technical Information of China (English)

    Y.Kooch; S.M.Hosseini; J.Mohammadi; S.M.Hojjati

    2012-01-01

    We conducted a study to examine the pattern of development of herbaceous plant species,woody species regeneration and soil physical characteristics after tree uprooting in 20-ha areas of Experimental Forest Station of Tarbiat Modares University located in a temperate forest of Mazandaran province in the north of Iran.Soil bulk density,soil texture and moisture from pit and mound (PM) were measured in the laboratory.Results show that the soil bulk density was most in soil deeper layers at mound top,and the soil moisture content was most in soil deeper layers at Pit bottom.Our study supports that the micro-topography of PM (pit and mound) topography will create a mosaic of environmental conditions.This environmental heterogeneity could be responsible for the diversity of herbaceous plant species and regeneration of woody species.It is recommend that the fallen trees with PM structure should remain in the protected area without clearing as the best option for forest restoration.This information can be useful for forest management that attempts to emulate natural processes.

  10. Microsatellite Markers of Willow Species and Characterization of 11 Polymorphic Microsatellites for Salix eriocephala (Salicaceae), a Potential Native Species for Biomass Production in Canada.

    Science.gov (United States)

    Lauron-Moreau, Aurélien; Pitre, Frédéric E; Brouillet, Luc; Labrecque, Michel

    2013-03-27

    Biomass produced from dedicated plantations constitutes a source of renewable energy and is expected to play an important role in several countries in the coming decades. The cultivation of woody crops such as willows therefore raises several environmental issues. In North America, several native willows are potentially interesting for biomass producers. Willow trees are diverse but few species used for environmental applications have been the object of molecular genetic studies. Based on the sequenced poplar genome, 24 microsatellite markers were assayed on five native North American willow species: Salix amygdaloides, S. discolor, S. eriocephala, S. interior and S. nigra. Polymorphic microsatellite markers were used to characterize the allele data on the shrub Salix eriocephala, a North American species with economic potential. Eleven markers amplified and confirmed the potential of this species. Analysis of samples from six populations in eastern Canada showed that all markers were variable as well as polymorphic in at least one population. The number of alleles per locus ranged from 1 to 9 (mean 2.95) and showed that these microsatellite markers can be used to assess genetic diversity of North American willow species.

  11. Microsatellite Markers of Willow Species and Characterization of 11 Polymorphic Microsatellites for Salix eriocephala (Salicaceae, a Potential Native Species for Biomass Production in Canada

    Directory of Open Access Journals (Sweden)

    Aurélien Lauron-Moreau

    2013-03-01

    Full Text Available Biomass produced from dedicated plantations constitutes a source of renewable energy and is expected to play an important role in several countries in the coming decades. The cultivation of woody crops such as willows therefore raises several environmental issues. In North America, several native willows are potentially interesting for biomass producers. Willow trees are diverse but few species used for environmental applications have been the object of molecular genetic studies. Based on the sequenced poplar genome, 24 microsatellite markers were assayed on five native North American willow species: Salix amygdaloides, S. discolor, S. eriocephala, S. interior and S. nigra. Polymorphic microsatellite markers were used to characterize the allele data on the shrub Salix eriocephala, a North American species with economic potential. Eleven markers amplified and confirmed the potential of this species. Analysis of samples from six populations in eastern Canada showed that all markers were variable as well as polymorphic in at least one population. The number of alleles per locus ranged from 1 to 9 (mean 2.95 and showed that these microsatellite markers can be used to assess genetic diversity of North American willow species.

  12. Analysis on the daily courses of water potential of nine woody species from Cerrado vegetation during wet season

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The water potential (Y ) daily courses of 9 woody species from Cerrado vegetation in different weather conditions during wet season were observed and analyzed. The adjusting strategies of 9 species could be divided into 3 groups according to Cluster Analysis and based on the data observed on the January 18, March 20 and April 6. The Y values of the first group, which included 2 species, were maintained at the higher level consistently. The Y values of the second group, which included 5 species, were intermediate level. The Y values of the third group, which included 2 species, were kept in the lower level. The Y values of all species always kept pace with the weather condition, especially water condition. During the clear day only one Y value peak for all species occurred at midday (12:30-13:30). When the overcast or raining occurred for a short period, the fluctuation of Y values would appear after about 15-30 min responding to the change of weather condition. Even in the same group under the same external circumstance, there was a clear variation of the leaf Y values among different species, which showed that the strategy diversity for plant to balance water relation. From January to April, the Y values of 9 species reduced in response to the drought condition. The species with the lower values of water saturation deficiency at turgid loss point (Wsdtlp), the osmotic potential at saturation (p sat), the osmotic potential at turgid lose point (p tlp) or lower predawn water potential (Y pd) usually had the lower Y values at midday. The mechanism of water balance controlled by many systems has been assumed.

  13. Relationship Between Woody Plant Colonization and Typha L. Encroachment in Stormwater Detention Basins

    Science.gov (United States)

    Plumb, Priscilla Bocskor; Day, Susan D.; Wynn-Thompson, Theresa M.; Seiler, John R.

    2013-10-01

    We studied stormwater detention basins where woody vegetation removal was suspended for 2 years in Virginia, USA to determine if woody vegetation can control Typha populations and how early woody plant succession interacts with Typha, other herbaceous vegetation, and site factors. Distribution and composition of woody vegetation, Typha and non- Typha herbaceous vegetation biomass, and site factors were assessed at 100 plots in four basins ranging in age from 7 to 17 years. A greenhouse study examined the interaction of shade and soil moisture on Typha biomass and persistence. Principal component analysis identified an environmental gradient associated with greater water table depths and decreased elevation that favored Typha but negatively influenced woody vegetation. Elevation was correlated with litter layer distribution, suggesting that initial topography influences subsequent environmental characteristics and thus plant communities. Soil organic matter at 0-10 cm ranged from 5.4 to 12.7 %. Woody plants present were native species with the exception of Ailanthus altissima and Pyrus calleryana. In the greenhouse, shade and reduced soil moisture decreased Typha biomass and rhizome length. The shade effect was strongest in flooded plants and the soil moisture effect was strongest for plants in full sun. Typha in dry soil and heavy shade had 95 % less total biomass and 83 % smaller rhizomes than Typha in flooded soil and full sun, but even moderate soil moisture reductions decreased above- and below-ground biomass by 63 and 56 %, respectively. Suspending maintenance allows restoration of woody vegetation dominated by native species and may suppress Typha invasion.

  14. Woody invasions of urban trails and the changing face of urban forests in the great plains, USA

    Science.gov (United States)

    Nemec, K.T.; Allen, C.R.; Alai, A.; Clements, G.; Kessler, A.C.; Kinsell, T.; Major, A.; Stephen, B.J.

    2011-01-01

    Corridors such as roads and trails can facilitate invasions by non-native plant species. The open, disturbed habitat associated with corridors provides favorable growing conditions for many non-native plant species. Bike trails are a corridor system common to many urban areas that have not been studied for their potential role in plant invasions. We sampled five linear segments of urban forest along bike trails in Lincoln, Nebraska to assess the invasion of woody non-native species relative to corridors and to assess the composition of these urban forests. The most abundant plant species were generally native species, but five non-native species were also present: white mulberry (Morus alba), common buckthorn (Rhamnus cathartica), tree-of-heaven (Ailanthus altissima), honeysuckle (Lonicera spp.) and elm (Ulmus spp.). The distribution of two of the woody species sampled, common buckthorn and honeysuckle, significantly decreased with increasing distance from a source patch of vegetation (P = 0.031 and 0.030). These linear habitats are being invaded by non-native tree and shrub species, which may change the structure of these urban forest corridors. If non-native woody plant species become abundant in the future, they may homogenize the plant community and reduce native biodiversity in these areas. ?? 2011 American Midland Naturalist.

  15. Environmentally friendly technologies for obtaining high sugars concentrations from invasive woody species

    Directory of Open Access Journals (Sweden)

    Beatriz Gullón

    2015-09-01

    Full Text Available The efficient utilization and conversion of inexpensive invasive raw materials into bioethanol following a biorefinery approach is a priority in the research field of renewable fuel. With this purpose, Acacia dealbata wood samples were pretreated with 1-ethyl-3-methylimidazolium acetate under optimized conditions, and the resulting solids were employed as a substrate for enzymatic hydrolysis. Enzymatic assays were performed according to a complete factorial experimental design, in which the effects of two independent variables (liquor to solid ratio and enzyme to substrate ratio on the kinetics and yields of the xylan and cellulose saccharification were assessed. The Response Surface Methodology was employed for optimizing the experimental conditions. High sugar concentrations (around 80 g/L, and favorable polysaccharide conversions (CCG = 79.4% and XnCX = 77.9%. were predicted by the model under the selected operational conditions (6 g liquor/g substrate, 22 FPU/g. The results reported in this work compare well with other studies dealing with either other ionic liquids or classical pretreatments, using the same raw material or other woody substrates.

  16. Aluminium exclusion and aluminium tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    Ivano eBrunner

    2013-06-01

    Full Text Available The aluminium (Al cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al3+ from root cells (exclusion mechanisms and those that enable plants to tolerate Al3+ once it has entered the root and shoot symplast (internal tolerance mechanisms. The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al3+ exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al3+ adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

  17. Altitudinal variations of ground tissue and xylem tissue in terminal shoot of woody species: implications for treeline formation.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available 1. The terminal shoot (or current-year shoot, as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot. 2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA was performed to test the relation among primary xylem, ground tissue, species growth form and altitude. 3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment. 4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary

  18. Altitudinal variations of ground tissue and xylem tissue in terminal shoot of woody species: implications for treeline formation.

    Science.gov (United States)

    Chen, Hong; Wang, Haiyang; Liu, Yanfang; Dong, Li

    2013-01-01

    1. The terminal shoot (or current-year shoot), as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot. 2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA) was performed to test the relation among primary xylem, ground tissue, species growth form and altitude. 3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment. 4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary xylem in explaining

  19. Defining the Impact of Non-Native Species

    Science.gov (United States)

    Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; VilÀ, Montserrat; Winter, Marten; Kumschick, Sabrina

    2014-01-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No-Nativas Resumen Las especies no-nativas pueden causar cambios en los ecosistemas donde son introducidas. Estos cambios, o algunos de ellos, usualmente se denominan como impactos; estos pueden ser variados y potencialmente dañinos para los ecosistemas y la biodiversidad. Sin embargo, los impactos de la mayoría de las especies no-nativas están pobremente entendidos y una síntesis de información disponible se ve obstaculizada porque los autores continuamente no definen claramente impacto. Discutimos que definir explícitamente el impacto de las especies no-nativas promoverá el progreso hacia un mejor entendimiento de las implicaciones de los cambios a la biodiversidad y los

  20. Using aster multispectral imagery for mapping woody invasive species in pico da vara natural reserve (Azores Islands, Portugal

    Directory of Open Access Journals (Sweden)

    Artur Gil

    2014-06-01

    Full Text Available This paper aims to assess the effectiveness of ASTER imagery to support the mapping of Pittosporum undulatum, an invasive woody species, in Pico da Vara Natural Reserve (S. Miguel Island, Archipelago of the Azores, Portugal. This assessment was done by applying K-Nearest Neighbor (KNN, Support Vector Machine (SVM and Maximum Likelihood (MLC pixel-based supervised classifications to 4 different geographic and remote sensing datasets constituted by the Visible, Near-Infrared (VNIR and Short Wave Infrared (SWIR of the ASTER sensor and by digital cartography associated to orography (altitude and "distance to water streams" of which the spatial distribution of Pittosporum undulatum directly depends. Overall, most performed classifications showed a strong agreement and high accuracy. At targeted species level, the two higher classification accuracies were obtained when applying MLC and KNN to the VNIR bands coupled with auxiliary geographic information use. Results improved significantly by including ecology and occurrence information of species (altitude and distance to water streams in the classification scheme. These results show that the use of ASTER sensor VNIR spectral bands, when coupled to relevant ancillary GIS data, can constitute an effective and low cost approach for the evaluation and continuous assessment of Pittosporum undulatum woodland propagation and distribution within Protected Areas of the Azores Islands.

  1. Setbacks to shoot growth are common in woody plants, so how are shoots of some species safer than others?

    Science.gov (United States)

    Butler, Don W; Gleason, Sean M; Westoby, Mark

    2012-06-01

    Tissue turnover is a critical facet of plant life history variation. This study quantifies losses from setbacks to growth of terminal woody shoots 1.2m long, across 83 species and seven sites in eastern Australia. Setbacks, where the leading meristem had been removed or died and a new leader had emerged, were common (median three per shoot). Shoots had lost an average of 0.25 m of lead-stem length for 1.2 m net shoot-length gain. Insects like girdlers and borers were prominent causes of large setbacks. The sites spanned tropical to temperate and humid to semiarid climates, but variation in stem loss was much greater across species than across sites. We measured 17 plant functional traits related to growth form, mechanics, hydraulics, and economics. Only four traits were correlated with variation across species in stem losses: stem diameter, stem nitrogen content, bark thickness, and maximum photosynthetic rate. The correlations were weak. Stem specific gravity (wood density) showed no correlation with risk. Our results suggest a pattern similar to the growth risk trade-off known for herbaceous plants, where traits associated with fast growth increase tissue turnover and herbivory, but the weak correlations leave ample scope for other influences that remain to be identified.

  2. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  3. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    Science.gov (United States)

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  4. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation.

    Science.gov (United States)

    Fu, Yongshuo H; Piao, Shilong; Vitasse, Yann; Zhao, Hongfang; De Boeck, Hans J; Liu, Qiang; Yang, Hui; Weber, Ulrich; Hänninen, Heikki; Janssens, Ivan A

    2015-01-10

    Recent studies have revealed large unexplained variation in heat requirement-based phenology models, resulting in large uncertainty when predicting ecosystem carbon and water balance responses to climate variability. Improving our understanding of the heat requirement for spring phenology is thus urgently needed. In this study, we estimated the species-specific heat requirement for leaf flushing of 13 temperate woody species using long-term phenological observations from Europe and North America. The species were defined as early and late flushing species according to the mean date of leaf flushing across all sites. Partial correlation analyses were applied to determine the temporal correlations between heat requirement and chilling accumulation, precipitation and insolation sum during dormancy. We found that the heat requirement for leaf flushing increased by almost 50% over the study period 1980-2012, with an average of 30 heat units per decade. This temporal increase in heat requirement was observed in all species, but was much larger for late than for early flushing species. Consistent with previous studies, we found that the heat requirement negatively correlates with chilling accumulation. Interestingly, after removing the variation induced by chilling accumulation, a predominantly positive partial correlation exists between heat requirement and precipitation sum, and a predominantly negative correlation between heat requirement and insolation sum. This suggests that besides the well-known effect of chilling, the heat requirement for leaf flushing is also influenced by precipitation and insolation sum during dormancy. However, we hypothesize that the observed precipitation and insolation effects might be artefacts attributable to the inappropriate use of air temperature in the heat requirement quantification. Rather than air temperature, meristem temperature is probably the prominent driver of the leaf flushing process, but these data are not available

  5. Asymmetric changes of growth and reproductive investment herald altitudinal and latitudinal range shifts of two woody species.

    Science.gov (United States)

    Matías, Luis; Jump, Alistair S

    2015-02-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of the geographical distribution of a species, where range expansions or contractions may occur. Current demographical status at geographical range limits can help us to predict population trends and their implications for the future distribution of the species. Thus, understanding the comparability of demographical patterns occurring along both altitudinal and latitudinal gradients would be highly informative. In this study, we analyse the differences in the demography of two woody species through altitudinal gradients at their southernmost distribution limit and the consistency of demographical patterns at the treeline across a latitudinal gradient covering the complete distribution range. We focus on Pinus sylvestris and Juniperus communis, assessing their demographical structure (density, age and mortality rate), growth, reproduction investment and damage from herbivory on 53 populations covering the upper, central and lower altitudes as well as the treeline at central latitude and northernmost and southernmost latitudinal distribution limits. For both species, populations at the lowermost altitude presented older age structure, higher mortality, decreased growth and lower reproduction when compared to the upper limit, indicating higher fitness at the treeline. This trend at the treeline was generally maintained through the latitudinal gradient, but with a decreased growth at the northern edge for both species and lower reproduction for P. sylvestris. However, altitudinal and latitudinal transects are not directly comparable as factors other than climate, including herbivore pressure or human management, must be taken into account if we are to understand how to infer latitudinal processes from altitudinal data.

  6. Seed rain under native and non-native tree species in the Cabo Rojo National Wildlife Refuge, Puerto Rico

    OpenAIRE

    2014-01-01

    Seed dispersal is a fundamental process in plant ecology and is of critical importance for the restoration of tropical communities. The lands of the Cabo Rojo National Wildlife Refuge (CRNWR), formerly under agriculture, were abandoned in the 1970s and colonized mainly by non-native tree species of degraded pastures. Here we described the seed rain under the most common native and non-native trees in the refuge in an attempt to determine if focal tree geographic origin (native versus non-nati...

  7. Coevolution between native and invasive plant competitors: implications for invasive species management.

    Science.gov (United States)

    Leger, Elizabeth A; Espeland, Erin K

    2010-03-01

    Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely to compete with invaders. When population sizes and genetic diversity of native species are large enough, natives may be able to evolve traits that allow them to co-occur with invasive species. Native species may also evolve to become significant competitors with invasive species, and thus affect the fitness of invaders. Invasive species may respond in turn, creating either transient or continuing coevolution between competing species. In addition to demographic factors such as population size and growth rates, a number of factors including gene flow, genetic drift, the number of selection agents, encounter rates, and genetic diversity may affect the ability of native and invasive species to evolve competitive ability against one another. We discuss how these factors may differ between populations of native and invasive plants, and how this might affect their ability to respond to selection. Management actions that maintain genetic diversity in native species while reducing population sizes and genetic diversity in invasive species could promote the ability of natives to evolve improved competitive ability.

  8. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies.

    Science.gov (United States)

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-08-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44-0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (r PIC = -0.77) and thicker root diameter (r PIC = -0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (r PIC = 0.85, -0.87), suggesting constraints on colonization linked to the evolution of root morphology.

  9. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  10. An exotic species is the favorite prey of a native enemy.

    Directory of Open Access Journals (Sweden)

    Yiming Li

    Full Text Available Although native enemies in an exotic species' new range are considered to affect its ability to invade, few studies have evaluated predation pressures from native enemies on exotic species in their new range. The exotic prey naiveté hypothesis (EPNH states that exotic species may be at a disadvantage because of its naïveté towards native enemies and, therefore, may suffer higher predation pressures from the enemy than native prey species. Corollaries of this hypothesis include the native enemy preferring exotic species over native species and the diet of the enemy being influenced by the abundance of the exotic species. We comprehensively tested this hypothesis using introduced North American bullfrogs (Lithobates catesbeianus, referred to as bullfrog, a native red-banded snake (Dinodon rufozonatum, the enemy and four native anuran species in permanent still water bodies as a model system in Daishan, China. We investigated reciprocal recognition between snakes and anuran species (bullfrogs and three common native species and the diet preference of the snakes for bullfrogs and the three species in laboratory experiments, and the diet preference and bullfrog density in the wild. Bullfrogs are naive to the snakes, but the native anurans are not. However, the snakes can identify bullfrogs as prey, and in fact, prefer bullfrogs over the native anurans in manipulative experiments with and without a control for body size and in the wild, indicating that bullfrogs are subjected to higher predation pressures from the snakes than the native species. The proportion of bullfrogs in the snakes' diet is positively correlated with the abundance of bullfrogs in the wild. Our results provide strong evidence for the EPNH. The results highlight the biological resistance of native enemies to naïve exotic species.

  11. Can nutrient status of four woody plant species be predicted using field spectrometry?

    NARCIS (Netherlands)

    Ferwerda, J.G.; Skidmore, A.K.

    2007-01-01

    This paper demonstrates the potential of hyperspectral remote sensing to predict the chemical composition (i.e., nitrogen, phosphorous, calcium, potassium, sodium, and magnesium) of three tree species (i.e., willow, mopane and olive) and one shrub species (i.e., heather). Reflectance spectra, deriva

  12. Biomass accumulation and nutrient uptake of 16 riparian woody plant species in Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shuai Yu; Wei Chen; Xingyuan He; Zhouli Liu; Yanqing Huang

    2014-01-01

    Our research focused on eutrophication control and species screening for riparian zone vegetation restoration in the upstream reach of the Hun River. We studied 16 hardwood plant species to investigate nutrient concentrations and nitrogen and phosphorus accumulations. After about 120 days of growth in pots, these 16 species varied in dry matter biomass, ranging from 15.13 to 637.16 g. Total nitrogen (TN) and total phosphorus (TP) concentrations and distribution in roots, stems and foliage differed both within and between tested species. Mean TN and TP accumulation ranged from 0.167 to 14.730 g per plant and from 0.016 to 1.20 g, respectively. All 16 species, but especially Lespedeza bicolor, Robinia pseudoacacia and Sorbaria sorbifolia had strong potential to remove TN and TP from soil and could be widely utilized for the restora-tion of destroyed riparian zones in northeast China.

  13. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species.

    Science.gov (United States)

    Rietveld, W J

    1983-02-01

    Laboratory experiments were conducted to determine juglone sensitivity of 16 species (Trifolium incarnatum, Coronilla varia, Vicia villosa, Lespedeza stipulacea, L. cuneata, Acer ginnala, Caragana arbor-escens, Elaegnus angustifolia, E. umbellata, Lonicera maackii, Quercus alba, Fraxinus americana, Liriodendron tulipifera, Alnus glutinosa, Pinus strobus, andP. sylvestris) being considered for mixed plantings withJugions nigra (black walnut). All species were sensitive to juglone, but seed germination and radicle elongation were less affected than shoot elongation and dry weight accumulation. Seed germination and radicle elongation were affected by juglone in 6 and 11 species, respectively, mainly by the higher concentrations (10(-3) M and 10(-4) M). Shoot elongation and dry weight accumulation of all species were affected by juglone; many species were sensitive to concentrations as low as 10(-6) M. Seedlings of all species were severely wilted and eventually killed by 10(-3) M juglone, and most were chlorotic and severely retarded by 10(-4) M juglone. Seedlings inhibited by 10(-6) M and 10(-5) M juglone did not showany visible signs of injury. Based on the effects on seedling shoot elongation and dry weight accumulation, the five species found to be most sensitive to juglone were:Lonicera maackii, Lespedeza cuneata, Trifolium incarnatum, Alnus glutinosa, and Elaeagnus umbellata.

  14. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds

    Directory of Open Access Journals (Sweden)

    Amelia eElgar

    2014-05-01

    Full Text Available Combating the legacy of deforestation on tropical biodiversity requires the conversion to forest of large areas of established pasture, where barriers to native plant regeneration include competition with pasture grasses and poor propagule supply (seed availability. In addition, initial woody plants that colonise pasture are often invasive non-native species whose ecological roles and management in the context of forest regeneration are contested. In a restoration experiment at two 0.64 ha sites we quantified the response of native woody vegetation recruitment to (1 release from competition with introduced pasture grasses, and (2 local facilitation of frugivore-assisted seed dispersal provided by scattered woody plants and artificial bird perches. Herbicide pasture grass suppression during 20 months caused a significant but modest increase in density of native woody seedlings, together with abundant co-recruitment of the prominent non-native pioneer wild tobacco (Solanum mauritianum. Recruitment of native species was further enhanced by local structure in herbicide-treated areas, being consistently greater under live trees and dead non-native shrubs (herbicide-treated than in open areas, and intermediate under bird perches. Native seedling recruitment comprised 28 species across 0.25 ha sampled but was dominated by two rainforest pioneers (Homalanthus novoguineensis, Polyscias murrayi. These early results are consistent with the expected increase in woody vegetation recruitment in response to release from competitive and dispersive barriers to rainforest regeneration. The findings highlight the need for a pragmatic consideration of the ecological roles of woody weeds and the potential roles of ‘new forests’ more broadly in accelerating succession of humid tropical forest across large areas of retired agricultural land.

  15. Selection of woody species for wastewater enhancement and restoration of riparian woodlands.

    Science.gov (United States)

    Adrover, M; Forss, A L; Ramon, G; Vadell, J; Moya, G; Taberner, A Martinez

    2008-05-01

    Growth and nutrient uptake of seven tree species were evaluated with the goal of selecting the species that can be used for wastewater enhancement by dendro-purification, or green tree filtering, and for restoration of riparian woodlands. Trees were grown in pots with an inert mixture of perlite and vermiculite and irrigated with either nutrient solution or treated wastewater We measured the effects of species and irrigation water on biomass and nutrient content of leaves, stems and roots. For most of the species, treated wastewater had a positive effect on final biomass and above ground: below ground ratio compared to that of nutrient solution. However, growth of Cupressus sempervirens and Populus nigra were inhibited by water sodium concentration. Nerium oleander, Tamarix africana and Vitex agnus-castus were the species with the greatest final biomass. Pistacia terebinthus had the highest nitrogen and phosphorus content in leaves, stems and roots, while N. oleander and V. agnus-castus showed the best potassium accumulation. In general, P. terebinthus, N. oleander, T. africana and V. agnus-castus were the best qualified species for purification of wastewater.

  16. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Julian [University of Florida; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.

  17. Distribution of invasive and native riparian woody plants across the western USA in relation to climate, river flow, floodplain geometry and patterns of introduction

    Science.gov (United States)

    Ryan McShane,; Daniel Auerbach,; Friedman, Jonathan M.; Auble, Gregor T.; Shafroth, Patrick B.; Michael Merigliano,; Scott, Michael L.; N. Leroy Poff,

    2015-01-01

    Management of riparian plant invasions across the landscape requires understanding the combined influence of climate, hydrology, geologic constraints and patterns of introduction. We measured abundance of nine riparian woody taxa at 456 stream gages across the western USA. We constructed conditional inference recursive binary partitioning models to discriminate the influence of eleven environmental variables on plant occurrence and abundance, focusing on the two most abundant non-native taxa, Tamarix spp. and Elaeagnus angustifolia, and their native competitor Populus deltoides. River reaches in this study were distributed along a composite gradient from cooler, wetter higher-elevation reaches with higher stream power and earlier snowmelt flood peaks to warmer, drier lower-elevation reaches with lower power and later peaks. Plant distributions were strongly related to climate, hydrologic and geomorphic factors, and introduction history. The strongest associations were with temperature and then precipitation. Among hydrologic and geomorphic variables, stream power, peak flow timing and 10-yr flood magnitude had stronger associations than did peak flow predictability, low-flow magnitude, mean annual flow and channel confinement. Nearby intentional planting of Elaeagnus was the best predictor of its occurrence, but planting of Tamarix was rare. Higher temperatures were associated with greater abundance of Tamarix relative to P. deltoides, and greater abundance of P. deltoides relative toElaeagnus. Populus deltoides abundance was more strongly related to peak flow timing than was that of Elaeagnus or Tamarix. Higher stream power and larger 10-yr floods were associated with greater abundance of P. deltoides and Tamarix relative to Elaeagnus. Therefore, increases in temperature could increase abundance of Tamarix and decrease that of Elaeagnus relative to P. deltoides, changes in peak flow timing caused by climate change or dam operations could

  18. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  19. 4个生物柴油树种燃料特性的评价%Assessment-on Fuel Properties of Four Woody Biodiesel Plants Species in China

    Institute of Scientific and Technical Information of China (English)

    王利兵; 于海燕; 贺晓辉

    2012-01-01

    In this paper, we studied oil contents of the fruits or seed kernels, fatty acid composition and biodiesel fuel properties of four major potential woody biodiesel plant species ( Pistacia chinensis, Xanthoceras sorbifolia, Armeniaca sibirica and Armeniaca mandshurica) in the northern region of China. The evaluated biodiesel fuel properties include the density, kinematic viscosity, cetane number, cold filter plugging point and oxidation stability. The results showed that fruits or seed kernels of the four woody plants had high oil content ( 35. 0% , 58. 9% , 50. 2% and 47. 2% , respectively). The Fatty acid composition of their oils accorded with the ideal biodiesel feedstock standard. The four woody plants had good biodiesel fuel properties, especially the cetane number that was conformed to ASTM D6751 standards (P. chinensis met the specification from the EN 14214 biodiesel standard) , and the cold fluidity of A. sibirica and A. mandshurica were excellent (cold filter plugging point of -14℃) . In conclusion, the four woody biodiesel plants have been identified as the promising biodiesel feedstock, which result would provide references for the exploitation and utilization of biodiesel plants in the northern region of China.

  20. Mast fruiting is a frequent strategy in woody species of eastern South America.

    Directory of Open Access Journals (Sweden)

    Natalia Norden

    Full Text Available BACKGROUND: It is thought that mast seeding is a rare reproductive strategy in the tropics, since tropical climates are less variable, and fruit consumers tend to be more generalist in these regions. However, previous tests of this hypothesis were based on only few tropical datasets, and none from tropical South America. Moreover, reproductive strategies have been quantified based on the coefficient of variation of interannual seed production, an index that potentially confounds masting and high interannual variability in seed production. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new approach to model the monthly variability in seed production for 28 tree species, and 20 liana species monitored during 5 years in a tropical forest of Central French Guiana. We found that 23% of the species showed a masting pattern, 54% an annual fruiting pattern, and 23% an irregular fruiting pattern. The majority of masting species were trees (8 out of 11, most of them animal-dispersed. The classification into reproductive strategies based on the coefficient of variation was inconsistent with our results in nearly half of the cases. CONCLUSIONS/SIGNIFICANCE: Our study is the first to clearly evidence the frequency of the masting strategy in a tropical forest community of Eastern South America. The commonness of the masting strategy in tropical plants may promote species coexistence through storage dynamics.

  1. Interactive effects of UV radiation and water availability on seedlings of six woody Mediterranean species.

    Science.gov (United States)

    Bernal, Meritxell; Llorens, Laura; Badosa, Jordi; Verdaguer, Dolors

    2013-02-01

    To assess the effects of UV radiation and its interaction with water availability on Mediterranean plants, we performed an experiment with seedlings of six Mediterranean species (three mesophytes vs three xerophytes) grown in a glasshouse from May to October under three UV conditions (without UV, with UVA and with UVA+UVB) and two irrigation levels (watered to saturation and low watered). Morphological, physiological and biochemical measures were taken. Exposure to UVA+UVB increased the overall leaf mass per area (LMA) and the leaf carotenoids/chlorophyll a + b ratio of plants in relation to plants grown without UV or with UVA, respectively. In contrast, we did not find a general effect of UV on the leaf content of phenols or UVB-absorbing compounds of the studied species. Regarding plant growth, UV inhibited the above-ground biomass production of well-watered plants of Pistacia lentiscus. Conversely, under low irrigation, UVA tended to abolish the reduction in growth experienced by P. lentiscus plants growing in a UV-free environment, in accordance with UVA-enhanced apparent electron transport rate (ETR) values under drought in this species. UVA also induced an overall increase in root biomass when plants of the studied species were grown under a low water supply. In conclusion, while plant exposition to UVA favored root growth under water shortage, UVB addition only gave rise to photoprotective responses, such as the increase in LMA or in the leaf carotenoids/chlorophyll a + b ratio of plants. Species-specific responses to UV were not related with the xerophytic or mesophytic character of the studied species.

  2. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species.

    Science.gov (United States)

    Ellsworth, David S; Crous, Kristine Y; Lambers, Hans; Cooke, Julia

    2015-06-01

    Leaf photosynthetic CO2 responses can provide insight into how major nutrients, such as phosphorus (P), constrain leaf CO2 assimilation rates (Anet). However, triose-phosphate limitations are rarely employed in the classic photosynthesis model and it is uncertain as to what extent these limitations occur in field situations. In contrast to predictions from biochemical theory of photosynthesis, we found consistent evidence in the field of lower Anet in high [CO2] and low [O2 ] than at ambient [O2 ]. For 10 species of trees and shrubs across a range of soil P availability in Australia, none of them showed a positive response of Anet at saturating [CO2] (i.e. Amax) to 2 kPa O2. Three species showed >20% reductions in Amax in low [O2], a phenomenon potentially explained by orthophosphate (Pi) savings during photorespiration. These species, with largest photosynthetic capacity and Pi  > 2 mmol P m(-2), rely the most on additional Pi made available from photorespiration rather than species growing in P-impoverished soils. The results suggest that rarely used adjustments to a biochemical photosynthesis model are useful for predicting Amax and give insight into the biochemical limitations of photosynthesis rates at a range of leaf P concentrations. Phosphate limitations to photosynthetic capacity are likely more common in the field than previously considered.

  3. Ethnobotanical inventory and medicinal uses of some important woody plant species of Kotli, Azad Kashmir, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Shoaib Amjad

    2014-12-01

    Conclusions: Medicinal plants are still widely used for health care by locals of Kotli. Some species of woodlands seem to be vulnerable to overcollection and deforestation. As the young generation is diverted toward allelopathic medicines, ethnobotanical knowledges of important medicinal plants are restricted to the old people only. It is suggested to close the forest of district Kotli for next two to three decades for the conservation of plant biodiversity.

  4. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Science.gov (United States)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l -1 of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While α-pinene emissions decreased with ozone fumigation in Olea europaea, α-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95%) and total VOC (45

  5. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Llusia, J.; Penuelas, J. [Universitat Autonoma de Barcelona (Spain). Unitat Ecofisiologia CSIC-CEAB-CREAF; Gimeno, R.S. [CIEMAT, Madrid (Spain). Ecotoxicologia de la Contaminacion Atmosferica

    2002-08-01

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l{sup -1} of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While {alpha}-pinene emissions decreased with ozone fumigation in Olea europaea, {alpha}-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95

  6. Competition for shelter between four invasive gobiids and two native benthic fish species

    Directory of Open Access Journals (Sweden)

    N. VAN KESSEL, M. DORENBOSCH, M.R.M. DE BOER, R.S.E.W. LEUVEN,G. VAN DER VELDE

    2011-12-01

    Full Text Available Recent invasions by non-native gobiid fish species that are ongoing in the Western European rivers Rhine and Meuse, will lead to interactions with native benthic fish species. Since both non-native gobiids and native benthic species are bottom dwelling species with a preference for shelter during at least part of their life cycle, it is likely that competition for shelter will occur between these non-native and native species when shelter is a limiting factor. To investigate the importance of this mechanism for species replacements, various habitat choice experiments were conducted between two common native benthic fish species (Cottus perifretum and Barbatula barbatula and four invasive non-native gobiid species (Proterorhinus semilunaris, Neogobius melanostomus, N. kessleri and N. fluviatilis. The first series of single specimen experiments determined the habitat choice of each individual fish species. In a second series of competition experiments, shifts in habitat choice in comparison with the previously observed habitat choice, were determined when a native benthic fish species co-occurred with non-native gobiid species. Native C. perifretum displayed a significant shift in habitat choice in co-occurrence with the gobiids N. kessleri or P. semilunaris. C. perifretum was outcompeted and moved from the available shelter place to less preferred habitat types. During the competition experiments no change in habitat choice of B. barbatula was shown. Our study therefore suggests that competition for shelter is likely to occur in rivers invaded by N. kessleri and P. semilunaris at sites where shelter is limiting [Current Zoology 57 (6: 844–851, 2011].

  7. Competition for shelter between four invasive gobiids and two native benthic fish species

    Institute of Scientific and Technical Information of China (English)

    N. VAN KESSEL; M. DORENBOSCH; M.R.M. DE BOER; R.S.E.W. LEUVEN; G. VAN DER VELDE

    2011-01-01

    Recent invasions by non-native gobiid fish species that are ongoing in the Western European rivers Rhine and Meuse,will lead to interactions with native benthic fish species.Since both non-native gobiids and native benthic species are bottom dwelling species with a preference for shelter during at least part of their life cycle,it is likely that competition for shelter will occur between these non-native and native species when shelter is a limiting factor.To investigate the importance of this mechanism for species replacements,various habitat choice experiments were conducted between two common native benthic fish species ( Cottus perifretum and Barbatula barbatula) and four invasive non-native gobiid species ( Proterorhinus semilunaris,Neogobius melanostomus,N.kessleri and N.fluviatilis).The first series of single specimen experiments determined the habitat choice of each individual fish species.In a second series of competition experiments,shifts in habitat choice in comparison with the previously observed habitat choice,were determined when a native benthic fish species co-occurred with non-native gobiid species.Native C.perifretum displayed a significant shift in habitat choice in co-occurrence with the gobiids N.kessleri or P.semilunaris.C.perifretum was outcompeted and moved from the available shelter place to less preferred habitat types.During the competition experiments no change in habitat choice of B.barbatula was shown.Our study therefore suggests that competition for shelter is likely to occur in rivers invaded by N.kessleri and P.semilunaris at sites where shelter is limiting [Current Zoology 57 (6):844-851,2011].

  8. (15)N natural abundance of non-fixing woody species in the Brazilian dry forest (caatinga).

    Science.gov (United States)

    de Freitas, Ana Dolores Santiago; de Sa Barretto Sampaio, Everardo Valadares; Menezes, Romulo Simoes Cezar; Tiessen, Holm

    2010-06-01

    Foliar delta(15)N values are useful to calculate N(2) fixation and N losses from ecosystems. However, a definite pattern among vegetation types is not recognised and few data are available for semi-arid areas. We sampled four sites in the Brazilian caatinga, along a water availability gradient. Sites with lower annual rainfall (700 mm) but more uniform distribution (six months) had delta(15)N values of 9.4 and 10.1 per thousand, among the highest already reported, and significantly greater than those (6.5 and 6.3 per thousand) of sites with higher rainfall (800 mm) but less uniform distribution (three months). There were no significant differences at each site among species or between non-fixing legume and non-legume species, in spite of the higher N content of the first group. Therefore, they constitute ideal reference plants in estimations of legume N(2) fixation. The higher values could result from higher losses of (15)N depleted gases or lower losses of enriched (15)N material.

  9. Identification, measurement and interpretation of tree rings in woody species from mediterranean climates.

    Science.gov (United States)

    Cherubini, Paolo; Gartner, Barbara L; Tognetti, Roberto; Bräker, Otto U; Schoch, Werner; Innes, John L

    2003-02-01

    We review the literature dealing with mediterranean climate, vegetation, phenology and ecophysiology relevant to the understanding of tree-ring formation in mediterranean regions. Tree rings have been used extensively in temperate regions to reconstruct responses of forests to past environmental changes. In mediterranean regions, studies of tree rings are scarce, despite their potential for understanding and predicting the effects of global change on important ecological processes such as desertification. In mediterranean regions, due to the great spatio-temporal variability of mediterranean environmental conditions, tree rings are sometimes not formed. Often, clear seasonality is lacking, and vegetation activity is not always associated with regular dormancy periods. We present examples of tree-ring morphology of five species (Arbutus unedo, Fraxinus ornus, Quercus cerris, Q. ilex, Q. pubescens) sampled in Tuscany, Italy, focusing on the difficulties we encountered during the dating. We present an interpretation of anomalies found in the wood structure and, more generally, of cambial activity in such environments. Furthermore, we propose a classification of tree-ring formation in mediterranean environments. Mediterranean tree rings can be dated and used for dendrochronological purposes, but great care should be taken in selecting sampling sites, species and sample trees.

  10. Paragonimiasis acquired in the United States: native and nonnative species.

    Science.gov (United States)

    Diaz, James H

    2013-07-01

    Paragonimiasis is a parasitic lung infection caused by lung flukes of the genus Paragonimus, with most cases reported from Asia and caused by P. westermani following consumption of raw or undercooked crustaceans. With the exception of imported P. westermani cases in immigrants, in travelers returning from areas of disease endemicity, and in clusters of acquired cases following consumption of imported Asian crabs, human paragonimiasis caused by native lung flukes is rarely described in the United States, which has only one indigenous species of lung fluke, Paragonimus kellicotti. Clinicians should inquire about the consumption of raw or undercooked freshwater crabs by immigrants, expatriates, and returning travelers, and the consumption of raw or undercooked crayfish in U.S. freshwater river systems where P. kellicotti is endemic when evaluating patients presenting with unexplained fever, cough, rales, hemoptysis, pleural effusions, and peripheral eosinophilia. Diagnostic evaluation by specific parasitological, radiological, serological, and molecular methods will be required in order to differentiate paragonimiasis from tuberculosis, which is not uncommon in recent Asian immigrants. All cases of imported and locally acquired paragonimiasis will require treatment with oral praziquantel to avoid any potential pulmonary and cerebral complications of paragonimiasis, some of which may require surgical interventions.

  11. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    Science.gov (United States)

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  12. One-Time Herbicide use Causes Local Extinction of Native Species

    Science.gov (United States)

    Invasive species are depleting the World’s native biota. When ecosystems become invaded, ecosystem managers face a difficult dilemma. They can use aggressive practices to reduce invader abundances, thereby reducing invaders’ competitive impacts on native species. But it is usually difficult or im...

  13. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    Science.gov (United States)

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  14. Post-dispersal seed predation of woody forest species limits recolonization of forest plantations on ex-arable land

    DEFF Research Database (Denmark)

    Bruun, Hans Henrik; Valtinat, Karin; Kollmann, Johannes;

    2010-01-01

    Reforestation of ex-arable land in temperate regions increases the area of potential habitat for forest plants. However, the herbaceous plant layer of these plantations contains fewer forest species than comparable plantations at continuously forested sites. One of the reasons for this might......-generation forest plantations on ex-arable land and re-planted clear-cuts on continuously forested land. There was no recruitment following the experimental sowing of six commonwoody species (Alnus glutinosa, Betula pendula, Frangula alnus, Sambucus nigra, Sorbus aucuparia and Sorbus intermedia). Thus......, the colonization of forest plantations by native shrubs and trees appears to be habitat-limited; the only exception being Rhamnus catharticus, for which poor dispersal ability may be more important. Post-dispersal seed predation of forest shrubs and trees was marked, especially in relatively small and isolated...

  15. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China

    Science.gov (United States)

    Ren, H.; Jian, S.; Lu, H.; Zhang, Q.; Shen, W.; Han, W.; Yin, Z.; Guo, Q.

    2008-01-01

    To examine the natural colonisation of native mangrove species into remediated exotic mangrove stands in Leizhou Bay, South China, we compared soil physical-chemical properties, community structure and recruitments of barren mangrove areas, native mangrove species plantations, and exotic mangrove species-Sonneratia apetala Buch.Ham-between plantations and natural forest. We found that severely degraded mangrove stands could not regenerate naturally without human intervention due to severely altered local environments, whereas some native species had been recruited into the 4-10 year S. apetala plantations. In the first 10 years, the exotic species S. apetala grew better than native species such as Rhizophora stylosa Griff and Kandelia candel (Linn.) Druce. The mangrove plantation gradually affected soil physical and chemical properties during its recovery. The exotic S. apetala was more competitive than native species and its plantation was able to restore soil organic matter in about 14 years. Thus, S. apetala can be considered as a pioneer species to improve degraded habitats to facilitate recolonisation by native mangrove species. However, removal to control proliferation may be needed at late stages to facilitate growth of native species. To ensure sustainability of mangroves in South China, the existing mangrove wetlands must be managed as an ecosystem, with long-term scientific monitoring program in place. ?? 2007 The Ecological Society of Japan.

  16. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, E.; Hansen, Anders J.; Nielsen, K. K.

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log...... explained variation is in general small. The results show that the species area relationships are different for native and endemic species. This is discussed in relation to classical island biogeographical models, and the concepts of radiative speciation. Udgivelsesdato: 2002...

  17. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    Science.gov (United States)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  18. An introduced and a native vertebrate hybridize to form a genetic bridge to a second native species

    Science.gov (United States)

    McDonald, D.B.; Parchman, T.L.; Bower, M.R.; Hubert, W.A.; Rahel, F.J.

    2008-01-01

    The genetic impacts of hybridization between native and introduced species are of considerable conservation concern, while the possibility of reticulate evolution affects our basic understanding of how species arise and shapes how we use genetic data to understand evolutionary diversification. By using mitochondrial NADH dehydrogenase subunit 2 (ND2) sequences and 467 amplified fragment-length polymorphism nuclear DNA markers, we show that the introduced white sucker (Catostomus commersoni) has hybridized with two species native to the Colorado River Basin - the flannelmouth sucker (Catostomus latipinnis) and the bluehead sucker (Catostomus discobolus). Hybrids between the flannelmouth sucker and white sucker have facilitated introgression between the two native species, previously isolated by reproductive barriers, such that individuals exist with contributions from all three genomes. Most hybrids had the mitochondrial haplotype of the introduced white sucker, emphasizing its pivotal role in this three-way hybridization. Our findings highlight how introduced species can threaten the genetic integrity of not only one species but also multiple previously reproductively isolated species. Furthermore, this complex three-way reticulate (as opposed to strictly bifurcating) evolution suggests that seeking examples in other vertebrate systems might be productive. Although the present study involved an introduced species, similar patterns of hybridization could result from natural processes, including stream capture or geological formations (e.g., the Bering land bridge). ?? 2008 by The National Academy of Sciences of the USA.

  19. Exploring Public Perception of Non-native Species from a Visions of Nature Perspective

    Science.gov (United States)

    Verbrugge, Laura N. H.; Van den Born, Riyan J. G.; Lenders, H. J. Rob

    2013-12-01

    Not much is known about lay public perceptions of non-native species and their underlying values. Public awareness and engagement, however, are important aspects in invasive species management. In this study, we examined the relations between the lay public's visions of nature, their knowledge about non-native species, and their perceptions of non-native species and invasive species management with a survey administered in the Netherlands. Within this framework, we identified three measures for perception of non-native species: perceived risk, control and engagement. In general, respondents scored moderate values for perceived risk and personal engagement. However, in case of potential ecological or human health risks, control measures were supported. Respondents' images of the human-nature relationship proved to be relevant in engagement in problems caused by invasive species and in recognizing the need for control, while images of nature appeared to be most important in perceiving risks to the environment. We also found that eradication of non-native species was predominantly opposed for species with a high cuddliness factor such as mammals and bird species. We conclude that lay public perceptions of non-native species have to be put in a wider context of visions of nature, and we discuss the implications for public support for invasive species management.

  20. Differences in sensitivity of native and exotic fish species to changes in river temperature

    Institute of Scientific and Technical Information of China (English)

    R.S.E.W. LEUVEN; A.J. HENDRIKS; M.A.J. HULJBREGTS; H.J.R. LENDERS; J. MATTHEWS; G. VAN DER VELDE

    2011-01-01

    This paper describes the effects that temperature changes in the Rhine river distributaries have on native and exotic fish diversity.Site-specific potentially affected fractions (PAFs) of the regional fish species pool were derived using species sensitivity distributions (SSDs) for water temperature.The number of fish species in the river distributaries has changed remarkably over the last century.The number of native rheophilous species declined up until 1980 due to anthropogenic disturbances such as commercial fishing,river regulation,migration barriers,habitat deterioration and water pollution.In spite of progress in river rehabilitation,the native rheophilous fish fauna has only partially recovered thus far.The total number of species has strongly increased due to the appearance of more exotic species.After the opening of the Rhine-Main-Danube waterway in 1992,many fish species originating from the Ponto-Caspian area colonized the Rhine basin.The yearly minimum and maximum river temperatures at Lobith have increased by circa 4 ℃ over the period 1908-2010.Exotic species show lower PAFs than native species at both ends of the temperature range.The interspecific variation in the temperature tolerance of exotic fish species was found to be large.Using temporal trends in river temperature allowed past predictions of PAFs to demonstrate that the increase in maximum river temperature negatively affected a higher percentage of native fish species than exotic species.Our results support the hypothesis that alterations of the river Rhine's temperature regime caused by thermal pollution and global warming limit the full recovery of native fish fauna and facilitate the establishment of exotic species which thereby increases competition between native and exotic species.Thermal refuges are important for the survival of native fish species under extreme summer or winter temperature conditions [Current Zoology 57 (6):852-862,2011].

  1. Application of Native Tree Species to Urban Forest

    Institute of Scientific and Technical Information of China (English)

    ZHOUZaohong; GUOMeifeng; WUGuoxun

    2004-01-01

    Native trees play important roles in urban forestry, such as a deep cultural background, a strong ecological adaptability, a high performance-cost ratio and a convenient management. But now there are some difficulties in native trees' utilization and popularization due to few study on landscape plant. In order to seek an abnormal and artificial landscaping and to produce an effective result as soon as possible, native and foreign plants can be properly used as an available resource by improving their technological level and emphasizing natural balance. Then Chinese classic culture and green economics can be combined with beautiful forestry by implementing urban sustainable development.

  2. Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone.

    Science.gov (United States)

    Koepke, Dan F; Kolb, Thomas E; Adams, Henry D

    2010-08-01

    Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest-woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest-woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.

  3. Species of Mycosphaerellaceae and Teratosphaeriaceae on native Myrtaceae in Uruguay: evidence of fungal host jumps.

    Science.gov (United States)

    Pérez, C A; Wingfield, M J; Altier, N; Blanchette, R A

    2013-02-01

    Mycosphaerella species are well-known causal agents of leaf diseases on many economically and ecologically important plant species. In Uruguay, a relatively large number of Mycosphaerellaceae and Teratosphaeriaceae are found on Eucalyptus, but nothing is known of these fungi on native Myrtaceae. The aim of this study was to identify Mycosphaerellaceae and Teratosphaeriaceae species associated with leaf diseases on native Myrtaceae in Uruguay and to consider whether host jumps by the pathogen from introduced Eucalyptus to native Myrtaceae have occurred. Several native forests throughout the country were surveyed with special attention given to those located close to Eucalyptus plantations. Five species belonging to the Mycosphaerellaceae and Teratosphaeriaceae clades were found on native Myrtaceous trees and three of these had previously been reported on Eucalyptus in Uruguay. Those occurring both on Eucalyptus and native Myrtaceae included Pallidocercospora heimii, Pseudocercospora norchiensis, and Teratosphaeria aurantia. In addition, Mycosphaerella yunnanensis, a species known to occur on Eucalyptus but not previously recorded in Uruguay, was found on leaves of two native Myrtaceous hosts. Because most of these species occur on Eucalyptus in countries other than Uruguay, it appears that they were introduced in this country and have adapted to be able to infect native Myrtaceae. These apparent host jumps have the potential to result in serious disease problems and they should be carefully monitored.

  4. The effects of seed ingestion by livestock, dung fertilization, trampling, grass competition and fire on seedling establishment of two woody plant species.

    Science.gov (United States)

    Tjelele, Julius; Ward, David; Dziba, Luthando

    2015-01-01

    The increasing rate of woody plant encroachment in grasslands or savannas remains a challenge to livestock farmers. The causes and control measures of woody plant encroachment are of common interest, especially where it negatively affects the objectives of an agricultural enterprise. The objectives of this study were to determine the effects of gut passage (goats, cattle), dung (nutrients), fire, grass competition and trampling on establishment of A. nilotica and D. cinerea seedlings. Germination trials were subjected to the following treatments: 1) seed passage through the gut of cattle and goats and unpassed/ untreated seeds (i.e. not ingested), 2) dung and control (no dung), 3) grass and control (mowed grass), 4) fire and control (no fire), 5) trampling and control (no trampling). The interaction of animal species, grass and fire had an effect on seedling recruitment (P effect on seedling recruitment than seeds retrieved from goats and planted with grass and no fire (2.98% ± 0.33). Significantly more D. cinerea and A. nilotica seeds germinated following seed ingestion by goats (3.59% ± 0.16) than cattle (1.93% ± 0.09) and control or untreated seeds (1.69% ± 0.11). Less dense grass cover, which resulted in reduced grass competition with tree seedlings for light, space and water, and improved seed scarification due to gut passage were vital for emergence and recruitment of Acacia seedlings. These results will contribute considerably to the understanding of the recruitment phase of woody plant encroachment.

  5. Palms versus trees: water use characteristics of native fruit-bearing plant species in the Central Amazon

    Science.gov (United States)

    Kunert, N.; Barros, P.; Higuchi, N.

    2012-12-01

    Native fruiting plants are widely cultivated in the Amazon but only little information on their water use characteristics can be found in the literature. Due to the growing local consumption and the increasing popularity for new "exotic" fruits all over Brazil and worldwide, additional new plantations cultivating such fruit-bearing species might be established in the Amazon in the future. These new plantations will affect the water table of the cultivated areas, however, the impact of these changes on the regional hydrology are not known. We, therefore, decided to study plant water use characteristics of two native fruit plants commonly occurring in the Amazon region, a tree species (Cupuaçu, Theobroma grandiflorum, (Willd. ex Spreng.) Schum., Malvaceae) and a palm species (Açai, Euterpe oleraceae Mart., Arecaceae). This study was conducted in a fruit plantation close to the city of Manaus, in the Central Amazon, Brazil. The objectives of our study were 1) to compare variables controlling plant water use and 2) to identify differences in water use between woody monocot and dicot plant species. We chose three representative individuals with well-sun-exposed crowns for each species, which were equipped with Granier-type thermal dissipation probes to measure sap flux density continuously for six weeks from August 1st 2011 until September 6th 2011. We used a simple sap flux model with two environmental variables, photosynthetic photon flux density and vapor pressure deficit, to compare sap flux densities between species. We achieved a good model fit and modeled sap flux densities corresponded very well with the actual measured values. No significant differences among species in sap flux densities were indicated by the model. Overall, palms had a 3.5 fold higher water consumption compared to trees with similar diameter. Water use scaled independent from species with the size of the conductive xylem area (r2 = 0.85), so that the higher water use of the palms was

  6. Colloquium paper: species invasions and extinction: the future of native biodiversity on islands.

    Science.gov (United States)

    Sax, Dov F; Gaines, Steven D

    2008-08-12

    Predation by exotic species has caused the extinction of many native animal species on islands, whereas competition from exotic plants has caused few native plant extinctions. Exotic plant addition to islands is highly nonrandom, with an almost perfect 1 to 1 match between the number of naturalized and native plant species on oceanic islands. Here, we evaluate several alternative implications of these findings. Does the consistency of increase in plant richness across islands imply that a saturation point in species richness has been reached? If not, should we expect total plant richness to continue to increase as new species are added? Finally, is the rarity of native plant extinctions to date a misleading measure of the impact of past invasions, one that hides an extinction debt that will be paid in the future? By analyzing historical records, we show that the number of naturalized plant species has increased linearly over time on many individual islands. Further, the mean ratio of naturalized to native plant species across islands has changed steadily for nearly two centuries. These patterns suggest that many more species will become naturalized on islands in the future. We also discuss how dynamics of invasion bear upon alternative saturation scenarios and the implications these scenarios have for the future retention or extinction of native plant species. Finally, we identify invasion-motivated research gaps (propagule pressure, time-lags to extinction, abundance shifts, and loss of area) that can aid in forecasting extinction and in developing a more comprehensive theory of species extinctions.

  7. Causes and consequences of woody plant encroachment into western North American grasslands.

    Science.gov (United States)

    Van Auken, O W

    2009-07-01

    As woody plants encroach into grasslands, grass biomass, density and cover decline as wood plant biomass, density and cover increase. There is also a shift in location of the biomass from mostly belowground in the grasslands to aboveground in the woodlands. In addition, species richness and diversity change as herbaceous species are replaced by woody species. This is not a new phenomenon, but has been going on continually as the climate of the Planet has changed. However, in the past 160 years the changes have been unparalleled. The process is encroachment not invasion because woody species that have been increasing in density are native species and have been present in these communities for thousands of years. These indigenous or native woody species have increased in density, cover and biomass because of changes in one or more abiotic or biotic factors or conditions. Woody species that have increased in density and cover are not the cause of the encroachment, but the result of changes of other factors. Globally, the orbit of the Earth is becoming more circular and less elliptical, causing moderation of the climate. Additional global climate changing factors including elevated levels of CO2 and parallel increases in temperature are background factors and probably not the principal causes directing the current wave of encroachment. There is probably not a single reason for encroachment, but a combination of factors that are difficult to disentangle. The prime cause of the current and recent encroachment appears to be high and constant levels of grass herbivory by domestic animals. This herbivory reduces fine fuel with a concomitant reduction in fire frequency or in some cases a complete elimination of fire from these communities. Conditions would now favor the woody plants over the grasses. Reduced grass competition, woody plant seed dispersal and changes in animal populations seem to modify the rate of encroachment rather than being the cause. High concentrations

  8. Native macrophyte density and richness affect the invasiveness of a tropical poaceae species.

    Directory of Open Access Journals (Sweden)

    Thaisa S Michelan

    Full Text Available The role of the native species richness and density in ecosystem invasibility is a matter of concern for both ecologists and managers. We tested the hypothesis that the invasiveness of Urochloa arrecta (non-native in the Neotropics is negatively affected by the species richness and abundance of native aquatic macrophytes in freshwater ecosystems. We first created four levels of macrophyte richness in a greenhouse (richness experiment, and we then manipulated the densities of the same native species in a second experiment (density experiment. When the native macrophytes were adults, fragments of U. arrecta were added, and their growth was assessed. Our results from the richness experiment corroborated the hypothesis of a negative relationship between the native species richness and the growth of U. arrecta, as measured by sprout length and root biomass. However, the resistance to invasion was not attributed to the presence of a particular native species with a greater competitive ability. In the density experiment, U. arrecta growth decreased significantly with an increased density of all five of the native species. Density strongly affected the performance of the Poaceae in a negative manner, suggesting that patches that are densely colonized by native macrophytes and less subject to disturbances will be more resistant to invasion than those that are poorly colonized and more commonly subjected to disturbances. Our density experiment also showed that some species exhibit a higher competitive ability than others (sampling effect. Although native richness and abundance clearly limit the colonization and establishment of U. arrecta, these factors cannot completely prevent the invasion of aquatic ecosystems by this Poaceae species.

  9. Native macrophyte density and richness affect the invasiveness of a tropical poaceae species.

    Science.gov (United States)

    Michelan, Thaisa S; Thomaz, Sidinei M; Bini, Luis M

    2013-01-01

    The role of the native species richness and density in ecosystem invasibility is a matter of concern for both ecologists and managers. We tested the hypothesis that the invasiveness of Urochloa arrecta (non-native in the Neotropics) is negatively affected by the species richness and abundance of native aquatic macrophytes in freshwater ecosystems. We first created four levels of macrophyte richness in a greenhouse (richness experiment), and we then manipulated the densities of the same native species in a second experiment (density experiment). When the native macrophytes were adults, fragments of U. arrecta were added, and their growth was assessed. Our results from the richness experiment corroborated the hypothesis of a negative relationship between the native species richness and the growth of U. arrecta, as measured by sprout length and root biomass. However, the resistance to invasion was not attributed to the presence of a particular native species with a greater competitive ability. In the density experiment, U. arrecta growth decreased significantly with an increased density of all five of the native species. Density strongly affected the performance of the Poaceae in a negative manner, suggesting that patches that are densely colonized by native macrophytes and less subject to disturbances will be more resistant to invasion than those that are poorly colonized and more commonly subjected to disturbances. Our density experiment also showed that some species exhibit a higher competitive ability than others (sampling effect). Although native richness and abundance clearly limit the colonization and establishment of U. arrecta, these factors cannot completely prevent the invasion of aquatic ecosystems by this Poaceae species.

  10. Species pools, community completeness and invasion: disentangling diversity effects on the establishment of native and alien species.

    Science.gov (United States)

    Bennett, Jonathan A; Riibak, Kersti; Kook, Ene; Reier, Ülle; Tamme, Riin; Guillermo Bueno, C; Pärtel, Meelis

    2016-12-01

    Invasion should decline with species richness, yet the relationship is inconsistent. Species richness, however, is a product of species pool size and biotic filtering. Invasion may increase with richness if large species pools represent weaker environmental filters. Measuring species pool size and the proportion realised locally (completeness) may clarify diversity-invasion relationships by separating environmental and biotic effects, especially if species' life-history stage and origin are accounted for. To test these relationships, we added seeds and transplants of 15 native and alien species into 29 grasslands. Species pool size and completeness explained more variation in invasion than richness alone. Although results varied between native and alien species, seed establishment and biotic resistance to transplants increased with species pool size, whereas transplant growth and biotic resistance to seeds increased with completeness. Consequently, species pools and completeness represent multiple independent processes affecting invasion; accounting for these processes improves our understanding of invasion.

  11. Study of parasites native and introduced species of fish in Caspian Sea

    OpenAIRE

    Bozorgnia, Abbas

    2007-01-01

    Seven native and introduced species of fish in south east Caspian Sea coast examined for parasite infestation during 2004-2006. Native fishes include Barbus capito, Carassius auratus, Cyprinus carpio, Rutilus frisii kutum, Rutilus rutilus, Stizostidion lucioperca, Alosa caspia persica, 24 ecto and endo parasites were found in different organs of 7 species of fishes of them 2 of the metazoan 12 species of crustacean Lernaea cyprinacea , Lamproglena pukhella nematodea and cestodea parasite were...

  12. Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species.

    Science.gov (United States)

    Orrock, John L; Dutra, Humberto P; Marquis, Robert J; Barber, Nicholas

    2015-04-01

    Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition.

  13. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  14. Dispersal and selection mediate hybridization between a native and invasive species.

    Science.gov (United States)

    Kovach, Ryan P; Muhlfeld, Clint C; Boyer, Matthew C; Lowe, Winsor H; Allendorf, Fred W; Luikart, Gordon

    2015-01-22

    Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture were larger and tended to emigrate at a younger age--relationships that are expected to confer fitness advantages to hybrid individuals. However, strong selection against non-native admixture was evident across streams and cohorts (mean selection coefficient against genotypes with non-native alleles (s) = 0.60; s.e. = 0.10). Nevertheless, hybridization was promoted in both streams by the continuous immigration of individuals with high levels of non-native admixture from other hybrid source populations. Thus, antagonistic relationships between dispersal and selection are mediating invasive hybridization between these fish, emphasizing that data on dispersal and natural selection are needed to fully understand the dynamics of introgression between native and non-native species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Generative reproduction of Antarctic grasses, the native species Deschampsia antarctica Desv. and the alien species Poa annua L.

    OpenAIRE

    Giełwanowska Irena; Kellmann−Sopyła Wioleta

    2015-01-01

    The embryology of two species, Deschampsia antarctica, a native species, and Poa annua, an alien species in the Antarctic we studied. Flowering buds of plants growing in their natural habitats on King George Island and generative tissues of both plant species grown in a greenhouse were analyzed. Adaptations to autogamy and anemogamy were observed in the flower anatomy of both species. The microsporangia of the evaluated grasses produce a small number of three−celled pollen grains. Numerous po...

  16. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    NARCIS (Netherlands)

    Macel, M.; Vos, de R.C.H.; Jansen, J.J.; Putten, van der W.H.; Dam, van N.M.

    2014-01-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native co

  17. Spatiotemporal Patterns and Dynamics of Species Richness and Abundance of Woody Plant Functional Groups in a Tropical Forest Landscape of Hainan Island,South China

    Institute of Scientific and Technical Information of China (English)

    Zhi-Dong Zhang; Run-Guo Zang; Yao-Dong Qi

    2008-01-01

    Tropical forests are among the most species-diverse ecosystems on Earth. Their structures and ecological functions are complex to understand. Functional group is defined as a group of species that play similar roles in an ecosystem. The functional group approach has been regarded as an effective way of linking the compositions of complex ecosystems with their ecological functions. To understand the variation of functional groups in species-rich ecosystems after disturbance, the present study investigated the spatial pattern and temporal dynamics of woody plants in a typically fragmented natural forest landscape of Hainan Island in South China. The study area was classified into eight landscape types based on vegetation type, disturbance manner and the time of recovery. The woody plant species were aggregated into seven functional groups based on the growth form, successional status and plant size. The results gained from the present study showed that all functional groups, except for the emergent and canopy tree species, were present in all eight landscape types. Each landscape type had different numbers of dominant functional groups. There are similar species richness and stem abundance structure among functional groups between mid-successional clear cut lowland rainforest and old growth tropical coniferous forest. This similarity exists in selective logged lowland rainforest and old-growth lowland rainforest, as well as among landscape types of montane rainforest. The functional groups with the same successional status had similar patterns of species richness and stem abundance ratios among different landscape types. The variation patterns of functional groups along the successional stages in terms of species richness and stem abundance among the tropical lowland rainforest landscape types were more similar to each other than those in the tropical montane reinforest landscape types. This study provides further support for the competition-colonization tradeoff and

  18. Variation in the strength of reproductive interference from an alien congener to a native species in Taraxacum.

    Science.gov (United States)

    Nishida, Sachiko; Hashimoto, Keisuke; Kanaoka, Masahiro M; Takakura, Ko-Ichi; Nishida, Takayoshi

    2017-01-01

    Reproductive interference (RI) may be a contributing factor to the displacement of native species by an alien congener, and RI strength has been shown theoretically to affect distributional relationships between species. Thus, variations in RI strength from alien to native species result in different consequences of invasions and efforts to conserve native species, but the variations have seldom been examined empirically. We therefore investigated RI strength variations from the alien species Taraxacum officinale and its hybrids to eight populations of native dandelions, four T. japonicum populations and two populations each of two subspecies of T. platycarpum. We examined the association between alien relative abundance and native seed set in field surveys, and we also performed hand-pollination experiments to investigate directly the sensitivity of native flowers to alien pollen. We found that the effect of alien relative abundance on native seed set of even the same native species could differ greatly in different regions, and that the sensitivity of native flowers to alien pollen was also dependent on region. Our results, together with those of previous studies, show that RI from the alien to the native species is strong in regions where the alien species outnumbers the native species and marginal where it does not; this result suggests that alien RI can critically affect distributional relationships between native and alien species. Our study highlights the importance of performing additional empirical investigations of RI strength variation and of giving due attention to alien RI in efforts to conserve regional native biodiversity.

  19. Contrasting phenotypic plasticity in the photoprotective strategies of the invasive species Carpobrotus edulis and the coexisting native species Crithmum maritimum.

    Science.gov (United States)

    Fenollosa, Erola; Munné-Bosch, Sergi; Pintó-Marijuan, Marta

    2017-06-01

    Photoprotective strategies vary greatly within the plant kingdom and reflect a plant's physiological status and capacity to cope with environment variations. The plasticity and intensity of these responses may determine plant success. Invasive species are reported to show increased vigor to displace native species. Describing the mechanisms that confer such vigor is essential to understanding the success of invasive species. We performed an experiment whereby two species were monitored: Carpobrotus edulis, an aggressive invasive species in the Mediterranean basin, and Crithmum maritimum, a coexisting native species in the Cap de Creus Natural Park (NE Spain). We analyzed their photoprotective responses to seasonal environmental dynamics by comparing the capacity of the invader to respond to the local environmental stresses throughout the year. Our study analyses ecophysiological markers and photoprotective strategies to gain an insight into the success of invaders. We found that both species showed completely different but effective photoprotective strategies: in summer, C. edulis took special advantage of the xanthophyll cycle, whereas the success of C. maritimum in summer stemmed from morphological changes and alterations on β-carotene content. Winter also presented differences between the species, as the native showed reduced Fv /Fm ratios. Our experimental design allowed us to introduce a new approach to compare phenotypic plasticity: the integrated phenotypic plasticity index (PPint ), defined as the maximum Euclidian distance between phenotypes, using a combination of different variables to describe them. This index revealed significantly greater phenotypic plasticity in the invasive species compared to the native species. © 2017 Scandinavian Plant Physiology Society.

  20. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aim. Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental...

  1. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species.

    Science.gov (United States)

    Funk, Jennifer L; Glenwinkel, Lori A; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the "high-return" end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids.

  2. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species.

    Directory of Open Access Journals (Sweden)

    Jennifer L Funk

    Full Text Available Invasive species are expected to cluster on the "high-return" end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids rather than photosynthetic light reactions (membrane-bound protein by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids.

  3. An invasive-native mammalian species replacement process captured by camera trap survey random encounter models

    OpenAIRE

    2016-01-01

    Camera traps are used to estimate densities or abundances using capture-recapture and, more recently, random encounter models (REMs). We deploy REMs to describe an invasive-native species replacement process, and to demonstrate their wider application beyond abundance estimation. The Irish hare Lepus timidus hibernicus is a high priority endemic of conservation concern. It is threatened by an expanding population of non-native, European hares L. europaeus, an invasive species of global import...

  4. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced...... exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species...... in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...

  5. The potential of four woody species for the revegetation of fly ash deposits from the ‘Nikola Tesla-a’ thermoelectric plant (Obrenovac, Serbia

    Directory of Open Access Journals (Sweden)

    Kostić Olga

    2012-01-01

    Full Text Available Four woody species, Tamarix tentandra Pallas, Populus alba L. and Robinia pseudoacacia L. (planted and Amorpha fruticosa L. (naturally colonized were studied at two fly ash deposit lagoons, weathered 3 (L1 and 11 years (L2. All species were assessed in terms of their invasive ability, photosynthetic efficiency, photosynthetic pigments and damage symptoms, while the characteristics of the habitat were assessed in terms of trace element content and the pH and EC of the ash. A reduced vitality of all populations growing on the ash was observed, except for the naturally colonized A. fruticosa. High vitality on all sites, except at L2, increased chlorophyll content and absence of damage symptoms indicates a tolerance in relation to the uptake of toxic elements from the ash. Therefore, the characteristics of naturally colonized species can be used for modeling future actions of biological restoration of fly ash deposits.

  6. Helminth species richness of introduced and native grey mullets (Teleostei: Mugilidae).

    Science.gov (United States)

    Sarabeev, Volodimir

    2015-08-01

    Quantitative complex analyses of parasite communities of invaders across different native and introduced populations are largely lacking. The present study provides a comparative analysis of species richness of helminth parasites in native and invasive populations of grey mullets. The local species richness differed between regions and host species, but did not differ when compared with invasive and native hosts. The size of parasite assemblages of endohelminths was higher in the Mediterranean and Azov-Black Seas, while monogeneans were the most diverse in the Sea of Japan. The helminth diversity was apparently higher in the introduced population of Liza haematocheilus than that in their native habitat, but this trend could not be confirmed when the size of geographic range and sampling efforts were controlled for. The parasite species richness at the infracommunity level of the invasive host population is significantly lower compared with that of the native host populations that lends support to the enemy release hypothesis. A distribution pattern of the infracommunity richness of acquired parasites by the invasive host can be characterized as aggregated and it is random in native host populations. Heterogeneity in the host susceptibility and vulnerability to acquired helminth species was assumed to be a reason of the aggregation of species numbers in the population of the invasive host.

  7. The cobblers stick to their lasts : pollinators prefer native over alien plant species in a multi-species experiment

    OpenAIRE

    Chrobock, Thomas; Winiger, Pius; Fischer, Markus; van Kleunen, Mark

    2013-01-01

    The majority of plant species rely, at least partly, on animals for pollination. Our knowledge on whether pollinator visitation differs between native and alien plant species, and between invasive and non-invasive alien species is still limited. Additionally, because numerous invasive plant species are escapees from horticulture, the transition from human-assisted occurrence in urbanized habitats to unassisted persistence and spread in (semi-)natural habitats requires study. To address whethe...

  8. Mycorrhizal detection of native and non-native truffles in a historic arboretum and the discovery of a new North American species, Tuber arnoldianum sp. nov.

    Science.gov (United States)

    Healy, Rosanne A; Zurier, Hannah; Bonito, Gregory; Smith, Matthew E; Pfister, Donald H

    2016-10-01

    During a study comparing the ectomycorrhizal root communities in a native forest with those at the Arnold Arboretum in Massachusetts (USA), the European species Tuber borchii was detected on the roots of a native red oak in the arboretum over two successive years. Since T. borchii is an economically important edible truffle native to Europe, we conducted a search of other roots in the arboretum to determine the extent of colonization. We also wanted to determine whether other non-native Tuber species had been inadvertently introduced into this 140-year-old Arboretum because many trees were imported into the site with intact soil and roots prior to the 1921 USDA ban on these horticultural practices in the USA. While T. borchii was not found on other trees, seven other native and exotic Tuber species were detected. Among the North American Tuber species detected from ectomycorrhizae, we also collected ascomata of a previously unknown species described here as Tuber arnoldianum. This new species was found colonizing both native and non-native tree roots. Other ectomycorrhizal taxa that were detected included basidiomycetes in the genera Amanita, Russula, Tomentella, and ascomycetes belonging to Pachyphlodes, Helvella, Genea, and Trichophaea. We clarify the phylogenetic relationships of each of the Tuber species detected in this study, and we discuss their distribution on both native and non-native host trees.

  9. SURVEY OF WOODY FLORA AND FAUNA OF THE BAHIR DAR ...

    African Journals Online (AJOL)

    .telecom.net.et), were to train multipurpose primary education ... development. ... The study on fauna was conducted both in dry and wet seasons. The dry ... 63 woody species (woody climbers not included) belonging to 34 families is recorded.

  10. Beyond the ecological: biological invasions alter natural selection on a native plant species.

    Science.gov (United States)

    Lau, Jennifer A

    2008-04-01

    Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.

  11. The effects of seed ingestion by livestock, dung fertilization, trampling, grass competition and fire on seedling establishment of two woody plant species.

    Directory of Open Access Journals (Sweden)

    Julius Tjelele

    Full Text Available The increasing rate of woody plant encroachment in grasslands or savannas remains a challenge to livestock farmers. The causes and control measures of woody plant encroachment are of common interest, especially where it negatively affects the objectives of an agricultural enterprise. The objectives of this study were to determine the effects of gut passage (goats, cattle, dung (nutrients, fire, grass competition and trampling on establishment of A. nilotica and D. cinerea seedlings. Germination trials were subjected to the following treatments: 1 seed passage through the gut of cattle and goats and unpassed/ untreated seeds (i.e. not ingested, 2 dung and control (no dung, 3 grass and control (mowed grass, 4 fire and control (no fire, 5 trampling and control (no trampling. The interaction of animal species, grass and fire had an effect on seedling recruitment (P < 0.0052. Seeds retrieved from goats and planted with no grass and with fire (6.81% ± 0.33 had a significant effect on seedling recruitment than seeds retrieved from goats and planted with grass and no fire (2.98% ± 0.33. Significantly more D. cinerea and A. nilotica seeds germinated following seed ingestion by goats (3.59% ± 0.16 than cattle (1.93% ± 0.09 and control or untreated seeds (1.69% ± 0.11. Less dense grass cover, which resulted in reduced grass competition with tree seedlings for light, space and water, and improved seed scarification due to gut passage were vital for emergence and recruitment of Acacia seedlings. These results will contribute considerably to the understanding of the recruitment phase of woody plant encroachment.

  12. Functional differences between native and alien species: a global-scale comparison

    DEFF Research Database (Denmark)

    Ordonez Gloria, Alejandro

    2010-01-01

    1. A prevalent question in the study of plant invasions has been whether or not invasions can be explained on the basis of traits. Despite many attempts, a synthetic view of multi-trait differences between alien and native species is not yet available.2. We compiled a database of three ecologically...... important traits (specific leaf area, typical maximum canopy height, individual seed mass) for 4473 species sampled over 95 communities (3784 species measured in their native range, 689 species in their introduced range, 207 in both ranges).3. Considering each trait separately, co-occurring native and alien...... species significantly differed in their traits. These differences, although modest, were expressed in a combined 15% higher specific leaf area, 16% lower canopy height and 26% smaller seeds.4. Using three novel multi-trait metrics of functional diversity, aliens showed significantly smaller trait ranges...

  13. Non-random co-occurrence of native and exotic plant species in Mediterranean grasslands

    Science.gov (United States)

    de Miguel, José M.; Martín-Forés, Irene; Acosta-Gallo, Belén; del Pozo, Alejandro; Ovalle, Carlos; Sánchez-Jardón, Laura; Castro, Isabel; Casado, Miguel A.

    2016-11-01

    Invasion by exotic species in Mediterranean grasslands has determined assembly patterns of native and introduced species, knowledge of which provides information on the ecological processes underlying these novel communities. We considered grasslands from Spain and Chile. For each country we considered the whole grassland community and we split species into two subsets: in Chile, species were classified as natives or colonizers (i.e. exotics); in Spain, species were classified as exclusives (present in Spain but not in Chile) or colonizers (Spanish natives and exotics into Chile). We used null models and co-occurrence indices calculated in each country for each one of 15 sites distributed along a precipitation gradient and subjected to similar silvopastoral exploitation. We compared values of species co-occurrence between countries and between species subsets (natives/colonizers in Chile; exclusives/colonizers in Spain) within each country and we characterised them according to climatic variables. We hypothesized that: a) the different coexistence time of the species in both regions should give rise to communities presenting a spatial pattern further from random in Spain than in Chile, b) the co-occurrence patterns in the grasslands are affected by mesoclimatic factors in both regions. The patterns of co-occurrence are similar in Spain and Chile, mostly showing a spatial pattern more segregated than expected by random. The colonizer species are more segregated in Spain than in Chile, possibly determined by the longer residence time of the species in the source area than in the invaded one. The segregation of species in Chile is related to water availability, being species less segregated in habitat with greater water deficit; in Spain no relationship with climatic variables was found. After an invasion process, our results suggest that the possible process of alteration of the original Chilean communities has not prevented the assembly between the native and

  14. Non-native species in the vascular flora of highlands and mountains of Iceland

    Directory of Open Access Journals (Sweden)

    Pawel Wasowicz

    2016-01-01

    Full Text Available The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1 How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2 Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3 Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4 Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5 Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive. Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland’s highlands and mountain areas.

  15. Non-native species in the vascular flora of highlands and mountains of Iceland.

    Science.gov (United States)

    Wasowicz, Pawel

    2016-01-01

    The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1) How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2) Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3) Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4) Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5) Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive). Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland's highlands and mountain areas.

  16. A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS

    Directory of Open Access Journals (Sweden)

    Alessandro Dal Col Lúcio

    2006-03-01

    Full Text Available This work grouped, by species, the most similar seed tree, using the variables observed in exotic forest species of theBrazilian flora of seeds collected in the Forest Research and Soil Conservation Center of Santa Maria, Rio Grande do Sul, analyzedfrom January, 1997, to march, 2003. For the cluster analysis, all the species that possessed four or more analyses per lot wereanalyzed by the hierarchical Clustering method, of the standardized Euclidian medium distance, being also a principal componentanalysis technique for reducing the number of variables. The species Callistemon speciosus, Cassia fistula, Eucalyptus grandis,Eucalyptus robusta, Eucalyptus saligna, Eucalyptus tereticornis, Delonix regia, Jacaranda mimosaefolia e Pinus elliottii presentedmore than four analyses per lot, in which the third and fourth main components explained 80% of the total variation. The clusteranalysis was efficient in the separation of the groups of all tested species, as well as the method of the main components.

  17. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide.

    Science.gov (United States)

    Manea, Anthony; Leishman, Michelle R

    2011-03-01

    We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO(2) because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO(2). A series of competition experiments under ambient and elevated CO(2) glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO(2) concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO(2) concentration. However, there was a significant interaction between plant type and CO(2) treatment due to reduced competitive response of native species under elevated compared with ambient CO(2) conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO(2). We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO(2) treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO(2) conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO(2) conditions. Under predicted future atmospheric CO(2) conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO(2) conditions, the ecological and

  18. Competitive replacement of invasive congeners may relax impact on native species: interactions among zebra, quagga, and native unionid mussels.

    Directory of Open Access Journals (Sweden)

    Lyubov E Burlakova

    Full Text Available Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha and quagga (D. rostriformis bugensis mussels in the lower Great Lakes region 25 years after they nearly extirpated native unionids. In 2011-2012, we collected infestation data for over 4000 unionids from 26 species at 198 nearshore sites in lakes Erie, Ontario, and St. Clair, the Detroit River, and inland Michigan lakes and compared those results to studies from the early 1990 s. We found that the frequency of unionid infestation by Dreissena recently declined, and the number of dreissenids attached to unionids in the lower Great Lakes has fallen almost ten-fold since the early 1990s. We also found that the rate of infestation depends on the dominant Dreissena species in the lake: zebra mussels infested unionids much more often and in greater numbers. Consequently, the proportion of infested unionids, as well as the number and weight of attached dreissenids were lower in waterbodies dominated by quagga mussels. This is the first large-scale systematic study that revealed how minor differences between two taxonomically and functionally related invaders may have large consequences for native communities they invade.

  19. Competitive replacement of invasive congeners may relax impact on native species: Interactions among zebra, quagga, and native unionid mussels

    Science.gov (United States)

    Burlakova, Lyubov E.; Tulumello, Brianne L.; Karatayev, Alexander Y.; Krebs, Robert A.; Schloesser, Donald W.; Paterson, Wendy L.; Griffith, Traci A.; Scott, Mariah W.; Crail, Todd D.; Zanatta, David T

    2014-01-01

    Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha) and quagga (D. rostriformis bugensis) mussels in the lower Great Lakes region 25 years after they nearly extirpated native unionids. In 2011–2012, we collected infestation data for over 4000 unionids from 26 species at 198 nearshore sites in lakes Erie, Ontario, and St. Clair, the Detroit River, and inland Michigan lakes and compared those results to studies from the early 1990s. We found that the frequency of unionid infestation by Dreissena recently declined, and the number of dreissenids attached to unionids in the lower Great Lakes has fallen almost ten-fold since the early 1990s. We also found that the rate of infestation depends on the dominant Dreissena species in the lake: zebra mussels infested unionids much more often and in greater numbers. Consequently, the proportion of infested unionids, as well as the number and weight of attached dreissenids were lower in waterbodies dominated by quagga mussels. This is the first large-scale systematic study that revealed how minor differences between two taxonomically and functionally related invaders may have large consequences for native communities they invade.

  20. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes.

    Science.gov (United States)

    Capinha, César; Larson, Eric R; Tricarico, Elena; Olden, Julian D; Gherardi, Francesca

    2013-08-01

    Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal-limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate-suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate-suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague-transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. © 2013 Society for Conservation Biology.

  1. Arsenic and mercury in native aquatic bryophytes: differences among species.

    Science.gov (United States)

    Díaz, Santiago; Villares, Rubén; López, Jesús; Carballeira, Alejo

    2013-04-01

    This study investigated the capacities of five species of aquatic bryophytes to accumulate As and Hg from their natural habitats in rivers in Galicia (NW Spain). The distributions of the concentrations of both elements in all species were skewed to the right, with a higher incidence of extreme values in the As data, which may indicate a greater degree of contamination by this metalloid. There were no significant differences in the accumulation of either of the elements between the different species studied, which justifies their combined use as biomonitors of As and Hg, at least in the study area.

  2. 5.0 Monitoring methods for forests vulnerable to non-native invasive pest species

    Science.gov (United States)

    David W. Williams; Michael E. Montgomery; Kathleen S. Shields; Richard A. Evans

    2008-01-01

    Non-native invasive species pose a serious threat to forest resources, requiring programs to monitor their spatial spread and the damage they inflict on forest ecosystems. Invasive species research in the Delaware River Basin (DRB) had three primary objectives: to develop and evaluate monitoring protocols for selected pests and resulting ecosystem damage at the IMRAs...

  3. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log-tran...

  4. EFFECTS OF HUMAN ACTIVITIES ON STRUCTURE AND COMPOSITION OF WOODY SPECIES OF THE NOKREK BIOSPHERE RESERVE OF MEGHALAYA,NORTHEAST INDIA

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aims Our study was conducted in the Nokrek Biosphere Reserve (NBR) in the Garo hills districts of Meghalaya, Northeast India. Our aim was to assess the effects of human activities on plant diversity,population structure and regeneration.Methods We selected a representative 1.2 hm2 stand in both the core and buffer zones of NBR. Structure and composition were determined by randomly sampling square quadrats, population structure was assessed by determining age structure, and regeneration was assessed by measuring densities of seedling, sapling and adult trees.Important findings More woody species were recorded from the core zone than the buffer zone (87 vs. 81 species), and there were a large number of tropical, temperate, and Sino-Himalayan, Burma-Malaysian and Malayan elements, primitive families and primitive genera. The trees were distributed in three distinct strata,canopy, subcanopy and sapling. Subcanopy and sapling layers had the highest species richness (81% -88% ). Lauraceae and Euphorbiaceae were the dominant families in terms of the number of species, and a large number of families were represented by single species. Most woody species (57 % - 79 % ) were contagiously distributed and had low frequency ( < 20% ). Although stand density was high in the buffer zone, its basal area was low compared to the stand in the core zone. Low similarity and high β-diversity indicate marked differences in species composition of the stands. Shannon diversity index was high in both the stands, while Simpson dominance index was low. The diameter-class distribution for dominant species revealed that the most had a large number of young individuals in their populations. Preponderance of tree seedlings, followed by a steep decline in population density of saplings and adult trees, indicated that the seedling to sapling stage was the most critical in the life cycle of the tree populations. Most species (42 % - 48 % ) had no regeneration,25 % - 35 % had

  5. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    Directory of Open Access Journals (Sweden)

    Claudia Stein

    Full Text Available The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead. Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  6. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    Science.gov (United States)

    Stein, Claudia; Hallett, Lauren M; Harpole, W Stanley; Suding, Katharine N

    2014-01-01

    The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  7. New species of Mycosphaerella from Myrtaceae in plantations and native forests in eastern Australia.

    Science.gov (United States)

    Carnegie, Angus J; Burgess, Treena I; Beilharz, Vyrna; Wingfield, Michael J

    2007-01-01

    The majority of Mycosphaerella species from eucalypts (Eucalyptus, Corymbia and Angophora) in Australia have been recorded only from trees growing in plantations. This illustrates a bias in research in the past two decades toward commercial enterprise, and it emphasises a lack of understanding of the occurrence of these important fungi under natural conditions. Surveys of foliar fungi in native forests in eastern Australia, as well as adjacent plantations, thus have been initiated in recent years. In this study we describe four new species of Mycosphaerella from Eucalyptus spp. as well as other Myrtaceae. Mycosphaerella tumulosa sp. nov. (anamorph: Pseudocercospora sp.) was found on more than seven species of Eucalyptus and Corymbia in native forests and plantations in northeastern New South Wales and southeastern Queensland and appears to be relatively common, although not damaging to these trees. Mycosphaerella multiseptata sp. nov. was recorded from several locations on species of Angophora in native forests and amenity plantings. Mycosphaerella pseudovespa sp. nov. was found in one location in native forest on E. biturbinata. The first species of Mycosphaerella to be described from Syncarpia, M. syncarpiae sp. nov., was found in native forests in numerous locations from Sydney through to northeastern New South Wales and appears to be relatively common.

  8. Leaf Mass per Area (LMA and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient.

    Directory of Open Access Journals (Sweden)

    Enrique G de la Riva

    Full Text Available Leaf mass per area (LMA is a morphological trait widely used as a good indicator of plant functioning (i.e. photosynthetic and respiratory rates, chemical composition, resistance to herbivory, etc.. The LMA can be broken down into the leaf density (LD and leaf volume to area ratio (LVA or thickness, which in turn are determined by anatomical tissues and chemical composition. The aim of this study is to understand the anatomical and chemical characteristics related to LMA variation in species growing in the field along a water availability gradient. We determined LMA and its components (LD, LVA and anatomical tissues for 34 Mediterranean (20 evergreen and 14 deciduous woody species. Variation in LMA was due to variation in both LD and LVA. For both deciduous and evergreen species LVA variation was strongly and positively related with mesophyll volume per area (VA or thickness, but for evergreen species positive relationships of LVA with the VA of epidermis, vascular plus sclerenchyma tissues and air spaces were found as well. The leaf carbon concentration was positively related with mesophyll VA in deciduous species, and with VA of vascular plus sclerenchymatic tissues in evergreens. Species occurring at the sites with lower water availability were generally characterised by a high LMA and LD.

  9. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient.

    Science.gov (United States)

    de la Riva, Enrique G; Olmo, Manuel; Poorter, Hendrik; Ubera, José Luis; Villar, Rafael

    2016-01-01

    Leaf mass per area (LMA) is a morphological trait widely used as a good indicator of plant functioning (i.e. photosynthetic and respiratory rates, chemical composition, resistance to herbivory, etc.). The LMA can be broken down into the leaf density (LD) and leaf volume to area ratio (LVA or thickness), which in turn are determined by anatomical tissues and chemical composition. The aim of this study is to understand the anatomical and chemical characteristics related to LMA variation in species growing in the field along a water availability gradient. We determined LMA and its components (LD, LVA and anatomical tissues) for 34 Mediterranean (20 evergreen and 14 deciduous) woody species. Variation in LMA was due to variation in both LD and LVA. For both deciduous and evergreen species LVA variation was strongly and positively related with mesophyll volume per area (VA or thickness), but for evergreen species positive relationships of LVA with the VA of epidermis, vascular plus sclerenchyma tissues and air spaces were found as well. The leaf carbon concentration was positively related with mesophyll VA in deciduous species, and with VA of vascular plus sclerenchymatic tissues in evergreens. Species occurring at the sites with lower water availability were generally characterised by a high LMA and LD.

  10. Using a botanical garden to assess factors influencing the colonization of exotic woody plants by phyllophagous insects.

    Science.gov (United States)

    Kirichenko, Natalia; Kenis, M

    2016-09-01

    The adoption of exotic plants by indigenous herbivores in the region of introduction can be influenced by numerous factors. A botanical garden in Western Siberia was used to test various hypotheses on the adaptation of indigenous phyllophagous insects to exotic plants invasions, focusing on two feeding guilds, external leaf chewers and leaf miners. A total of 150 indigenous and exotic woody plant species were surveyed for insect damage, abundance and species richness. First, exotic woody plants were much less damaged by chewers and leaf miners than native plants, and the leaf miners' species richness was much lower on exotic than native plants. Second, exotic woody plants having a congeneric species in the region of introduction were more damaged by chewers and hosted a more abundant and species-rich community of leaf miners than plants without native congeneric species. Third, damage by chewers significantly increased with the frequency of planting of exotic host plants outside the botanical garden, and leaf miners' abundance and species richness significantly increased with residence time in the garden. Finally, no significant relationship was found between insect damage or abundance and the origin of the exotic plants. Besides the ecological implications of the results, this study also illustrates the potential of botanical gardens to test ecological hypotheses on biological invasions and insect-plant interactions on a large set of plant species.

  11. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    Science.gov (United States)

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    Invasive plant species can have profound negative effects on natural communities by competively excluding native species. Berberis thunbergii (Japanese barberry), Frangula alnus (glossy or alder buckthorn) and Lythrum salicaria (purple loosestrife) are invasive species known to reduce native plant diversity and are thus of great concern to Acadia National Park. Pollinators visit them for nectar and pollen. The effects of invasive plant species on pollinator behavior were investigated by comparing pollinator visitation to co-flowering native and invasive species with visitation to native species growing alone. The effect of invasives on pollination of native plants was studied by comparing fruit set in patches of the native species growing near invasives with patches far from invasive species in Acadia National Park. The coflowering pairs were as follows: in the spring native Vaccinium angustifolium (lowbush blueberry) was paired with B. thunbergii; in early summer native Viburnum nudum (wild raisin) was paired with F. alnus ; in late summer native Spiraea alba (meadowsweet) was paired with L. salicaria. We investigated whether these invasives competed with native plants for pollinators in Acadia and thus negatively affected native plant reproduction. Our objectives were to determine: 1) the influence, if any, of each invasive on pollinator visitation to a co-flowering native species, 2) factors that might affect visitation, 3) invasive pollen transfer to native plants, and 4) whether invasives influence native plant reproduction (fruit set). Our findings indicate that at times the number of flower visitors to natives was lower or the species composition of visitors different when invasives were present, that invasives sometimes attracted more pollinators, that generally the invasives were more rewarding as far as nectar and pollen availability for pollinators, and that generally native plant fruit set and seed set was not significantly lowered in the presence of

  12. Native predators living in invaded areas: responses of terrestrial amphibian species to an Argentine ant invasion.

    Science.gov (United States)

    Alvarez-Blanco, Paloma; Caut, Stephane; Cerdá, Xim; Angulo, Elena

    2017-08-22

    Predator-prey interactions play a key role in the success and impacts of invasive species. However, the effects of invasive preys on native predators have been poorly studied. Here, we first reviewed hypotheses describing potential relationships between native predators and invasive preys. Second, we examined how an invasive prey, the Argentine ant (Linepithema humile), affected a native terrestrial amphibian community. In the field, we looked at the structure of the amphibian community in invaded versus uninvaded areas and characterized amphibian trophic ecology. The amphibian community sampled seemed to show a species-dependent response in abundance to invasion: adults of the natterjack toad (Bufo calamita), the species demonstrating the highest degree of ant specialization, were less abundant in invaded areas. Although available ant biomass was significantly greater in invaded than in uninvaded areas (only Argentine ants occurred in the former), amphibians consumed relatively fewer ants in invaded areas. In the lab, we quantified amphibian consumption of Argentine ants versus native ants and assessed whether consumption patterns could have been influenced by prior exposure to the invader. The lab experiments corroborated the field results: amphibians preferred native ants over Argentine ants, and prior exposure did not influence consumption. Differences in preference explained why amphibians consumed fewer Argentine ants in spite of their greater relative availability; they might also explain why the most ant-specialized amphibians seemed to avoid invaded areas. Our results suggest the importance to account for predator feeding capacities and dietary ranges to understand the effects of invasive species at higher trophic levels.

  13. Different responses of invasive and native species to elevated CO 2 concentration

    Science.gov (United States)

    Song, Liying; Wu, Jinrong; Li, Changhan; Li, Furong; Peng, Shaolin; Chen, Baoming

    2009-01-01

    Increasing atmospheric CO 2 concentration is regarded as an important factor facilitating invasion. However, the mechanisms by which invasive plants spread at the expense of existing native plants are poorly understood. In this study, three invasive species ( Mikania micrantha, Wedelia trilobata and Ipomoea cairica) and their indigenous co-occurring species or congeners ( Paederia scandens, Wedelia chinensis and Ipomoea pescaprae) in South China were exposed to elevated CO 2 concentration (700 μmol mol -1). The invasive species showed an average increase of 67.1% in photosynthetic rate, significantly different from the native species (24.8%). On average the increase of total biomass at elevated CO 2 was greater for invasive species (70.3%) than for the natives (30.5%). Elevated CO 2 also resulted in significant changes in biomass allocation and morphology of invasive M. micrantha and W. trilobata. These results indicate a substantial variation in response to elevated CO 2 between these invasive and native plant species, which might be a potential mechanism partially explaining the success of invasion with ongoing increase in atmospheric CO 2.

  14. Toxoplasmosis in three species of native and introduced Hawaiian birds

    Science.gov (United States)

    Work, T.M.; Massey, J.G.; Lindsay, D.S.; Dubey, J.P.

    2002-01-01

    Toxoplasma gondii was found in endemic Hawaiian birds, including 2 nene geese (Nesochen sandvicensis), 1 red-footed booby (Sula sula), and an introduced bird, the Erckels francolin (Francolinus erckelii). All 4 birds died of disseminated toxoplasmosis; the parasite was found in sections of many organs, and the diagnosis was confirmed by immunohistochemical staining with antia??T. gondiia??specific polyclonal antibodies. This is the first report of toxoplasmosis in these species of birds.

  15. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status.

    Science.gov (United States)

    J-C. Domec; F.G. Scholz; S.J. Bucci; F.C. Meinzer; G. Goldstein; R. Villalobos-Vega

    2006-01-01

    Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occuring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (ψroot...

  16. Relative effects of disturbance on red imported fire ants and native ant species in a longleaf pine ecosystem.

    Science.gov (United States)

    Stuble, Katharine L; Kirkman, L Katherine; Carroll, C Ronald; Sanders, Nathan J

    2011-06-01

    The degree to which changes in community composition mediate the probability of colonization and spread of non-native species is not well understood, especially in animal communities. High species richness may hinder the establishment of non-native species. Distinguishing between this scenario and cases in which non-native species become established in intact (lacking extensive anthropogenic soil disturbance) communities and subsequently diminish the abundance and richness of native species is challenging on the basis of observation alone. The red imported fire ant (Solenopsis invicta), an invasive species that occurs throughout much of the southeastern United States, is such an example. Rather than competitively displacing native species, fire ants may become established only in disturbed areas in which native species richness and abundance are already reduced. We used insecticide to reduce the abundance of native ants and fire ants in four experimental plots. We then observed the reassembly and reestablishment of the ants in these plots for 1 year after treatment. The abundance of fire ants in treated plots did not differ from abundance in control plots 1 year after treatment. Likewise, the abundance of native ants increased to levels comparable to those in control plots after 1 year. Our findings suggest that factors other than large reductions in ant abundance and species density (number of species per unit area) may affect the establishment of fire ants and that the response of native ants and fire ants to disturbance can be comparable.

  17. An Ecosystem-Service Approach to Evaluate the Role of Non-Native Species in Urbanized Wetlands

    Science.gov (United States)

    Yam, Rita S. W.; Huang, Ko-Pu; Hsieh, Hwey-Lian; Lin, Hsing-Juh; Huang, Shou-Chung

    2015-01-01

    Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages) on ecosystem services (ES) based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%–100%), but wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species) due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as “harmful” species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands. PMID:25860870

  18. Attack of the invasive garden ant: aggression behaviour of Lasius neglectus (Hymenoptera: Formicidae) against native Lasius species in Spain

    DEFF Research Database (Denmark)

    Cremer, Sylvia; Ugelvig, Line Vej; Lommen, Suzanne T.E.;

    2006-01-01

    Invasive species often dramatically change native species communities by directly and indirectly out-competing na-tive species. We studied the direct interference abilities of the invasive garden ant, Lasius neglectus VAN LOON, BOOMSMA & ANDRÁSFALVY, 1990, by performing one-to-one aggression tests...

  19. Using combined measurements for comparison of light induction of stomatal conductance, electron transport rate and CO2 fixation in woody and fern species adapted to different light regimes.

    Science.gov (United States)

    Wong, Shau-Lian; Chen, Chung-Wei; Huang, Hsien-Wen; Weng, Jen-Hsien

    2012-05-01

    We aimed to understand the relation of photosynthetic rate (A) with g(s) and electron transport rate (ETR) in species of great taxonomic range and light adaptation capability during photosynthetic light induction. We studied three woody species (Alnus formosana, Ardisia crenata and Ardisia cornudentata) and four fern species (Pyrrosia lingus, Asplenium antiquum, Diplazium donianum and Archangiopteris somai) with different light adaptation capabilities. Pot-grown materials received 100 and/or 10% sunlight according to their light adaptation capabilities. At least 4 months after light acclimation, CO(2) and H(2)O exchange and chlorophyll fluorescence were measured simultaneously by equipment in the laboratory. In plants adapted or acclimated to low light, dark-adapted leaves exposed to 500 or 2000 µmol m(-2) s(-1) photosynthetic photon flux (PPF) for 30 min showed low gross photosynthetic rate (P(g)) and short time required to reach 90% of maximum P(g) (). At the initiation of illumination, two broad-leaved understory shrubs and the four ferns, especially ferns adapted to heavy shade, showed higher stomatal conductance (g(s)) than pioneer tree species; materials with higher g(s) had short at both 500 and 2000 µmol m(-2) s(-1) PPF. With 500 or 2000 µmol m(-2) s(-1) PPF, the g(s) for the three woody species increased from 2 to 30 min after the start of illumination, but little change in the g(s) of the four ferns. Thus, P(g) and g(s) were not correlated for all material measured at the same PPF and induction time. However, P(g) was positively correlated with ETR, even though CO(2) assimilation may be influenced by stomatal, biochemical and photoinhibitory limitations. In addition, was closely related to time required to reach 90% maximal ETR for all materials and with two levels of PPF combined. Thus, ETR is a good indicator for estimating the light induction of photosynthetic rate of species, across a wide taxonomic range and light adaptation and acclimation

  20. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  1. Phylogenetic support for the Tropical Niche Conservatism Hypothesis despite the absence of a clear latitudinal species richness gradient in Yunnan's woody flora

    Science.gov (United States)

    Tang, G.; Zhang, M. G.; Liu, C.; Zhou, Z.; Chen, W.; Slik, J. W. F.

    2014-05-01

    The Tropical Niche Conservatism Hypothesis (TCH) tries to explain the generally observed latitudinal gradient of increasing species diversity towards the tropics. To date, few studies have used phylogenetic approaches to assess its validity, even though such methods are especially suited to detect changes in niche structure. We test the TCH using modeled distributions of 1898 woody species in Yunnan Province (southwest China) in combination with a family level phylogeny. Unlike predicted, species richness and phylogenetic diversity did not show a latitudinal gradient, but identified two high diversity zones, one in Northwest and one in South Yunnan. Despite this, the underlying residual phylogenetic diversity showed a clear decline away from the tropics, while the species composition became progressingly more phylogenetically clustered towards the North. These latitudinal changes were strongly associated with more extreme temperature variability and declining precipitation and soil water availability, especially during the dry season. Our results suggests that the climatically more extreme conditions outside the tropics require adaptations for successful colonization, most likely related to the plant hydraulic system, that have been acquired by only a limited number of phylogenetically closely related plant lineages. We emphasize the importance of phylogenetic approaches for testing the TCH.

  2. Phylogenetic support for the Tropical Niche Conservatism Hypothesis despite the absence of a clear latitudinal species richness gradient in Yunnan's woody flora

    Directory of Open Access Journals (Sweden)

    G. Tang

    2014-05-01

    Full Text Available The Tropical Niche Conservatism Hypothesis (TCH tries to explain the generally observed latitudinal gradient of increasing species diversity towards the tropics. To date, few studies have used phylogenetic approaches to assess its validity, even though such methods are especially suited to detect changes in niche structure. We test the TCH using modeled distributions of 1898 woody species in Yunnan Province (southwest China in combination with a family level phylogeny. Unlike predicted, species richness and phylogenetic diversity did not show a latitudinal gradient, but identified two high diversity zones, one in Northwest and one in South Yunnan. Despite this, the underlying residual phylogenetic diversity showed a clear decline away from the tropics, while the species composition became progressingly more phylogenetically clustered towards the North. These latitudinal changes were strongly associated with more extreme temperature variability and declining precipitation and soil water availability, especially during the dry season. Our results suggests that the climatically more extreme conditions outside the tropics require adaptations for successful colonization, most likely related to the plant hydraulic system, that have been acquired by only a limited number of phylogenetically closely related plant lineages. We emphasize the importance of phylogenetic approaches for testing the TCH.

  3. Population structure in the native range predicts the spread of introduced marine species.

    Science.gov (United States)

    Gaither, Michelle R; Bowen, Brian W; Toonen, Robert J

    2013-06-07

    Forecasting invasion success remains a fundamental challenge in invasion biology. The effort to identify universal characteristics that predict which species become invasive has faltered in part because of the diversity of taxa and systems considered. Here, we use an alternative approach focused on the spread stage of invasions. FST, a measure of alternative fixation of alleles, is a common proxy for realized dispersal among natural populations, summarizing the combined influences of life history, behaviour, habitat requirements, population size, history and ecology. We test the hypothesis that population structure in the native range (FST) is negatively correlated with the geographical extent of spread of marine species in an introduced range. An analysis of the available data (29 species, nine phyla) revealed a significant negative correlation (R(2) = 0.245-0.464) between FST and the extent of spread of non-native species. Mode FST among pairwise comparisons between populations in the native range demonstrated the highest predictive power (R(2) = 0.464, p < 0.001). There was significant improvement when marker type was considered, with mtDNA datasets providing the strongest relationship (n = 21, R(2) = 0.333-0.516). This study shows that FST can be used to make qualitative predictions concerning the geographical extent to which a non-native marine species will spread once established in a new area.

  4. Positive effects of non-native grasses on the growth of a native annual in a southern california ecosystem.

    Science.gov (United States)

    Pec, Gregory J; Carlton, Gary C

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem.

  5. Positive Effects of Non-Native Grasses on the Growth of a Native Annual in a Southern California Ecosystem

    Science.gov (United States)

    Pec, Gregory J.; Carlton, Gary C.

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem. PMID:25379790

  6. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation.

    Science.gov (United States)

    Barbafieri, M; Dadea, C; Tassi, E; Bretzel, F; Fanfani, L

    2011-01-01

    This study assessed the distribution and availability of plant uptake of Zn, Pb, and Cd present in an abandoned mine at Ingurtosu, Sardinia (Italy). Geological matrix samples (sediments, tailings, and soil from a nearby pasture site) and samples of the predominant plant species growing on sediments and tailings were collected. Mean values of total Zn, Pb and Cd were respectively (mg kg(-1)) 7400, 1800, and 56 in tailings, 31000, 2900, and 100 in sediments, and 400, 200, and 8 in the pasture soil. The metal concentration values were high even in the mobile fractions evaluated by simplified sequential extraction (Zn 7485-103, Pb 1015-101, Cd 47-4 mg kg(-1)). Predominant native species were identified and analyzed for heavy metal content in various tissues. Among the plant species investigated Inula viscosa, Euphorbia dendroides, and Poa annua showed the highest metal concentration in aboveground biomass (mean average of Zn: 1680, 1020, 1400; Pb: 420, 240, 80; Cd: 28, 7, 19 mg kg(-1), respectively). The above mentioned species and A. donax could be good candidates for a phytoextraction procedure. Cistus salvifolius and Helichrysum italicus generally showed behavior more suitable for a phytostabilizer.

  7. Attack of the invasive garden ant: aggression behaviour of Lasius neglectus (Hymenoptera: Formicidae) against native Lasius species in Spain

    DEFF Research Database (Denmark)

    Cremer, Sylvia; Ugelvig, Line Vej; Lommen, Suzanne T.E.

    2006-01-01

    Invasive species often dramatically change native species communities by directly and indirectly out-competing na-tive species. We studied the direct interference abilities of the invasive garden ant, Lasius neglectus VAN LOON, BOOMSMA & ANDRÁSFALVY, 1990, by performing one-to-one aggression tests...... of L. neglectus workers towards three native Lasius ant species that occur at the edge of a L. neglectus supercolony in Seva, Spain. Our results show that L. neglectus is highly aggressive against all three native Lasius species tested (L. grandis FOREL, 1909, L. emarginatus (OLIVIER, 1792), and L...... these two species. This could be due to the largest difference in body size, or due to a greater overlap in ecological niche between L. neglectus and L. grandis com-pared to the other two native species. There was only weak support for L. neglectus workers from the periphery of the supercolony to be more...

  8. Eliminating Invasive Introduced Species While Preserving Native Species in Coastal Meadow Habitat, a Critically Imperiled Ecosystem

    Science.gov (United States)

    2010-01-01

    Dactylis glomerata, Anthoxanthum odoratum, and Agrostis alba), Queen Anne’s lace (Daucus carota), and European false dandelion (Hypochaeris radicata...were historically stabilized by native coastal prairie plants, became pasture for grazing cattle. Since native prairie plants are shallow- rooted ...heavy grazing by cattle began to break down the root structure, destabilizing the dune ridges and causing the sand to begin blowing farther inland

  9. Complex interactions between regional dispersal of native taxa and an invasive species.

    Science.gov (United States)

    Strecker, Angela L; Arnott, Shelley E

    2010-04-01

    In the event of an environmental disturbance, dispersal of native taxa may provide species and genetic diversity to ecosystems, increasing the likelihood that there will be species and genotypes present that are less vulnerable to the disturbance. This may allow communities to maintain functioning during a disturbance and may be particularly important when the perturbation is novel to the system, such as the establishment of an invasive species. We examined how dispersal of native species may influence crustacean zooplankton communities in freshwater lakes invaded by the invertebrate predator, Bythotrephes longimanus. Using large enclosures, we experimentally tested the effect of dispersal on zooplankton community abundance, richness, and composition in (1) a community invaded by Bythotrephes, (2) the same community with the invader removed, and (3) a community that was never invaded. Dispersal increased zooplankton community abundance and richness; however, these effects were usually only significant in the invader-removed treatment. Dispersal tended to make the invader-removed communities more similar to never-invaded communities in abundance, richness, and composition. Dispersal had little effect on zooplankton abundance in the invaded community; however, richness significantly increased, and the community composition changed to resemble a never-invaded community by the end of the experiment. Our results have implications for understanding the role of dispersal during transitory states in communities. Dispersal of native taxa may be particularly important during the period between the arrival and broad-scale establishment of Bythotrephes, as dispersal through space or time (i.e., from resting eggs) may rapidly increase zooplankton abundance when the invader is absent or in low abundances. Overall, our results suggest that communities with strong local predatory and competitive interactions may be closed to immigration from colonists, but that invasive species

  10. Soil-occupancy effects of invasive and native grassland plant species on composition and diversity of mycorrhizal associations

    Science.gov (United States)

    Jordan, Nicholas R.; Aldrich-Wolfe, Laura; Huerd, Sheri C.; Larson, Diane L.; Muehlbauer, Gary

    2012-01-01

    Diversified grasslands that contain native plant species can produce biofuels, support sustainable grazing systems, and produce other ecosystem services. However, ecosystem service production can be disrupted by invasion of exotic perennial plants, and these plants can have soil-microbial “legacies” that may interfere with establishment and maintenance of diversified grasslands even after effective management of the invasive species. The nature of such legacies is not well understood, but may involve suppression of mutualisms between native species and soil microbes. In this study, we tested the hypotheses that legacy effects of invasive species change colonization rates, diversity, and composition of arbuscular-mycorrhizal fungi (AMF) associated with seedlings of co-occurring invasive and native grassland species. In a glasshouse, experimental soils were conditioned by cultivating three invasive grassland perennials, three native grassland perennials, and a native perennial mixture. Each was grown separately through three cycles of growth, after which we used T-RFLP analysis to characterize AMF associations of seedlings of six native perennial and six invasive perennial species grown in these soils. Legacy effects of soil conditioning by invasive species did not affect AMF richness in seedling roots, but did affect AMF colonization rates and the taxonomic composition of mycorrhizal associations in seedling roots. Moreover, native species were more heavily colonized by AMF and roots of native species had greater AMF richness (number of AMF operational taxonomic units per seedling) than did invasive species. The invasive species used to condition soil in this experiment have been shown to have legacy effects on biomass of native seedlings, reducing their growth in this and a previous similar experiment. Therefore, our results suggest that successful plant invaders can have legacies that affect soil-microbial associations of native plants and that these effects

  11. Functional differences between native and alien species: a global-scale comparison

    DEFF Research Database (Denmark)

    Ordonez Gloria, Alejandro

    2010-01-01

    1. A prevalent question in the study of plant invasions has been whether or not invasions can be explained on the basis of traits. Despite many attempts, a synthetic view of multi-trait differences between alien and native species is not yet available.2. We compiled a database of three ecologically...

  12. Invasive ecosystem engineer selects for different phenotypes of an associated native species.

    Science.gov (United States)

    Wright, Jeffrey T; Gribben, Paul E; Byers, James E; Monro, Keyne

    2012-06-01

    Invasive habitat-forming ecosystem engineers modify the abiotic environment and thus represent a major perturbation to many ecosystems. Because native species often persist in these invaded habitats but have no shared history with the ecosystem engineer, the engineer may impose novel selective pressure on native species. In this study, we used a phenotypic selection framework to determine whether an invasive habitat-forming ecosystem engineer (the seaweed Caulerpa taxifolia) selects for different phenotypes of a common co-occurring native species (the bivalve Anadara trapezia). Compared to unvegetated habitat, Caulerpa habitat has lower water flow, lower dissolved oxygen, and sediments are more silty and anoxic. We determined the performance consequences of variation in key functional traits that may be affected by these abiotic changes (shell morphology, gill mass, and palp mass) for Anadara transplanted into Caulerpa and unvegetated habitat. Both linear and nonlinear performance gradients in Anadara differed between habitats, and these gradients were stronger in Caulerpa compared to unvegetated sediment. Moreover, in Caulerpa alternate phenotypes performed well, and these phenotypes were different from the dominant phenotype in unvegetated sediment. By demonstrating that phenotype-performance gradients differ between habitats, we have highlighted a role for Caulerpa as an agent of selection on native species.

  13. 13 native human interferon-alpha species assessed for immunoregulatory properties

    DEFF Research Database (Denmark)

    Heron, I; Hokland, M; Berg, K

    1983-01-01

    Human leukocytes treated with Sendai virus yield interferon predominantly of the alpha-type (HuIFN-alpha). Successful attempts to purify these "native" species have been performed and the final analysis, which included an SDS-PAGE disclosed 13 stained and separated IFN-proteins in the molecular w...

  14. Invasions by two non-native insects alter regional forest species composition and successional trajectories

    Science.gov (United States)

    Randall S. Morin; Andrew M. Liebhold

    2015-01-01

    While invasions of individual non-native phytophagous insect species are known to affect growth and mortality of host trees, little is known about how multiple invasions combine to alter forest dynamics over large regions. In this study we integrate geographical data describing historical invasion spread of the hemlock woolly adelgid, Adelges tsugae...

  15. Functional differences between native and alien species : a global-scale comparison

    NARCIS (Netherlands)

    Ordonez, Alejandro; Wright, Ian J.; Olff, Han; Kitajima, Kaoru

    2010-01-01

    1. A prevalent question in the study of plant invasions has been whether or not invasions can be explained on the basis of traits. Despite many attempts, a synthetic view of multi-trait differences between alien and native species is not yet available. 2. We compiled a database of three ecologically

  16. Working across cultures to protect Native American natural and cultural resources from invasive species in California

    Science.gov (United States)

    Janice M. Alexander; Susan J. Frankel; Nina Hapner; John L. Phillips; Virgil Dupuis

    2017-01-01

    Invasive species know no boundaries; they spread regardless of ownership, and actions by neighboring landowners can influence local and regional populations and impacts. Native Americans and mainstream Western society (representing the prevalent attitudes, values, and practices of US society) both depend on forests for food, fiber, and emotional well-being, but in...

  17. Influence of Removal of a Non-native Tree Species Mimosa caesalpiniifolia Benth. on the Regenerating Plant Communities in a Tropical Semideciduous Forest Under Restoration in Brazil

    Science.gov (United States)

    Podadera, Diego S.; Engel, Vera L.; Parrotta, John A.; Machado, Deivid L.; Sato, Luciane M.; Durigan, Giselda

    2015-11-01

    Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species ( Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.

  18. A new genus and species of native exotic millipede in Australia (Diplopoda, Polydesmida, Paradoxosomatidae

    Directory of Open Access Journals (Sweden)

    Robert Mesibov

    2015-04-01

    Full Text Available Taxidiotisoma portabile gen. n., sp. n. is described from scattered populations in New South Wales, Victoria and Tasmania, Australia. Populations of T. portabile in Victoria, Tasmania and parts of New South Wales occur in urban, suburban and agricultural areas, with no collections of the species in natural habitats in the same district. Taxidiotisoma portabile is likely to be a native exotic species whose home range is in eastern New South Wales.

  19. A new genus and species of native exotic millipede in Australia (Diplopoda, Polydesmida, Paradoxosomatidae).

    Science.gov (United States)

    Mesibov, Robert; Car, Catherine A

    2015-01-01

    Taxidiotisomaportabile gen. n., sp. n. is described from scattered populations in New South Wales, Victoria and Tasmania, Australia. Populations of Taxidiotisomaportabile in Victoria, Tasmania and parts of New South Wales occur in urban, suburban and agricultural areas, with no collections of the species in natural habitats in the same district. Taxidiotisomaportabile is likely to be a native exotic species whose home range is in eastern New South Wales.

  20. Understanding the threats posed by non-native species: public vs. conservation managers.

    Directory of Open Access Journals (Sweden)

    Rodolphe E Gozlan

    Full Text Available Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone.

  1. Understanding the threats posed by non-native species: public vs. conservation managers.

    Science.gov (United States)

    Gozlan, Rodolphe E; Burnard, Dean; Andreou, Demetra; Britton, J Robert

    2013-01-01

    Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone.

  2. Macroparasite fauna of alien grey squirrels (Sciurus carolinensis: composition, variability and implications for native species.

    Directory of Open Access Journals (Sweden)

    Claudia Romeo

    Full Text Available Introduced hosts populations may benefit of an "enemy release" through impoverishment of parasite communities made of both few imported species and few acquired local ones. Moreover, closely related competing native hosts can be affected by acquiring introduced taxa (spillover and by increased transmission risk of native parasites (spillback. We determined the macroparasite fauna of invasive grey squirrels (Sciurus carolinensis in Italy to detect any diversity loss, introduction of novel parasites or acquisition of local ones, and analysed variation in parasite burdens to identify factors that may increase transmission risk for native red squirrels (S. vulgaris. Based on 277 grey squirrels sampled from 7 populations characterised by different time scales in introduction events, we identified 7 gastro-intestinal helminths and 4 parasite arthropods. Parasite richness is lower than in grey squirrel's native range and independent from introduction time lags. The most common parasites are Nearctic nematodes Strongyloides robustus (prevalence: 56.6% and Trichostrongylus calcaratus (6.5%, red squirrel flea Ceratophyllus sciurorum (26.0% and Holarctic sucking louse Neohaematopinus sciuri (17.7%. All other parasites are European or cosmopolitan species with prevalence below 5%. S. robustus abundance is positively affected by host density and body mass, C. sciurorum abundance increases with host density and varies with seasons. Overall, we show that grey squirrels in Italy may benefit of an enemy release, and both spillback and spillover processes towards native red squirrels may occur.

  3. Thermal ecological physiology of native and invasive frog species: do invaders perform better?

    Science.gov (United States)

    Cortes, Pablo A; Puschel, Hans; Acuña, Paz; Bartheld, José L; Bozinovic, Francisco

    2016-01-01

    Biological invasions are recognized as an important biotic component of global change that threatens the composition, structure and functioning of ecosystems, resulting in loss of biodiversity and displacement of native species. Although ecological characteristics facilitating the establishment and spread of non-native species are widely recognized, little is known about organismal attributes underlying invasion success. In this study, we tested the effect of thermal acclimation on thermal tolerance and locomotor performance in the invasive Xenopus laevis and the Chilean native Calyptocephalella gayi. In particular, the maximal righting performance (μMAX), optimal temperature (TO), lower (CTmin) and upper critical thermal limits (CTmax), thermal breadth (Tbr) and the area under the performance curve (AUC) were studied after 6 weeks acclimation to 10 and 20°C. We observed higher values of μmax and AUC in X. laevis in comparison to C. gayi. On the contrary, the invasive species showed lower values of CTmin in comparison to the native one. In contrast, CTmax, TO and Tbr showed no inter-specific differences. Moreover, we found that both species have the ability to acclimate their locomotor performance and lower thermal tolerance limit at low temperatures. Our results demonstrate that X. laevis is a better performer than C. gayi. Although there were differences in CTmin, the invasive and native frogs did not differ in their thermal tolerance. Interestingly, in both species the lower and upper critical thermal limits are beyond the minimal and maximal temperatures encountered in nature during the coldest and hottest month, respectively. Overall, our findings suggest that both X. laevis and C. gayi would be resilient to climate warming expectations in Chile.

  4. Use and valuation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia

    DEFF Research Database (Denmark)

    Cadena-Gonzalez, Ana Lucia; Sørensen, Marten; Theilade, Ida

    2013-01-01

    Background: Medicinal plant species contribute significantly to folk medicine in Colombia. However, few local studies have investigated whether species used are introduced or native and whether there is a difference in importance of native and introduced medicinal plant species. The aim...... of the present study was to describe the use of medicinal plants within two municipalities, Campo Hermoso and Zetaquira, both in the department of Boyaca Colombia and to assess the importance of native and introduced plants to healers, amateur healers and local people. As local healers including amateur healers...... have no history of introduced species our working hypotheses (H1-2) were that H-1: native and introduced medicinal plant species are of equal importance and H-2: healers and amateur healers do not differentiate in their preferences between native and introduced medicinal plant species. Methods: Ten...

  5. Use and valuation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia

    DEFF Research Database (Denmark)

    Cadena-Gonzalez, Ana Lucia; Sørensen, Marten; Theilade, Ida

    2013-01-01

    Background: Medicinal plant species contribute significantly to folk medicine in Colombia. However, few local studies have investigated whether species used are introduced or native and whether there is a difference in importance of native and introduced medicinal plant species. The aim of the pr......Background: Medicinal plant species contribute significantly to folk medicine in Colombia. However, few local studies have investigated whether species used are introduced or native and whether there is a difference in importance of native and introduced medicinal plant species. The aim...... of the present study was to describe the use of medicinal plants within two municipalities, Campo Hermoso and Zetaquira, both in the department of Boyaca Colombia and to assess the importance of native and introduced plants to healers, amateur healers and local people. As local healers including amateur healers...

  6. Introduction of non-native marine fish species to the Canary Islands waters through oil platforms as vectors

    Science.gov (United States)

    Pajuelo, José G.; González, José A.; Triay-Portella, Raül; Martín, José A.; Ruiz-Díaz, Raquel; Lorenzo, José M.; Luque, Ángel

    2016-11-01

    This work documents the introduction of non-native fish species to the Canary Islands (central-eastern Atlantic) through oil rigs. Methodological approaches have included surveys by underwater visual censuses around and under oil platforms and along the docking area of rigs at the Port of Las Palmas. Eleven non-native fish species were registered. Paranthias furcifer, Abudefduf hoefleri, Acanthurus bahianus, Acanthurus chirurgus, and Acanthurus coeruleus are first recorded from the Canaries herein. Other three species could not be identified, although they have never been observed in the Canaries. Cephalopholis taeniops, Abudefduf saxatilis, and Acanthurus monroviae had been previously recorded. Native areas of these species coincide with the areas of origin and the scale of oil rigs with destination the Port of Las Palmas. The absence of native species in the censuses at rigs and their presence at rigs docking area, together with the observation of non-native species after the departure of platforms, reject the possibility that these non-native species were already present in the area introduced by another vector. C. taeniops, A. hoefleri, A. saxatilis, A. chirurgus, A. coeruleus and A. monroviae are clearly seafarer species. A. bahianus seems to be a potential seafarer species. P. furcifer is a castaway species. For the moment, the number of individuals of the non-native species in marine ecosystems of the Canaries seems to be low, and more investigation is needed for controlling these translocations.

  7. Precious grasses : Alberta Research Council releases new native species for reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2006-03-15

    The Alberta Research Council has released 6 new varieties of native plant species suitable for reclamation in Alberta's Parkland region, which is characterized by sandy soils. The Parkland stretches for 37,000 kilometres and is the most densely populated of the province's 6 ecoregions. Because of farming, grazing, oil and gas development and recreation, only 5 per cent of the area remains undisturbed. It was anticipated that the native grasses will help disturbed sites eventually resemble their original state. Varieties included: Aspen Milk Vetch; Centennial Canada Wild Rye; Hillbilly Nodding Brome; Butte Rocky Mountain Fescue; Porter Indian Rice Grass; and Metisko Awned Wheatgrass. The varieties were evaluated for their ability to provide rapid cover and their ability to compete with invading weeds, as well as their ability to allow recruitment of other native species. Multi-environmental testing trials were established to evaluate the species' seed production potential. Seeds were tested for germination in species-specific growth chambers, grown in greenhouses and then taken to an agricultural setting where data on forage density; ground cover; vigour; and biomass were then recorded. The species have also been targeted to ensure that the oil and gas industry has better options for reclaiming disturbed sites. In addition to their ability to combat threats from invasive species, the native plant species have been investigated for their ability to remediate hydrocarbon and salt contaminants and sequester carbon dioxide. Details of Alberta's current reclamation criteria for wellsites and associated facilities were also presented. 4 figs.

  8. Native species indicated for degraded area recovery in Western Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Darlene Gris

    2012-02-01

    Full Text Available Colonization in the State of Paraná has culminated in the devastation of large forest areas in the entire State. Degraded area recovery programs have emphasized the utilization of native species, but often the species indicated for local reforestation areas are unknown, as those areas are little known floristically. This study aimed to survey native species indicated for reforestation of areas in the Western region of the State of Paraná, classify those species as pioneer, secondary, or climactic, and indicate places of occurrence of matrices where seeds of those species could be collected. Bibliographic surveys in the specialized literature and research in the Herbarium Museu Botânico Municipal de Curitiba (MBM and Herbarium of Universidade Estadual do Oeste do Paraná (UNOP were conducted to identify potential species for degraded area recovery in the study of Western region of Paraná. In all, 115 species were selected, of which 22 are pioneer, 73 are secondary, and 20 are climactic. The bibliographic surveys suggests that pioneer species are the most indicated for the initial processes in the degraded areas recovery, while secondary and climactic species play a major role in area enrichment.

  9. A global organism detection and monitoring system for non-native species

    Science.gov (United States)

    Graham, J.; Newman, G.; Jarnevich, C.; Shory, R.; Stohlgren, T.J.

    2007-01-01

    Harmful invasive non-native species are a significant threat to native species and ecosystems, and the costs associated with non-native species in the United States is estimated at over $120 Billion/year. While some local or regional databases exist for some taxonomic groups, there are no effective geographic databases designed to detect and monitor all species of non-native plants, animals, and pathogens. We developed a web-based solution called the Global Organism Detection and Monitoring (GODM) system to provide real-time data from a broad spectrum of users on the distribution and abundance of non-native species, including attributes of their habitats for predictive spatial modeling of current and potential distributions. The four major subsystems of GODM provide dynamic links between the organism data, web pages, spatial data, and modeling capabilities. The core survey database tables for recording invasive species survey data are organized into three categories: "Where, Who & When, and What." Organisms are identified with Taxonomic Serial Numbers from the Integrated Taxonomic Information System. To allow users to immediately see a map of their data combined with other user's data, a custom geographic information system (GIS) Internet solution was required. The GIS solution provides an unprecedented level of flexibility in database access, allowing users to display maps of invasive species distributions or abundances based on various criteria including taxonomic classification (i.e., phylum or division, order, class, family, genus, species, subspecies, and variety), a specific project, a range of dates, and a range of attributes (percent cover, age, height, sex, weight). This is a significant paradigm shift from "map servers" to true Internet-based GIS solutions. The remainder of the system was created with a mix of commercial products, open source software, and custom software. Custom GIS libraries were created where required for processing large datasets

  10. Relative effects of disturbance on red imported fire ants and native ant species in a longleaf pine ecosystem

    DEFF Research Database (Denmark)

    Stuble, Katharine L.; Kirkman, L. Katherine; Carroll, C. Ronald

    2011-01-01

    , the abundance of native ants increased to levels comparable to those in control plots after 1 year. Our findings suggest that factors other than large reductions in ant abundance and species density (number of species per unit area) may affect the establishment of fire ants and that the response of native ants...

  11. Optimal control applied to native-invasive species competition via a PDE model

    Directory of Open Access Journals (Sweden)

    Wandi Ding

    2012-12-01

    Full Text Available We consider an optimal control problem of a system of parabolic partial differential equations modelling the competition between an invasive and a native species. The motivating example is cottonwood-salt cedar competition, where the effect of disturbance in the system (such as flooding is taken to be a control variable. Flooding being detrimental at low and high levels, and advantageous at medium levels led us to consider the quadratic growth function of the control. The objective is to maximize the native species and minimize the invasive species while minimizing the cost of implementing the control. An existence result for an optimal control is given. Numerical examples are presented to illustrate the results.

  12. Testing the enemy release hypothesis in a native insect species with an expanding range

    Directory of Open Access Journals (Sweden)

    Julia J. Mlynarek

    2015-11-01

    Full Text Available The enemy release hypothesis (ERH predicts that the spread of (invasive species will be facilitated by release from their enemies as they occupy new areas. However, the ERH is rarely tested on native (non-invasive, long established species with expanding or shifting ranges. I tested the ERH for a native damselfly (Enallagma clausum whose range has recently expanded in western Canada, with respect to its water mite and gregarine parasites. Parasitism levels (prevalence and intensity were also compared between E. clausum and a closely related species, Enallagma boreale, which has long been established in the study region and whose range is not shifting. A total of 1,150 damselflies were collected at three ‘old’ sites for E. clausum in Saskatchewan, and three ‘new’ sites in Alberta. A little more than a quarter of the damselflies collected were parasitized with, on average, 18 water mite individuals, and 20% were parasitized by, on average, 10 gregarine individuals. I assessed whether the differences between levels of infection (prevalence and intensity were due to site type or host species. The ERH was not supported: Enallagma clausum has higher or the same levels of parasitism in new sites than old sites. However, E. boreale seems to be benefitting from the recent range expansion of a native, closely related species through ecological release from its parasites because the parasites may be choosing to infest the novel, potentially naïve, host instead of the well-established host.

  13. Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences.

    Science.gov (United States)

    Hudson, Jamie; Viard, Frédérique; Roby, Charlotte; Rius, Marc

    2016-10-01

    Human activities are responsible for the translocation of vast amounts of organisms, altering natural patterns of dispersal and gene flow. Most research to date has focused on the consequences of anthropogenic transportation of non-indigenous species within introduced ranges, with little research focusing on native species. Here, we compared genetic patterns of the sessile marine invertebrate, Ciona intestinalis, which has highly restricted dispersal capabilities. We collected individuals in a region of the species' native range where human activities that are known to facilitate the artificial spread of species are prevalent. Using microsatellite markers, we revealed highly dissimilar outcomes. First, we found low levels of genetic differentiation among sites separated by both short and large geographical distances, indicating the presence of anthropogenic transport of genotypes, and little influence of natural geographical barriers. Second, we found significant genetic differentiation in pairwise comparisons among certain sites, suggesting that other factors besides artificial transport (e.g. natural dispersal, premodern population structure) may be shaping genetic patterns. Taken together, we found dissimilar patterns of population structure in a highly urbanized region that could not be predicted by artificial transport alone. We conclude that anthropogenic activities alter genetic composition of native ranges, with unknown consequences for species' evolutionary trajectories.

  14. The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability.

    Science.gov (United States)

    Pennington, R Toby; Lavin, Matt

    2016-04-01

    A fundamental premise of this review is that distinctive phylogenetic and biogeographic patterns in clades endemic to different major biomes illuminate the evolutionary process. In seasonally dry tropical forests (SDTFs), phylogenies are geographically structured and multiple individuals representing single species coalesce. This pattern of monophyletic species, coupled with their old species stem ages, is indicative of maintenance of small effective population sizes over evolutionary timescales, which suggests that SDTF is difficult to immigrate into because of persistent resident lineages adapted to a stable, seasonally dry ecology. By contrast, lack of coalescence in conspecific accessions of abundant and often widespread species is more frequent in rain forests and is likely to reflect large effective population sizes maintained over huge areas by effective seed and pollen flow. Species nonmonophyly, young species stem ages and lack of geographical structure in rain forest phylogenies may reflect more widespread disturbance by drought and landscape evolution causing resident mortality that opens up greater opportunities for immigration and speciation. We recommend full species sampling and inclusion of multiple accessions representing individual species in phylogenies to highlight nonmonophyletic species, which we predict will be frequent in rain forest and savanna, and which represent excellent case studies of incipient speciation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Ecological engineering by a native leaf-cutting ant increases the performance of exotic plant species.

    Science.gov (United States)

    Farji-Brener, Alejandro G; Lescano, Natalia; Ghermandi, Luciana

    2010-05-01

    Numerous mechanisms are proposed to explain why exotic plants successfully invade natural communities. However, the positive effects of native engineers on exotic plant species have received less consideration. We tested whether the nutrient-rich soil patches created by a native ecological engineer (refuse dumps from the leaf-cutting ant Acromyrmex lobicornis) increase the performance of exotic more than native plants. In a greenhouse experiment, individuals from several native and exotic species were planted in pots with refuse dumps (RDs) and non-nest soils (NNSs). Total plant biomass and foliar nutrient content were measured at the end of the experiment. We also estimated the cover of exotic and native plant species in external RDs from 54 field ant nests and adjacent areas. Greenhouse plants showed more biomass and foliar nutrient content in RDs than in NNS pots. Nevertheless, differences in the final mean biomass among RD and NNS plants were especially great in exotics. Accordingly, the cover of exotic plants was higher in field RDs than in adjacent, non-nest soils. Our results demonstrated that plants can benefit from the enhanced nutrient content of ant RDs, and that A. lobicornis acts as an ecosystem engineer, creating a substrate that especially increases the performance of exotics. This supports the fluctuating resource hypothesis as a mechanism to promote biological invasions, and illustrates how this hypothesis may operate in nature. Since ant nests and exotic plants are more common in disturbed than in pristine environments, the role of ant nests in promoting biological invasions might be of particular interest. Proposals including the use of engineer species to restore disturbed habitats should be planned with caution because of their potential role in promoting invasions.

  16. Incorporating fragmentation and non-native species into distribution models to inform fluvial fish conservation.

    Science.gov (United States)

    Taylor, Andrew T; Papeş, Monica; Long, James M

    2017-09-06

    Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the shoal bass (Micropterus cataractae) is a fluvial-specialist species experiencing continual range loss, yet how perceived threats have contributed to range loss is largely unknown. We employed species distribution models (SDMs) to disentangle which factors are contributing most to shoal bass range loss by estimating a potential distribution based on natural abiotic factors and by estimating a series of current, occupied distributions that also incorporated variables characterizing land cover, non-native species, and fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). Model construction allowed for interspecific relationships between non-native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of current occupied distribution illustrated increased range loss as fragmentation intensified. Response curves from current occupied models indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non-native congeners, wherein non-natives may be favored at the highest fragmentation intensity. Response curves also suggested that free-flowing fragment lengths of > 100 km were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested models had favorable predictive and discriminative abilities. Similar approaches that use readily-available, diverse geospatial datasets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Comparative photochemical and phenomorphological responses to winter stress of an evergreen ( Quercus ilex L.) and a semi-deciduous ( Cistus albidus L.) Mediterranean woody species

    Science.gov (United States)

    Oliveira, Graça; Peñuelas, Josep

    2000-03-01

    The impact of winter stress on plants from a Mediterranean area was evaluated through comparison of photosystem II (PS II) efficiencies and phenomorphological characteristics of two Mediterranean woody species - Quercus ilex (evergreen) and Cistus albidus (semi-deciduous). The studies were carried out in NE Spain, at two sites with different mean winter temperatures. The results showed that reductions of the efficiency of PS II may occur in Mediterranean plant communities during winter, and are especially remarkable on colder days. The extent and duration of the decrease in PS II efficiency (photoinhibition) depended not only on the climatic conditions, but also on the site, on the species considered and on the position of leaves in the plant canopy. Increased photoinhibition at the colder site was only clear for C. albidus. Nevertheless, the efficiencies of PS II were always higher in C. albidus than in Q. ilex. Phenological patterns, morphology and leaf inclination may protect C. albidus leaves from potentially photoinhibitory conditions in winter. Morphological and structural photoprotection is apparently not so well developed in Q. ilex, which probably relies more on increased protection at the photochemical level of its long-lived leaves. As has been reported in relation to summer-drought stress, Q. ilex has possibly developed a strategy of tolerance to photoinhibition, whereas C. albidus relies preferentially on avoidance features.

  18. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    Science.gov (United States)

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We

  19. Effect of Severe Winter Cold on the Photosynthetic Potentials of Three Co-occurring Evergreen Woody Species in a Mediterranean Forest, Catalonia (Spain)

    Science.gov (United States)

    Sperlich, Dominik; Gracia, Carlos; Peñuelas, Josep; Sabaté, Santi

    2013-04-01

    Evergreen tree species in the Mediterranean region have to cope with a wide range of environmental stress conditions from summer drought to winter cold. The winter period can lead to photoinhibition due to a combination of high solar irradiances and chilling temperatures which can reduce the light saturation point. However, Mediterranean winter mildness can lead periodically to favourable environmental conditions above the threshold for positive carbon balance benefitting evergreen woody species in contrast to winter deciduous species. The advantage of being able to photosynthesis all year round with a significant fraction in the winter month is compensating for the lower photosynthetic potentials during spring and summer in comparison to deciduous species. In this work, we investigated the physiological behaviour of three evergreen tree species (Quercus ilex, Pinus halepensis, Arbutus undeo) co-occurring in a natural and mature Mediterranean forest after a period of mild winter conditions and their response to a sudden period of intense cold weather. Therefore, we examined in each period the photosynthetic potentials by estimating the maximum carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax) through gas exchange measurements. The results indicate that all species exhibited extraordinary high photosynthetic potentials during the first period of measurement as a response to the mild conditions. However, the sudden cold period affected negatively the photosynthetic potentials of Quercus ilex and A. unedo with reduction ranging between 37 to 45 %, whereas they were observed to be only insignificantly reduced in Pinus halepensis. Our results can be explained by previous classifications into photoinhibition-avoiding (P. halpensis) and photoinhibition-tolerant (Q. ilex, A. undeo) species on the basis of their susceptibility to dynamic photoinhibition (Martinez Ferri 2000). Photoinhibition tolerant species are characterised with a more dynamic

  20. Determinants of plant establishment success in a multispecies introduction experiment with native and alien species.

    Science.gov (United States)

    Kempel, Anne; Chrobock, Thomas; Fischer, Markus; Rohr, Rudolf Philippe; van Kleunen, Mark

    2013-07-30

    Determinants of plant establishment and invasion are a key issue in ecology and evolution. Although establishment success varies substantially among species, the importance of species traits and extrinsic factors as determinants of establishment in existing communities has remained difficult to prove in observational studies because they can be confounded and mask each other. Therefore, we conducted a large multispecies field experiment to disentangle the relative importance of extrinsic factors vs. species characteristics for the establishment success of plants in grasslands. We introduced 48 alien and 45 native plant species at different seed numbers into multiple grassland sites with or without experimental soil disturbance and related their establishment success to species traits assessed in five independent multispecies greenhouse experiments. High propagule pressure and high seed mass were the most important factors increasing establishment success in the very beginning of the experiment. However, after 3 y, propagule pressure became less important, and species traits related to biotic interactions (including herbivore resistance and responses to shading and competition) became the most important drivers of success or failure. The relative importance of different traits was environment-dependent and changed over time. Our approach of combining a multispecies introduction experiment in the field with trait data from independent multispecies experiments in the greenhouse allowed us to detect the relative importance of species traits for early establishment and provided evidence that species traits--fine-tuned by environmental factors--determine success or failure of alien and native plants in temperate grasslands.

  1. Leaf Serration in Seedlings of Heteroblastic Woody Species Enhance Plasticity and Performance in Gaps But Not in the Understory

    Directory of Open Access Journals (Sweden)

    Harshi K. Gamage

    2010-01-01

    Full Text Available Leaf heteroblasty refers to dramatic ontogenetic changes in leaf size and shape, in contrast to homoblasty that exhibits little change, between seedling and adult stages. This study examined whether the plasticity in leaf morphology of heteroblastic species would be an advantage for their survival and growth over homoblastic congeners to changes in light. Two congeneric pairs of homoblastic (Hoheria lyallii, Aristotelia serrata and heteroblastic species (H. sexstylosa, A. fruticosa were grown for 18 months in canopy gap and forest understory sites in a temperate rainforest in New Zealand. Heteroblastic species that initially had serrated leaves reduced leaf serration in the understory, but increased in the gaps. Heteroblastic species also produced thicker leaves and had higher stomatal pore area (density×aperture length, maximum photosynthetic rate, survival, and greater biomass allocation to shoots than homoblastic relatives in the gaps. Findings indicate that increased leaf serration in heteroblastic species is an advantage over homoblastic congeners in high light.

  2. Residential Knowledge of Native Tree Species: A Case Study of Residents in Four Southern Ontario Municipalities

    Science.gov (United States)

    Almas, Andrew D.; Conway, Tenley M.

    2017-01-01

    In the past decade, municipalities across North America have increased investment in their urban forests in an effort to maintain and enhance the numerous benefits provided by them. Some municipalities have now drafted long-term urban forest management plans that emphasize the planting of native trees, to improve ecological integrity, and participation of residents, since the majority of urban trees are typically located on residential property. Yet it is unclear if residents are familiar with native trees or municipalities' urban forest management goals. Through a case study of southern Ontario municipalities, we administered a survey exploring residents' ability to correctly label common tree species as native or non-native, as well as their knowledge of urban forest management plans to test four hypotheses: 1) residents in municipalities with an urban forest management plans will be more knowledgeable about the native status of common street trees; 2) residents who have lived in the area longer will have greater knowledge; 3) knowledge level will be correlated with education level, ethnicity, and income; and 4) residents' knowledge will be related to having planted trees on their property. Our results indicate that residents are better able to identify common native trees than correctly determine which trees are non-native, although knowledge levels are generally low. Knowledge was significantly related to length of residency and tree planting experience, supporting hypotheses 2 and 4. These results highlight the importance of experience and local knowledge acquisition in relation to basic knowledge about urban trees, and also point to the failures of resident outreach within the case study municipalities.

  3. Residential Knowledge of Native Tree Species: A Case Study of Residents in Four Southern Ontario Municipalities.

    Science.gov (United States)

    Almas, Andrew D; Conway, Tenley M

    2017-01-01

    In the past decade, municipalities across North America have increased investment in their urban forests in an effort to maintain and enhance the numerous benefits provided by them. Some municipalities have now drafted long-term urban forest management plans that emphasize the planting of native trees, to improve ecological integrity, and participation of residents, since the majority of urban trees are typically located on residential property. Yet it is unclear if residents are familiar with native trees or municipalities' urban forest management goals. Through a case study of southern Ontario municipalities, we administered a survey exploring residents' ability to correctly label common tree species as native or non-native, as well as their knowledge of urban forest management plans to test four hypotheses: 1) residents in municipalities with an urban forest management plans will be more knowledgeable about the native status of common street trees; 2) residents who have lived in the area longer will have greater knowledge; 3) knowledge level will be correlated with education level, ethnicity, and income; and 4) residents' knowledge will be related to having planted trees on their property. Our results indicate that residents are better able to identify common native trees than correctly determine which trees are non-native, although knowledge levels are generally low. Knowledge was significantly related to length of residency and tree planting experience, supporting hypotheses 2 and 4. These results highlight the importance of experience and local knowledge acquisition in relation to basic knowledge about urban trees, and also point to the failures of resident outreach within the case study municipalities.

  4. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    Science.gov (United States)

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Honeybees increase fruit set in native plant species important for wildlife conservation.

    Science.gov (United States)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wild cherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  6. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    Science.gov (United States)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  7. Temperature-dependent performance of competitive native and alien invasive plant species

    Science.gov (United States)

    Song, Uhram

    2017-10-01

    To assess the likely impacts of environmental change, the responses of two well-known invasive plant species, native Pueraria lobata and alien Humulus japonicus, to differences in growth temperature were studied in South Korea. Habitat preferences, physiological responses such as photosynthetic rates and chlorophyll contents, growth rates, and nutrient contents were quantified for each species. A competition experiment was conducted to evaluate the temperature preferences of the two species. All results indicated that the alien species H. japonicus can take advantage of elevated temperatures (35 °C) to enhance its competitive advantage against the native species P. lobata. While H. japonicus took advantage of elevated temperatures and preferred high-temperature areas, P. lobata showed reduced performance and dominance in high-temperature areas. Therefore, in future, due to global warming and urbanization, there are possibilities that H. japonicus takes advantage of elevated temperature against P. lobata that could lead to increased H. japonicus coverage over time. Therefore, consistent monitoring of both species especially where P. lobata is dominated are required because both species are found in every continents in the world. Controlling P. lobata requires thorough inspection of H. japonicus presence of the habitat in advance to prevent post P. lobata management invasion of H. japonicus.

  8. Nucleated succession by an endemic palm Phoenix pusilla enhances diversity of woody species in the arid Coromandel Coast of India

    OpenAIRE

    Kinhal, Vijayalaxmi; Parthasarathy, N

    2010-01-01

    Background and aims Phoenix pusilla, an endemic shrubby palm, was used as a model nurse plant in degraded tropical dry evergreen forest (TDEF) landscapes. This choice was informed by traditional ecological knowledge of the Irula tribe of south India. We tested whether the presence of P. pusilla in water-stressed arid regions improves conditions for other species to establish, resulting in nucleated succession. Success would point the way forward for establishing species-rich woodland in aband...

  9. 侧柏人工林下层木本植物的组成及多样性%Species composition and diversity of understory woody plants in Platycladus orientalis plantation in Xu zhou

    Institute of Scientific and Technical Information of China (English)

    尤海梅; 阎传海; 于法展; 王仲宇

    2011-01-01

    为明确徐州山地现有侧柏人工林下层木本植物的自然更新状况,依据40个20m×20m样地群落的调查数据,分析了林下自然更新的木本植物的组成及其相似性.结果表明,侧柏人工林下层自然更新的木本植物中单科种、单属种优势明显,林下木本植物区系组成复杂,出现的12种区系地理成分中,温带成分占主体,热带成分占较大比例.侧柏人工林下层出现的木本植物种类较多,但不同生境下群落的物种丰富度和多样性不高、组成树种的相似性极高,尤其是乔木树种的相似性明显高于灌木树种.林下木本植物的种类组成受立地条件和种子传播方式的显著影响,建议改善立地条件以提高林下木本植物的丰富度和多样性,同时控制外来树种的侵入以促进人工林的地带性演替.%In order to explore the natural regeneration condition of understory woody species in Platycladus orientalis plantation in Xuzhou mountainous region, 40 plots of 20 m x 20 m were set up and surveyed, and composition and similarity of the communities were analyzed. The result showed that the single -species family, the single -species genera were the main part of natural regeneration woody plants in understory of Platycladus orientalis plantation, the composition of understory woody species was complex. There were 12 geographic elements of the flora, and the temperate elements were the main part of the woody flora and the tropic element hold a great proportion. Although the richness and diversity of understory woody species was lower, the similarities of understory woody species between plots were very high, especially, the similarities of tree species were significant higher than the shrubs. Composition of understory woody species was influenced by the habitat and the seed dispersal; Therefore, the habitats of understory should be improved to raise the richness and diversity of understory woody species, and the invasion of

  10. When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator.

    Directory of Open Access Journals (Sweden)

    Alexandra J R Carthey

    Full Text Available The impact of alien predators on native prey populations is often attributed to prey naiveté towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naiveté and coexistence becomes possible, an introduced species must eventually become 'native'. But when exactly does an alien become a native species? The dingo (Canis lupus dingo was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris, we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naïve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naïve.

  11. When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator.

    Science.gov (United States)

    Carthey, Alexandra J R; Banks, Peter B

    2012-01-01

    The impact of alien predators on native prey populations is often attributed to prey naiveté towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naiveté and coexistence becomes possible, an introduced species must eventually become 'native'. But when exactly does an alien become a native species? The dingo (Canis lupus dingo) was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta) recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris), we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus) or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naïve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naïve.

  12. Dioecious plants are more precocious than cosexual plants: A comparative study of relative sizes at the onset of sexual reproduction in woody species.

    Science.gov (United States)

    Ohya, Itsuki; Nanami, Satoshi; Itoh, Akira

    2017-08-01

    The reproductive capacities of dioecious plant species may be limited by severe pollen limitation and narrow seed shadows for the two reasons. First, they are unable to self-pollinate, and seed production occurs only with pollinator movement from males to females. Second, only 50% of the individuals in populations contribute to seed production. Despite these handicaps, dioecious plants maintain their populations in plant communities with cooccurring cosexual plants, and no substantial difference in population growth rates has been found between dioecious and cosexual plants. Hence, dioecious plants are thought to mitigate these disadvantages by adopting ecological traits, such as insect pollination, animal-dispersed fleshy fruits, and precocious flowering. We studied the relationship between flowering and plant size in 30 woody species with different sex expressions, leaf habits, fruit types, and maximum plant sizes. The study site was located in an evergreen broad-leaved forest on the island of Honshu, Japan. A phylogenetic linear regression model showed that dioecious species tended to mature at smaller sizes than did cosexual taxa. At the population level, given equal plant densities and reproductive efforts, the precocity of dioecious plants could serve as one of the factors that mitigate the limitations of pollen and seed-shadow handicaps by increasing the density of reproductive individuals in the population. At the individual level, smaller size of onset of flowering may play a role in enhancing reproductive success over a lifetime by increasing reproductive opportunities. We discussed the possible effect of the relationship between precocity and some ecological traits of dioecious plants, such as small flowers pollinated by unspecialized insects, fleshy fruit dispersed by animals, and their preferential occurrence in the tropics and in island habitats. The universality of precocity among dioecious plants should be investigated in diverse plant communities

  13. First recording of the non-native species Beroe ovata Mayer 1912 in the Aegean Sea

    Directory of Open Access Journals (Sweden)

    T.A. SHIGANOVA

    2007-06-01

    Full Text Available A new alien species Beroe ovata Mayer 1912 was recorded in the Aegean Sea. It is most likely that this species spread on the currents from the Black Sea. Beroe ovata is also alien to the Black Sea, where it was introduced in ballast waters from the Atlantic coastal area of the northern America. The species is established in the Black Sea and has decreased the population of another invaderMnemiopsis leidyi, which has favoured the recovery of the Black Sea ecosystem.We compare a new 1 species with the native species fam. Beroidae from the Mediterranean and predict its role in the ecosystem of the Aegean Sea using the Black Sea experience.

  14. First recording of the non-native species Beroe ovata Mayer 1912 in the Aegean Sea

    Directory of Open Access Journals (Sweden)

    T.A. SHIGANOVA

    2012-12-01

    Full Text Available A new alien species Beroe ovata Mayer 1912 was recorded in the Aegean Sea. It is most likely that this species spread on the currents from the Black Sea. Beroe ovata is also alien to the Black Sea, where it was introduced in ballast waters from the Atlantic coastal area of the northern America. The species is established in the Black Sea and has decreased the population of another invaderMnemiopsis leidyi, which has favoured the recovery of the Black Sea ecosystem.We compare a new 1 species with the native species fam. Beroidae from the Mediterranean and predict its role in the ecosystem of the Aegean Sea using the Black Sea experience.

  15. Exotic plant species associations with horse trails, old roads, and intact native communities in the Missouri Ozarks

    Science.gov (United States)

    Stroh, E.D.; Struckhoff, M.A.

    2009-01-01

    We compared the extent to which exotic species are associated with horse trails, old roads, and intact communities within three native vegetation types in Ozark National Scenic Riverways, Missouri. We used a general linear model procedure and a Bonferroni multiple comparison test to compare exotic species richness, exotic to native species ratios, and exotic species percent cover across three usage types (horse trails, old roads, and intact communities) and three community types (river bottoms, upland waterways, and glades). We found that both exotic species richness and the ratio of exotic species to native species were greater in plots located along horse trails than in plots located either in intact native communities or along old roads. Native community types did not differ in the number of exotic species present, but river bottoms had a significantly higher exotic to native species ratio than glades. Continued introduction of exotic plant propagules may explain why horse trails contain more exotic species than other areas in a highly disturbed landscape.

  16. A taxonomic revision of the southern African native and naturalized species of Silene L. (Caryophyllaceae

    Directory of Open Access Journals (Sweden)

    J. C. Manning

    2012-12-01

    Full Text Available The native and naturalized species of Silene L. in southern Africa are reviewed, with full synonomy and the description of two new species from the West Coast of Western Cape. Eight native species and three naturalized species are recognized, including the first identification in southern Africa of the Mediterranean S. nocturna L. The identity of S. aethiopica Burm., which has remained unknown since its description, is established and is found to be the oldest name for S. clandestina Jacq. Patterns of morphological variation within each species are discussed and subspecies are recognized for geographically segregated groups of populations that are ± morphologically diagnosable. The following new names or combinations are made among the southern African taxa: S. aethiopica subsp. longiflora; S. burchellii subsp. modesta, subsp. multiflora, and subsp. pilosellifolia; S. crassifolia subsp. primuliflora; S. saldanhensis; S. rigens; and S. undulata subsp. polyantha. Each taxon is described, with information on ecology and distribution, and most species are illustrated, including SEM micrographs of the seeds.

  17. GROWTH OF AMAZON NATIVE SPECIES SUBMITTED TO THE PLANTATION IN THE RORAIMA STATE

    Directory of Open Access Journals (Sweden)

    Helio Tonini

    2009-10-01

    Full Text Available An important forest research challenge in the Amazonian is finding forms of reforesting degraded areas with the use of a larger number of native species and identify tropical species commercially attractive adapted to clear-cut areas. This work had as objectives to evaluate the initial growth in diameter and height of six native Amazonian species in a preliminary species trial. The data were obtained from measures of 72 trees 9 years after planting. The selected species for this study were cupiúba (Goupia glabra, cumaru (Dipterix odorata, andiroba (Carapa guianensis, brazil nut (Bertholletia excelsa, pará-pará (Jacaranda copaia and tatajuba (Bagassa guianensis. The cumulative growth curves for diameter and height was obtained by the Chapman – Richards function. In spite of the low age of the stands, it was obtained good fit to the function for the studied species. Pará-pará (Jacaranda copaia, presented best diameter and height growth in all the ages. The diameter mean annual increment analysis showed that, except for the cupiúba (Goupia glabra,  can be expected  increments larger than  2 cm, by appropiate spacings and thinning.

  18. A taxonomic revision of the southern African native and naturalized species of Silene L. (Caryophyllaceae

    Directory of Open Access Journals (Sweden)

    J. C. Manning

    2012-12-01

    Full Text Available The native and naturalized species of Silene L. in southern Africa are reviewed, with full synonomy and the description of two new species from the West Coast of Western Cape. Eight native species and three naturalized species are recognized, including the first identification in southern Africa of the Mediterranean S. nocturna L. The identity of S. aethiopica Burm., which has remained unknown since its description, is established and is found to be the oldest name for S. clandestina Jacq. Patterns of morphological variation within each species are discussed and subspecies are recognized for geographically segregated groups of populations that are ± morphologically diagnosable. The following new names or combinations are made among the southern African taxa: S. aethiopica subsp. longiflora; S. burchellii subsp. modesta, subsp. multiflora, and subsp. pilosellifolia; S. crassifolia subsp. primuliflora; S. saldanhensis; S. rigens; and S. undulata subsp. polyantha. Each taxon is described, with information on ecology and distribution, and most species are illustrated, including SEM micrographs of the seeds.

  19. Artificial Water Point for Livestock Influences Spatial Ecology of a Native Lizard Species

    OpenAIRE

    Leu, Stephan T.; C Michael Bull

    2016-01-01

    Pastoralism is a major agricultural activity in drier environments, and can directly and indirectly impact native species in those areas. We investigated how the supply of an artificial watering point to support grazing livestock affected movement and activity patterns of the Australian sleepy lizard (Tiliqua rugosa) during a drought year. We observed 23 adult lizards; six had access to a dam, whereas 17 lizards did not. Lizards with access to the dam had larger home ranges, were substantiall...

  20. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    Science.gov (United States)

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.

  1. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Allelopathic effect of a native species on a major plant invader in Europe

    Science.gov (United States)

    Christina, Mathias; Rouifed, Soraya; Puijalon, Sara; Vallier, Félix; Meiffren, Guillaume; Bellvert, Floriant; Piola, Florence

    2015-04-01

    Biological invasions have become a major global issue in ecosystem conservation. As formalized in the "novel weapon hypothesis", the allelopathic abilities of species are actively involved in invasion success. Here, we assume that allelopathy can also increase the biotic resistance of native species against invasion. We tested this hypothesis by studying the impact of the native species Sambucus ebulus on the colonization of propagules of the invasive species Fallopia x bohemica and the subsequent development of plants from these. Achenes and rhizome fragments from two natural populations were grown in a greenhouse experiment for 50 days. We used an experimental design that involved "donor" and "target" pots in order to separate resource competition from allelopathy. An allelopathic treatment effect was observed for plant growth but not for propagule establishment. Treatment affected, in particular, the growth of Fallopia plants originating from achenes, but there was less influence on plants originating from rhizomes. By day 50, shoot height had decreased by 27 % for plants originating from rhizomes and by 38 % for plants originating from achenes. The number of leaves for plants originating from achenes had only decreased by 20 %. Leaf and above- and below-ground dry masses decreased with treatment by 40, 41 and 25 % for plants originating from rhizomes and 70, 61 and 55 % for plants originating from achenes, respectively. S. ebulus extracts were analysed using high-performance chromatography, and the choice of test molecules was narrowed down. Our results suggest native species use allelopathy as a biotic containment mechanism against the naturalization of invasive species.

  3. Seed bank survival of an invasive species, but not of two native species, declines with invasion.

    Science.gov (United States)

    Orrock, John L; Christopher, Cory C; Dutra, Humberto P

    2012-04-01

    Soil-borne seed pathogens may play an important role in either hindering or facilitating the spread of invasive exotic plants. We examined whether the invasive shrub Lonicera maackii (Caprifoliaceae) affected fungi-mediated mortality of conspecific and native shrub seeds in a deciduous forest in eastern Missouri. Using a combination of L. maackii removal and fungicide treatments, we found no effect of L. maackii invasion on seed viability of the native Symphoricarpos orbiculatus (Caprifoliaceae) or Cornus drummondii (Cornaceae). In contrast, fungi were significant agents of L. maackii seed mortality in invaded habitats. Losses of L. maackii to soil fungi were also significant in invaded habitats where L. maackii had been removed, although the magnitude of the effect of fungi was lower, suggesting that changes in soil chemistry or microhabitat caused by L. maackii were responsible for affecting fungal seed pathogens. Our work suggests that apparent competition via soil pathogens is not an important factor contributing to impacts of L. maackii on native shrubs. Rather, we found that fungal seed pathogens have density-dependent effects on L. maackii seed survival. Therefore, while fungal pathogens may provide little biotic resistance to early invasion by L. maackii, our study illustrates that more work is needed to understand how changes in fungal pathogens during the course of an invasion contribute to the potential for restoration of invaded systems. More generally, our study suggests that increased rates of fungal pathogen attack may be realized by invasive plants, such as L. maackii, that change the chemical or physical environment of the habitats they invade.

  4. Responses of epidermal phenolic compounds to light acclimation: in vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species.

    Science.gov (United States)

    Bidel, L P R; Meyer, S; Goulas, Y; Cadot, Y; Cerovic, Z G

    2007-09-25

    Chlorophyll fluorescence (ChlF) excitation spectra were measured to assess the UV-sunscreen compounds accumulated in fully expanded leaves of three woody species belonging to different chemotaxons, (i.e. Morus nigra L., Prunus mahaleb L. and Lagerstroemia indica L.), grown in different light microclimates. The logarithm of the ratio of ChlF excitation spectra (logFER) between two leaves acclimated to different light microclimates was used to assess the difference in epidermal absorbance (EAbs). EAbs increased with increasing solar irradiance intercepted for the three species. This epidermal localisation of UV-absorbers was confirmed by the removal of the epidermis. It was possible to simulate EAbs as a linear combination of major phenolic compounds (Phen) identified in leaf methanol extracts by HPLC-DAD. Under UV-free radiation conditions, shaded leaves of M. nigra accumulated chlorogenic acid. Hydroxybenzoic acid (HBA) derivatives and hydroxycinnamic acid (HCA) derivatives greatly increased with increasing PAR irradiance under the low UV-B conditions found in the greenhouse. These traits were also observed for the HCA of the two other species. Flavonoid (FLAV) accumulation started under low UV-A irradiance, and became maximal in the adaxial epidermis of sun-exposed leaves outdoors. A decrease in the amount of HCA was observed concomitantly to the intense accumulation of FLAV for both leaf sides of the three species. Judging from the logFER, under low UV-B conditions, larger amounts of HCA are present in the epidermis in comparison to FLAV for the three species. Upon transition from the greenhouse to full sunlight outdoors, there was a decrease in leaf-soluble HCA that paralleled FLAV accumulation in reaction to increasing solar UV-B radiation in the three species. In M. nigra, that contains large amounts of HCA, the logFER analysis showed that this decrease occurred in the adaxial epidermis, whereas the abaxial epidermis, which is protected from direct UV

  5. Closely-related taxa influence woody species discrimination via DNA barcoding: evidence from global forest dynamics plots.

    Science.gov (United States)

    Pei, Nancai; Erickson, David L; Chen, Bufeng; Ge, Xuejun; Mi, Xiangcheng; Swenson, Nathan G; Zhang, Jin-Long; Jones, Frank A; Huang, Chun-Lin; Ye, Wanhui; Hao, Zhanqing; Hsieh, Chang-Fu; Lum, Shawn; Bourg, Norman A; Parker, John D; Zimmerman, Jess K; McShea, William J; Lopez, Ida C; Sun, I-Fang; Davies, Stuart J; Ma, Keping; Kress, W John

    2015-10-12

    To determine how well DNA barcodes from the chloroplast region perform in forest dynamics plots (FDPs) from global CTFS-ForestGEO network, we analyzed DNA barcoding sequences of 1277 plant species from a wide phylogenetic range (3 FDPs in tropics, 5 in subtropics and 5 in temperate zone) and compared the rates of species discrimination (RSD). We quantified RSD by two DNA barcode combinations (rbcL + matK and rbcL + matK + trnH-psbA) using a monophyly-based method (GARLI). We defined two indexes of closely-related taxa (Gm/Gt and S/G ratios) and correlated these ratios with RSD. The combination of rbcL + matK averagely discriminated 88.65%, 83.84% and 72.51% at the local, regional and global scales, respectively. An additional locus trnH-psbA increased RSD by 2.87%, 1.49% and 3.58% correspondingly. RSD varied along a latitudinal gradient and were negatively correlated with ratios of closely-related taxa. Successes of species discrimination generally depend on scales in global FDPs. We suggested that the combination of rbcL + matK + trnH-psbA is currently applicable for DNA barcoding-based phylogenetic studies on forest communities.

  6. Relative Radiosensitivities of Woody and Herbaceous Spermatophytes.

    Science.gov (United States)

    Sparrow, R C; Sparrow, A H

    1965-03-19

    The sensitivities of several woody and herbaceous species to single acute exposures to cobalt-60 gamma rays have been determined. Within each group the sensitivity of each species is largely determined by its average interphase chromosome volume (interphase nuclear volume divided by chromosome number) of shoot apical meristem cells. On the basis of the calculated amounts of energy absorbed (in kiloelectron volts) per interphase chromosome at an exposure necessary to produce a given biological effect, woody species were approximately twice as sensitive as herbaceous species.

  7. Effects of an exotic prey species on a native specialist: example of the snail kite

    Science.gov (United States)

    Cattau, Christopher E.; Martin, J.; Kitchens, Wiley M.

    2010-01-01

    Despite acknowledging that exotic species can exhibit tremendous influence over native populations, few case studies have clearly demonstrated the effects of exotic prey species on native predators. We examined the effects of the recently introduced island apple snail (Pomacea insularum) on the foraging behavior and energetics of the endangered snail kite (Rostrhamus sociabilis plumbeus) in Florida. We conducted time-activity budgets: (i) on kites foraging for native Florida apple snails (Pomacea paludosa) in major wetland units within the kites' range that had not been invaded by the exotic island apple snail and (ii) on kites foraging for exotic apple snails in Lake Tohopekaliga, the only major wetland utilized by the snail kite that had suffered a serious invasion of P. insularum. When foraging for P. insularum, snail kites dropped a greater proportion of snails, and they experienced increased handling times and decreased consumption rates; however, kites foraging for P. insularum also spent a smaller proportion of the day in flight. Estimates of net daily energy balances between kites feeding on P. insularum versus P. paludosa were comparable for adults, but juveniles experienced energetic deficiencies when feeding on the exotic snail. Due to this discrepancy, we hypothesize that wetlands invaded by P. insularum, such as Lake Tohopekaliga, may function as ecological traps for the snail kite in Florida by attracting breeding adults but simultaneously depressing juvenile survival. This study highlights the conservation implications and importance of elucidating the effects that exotic species have on native specialists, especially those that are endangered, because subtle influences on behavior may have significant population consequences.

  8. Effects of an exotic prey species on a native specialist: Eexample of the snail kite

    Science.gov (United States)

    Cattau, Christopher E.; Martin, J.; Kitchens, W.M.

    2010-01-01

    Despite acknowledging that exotic species can exhibit tremendous influence over native populations, few case studies have clearly demonstrated the effects of exotic prey species on native predators. We examined the effects of the recently introduced island apple snail (Pomacea insularum) on the foraging behavior and energetics of the endangered snail kite (Rostrhamus sociabilis plumbeus) in Florida. We conducted time-activity budgets: (i) on kites foraging for native Florida apple snails (Pomacea paludosa) in major wetland units within the kites' range that had not been invaded by the exotic island apple snail and (ii) on kites foraging for exotic apple snails in Lake Tohopekaliga, the only major wetland utilized by the snail kite that had suffered a serious invasion of P. insularum. When foraging for P. insularum, snail kites dropped a greater proportion of snails, and they experienced increased handling times and decreased consumption rates; however, kites foraging for P. insularum also spent a smaller proportion of the day in flight. Estimates of net daily energy balances between kites feeding on P. insularum versus P. paludosa were comparable for adults, but juveniles experienced energetic deficiencies when feeding on the exotic snail. Due to this discrepancy, we hypothesize that wetlands invaded by P. insularum, such as Lake Tohopekaliga, may function as ecological traps for the snail kite in Florida by attracting breeding adults but simultaneously depressing juvenile survival. This study highlights the conservation implications and importance of elucidating the effects that exotic species have on native specialists, especially those that are endangered, because subtle influences on behavior may have significant population consequences. ?? 2009 Elsevier Ltd.

  9. Altitudinal occurrence of non-native plant species (neophytes and their habitat affinity to anthropogenic biotopes in conditions of South-Western Slovakia

    Directory of Open Access Journals (Sweden)

    Beniak Michal

    2015-03-01

    Full Text Available Many ecological studies showed that species density (the number of species per unit area in nonnative organism groups of the mountain areas decreases with increasing altitude. The aim of the paper is to determine the variability in the incidence of non-native plant species (neophytes associated with the change in altitude and links of the invading taxons to reference habitat types, as well as their links to three ecologically very similar, however in natural conditions, different areas. In general, the most invaded habitats are those which are highly influenced by human activities. Firstly, data collection was conducted through field mapping of build-up areas in South-western Slovakia. Subsequently, with the assistance of ordination methods, we evaluated the level of association of invasive neophytes according to the set objectives. We found that altitude was an important factor determining variability of invasive neophytes’ occurrence. Total amount of habitats with invasive neophytes’ occurrence showed a linear increase along the altitudinal gradient. Many invasive neophytes adapted to abandoned habitats of upland territory were also able to grow along roads, and vice versa, abandoned and unused habitats of lowland areas created conditions for many typical invasive neophytes occurring along roads and habitats of gardens and yards. Railways of lowland areas provided habitats and means of spread of invasive woody neophytes. Gardens and yards were important sources of alien neophytes in all observed territories. Invasive neophyte Aster novi-belgii can be described as a very variable species tolerant to a wide range of factors limiting the spread of species along the elevation gradient.

  10. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Porté Annabel J

    2011-11-01

    Full Text Available Abstract Background To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. Results Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. Conclusions The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree

  11. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity.

    Science.gov (United States)

    Porté, Annabel J; Lamarque, Laurent J; Lortie, Christopher J; Michalet, Richard; Delzon, Sylvain

    2011-11-24

    To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree species, contributes to its spread in European resource

  12. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity

    Science.gov (United States)

    2011-01-01

    Background To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. Results Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. Conclusions The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree species, contributes to its spread

  13. Differences in functional traits between invasive and native Amaranthus species under different forms of N deposition

    Science.gov (United States)

    Wang, Congyan; Zhou, Jiawei; Liu, Jun; Jiang, Kun

    2017-08-01

    Differences in functional traits between invasive and native plant species are believed to determine the invasion success of the former. Increasing amounts of anthropogenic nitrogen (N) are continually deposited into natural ecosystems, which may change the relative occurrence of the different N deposition forms (such as NH4-N, NO3-N, and CO(NH2)2-N) naturally deposited. Under high N deposition scenarios, some invasive species may grow faster, gaining advantage over native species. In a greenhouse experiment, we grew invasive and native Amaranthus species from seed both alone and in competition under simulated N enriched environments with different forms of N over 3 months. Then, we measured different leaf traits (i.e., plant height, leaf length, leaf width, leaf shape index, specific leaf area (SLA), and leaf chlorophyll and N concentrations). Results showed that the competition intensity between A. retroflexus and A. tricolor decreased under N deposition. This may be due to the large functional divergence between A. retroflexus and A. tricolor under simulated N deposition. Phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus were significantly lower than in A. tricolor. The lower range of phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may indicate a fitness cost for plastic functional traits under adverse environments. The restricted phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may also stabilize leaf construction costs and the growth rate. Meanwhile, the two Amaranthus species possessed greater plasticity in leaf N concentration under NO3-N fertilization, which enhanced their competitiveness.

  14. Do non-native plant species affect the shape of productivity-diversity relationships?

    Science.gov (United States)

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  15. Predicting climate change impacts on native and invasive tree species using radial growth and twenty-first century climate scenarios

    NARCIS (Netherlands)

    González-Muñoz, N.; Linares, J.C.; Castro-Díez, P.; Sass-Klaassen, U.G.W.

    2014-01-01

    The climatic conditions predicted for the twenty-first century may aggravate the extent and impacts of plant invasions, by favouring those invaders more adapted to altered conditions or by hampering the native flora. We aim to predict the fate of native and invasive tree species in the oak forests o

  16. Predicting climate change impacts on native and invasive tree species using radial growth and twenty-first century climate scenarios

    NARCIS (Netherlands)

    González-Muñoz, N.; Linares, J.C.; Castro-Díez, P.; Sass-Klaassen, U.G.W.

    2014-01-01

    The climatic conditions predicted for the twenty-first century may aggravate the extent and impacts of plant invasions, by favouring those invaders more adapted to altered conditions or by hampering the native flora. We aim to predict the fate of native and invasive tree species in the oak forests

  17. Are non-native plants perceived to be more risky? Factors influencing horticulturists' risk perceptions of ornamental plant species.

    Directory of Open Access Journals (Sweden)

    Franziska Humair

    Full Text Available Horticultural trade is recognized as an important vector in promoting the introduction and dispersal of harmful non-native plant species. Understanding horticulturists' perceptions of biotic invasions is therefore important for effective species risk management. We conducted a large-scale survey among horticulturists in Switzerland (N = 625 to reveal horticulturists' risk and benefit perceptions from ornamental plant species, their attitudes towards the regulation of non-native species, as well as the factors decisive for environmental risk perceptions and horticulturists' willingness to engage in risk mitigation behavior. Our results suggest that perceived familiarity with a plant species had a mitigating effect on risk perceptions, while perceptions of risk increased if a species was perceived to be non-native. However, perceptions of the non-native origin of ornamental plant species were often not congruent with scientific classifications. Horticulturists displayed positive attitudes towards mandatory trade regulations, particularly towards those targeted against known invasive species. Participants also expressed their willingness to engage in risk mitigation behavior. Yet, positive effects of risk perceptions on the willingness to engage in risk mitigation behavior were counteracted by perceptions of benefits from selling non-native ornamental species. Our results indicate that the prevalent practice in risk communication to emphasize the non-native origin of invasive species can be ineffective, especially in the case of species of high importance to local industries and people. This is because familiarity with these plants can reduce risk perceptions and be in conflict with scientific concepts of non-nativeness. In these cases, it might be more effective to focus communication on well-documented environmental impacts of harmful species.

  18. Novel Cupriavidus Strains Isolated from Root Nodules of Native Uruguayan Mimosa Species.

    Science.gov (United States)

    Platero, Raúl; James, Euan K; Rios, Cecilia; Iriarte, Andrés; Sandes, Laura; Zabaleta, María; Battistoni, Federico; Fabiano, Elena

    2016-06-01

    The large legume genus Mimosa is known to be associated with both alphaproteobacterial and betaproteobacterial symbionts, depending on environment and plant taxonomy, e.g., Brazilian species are preferentially nodulated by Burkholderia, whereas those in Mexico are associated with alphaproteobacterial symbionts. Little is known, however, about the symbiotic preferences of Mimosa spp. at the southern subtropical limits of the genus. In the present study, rhizobia were isolated from field-collected nodules from Mimosa species that are native to a region in southern Uruguay. Phylogenetic analyses of sequences of the 16S rRNA, recA, and gyrB core genome and the nifH and nodA symbiosis-essential loci confirmed that all the isolates belonged to the genus Cupriavidus However, none were in the well-described symbiotic species C. taiwanensis, but instead they were closely related to other species, such as C. necator, and to species not previously known to be symbiotic (or diazotrophic), such as C. basilensis and C. pinatubonensis Selection of these novel Cupriavidus symbionts by Uruguayan Mimosa spp. is most likely due to their geographical separation from their Brazilian cousins and to the characteristics of the soils in which they were found. With the aim of exploring the diversity of rhizobia associated with native Mimosa species, symbionts were isolated from root nodules on five Mimosa species that are native to a region in southern Uruguay, Sierra del Abra de Zabaleta. In contrast to data obtained in the major centers of diversification of the genus Mimosa, Brazil and Mexico, where it is mainly associated with Burkholderia and Rhizobium/Ensifer, respectively, the present study has shown that all the isolated symbiotic bacteria belonged to the genus Cupriavidus Interestingly, none of nodules contained bacteria belonging to the well-described symbiotic species C. taiwanensis, but instead they were related to other Cupriavidus species such as C. necator and C

  19. Novel Cupriavidus Strains Isolated from Root Nodules of Native Uruguayan Mimosa Species

    Science.gov (United States)

    James, Euan K.; Rios, Cecilia; Iriarte, Andrés; Sandes, Laura; Zabaleta, María; Battistoni, Federico; Fabiano, Elena

    2016-01-01

    ABSTRACT The large legume genus Mimosa is known to be associated with both alphaproteobacterial and betaproteobacterial symbionts, depending on environment and plant taxonomy, e.g., Brazilian species are preferentially nodulated by Burkholderia, whereas those in Mexico are associated with alphaproteobacterial symbionts. Little is known, however, about the symbiotic preferences of Mimosa spp. at the southern subtropical limits of the genus. In the present study, rhizobia were isolated from field-collected nodules from Mimosa species that are native to a region in southern Uruguay. Phylogenetic analyses of sequences of the 16S rRNA, recA, and gyrB core genome and the nifH and nodA symbiosis-essential loci confirmed that all the isolates belonged to the genus Cupriavidus. However, none were in the well-described symbiotic species C. taiwanensis, but instead they were closely related to other species, such as C. necator, and to species not previously known to be symbiotic (or diazotrophic), such as C. basilensis and C. pinatubonensis. Selection of these novel Cupriavidus symbionts by Uruguayan Mimosa spp. is most likely due to their geographical separation from their Brazilian cousins and to the characteristics of the soils in which they were found. IMPORTANCE With the aim of exploring the diversity of rhizobia associated with native Mimosa species, symbionts were isolated from root nodules on five Mimosa species that are native to a region in southern Uruguay, Sierra del Abra de Zabaleta. In contrast to data obtained in the major centers of diversification of the genus Mimosa, Brazil and Mexico, where it is mainly associated with Burkholderia and Rhizobium/Ensifer, respectively, the present study has shown that all the isolated symbiotic bacteria belonged to the genus Cupriavidus. Interestingly, none of nodules contained bacteria belonging to the well-described symbiotic species C. taiwanensis, but instead they were related to other Cupriavidus species such as C

  20. How to help woody plants to overcome drought stress?-a control study of four tree species in Northwest China.

    Science.gov (United States)

    Liu, Xiaozhen; Zhang, Shuoxin

    2010-05-01

    Water is essential for plants and involves most physical and chemical processes within their lifecycles. Drought stress is a crucial limiting factor for plant growth and production. 48% of the land in China is arid and semi-arid, and non-irrigated land occupies approximately 51.9% of the total cultivated areas. Therefore, studies on plant drought resistant mechanisms have great significance for improving water use efficiency and thus increasing productivity of economical plants. Prior research has shown that the application of nitrogenous fertilizer affects the drought-resistant characteristics of plants. This study aimed to reveal the effect of nitrogenous fertilizer on physiological aspects and its impact on the drought resistance of four tree species (Robinia pseudoacacia L., Ligustrum lucidum Ait., Acer truncatum Bge. and Ulmus pumila L. ) in northwest China. Three levels of nitrogen fertilization (46% N based of urea adjusted to: 5g/15g soil, 15g/15g soil and 25g/15g soil) and an additional control study were applied to 2-year-old well-grown seedlings under drought conditions (30% field moisture capacity). Stomatal conductance, transpiration rate and net photosynthetic rate were measured by a LI-6400 photosynthesis system, while water use efficiency was calculated from net photosynthesis rate and transpiration rate. The results revealed that as the amount of urea applied was raised, stomatal conductance, transpiration rate and net photosynthetic rate decreased significantly, and thus water use efficiency significantly increased. It is therefore concluded that the application of nitrogenous fertilizer regulated physiological parameters by reducing stomata conductance to improve water use efficiency. In addition, among the four tree species, U. pumila had the maximum value of water use efficiency under the same drought condition. The outcome of this study provides a guided option for forest management in arid and semi-arid areas of northwest China.

  1. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado.

    Science.gov (United States)

    Meyer, Sylvia Therese; Castro, Samuel Rodrigues; Fernandes, Marcus Manoel; Soares, Aylton Carlos; de Souza Freitas, Guilherme Augusto; Ribeiro, Edvan

    2016-08-02

    Plants of the Cerrado have shown some potential for restoration and/or phytoremediation projects due to their ability to grow in and tolerate acidic soils rich in metals. The aim of this study is to evaluate the tolerance and accumulation of metals (Cd, Cu, Pb, and Zn) in five native tree species of the Brazilian Cerrado (Copaifera langsdorffii, Eugenia dysenterica, Inga laurina, Cedrela fissilis, Handroanthus impetiginosus) subjected to three experiments with contaminated soils obtained from a zinc processing industry (S1, S2, S3) and control soil (S0). The experimental design was completely randomized (factorial 5 × 4 × 3) and conducted in a greenhouse environment during a 90-day experimentation time. The plant species behavior was assessed by visual symptoms of toxicity, tolerance index (TI), translocation factor (TF), and bioaccumulation factor (BF). C. fissilis has performed as a Zn accumulator by the higher BFs obtained in the experiments, equal to 3.72, 0.88, and 0.41 for S1, S2, and S3 respectively. This species had some ability of uptake control as a defense mechanism in high stress conditions with the best behavior for phytoremediation and high tolerance to contamination. With economical and technical benefits, this study may support a preliminary analysis necessary for using native tree species in environmental projects.

  2. Pequi leaves incorporated into the soil reduce the initial growth of cultivated, invasive and native species

    Directory of Open Access Journals (Sweden)

    LAÍSA N. ALLEM

    2014-12-01

    Full Text Available Studies have identified the phytotoxicity of many native species of the Cerrado; however, most of them were conducted either in inert substrates, or using exaggerate proportions of plant material. We investigated the phytotoxicity of pequi leaves added to substrate soil in quantities compatible with the litter produced by this species. Pequi leaves were triturated and added to red latosol in concentrations of 0.75%, 1.5% and 3%; the control was constituted of leafless soil. These mixtures were added to pots and irrigated daily to keep them moist. Germinated seeds of the cultivated sorghum and sesame, of the invasive brachiaria and of the native purple ipê, were disposed in the pots to grow for five to seven days at 30°C within a photoperiod of 12 h. Seedlings of all the species presented a reduction in their initial growth in a dose-dependent way. In general, the root growth was more affected by the treatments than the shoot growth; moreover, signs of necrosis were observed in the roots of the sorghum, sesame and brachiaria. The phytotoxic effects generated by relatively small quantities of leaves, in a reasonable range of species within a soil substrate, suggest potential allelopathy of pequi leaves under natural conditions.

  3. VOLUMETRY AND SURVIVAL OF NATIVE AND EXOTIC SPECIES IN THE GYPSUN POLE OF ARARIPE, PE

    Directory of Open Access Journals (Sweden)

    Bruno Coelho de Barros

    2010-12-01

    Full Text Available In the industrial and commercial sectors of the Araripe Region in Pernambuco, Brazil, fire wood is the used in processes of dehydration and production of gypsum with different technologies. Thus, this study aimed to find alternatives to supply the demand of firewood in the Gypsun Pole of Araripe in Pernambuco through the implementation of forest with native and exotic species. The experiment was installed at the Experimental Station of the Agronomic Institute of Pernambuco (IPA, using nine species, both native and exotic: (Imburana - Amburana cearense (Allemão A.C. Sm.; Angico - Anadenanthera colubrina (Vell. Brenan  var. cebil (Griseb. Altschul; Jurema - Mimosa tenuiflora (Willd. Poir.; Sabiá - Mimosa caesalpiniaefolia Benth.; Acácia - Senna siamea (Lam. H.S. Irwin & Barneby; Leucena - Leucaena leucocephala (Lam. R. de Wit.; Algaroba - Prosopis juliflora (Sw. D.C.; Ipês - Tabebuia sp.1 e Tabebuia sp.2. The design was completely randomized with different numbers of replications. The following parameters were evaluated: volume in cubic meter (m³ and stereo meters (st and survival. With regard to the volume in cubic meter, Sabia had the best production. The Jurema and the Sabiá were the heaviest species. In relation to survival, the Ipê 2 and the Imburana had the highest mortalities. Thus, the Sabiá and the Jurema are the species indicated for the production of wood in homogeneous commercial plantations in the Chapada Araripe in Pernambuco.

  4. Tolerance and resistance of invasive and native Eupatorium species to generalist herbivore insects

    Science.gov (United States)

    Wang, Rui-Fang; Feng, Yu-Long

    2016-11-01

    Invasive plants are exotic species that escape control by native specialist enemies. However, exotic plants may still be attacked by locally occurring generalist enemies, which can influence the dynamics of biological invasions. If invasive plants have greater defensive (resistance and tolerance) capabilities than indigenous plants, they may experience less damage from native herbivores. In the present study, we tested this prediction using the invasive plant Eupatorium adenophorum and two native congeners under simulated defoliation and generalist herbivore insect (Helicoverpa armigera and Spodoptera litura) treatments. E. adenophorum was less susceptible and compensated more quickly to damages in biomass production from both treatments compared to its two congeners, exhibiting greater herbivore tolerance. This strong tolerance to damage was associated with greater resource allocation to aboveground structures, leading to a higher leaf area ratio and a lower root: crown mass ratio than those of its native congeners. E. adenophorum also displayed a higher resistance index (which integrates acid detergent fiber, nitrogen content, carbon/nitrogen ratio, leaf mass per area, toughness, and trichome density) than its two congeners. Thus, H. armigera and S. litura performed poorly on E. adenophorum, with less leaf damage, a lengthened insect developmental duration, and decreased pupating: molting ratios compared to those of the native congeners. Strong tolerance and resistance traits may facilitate the successful invasion of E. adenophorum in China and may decrease the efficacy of leaf-feeding biocontrol agents. Our results highlight both the need for further research on defensive traits and their role in the invasiveness and biological control of exotic plants, and suggest that biocontrol of E. adenophorum in China would require damage to the plant far in excess of current levels.

  5. A native species with invasive behaviour in coastal dunes: evidence for progressing decay and homogenization of habitat types

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Degn, Hans Jørgen; Damgaard, Christian;

    2011-01-01

    A new species has recently invaded coastal dune ecosystems in North West Europe. The native and expansive inland grass, Deschampsia flexuosa, progressively dominating inland heaths, has recently invaded coastal dunes in Denmark, occasionally even as a dominant species. A total of 222 coastal...... in nutrient level and that human influences may cause a native species to be invasive in new ecosystems. This could be a radical example of change in species composition due to a long lasting exceedance of critical load of nitrogen. The investigation also showed a general increase in cover of the most...... dominant species....

  6. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    Science.gov (United States)

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  7. Hybridization between alien species Rumex obtusifolius and closely related native vulnerable species R. longifolius in a mountain tourist destination

    Science.gov (United States)

    Takahashi, Koichi; Hanyu, Masaaki

    2015-01-01

    Alien species expand their distribution by transportation network development. Hybridization between alien species Rumex obtusifolius and closely related native vulnerable species R. longifolius was examined in a mountain tourist destination in central Japan. The three taxa were morphologically identified in the field. Stem height and leaf area were greater in R. longifolius than R. obtusifolius; hybrids were intermediate between the two Rumex species. R. longifolius and the hybrids grew mainly in wet land and the river tributary; R. obtusifolius grew mainly at the roadside and in meadows. Hybrid germination rates of pollen and seeds were much lower than for the two Rumex species. Clustering analysis showed the three taxa each formed a cluster. Most hybrids were F1 generation; the possibility was low of introgression into the two Rumex species by backcross. This study clarified that (1) hybridization occurred between R. obtusifolius and R. longifolius because they occurred together in a small area, but grew in different water habitat conditions, and (2) hybridization was mostly F1 generation because hybrid pollen and seed fertility was low. However, we need caution about introgression into R. longifolius by R. obtusifolius in this area because of the slight possibility of F2 generation and backcrosses. PMID:26354180

  8. Hybridization between alien species Rumex obtusifolius and closely related native vulnerable species R. longifolius in a mountain tourist destination.

    Science.gov (United States)

    Takahashi, Koichi; Hanyu, Masaaki

    2015-09-10

    Alien species expand their distribution by transportation network development. Hybridization between alien species Rumex obtusifolius and closely related native vulnerable species R. longifolius was examined in a mountain tourist destination in central Japan. The three taxa were morphologically identified in the field. Stem height and leaf area were greater in R. longifolius than R. obtusifolius; hybrids were intermediate between the two Rumex species. R. longifolius and the hybrids grew mainly in wet land and the river tributary; R. obtusifolius grew mainly at the roadside and in meadows. Hybrid germination rates of pollen and seeds were much lower than for the two Rumex species. Clustering analysis showed the three taxa each formed a cluster. Most hybrids were F1 generation; the possibility was low of introgression into the two Rumex species by backcross. This study clarified that (1) hybridization occurred between R. obtusifolius and R. longifolius because they occurred together in a small area, but grew in different water habitat conditions, and (2) hybridization was mostly F1 generation because hybrid pollen and seed fertility was low. However, we need caution about introgression into R. longifolius by R. obtusifolius in this area because of the slight possibility of F2 generation and backcrosses.

  9. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site.

    Science.gov (United States)

    Marrugo-Negrete, José; Marrugo-Madrid, Siday; Pinedo-Hernández, José; Durango-Hernández, José; Díez, Sergi

    2016-01-15

    Artisanal and small-scale gold mining (ASGM) is the largest sector of demand for mercury (Hg), and therefore, one of the major sources of Hg pollution in the environment. This study was conducted in the Alacrán gold-mining site, one of the most important ASGM sites in Colombia, to identify native plant species growing in Hg-contaminated soils used for agricultural purposes, and to assess their potential as phytoremediation systems. Twenty-four native plant species were identified and analysed for total Hg (THg) in different tissues (roots, stems, and leaves) and in underlying soils. Accumulation factors (AF) in the shoots, translocation (TF) from roots to shoots, and bioconcentration (BCF) from soil-to-roots were determined. Different tissues from all plant species were classified in the order of decreasing accumulation of Hg as follows: roots > leaves > stems. THg concentrations in soil ranged from 230 to 6320 ng g(-1). TF values varied from 0.33 to 1.73, with high values in the lower Hg-contaminated soils. No correlation was found between soils with low concentrations of Hg and plant leaves, indicating that TF is not a very accurate indicator, since most of the Hg input to leaves at ASGM sites comes from the atmosphere. On the other hand, the BCF ranged from 0.28 to 0.99, with Jatropha curcas showing the highest value. Despite their low biomass production, several herbs and sub-shrubs are suitable for phytoremediation application in the field, due to their fast growth and high AF values in large and easily harvestable plant parts. Among these species, herbs such as Piper marginathum and Stecherus bifidus, and the sub-shrubs J. curcas and Capsicum annuum are promising native plants with the potential to be used in the phytoremediation of soils in tropical areas that are impacted by mining.

  10. Can native plant species be preserved in an anthropogenic forest landscape dominated by aliens? A case study from Mediterranean Chile

    Directory of Open Access Journals (Sweden)

    Steffi Heinrichs

    2016-06-01

    Full Text Available Plantations with fast growing exotic tree species can negatively affect native plant species diversity and promote the spread of alien species. Mediterranean Chile experienced major landscape changes with a vast expansion of industrial plantations of Pinus radiata in the past. However, with increasing knowledge of biodiversity effects on ecosystem services Chilean forest owners now aim to integrate the conservation of native biodiversity into forest management, but data on native species diversity and establishment within a plantation landscape is scarce. Here we investigated plant species diversity and composition in four forest management options applied within a landscape dominated by P. radiata plantations in comparison to an unmanaged reference: (i a clear cut, (ii a strip cut, (iii a native canopy of Nothofagus glauca and (iv a young P. radiata plantation. We wanted to assess if native plant species can be maintained either by natural regeneration or by planting of native tree species (Nothofagus glauca, N. obliqua, Quillaja saponaria within this landscape. Results show a high diversity of native and forest plant species within the different management options indicating a high potential for native biodiversity restoration within an anthropogenic landscape. In particular, herbaceous species can benefit from management. They are rare in unmanaged natural forests that are characterized by low light conditions and a thick litter layer. Management, however, also promoted a diversity of alien species. The rapid spread of alien grass species after management can deter an initial establishment of native tree species or the survival and growth after planting mainly under dry but less under sufficient moisture conditions. The most unsuccessful option for promoting native plant species was clear cutting in a dry area where alien grasses were abundant. For drought-tolerant tree species such as Quillaja saponaria, though

  11. Can native plant species be preserved in an anthropogenic forest landscape dominated by aliens? A case study from Mediterranean Chile

    Directory of Open Access Journals (Sweden)

    Steffi Heinrichs

    2016-06-01

    Full Text Available Plantations with fast growing exotic tree species can negatively affect native plant species diversity and promote the spread of alien species. Mediterranean Chile experienced major landscape changes with a vast expansion of industrial plantations of Pinus radiata in the past. However, with increasing knowledge of biodiversity effects on ecosystem services Chilean forest owners now aim to integrate the conservation of native biodiversity into forest management, but data on native species diversity and establishment within a plantation landscape is scarce. Here we investigated plant species diversity and composition in four forest management options applied within a landscape dominated by P. radiata plantations in comparison to an unmanaged reference: (i a clear cut, (ii a strip cut, (iii a native canopy of Nothofagus glauca and (iv a young P. radiata plantation. We wanted to assess if native plant species can be maintained either by natural regeneration or by planting of native tree species (Nothofagus glauca, N. obliqua, Quillaja saponaria within this landscape. Results show a high diversity of native and forest plant species within the different management options indicating a high potential for native biodiversity restoration within an anthropogenic landscape. In particular, herbaceous species can benefit from management. They are rare in unmanaged natural forests that are characterized by low light conditions and a thick litter layer. Management, however, also promoted a diversity of alien species. The rapid spread of alien grass species after management can deter an initial establishment of native tree species or the survival and growth after planting mainly under dry but less under sufficient moisture conditions. The most unsuccessful option for promoting native plant species was clear cutting in a dry area where alien grasses were abundant. For drought-tolerant tree species such as Quillaja saponaria, though

  12. Woody Species Diversity and Soil Organic Carbon Accumulation in Different Vegetations in Southwest of Sichuan Province%川西南不同植被木本物种多样性与土壤有机碳积累

    Institute of Scientific and Technical Information of China (English)

    龚志莲; 李勇

    2015-01-01

    为了探讨川西南不同植被对物种多样性维持和土壤有机碳积累的生态效应,以四川宁南县高山栲Castanopsis delavayi天然林、26年生赤桉Eucalyptus camaldulensis×新银合欢Leucaena leucocephala混交林和新银合欢Leucaena leucocephala纯林为研究对象,同时以附近的退化荒地为对照,调查其木本物种多样性、植被结构及表层土壤有机碳积累。结果显示:天然林具有较高的物种多样性。人工林木本物种多样性显著高于对照荒地,但显著低于天然林(P20 cm) organic carbon accumulation in Southwest of Sichuan province, a Castanopsis delavayi natural forest and 2 adjacent 26-year-old plantation forests of Leucaena leucocephala and mixed-species Eucalyptus camaldulensis × Leucaena leucocephala were selected to investigate woody species diversity, vegetation structure and surface soil organic carbon accumulation, with an adjacent wasteland as comparisons. Natural forests had higher woody species diversity. After 26-year reforestation, woody species diversity in plantations was significantly higher than that in reference wasteland, but significantly lower than that in natural forest (P<0.05), indicating that once natural forests in Southwest of Sichuan province were cleared, it would be difficult to restore diversity of woody species. There were tree, shrub and herbaceous layers in plantations. Plantations were significantly improved in vegetation structure compared with reference wastelands (no tree layer and only one species in shrub layer). Improvement of vegetation structure was helpful to increase of species diversity. In Leucaena leucocephala × Eucalyptus camaldulensis plantation and Leucaena leucocephala plantation, the surface SOC storage was (63.39±1.47) tC·hm-2 and (64.89±1.69) tC·hm-2 respectively, significantly higher than that in reference wasteland, but significantly lower than that in natural forest (P<0.05). The change of SOC storage in

  13. Forest structure and woody plant species composition after a wildfire in beech forests in the north of Iran

    Institute of Scientific and Technical Information of China (English)

    Mohammad Naghi Adel; Hassan Pourbabaei; Ali Omidi; Daniel C Dey

    2013-01-01

    Beech (Fagus orientalis Lipsky) forest covers about 565,000 ha of land in Guilan province,north of Iran and forms a major carbon pool.It is an important economic,soil protection and recreation resource.We studied long-term effects of fire on the structure and composition 37 years after fire occurrence in these forests.To do this research,we selected 85 ha burned and 85 ha unbumed beech forests).The results indicated that the fire had not changed the overall uneven-aged structure,but it changed forest composition from pure stands to mixed stands that now include species such as Carpinus betulus,Acer cappadocicum and Alnus subcordata.The density of trees and regeneration was significantly increased,while the density of shrubs significantly decreased.The main reasons for increased tree regeneration were attributed to (1) reduction of litter depth,and (2) increase in available light from opening of the canopy and reduction in shrub competition.It is apparent that the forest is on a path to return to its natural state before the fire after 37 years.

  14. Oil Palm:A tropical woody tree species as biomass energy%热带木本生物质能源树种——油棕

    Institute of Scientific and Technical Information of China (English)

    雷新涛; 曹红星; 冯美利; 王永; 李杰

    2012-01-01

    Oil palm is an important tropical woody tree species for biomass energy.It possesses the characteristics of long fruiting stage,high yield and oil content.With the increase of crude oil prices,the development of biodiesel is receiving more attention.Palm oil is a very promising and competitive raw material for producing biodiesel due to low production cost.In this paper,we summarize the main characteristics of oil palm including palm oil production,trade,consumption of the world and in China.The importance,feasibility and prospects of developing an oil palm industry in China is also discussed.%油棕是一种重要的热带木本生物质能源树种,具有结果期长、产量和含油量高等特点。随着原油价格的不断上涨,生物柴油的发展日益受到关注。而棕榈油由于生产成本低廉,成为生产生物柴油最具竞争力的原料。本文分别综述了油棕的基本特性、全球及我国棕榈油生产贸易和消费状况、我国发展油棕产业的重要意义,在此基础上对我国发展油棕产业的可行性和前景进行了探讨。

  15. Insular woodiness on the Canary Islands: a remarkable case of convergent evolution

    NARCIS (Netherlands)

    Lens, F.; Davin, N.; Smets, E.; Arco, del M.

    2013-01-01

    Premise of research. One of the most conspicuous aspects of island floras is the relatively high proportion of woody species. Often, but not always, these woody species have developed wood on the islands and have evolved from herbaceous continental ancestors, a phenomenon known as insular woodiness.

  16. Screening biological traits and fluoride contents of native vegetations in arid environments to select efficiently fluoride-tolerant native plant species for in-situ phytoremediation.

    Science.gov (United States)

    Boukhris, Asma; Laffont-Schwob, Isabelle; Mezghani, Imed; El Kadri, Lefi; Prudent, Pascale; Pricop, Anca; Tatoni, Thierry; Chaieb, Mohamed

    2015-01-01

    High fluoride pollution has been detected in the surrounding soils of the coastal superphosphate industries in the Gulf of Gabes (Southeast of Tunisia). A study was conducted in vicinity of factories analysing plant functional traits combined with plant fluoride accumulation and soil metal concentrations aiming to screen more efficiently native plant species tolerant to this pollution. Aerial parts of 18 plant species out of the 10 most abundant species per site were harvested on two polluted sites of Gabes and Skhira at the vicinity of the factories and on the less polluted site of Smara. Native plant species accumulated fluoride following the gradient of soil pollution. Fluoride contents of plant aerial parts ranged from 37 mg kg(-1) to 360 mg kg(-1) and five plant species were only found in the most polluted site. However these latter had low biomass and soil cover. Crossing biological traits and fluoride contents, a selection grid for potentially restorative plant species enabled the selection of three native perennials i.e. Rhanterium suaveolens, Atractylis serratuloides and, Erodium glaucophyllum as potential candidates for an in-situ phytoremediation program on arid fluoride-polluted sites. This approach may be used in other fluoride-polluted Mediterranean environments.

  17. Generative reproduction of Antarctic grasses, the native species Deschampsia antarctica Desv. and the alien species Poa annua L.

    Directory of Open Access Journals (Sweden)

    Giełwanowska Irena

    2015-09-01

    Full Text Available The embryology of two species, Deschampsia antarctica, a native species, and Poa annua, an alien species in the Antarctic we studied. Flowering buds of plants growing in their natural habitats on King George Island and generative tissues of both plant species grown in a greenhouse were analyzed. Adaptations to autogamy and anemogamy were observed in the flower anatomy of both species. The microsporangia of the evaluated grasses produce a small number of three−celled pollen grains. Numerous pollen grains do not leave the microsporangium and germinate in the thecae. Deschampsia antarctica and P. annua plants harvested in Antarctica developed a particularly small number of microspores in pollen chambers. In D. antarctica, male gametophytes were produced at a faster rate: generative cells in pollen did not become detached from the wall of the pollen grain, they were not embedded in the cytoplasm of vegetative cells, and they divided into two sperm cells situated close to the wall. The monosporous Polygonum type of embryo sac development was observed in the studied species. The egg apparatus had typical polarization, and the filiform apparatus did not develop in synergids. Large antipodals with polyploidal nuclei were formed in the embryo sacs of D. antarctica and P. annua. Poa annua was characterized by numerous antipodal cells which formed antipodal tissue in the chalazal region of the embryo sac. Three distinct antipodals with atypical, lateral position in the vicinity of the egg apparatus were observed in D. antarctica. The diaspores of the investigated grass species were characterized by small size, low weight and species-specific primary and secondary sculpture of the testa and caryopsis coat.

  18. Considering native and exotic terrestrial reptiles in island invasive species eradication programmes in the Tropical Pacific

    Science.gov (United States)

    Fisher, Richard N.; Veitch, C.R.; Clout, Mike N.; Towns, D. R.

    2010-01-01

    Most island restoration projects with reptiles, either as direct beneficiaries of conservation or as indicators of recovery responses, have been on temperate or xeric islands. There have been decades of research, particularly on temperate islands in New Zealand, on the responses of native reptiles to mammal eradications but very few studies in tropical insular systems. Recent increases in restoration projects involving feral mammal eradications in the tropical Pacific have led to several specific challenges related to native and invasive reptiles. This paper reviews these challenges and discusses some potential solutions to them. The first challenge is that the tropical Pacific herpetofauna is still being discovered, described and understood. There is thus incomplete knowledge of how eradication activities may affect these faunas and the potential risks facing critical populations of these species from these eradication actions. The long term benefit of the removal of invasives is beneficial, but the possible short term impacts to small populations on small islands might be significant. The second challenge is that protocols for monitoring the responses of these species are not well documented but are often different from those used in temperate or xeric habitats. Lizard monitoring techniques used in the tropical Pacific are discussed. The third challenge involves invasive reptiles already in the tropical Pacific, some of which could easily spread accidentally through eradication and monitoring operations. The species posing the greatest threats in this respect are reviewed, and recommendations for biosecurity concerning these taxa are made.

  19. Context matters: matrix vegetation influences native and exotic species composition on habitat islands.

    Science.gov (United States)

    Wiser, Susan K; Buxton, Rowan P

    2008-02-01

    The extensive research on plant communities of natural-habitat islands has primarily focused on the "islands." The island analogy, however, potentially limits understanding of processes influencing composition on habitat islands because the nature of their matrix is overlooked. We determine how plant community structure of the surrounding matrix influences vegetation on volcanic outcrops in the modified landscape of Banks Peninsula, New Zealand. Our primary purpose is to address whether the matrix is more important for recently established exotic species than it is for well-established native species and whether such invasion by exotics has led to homogenization of the outcrop flora. To test this, we examined our data at three spatial scales: that of the entire outcrop flora, between individual outcrops and their immediate surrounding matrix, and between individual outcrop faces and the individual relevés of the immediate surrounding matrix. We found that 81% of the native flora and 90% of the exotic flora also occur in the matrix. This high level of species shared between the outcrop and matrix persists at the scale of individual outcrop faces (68% of the total flora of individual faces is shared with the matrix). We predicted that floras from different outcrops would vary in their distinctiveness from their immediate matrix. We found Bray-Curtis distance coefficient values to range from 0.26 to 0.64; these were even higher at the outcrop-face scale. Variability in outcrop distinctiveness relates primarily to the outcrop face properties of area, vegetation height, and soil depth, and matrix properties of vegetation structure and vegetation heterogeneity. The effect of the vegetation structure of the matrix is more pronounced on the exotic than on the native outcrop flora. The component of composition and structure of the matrix that was independent of outcrop properties and local environment accounts for similar levels of explainable variation in total and native

  20. Influence of diameter class on lumber yielding of two native species from Mozambique

    Directory of Open Access Journals (Sweden)

    Cláudio Gumane Francisco Juizo

    2015-09-01

    Full Text Available In a technical bulletin designed by the Food and Agriculture Organization, the importance of studies in Mozambique to assist in decision-making techniques that aim to improve incomes of sawmills in the country was emphasized. Because of the species used and the industry’s low technological level, this study was carried out in order to assess the lumber yield of two tropical species, in a sawmill in Chimoio, Manica Province, in the central region of Mozambique. We used trees of Combretum imberbe (mondzo and Pterocarpus angolensis (umbila, selecting 12 logs from each species. The logs were divided into three diameter classes (four logs in each class. Logs were sawed with band saw, in successive tangential unfolding model. Lumber yielding for both species increased depending on the diameter class, with statistical differences of lumber yielding between the two species and in the three diameter classes. C. imberbe had higher yield compared to P. angolensis, with results considered satisfactory for wood unfold of both native species from Mozambique.

  1. Effects of root exudates of woody species on the soil anti-erodibility in the rhizosphere in a karst region, China

    Science.gov (United States)

    Chen, Mouhui

    2017-01-01

    Introduction Rhizospheres, the most active interfaces between plants and soils, play a central role in the long-term maintenance of the biosphere. The anti-erodibility of soils (AES) regulated by the root exudates is crucial to the soil stability in the rhizospheres. However, scientists still debate (1) the key organic matter of the root exudates affecting the AES and (2) the interspecific variation of these root exudates. Methods We used an incubation of soils to test the effects of the root exudates from eight woody plant species on the change in soil aggregation and identified the organic matter in these root exudates with gas chromatography-mass spectrometry (GC-MS) and biochemical methods. Furthermore, the relationships between the organic matter in the exudates and the AES in the rhizospheres of 34 additional tree species were analyzed. Results The water-stable aggregates of the soils incubated with the root exudates increased by 15%–50% on average compared with control samples. The interspecific differences were significant. The root exudates included hundreds of specific organic matter types; hydrocarbon, total sugar, total amino acids, and phenolic compounds were crucial to the AES. These organic matter types could explain approximately 20–75% of the variation in the total effect of the root exudates on the AES, which was quantified based on the aggregate status, degree of aggregation, dispersion ratio, and dispersion coefficient. Discussion The effects of the root exudates on the AES and the interspecific variation are as important as that of root density, litters, and vegetation covers. Many studies explored the effects of root density, litters, vegetation covers, and vegetation types on the AES, but little attention has been paid to the effects of the root exudates on the AES. Different plants secrete different relative contents of organic matter resulting in the variation of the effect of the root exudates on the AES. Our study quantified the

  2. Effects of root exudates of woody species on the soil anti-erodibility in the rhizosphere in a karst region, China

    Directory of Open Access Journals (Sweden)

    Zhen Hong Wang

    2017-03-01

    Full Text Available Introduction Rhizospheres, the most active interfaces between plants and soils, play a central role in the long-term maintenance of the biosphere. The anti-erodibility of soils (AES regulated by the root exudates is crucial to the soil stability in the rhizospheres. However, scientists still debate (1 the key organic matter of the root exudates affecting the AES and (2 the interspecific variation of these root exudates. Methods We used an incubation of soils to test the effects of the root exudates from eight woody plant species on the change in soil aggregation and identified the organic matter in these root exudates with gas chromatography-mass spectrometry (GC-MS and biochemical methods. Furthermore, the relationships between the organic matter in the exudates and the AES in the rhizospheres of 34 additional tree species were analyzed. Results The water-stable aggregates of the soils incubated with the root exudates increased by 15%–50% on average compared with control samples. The interspecific differences were significant. The root exudates included hundreds of specific organic matter types; hydrocarbon, total sugar, total amino acids, and phenolic compounds were crucial to the AES. These organic matter types could explain approximately 20–75% of the variation in the total effect of the root exudates on the AES, which was quantified based on the aggregate status, degree of aggregation, dispersion ratio, and dispersion coefficient. Discussion The effects of the root exudates on the AES and the interspecific variation are as important as that of root density, litters, and vegetation covers. Many studies explored the effects of root density, litters, vegetation covers, and vegetation types on the AES, but little attention has been paid to the effects of the root exudates on the AES. Different plants secrete different relative contents of organic matter resulting in the variation of the effect of the root exudates on the AES. Our study

  3. Effects of root exudates of woody species on the soil anti-erodibility in the rhizosphere in a karst region, China.

    Science.gov (United States)

    Wang, Zhen Hong; Fang, Hong; Chen, Mouhui

    2017-01-01

    Rhizospheres, the most active interfaces between plants and soils, play a central role in the long-term maintenance of the biosphere. The anti-erodibility of soils (AES) regulated by the root exudates is crucial to the soil stability in the rhizospheres. However, scientists still debate (1) the key organic matter of the root exudates affecting the AES and (2) the interspecific variation of these root exudates. We used an incubation of soils to test the effects of the root exudates from eight woody plant species on the change in soil aggregation and identified the organic matter in these root exudates with gas chromatography-mass spectrometry (GC-MS) and biochemical methods. Furthermore, the relationships between the organic matter in the exudates and the AES in the rhizospheres of 34 additional tree species were analyzed. The water-stable aggregates of the soils incubated with the root exudates increased by 15%-50% on average compared with control samples. The interspecific differences were significant. The root exudates included hundreds of specific organic matter types; hydrocarbon, total sugar, total amino acids, and phenolic compounds were crucial to the AES. These organic matter types could explain approximately 20-75% of the variation in the total effect of the root exudates on the AES, which was quantified based on the aggregate status, degree of aggregation, dispersion ratio, and dispersion coefficient. The effects of the root exudates on the AES and the interspecific variation are as important as that of root density, litters, and vegetation covers. Many studies explored the effects of root density, litters, vegetation covers, and vegetation types on the AES, but little attention has been paid to the effects of the root exudates on the AES. Different plants secrete different relative contents of organic matter resulting in the variation of the effect of the root exudates on the AES. Our study quantified the causal relationships between the root exudates

  4. Frost resistance in alpine woody plants.

    Science.gov (United States)

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  5. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach.

    Directory of Open Access Journals (Sweden)

    Kim Meijer

    Full Text Available During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native. Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.

  6. Changes in non-pine woody species density, composition, and diversity following herbicide and fertilization application to mid-rotation loblolly pine stands

    Science.gov (United States)

    Hal O. Liechty; Conner Fristoe

    2012-01-01

    We monitored woody vegetation (dbh>1.0 in) response for up to six years following a herbicide (16 ounces imazapyr /acre), a fertilizer (365 pounds urea and 175 pounds diammonium phosphate/acre ) and a combined fertilizer and herbicide application in four mid-rotation loblolly pine stands located within the Upper Gulf Coastal Plain in Arkansas. Approximately 60-80%...

  7. Allelopathic interactions between the opportunistic species Ulva prolifera and the native macroalga Gracilaria lichvoides.

    Science.gov (United States)

    Xu, Dong; Gao, Zhengquan; Zhang, Xiaowen; Fan, Xiao; Wang, Yitao; Li, Demao; Wang, Wei; Zhuang, Zhimeng; Ye, Naihao

    2012-01-01

    Allelopathy, one type of direct plant competition, can be a potent mechanism through which plant communities are structured. The aim of this study was to determine whether allelopathic interactions occur between the opportunistic green tide-forming species Ulva prolifera and the native macroalga Gracilaria lichvoides, both of which were collected from the coastline of East China sea. In laboratory experiments, the presence of G. lichvoides at 1.25 g wet weight L(-1) significantly inhibited growth and photosynthesis of U. prolifera at concentrations of 1.25, 2.50, and 3.75 g wet weight L(-1) (p0.05). Culture medium experiments further confirmed that some allelochemicals may be released by both of the tested macroalgae, and these could account for the observed physiological inhibition of growth and photosynthesis. Moreover, the native macroalgae G. lichvoides was a stronger competitor than the opportunistic species U. prolifera. Collectively, the results of the present study represent a significant advance in exploring ecological questions about the effects of green tide blooms on the macroalgal community.

  8. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  9. Allelopathic interactions between the opportunistic species Ulva prolifera and the native macroalga Gracilaria lichvoides.

    Directory of Open Access Journals (Sweden)

    Dong Xu

    Full Text Available Allelopathy, one type of direct plant competition, can be a potent mechanism through which plant communities are structured. The aim of this study was to determine whether allelopathic interactions occur between the opportunistic green tide-forming species Ulva prolifera and the native macroalga Gracilaria lichvoides, both of which were collected from the coastline of East China sea. In laboratory experiments, the presence of G. lichvoides at 1.25 g wet weight L(-1 significantly inhibited growth and photosynthesis of U. prolifera at concentrations of 1.25, 2.50, and 3.75 g wet weight L(-1 (p0.05. Culture medium experiments further confirmed that some allelochemicals may be released by both of the tested macroalgae, and these could account for the observed physiological inhibition of growth and photosynthesis. Moreover, the native macroalgae G. lichvoides was a stronger competitor than the opportunistic species U. prolifera. Collectively, the results of the present study represent a significant advance in exploring ecological questions about the effects of green tide blooms on the macroalgal community.

  10. Allelopathic Interactions between the Opportunistic Species Ulva prolifera and the Native Macroalga Gracilaria lichvoides

    Science.gov (United States)

    Zhang, Xiaowen; Fan, Xiao; Wang, Yitao; Li, Demao; Wang, Wei; Zhuang, Zhimeng; Ye, Naihao

    2012-01-01

    Allelopathy, one type of direct plant competition, can be a potent mechanism through which plant communities are structured. The aim of this study was to determine whether allelopathic interactions occur between the opportunistic green tide-forming species Ulva prolifera and the native macroalga Gracilaria lichvoides, both of which were collected from the coastline of East China sea. In laboratory experiments, the presence of G. lichvoides at 1.25 g wet weight L−1 significantly inhibited growth and photosynthesis of U. prolifera at concentrations of 1.25, 2.50, and 3.75 g wet weight L−1 (p0.05). Culture medium experiments further confirmed that some allelochemicals may be released by both of the tested macroalgae, and these could account for the observed physiological inhibition of growth and photosynthesis. Moreover, the native macroalgae G. lichvoides was a stronger competitor than the opportunistic species U. prolifera. Collectively, the results of the present study represent a significant advance in exploring ecological questions about the effects of green tide blooms on the macroalgal community. PMID:22496758

  11. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    Science.gov (United States)

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic.

  12. Northward invading non-native vascular plant species in and adjacent to Wood Buffalo National Park

    Energy Technology Data Exchange (ETDEWEB)

    Wein, R.W.; Wein, G.; Bahret, S.; Cody, W.J. (Alberta University, Edmonton, AB (Canada). Canadian Circumpolar Institute)

    A survey of the non-native vascular plant species in Wood Buffalo National Park, Canada's largest forested National Park, documented their presence and abundance in key locations. Most of the fifty-four species (nine new records) were found in disturbed sites including roadsides, settlements, farms, areas of altered hydrological regimes, recent bums, and intensive bison grazing. Species that have increased most in geographic area and abundance in recent years include [ital Agropyron repens], [ital Bromus inermis], [ital Chenopodium album], [ital Melilotus spp.], [ital Trifolium spp.], [ital Plantago major], [ital Achillea millefolium], [ital Crepis tectorum] and [ital Sonchus arvensis]. An additional 20 species, now common in the Peace River and Fort Vermilion areas, have the potential to invade the Park if plant communities are subjected to additional stress as northern climates are modified by the greenhouse effect and as other human-caused activities disturb the vegetation. It is recommended that permanent plots be located in key locations and monitored for species invasion and changing abundances as input to management plans.

  13. Plant pollinator interactions: comparison between an invasive and a native congeneric species

    Science.gov (United States)

    Vanparys, Valérie; Meerts, Pierre; Jacquemart, Anne-Laure

    2008-11-01

    Plant-pollinator interactions determine reproductive success for animal-pollinated species and, in the case of invasive plants, they are supposed to play an important role in invasive success. We compared the invasive Senecio inaequidens to its native congener S. jacobaea in terms of interactions with pollinators. Visitor guild, visitation rate, and seed set were compared over 3 years in three sites in Belgium. Floral display (capitula number and arrangement) and phenology were quantified, and visiting insects were individually censused, i.e. number of visited capitula and time per visited capitulum. As expected from capitula resemblance, visitor guilds of both species were very similar (proportional similarity = 0.94). Senecio inaequidens was visited by 33 species, versus 36 for S. jacobaea. For both species, main visitors were Diptera, especially Syrphidae, and Hymenoptera. Visitation rate averaged 0.13 visitor per capitulum per 10 min for S. inaequidens against 0.08 for S. jacobaea. However, insects visited more capitula per plant on S. jacobaea, due to high capitula density (886 m -2 versus 206 m -2 for S. inaequidens), which is likely to increase self-pollen deposition considerably. Seed set of S. jacobaea was lower than that of S. inaequidens. We suggest that floral display is the major factor explaining the differences in insect visitation and seed set between the two Senecio species.

  14. Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions.

    Science.gov (United States)

    Lagos, Marcelo E; Barneche, Diego R; White, Craig R; Marshall, Dustin J

    2017-02-17

    Biological invasions are one of the biggest threats to global biodiversity. Marine artificial structures are proliferating worldwide and provide a haven for marine invasive species. Such structures disrupt local hydrodynamics, which can lead to the formation of oxygen-depleted microsites. The extent to which native fauna can cope with such low oxygen conditions, and whether invasive species, long associated with artificial structures in flow-restricted habitats, have adapted to these conditions remains unclear. We measured water flow and oxygen availability in marinas and piers at the scales relevant to sessile marine invertebrates (mm). We then measured the capacity of invasive and native marine invertebrates to maintain metabolic rates under decreasing levels of oxygen using standard laboratory assays. We found that marinas reduce water flow relative to piers, and that local oxygen levels can be zero in low flow conditions. We also found that for species with erect growth forms, invasive species can tolerate much lower levels of oxygen relative to native species. Integrating the field and laboratory data showed that up to 30% of available microhabitats within low flow environments are physiologically stressful for native species, while only 18% of the same habitat is physiologically stressful for invasive species. These results suggest that invasive species have adapted to low oxygen habitats associated with manmade habitats, and artificial structures may be creating niche opportunities for invasive species.

  15. Estimating woody aboveground biomass in an area of agroforestry using airborne light detection and ranging and compact airborne spectrographic imager hyperspectral data: individual tree analysis incorporating tree species information

    Science.gov (United States)

    Wang, Zhihui; Liu, Liangyun; Peng, Dailiang; Liu, Xinjie; Zhang, Su; Wang, Yingjie

    2016-07-01

    Until now, there have been only a few studies that have made estimates of the woody aboveground biomass (AGB) in an area of agroforestry using remote sensing technology. The woody AGB density was estimated using individual tree analysis (ITA) that incorporated tree species information using a combination of airborne light detection and ranging (LiDAR) and compact airborne spectrographic imagery acquired over a typical agroforestry in northwestern China. First, a series of improved LiDAR processing algorithms was applied to achieve individual tree segmentation, and accurate plot-level canopy heights and crown diameters were obtained. The individual tree species were then successfully classified using both spectral and shape characteristics with an overall accuracy of 0.97 and a kappa coefficient of 0.85. Finally, the tree-level AGB (kg) was estimated based on the ITA; the AGB density (Mg/ha) was then upscaled based on the tree-level AGB values. It is concluded that, compared with the commonly used area-based method combining LiDAR and spectral metrics [root mean square error (RMSE)=19.58 Mg/ha], the ITA method performs better at estimating AGB density (RMSE=10.56 Mg/ha). The tree species information also improved the accuracy of the AGB estimation even though the species are not well diversified in this study area.

  16. Pollen morphology of Polish native species of the Rosa genus (Rosaceae and its relation to systematics

    Directory of Open Access Journals (Sweden)

    Dorota Wrońska-Pilarek

    2011-09-01

    Full Text Available The morphology of pollen grains of 16 species from the Rosa L. genus were studied (i.e. R. agrestis, R. canina, R. dumalis, R. gallica, R. inodora, R. jundzillii, R. kostrakiewiczii, R. majalis, R. micrantha, R. mollis, R. pendulina, R. rubiginosa, R. sherardii, R. tomentosa, R. villosa, and R. zalana. The material came from 16 native localities of those species in Poland. The measurements are based on at least 30-50 randomly selected, fully developed pollen grains per specimen. In total, 500 pollen grains were examined. They were analysed for 13 quantitative features of pollen grains and exine sculpturing and the following qualitative traits: outline, shape, "operculum" structure. The diagnostic features of pollen grains of studied species were: length of polar and equatorial axes and length of ectocolpi. The above-mentioned pollen grain morphological features make isolation of one species possible: R. gallica. R. gallica is distinguished for its highest values of the length of polar and equatorial axes, and the length of ectocolpi. The obtained analytical results of operculum and exine sculpture features, considered as diagnostic, corroborated only slightly their priority significance for the isolation of the examined species and sections. The collected data failed to confirm fully the current taxonomical division of the Rosa genus into sections (only section Gallicanae from R. gallica is isolated as well as consanguinity relationships between the examined species from the Caninae section. On the dendrogram, both species closely related with each other as well as those from other developmental lines were found in the same group. These equivocal results are by no means surprising because the Caninae section is the most polymorphic group in the Rosa genus, and contemporary Caninae are of the nature of a swarm of R. canina hybrids as a link combining all taxons of the section.

  17. Are Mojave Desert annual species equal? Resource acquisition and allocation for the invasive grass Bromus madritensis subsp. rubens (Poaceae) and two native species

    Science.gov (United States)

    Defalco, Lesley A.; Bryla, David R.; Smith-Longozo, Vickie; Nowak, Robert S.

    2003-01-01

    Abundance of invasive plants is often attributed to their ability ot outcompete native species. We compared resource acquisition and allocation of the invasive annual grass Bromus madritensis subsp. rubens with that of two native Mojave Desert annuals, Vulpia octoflora and Descurainia pinnata, in a glasshouse experiment. Each species was grown in monoculture at two densities and two levels of N availability to compare how these annuals capture resources and to understand their relative sensitivities to environmental change. During >4 mo of growth, Bromus used water more rapidly and had greater biomass and N content than the natives, partly because of its greater root-surface area and its exploitation of deep soils. Bromus also had greater N uptake, net assimilation and transpiration rates, and canopy area than Vulpia. Resource use by Bromuswas less sensitive to changes in N availability or density than were the natives. The two native species in this study produced numerous small seeds that tended to remain dormant, thus ensuring escape of offspring from unfavorable germination conditions; Bromus produced fewer but larger seeds that readily germinated. Collectively, these traits give Bromus the potential to rapidly establish in diverse habitats of the Mojave Desert, thereby gaining an advantage over coexisting native species.

  18. Top-down control of root-feeding nematodes in range-expanding and congeneric native plant species

    NARCIS (Netherlands)

    Viketoft, Maria; van der Putten, Wim H.

    2015-01-01

    Abstract Climate warming may result in range expansion of species towards previously colder environments, and it has been demonstrated that in the new range successfully range-expanding plant species can be less attacked by aboveground and belowground enemies than congeneric natives. Plant enemies m

  19. Top-down control of root-feeding nematodes in range-expanding and congeneric native plant species

    NARCIS (Netherlands)

    Viketoft, M.; Putten, van der W.H.

    2015-01-01

    Climate warming may result in range expansion of species towards previously colder environments, and it has been demonstrated that in the new range successfully range-expanding plant species can be less attacked by aboveground and belowground enemies than congeneric natives. Plant enemies may be con

  20. The Scotch broom, Cytisus scoparius (Fabaceae), a paradox in Denmark – an invasive plant or endangered native species?

    DEFF Research Database (Denmark)

    Rosenmeier, Lars; Kjær, Erik Dahl; Nielsen, Lene Rostgaard

    2013-01-01

    Scotch broom, Cytisus scoparius, spreads rapidly in parts of Denmark and is considered an invasive species by some authors. However, the species has been present in the Danish flora for centuries and is therefore considered native to Denmark. In the present study we explore whether Danish Scotch...

  1. Anatomical variations in wood among four native species of Leguminosae grown in arid areas of China

    Institute of Scientific and Technical Information of China (English)

    Yang Shu-min; Jiang Ze-hui; Ren Hai-qing; Ikuo Furukawa

    2007-01-01

    Morphological features and anatomical variations are described and illustrated in detail for four native species of Leguminosae grown in arid sandy regions in China, which are Hedysarum scoparium Fisch.et Mey., Caragana korshiskii Kom., Lespedeza bicolor Turcz. and Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. All species showed similar morphological features:distinct growth ring boundaries, ring to semi-ring-porosity, simple perforation plates, alternate intervessel pitting, nonseptate fibers,paratracheal confluent axial parenchyma, helical thickenings and heterocellular rays. However, the vessel arrangement and their quantitative features were different. A. mongolicus had smaller vessel diameters and larger vessel frequency, while the values in the other three species were similar, but bigger than those in A. mongolicus. The variation of vessel lengths and fiber lengths along a horizontal direction showed an irregular tendency. There were significant differences in both fiber lengths and vessel element lengths among trees and within trees, except for A. mongolicus. The relationships between anatomical features of secondary xylem and the adaptability of these species to desert environments are also discussed.

  2. Uptake and Effects of Six Rare Earth Elements (REEs) on Selected Native and Crop Species Growing in Contaminated Soils

    Science.gov (United States)

    Carpenter, David; Boutin, Céline; Allison, Jane E.; Parsons, Jessica L.; Ellis, Deanna M.

    2015-01-01

    Rare earth elements (REEs) have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium) on three native plants (Asclepias syriaca L., Desmodium canadense (L.) DC., Panicum virgatum L.) and two crop species (Raphanus sativus L., Solanum lycopersicum L.) in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50) causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18) fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12) falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that phytotoxicity may be a

  3. Uptake and Effects of Six Rare Earth Elements (REEs on Selected Native and Crop Species Growing in Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    David Carpenter

    Full Text Available Rare earth elements (REEs have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium on three native plants (Asclepias syriaca L., Desmodium canadense (L. DC., Panicum virgatum L. and two crop species (Raphanus sativus L., Solanum lycopersicum L. in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50 causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18 fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12 falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that

  4. Diversified Native Species Restoration for Recovery of Multiple Ecosystem Services in a Highly Disturbed Tropical Dry Forest Landscape of Southwestern Nicaragua

    Science.gov (United States)

    Williams-Guillen, K.; Otterstrom, S.; Perla, C.

    2015-12-01

    Tropical dry forests have been reduced to a fraction of their original extent in the Neotropics due to conversion to agriculture and cattle pasture. While TDF can recover via natural regeneration, resulting forests are dominated by wind-dispersed pioneer species of limited value for frugivorous wildlife. Additionally, passive restoration can be perceived as "abandonment" resulting in neighbors casually invading property to rear livestock and extract timber. In 2007, the NGO Paso Pacífico initiated restoration in a highly degraded tropical dry forest landscape of southwestern Nicaragua; funded by an ex-ante carbon purchase, the project was designed to integrate multiple native tree species known to provide resources used by local wildlife. We restored roughly 400 hectares spanning a rainfall gradient from dry to transitional moist forest, using reforestation (planting 70 species of tree seedlings in degraded pastures on a 4x4 m grid, leaving occurring saplings) and assisted regeneration (clearing vines and competing vegetation from saplings in natural regeneration and strategically managing canopy cover). In just over seven years, mean carbon increased nearly threefold, from to 21.5±5.0 to 57.9±9.6 SE tonnes/ha. Current carbon stocks match those of 20-year-old forests in the area, accumulated in less than a decade. Stem density per 15-m radius plot decreased from 16.3±2.3 to 12.5±0.9 SE, while species richness increased from 3.9±0.4 to 18.4±1.4 SE. Alpha richness of woody stems across plots increased from 36 to 94 species, and over 20 tree species established as a result of natural dispersal and recruitment. We have observed sensitive species such as spider monkeys and parrots foraging in restoration areas. Managed reforestation is a highly effective method for rapidly restoring the functionality of multiple ecosystem services in degraded TDF, particularly when social and political realities force restoration to coexist with human productive activities

  5. The Spread of Non-native Plant Species Collection of Cibodas Botanical Garden into Mt. Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Musyarofah Zuhri

    2013-05-01

    Full Text Available The role of botanic garden in spread of non-native plant species has concerned of international worldwide. This study aimed to study the extent of non-native plant species from Cibodas Botanical Garden (CBG which invades into natural rainforest. A line transect was made edge-to-interior with 1,600 m in distance from CBG boundary. Result showed that distance from CBG was not significant in correlation with non-native tree and treelet density. Furthermore, presence of existing CBG’s plant collection was not a single aspect which influenced presence and abundance. Three invasive species possibly was escape from CBG and it showed edge-to-interior in stems density, i.e. Cinchona pubescens, Calliandra calothyrsus and Cestrum aurantiacum. The patterns of non-native species were influenced by presence of ditch across transect, existence of human trail, and the other non-native species did not have general pattern of spread distribution. Overall, botanical gardens should minimize the risk of unintentional introduced plant by perform site-specific risk assessment.

  6. Archaea and bacteria mediate the effects of native species root loss on fungi during plant invasion.

    Science.gov (United States)

    Mamet, Steven D; Lamb, Eric G; Piper, Candace L; Winsley, Tristrom; Siciliano, Steven D

    2017-05-01

    Although invasive plants can drive ecosystem change, little is known about the directional nature of belowground interactions between invasive plants, native roots, bacteria, archaea and fungi. We used detailed bioinformatics and a recently developed root assay on soils collected in fescue grassland along a gradient of smooth brome (Bromus inermis Leyss) invasion to examine the links between smooth brome shoot litter and root, archaea, bacteria and fungal communities. We examined (1) aboveground versus belowground influences of smooth brome on soil microbial communities, (2) the importance of direct versus microbe-mediated impacts of plants on soil fungal communities, and (3) the web of roots, shoots, archaea, bacteria and fungi interactions across the A and B soil horizons in invaded and non-invaded sites. Archaea and bacteria influenced fungal composition, but not vice versa, as indicated by redundancy analyses. Co-inertia analyses suggested that bacterial-fungal variance was driven primarily by 12 bacterial operational taxonomic units (OTUs). Brome increased bacterial diversity via smooth brome litter in the A horizon and roots in the B horizon, which then reduced fungal diversity. Archaea increased abundance of several bacterial OTUs, and the key bacterial OTUs mediated changes in the fungi's response to invasion. Overall, native root diversity loss and bacterial mediation were more important drivers of fungal composition than were the direct effects of increases in smooth brome. Critically, native plant species displacement and root loss appeared to be the most important driver of fungal composition during invasion. This causal web likely gives rise to the plant-fungi feedbacks, which are an essential factor determining plant diversity in invaded grassland ecosystems.

  7. Native and Alien Plant Species Richness Response to Soil Nitrogen and Phosphorus in Temperate Floodplain and Swamp Forests

    Directory of Open Access Journals (Sweden)

    Richard Hrivnák

    2015-10-01

    Full Text Available Soil nitrogen and phosphorus are commonly limiting elements affecting plant species richness in temperate zones. Our species richness-ecological study was performed in alder-dominated forests representing temperate floodplains (streamside alder forests of Alnion incanae alliance and swamp forests (alder carrs of Alnion glutinosae alliance in the Western Carpathians. Species richness (i.e., the number of vascular plants in a vegetation plot was analyzed separately for native and alien vascular plants in 240 vegetation plots across the study area covering Slovakia, northern Hungary and southern Poland. The relationship between the species richness of each plant group and total soil nitrogen content, plant-available phosphorus and carbon to nitrogen (C/N ratio was analyzed by generalized linear mixed models (GLMM with Poisson error distribution and log-link function. The number of recorded native and alien species was 17–84 (average 45.4 and 0–9 (average 1.5 species per plot, respectively. The GLMMs were statistically significant (p ˂ 0.001 for both plant groups, but the total explained variation was higher for native (14% than alien plants (9%. The richness of native species was negatively affected by the total soil nitrogen content and plant-available phosphorus, whereas the C/N ratio showed a positive impact. The alien richness was predicted only by the total soil nitrogen content showing a negative effect.

  8. Fine-scale determinants of conservation value of river reaches in a hotspot of native and non-native species diversity.

    Science.gov (United States)

    Maceda-Veiga, Alberto; Baselga, Andrés; Sousa, Ronaldo; Vilà, Montserrat; Doadrio, Ignacio; de Sostoa, Adolfo

    2017-01-01

    Global freshwater biodiversity is declining at unprecedented rates while non-native species are expanding. Examining diversity patterns across variable river conditions can help develop better management strategies. However, many indicators can be used to determine the conservartion value of aquatic communities, and little is known of how well they correlate to each other in making diagnostics, including when testing for the efficacy of protected areas. Using an extensive data set (99,700km(2), n=530 sites) across protected and unprotected river reaches in 15 catchments of NE Spain, we examine correlations among 20 indicators of conservation value of fish communities, including the benefits they provide to birds and threatened mammals and mussels. Our results showed that total native fish abundance or richness correlated reasonably well with many native indicators. However, the lack of a strong congruence led modelling techniques to identify different river attributes for each indicator of conservation value. Overall, tributaries were identified as native fish refugees, and nutrient pollution, salinization, low water velocity and poor habitat structure as major threats to the native biota. We also found that protected areas offered limited coverage to major components of biodiversity, including rarity, threat and host-parasite relationships, even though values of non-native indicators were notably reduced. In conclusion, restoring natural hydrological regimes and water chemical status is a priority to stem freshwater biodiversity loss in this region. A complementary action can be the protection of tributaries, but more studies examining multiple components of diversity are necessary to fully test their potential as fluvial reserves in Mediterranean climate areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Native Michigan plants stimulate soil microbial species changes and PAH remediation at a legacy steel mill.

    Science.gov (United States)

    Thomas, John C; Cable, Edward; Dabkowski, Robert T; Gargala, Stephanie; McCall, Daniel; Pangrazzi, Garett; Pierson, Adam; Ripper, Mark; Russell, Donald K; Rugh, Clayton L

    2013-01-01

    A 1.3-acre phytoremediation site was constructed to mitigate polyaromatic hydrocarbon (PAH) contamination from a former steel mill in Michigan. Soil was amended with 10% (v/v) compost and 5% (v/v) poultry litter. The site was divided into twelve 11.89 m X 27.13 m plots, planted with approximately 35,000 native Michigan perennials, and soils sampled for three seasons. Soil microbial density generally increased in subplots of Eupatorium perfoliatum (boneset), Aster novae-angliae (New England aster), Andropogon gerardii (big bluestem), and Scirpus atrovirens (green bulrush) versus unplanted subplots. Using enumeration assays with root exudates, PAH degrading bacteria were greatest in soils beneath plants. Initially predominant, Arthrobacter were found capable of degrading a PAH cocktail in vitro, especially upon the addition of root exudate. Growth of some Arthrobacter isolates was stimulated by root exudate. The frequency of Arthrobacter declined in planted subplots with a concurrent increase in other species, including secondary PAH degraders Bacillus and Nocardioides. In subplots supporting only weeds, an increase in Pseudomonas density and little PAH removal were observed. This study supports the notion that a dynamic interplay between the soil, bacteria, and native plant root secretions likely contributes to in situ PAH phytoremediation.

  10. Antioxidant Activities and Phytochemicals of Leaf Extracts from 10 Native Rhododendron Species in Taiwan

    Directory of Open Access Journals (Sweden)

    Chi-Yang Lin

    2014-01-01

    Full Text Available Rhododendron, one of the most famous ornamental plants in the world, is traditionally a medicinal plant. However, the potential bioactivities of native Rhododendron in Taiwan have not been completely studied. In this study, the results revealed that Rhododendron pseudochrysanthum exhibited the best antioxidant activities among 10 native Rhododendron species in Taiwan. Furthermore, based on a bioactivity-guided isolation principle, nine specific phytochemicals were isolated and identified as (2R,3S-catechin (1, (2R,3R-epicatechin (1′, (2R,3R-dihydromyricetin 3-O-β-l-arabinopyranoside (2, (2S,3S-taxifolin 3-O-β-l-arabinopyranoside (2′, (2R,3R-taxifolin 3-O-β-l-arabinopyranoside (3, myricetin 3-O-β-d-glucopyranoside (3′, rutin (4, hyperoside (5, and quercitrin (6. Of these compounds, 2 and 3 were found to be major bioactive compounds, and their concentrations in the n-butanol (BuOH fraction were determined to be 52.0 and 67.3 mg per gram, respectively. These results demonstrated that methanolic extracts of Rhododendron pseudochrysanthum leaves have excellent antioxidant activities and great potential as a source for natural health products.

  11. Pollen morphology of Plantago species native to Poland and their taxonomic implications

    Directory of Open Access Journals (Sweden)

    Małgorzata Klimko

    2011-01-01

    Full Text Available Pollen grains of 9 species of the genus Plantago (Plantaginaceae, including 8 taxa native to Poland, were observed under a light microscope and a scanning electron microscope. Descriptions of grain sculpture are illustrated only SEM micrographs. The studied pollen grains were medium-sized or small, spherical or prolate spheroidal. Their sculpture was always verrucate with granulation. In the studied taxa, internal apertures had the form of pores. Their number ranged from (45-9(14. The pores were scattered on the surface of pollen grains. Identification features of individual taxa include: presence or absence of an annulus around each pore, annulus structure, ornamentation of the pollen grain and operculum, type of aperture membrane, number of internal pores, and pore diameter. We suggest that two new pollen grain types, characteristic of P. intermedia and P. arenaria, should be distinguished, and that P. alpina should be assigned to the P. coronopus type.

  12. Meiotic behavior of Adesmia DC. (Leguminosae-Faboideae species native to Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Coelho Liliana Gressler May

    1998-01-01

    Full Text Available Meiotic behavior in Adesmia DC. is described for the first time. The study encompassed twelve populations of seven Adesmia DC. species native to Rio Grande do Sul, Brazil. Populations with 2n = 2x = 20 are A. securigerifolia 9615, A. riograndensis 9590 (subnudae, A. latifolia 1568, 1775, 15025, A. bicolor JB-UFSM, A. incana var. incana 9636, 10288, A. punctata var. hilariana 6885, 10812, and A. tristis 10757. A. incana var. incana 9637 is a tetraploid with 2n = 4x = 40. The material was stained with 1% acetic orcein. The meiotic behavior of the populations studied was considered normal. The meiotic index (MI and the estimates of pollen grain viability were above 95%, except for A. latifolia 1568 (MI = 89%. The present data indicate that these plants are meiotically stable and potentially fertile, apparently with no problems for use in programs of selection, crossing and viable seed production.

  13. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species

    Directory of Open Access Journals (Sweden)

    Wang Xiao-Wei

    2012-10-01

    Full Text Available Abstract Background Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1 and Mediterranean (MED, respectively. Results More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84% and much higher than that of MEAM1 and MED (0.83%. This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for

  14. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species.

    Science.gov (United States)

    Wang, Xiao-Wei; Zhao, Qiong-Yi; Luan, Jun-Bo; Wang, Yu-Jun; Yan, Gen-Hong; Liu, Shu-Sheng

    2012-10-04

    Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between

  15. GROWTH OF NATIVE SPECIES OF THE DECIDUOUS/DENSE TROPICAL FOREST OF RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Peter Spathelf

    2010-08-01

    Full Text Available The tree species caúna-da-serra (Ilex brevicuspis Reissek., cocão (Erythroxilum deciduum, tarumã-de-espinho (Cytharexylum montevidense Sprenger e capororoca (Rapanea ferruginea (Ruiz & Pavon Mez, native in the deciduous seasonal forest / dense tropical forest of Santa Maria were studied using a retrospective analysis. A stem analysis was performed of each species, measuring annual growth rings. Volume growth, commercial form factor and the annual percentual increment of commercial volume were analyzed according to growth at diameter at breast height. For modelling purposes 5 different equations were tested. It could be shown that a polynome of second degree was best adjusted to the growth of commercial volume and commercial form factor while annual percentual increment of commercial volume showed best fit with an exponential function. A significantly different accumulation of volume could be found concerning the different species which were studied. While tarumã and cocão show a rapid accumulation in growth, caúna and capororoca grow more slowly. This is correlated with more cylindric stems in the case of tarumã and cocão. The annual percentual increment of commercial volume moves between the range of more than 100% at the beginning of the growth process and below 10% at the end of the studied growth period.

  16. Effects of sowing native herbaceous species on the post-fire recovery in a heathland

    Science.gov (United States)

    Fernández-Abascal, I.; Tárrega, R.; Luis-Calabuig, E.; Marcos, E.

    2003-07-01

    Erica australis heathlands in León province (NW Spain) have high resilience to disturbances and their post-fire recovery is very fast. The risk of soil erosion is high in the first few months after fire. The aim of this study is to investigate the effects on post-fire succession of sowing grass ( Agrostis capillaris and Festuca rubra) and legume ( Lotus corniculatus) seeds in a heathland burned by a summer wildfire, and to determine the most suitable native herbaceous species combination for protecting the soil in the first few phases of recovery. Fifteen permanent 4 m 2 plots are established in the burned area; four treatments and a control (unsown) are applied, each with three replicates. Three similar unburned plots are also considered (unburned control). Total cover is significantly higher in the sown plots in relation to the control in the first few months after sowing, but there are no differences after 18 months. Lotus corniculatus appears only in the first year and has no effect on the total cover. F. rubra appears earlier than Agrostis capillaris, but decreases significantly in cover after 18 months. Shrub species have the highest cover in the control plots and the lowest in the Agrostis plots. The correspondence analysis shows that the trend for vegetation in all plots reaches similar species composition by the time of final sampling. The last sampling of sown plots shows greater similarity to the control plots than the sampling of these plots within the first year. The fast initial growth of F. rubra, together with its decrease and subsequent low cover from the second year, make it more preferable than Agrostis capillaris for purposes of soil protection. However, additional research, both species- and site-specific, is necessary, as different responses due to different post-fire conditions and pre-fire species composition can have important implications on community dynamics.

  17. Hybridization among three native North American Canis species in a region of natural sympatry.

    Directory of Open Access Journals (Sweden)

    Frank Hailer

    Full Text Available BACKGROUND: Population densities of many species throughout the world are changing due to direct persecution as well as anthropogenic habitat modification. These changes may induce or increase the frequency of hybridization among taxa. If extensive, hybridization can threaten the genetic integrity or survival of endangered species. Three native species of the genus Canis, coyote (C. latrans, Mexican wolf (C. lupus baileyi and red wolf (C. rufus, were historically sympatric in Texas, United States. Human impacts caused the latter two to go extinct in the wild, although they survived in captive breeding programs. Morphological data demonstrate historic reproductive isolation between all three taxa. While the red wolf population was impacted by introgressive hybridization with coyotes as it went extinct in the wild, the impact of hybridization on the Texas populations of the other species is not clear. METHODOLOGY/ PRINCIPAL FINDINGS: We surveyed variation at maternally and paternally inherited genetic markers (mitochondrial control region sequence and Y chromosome microsatellites in coyotes from Texas, Mexican wolves and red wolves from the captive breeding programs, and a reference population of coyotes from outside the historic red wolf range. Levels of variation and phylogenetic analyses suggest that hybridization has occasionally taken place between all three species, but that the impact on the coyote population is very small. CONCLUSION/SIGNIFICANCE: Our results demonstrate that the factors driving introgressive hybridization in sympatric Texan Canis are multiple and complex. Hybridization is not solely determined by body size or sex, and density-dependent effects do not fully explain the observed pattern either. No evidence of hybridization was identified in the Mexican wolf captive breeding program, but introgression appears to have had a greater impact on the captive red wolves.

  18. Invasive rats on tropical islands: Their population biology and impacts on native species

    Directory of Open Access Journals (Sweden)

    Grant A. Harper

    2015-01-01

    Full Text Available The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub land. Black rats tend to dominate the literature but despite this the population biology of invasive rats, particularly Norway rats, is poorly researched on tropical islands. Pacific rats can often exceed population densities of well over 100 rats ha−1 and black rats can attain densities of 119 rats ha−1, which is much higher than recorded on most temperate islands. High densities are possibly due to high recruitment of young although the data to support this are limited. The generally aseasonally warm climate can lead to year-round breeding but can be restricted by either density-dependent effects interacting with resource constraints often due to aridity. Apparent adverse impacts on birds have been well recorded and almost all tropical seabirds and land birds can be affected by rats. On the Pacific islands, black rats have added to declines and extinctions of land birds caused initially by Pacific rats. Rats have likely caused unrecorded extinctions of native species on tropical islands. Further research required on invasive rats on tropical islands includes the drivers of population growth and carrying capacities that result in high densities and how these differ to temperate islands, habitat use of rats in tropical vegetation types and interactions with other tropical species, particularly the reptiles and invertebrates, including crustaceans.

  19. Impact of an Alien Invasive Shrub on Ecology of Native and Alien Invasive Mosquito Species (Diptera: Culicidae).

    Science.gov (United States)

    Muturi, Ephantus J; Gardner, Allison M; Bara, Jeffrey J

    2015-10-01

    We examined how leaf litter of alien invasive honeysuckle (Lonicera maackii Rupr.) either alone or in combination with leaf litter of one of two native tree species, sugar maple (Acer saccharum Marshall) and northern red oak (Quercus rubra L.), affects the ecology of Culex restuans Theobald, Ochlerotatus triseriatus Say, and Ochlerotatus japonicus Theobald. Experimental mesocosms containing single species litter or a mixture of honeysuckle and one of two native tree species litter were established at South Farms and Trelease Woods study sites in Urbana, IL, and examined for their effect on 1) oviposition site selection by the three mosquito species, and 2) adult production and body size of Oc. triseriatus and Oc. japonicus. There were no significant effects of study site and leaf treatment on Oc. japonicus and Oc. triseriatus oviposition preference and adult production. In contrast, significantly more Cx. restuans eggs rafts were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Significantly larger adult females of Oc. japonicus and Oc. triseriatus were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Combining honeysuckle litter with native tree species litter had additive effects on Cx. restuans oviposition preference and Oc. japonicus and Oc. triseriatus body size, with the exception of honeysuckle and northern red oak litter combination, which had antagonistic effects on Oc. triseriatus body size. We conclude that input of honeysuckle litter into container aquatic habitats may alter the life history traits of vector mosquito species. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. NIS occurrence - Non-native species impacts on threatened and endangered salmonids

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of this project: a) Identify the distribution of non-natives in the Columbia River Basin b) Highlight the impacts of non-natives on salmonids c)...

  1. Allochthonous woody taxa in Zasavica ecosystem

    Directory of Open Access Journals (Sweden)

    Čavlović, D.

    2011-09-01

    Full Text Available Special Nature Reserve Zasavica is an important wetland in Serbia. Therefore, it was designated as “Special Nature Reserve of the First Category“ in 1997. Moreover, it has been included in the national network of Ramsar sites (the Ramsar Convention on Wetlands of International Importance, in 2006. Considering importance of Special Nature Reserve Zasavica and the fact that stability of ecosystems can be disturbed by introducing alien species, we analyzed extent and coverage of allochthonous woody taxa within the Reserve region. Researching area comprised 1821 hectares. We found 21 allochthonous woody taxa that belong to Magnoliophyta subdivision. The most individuals are located within the first zone of protection.

  2. Reforestation with native mixed-species plantings in a temperate continental climate effectively sequesters and stabilizes carbon within decades.

    Science.gov (United States)

    Cunningham, Shaun C; Cavagnaro, Timothy R; Mac Nally, Ralph; Paul, Keryn I; Baker, Patrick J; Beringer, Jason; Thomson, James R; Thompson, Ross M

    2015-04-01

    Reforestation has large potential for mitigating climate change through carbon sequestration. Native mixed-species plantings have a higher potential to reverse biodiversity loss than do plantations of production species, but there are few data on their capacity to store carbon. A chronosequence (5-45 years) of 36 native mixed-species plantings, paired with adjacent pastures, was measured to investigate changes to stocks among C pools following reforestation of agricultural land in the medium rainfall zone (400-800 mm yr(-1)) of temperate Australia. These mixed-species plantings accumulated 3.09 ± 0.85 t C ha(-1) yr(-1) in aboveground biomass and 0.18 ± 0.05 t C ha(-1) yr(-1) in plant litter, reaching amounts comparable to those measured in remnant woodlands by 20 years and 36 years after reforestation respectively. Soil C was slower to increase, with increases seen only after 45 years, at which time stocks had not reached the amounts found in remnant woodlands. The amount of trees (tree density and basal area) was positively associated with the accumulation of carbon in aboveground biomass and litter. In contrast, changes to soil C were most strongly related to the productivity of the location (a forest productivity index and soil N content in the adjacent pasture). At 30 years, native mixed-species plantings had increased the stability of soil C stocks, with higher amounts of recalcitrant C and higher C:N ratios than their adjacent pastures. Reforestation with native mixed-species plantings did not significantly change the availability of macronutrients (N, K, Ca, Mg, P, and S) or micronutrients (Fe, B, Mn, Zn, and Cu), content of plant toxins (Al, Si), acidity, or salinity (Na, electrical conductivity) in the soil. In this medium rainfall area, native mixed-species plantings provided comparable rates of C sequestration to local production species, with the probable additional benefit of providing better quality habitat for native biota. These results

  3. 茂兰喀斯特森林主要树种的繁殖更新对策%THE REPRODUCTIVE AND REGENERATIVE COUNTERMEASURES OF THE MAIN WOODY SPECIES IN MAOLAN KARST FOREST

    Institute of Scientific and Technical Information of China (English)

    刘济明

    2000-01-01

    There are four reproductive and regenerative countermeasures of the main woody species in MaoLan Karst Forest.(1)The seed has shorter life span.The ripe seeds germinate rapidly to form seedling when it has fallen into the soil. The seedlings grow slowly to wait till the gap emerges.The seedlings grow rapidly and join in the present population as soon as the gap emerges.(2)The seed has shorter life span.The ripe seeds germinate rapidly to form seedling when it has fallen into the soil.If there are gaps in the forest the seedling grow rapidly and join in the present population,the seedlings will die speedly.(3)The seed has shorter life span.If there are gaps in the forest,the ripe seeds germinate when it has fallen into the soil and grow rapidly to join in the present population,otherwise,the seeds will lose their germination ability.(4)The seed has longer life span.If there are gaps in the forest,the ripe seeds germinate when it has fallen into the soil and grow rapidly to join in the present population,otherwise, the seeds in the soil will wait till the gap emerges.The main woody species of MaoLan Karst Forest adopt one of the four countermeasures,or both at the same time.

  4. Allelopathic Effects of Shoot and Root Extracts From Three Alien and Native Chenopodiaceae Species on Lettuce Seed Germination

    Directory of Open Access Journals (Sweden)

    Yamina Bouchikh-Boucif

    2014-12-01

    Full Text Available One basic method of improving rangelands in the country is the use of native as well as exotic species of adaptable plants. Some species of Atriplex, like Atriplex canescens and Atriplex nummularia has been introduced in many thousands hectares of rangelands since more than 20 years, it feeds some debates on the algerian scientific community, so that’s why it is important to know the impact and necessary to consider its effects on native species. In the current study the effect of chemical competition of Atriplex canescens and Atriplex nummularia comparing to native Atriplex halimus by observing the effect of aqueous extracts of leaves, stems and roots of the three chenopod species assayed at 0.06, 0.63, 1.55, 3.12 and 6.25 g /l on the germination of lettuce seed test. Seed germination was significantly inhibited by shoot alien species extracts especially A.nummularia at concentrations ranging from 1.55 to 6.26 g/l with decrease rate of 20% in the lettuce seed tests indicating the presence of allelopathic substances, in 0,06 the germination increased to more than 10% comparing to the water irrigated seeds. An opposed effect than the expected had been found because Atriplex canescens had a less allelopathic effect than our native plant Atriplex halimus.

  5. Artificial Water Point for Livestock Influences Spatial Ecology of a Native Lizard Species.

    Directory of Open Access Journals (Sweden)

    Stephan T Leu

    Full Text Available Pastoralism is a major agricultural activity in drier environments, and can directly and indirectly impact native species in those areas. We investigated how the supply of an artificial watering point to support grazing livestock affected movement and activity patterns of the Australian sleepy lizard (Tiliqua rugosa during a drought year. We observed 23 adult lizards; six had access to a dam, whereas 17 lizards did not. Lizards with access to the dam had larger home ranges, were substantially active on more days (days with >100 steps, and moved more steps per day compared to lizards that did not have access to the dam, both during the early and late period of our observation. Furthermore, while the two groups of lizards had similar body condition early in the season, they differed later in the season. Lizards with dam access retained, whereas lizards without access lost body condition. Local heterogeneity in access to an artificial water resource resulted in spatially dependent behavioural variation among sleepy lizard individuals. This suggests that sleepy lizards have flexible responses to changing climatic conditions, depending on the availability of water. Furthermore, while reducing activity appears a suitable short term strategy, if harsh conditions persist, then access to dams could be of substantial benefit and could support sustained lizard activity and movement and allow maintenance of body condition. Hence, artificial watering points, such as the dams constructed by pastoralists, may provide local higher quality refugia for sleepy lizards and other species during drought conditions.

  6. Artificial Water Point for Livestock Influences Spatial Ecology of a Native Lizard Species.

    Science.gov (United States)

    Leu, Stephan T; Bull, C Michael

    2016-01-01

    Pastoralism is a major agricultural activity in drier environments, and can directly and indirectly impact native species in those areas. We investigated how the supply of an artificial watering point to support grazing livestock affected movement and activity patterns of the Australian sleepy lizard (Tiliqua rugosa) during a drought year. We observed 23 adult lizards; six had access to a dam, whereas 17 lizards did not. Lizards with access to the dam had larger home ranges, were substantially active on more days (days with >100 steps), and moved more steps per day compared to lizards that did not have access to the dam, both during the early and late period of our observation. Furthermore, while the two groups of lizards had similar body condition early in the season, they differed later in the season. Lizards with dam access retained, whereas lizards without access lost body condition. Local heterogeneity in access to an artificial water resource resulted in spatially dependent behavioural variation among sleepy lizard individuals. This suggests that sleepy lizards have flexible responses to changing climatic conditions, depending on the availability of water. Furthermore, while reducing activity appears a suitable short term strategy, if harsh conditions persist, then access to dams could be of substantial benefit and could support sustained lizard activity and movement and allow maintenance of body condition. Hence, artificial watering points, such as the dams constructed by pastoralists, may provide local higher quality refugia for sleepy lizards and other species during drought conditions.

  7. Micropropagation of the native species Anthurium antioquiense Engl. for conservation purposes

    Directory of Open Access Journals (Sweden)

    Paola Andrea Murillo-Gómez

    2014-12-01

    Full Text Available Anthurium antioquiense Engl. is a native plant belonging to the Araceae family. It grows on rocks in clear-water rivers and well-protected zones, similar to the waters in certain watersheds of the Antioquia Department, Colombia. Loss of habitat has threatened this promising ornamental plant species, which is also important because of its role in the ecosystem. In vitro tissue culture is considered an efficient alternative for the propagation of endangered species with the aim of establishing short-, medium- and long-term conservation programs. In the present research, in vitro introduction and shoot induction from A. antioquiense seedlings were performed. The highest production of shoots was obtained in a ½ MS (half-salt content medium with 1 mg L-1 of BAP, which attained a 23.7 shoots/explant per month multiplication rate. The in vitro plants generated from shoots were individualized and transferred to a growth regulator-free medium. Rooting did not require the presence of growth regulators, and the adaptation of the in vitro plants to ex vitro conditions achieved a 98% survival rate.

  8. Do species differ in their ability to coexist with the dominant alien Lupinus polyphyllus? A comparison between two distinct invaded ranges and a native range

    Directory of Open Access Journals (Sweden)

    Martin Hejda

    2013-06-01

    Full Text Available The community-level impacts of invasive plants are likely to vary depending on the character of native species of the target communities and their ability to thrive within the stands of the dominant alien invader. Therefore, I examined the response of native species richness to the cover of the dominant alien Lupinus polyphyllus in two distinct invaded ranges: Czech Republic (Central Europe and New Zealand. I compared the relation between native species richness and the cover of the dominant alien L. polyphyllus with that in its native range, Pacific Northwest, USA.In the native range, I found no response of native species richness to the cover of L. polyphyllus. In the Czech Republic (central Europe, the richness of native species related to it negativelly, but the relation was only marginally significant. Contrary to that, the richness of species native to New Zealand related to the cover of L. polyphyllus strongly negatively and the negative relation was significantly stronger than that of species native to Europe.Of the two invaded ranges, species native to New Zealand have been documented to be much more vulnerable to the conditions associated with the invasion and dominance of L. polyphyllus, compared to species native to central Europe. This principle has been shown both across these two invaded ranges and in New Zealand, where the aliens of european origin successfully coexist with the dominant invasive alien L. polyphyllus. Similarly, species in the native range of L. polyphyllus showed no relation to its cover, indicating their ability to thrive even in dense stands of this dominant species.

  9. Can native species crucian carp Carassius auratus recognizes the introduced red swamp crayfish Procambarus clarkii?

    Institute of Scientific and Technical Information of China (English)

    Fengjin CAI; Zhengjun WU; Nan HE; Zhenxing WANG; Chengming HUANG

    2011-01-01

    Procambarus clarkii is native to the south-central United States (Louisiana) and northeastern Mexico, and is a highly efficient predator that poses a damager to native species after its introduction or invasion. In its natural habitat, P. Clarkii consumes Carassius auratus, however, whether C. Auratus recognizes P. Clarkii as a predator is not yet clear. In laboratory experiments, we investigated whether experienced and inexperienced C. Auratus recognize P. Clarkii as a predatory threat and the specific sensory modality used by C. Auratus to respond to chemical and visual stimuli from P. Clarkii. In the chemical stimuli experiment, two kinds of chemical stimuli were used, water from a tub containing P. Clarkii previously fed with C. Auratus (C. Auratus diet cues) and water from a tub containing unfed P. Clarkii (P. Clarkii cues). In the visual experiment, experienced C. Auratus decreased activity, but inexperienced C.auratus avoided the predator compartment. When C. Auratus diet cues were presented, both experienced and inexperienced C. Auratus increased the use of shelter, decreased activity in the initial response phase. Compared with the blank treatment, experienced C. Auratus responded to P. Clarkii cues by decreasing activity; however, inexperienced C. Auratus showed no reduction in activity. C. Auratus appears to recognize P. Clarkii as a predator both through visual and chemical cues. Further analysis revealed that C. Auratus may recognize P. Clarkii visually through the disturbances caused by P. Clarkii movement and chemically by detecting conspecific alarm cues in the diet of P. Clarkii. The results also indicate that experienced C. Auratus can recognize P. Clarkii by innate chemical cues from P. Clarkii, whereas inexperienced C. Auratus cannot.

  10. Can native species crucian carp Carassius auratus recognizes the introduced red swamp crayfish Procambarus clarkii?

    Directory of Open Access Journals (Sweden)

    Fengjin CAI, Zhengjun WU, Nan HE, Zhenxing WANG, Chengming HUANG

    2011-06-01

    Full Text Available Procambarus clarkii is native to the south-central United States (Louisiana and northeastern Mexico, and is a highly efficient predator that poses a damager to native species after its introduction or invasion. In its natural habitat, P. clarkii consumes Carassius auratus, however, whether C. auratus recognizes P. clarkii as a predator is not yet clear. In laboratory experiments, we investigated whether experienced and inexperienced C. auratus recognize P. clarkii as a predatory threat and the specific sensory modality used by C. auratus to respond to chemical and visual stimuli from P. clarkii. In the chemical stimuli experiment, two kinds of chemical stimuli were used, water from a tub containing P. clarkii previously fed with C. auratus (C. auratus diet cues and water from a tub containing unfed P. clarkii (P. clarkii cues. In the visual experiment, experienced C. auratus decreased activity, but inexperienced C.auratus avoided the predator compartment. When C. auratus diet cues were presented, both experienced and inexperienced C. auratus increased the use of shelter, decreased activity in the initial response phase. Compared with the blank treatment, experienced C. auratus responded to P. clarkii cues by decreasing activity; however, inexperienced C. auratus showed no reduction in activity. C. auratus appears to recognize P. clarkii as a predator both through visual and chemical cues. Further analysis revealed that C. auratus may recognize P. clarkii visually through the disturbances caused by P. clarkii movement and chemically by detecting conspecific alarm cues in the diet of P. clarkii. The results also indicate that experienced C. auratus can recognize P. clarkii by innate chemical cues from P. clarkii, whereas inexperienced C. auratus cannot [Current Zoology 57 (3: 330–339, 2011].

  11. Strategic rat control for restoring populations of native species in forest fragments.

    Science.gov (United States)

    Armstrong, Doug P; Gorman, Nic; Pike, Rhonda; Kreigenhofer, Brigitte; McArthur, Nikki; Govella, Susanne; Barrett, Paul; Richard, Yvan

    2014-06-01

    Forest fragments have biodiversity value that may be enhanced through management such as control of non-native predators. However, such efforts may be ineffective, and research is needed to ensure that predator control is done strategically. We used Bayesian hierarchical modeling to estimate fragment-specific effects of experimental rat control on a native species targeted for recovery in a New Zealand pastoral landscape. The experiment was a modified BACI (before-after-control-impact) design conducted over 6 years in 19 forest fragments with low-density subpopulations of North Island Robins (Petroica longipes). The aim was to identify individual fragments that not only showed clear benefits of rat control, but also would have a high probability of subpopulation growth even if they were the only fragment managed. We collected data on fecundity, adult and juvenile survival, and juvenile emigration, and modeled the data in an integrated framework to estimate the expected annual growth rate (λ) of each subpopulation with and without rat control. Without emigration, subpopulation growth was estimated as marginal (λ = 0.95-1.05) or negative (λ = 0.74-0.90) without rat control, but it was estimated as positive in all fragments (λ = 1.4-2.1) if rats were controlled. This reflected a 150% average increase in fecundity and 45% average increase in adult female survival. The probability of a juvenile remaining in its natal fragment was 0.37 on average, but varied with fragment connectivity. With juvenile emigration added, 6 fragments were estimated to have a high (>0.8) probability of being self-sustaining (λ > 1) with rat control. The key factors affecting subpopulation growth rates under rat control were low connectivity and stock fencing because these factors were associated with lower juvenile emigration and higher fecundity, respectively. However, there was also substantial random variation in adult survival among fragments, illustrating the importance of

  12. Malheur NWR: Woody Riparian Landbird Point Count [PRIMR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of the survey is to assess trend in relative abundance and composition of landbird species in woody riparian habitats in Unit 12. We will monitor all...

  13. Woody vegetation stocking, composition and diversity in Miombo ...

    African Journals Online (AJOL)

    Participatory forest management (PFM) model is aimed at improving both forest resources ... woody stocking, and species composition and diversity at Mgori Forest Reserve, in Tanzania. ... DBH distribution followed an inverse 'J' shape.

  14. Exploring the bacterial microbiota associated with native South American species of Aphis (Hemiptera: Aphididae).

    Science.gov (United States)

    Arneodo, J D; Ortego, J

    2014-06-01

    Aphids harbor a variety of bacterial endosymbionts, including the obligate symbiont Buchnera aphidicola and diverse facultative symbionts. The former supplies its host with essential amino acids. The latter are not indispensable for insect survival, but often improve their host's fitness. To date, the study of such associations was restricted to aphids of Holarctic origin. The bacterial microbiota of seven Aphis species from Argentina was investigated. The presence of B. aphidicola was assessed by specific PCR. Additional symbionts were identified through PCR with eubacterial universal primers, cloning, and sequencing of nearly complete 16S rRNA gene, intergenic spacer region, and partial 23S rRNA gene and subjected to phylogenetic analysis. Infection with B. aphidicola was confirmed in every species analyzed. The facultative symbiont Serratia symbiotica was detected in Aphis malalhuina Mier Durante, Nieto Nafría & Ortego, 2003, Aphis senecionicoides Blanchard, 1944, and Aphis schinifoliae Blanchard, 1939, while Hamiltonella defensa was identified in Aphis mendocina Mier Durante, Ortego & Nieto Nafría, 2006. Arsenophonus sp. was found infecting Aphis melosae Mier Durante & Ortego, 1999, and a new, undescribed Aphis sp. In Aphis danielae Remaudière, 1994, no facultative symbionts could be recorded. When analyzing the highly conserved 16S rRNA gene, the phylogenetic tree grouped the S. symbiotica, H. defensa, and Arsenophonus isolates into three well-defined clusters showing little variability among clones corresponding to the same aphid host species. This article reports for the first time the endosymbionts associated with aphids native to South America. Despite their geographic origin, the qualitative composition of their microbiota revealed no evident differences from that described for aphids in the Northern Hemisphere.

  15. Effects of seawater temperature increase on economically relevant native and introduced clam species.

    Science.gov (United States)

    Velez, Cátia; Figueira, Etelvina; Soares, Amadeu M V M; Freitas, Rosa

    2017-02-01

    As a consequence of climate change, global warming is expected to increase during the 21(st) century. Taking this into account, the impact of rising temperatures on the native Ruditapes decussatus and introduced R. philippinarum bivalve species was assessed, through biochemical and mRNA transcription analyses. Our findings showed that at 21 °C the electron transport system and antioxidant enzyme activity, as well as the expression of Hsp70 gene were induced in R. decussatus when compared with 17 °C. On the other hand, at 25 °C results suggested that R. decussatus closed their valves during short periods, as a behavioral strategy, down-regulating the expression of genes associated with mitochondrial metabolism (Cox-1 and 16S) and chaperone function (Hsp70) compared with organisms at 17 °C. In addition, the introduced species (R. philippinarum) increased the electron transport system and antioxidant activities, as well as gene expression of antioxidant enzymes and molecular chaperone (Hsp70) at 21 °C. However, antioxidant mechanisms were not enough to prevent lipid membrane damages at 21 °C. At 25 °C R. philippinarum presented increased electron transport system and antioxidant activity, as well as the expression of genes associated with apoptosis regulation and molecular chaperone. Overall, the present findings indicate that in a global warming scenario both species are able to induce different mechanisms to mitigate the impacts of temperature increase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Nodulation in Dimorphandra wilsonii Rizz. (Caesalpinioideae), a Threatened Species Native to the Brazilian Cerrado

    Science.gov (United States)

    Fonseca, Márcia Bacelar; Peix, Alvaro; de Faria, Sergio Miana; Mateos, Pedro F.; Rivera, Lina P.; Simões-Araujo, Jean L.; França, Marcel Giovanni Costa; dos Santos Isaias, Rosy Mary; Cruz, Cristina; Velázquez, Encarna; Scotti, Maria Rita; Sprent, Janet I.; James, Euan K.

    2012-01-01

    The threatened caesalpinioid legume Dimorphandra wilsonii, which is native to the Cerrado biome in Brazil, was examined for its nodulation and N2-fixing ability, and was compared with another, less-threatened species, D. jorgei. Nodulation and potential N2 fixation was shown on seedlings that had been inoculated singly with five bradyrhizobial isolates from mature D. wilsonii nodules. The infection of D. wilsonii by two of these strains (Dw10.1, Dw12.5) was followed in detail using light and transmission electron microscopy, and was compared with that of D. jorgei by Bradyrhizobium strain SEMIA6099. The roots of D. wilsonii were infected via small transient root hairs at 42 d after inoculation (dai), and nodules were sufficiently mature at 63 dai to express nitrogenase protein. Similar infection and nodule developmental processes were observed in D. jorgei. The bacteroids in mature Dimorphandra nodules were enclosed in plant cell wall material containing a homogalacturonan (pectic) epitope that was recognized by the monoclonal antibody JIM5. Analysis of sequences of their rrs (16S rRNA) genes and their ITS regions showed that the five D. wilsonii strains, although related to SEMIA6099, may constitute five undescribed species of genus Bradyrhizobium, whilst their nodD and nifH gene sequences showed that they formed clearly separated branches from other rhizobial strains. This is the first study to describe in full the N2-fixing symbiotic interaction between defined rhizobial strains and legumes in the sub-family Caesalpinioideae. This information will hopefully assist in the conservation of the threatened species D. wilsonii. PMID:23185349

  17. Let native species take their course: Ambrosia artemisiifolia replacement during natural or ;artificial; succession

    Science.gov (United States)

    Gentili, Rodolfo; Montagnani, Chiara; Gilardelli, Federica; Guarino, Maria Francesca; Citterio, Sandra

    2017-07-01

    Ambrosia artemisiifolia is able to dominate the early stages of vegetation succession in open/disturbed habitats, spreading out into available empty niches, after which it can be progressively replaced by perennial plants. In this study, we considered the time-span in which the species is suppressed during active (restoration actions) and passive (spontaneous) vegetation recovery. In particular, we envisaged that A. artemisiifolia growth and fitness may be strongly reduced and that the species may rapidly be suppressed within a short time during succession as a consequence of the increase of vegetation cover, both natural or artificially induced, in a disturbed area of northern Italy. Three different treatments were applied within an abandoned quarry area commonly invaded by A. artemisiifolia: (i) spontaneous succession i.e. (control), (ii) hayseed and (iii) a commercial seed mixture. We determined the effect of mixtures of grassland species, established from native hayseed or from a commercial seed mixture, on A. artemisiifolia growth and fitness traits over time in comparison to a non-seeded area left to spontaneous succession. The results demonstrated that, after the first growing season, compared with spontaneous succession, both commercial seed and hayseed resulted in a strong reduction of A. artemisiifolia abundance and growth rate, in terms of both vegetative and reproductive traits. After the second growing season, A. artemisiifolia was completely suppressed in the commercial seed treatment, and after the third growing season it was also suppressed in the spontaneous succession and hayseed treatments. This study indicated that both active and passive vegetation recovery (by niche filling and competitive exclusion) could be used as methods individually or in combination with other methods, such as mowing and biological control, to suppress A. artemisiifolia from anthropogenic habitats.

  18. Short-Term Response of Native Flora to the Removal of Non-Native Shrubs in Mixed-Hardwood Forests of Indiana, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Shields

    2015-05-01

    Full Text Available While negative impacts of invasive species on native communities are well documented, less is known about how these communities respond to the removal of established populations of invasive species. With regard to invasive shrubs, studies examining native community response to removal at scales greater than experimental plots are lacking. We examined short-term effects of removing Lonicera maackii (Amur honeysuckle and other non-native shrubs on native plant taxa in six mixed-hardwood forests. Each study site contained two 0.64 ha sample areas—an area where all non-native shrubs were removed and a reference area where no treatment was implemented. We sampled vegetation in the spring and summer before and after non-native shrubs were removed. Cover and diversity of native species, and densities of native woody seedlings, increased after shrub removal. However, we also observed significant increases in L. maackii seedling densities and Alliaria petiolata (garlic mustard cover in removal areas. Changes in reference areas were less pronounced and mostly non-significant. Our results suggest that removing non-native shrubs allows short-term recovery of native communities across a range of invasion intensities. However, successful restoration will likely depend on renewed competition with invasive species that re-colonize treatment areas, the influence of herbivores, and subsequent control efforts.

  19. Summer distribution and species richness of non-native fishes in the mainstem Willamette River, oregon, 1944-2006

    Science.gov (United States)

    We reviewed the results of seven extensive and two reach-specific fish surveys conducted on the mainstem Willamette River between 1944 and 2006 to document changes in the summer distribution and species richness of non-native fishes through time and the relative abundances of the...

  20. Comparison of Leaf Breakdown for Native and Non-native Riparian Species in Streams Draining Urban, Agricultural, and Forested Land Cover.

    Science.gov (United States)

    Powers, M. D.; Benfield, E. F.

    2005-05-01

    Organic matter breakdown rates in streams vary among riparian tree species and are dependent on a variety of in-stream biological, chemical, and physical factors. These factors and the composition and distribution of riparian vegetation are changed by anthropogenic modification of the landscape. This may result in altered energy flow through stream ecosystems that is reflected in changes in organic matter input and breakdown. The goal of this study was to compare leaf breakdown rates between a native (box elder, Acer negundo) and non-native (weeping willow, Salix babylonica) species among three land cover categories: urban, agricultural, and forested. We conducted this study over 14 weeks in 13 streams near Roanoke, Virginia. Box elder occurs naturally along disturbed riparian corridors in this region, while weeping willow has been actively planted for its aesthetic value. Our results indicate weeping willow breakdown rates were faster than box elder across all land cover categories. Breakdown rates for both species were slowest in the urban streams, intermediate in agricultural streams, and fastest in forested streams.

  1. A new genus and species of leaf miner (Lepidoptera, Gracillariidae for Chile associated to the native tree Lithraea caustica

    Directory of Open Access Journals (Sweden)

    Enrique A. Mundaca

    2013-06-01

    Full Text Available A new genus and species of leaf miner (Lepidoptera, Gracillariidae for Chile associated to the native tree Lithraea caustica. We propose the new genus and species of Gracillariidae (Lepidoptera Hualpenia lithraeophaga Mundaca, Parra &Vargas gen. nov., sp. nov., leaf miner of Lithraea caustica (Mol. H. et Arn (Anacardiaceae occurring in southern central Chile. Aspects of the life cycle, adult and larval morphology, development and feeding habits of the new genus and species are also presented. We emphasise the uniqueness and importance of this new species for broadening the current knowledge on the Chilean fauna of Gracillariidae.

  2. Top-down control of root-feeding nematodes in range-expanding and congeneric native plant species

    OpenAIRE

    Viketoft, Maria; Wim H van der Putten

    2015-01-01

    Abstract Climate warming may result in range expansion of species towards previously colder environments, and it has been demonstrated that in the new range successfully range-expanding plant species can be less attacked by aboveground and belowground enemies than congeneric natives. Plant enemies may be controlled naturally by complex bottom-up and top-down interactions with their hosts, however, little is known about how these interactions may operate in the new range. Here, we examine how ...

  3. POSSIBILITY OF STEM GAIN OF NATIVE EUXYLOPHOROUS SPECIES FROM THE CENTRAL REGION OF RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Rodrigo Borges de Mattos

    2010-08-01

    Full Text Available The present work was developed to observe and quantify the possibility of stem gain in five native euxylophorous species [Angico (Parapiptadenia rigida, Canjerana (Cabralea canjerana, Cedro (Cedrela fissilis, Grápia (Apuleia leiocarpa, and Louro (Cordia trichotoma] in non managed native forests of São João do Polêsine municipality, state of RS. There were studied 17 temporary plots of 10 x 100 m. In the trees of the five elected species for this study, that presented diameter at breast height (dbh larger than 5 cm, the total height, the commercial height and the potential commercial height of the stems were measured.  The stem gain was defined as the difference between the current and potential commercial height, in relation to current commercial height and was expressed in percentage. The average percentile of shaft gain for all the species was larger than 70%, while Louro showed a stem gain significantly smaller than the other species. By a regression analysis (stepwise procedure, mathematical models were selected to describe the stem gain of each species and all the species together. The results showed that there is a potenctial for value adding to the native forest formations of the area, not yet explored by silviculture practices.

  4. Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands - A review.

    Science.gov (United States)

    Oyuela Leguizamo, Mayerly Alexandra; Fernández Gómez, Wilmar Darío; Sarmiento, Martha Cecilia Gutiérrez

    2017-02-01

    Soil, air and water pollution caused by the mobility and solubility of heavy metals significantly damages the environment, human health, plants and animals. One common in situ method used for the decontamination of heavy metals is phytoremediation. This usually involves the use of exotic species. However, these species may exhibit invasive behavior, thereby, affect the environmental and ecological dynamics of the ecosystem into which they are introduced. This paper focuses on some native herbaceous plant species reported on the wetlands of Bogota, Colombia, with potential use in phytoremediation of heavy metals. To do that, the authors identified and searched a bibliography based on key words related to heavy metal decontamination. In addition, authors gathered and analyzed relevant information that allowed the comprehension of the phytoremediation process. This paper suggests the study of 41 native or endemic species regarding their behavior towards heavy metal contamination. From a survey of herbaceous plants reported in Bogota, native and endemic species that belong to predominant families in heavy metal accumulation processes were selected. Although found in Colombian's wetlands, these can also be found worldwide. Therefore, they are of great interest due to their global presence and their potential for use in phytoremediation. The current research about the development of phytoremediation focuses on the identification of new herbaceous species able to decontaminate substratum polluted with heavy metals to contribute with the investigation of the ecology and environment of the nature's remnants in urban wetland ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Coexistence of congeneric native and invasive species: the case of the green algae Codium spp. in northwestern Spain.

    Science.gov (United States)

    Rojo, Irene; Olabarria, Celia; Santamaria, Marta; Provan, Jim; Gallardo, Tomás; Viejo, Rosa M

    2014-10-01

    We examined the patterns of distribution and abundance, and reproductive traits (presence of gametophytes and size at time of reproduction) in the invasive Codium fragile ssp. fragile and the native C. tomentosum and C. vermilara on intertidal habitats of NW Spain at two dates. All three species coexist in the locations and habitats studied, although abundances were low. We found a greater proportion of C. fragile ssp. fragile towards the east of the Cantabrian coast and on upper levels on the shore, where conditions are more stressful. The proportion of thalli bearing gametangia in C. fragile ssp. fragile was greater than in the native species in all habitats. The presence of gametangia was size-dependent for all species, with the invasive species maturing at a smaller size, which combined with the previous features, might confer competitive advantages to this species over the native species. We also demonstrated that molecular analyses are necessary for the correct identification of C. fragile subspecies.

  6. Comparison of phenolic compounds and the effects of invasive and native species in East Asia: Support for the novel weapons hypothesis

    Science.gov (United States)

    Kim, Y.-O.; Lee, E.J.

    2011-01-01

    One prediction of the novel weapons hypothesis (NWH) for the dominance of exotic invasive plant species is that the allelopathic effects of successful invaders will, in general, be more biochemically inhibitory to native species and microbes in invaded regions than the native plants themselves. However, no study has compared biochemical concentrations, compositions, or effects of large numbers of native species to those of large numbers of invasive species. In this context we tested the allelopathic and antimicrobial potentials of nine native plant species and nine invasive species in East Asia by comparing their broad phenolic contents and the effects of extracts made from each of the species on target plants and soil fungi. Three of the invasive species, including Eupatorium rugosum, had higher concentrations of total phenolic compounds than any of the native species, and the mean concentration of total phenolics for invasive species was 2.6 times greater than the mean for native species. Only scopoletin was novel to the invasive species, being found in all of nine invasive species, but not in the native species. More importantly, the effects of the total suites of phenolic compounds produced by invasive species differed from the effects of phenolics produced by natives. Extracts of invasive species reduced radicle growth of the three test plant species by 60-80%, but extracts of native species reduced radicle growth by only 30-50%. Extracts of invasive species reduced shoot growth of the three test species by 20-40%, but the overall effect of native species' extract was to stimulate shoot growth. The antimicrobial activity of invasive species was also significantly higher than that of native species. It should be noted that phenolics are just one component of a plant's potential allelopathic arsenal and non-phenolic compounds are likely to play a role in the total extract effect. For example, extracts of P. americana contained the lowest levels of phenolic

  7. Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species.

    Science.gov (United States)

    Zukswert, Jenna M; Prescott, Cindy E

    2017-09-08

    Litter 'quality' or decomposability has historically been estimated through measuring chemical attributes, such as concentrations of nitrogen or 'lignin'. More recently, foliar functional traits, which may incorporate indications of the physical structures of tissues, have been found to correlate with litter mass loss rates. However, these traits may not be adequate to predict early rates of mass loss, in which two factors are crucial: the amount of material quickly lost through leaching, and the ease of access of decomposer organisms to the more labile tissues in the interior of the litter. We investigated relationships among physical and chemical traits in foliage and litter of 12 species native to British Columbia and then observed how these traits related to mass loss during the first 3 months (Phase I) and between 3 and 12 months (Phase II). Novel traits measured in this study include cuticle thickness, litter leaching loss, and litter water uptake. Foliar and litter traits both co-varied along spectra, but several chemical traits, such as nitrogen concentration, changed from foliage to litter, i.e., during senescence. Phase I mass loss was best predicted by leaching loss and traits relating to leaching, such as cuticle thickness and specific leaf area. Phase II mass loss was predicted by traits that may relate to decomposer access and activity, such as leaf dry matter content and foliar nitrogen. Physical traits predicted mass loss as well or better than chemical traits, suggesting that physical characteristics of litter are important in determining early rates of decomposition.

  8. Competitive effects of introduced annual weeds on some native and reclamation species in the Powder River Basin, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.B.; Knight, D.H.

    1980-01-01

    Four experiments were conducted to examine the competitive effects of introduced annual weeds on certain native and reclamation species. The first experiment was initiated by discing three sites in the Powder River Basin, Wyoming, at three distances from introduced weed seed sources. Introduced weed colonization was greatest when a seed source was located nearby. Higher weed cover resulted in reductions of percent cover, density, and richness of the native species. The second experiment was conducted in the greenhouse and was designed to determine if there are changes in response of S. kali and the native grasses Agropyron smithii and Bouteloua gracilis to competition and water regime. Both grass species had lower biomass and higher stomatal resistance when growing in mixed culture with S. kali than in pure culture in the dry regime, but there were no significant differences in the wet regime. In general, the difference in plant response between mixed and pure cultures was more pronounced in the dry than in the wet regime. The third study was a greenhouse experiment on germination and competition of S. kali (a C/sub 4/ species) with native species Lepidium densiflorum (C/sub 3/), Chenopodium pratericola (C/sub 3/), A. smithii (C/sub 3/), and B. gracilis (C/sub 4/) under May, June, and July temperature regimes. Salsola kali germinated equally well in all three regimes, but the other C/sub 4/ species had highest germination in the July regime and the C/sub 3/ species in the May and June regimes. The fourth study was designed to examine the effect of weed colonization on the success of mine reclamation. Little effect was observed, but colonization by introduced annuals was very low. (ERB)

  9. Do abundance and proximity of the alien Impatiens glandulifera affect pollination and reproductive success of two sympatric co-flowering native species?

    Directory of Open Access Journals (Sweden)

    Anne-Laure Jacquemart

    2012-12-01

    Full Text Available In invasion ecology, potential impacts of aliens on native flora are still under debate. Our aim was to determine the pollinator mediated effects of both proximity and abundance of an alien species on the reproductive success of natives. We chose the highly invasive Impatiens glandulifera and two native species: Epilobium angustifolium and Aconitum napellus ssp. lusitanicum. These species share characteristics allowing for pollination interactions: similar biotopes, overlapping flowering periods and same main pollinators. The effects of abundance (5, 25 and 100 individuals and proximity (0 and 15 m of the alien on visitation rate, insect behaviour, pollen deposition and reproductive success of both natives were investigated during 2 flowering seasons. We used centred visitation rates as they can be directly interpreted as a positive or negative effect of the invasive.Both abundance and proximity of the alien increased bumblebee visitation rates to both natives. On the other hand, abundance of the exotic species had a slight negative effect on honeybee visits to natives while its proximity had no effect. The behaviour of bumblebees changed as visitors left significantly more often the native plants for I. glandulifera when its abundance increased. As a consequence of this “inconstancy”, bees deposited considerable quantities of alien pollen on native stigmas. Nevertheless, this interspecific pollen transfer did not decrease seed set in natives. Self-compatibility and high attractiveness of both native species probably alleviate the risk of altered pollinator services and reproductive success due to the invader in natural populations.

  10. Characterization of a Native Algae Species Chlamydomonas debaryana: Strain Selection, Bioremediation Ability, and Lipid Characterization

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-08-01

    Full Text Available Native microalgal species may offer a favorable combination of both wastewater treatment and biofuel production. In this research, a green microalgae, Chlamydomonas debaryana, was isolated from a local lagoon, screened for its lipid content using flow cytometry, and further identified with microscopic observations and DNA sequence analysis. When using swine wastewater as a medium, the biomass yields were between 0.6 and 1.62 g/L, giving a median value of 1.11 g/L. By increasing mass transfer rates and providing sufficient light intensity, the microalgal growth was intrinsically enhanced. The growth of C. debaryana reduced most nutritional contents of the wastewater except iron. When combining the microalgal growth and nutrient removal, C. debaryana was able to utilize 1.3 to 1.6×103 mg COD (chemical oxygen demand/g biomass, 55 to 90 ppm ammonia/g biomass, and 48 to 89 ppm phosphorous/g biomass, The lipid content of C. debaryana was 19.9 ± 4.3% of cell dry weight. The transesterified microalgal oil mostly consisted of 14 kinds of fatty acids, ranging from C5 to C22, which can be refined into renewable jet fuel or used as sources of omega-3 and omega-6 fatty acids.

  11. Mechanical properties of trays based on starch of native plant species and fiber of agroindustrial wastes

    Directory of Open Access Journals (Sweden)

    Miguel Espina

    2016-07-01

    Full Text Available The aim of this study was to evaluate the effect of natural fibers derived from agro-industrial waste in density, weight and mechanical properties of the termoprensadas foams made of starch native species, such as sweet potatoes, oca and arracacha. The thermoforming process was carried out at a temperature of 145 ° C and a pressure of 60 bar. The baking time was 10-15 min depending on water content in the mixture. The trays were characterized by their density, weight, impact test, deflection tests, colorimetry, hardness, and fracturability values. The trays prepared by thermopressure based on sweet potato starch-bagasse fiber from sugar cane at 15%, and arracacha starch -peladilla asparagus fiber at 30% had higher values in flexural strength versus those made with other types of starches and fibers, including blank tests. Generally, the hardness of the trays is favored with increasing fiber, however fracturability decreases or does not improve the integrity of the polymeric matrix. The results shown in this study allow the preparation of biodegradable trays for various industrial applications.

  12. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species.

    Science.gov (United States)

    Symanczik, Sarah; Courty, Pierre-Emmanuel; Boller, Thomas; Wiemken, Andres; Al-Yahya'ei, Mohamed N

    2015-11-01

    Field studies have revealed the impact of changing water regimes on the structure of arbuscular mycorrhizal fungal (AMF) communities, but it is not known what happens to the abundance of individual AMF species within the community when the water conditions in the rhizosphere change. The behavior of four AMF species isolated from the Arabian desert (Diversispora aurantia, Diversispora omaniana, Septoglomus africanum, and an undescribed Paraglomus species) was investigated when assembled in microcosms containing Sorghum bicolor as host plant, and treated with various water regimes. Furthermore, the impact of invasion of these assemblages by Rhizophagus irregularis, an AMF species widely used in commercial inocula, was studied. The abundance of each AMF species in sorghum roots was measured by determining the transcript numbers of their large ribosomal subunit (rLSU) by real-time PCR, using cDNA and species-specific primers. Plant biomass and length of AMF extraradical hyphae were also measured. The abundance of each AMF species within the sorghum roots was influenced by both the water regime and the introduction of R. irregularis. Under dry conditions, the introduction of R. irregularis reduced the total abundance of all native AMF species in roots and also led to a reduction in the amount of extraradical mycelium, as well as to a partial decrease in plant biomass. The results indicate that both water regime and the introduction of an invasive AMF species can strongly alter the structure of an AMF native assemblage with a consequent impact on the entire symbiotic mycorrhizal relationship.

  13. Cognitive and Emotional Evaluation of Two Educational Outdoor Programs Dealing with Non-Native Bird Species

    Science.gov (United States)

    Braun, Michael; Buyer, Regine; Randler, Christoph

    2010-01-01

    "Non-native organisms are a major threat to biodiversity". This statement is often made by biologists, but general conclusions cannot be drawn easily because of contradictory evidence. To introduce pupils aged 11-14 years to this topic, we employed an educational program dealing with non-native animals in Central Europe. The pupils took part in a…

  14. Carbon storage landscapes of lowland Hawaii: the role of native and invasive species through space and time.

    Science.gov (United States)

    Hughes, R Flint; Asner, Gregory P; Mascaro, Joseph; Uowolo, Amanda; Baldwin, James

    2014-06-01

    Tropical forests are important storehouses of carbon and biodiversity. In isolated island ecosystems such as the Hawaiian Islands, relative dominance of native and nonnative tree species may influence patterns of forest carbon stocks and biodiversity. We determined aboveground carbon density (ACD) across a matrix of lava flows differing in age, texture, and vegetation composition (i.e., native or nonnative dominated) in wet lowland forests of Hawaii Island. To do this at the large scales necessary to accurately capture the inherent heterogeneity of these forests, we collected LiDAR data across areas of interest and developed relationships between LiDAR metrics and field-based estimates of forest ACD. This approach enabled us to inventory, rather than merely sample, the entire populations (i.e., forests) of interest. Native Hawaiian wet lowland forests exhibited ACD values similar to those of intact tropical forests elsewhere. In general, ACD of these forests increased with increasing lava flow age, but patterns differed between native and nonnative forest stands. On the youngest lavas, native-dominated forest ACD averaged < 60 Mg/ha, compared to -100 Mg C/ha for nonnative-dominated forests. This difference was due to the presence of the nonnative, N2-fixing trees F. moluccana and C. equisetifolia in the nonnative-dominated forest stands, as well as the corresponding absence of N2-fixing trees in native-dominated forest stands. Following -500 years of primary succession and thereafter, however, both forest types exhibited ACD values averaging -130 Mg C/ha, although it took nonnative forests only 75 80 years of post-establishment succession to reach those values. Given the large areas of early-successional M. polymorpha-dominated forest on young lava flows, further spread of F. moluccana and C. equisetifolia populations would likely increase ACD stocks but would constitute a significant erosion of the invaluable contribution of Hawaii's native ecosystems to global

  15. Gasification of Woody Biomass.

    Science.gov (United States)

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges.

  16. The Influence of Exotic Lady Beetle (Coleoptera: Coccinellidae) Establishment on the Species Composition of the Native Lady Beetle Community in Missouri.

    Science.gov (United States)

    Diepenbrock, Lauren M; Fothergill, Kent; Tindall, Kelly V; Losey, John E; Smyth, Rebecca R; Finke, Deborah L

    2016-08-01

    The diversity and abundance of native lady beetles (Coccinellidae) in North America has declined in recent decades. This decline is often correlated with the introduction and establishment of exotic lady beetle species, including Coccinella septempunctata L. and Harmonia axyridis Pallas, suggesting that exotic species precipitated the decline of native lady beetles. We examined species records of native coccinellids in Missouri over 118 yr and asked whether the species composition of the community experienced a shift following the establishment of the exotic species. We found that the contemporary native coccinellid community is different from the community that was present nearly a century ago. However, there was no evidence for a recent abrupt shift in composition triggered by the establishment of exotic species. Instead, our data suggest that the native lady beetle community has been undergoing consistent and gradual change over time, with some species decreasing in abundance and others increasing. While not excluding exotic species as a factor contributing to the decline of native lady beetle species, our findings suggest that other continuous factors, like land use change, may have played a more influential role in determining the composition of the native coccinellid communities within our region. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Characterisation of seven Inocybe ectomycorrhizal morphotypes from a semiarid woody steppe.

    Science.gov (United States)

    Seress, Diána; Dima, Bálint; Kovács, Gábor M

    2016-04-01

    Ectomycorrhizas (ECM) of Inocybe species (Inocybaceae, Basidiomycota) formed by three host plant species (Populus alba, Salix rosmarinifolia and Pinus nigra) in a semiarid woody steppe of Hungary were studied. To identify the fungal partners, we performed phylogenetic analyses of nucleotide sequences for the internal transcribed spacer region of nuclear DNA (nrDNA ITS) together with sequences gained from public databases. Seven Inocybe ectomycorrhiza morphotypes were morpho-anatomically characterised. Five morphotypes were identified (I. phaeoleuca, I. psammophila, I. semifulva, I. splendens and I. subporospora), whereas two morphotypes represented unidentified Inocybe species. Differences were discernible among the morphotypes, and they showed general anatomical characteristics of Inocybe ECM, such as the slightly organised plectenchymatic mantle (types A, B and E and the gelatinous C). The ECM of I. subporospora and I. phaeoleuca were detected from the introduced Pinus nigra. These two fungi are probably native to the area but capable of forming a novel ectomycorrhizal association with the invasive host.

  18. Latitudinal variation of life-history traits of an exotic and a native impatiens species in Europe

    Science.gov (United States)

    Acharya, Kamal Prasad; De Frenne, Pieter; Brunet, Jörg; Chabrerie, Olivier; Cousins, Sara A. O.; Diekmann, Martin; Hermy, Martin; Kolb, Annette; Lemke, Isgard; Plue, Jan; Verheyen, Kris; Graae, Bente Jessen

    2017-05-01

    Understanding the responses of invasive and native populations to environmental change is crucial for reliable predictions of invasions in the face of global change. While comparisons of responses across invasive species with different life histories have been performed before, comparing functional traits of congeneric native and invasive species may help to reveal driving factors associated with invasion. Here we compared morphological functional trait patterns of an invasive species (Impatiens parviflora) with its congeneric native species (I. noli-tangere) along an approximately 1600 km European latitudinal gradient from France (49°34‧N) to Norway (63°40‧N). Soil nitrogen was recorded during six weeks of the growing season, and light, soil moisture, and nutrient availability were estimated for each sampled population using community weighted means of indicator values for co-occurring species. Temperature data were gathered from nearby weather stations. Both the native and invasive species are taller at higher latitudes and this response is strongest in the invasive species. Seed mass and number of seeds per capsule increase in I. noli-tangere but decrease in I. parviflora towards higher latitudes. Surprisingly, plant height in the invasive I. parviflora decreases with increasing soil nitrogen availability. The latitudinal pattern in seed mass is positively related to temperature in I. noli-tangere and negatively in I. parviflora. Leaf area of both species decreases with increasing Ellenberg indicator values for nitrogen and light but increases with increasing soil moisture. Soil nitrogen concentrations and Ellenberg indicator values for nitrogen have significant positive (I. noli-tangere) and negative (I. parviflora) effects on the number of seeds per capsule. Our results show that the native I. noli-tangere has efficient reproduction at its range edge while the invasive I. parviflora shows a marked decrease in seed size and seed number per capsule. These

  19. Stress tolerance and ecophysiological ability of an invader and a native species in a seasonally dry tropical forest.

    Science.gov (United States)

    Oliveira, Marciel Teixeira; Matzek, Virginia; Dias Medeiros, Camila; Rivas, Rebeca; Falcão, Hiram Marinho; Santos, Mauro Guida

    2014-01-01

    Ecophysiological traits of Prosopis juliflora (Sw.) DC. and a phylogenetically and ecologically similar native species, Anadenanthera colubrina (Vell.) Brenan, were studied to understand the invasive species' success in caatinga, a seasonally dry tropical forest ecosystem of the Brazilian Northeast. To determine if the invader exhibited a superior resource-capture or a resource-conservative strategy, we measured biophysical and biochemical parameters in both species during dry and wet months over the course of two years. The results show that P. juliflora benefits from a flexible strategy in which it frequently outperforms the native species in resource capture traits under favorable conditions (e.g., photosynthesis), while also showing better stress tolerance (e.g., antioxidant activity) and water-use efficiency in unfavorable conditions. In addition, across both seasons the invasive has the advantage over the native with higher chlorophyll/carotenoids and chlorophyll a/b ratios, percent N, and leaf protein. We conclude that Prosopis juliflora utilizes light, water and nutrients more efficiently than Anadenanthera colubrina, and suffers lower intensity oxidative stress in environments with reduced water availability and high light radiation.

  20. Influences of fragmentation on three species of native warmwater fishes in a Colorado River Basin headwater stream system, Wyoming

    Science.gov (United States)

    Compton, R.I.; Hubert, W.A.; Rahel, F.J.; Quist, M.C.; Bower, M.R.

    2008-01-01

    We investigated the effects of constructed instream structures on movements and demographics of bluehead suckers Catostomus discobolus, flannelmouth suckers C. latipinnis, and roundtail chub Gila robusta in the upstream portion of Muddy Creek, an isolated headwater stream system in the upper Colorado River basin of Wyoming. Our objectives were to (1) evaluate upstream and downstream movements of these three native species past a small dam built to divert irrigation water from the stream and a barrier constructed to prevent upstream movements of nonnative salmonids and (2) describe population characteristics in stream segments created by these structures. Our results indicated that upstream and downstream movements of the three target fishes were common. Fish of all three species moved frequently downstream over both structures, displayed some upstream movements over the irrigation diversion dam, and did not move upstream over the fish barrier. Spawning migrations by some fish into an intermittent tributary, which was not separated from Muddy Creek by a barrier, were observed for all three species. Both the irrigation diversion dam and the fish barrier contributed to fragmentation of the native fish populations, and considerable differences in population features were observed among segments. The instream structures may eventually cause extirpation of some native species in one or more of the segments created by the structures. ?? Copyright by the American Fisheries Society 2008.

  1. Suspended material availability and filtration-biodeposition processes performed by a native and invasive bivalve species in streams

    Science.gov (United States)

    Atkinson, C.L.; First, M.R.; Covich, A.P.; Opsahl, S.P.; Golladay, S.W.

    2011-01-01

    Unionid mussels are among the most threatened group of freshwater organisms globally. They are known for their ability to filter food particles from flowing and standing waters. However, invasive bivalve species, such as the Asian clam (Corbicula fluminea) in North America, have the potential to overlap in feeding and potentially out-compete the native species. Yet, the feeding preferences of unionid mussels and C. fluminea are incompletely understood. We hypothesized that Elliptio crassidens (native) and C. fluminea (invasive) would select for specific organic components present within seston. We examined changes in seston (dry mass and ash-free dry mass) resulting from bivalve feeding activity for three size classes of material that were isolated using gravimetric filtration. The treatments were also sub-sampled for flow cytometry (FC) which separated the suspended materials in the stream water into five categories: detritus, heterotrophic bacteria, picoautotrophs, nanoautotrophs, and heterotrophic nanoeukaryotes. Our results indicated that both species of bivalve showed preferences for organic and living materials. E. crassidens preferentially filtered nanoeukaryotes, whose decreases were associated with an increase in bacteria. In contrast, C. fluminea preferred smaller materials through selective filtration of picoautotrophs. In addition, both species increased the concentration of large materials toward the end of the experiment because of the suspension of their pseudofeces biodeposits. To our knowledge, this study is the first to examine grazing by bivalve species on natural stream particulate matter using FC. Our results suggest that native and non-native mussels have different functional roles, which has important implications for organic matter processing and food webs in streams. ?? 2011 Springer Science+Business Media B.V.

  2. Exploitative strategies of the invasive Argentine ant (Linepithema humile) and native ant species in a southern Spanish pine forest.

    Science.gov (United States)

    Carpintero, S; Retana, J; Cerdá, X; Reyes-López, J; Arias de Reyna, L

    2007-10-01

    The Argentine ant, Linepithema humile (Mayr, 1868), is displacing native ant species in Doñana National Park (Spain). This paper discusses the results of experiments aimed at analyzing exploitation competition between the invading species and other ant species in a park community. The Argentine ant was found to implement several strategies favoring its success in exploitation competition: mass recruitment, use of various microhabitats (on the ground and in trees), and activity over a wide range of temperatures. Although these strategies were not exclusive to L. humile, their joint use, together with the large number of workers forming each "unicolony," conferred a clear advantage for resource exploitation. Some native species were more severely affected than others by the presence of L. humile in terms of both abundance and behavior. The worst affected species were those whose ecological characteristics were similar to those of the Argentine ant, e.g., Pheidole pallidula (Nylander, 1849); the species least affected was Cataglyphis floricola Tinaut, 1993, possibly because of its subordinate and thermophilous nature (little overlap of daily activity rhythms with the exotic species).

  3. Probabilistic ecological risk assessment of cadmium in the Bohai Sea using native saltwater species

    Institute of Scientific and Technical Information of China (English)

    MU Jingli; WANG Juying; WANG Ying; CONG Yi; ZHANG Zhifeng

    2014-01-01

    Predicted no-effect concentration (PNEC) is often used in ecological risk assessment to determine low-risk concentrations for chemicals. In the present study, the chronic data from native saltwater species were used to calculated PNEC values using four methods: log-normal distribution (ETX 2.0), log-triangle distribution (US EPA’s water quality criteria procedure), burr III distribution (BurrliOZ) and traditional assessment fac-tor (AF). The PNECs that were calculated using four methods ranged from 0.08 μg/L to 1.8 μg/L. Three of the SSD-derived PNECs range from 0.94 to 1.8 μg/L, about a factor of two apart. To demonstrate the use of SSD-based PNEC values and comprehensively estimate the regional ecological risk for cadmium in surface water of the Bohai Sea, in the Liaodong Bay, Bohai Bay, and Laizhou Bay, China, the dissolved cadmium con-centrations were measured and obtained 753 valid data covering 190 stations from July 2006 to November 2007. Based on three ecological risk assessment approaches, namely hazard quotient (HQ), probabilistic risk quotient and joint probability curve (JPC), the potential ecological risk of cadmium in surface water of the Liaodong Bay, Bohai Bay, and Laizahou Bay were estimated. Overall, the ecological risk of cadmium to aquatic ecosystem in the whole Bohai Sea was at acceptable ecological risk level, the order of ecological risk was Liaodong Bay>Bohai Bay>Laizhou Bay. However, more concerns should be paid to aquatic ecological risk in the Liaodong Bay which is the home of many steel, metallurgy and petrochemical industrial in China.

  4. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities.

    Science.gov (United States)

    García-Salgado, Sara; Quijano, M Ángeles

    2014-03-01

    Ten native terrestrial plants from soils polluted by former mining activities (Mónica mine, NW Madrid, Spain), with high total arsenic concentration levels (up to 3500 μg g(-1)), have been studied to determine the fraction of arsenic present as toxic forms (inorganic and methylated species), which present a higher mobility and therefore the potential risk associated with their reintegration into the environment is high. Roots and aboveground parts were analyzed separately to assess possible transformations from translocation processes. Extractions were carried out with deionized water by microwave-assisted extraction at a temperature of 90 °C and three extraction steps of 7.5 min each. Total extracted arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry, showing extraction percentages from 9 to 39% (calculated as the ratio between total extracted arsenic (Asext) and total arsenic (AsT) concentrations in plants). Speciation studies, performed by high performance liquid chromatography-photo-oxidation-hydride generation-atomic fluorescence spectrometry, showed the main presence of arsenate (As(v)) (up to 350 μg g(-1)), followed by arsenite (As(iii)), in both plant parts. Monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) were also found only in some plants. On the other hand, the use of 0.5 mol L(-1) acetic acid as an extractant led to higher extraction percentages (33-87%), but lower column recoveries, probably due to the extraction of arsenic compounds different to the toxic free ions studied, which may come from biotransformation mechanisms carried out by plants to reduce arsenic toxicity. However, As(v) concentrations increased up to 800 μg g(-1) in acid medium, indicating the probable release of As(v) from organoarsenic compounds and therefore a higher potential risk for the environment.

  5. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina.

    Science.gov (United States)

    Barroetaveña, C; Cázares, E; Rajchenberg, M

    2007-07-01

    The putative ectomycorrhizal fungal species registered from sporocarps associated with ponderosa pine and Douglas-fir forests in their natural range distribution (i.e., western Canada, USA, and Mexico) and from plantations in south Argentina and other parts of the world are listed. One hundred and fifty seven taxa are reported for native ponderosa pine forests and 514 taxa for native Douglas-fir forests based on available literature and databases. A small group of genera comprises a high proportion of the species richness for native Douglas-fir (i.e., Cortinarius, Inocybe, and Russula), whereas in native ponderosa pine, the species richness is more evenly distributed among several genera. The comparison between ectomycorrhizal species richness associated with both trees in native forests and in Patagonia (Argentina) shows far fewer species in the latter, with 18 taxa for the ponderosa pine and 15 for the Douglas-fir. Epigeous species richness is clearly dominant in native Douglas-fir, whereas a more balanced relation epigeous/hypogeous richness is observed for native ponderosa pine; a similar trend was observed for Patagonian plantations. Most fungi in Patagonian Douglas-fir plantations have not been recorded in plantations elsewhere, except Suillus lakei and Thelephora terrestris, and only 56% of the fungal taxa recorded in Douglas-fir plantations around the world are known from native forests, the other taxa being new associations for this host, suggesting that new tree + ectomycorrhizal fungal taxa associations are favored in artificial situations as plantations.

  6. Land use and wind direction drive hybridization between cultivated poplar and native species in a Mediterranean floodplain environment.

    Science.gov (United States)

    Paffetti, Donatella; Travaglini, Davide; Labriola, Mariaceleste; Buonamici, Anna; Bottalico, Francesca; Materassi, Alessandro; Fasano, Gianni; Nocentini, Susanna; Vettori, Cristina

    2018-01-01

    Deforestation and intensive land use management with plantations of fast-growing tree species, like Populus spp., may endanger native trees not only by eliminating or reducing their habitats, but also by diminishing their species integrity via hybridization and introgression. The genus Populus has persistent natural hybrids because clonal and sexual reproduction is common. The objective of this study was to assess the effect of land use management of poplar plantations on the spatial genetic structure and species composition in poplar stands. Specifically, we studied the potential breeding between natural and cultivated poplar populations in the Mediterranean environment to gain insight into spontaneous hybridization events between exotic and native poplars; we also used a GIS-based model to evaluate the potential threats related to an intensive land use management. Two study areas, both near to poplar plantations (P.×euramericana), were designated in the native mixed stands of P. alba, P. nigra and P.×canescens within protected areas. We found that the spatial genetic structure differed between the two stands and their differences depended on their environmental features. We detected a hybridization event with P.×canescens that was made possible by the synchrony of flowering between the poplar plantation and P.×canescens and facilitated by the wind intensity and direction favoring the spread of pollen. Taken together, our results indicate that natural and artificial barriers are crucial to mitigate the threats, and so they should be explicitly considered in land use planning. For example, our results suggest the importance of conserving rows of trees and shrubs along rivers and in agricultural landscapes. In sum, it is necessary to understand, evaluate, and monitor the spread of exotic species and genetic material to ensure effective land use management and mitigation of their impact on native tree populations. Copyright © 2017 Elsevier B.V. All rights

  7. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China

    Science.gov (United States)

    Jiang, Li-Fen; Luo, Yi-Qi; Chen, Jia-Kuan; Li, Bo

    2009-01-01

    Biological invasions represent one of the significant components of global change. A comparative study of invaders and co-occurring natives is a useful approach to gaining insights into the invasiveness of exotic plants. Spartina alterniflora, a C 4 grass, is a widespread invader in the coastal wetlands in China and other regions of the world. We conducted a comparative study of S. alterniflora and native C 3 species, Phragmites australis and Scirpus mariqueter, in terms of their gas exchange and efficiencies in resource utilization. We tested the hypothesis that S. alterniflora has growth-related ecophysiological advantages over the natives in its non-native range, which result in its rapid growth and enhance its invasiveness. Photosynthesis, leaf area index (LAI), specific leaf area (SLA), and the efficiency of resource use (light, water, and nitrogen) were examined monthly for eight months in 2004. Overall, S. alterniflora had greater LAI, higher maximal net photosynthetic rate ( Amax), and longer growing season than those of the native species. On average, the efficiencies of S. alterniflora in light, water, and nitrogen utilization were respectively 10.1%, 26.1%, and 33.1% higher than those of P. australis, and respectively 70.3%, 53.5%, 28.3% higher than those of S. mariqueter. However, SLA of S. alterniflora was significantly lower than those of P. australis and S. mariqueter. Although there was no general pattern in the relationship between invasiveness and plant photosynthetic types, in this study, most of the ecophysiological characteristics that gave S. alterniflora a competitive advantage in the Yangtze River estuary were associated with photosynthetic pathways. Our results offer a greater understanding of the relationship between invasiveness and plant photosynthetic type. Our results also indicate that LAI and the length of the photosynthetic season, which vary with habitats, are also important in invasion success.

  8. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria

    Directory of Open Access Journals (Sweden)

    Andimuthu Ramachandran

    2016-01-01

    Full Text Available Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB, with the addition of small amounts of compost and a chemical fertilizer (NPK. The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest.

  9. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy

    2016-01-01

    Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB), with the addition of small amounts of compost and a chemical fertilizer (NPK). The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest. PMID:27195310

  10. Potential phytotoxic and shading effects of invasive Fallopia (Polygonaceae taxa on the germination of native dominant species

    Directory of Open Access Journals (Sweden)

    Lenka Moravcová

    2011-08-01

    Full Text Available Two species of knotweeds (genus Fallopia, Polygonaceae, native to Asia (Fallopia sachalinensis, F. japonica and their hybrid (F. ×bohemica belong to the most noxious plant invaders in Europe and exert a high impact on invaded plant communities that are therefore typically extremely poor in species. The remarkable paucity of invaded communities points to the possible existence of mechanisms suppressing germinating populations of native species in invaded stands. In this pilot study we assessed, under laboratory conditions, whether there are phytotoxic effects of the three Fallopia congeners on seed germination of three target species: two native species commonly growing in habitats that are often invaded by knotweeds (Urtica dioica, Calamagrostis epigejos, and Lepidium sativum, a species commonly used in allelopathic bioassay as a control. Since knotweeds generally form stands with a high cover, we included varying light conditions as an additional factor, to simulate the effects on germination of shading by leaf canopy. The effects of aqueous extracts (2.5, 5.0%, and 0% as a control from dry leaves and rhizomes of the Fallopia congeners on germination of the target species were thus studied under two light regimes, simulating full daylight (white light and light filtered through canopy (green light, and in dark as a control regime. Rhizome extracts did not affect germination. Light treatments yielded inconclusive results, indicating that poor germination and establishment of species in invaded stands is unlikely to be caused by shading alone, but we found a pronounced phytotoxic effect of leaf extracts of Fallopia taxa, more so at 5.0% than 2.5% extract concentration. Fallopia sachalinensis exerted the largest negative effect on the germination of Urtica dioica, F. ×bohemica on that of C.epigejos, and F. japonica had invariably the lowest inhibitory effect. In the field in Central Europe, F. sachalinensis often invades less disturbed, moist

  11. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants

    Science.gov (United States)

    Zohner, Constantin M.; Benito, Blas M.; Svenning, Jens-Christian; Renner, Susanne S.

    2016-12-01

    The relative roles of temperature and day length in driving spring leaf unfolding are known for few species, limiting our ability to predict phenology under climate warming. Using experimental data, we assess the importance of photoperiod as a leaf-out regulator in 173 woody species from throughout the Northern Hemisphere, and we also infer the influence of winter duration, temperature seasonality, and inter-annual temperature variability. We combine results from climate- and light-controlled chambers with species’ native climate niches inferred from georeferenced occurrences and range maps. Of the 173 species, only 35% relied on spring photoperiod as a leaf-out signal. Contrary to previous suggestions, these species come from lower latitudes, whereas species from high latitudes with long winters leafed out independent of photoperiod. The strong effect of species’ geographic-climatic history on phenological strategies complicates the prediction of community-wide phenological change.

  12. Sociocultural Variables That Impact High School Students' Perceptions of Native Fauna: a Study on the Species Component of the Biodiversity Concept

    Science.gov (United States)

    Bermudez, Gonzalo M. A.; Battistón, Luisina V.; García Capocasa, María C.; De Longhi, Ana L.

    2017-02-01

    This study investigates the influence of school sector (private versus state schools) and student gender on knowledge of native fauna. Our main objectives were (a) to describe the knowledge of high school students from the province of Cordoba, Argentina with respect to native animal species, (b) to determine if any exotic species (introduced or domestic) are considered native, and (c) to analyze the effects of school sector and gender on the students' knowledge of the native fauna. In total, 321 students aged 15-18 from 14 urban schools (8 state and 6 private schools) were asked to write down ten animals native to Córdoba, Argentina, in a free-list questionnaire. Relative frequencies and Generalized Linear Mixed Models (GLMM) were used to analyze the categorized (animal names) and continuous answers (quantity of responses, number of native animals, etc.), with the 25 most frequently mentioned species showing a predominance of native ones, of which "Puma" ( Puma concolor) and "Andean condor" ( Vultur gryphus) were the most prominent. An overrepresentation of mammalian species compared to other classes of chordates was also found, with high school students mentioning native and domestic species higher on the free-list. Using GLMM, we found that school sector had a significant effect on the number of native animals mentioned at both national and local levels, and on domestic and mixed species. Finally, male students mentioned more species and more native animals than their female counterparts. These findings were interpreted and discussed in light of sociocultural and traditional ecological knowledge theories, from which several implications arose related to research and practice.

  13. Ozone air pollution effects on tree-ring growth,{delta}{sup 13}C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Inst. for Forest, Snow and Landscape Research, Birmensdorf (Switzerland); Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland); Saurer, M. [Paul Scherrer Inst. Villigen (Switzerland); Fuhrer, J. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland); Skelly, J.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Plant Pathology; Krauchi, N.; Schaub, M. [Swiss Federal Inst. for Forest, Snow and Landscape Research, Birmensdorf (Switzerland)

    2007-07-15

    Species specific plant responses to tropospheric ozone pollution depend on a range of morphological, biochemical and physiological characteristics as well as environmental factors. The effects of ambient tropospheric ozone on annual tree-ring growth, {delta}{sup 13} C in the rings, leaf gas exchange and ozone-induced visible foliar injury in three ozone-sensitive woody plant species in southern Switzerland were assessed during the 2001 and 2002 growing seasons. Seedlings of Populus nigra L., Viburnum lantana L. and Fraxinus excelsior L. were exposed to charcoal-filtered air and non-filtered air in open-top chambers, and to ambient air (AA) in open plots. The objective was to determine if a relationship exists between measurable ozone-induced effects at the leaf level and subsequent changes in annual tree-ring growth and {delta} {sup 13} C signatures. The visible foliar injury, early leaf senescence and premature leaf loss in all species was attributed to the ambient ozone exposures in the region. Ozone had pronounced negative effects on net photosynthesis and stomatal conductance in all species in 2002 and in V. lantana and F. excelsior in 2001. Water-use efficiency decreased and intercellular carbon dioxide concentrations increased in all species in response to ozone in 2002 only. The width and {delta}{sup 13} C of the 2001 and 2002 growth rings were measured for all species at the end of the 2002 growing season. Significant ozone-induced effects at the leaf level did not correspond to reduced tree-ring growth or increased {delta}{sup 13} C in all species, suggesting that the timing of ozone exposure and extent of leaf-level responses may be relevant in determining the sensitivity of tree productivity to ozone exposure. 48 refs., 4 tabs., 2 figs.

  14. Occasional hybridization between a native and invasive Senecio species in Australia is unlikely to contribute to invasive success.

    Science.gov (United States)

    Dormontt, Eleanor E; Prentis, Peter J; Gardner, Michael G; Lowe, Andrew J

    2017-01-01

    Hybridization between native and invasive species can facilitate introgression of native genes that increase invasive potential by providing exotic species with pre-adapted genes suitable for new environments. In this study we assessed the outcome of hybridization between native Senecio pinnatifolius var. pinnatifolius A.Rich. (dune ecotype) and invasive Senecio madagascariensis Poir. to investigate the potential for introgression of adaptive genes to have facilitated S. madagascariensis spread in Australia. We used amplified fragment length polymorphisms (141 loci) and nuclear microsatellites (2 loci) to genotype a total of 118 adults and 223 seeds from S. pinnatifolius var.pinnatifolius and S. madagascariensis at one allopatric and two shared sites. We used model based clustering and assignment methods to establish whether hybrid seed set and mature hybrids occur in the field. We detected no adult hybrids in any population. Low incidence of hybrid seed set was found at Lennox Head where the contact zone overlapped for 20 m (6% and 22% of total seeds sampled for S. pinnatifolius var. pinnatifolius and S. madagascariensis respectively). One hybrid seed was detected at Ballina where a gap of approximately 150 m was present between species (2% of total seeds sampled for S. madagascariensis). We found no evidence of adult hybrid plants at two shared sites. Hybrid seed set from both species was identified at low levels. Based on these findings we conclude that introgression of adaptive genes from S. pinnatifolius var. pinnatifolius is unlikely to have facilitated S. madagascariensis invasions in Australia. Revisitation of one site after two years could find no remaining S. pinnatifolius var. pinnatifolius, suggesting that contact zones between these species are dynamic and that S. pinnatifolius var. pinnatifolius may be at risk of displacement by S. madagascariensis in coastal areas.

  15. Occasional hybridization between a native and invasive Senecio species in Australia is unlikely to contribute to invasive success

    Directory of Open Access Journals (Sweden)

    Eleanor E. Dormontt

    2017-08-01

    Full Text Available Background Hybridization between native and invasive species can facilitate introgression of native genes that increase invasive potential by providing exotic species with pre-adapted genes suitable for new environments. In this study we assessed the outcome of hybridization between native Senecio pinnatifolius var. pinnatifolius A.Rich. (dune ecotype and invasive Senecio madagascariensis Poir. to investigate the potential for introgression of adaptive genes to have facilitated S. madagascariensis spread in Australia. Methods We used amplified fragment length polymorphisms (141 loci and nuclear microsatellites (2 loci to genotype a total of 118 adults and 223 seeds from S. pinnatifolius var.pinnatifolius and S. madagascariensis at one allopatric and two shared sites. We used model based clustering and assignment methods to establish whether hybrid seed set and mature hybrids occur in the field. Results We detected no adult hybrids in any population. Low incidence of hybrid seed set was found at Lennox Head where the contact zone overlapped for 20 m (6% and 22% of total seeds sampled for S. pinnatifolius var. pinnatifolius and S. madagascariensis respectively. One hybrid seed was detected at Ballina where a gap of approximately 150 m was present between species (2% of total seeds sampled for S. madagascariensis. Conclusions We found no evidence of adult hybrid plants at two shared sites. Hybrid seed set from both species was identified at low levels. Based on these findings we conclude that introgression of adaptive genes from S. pinnatifolius var. pinnatifolius is unlikely to have facilitated S. madagascariensis invasions in Australia. Revisitation of one site after two years could find no remaining S. pinnatifolius var. pinnatifolius, suggesting that contact zones between these species are dynamic and that S. pinnatifolius var. pinnatifolius may be at risk of displacement by S. madagascariensis in coastal areas.

  16. From endogenous to exogenous pattern formation: Invasive plant species changes the spatial distribution of a native ant.

    Science.gov (United States)

    Li, Kevin; He, Yifan; Campbell, Susanna K; Colborn, A Shawn; Jackson, Eliot L; Martin, Austin; Monagan, Ivan V; Ong, Theresa Wei Ying; Perfecto, Ivette

    2017-06-01

    Invasive species are a significant threat to global biodiversity, but our understanding of how invasive species impact native communities across space and time remains limited. Based on observations in an old field in Southeast Michigan spanning 35 years, our study documents significant impacts of habitat change, likely driven by the invasion of the shrub, Elaeagnus umbellata, on the nest distribution patterns and population demographics of a native ant species, Formica obscuripes. Landcover change in aerial photographs indicates that E. umbellata expanded aggressively, transforming a large proportion of the original open field into dense shrubland. By comparing the ant's landcover preferences before and after the invasion, we demonstrate that this species experienced a significant unfavorable change in its foraging areas. We also find that shrub landcover significantly moderates aggression between nests, suggesting nests are more related where there is more E. umbellata. This may represent a shift in reproductive strategy from queen flights, reported in the past, to asexual nest budding. Our results suggest that E. umbellata may affect the spatial distribution of F. obscuripes by shifting the drivers of nest pattern formation from an endogenous process (queen flights), which led to a uniform pattern, to a process that is both endogenous (nest budding) and exogenous (loss of preferred habitat), resulting in a significantly different clustered pattern. The number and sizes of F. obscuripes nests in our study site are projected to decrease in the next 40 years, although further study of this population's colony structures is needed to understand the extent of this decrease. Elaeagnus umbellata is a common invasive shrub, and similar impacts on native species might occur in its invasive range, or in areas with similar shrub invasions. © 2017 John Wiley & Sons Ltd.

  17. Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling.

    Science.gov (United States)

    Marras, Stefano; Cucco, Andrea; Antognarelli, Fabio; Azzurro, Ernesto; Milazzo, Marco; Bariche, Michel; Butenschön, Momme; Kay, Susan; Di Bitetto, Massimiliano; Quattrocchi, Giovanni; Sinerchia, Matteo; Domenici, Paolo

    2015-01-01

    Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species.

  18. Woody plant encroachment into grasslands: spatial patterns of functional group distribution and community development.

    Science.gov (United States)

    Liu, Feng; Archer, Steven R; Gelwick, Frances; Bai, Edith; Boutton, Thomas W; Wu, Xinyuan Ben

    2013-01-01

    Woody plant encroachment into grasslands has been globally widespread. The woody species invading grasslands represent a variety of contrasting plant functional groups and growth forms. Are some woody plant functional types (PFTs) better suited to invade grasslands than others? To what extent do local patterns of distribution and abundance of woody PFTs invading grasslands reflect intrinsic topoedaphic properties versus plant-induced changes in soil properties? We addressed these questions in the Southern Great Plains, United States at a subtropical grassland known to have been encroached upon by woody species over the past 50-100 years. A total of 20 woody species (9 tree-statured; 11 shrub-statured) were encountered along a transect extending from an upland into a playa basin. About half of the encroaching woody plants were potential N2-fixers (55% of species), but they contributed only 7% to 16 % of the total basal area. Most species and the PFTs they represent were ubiquitously distributed along the topoedaphic gradient, but with varying abundances. Overstory-understory comparisons suggest that while future species composition of these woody communities is likely to change, PFT composition is not. Canonical correspondence analysis (CCA) ordination and variance partitioning (Partial CCA) indicated that woody species and PFT composition in developing woody communities was primarily influenced by intrinsic landscape location variables (e.g., soil texture) and secondarily by plant-induced changes in soil organic carbon and total nitrogen content. The ubiquitous distribution of species and PFTs suggests that woody plants are generally well-suited to a broad range of grassland topoedaphic settings. However, here we only examined categorical and non-quantitative functional traits. Although intrinsic soil properties exerted more control over the floristics of grassland-to-woodland succession did plant modifications of soil carbon and nitrogen concentrations, the latter

  19. Woody plant encroachment into grasslands: spatial patterns of functional group distribution and community development.

    Directory of Open Access Journals (Sweden)

    Feng Liu

    Full Text Available Woody plant encroachment into grasslands has been globally widespread. The woody species invading grasslands represent a variety of contrasting plant functional groups and growth forms. Are some woody plant functional types (PFTs better suited to invade grasslands than others? To what extent do local patterns of distribution and abundance of woody PFTs invading grasslands reflect intrinsic topoedaphic properties versus plant-induced changes in soil properties? We addressed these questions in the Southern Great Plains, United States at a subtropical grassland known to have been encroached upon by woody species over the past 50-100 years. A total of 20 woody species (9 tree-statured; 11 shrub-statured were encountered along a transect extending from an upland into a playa basin. About half of the encroaching woody plants were potential N2-fixers (55% of species, but they contributed only 7% to 16 % of the total basal area. Most species and the PFTs they represent were ubiquitously distributed along the topoedaphic gradient, but with varying abundances. Overstory-understory comparisons suggest that while future species composition of these woody communities is likely to change, PFT composition is not. Canonical correspondence analysis (CCA ordination and variance partitioning (Partial CCA indicated that woody species and PFT composition in developing woody communities was primarily influenced by intrinsic landscape location variables (e.g., soil texture and secondarily by plant-induced changes in soil organic carbon and total nitrogen content. The ubiquitous distribution of species and PFTs suggests that woody plants are generally well-suited to a broad range of grassland topoedaphic settings. However, here we only examined categorical and non-quantitative functional traits. Although intrinsic soil properties exerted more control over the floristics of grassland-to-woodland succession did plant modifications of soil carbon and nitrogen

  20. The opportunity cost of not utilising the woody invasive alien plant species in the Kouga, Krom and Baviaans catchments in South Africa

    Directory of Open Access Journals (Sweden)

    Thulile Vundla

    2016-12-01

    Full Text Available This study estimates the opportunity costs of using woody invasive alien plants (IAPs for value-added products by estimating the net economic return from the value-added industries in South Africa. By 2008, IAPs were estimated at the national level to cover an area of 1 813 million condensed hectares in South Africa. A market has formed around their use for value-added products (VAP like charcoal, firewood and timber in the Kouga, Kromme and Baviaans River catchments in the Eastern Cape province of South Africa. The net economic return from these value-added industries was estimated for the purpose of several management scenarios, and was then used to estimate the opportunity costs if they were not used. A system dynamics model was used to value and analyse the Net Present Value of clearing in the study area and to estimate the opportunity cost of the non-use of VAP. The study showed that the inclusion of VAPs in the project would yield higher net present values for clearing. The findings from this study suggest that a cofinance option of the total economic returns from VAP for clearing costs is the best management scenario for reducing the costs of clearing and maximising the net economic returns from clearing. The net economic returns of VAPs by 2030 are estimated at R23 million without the co-finance option and R26 million with the option. The cumulative net income from VAPs with co-financing over the period of valuation is estimated to be R609 million.

  1. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer (Odocoileus virginianus) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km(2), and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m(2) quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs (Eurybia divaricata, Maianthemum racemosum, Polygonatum pubescens and Trillium recurvatum) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  2. Woody biomass logistics [Chapter 14

    Science.gov (United States)

    Robert Keefe; Nathaniel Anderson; John Hogland; Ken Muhlenfeld

    2014-01-01

    The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material is often quite low, sometimes near zero. However, the cost of harvesting, collection, processing, storage, and transportation from the harvest site to end...

  3. Phenology, TPC and size-fractioning phenolics variability in temperate Sargassaceae (Phaeophyceae, Fucales) from Western Brittany: native versus introduced species.

    Science.gov (United States)

    Le Lann, K; Connan, S; Stiger-Pouvreau, V

    2012-09-01

    The phenology of the introduced Sargassum muticum and two native species Bifurcaria bifurcata and Cystoseira baccata were monitored during eighteen months at two sites in Brittany. Density and length varied seasonally only in Sargassum. Larger individuals of Sargassum were observed in summer whereas in Cystoseira, they appeared almost in autumn. Peaks in maturity were delayed: in summer for Sargassum and in winter for Cystoseira and Bifurcaria. Phenolic contents increased before their respective reproductive period as a chemical defence. Moreover, size composition varied with site and season depending on species. In Sargassum, the quantity of small compounds decreased in summer together with an increase of 2000/5000 Da compounds. In Bifurcaria 2000/5000 Da compounds increased in summer (photoprotection) while in Cystoseira it increased in winter (protection for reproduction). Sargassum presented then a phenological plasticity not observed in native species. Moreover the three species possessed different chemical strategies to succeed in partitioning their vital space. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Use of Biosol Forte as a seed coating to improve stand establishment of native bunchgrass species

    Science.gov (United States)

    Applying fertilizers at the time of planting may improve native plant establishment by increasing the ability of the seedlings to cope with environmental stresses. However, traditional fertilizer applications are often economically infeasible and may be detrimental by encouraging weed invasion. Seed...

  5. The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Lucy G Anderson

    Full Text Available Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species-particularly in freshwater and marine environments-is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts; and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS as the tourism and outdoor recreation sectors grow.

  6. The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Anderson, Lucy G; Rocliffe, Steve; Haddaway, Neal R; Dunn, Alison M

    2015-01-01

    Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species-particularly in freshwater and marine environments-is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts); and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS) as the tourism and outdoor recreation sectors grow.

  7. Loss of biodiversity in a conservation unit of the Brazilian Atlantic Forest: the effect of introducing non-native fish species.

    Science.gov (United States)

    Fragoso-Moura, E N; Oporto, L T; Maia-Barbosa, P M; Barbosa, F A R

    2016-02-01

    The introduction of species has become an important problem for biodiversity and natural ecosystem conservation. The lake system of the middle Rio Doce (MG, Brazil) comprises c. 200 lakes at various conservation states, of which 50 are located within the Rio Doce State Park (PERD). Previous studies had verified several of these lakes suffered non-native fishes introductions and the presence of these species needs for the implementation of actions aiming at not only their control but also the preservation of the native species. This study discusses the effects of non-native fish species in the largest conservation unit of Atlantic Forest in Minas Gerais, southeast of Brazil, using data from 1983 to 2010 distributed as follow: data prior to 2006 were obtained from previous studies, and data from September 2006 to July 2010 were obtained in Lake Carioca at four sampling stations using gillnets, seine nets and sieve. A total of 17 fish species was collected (2006-2010) of which five were introduced species. Among the small to medium size native species (30 to 2000 mm standard length) seven had disappeared, two are new records and one was recaptured. The non-native species Cichla kelberi (peacock bass) and Pygocentrus nattereri (red piranha) are within the most abundant captured species. Integrated with other actions, such as those preventing new introductions, a selective fishing schedule is proposed as an alternative approach to improve the conservation management actions and the local and regional biodiversity maintenance.

  8. Species identification of smoked and gravad fish products by sodium dodecylsulphate polyacrylamide gel electrophoresis, urea isoelectric focusing and native isoelectric focusing : a collaborative study

    DEFF Research Database (Denmark)

    Mackie, I.; Craig, A.; Etienne, M.;

    2000-01-01

    -discriminating power for the processed salmonids than SDS-PAGE. The profiles of the eel species as obtained on SDS-PAGE or urea-IEF were not affected by smoking. Urea-IEF had greater species- discriminating power than SDS-PAGE for the eel species. Native IEF was useful in providing supplementary identification...

  9. Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans; Fitridge, Isla

    2012-01-01

    the ecophysiological traits contributing to invasive behaviour. The photosynthesis-nitrogen relationship was uniform across all three species, and the maximum light-saturated rate of photosynthesis expressed on a leaf area basis (Amaxa) did not differ significantly between species. However, specific leaf area (SLA....... maxima than the sedges under low nutrient supply supports the importance of nutrient management, especially N, as a strategy to minimise the invasive behaviour of fast-growing herbaceous species in wetlands.......We compared photosynthetic gas exchange, the photosynthesis-leaf nitrogen (N) relationship, and growth response to nutrient enrichment in the invasive wetland grass Glyceria maxima (Hartman) Holmburg with two native New Zealand Carex sedges (C. virgata Boott and C. secta Boott), to explore...

  10. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.

    Science.gov (United States)

    Kumari, Alka; Lal, Brij; Rai, Upendra Nath

    2016-01-01

    The present investigation was carried out to screen native plants growing in fly ash (FA) contaminated areas near National Thermal Power Corporation (NTPC), Kahalgaon, Bihar, India with a view to using them for the eco-restoration of the area. A total number of 30 plant species (5 aquatic and 25 terrestrial including 6 ferns) were collected and their diversity status and dominance were also studied. After screening of dominant species at highly polluted site, 8 terrestrial and 5 aquatic plants were analyzed for heavy metals (Fe, Zn, Cu, Ni, Si, Al, Pb, Cr, and Cd). Differential accumulations of various heavy metals by different species of plants were observed. Typha latifolia was found to be most efficient metal accumulator of Fe (927), Cu (58), Zn (87), Ni (57), Al (67), Cd (95), and Pb (69), and Azolla pinnata as Cr (93) hyper-accumulator among aquatic species in µg g(-1). In terrestrial species the maximum levels of Fe (998), Zn (81), Ni (93), Al (121), and Si (156) were found in Croton bonplandium. However, there was high spatial variability in total metal accumulation in different species indicated by coefficient of variation (CV%). These results suggest that various aquatic, some dominant terrestrial plants including fern species may be used in a synergistic way to remediate and restore the FA contaminated wastelands.

  11. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site.

    Science.gov (United States)

    Eid, Ebrahem M; Shaltout, Kamal H

    2016-11-01

    In the present study, nine native plant species were collected to determine their potential to clean up nine heavy metals from soil of a sewage sludge dump site. Almost all nine plant species grown at sewage sludge dump site showed multifold higher concentrations of heavy metals as compared to plants grown at the reference site. All the investigated species were characterized by a bioaccumulation factor (BF) > 1.0 for some heavy metals. BF was generally higher for Cd, followed by Pb, Co, Cr, Cu, Ni, Mn, Zn, and Fe. The translocation factor (TF) varied among plant species, and among heavy metals. For most studied heavy metals, TFs were heavy metals (except Cd, Co, and Pb) in most studied species were positively correlated with those in soil. Such correlations indicate that these species reflect the cumulative effects of environmental pollution from soil, and thereby suggesting their potential use in the biomonitoring of most heavy metals examined. In conclusion, all tissues of nine plant species could act as bioindicators, biomonitors, and remediates of most examined heavy metals. Moreover, Bassia indica, Solanum nigrum, and Pluchea dioscoridis are considered hyperaccumulators of Fe; Amaranthus viridis and Bassia indica are considered hyperaccumulators of Pb; and Portulaca oleracea is considered hyperaccumulator of Mn.

  12. Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site

    Energy Technology Data Exchange (ETDEWEB)

    Parotta, J.A. [USDA Forest Service, Rio Piedras (Puerto Rico). International Inst. of Tropical Forestry

    1995-10-01

    Patterns of understory colonization by native and naturalized trees and shrubs were evaluated in 4.5-year-old plantations of three exotic tree species, Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala, on a degraded coastal grassland site with reference to overstory composition and understory environmental conditions. 19 secondary forest species were established in the plantation understories, while no natural regeneration occurred in unplanted, though protected, control areas. The majority of these species (90%) and the total seedling population (97%) were zoochorous, indicating the importance of frugivorous bats and particularly birds as facilitators of secondary forest species colonization. Understory species richness and seedling densities were affected significantly by overstory composition, the most abundant regeneration occurring beneath Leucaena and least under Casuarina. The study results indicate that overstory species selection can exert a significant influence on subsequent patterns of colonization by secondary forest species and is an important consideration in the design of plantations for `catalyzing` succession on deforested, degraded sites. 40 refs, 4 figs, 3 tabs

  13. Disentangling herbivore impacts on Populus tremuloides: a comparison of native ungulates and cattle in Canada's Aspen Parkland.

    Science.gov (United States)

    Bork, Edward W; Carlyle, Cameron N; Cahill, James F; Haddow, Rae E; Hudson, Robert J

    2013-11-01

    Ungulates impact woody species' growth and abundance but little is understood about the comparative impacts of different ungulate species on forest expansion in savanna environments. Replacement of native herbivore guilds with livestock [i.e., beef cattle (Bos taurus)] has been hypothesized as a factor facilitating trembling aspen (Populus tremuloides Michx.) encroachment into grasslands of the Northern Great Plains. We used a controlled herbivory study in the Parklands of western Canada to compare the impact of native ungulates and cattle on aspen saplings. Native ungulate treatments included a mixed species guild and sequences of herbivory by different ungulates [bison (Bison bison subsp. bison), elk (Cervus elaphus) then deer (Odocoileus hemionus); or deer, elk, then bison]. Herbivory treatments were replicated in three pastures, within which sets of 40 marked aspen saplings (aspen stand. Stems were assessed for mortality and incremental damage (herbivory, leader breakage, stem abrasion and trampling). Final mortality was greater with exposure to any type of herbivore, but remained similar between ungulate treatments. However, among all treatments, the growth of aspen was highest with exposure only to cattle. Herbivory of aspen was attributed primarily to elk within the native ungulate treatments, with other forms of physical damage, and ultimately sapling mortality, associated with exposure to bison. Overall, these results indicate that native ungulates, specifically elk and bison, have more negative impacts on aspen saplings and provide evidence that native and domestic ungulates can have different functional effects on woody plant dynamics in savanna ecosystems.

  14. Invasion of an asexual American water flea clone throughout Africa and rapid displacement of a native sibling species.

    Science.gov (United States)

    Mergeay, Joachim; Verschuren, Dirk; De Meester, Luc

    2006-11-22

    The huge ecological and economic impact of biological invasions creates an urgent need for knowledge of traits that make invading species successful and factors helping indigenous populations to resist displacement by invading species or genotypes. High genetic diversity is generally considered to be advantageous in both processes. Combined with sex, it allows rapid evolution and adaptation to changing environments. We combined paleogenetic analysis with continent-wide survey of genetic diversity at nuclear and mitochondrial loci to reconstruct the invasion history of a single asexual American water flea clone (hybrid Daphnia pulexxDaphnia pulicaria) in Africa. Within 60 years of the original introduction of this invader, it displaced the genetically diverse, sexual population of native D. pulex in Lake Naivasha (Kenya), despite a formidable numerical advantage of the local population and continuous replenishment from a large dormant egg bank. Currently, the invading clone has spread throughout the range of native African D. pulex, where it appears to be the only occurring genotype. The absence of genetic variation did not hamper either the continent-wide establishment of this exotic lineage or the effective displacement of an indigenous and genetically diverse sibling species.

  15. Are Invasive Species Stressful? The Glucocorticoid Profile of Native Lizards Exposed to Invasive Fire Ants Depends on the Context.

    Science.gov (United States)

    Graham, Sean P; Freidenfelds, Nicole A; Thawley, Christopher J; Robbins, Travis R; Langkilde, Tracy

    Invasive species represent a substantial threat to native species worldwide. Research on the impacts of invasive species on wild living vertebrates has focused primarily on population-level effects. The sublethal, individual-level effects of invaders may be equally important but are poorly understood. We investigated the effects of invasive fire ants (Solenopsis invicta) on the physiological stress response of a native lizard (Sceloporus undulatus) within two experimental contexts: directly exposing lizards to a fire ant attack and housing lizards with fire ants in seminatural field enclosures. Lizards directly exposed to brief attack by fire ants had elevated concentrations of the stress hormone corticosterone (CORT), suggesting that these encounters can be physiologically stressful. However, lizards exposed for longer periods to fire ants in field enclosures had lower concentrations of CORT. This may indicate that the combined effects of confinement and fire ant exposure have pushed lizards into allostatic overload. However, lizards from fire ant enclosures appeared to have intact negative feedback controls of the stress response, evidenced by functioning adrenocorticotropic hormone responsiveness and lack of suppression of innate immunity (plasma bactericidal capacity). We review previous studies examining the stress response of wild vertebrates to various anthropogenic stressors and discuss how these-in combination with our results-underscore the importance of considering context (the length, frequency, magnitude, and types of threat) when assessing these impacts.

  16. New records and detailed distribution and abundance of selected arthropod species collected between 1999 and 2011 in Azorean native forests

    DEFF Research Database (Denmark)

    Borges, Paulo A. V.; Gaspar, Clara; Crespo, Luís Carlos Fonseca

    2016-01-01

    Background In this contribution we present detailed distribution and abundance data for arthropod species identified during the BALA – Biodiversity of Arthropods from the Laurisilva of the Azores (1999-2004) and BALA2 projects (2010-2011) from 18 native forest fragments inseven of the nine Azorean...... by 10% during the time frame of these projects. The classes Arachnida, Chilopoda and Diplopoda represent the most remarkable cases of new island records, with more than 30% of the records being novelties. This study stresses the need to expand the approaches applied in these projects to other habitats...