WorldWideScience

Sample records for native wheat starch

  1. DISINTEGRATION EFFICIENCY OF SODIUM STARCH GLYCOLATES, PREPARED FROM DIFFERENT NATIVE STARCHES

    NARCIS (Netherlands)

    BOLHUIS, GK; ARENDSCHOLTE, AW; STUUT, GJ; DEVRIES, JA

    1994-01-01

    In a comparative evaluation, the disintegration efficiency of sodium starch glycolates prepared from seven different native starches (potato, maize, waxy maize, wheat, rice, sago and tapioca) were compared. All the sodium starch glycolates tested had a high swelling capacity, but the rate of water

  2. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    Science.gov (United States)

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  4. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  5. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality.

    Science.gov (United States)

    Mancebo, Camino M; Merino, Cristina; Martínez, Mario M; Gómez, Manuel

    2015-10-01

    Gluten-free bread production requires gluten-free flours or starches. Rice flour and maize starch are two of the most commonly used raw materials. Over recent years, gluten-free wheat starch is available on the market. The aim of this research was to optimize mixtures of rice flour, maize starch and wheat starch using an experimental mixture design. For this purpose, dough rheology and its fermentation behaviour were studied. Quality bread parameters such as specific volume, texture, cell structure, colour and acceptability were also analysed. Generally, starch incorporation reduced G* and increased the bread specific volume and cell density, but the breads obtained were paler than the rice flour breads. Comparing the starches, wheat starch breads had better overall acceptability and had a greater volume than maize-starch bread. The highest value for sensorial acceptability corresponded to the bread produced with a mixture of rice flour (59 g/100 g) and wheat starch (41 g/100 g).

  6. Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis.

    Science.gov (United States)

    Wang, Shujun; Wang, Jinrong; Yu, Jinglin; Wang, Shuo

    2016-01-01

    The effects of three saturated fatty acids on functional properties of normal wheat and waxy wheat starches were investigated. The complexing index (CI) of normal wheat starch-fatty acid complexes decreased with increasing carbon chain length. In contrast, waxy wheat starch-fatty acid complexes presented much lower CI. V-type crystalline polymorphs were formed between normal wheat starch and three fatty acids, with shorter chain fatty acids producing more crystalline structure. FTIR and Raman spectroscopy presented the similar results with XRD. The formation of amylose-fatty acid complex inhibited granule swelling, gelatinization progression, retrogradation and pasting development of normal wheat starch, with longer chain fatty acids showing greater inhibition. Amylopectin can also form complexes with fatty acids, but the amount of complex was too little to be detected by XRD, FTIR, Raman and DSC. As a consequence, small changes were observed in the functional properties of waxy wheat starch with the addition of fatty acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Phase behaviour and in vitro hydrolysis of wheat starch in mixture with whey protein.

    Science.gov (United States)

    Yang, Natasha; Liu, Yingting; Ashton, John; Gorczyca, Elisabeth; Kasapis, Stefan

    2013-04-15

    Network formation of whey protein isolate (WPI) with increasing concentrations of native wheat starch (WS) has been examined. Small deformation dynamic oscillation in shear and modulated temperature differential scanning calorimetry enabled analysis of binary mixtures at the macro- and micromolecular level. Following heat induced gelation, textural hardness was measured by undertaking compression tests. Environmental scanning electron microscopy provided tangible information on network morphology of polymeric constituents. Experiments involving in vitro starch digestion also allowed for indirect assessment of phase topology in the binary mixture. The biochemical component of this work constitutes an attempt to utilise whey protein as a retardant to the enzymatic hydrolysis of starch in a model system with α-amylase enzyme. During heating, rheological profiles of binary mixtures exhibited dramatic increases in G' at temperatures more closely related to those observed for single whey protein rather than pure starch. Results from this multidisciplinary approach of analysis, utilising rheology, calorimetry and microscopy, argue for the occurrence of phase separation phenomena in the gelled systems. There is also evidence of whey protein forming the continuous phase with wheat starch being the discontinuous filler, an outcome that is explored in the in vitro study of the enzymatic hydrolysis of starch. Copyright © 2012. Published by Elsevier Ltd.

  8. Nuclearmagnetic resonance investigations to the character of the waterbinding for the structure of the native starch corn

    International Nuclear Information System (INIS)

    Hennig, H.J.

    1976-01-01

    The signals of the proton and deuteron magnetic resonance from water molecules sorbed on native starch contain a splitting, caused from water molecules in ordered regions. This splitting could not be maintained from retrogradated crystalline amylose. The water molecules are ordered more uniform in potato starch then in wheat starch, which is related to the difference in the crystalline structures. The proton resonance of potato starch contains two further components from water molecules in amorphous regions and on the ions respectively. From the deuteron resonance and their dependence on temperature first insights were obtained into the processes occuring by simutaneous treatment with heat and moisture. (orig.) [de

  9. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    Science.gov (United States)

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  10. Starch characteristics of transgenic wheat (Triticum aestivum L.) overexpressing the Dx5 high molecular weight glutenin subunit are substantially equivalent to those in nonmodified wheat.

    Science.gov (United States)

    Beckles, Diane M; Tananuwong, Kanitha; Shoemaker, Charles F

    2012-04-01

    The effects of engineering higher levels of the High Molecular Weight Glutenin Dx5 subunit on starch characteristics in transgenic wheat (Triticum aestivum L.) grain were evaluated. This is important because of the interrelationship between starch and protein accumulation in grain, the strong biotechnological interest in modulating Dx5 levels and the increasing likelihood that transgenic wheat will be commercialized in the U.S. Unintended effects of Dx5 overexpression on starch could affect wheat marketability and therefore should be examined. Two controls with native levels of Dx5 were used: (i) the nontransformed Bobwhite cultivar, and (ii) a transgenic line (Bar-D) expressing a herbicide resistant (bar) gene, and they were compared with 2 transgenic lines (Dx5G and Dx5J) containing bar and additional copies of Dx5. There were few changes between Bar-D and Dx5G compared to Bobwhite. However, Dx5J, the line with the highest Dx5 protein (×3.5) accumulated 140% more hexose, 25% less starch and the starch had a higher frequency of longer amylopectin chains. These differences were not of sufficient magnitude to influence starch functionality, because granule morphology, crystallinity, amylose-to-amylopectin ratio, and the enthalpy of starch gelatinization and the amylose-lipid complex melting were similar to the control (P > 0.05). This overall similarity was borne out by Partial Least Squares-Discriminant Function Analysis, which could not distinguish among genotypes. Collectively our data imply that higher Dx5 can affect starch accumulation and some aspects of starch molecular structure but that the starches of the Dx5 transgenic wheat lines are substantially equivalent to the controls. Transgenic manipulation of biochemical pathways is an effective way to enhance food sensory quality, but it can also lead to unintended effects. These spurious changes are a concern to Government Regulatory Agencies and to those Industries that market the product. In this study we

  11. Characterization of Native and Modified Starches by Potentiometric Titration

    OpenAIRE

    Soto, Diana; Urdaneta, Jose; Pernia, Kelly

    2014-01-01

    The use of potentiometric titration for the analysis and characterization of native and modified starches is highlighted. The polyelectrolytic behavior of oxidized starches (thermal and thermal-chemical oxidation), a graft copolymer of itaconic acid (IA) onto starch, and starch esters (mono- and diester itaconate) was compared with the behavior of native starch, the homopolymer, and the acid employed as a graft monomer and substituent. Starch esters showed higher percentages of acidity, follo...

  12. Effect of starch binder on charcoal briquette properties

    Science.gov (United States)

    Borowski, Gabriel; Stępniewski, Witold; Wójcik-Oliveira, Katarzyna

    2017-10-01

    The paper shows the results of a study on the effect of starch binder on the mechanical, physical and burning properties of charcoal briquettes. Two types of binders were repeatedly used to make briquettes of native wheat starch and modified wheat starch, at 8% of the whole. Briquetting was performed in a roller press unit, and pillow-shaped briquettes were made. The moisture of the mixed material ranged from 28 to 32%. The product, whether the former or the latter, was characterized by very good mechanical properties and satisfactory physical properties. Moreover, the type of starch binder had no effect on toughness, calorific heating value, volatiles, fixed carbon content and ash content. However, the combustion test showed quite different burning properties. As briquettes should have short firing up time and lower smokiness, as well as high maximum temperature and long burning time, we have concluded that briquettes with native wheat starch as a binder are more appropriate for burning in the grill.

  13. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm.

    Science.gov (United States)

    Yu, Xurun; Zhou, Liang; Zhang, Jing; Yu, Heng; Xiong, Fei; Wang, Zhong

    2015-01-01

    The objectives of this study were: (i) to characterize structural development of starch granule in pericarp and endosperm during wheat caryopsis growth; (ii) to compare physicochemical properties of starches in pericarp and endosperm; (iii) to further discover the relationships between pericarp starches and endosperm starches. Wheat pericarp and endosperm at different development stages were observed by light microscopy and scanning electron microscopy, respectively. Structural properties of starches were determined using X-ray power diffraction and (13) C solid nuclear magnetic resonance. Pericarp starch granules (PSG) accumulated in amyloplasts and chloroplasts, and showed a typical accumulation peak at 5 days after fertilization (DAF), and then gradually decomposed during 5-22 DAF. PSG in the abdominal region showed a higher rate of decomposition compared to the dorsal region of pericarp. Endosperm starch granules (ESG) accumulated in amyloplasts, and occurred in endosperm cells at 5 DAF, then rapidly enriched the endosperm cells until 22 DAF. Compared with ESG, PSG were compound granules of irregular shape and small size distribution. The results also suggested lower amylose content and V-type single-helix content and higher proportions of double helices for PSG compared to ESG. Based on the structural development of PSG and ESG, we speculated that the saccharides resulting from decomposition of PSG, on one hand, enabled the pericarp to survive before maturity of wheat caryopsis and, on the other hand, provided extra nutrition for the growth of ESG. © 2014 Society of Chemical Industry.

  14. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

    Science.gov (United States)

    Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann

    2016-06-01

    Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Composite wheat-plantain starch salted noodles: Preparation, proximal composition and in vitro starch digestibility

    OpenAIRE

    Rendón-Villalobos, Rodolfo; Osorio-Díaz, Perla; Agama-Acevedo, Edith; Tovar, Juscelino; Bello-Pérez, Luis A

    2008-01-01

    Salted noodles were prepared with different contents of wheat grits and plantain starch (PS). The blends were hydrated with 2% NaCl (w/v), homogenized, and the resulting doughs were sheeted through a pasta machine, cut into strips ~30cm in length, cooked, and their composition and in vitro starch digestibility was assessed. Moisture (6.43-7.60%) and ash contents (2.08-3.12%) increased by the addition of PS. Fat level decreased from 0.41 to 0.31% as the substitution of wheat grits increased. R...

  16. Functional properties of irradiated starch

    International Nuclear Information System (INIS)

    Laouini, Wissal

    2011-01-01

    Irradiation is an effective method capable of modifying the functional properties of starches. Its effect depends on the specific structural and molecular organization of starch granules from different botanical sources. In this study, we have studied the effect of gamma irradiation (3, 5, 10, 20, 35, 50 kGy) on the rheological properties of some varieties of starch (potato, cassava and wheat). First, we were interested in determining dry matter content; the results showed that the variation in dry matter compared to the control (native starch) is almost zero. So it does not depend on the dose of irradiation. Contrariwise, it differs from a botanical species to another. The viscometer has shown that these starches develop different behaviors during shearing. The native potato starch gave the highest viscosity followed by wheat and cassava which have almost similar viscosities. For all varieties, the viscosity of starch decreases dramatically with an increasing dose of irradiation. At high doses (35 and 50 kGy) the behavior of different starch is similar to that of a viscous pure liquid. The textural analysis via the back-extrusion test showed that increasing the dose of radiation causes a decrease in extrusion force and the energy spent of the different starch throughout the test. Indeed, the extrusion resistance decreases with increasing dose.

  17. Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour.

    Science.gov (United States)

    Świeca, Michał; Dziki, Dariusz; Gawlik-Dziki, Urszula

    2017-08-01

    Wheat flour in the bread formula was replaced with sprouted wheat flour (SF) characterized by enhanced nutraceutical properties, at 5%, 10%, 15% and 20% levels. The addition of SF slightly increased the total protein content; however, it decreased their digestibility. Some qualitative and quantitative changes in the electrophoretic pattern of proteins were also observed; especially, in the bands corresponding with 27kDa and 15-17kDa proteins. These results were also confirmed by SE-HPLC technique, where a significant increase in the content of proteins and peptides (molecular masses breads with 20% of SF. Bread enriched with sprouted wheat flour had more resistant starch, but less total starch, compared to control bread. The highest in vitro starch digestibility was determined for the control bread. The studied bread with lowered nutritional value but increased nutritional quality can be used for special groups of consumers (obese, diabetic). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. In vitro binding of puroindolines to wheat starch granules

    DEFF Research Database (Denmark)

    Sørensen, Helle Aagaard; Darlington, H.F.; Shewry, P.R.

    2001-01-01

    Puroindoline (pin) preparations made from flours of hard and soft wheats contained a mixture of pin-a, 0.19/0.53 alpha -amylase inhibitor, and purothionins. Starch granule preparations from the same cultivars were treated with proteinase to remove surface proteins and incubated with solutions...... of the pin preparations. Binding of pin-a and purothionins but not the 0.19/0.53 inhibitor was observed with no apparent differences between the behavior of the pin preparations or starch granule preparations from hard or soft types. No binding was observed when several other proteins (bovine serum albumin......, total albumins, a commercial preparation of wheat alpha -amylase inhibitors, and barley beta -amylase) were incubated with the starch granules under the same conditions, indicating that in vitro binding can be used to study specific starch granule and protein interactions....

  19. Effect of the Amount and Particle Size of Wheat Fiber on the Physicochemical Properties and Gel Morphology of Starches.

    Directory of Open Access Journals (Sweden)

    Qingjie Sun

    Full Text Available Effects of added wheat fiber, with different levels and particle sizes, on the physicochemical properties and gel morphology of wheat starch and mung bean starch were investigated, using rapid visco analyzer (RVA, texture analyzer (TPA and scanning electron microscopy (SEM. Each starch was added with wheat fiber at 10, 20, 30 and 40% (weight basis, g/100g, and different sizes of 60, 100 and 180 mesh, respectively. The peak viscosity (PV of starches with wheat fiber were higher than the control. Starches had the highest PV with 40%, 60 mesh wheat fiber. The starches with wheat fiber showed higher hardness when compared to the control. Wheat starch and mung bean starch, with 40%, 60 mesh wheat fiber, had the highest hardnesses of 147.78 and 1032.11 g, respectively. SEM showed that the dense honeycomb structure of starch gel was diminished with increasing wheat fiber. Additionally, the number of internal pores was reduced, and a large lamellar structure was formed.

  20. Starch digestibility and apparent metabolizable energy of western Canadian wheat market classes in broiler chickens.

    Science.gov (United States)

    Karunaratne, N D; Abbott, D A; Hucl, P J; Chibbar, R N; Pozniak, C J; Classen, H L

    2018-05-16

    Wheat is the primary grain fed to poultry in western Canada, but its nutritional quality, including the nature of its starch digestibility, may be affected by wheat market class. The objectives of this study were to determine the rate and extent of starch digestibility of wheat market classes in broiler chickens, and to determine the relationship between starch digestibility and wheat apparent metabolizable energy (AME). In vitro starch digestion was assessed using gastric and small intestinal phases mimicking the chicken digestive tract, while in vivo evaluation used 468 male broiler chickens randomly assigned to dietary treatments from 0 to 21 d of age. The study evaluated 2 wheat cultivars from each of 6 western Canadian wheat classes: Canadian Prairie Spring (CPS), Canadian Western Amber Durum (CWAD), CW General Purpose (CWGP), CW Hard White Spring (CWHWS), CW Red Spring (CWRS), and CW Soft White Spring (CWSWS). All samples were analyzed for relevant grain characteristics. Data were analyzed as a randomized complete block design and cultivars were nested within market class. Pearson correlation was used to determine relationships between measured characteristics. Significance level was P ≤ 0.05. The starch digestibility range and wheat class rankings were: proximal jejunum - 23.7 to 50.6% (CWHWSc, CPSbc, CWSWSbc, CWRSab, CWGPa, CWADa); distal jejunum - 63.5 to 76.4% (CWHWSc, CPSbc, CWSWSbc, CWRSab, CWGPa, CWADa); proximal ileum - 88.7 to 96.9% (CWSWSc, CPSbc, CWHWSbc, CWRSb, CWGPb, CWADa); distal ileum - 94.4 to 98.5% (CWSWSb, CWHWSb, CPSb, CWRSab, CWGPab, CWADa); excreta - 98.4 to 99.3% (CPSb, CWRSb, CWHWSb, CWSWSab, CWGPab, CWADa). Wheat class affected wheat AMEn with levels ranging from 3,203 to 3,411 kcal/kg at 90% DM (CWRSc, CWSWSc, CPSb, CWGPb, CWADa, CWHWSa). Significant and moderately strong positive correlations were observed between in vitro and in vivo starch digestibility, but no correlations were found between AME and starch digestibility. In

  1. Quantitative analysis of total starch content in wheat flour by reaction headspace gas chromatography.

    Science.gov (United States)

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-09-01

    This paper proposed a new reaction headspace gas chromatographic (HS-GC) method for efficiently quantifying the total starch content in wheat flours. A certain weight of wheat flour was oxidized by potassium dichromate in an acidic condition in a sealed headspace vial. The results show that the starch in wheat flour can be completely transferred to carbon dioxide at the given conditions (at 100 °C for 40 min) and the total starch content in wheat flour sample can be indirectly quantified by detecting the CO 2 formed from the oxidation reaction. The data showed that the relative standard deviation of the reaction HS-GC method in the precision test was less than 3.06%, and the relative differences between the new method and the reference method (titration method) were no more than 8.90%. The new reaction HS-GC method is automated, accurate, and can be a reliable tool for determining the total starch content in wheat flours in both laboratory and industrial applications. Graphical abstract The total starch content in wheat flour can be indirectly quantified by the GC detection of the CO 2 formed from the oxidation reaction between wheat flour and potassium dichromate in an acidic condition.

  2. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    Directory of Open Access Journals (Sweden)

    Rohit Kumar

    Full Text Available Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH and transition temperature (ΔT, showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have

  3. In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels

    Directory of Open Access Journals (Sweden)

    Natasha Yang

    2017-10-01

    Full Text Available The study examined the influence of chitosan, incorporated into whey protein and wheat starch thermo gels, on the in-vitro hydrolysis of the polysaccharide. Gels were subjected to the following external conditions containing α-amylase at constant incubation temperature of 37 °C: In the first procedure, they were immersed in phosphate buffer (0.05 M and maintained at pH 6.9 throughout the entire digestion. In the second instance, they were introduced into a salt solution, with pH and total volume adjusted at times in sync with the human gastrointestinal tract. Results indicate that low and medium molecular weight chitosan, in combination with whey protein, were effective at enhancing the protective barrier against starch degradation. Less maltose was liberated from gels containing medium molecular weight chitosan, as opposed to the low molecular weight counterpart, and results compare favorably with the outcome of the in-vitro digestion of binary whey protein and wheat starch composites. Keywords: Food science

  4. Structural Orders of Wheat Starch Do Not Determine the In Vitro Enzymatic Digestibility.

    Science.gov (United States)

    Wang, Shujun; Wang, Shaokang; Liu, Lu; Wang, Shuo; Copeland, Les

    2017-03-01

    In this study, we elucidated the underlying mechanisms that are responsible for the rate-limiting step for wheat starch digestion. Wheat starch samples with a degree of gelatinization (DG) ranging from 0 to 100% were prepared. As DG increased, the ordered structures of the starch were disrupted increasingly. In contrast, almost all of the increase in the rate and extent of in vitro enzymatic digestion coincided with a DG of only 6% and a minor loss of structural order. As DG increased beyond 6%, digestibility of the starch increased only slightly. We propose that the access and binding of enzymes to starch is greatly increased with only a small DG, which is followed by the simultaneous hydrolysis of crystalline and amorphous areas in gelatinized starch. In vitro enzymatic digestibility of starch was determined predominantly by enzyme binding to starch rather than the ordered structures of starch.

  5. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  6. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    Science.gov (United States)

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule.

  7. Gelatinized wheat starch influences crystallization behaviour and structure of roll-in shortenings in laminated bakery products.

    Science.gov (United States)

    Mattice, Kristin D; Marangoni, Alejandro G

    2018-03-15

    One hydrogenated and one non-hydrogenated shortening were baked with isolated components of a croissant matrix, including crystalline wheat starch, gelatinized wheat starch, gluten, and formed gluten network. The impact of the matrix components on fat crystallization was analyzed for polymorphism using powder X-ray diffraction, solid fat content by pulsed nuclear magnetic resonance and thermal behaviour by differential scanning calorimetry. When compared to results obtained from croissants prepared with the respective shortenings, samples containing gelatinized wheat starch displayed notably similar results: polymorphic conversion, from the β' to β form over storage, and visually broader peaks in the melting endotherms indicating a greater temperature was required to completely melt all of the fat. All other component mixtures behaved similar to the respective fats in bulk. The measured rate of crystallization was greater in samples containing gelatinized wheat starch, indicating that the gelatinized starch could act as a nucleation site to speed crystallization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Solid state characterization and rheological properties of native and modified Bambara groundnut (Vigna subterranean starches

    Directory of Open Access Journals (Sweden)

    Michael Odeniyi

    2017-09-01

    Full Text Available This study was designed to determine the suitability of native, pregelatinized and carboxymethylated Vigna subterranean (Bambara nut starches for pharmaceutical applications, through their characterization by means of physicochemical, rheological, thermal, morphological and instrumental spectroscopic methods. The native starch was extracted from Bambara nut, after which it was used to prepare both pregelatinized and carboxymethylated forms. Microscopy revealed increased in granular size on modification. Both pregelatinized and carboxymethylated Bambara starches had better flow properties and swellability compared to the native starch. Native Bambara starch had greater tendency to retrogradation, was more sensitive to heat and heat change, these were alleviated by both pregelatinization and carboxymethylation. DSC confirmed that carboxymethylated Bambara starch was the most thermally stable starch. Presence of functional groups and crystallinity were established by FTIR and XRD, respectively. Native and modified Bambara starches can be used as locally and readily available alternative excipients in pharmaceutical formulations.

  9. Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch.

    Science.gov (United States)

    Hu, Xiao-Pei; Zhang, Bao; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2017-10-01

    In this study, the effects of high hydrostatic pressure and retrogradation (HHPR) treatments on in vitro digestibility, structural and physicochemical properties of waxy wheat starch were investigated. The waxy wheat starch slurries (10%, w/v) were treated with high hydrostatic pressures of 300, 400, 500, 600MPa at 20°C for 30min, respectively, and then retrograded at 4°C for 4d. The results indicated that the content of slowly digestible starch (SDS) in HHPR-treated starch samples increased with increasing pressure level, and it reached the maximum (31.12%) at 600MPa. HHPR treatment decreased the gelatinization temperatures, the gelatinization enthalpy, the relative crystallinity and the peak viscosity of the starch samples. Moreover, HHPR treatment destroyed the surface and interior structures of starch granules. These results suggest that the in vitro digestibility, physicochemical, and structural properties of waxy wheat starch are effectively modified by HHPR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of Native and Pregelatinised Fonio starches on compression ...

    African Journals Online (AJOL)

    Native and modified (pregelatinised) Fonio starches were evaluated as binding agents in comparison with maize starch B.P. in paracetamol tablet formulations. Compressional properties of the formulations were analyzed using density measurements and assessed by the compression equation of Heckel. The mechanical ...

  11. In vitro Starch Hydrolysis Rate, Physico-chemical Properties and Sensory Evaluation of Butter Cake Prepared Using Resistant Starch Type III Substituted for Wheat Flour.

    Science.gov (United States)

    Pongjanta, J; Utaipattanaceep, A; Naivikul, O; Piyachomkwan, K

    2008-09-01

    Resistant starch type III (RS III) derived from enzymatically debranched high amylose rice starch was prepared and used to make butter cake at different levels (0, 5, 10, 15 and 20%) in place of wheat flour. Physico-chemical properties, sensory evaluation, and in vitro starch hydrolysis rate of the developed butter cake were investigated. This study showed that the content of resistant starch in butter cake increased significantly (Pcake with RS III replacement had a significantly lower in vitro starch hydrolysis rate compared to the control cake (0% RS III). The rates of starch hydrolysis from 0 to 180 min digestion time for 0, 5, 10 15, and 20% RS III in place of wheat flour in butter cakes were 3.70 to 67.65%, 2.97 to 64.86%, 2.86 to 59.99%, 2.79 to 55.96 and 2.78 to 53.04% respectively. The physico-chemical properties of 5 to 10% RS III substituted with wheat flour in the butter cake were not significantly different from the control cake and were moderately accepted by panellists in the sensory evaluation test.

  12. Effect of Red Seaweed Polysaccharides Agar (Gracilaria changii) on Thermal Properties and Microstructure of Wheat Starch

    International Nuclear Information System (INIS)

    Faizal, P.K.

    2009-01-01

    This study has been carried out on the mixture of Gracilaria changii agar (0.1 %, 0.2 %, 0.4 % and 0.8 %) with wheat starch. Scanning electron microscopy (SEM) was performed for morphology observation, and starch thermal analysis were carried out to determine the properties of gelatinization and retrogradation. Proximate analysis has been determined for isolated wheat starch and agar. Through SEM, interaction was first observed at 64 degree Celsius for 0.4 % agar but at 0.8 % of agar, a more extensive bridging was formed which enveloped the starch granules. Differential scanning calorimetric (DSC) result shows that as the addition of agar decreased the onset temperature (T o ) of gelatinization significantly (p< 0.05) but increased the gelatinized enthalpy (ΔH gel ), gelatinized temperature range (R g ) and Peak Height Index (PHI) significantly (p < 0.05). Agar lowered the retrogradation enthalpy (ΔH ret ), retrogradation range (R ret ) and retrogradation percentage (% R) of wheat starch significantly (p < 0.05). (author)

  13. Production of native-starch-degrading enzymes by a Bacillus firmus/lentus strain

    NARCIS (Netherlands)

    Wijbenga, Dirk-Jan; Beldman, Gerrit; Veen, Anko; Binnema, Doede

    1991-01-01

    A bacterium belonging to the Bacillus firmus/lentus-complex and capable of growth on native potato starch was isolated from sludge of a pilot plant unit for potato-starch production. Utilization of a crude enzyme preparation obtained from the culture fluid after growth of the microorganism on native

  14. The Gluten-Free Diet: Can Oats and Wheat Starch Be Part of It?

    Science.gov (United States)

    Poley, J Rainer

    2017-01-01

    Objective and Conclusion: Uncertainty still exists about the use of oats and wheat starch as part of a gluten-free diet in patients with celiac disease (CD). This review should help to clarify the issues at hand. Whereas uncontaminated (from gluten/gliadin) oats and oats from cultivars not containing celiac-activating sequences of proline and glutamine can be used without risk of intestinal damage, wheat starch should not be used, unless it is free of gluten-that is, deglutinized-because even small amounts of gluten over time are able to induce small intestinal mucosal damage.

  15. Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch.

    Science.gov (United States)

    Luo, Denglin; Li, Yun; Xu, Baocheng; Ren, Guangyue; Li, Peiyan; Li, Xuan; Han, Sihai; Liu, Jianxue

    2017-08-15

    The effects of three types of inulin, including FS (DP≤10), FI (DP of 2-60) and FXL (DP≥23), on the gelatinization and retrogradation characteristics of wheat starch were investigated. As the concentration of inulin added into starch increased, the gelatinization temperature increased whereas the breakdown value decreased, and the value of setback first decreased and then increased slightly. The three types of inulin with lower concentrations (inulin showed a significant suppression of starch retrogradation in the addition range of 5-7.5%. They can all inhibit amylose retrogradation, but accelerate amylopectin retrogradation. Inulin with lower DP has stronger effects on the starch retrogradation. Generally, the three types of inulin can all retard the retrogradation performance of wheat starch to some extent in the long-term storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of the acetylation process on native starches of yam (Dioscorea spp.

    Directory of Open Access Journals (Sweden)

    Jairo Salcedo Mendoza

    2016-07-01

    Full Text Available In Colombia, it is necessary to produce native and modified starches for the use of amylaceous raw materials of major socioeconomic importance. In this study, the effects of the acetylation process on structural, morphological and functional properties of native starches yam, Dioscorea spp. (D. alata and D. rotundata were evaluated. Chemical modification by esterification with acetic anhydride was performed at different reaction times, and morphological and structural changes were assessed using the following techniques: infrared spectroscopy (FTIR, X-ray diffraction and scanning electron microscopy (SEM. Acetylation produced slight changes in the granule morphology, and a decreased degree of crystallinity (DC associated with a slight increase in the amylose content was observed. The introduction of acetyl groups into the starch structure caused a decrease in the gelatinization temperature and an increased retro gradation tendency. The acetylated starches had low degrees of substitution (DS<0.2, meaning they can be used in the food industry, considering that they showed greater stability, greater water absorption capacity and better solubility than native starches.

  17. Effect of incorporating finger millet in wheat flour on mixolab behavior, chapatti quality and starch digestibility.

    Science.gov (United States)

    Sharma, Bharati; Gujral, Hardeep Singh; Solah, Vicky

    2017-09-15

    Wheat and finger millet flour (two cultivars) were blended in the ratio (3:1) to form a composite flour and its dough properties were studied on the mixolab. The chapatti making and digestibility behavior of the composite flour was also investigated. The wheat finger millet (WFM) flour blend displayed up to 30.7% higher total phenolic content (TPC), 38.2% higher total flavonoid content (TFC) and 75.4% higher antioxidant activity (AOA) than the wheat flour. Chapattis prepared from the composite blends exhibited lower retrogradation as evident by the mixolab retrogradation index, higher values of soluble starch and soluble amylose in stored chapatti. The slowly digestible starch (SDS) correlated positively (R=0.816, p<0.05) with TPC and water absorption correlated positively (R=0.995, p<0.05) with damage starch content. The chapattis made from the composite flour had higher SDS and resistant starch (RS) values demonstrating potential as a food with functional characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Agronomic factors related to the quality of wheat for the starch industry; part I: Sprout damage

    NARCIS (Netherlands)

    Kelfkens, M.; Hamer R.J.

    1991-01-01

    The wheat starch industry in the Netherlands processes about 300.000 t of wheat annually. However, only a small percentage of this wheat is grown in the Netherlands although it has been demonstrated that Dutch wheat varieties can also be successfully processed. Climatological and cultural aspects

  19. Assimilation of wheat starch in patients with chronic pancreatitis. Positive effect of enzyme replacement

    DEFF Research Database (Denmark)

    Nordgaard, I; Rumessen, J J; Gudmand-Høyer, E

    1992-01-01

    Pancreatic insufficiency due to chronic pancreatitis may lead to symptomatic malabsorption of both starch and fat. The absorption capacity of wheat starch has not been studied previously in patients with chronic pancreatitis, although this carbohydrate is a quantitatively important component of t...

  20. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina.

    Science.gov (United States)

    Chen, Guanxing; Zhu, Jiantang; Zhou, Jianwen; Subburaj, Saminathan; Zhang, Ming; Han, Caixia; Hao, Pengchao; Li, Xiaohui; Yan, Yueming

    2014-08-06

    Thorough understanding of seed starch biosynthesis and accumulation mechanisms is of great importance for agriculture and crop improvement strategies. We conducted the first comprehensive study of the dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon and compared the findings with those reported for common wheat (Chinese Spring, CS) and Aegilops peregrina. Only B-granules were identified in Brachypodium Bd21, and the shape variation and development of starch granules were similar in the B-granules of CS and Bd21. Phylogenetic analysis showed that most of the Bd21 starch synthesis-related genes were more similar to those in wheat than in rice. Early expression of key genes in Bd21 starch biosynthesis mediate starch synthesis in the pericarp; intermediate-stage expression increases the number and size of starch granules. In contrast, these enzymes in CS and Ae. peregrina were mostly expressed at intermediate stages, driving production of new B-granules and increasing the granule size, respectively. Immunogold labeling showed that granule-bound starch synthase (GBSSI; related to amylose synthesis) was mainly present in starch granules: at lower levels in the B-granules of Bd21 than in CS. Furthermore, GBSSI was phosphorylated at threonine 183 and tyrosine 185 in the starch synthase catalytic domain in CS and Ae. peregrina, but neither site was phosphorylated in Bd21, suggesting GBSSI phosphorylation could improve amylose biosynthesis. Bd21 contains only B-granules, and the expression of key genes in the three studied genera is consistent with the dynamic development of starch granules. GBSSI is present in greater amounts in the B-granules of CS than in Bd21; two phosphorylation sites (Thr183 and Tyr185) were found in Triticum and Aegilops; these sites were not phosphorylated in Bd21. GBSSI phosphorylation may reflect its importance in amylose synthesis.

  1. Influence of botanic origin and amylose content on the morphology of starch nanocrystals

    Science.gov (United States)

    LeCorre, Déborah; Bras, Julien; Dufresne, Alain

    2011-12-01

    Starch nanocrystals (SNC) are crystalline platelets resulting from the disruption of the semi-crystalline structure of starch granules by the acid hydrolysis of amorphous parts. The aim of this study was to assess the influence of botanic origin and amylose content of native starches on the morphology and properties of resulting nanoparticles. SNC were prepared from five different starches normal maize, high amylose maize, waxy maize, potato, and wheat; covering three botanic origins, two crystalline types, and three range of amylose content (0, 25, and 70%) for maize starch. Different types of nanocrystals were obtained with a thickness ranging between 4 and 8 nm and diameter from about 50 to 120 nm depending on the source. The comparison of their morphology, crystallinity, and rheological properties is proposed for the first time. For the same amylose content, maize, potato, and wheat resulted in rather similar size and crystallinity of SNC proving the limited influence of the botanic origin. For the same botanic origin (maize), differences in size were more important indicating the influence of the amylopectin content. Also, particles tended to show square shapes with increasing native starch's amylopectin content and A-type crystalinity. Thus, only high amylose content starches should be avoided to prepare SNC.

  2. Effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified White sorghum (Sorghum bicolor) starch

    International Nuclear Information System (INIS)

    Ali, Tahira Mohsin; Hasnain, Abid

    2013-01-01

    Highlights: ► Sorghum starches were chemically modified. ► Starch–lipid complexes were studied in the presence of emulsifiers. ► Type II complexes were also detected in native and oxidized starches on adding GMS. ► Starch–lipid complexes sharply reduced retrogradation in modified starches. - Abstract: The effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified white sorghum starches was studied. Complex forming tendency of white sorghum starch with commercially available emulsifiers GMS and DATEM improved after acetylation. Presence of emulsifiers reduced λ max (wavelength of maximum absorbance) both for native and modified sorghum starches suggesting lower availability of amylose chains to complex with iodine. In native white sorghum starch (NWSS) and oxidized white sorghum starch (OWSS), both Type I and Type II starch–lipid complexes were observed on addition of 1.0% GMS prior to gelatinization. Acetylated-oxidized white sorghum starch (AOWSS) formed weakest complexes among all the modified starches. The results revealed that antistaling characteristics of modified sorghum starches were enhanced when used in combination with emulsifiers. The most prominent decline in reassociative capability among modified starches was observed for acetylated starches.

  3. Effect of Ultrasound on Physicochemical Properties of Wheat Starch

    Directory of Open Access Journals (Sweden)

    Mahsa Majzoobi

    2014-04-01

    Full Text Available Application of ultrasound process is growing in food industry for different purposes including homogenization, extraction, blanching and removal of microorganisms, etc. On the other hand, starch is a natural polymer which exists in many foods or added into the food as an additive. Therefore, determination of the effects of ultrasound on starch characteristics can be useful in interpretation of the properties of starch-containing products. The main aim of this study was to determine the physicochemical changes of wheat starch treated by ultrasound waves. Therefore, an ultrasound probe device was used which ran at 20 kHz, 100 W and 22°C. Starch suspension in distilled water (30% w/w was prepared and treated with ultrasound for 5, 10, 15 and 20 min. The results showed that increases in processing duration led to increases in water solubility of starch, water absorption and gel clarity (as determined by spectrophotometry. Starch intrinsic viscosity as measured using an Ostwald U-tube showed lower intrinsic viscosity with increases in ultrasound time. Gel strength of the samples as determined using a texture analyzer was reduced by longer processing time. The scanning electron microscopy revealed that increasing the duration time of the ultrasound treatment could produce some cracks and spots on the surface of the granules. In total, it was concluded that the ultrasound treatment resulted in some changes from the starch granular scale to molecular levels. Some of the starch molecules were degraded upon ultrasound processing. Such changes may be observed for the starch-containing foods treated with ultrasound and they are enhanced with increases in ultrasound time intervals.

  4. Hydrolysis of wheat B-starch and characterisation of acetylated maltodextrin

    Czech Academy of Sciences Publication Activity Database

    Smrčková, P.; Horský, Jiří; Šárka, E.; Koláček, J.; Netopilík, Miloš; Walterová, Zuzana; Kruliš, Zdeněk; Synytsya, A.; Hrušková, K.

    2013-01-01

    Roč. 98, č. 1 (2013), s. 43-49 ISSN 0144-8617 R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : wheat B-starch * α-amylase * acetylated maltodextrin Subject RIV: JI - Composite Materials Impact factor: 3.916, year: 2013

  5. Absorption of wheat starch in patients resected for left-sided colonic cancer

    DEFF Research Database (Denmark)

    Nordgaard, I; Rumessen, J J; Nielsen, S A

    1992-01-01

    Bacterial fermentation of carbohydrate in the colon, producing short-chain fatty acids (SCFA)--and especially butyrate--has been shown possibly to impede cell proliferation and regulate cell differentiation of colonocytes. In patients with diverticular disease or benign polyps in the colon...... a hyperabsorption of potato starch in the small intestine has been found. We have investigated the absorption of wheat starch in 15 patients radically resected for cancer in the descending or sigmoid colon, and the results were compared with those of 15 healthy controls. The starch malabsorption was quantified...... also similar in patients and controls. The results do not support the theory that hyperabsorption of starch is characteristic of patients with malignant disease in the large intestine....

  6. Influence of Wheat and Maize Starch on Fermentation in the Rumen, Duodenal Nutrient Flow and Nutrient Digestibility

    Directory of Open Access Journals (Sweden)

    Milan Šimko

    2010-01-01

    Full Text Available We investigated the effects of feeding diets with different starch sources on fermentation in the rumen, duodenal nutrient flow and nutrient digestibility. The basis of the diets was maize silage and alfalfa hay supplemented with wheat meal in diet W, or maize meal in diet M. The experiment was performed on four Black-Spotted bulls with mean live weight of 525 kg, which were fed twice daily at 06.30 and 18.30 h. Experimental animals were fitted with ruminal fistulae and duodenal T-shaped cannulae. Cr2O3 was used as a marker of nutrient flow to the duodenum. Rations were formulated so that the ratio of starch to crude fibre (CF was 2.1:1 and the percentage of CF was maintained at 17% (DM. Duodenal chymus was collected at 2-h time intervals. Starch origin significantly affected ruminal fermentation. Concentration of propionic, butyric and lactic acid was higher with wheat than with maize meal. When the maize meal was the source of starch there was a significantly higher flow of fat, CF, nitrogen-free extract, and starch into duodenum. Differences in duodenal flow of crude protein were not significant across the starch sources. Intake of wheat meal or maize meal increased duodenal flow relative to intake by 33% or 42 % respectively. The apparent digestibility of dry matter (76 ± 2%, crude protein (67 ± 0.9%, CF (64 ± 1.9%, nitrogen-free extract (82 ± 1.5% and organic matter (76 ± 1.3% was significantly higher by offering wheat meal.

  7. Influence of botanic origin and amylose content on the morphology of starch nanocrystals

    International Nuclear Information System (INIS)

    LeCorre, Déborah; Bras, Julien; Dufresne, Alain

    2011-01-01

    Starch nanocrystals (SNC) are crystalline platelets resulting from the disruption of the semi-crystalline structure of starch granules by the acid hydrolysis of amorphous parts. The aim of this study was to assess the influence of botanic origin and amylose content of native starches on the morphology and properties of resulting nanoparticles. SNC were prepared from five different starches normal maize, high amylose maize, waxy maize, potato, and wheat; covering three botanic origins, two crystalline types, and three range of amylose content (0, 25, and 70%) for maize starch. Different types of nanocrystals were obtained with a thickness ranging between 4 and 8 nm and diameter from about 50 to 120 nm depending on the source. The comparison of their morphology, crystallinity, and rheological properties is proposed for the first time. For the same amylose content, maize, potato, and wheat resulted in rather similar size and crystallinity of SNC proving the limited influence of the botanic origin. For the same botanic origin (maize), differences in size were more important indicating the influence of the amylopectin content. Also, particles tended to show square shapes with increasing native starch’s amylopectin content and A-type crystalinity. Thus, only high amylose content starches should be avoided to prepare SNC.

  8. Evaluation of size distribution of starch granules in selected wheat varieties by the Low Angle Laser Light Scattering method

    International Nuclear Information System (INIS)

    Capouchová, I.; Petr, J.; Marešová, D.

    2003-01-01

    The distribution of the size of wheat starch granules using the method LALLS (Low Angle Laser Light Scattering), followed by the evaluation of the effect of variety, experimental site and intensity of cultivation on the vol. % of the starch A (starch granules > 10 μm) was determined. The total starch content and crude protein content in dry matter of flour T530 in selected collection of five winter wheat varieties were determined. Vol. % of the starch A in evaluated collection of wheat varieties varied between 65.31 and 72.34%. The effect of a variety on the vol. % of starch A seemed to be more marked than the effect of site and intensity of cultivation. The highest vol. % of starch A reached evaluated varieties from the quality group C, i.e. varieties unsuitable for baking utilisation (except variety Contra with high total content of starch in dry matter of flour T530, but relatively low vol. % of starch A). A low vol. % of starch A was also found in the variety Hana (very good variety for baking utilisation). Certain variety differences followed from the evaluation of distribution of starch fractions of starch granules, forming starch A. In the case of varieties Hana, Contra and Siria higher representation of fractions up to 30 μm was recorded, while starch A in the varieties Estica and Versailles was formed in higher degree by size fractions of starch granules over 30 μm and particularly size fraction > 50 μm was greatest in these varieties of all evaluated samples. With increasing total starch content in dry matter of flour T530 the crude protein content decreased; the vol. % of starch A not always increased proportionally with increasing total starch content. (author)

  9. Modeling of glucose release from native and modified wheat starch gels during in vitro gastrointestinal digestion using artificial intelligence methods.

    Science.gov (United States)

    Yousefi, A R; Razavi, Seyed M A

    2017-04-01

    Estimation of the amounts of glucose release (AGR) during gastrointestinal digestion can be useful to identify food of potential use in the diet of individuals with diabetes. In this work, adaptive neuro-fuzzy inference system (ANFIS), genetic algorithm-artificial neural network (GA-ANN) and group method of data handling (GMDH) models were applied to estimate the AGR from native (NWS), cross-linked (CLWS) and hydroxypropylated wheat starch (HPWS) gels during digestion under simulated gastrointestinal conditions. The GA-ANN and ANFIS were fed with 3 inputs of digestion time (1-120min), gel volume (7.5 and 15ml) and concentration (8 and 12%, w/w) for prediction of the AGR. The developed ANFIS predictions were close to the experimental data (r=0.977-0.996 and RMSE=0.225-0.619). The optimized GA-ANN, which included 6-7 hidden neurons, predicted the AGR with a good precision (r=0.984-0.993 and RMSE=0.338-0.588). Also, a three layers GMDH model with 3 neurons accurately predicted the AGR (r=0.979-0.986 and RMSE=0.339-0.443). Sensitivity analysis data demonstrated that the gel concentration was the most sensitive factor for prediction of the AGR. The results dedicated that the AGR will be accurately predictable through such soft computing methods providing less computational cost and time. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch.

    Science.gov (United States)

    Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing

    2017-04-01

    Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality.

    Science.gov (United States)

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2016-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P cake formulations at 5 and 10 % concentrations on a wheat flour basis and compared to native starch. The results revealed that when applied at 5 % concentrations, the modified starches reduced the hardness, cohesion, adhesion and chewiness of baked cakes and enhanced their elasticity, volume, height, crust color, and appearance as compared to native starch. These effects were more pronounced for the cake incorporating the dually modified starch.

  12. Effect of Pre-gelatinized Wheat Starch on Physical and Rheological Properties of Shortened Cake Batter and Cake Texture

    Directory of Open Access Journals (Sweden)

    F. Ebrahimi

    2016-10-01

    Full Text Available The focus of this study was the effect of 1.5%, 3% and 4.5% pre-gelatinized wheat starch (based on the total weight of cake batter on improving the qualitative properties of shortened cake batter. Specific volume and viscosity of the shortened cake batter were measured for controls, 1.5%, 3% and 4.5% gelatinized starch; some important properties such as texture and sensory evaluation were examined. By increasing pre-gelatinized wheat starch used in the batter, a significant difference was observed in the rheological properties of the batter. Cake batter properties were found improved compared to the control samples. The sample with 3% pre-gelatinized starch had a lower viscosity than other treatments. The treatment with 4.5% pre-gelatinized starch had the lowest specific volume compared to other treatments. The overall results showed that the shortened cake with 3% pre-gelatinized starch was the best treatment in terms of texture and sensory evaluation factors.

  13. Mutations in durum wheat SBEII genes conferring increased amylose and resistant starch affect grain yield components, semolina and pasta quality and fermentation responses in rats

    Science.gov (United States)

    Increased amylose in wheat (Triticum spp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that provide human health benefits. Since wheat foods are an important component of t...

  14. Laboratory-scale dry/wet-milling process for the extraction of starch and gluten from wheat

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Helmens, H.J.

    2009-01-01

    A laboratory-scale process is presented for the manufacture of starch and gluten from wheat. Main feature of this process is that whole wheat kernels are crushed dry between smooth rolls prior to wet disintegration in excess water in such way that gluten formation is prevented and fibres can be

  15. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response.

    Science.gov (United States)

    Chen, Guan-Xing; Zhen, Shou-Min; Liu, Yan-Lin; Yan, Xing; Zhang, Ming; Yan, Yue-Ming

    2017-10-23

    Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.

  16. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Science.gov (United States)

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  17. The Research on Thermal Properties and Hydrophobility of the Native Starch/hydrolysis Starch Blends with Treated CaCO3 Powder

    Science.gov (United States)

    Liu, Chia-I.; Huang, Chi-Yuan

    2008-08-01

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO3 increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 μmol and 0.14 μmol by the DNS measurement. Moreover, CaCO3 treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60° to 95° when 15wt% treated CaCO3 was added. Treated CaCO3 was confirmed to improve the hydrophobility of starch blends effectively.

  18. THE RESEARCH ON THERMAL PROPERTIES AND HYDROPHOBILITY OF THE NATIVE STARCH/HYDROLYSIS STARCH BLENDS WITH TREATED CaCO3 POWDER

    International Nuclear Information System (INIS)

    Liu, C.-I; Huang, C.-Y.

    2008-01-01

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO 3 increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 μmol and 0.14 μmol by the DNS measurement. Moreover, CaCO 3 treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60 deg. to 95 deg. when 15wt% treated CaCO 3 was added. Treated CaCO 3 was confirmed to improve the hydrophobility of starch blends effectively

  19. Particle size distribution of wheat starch granules in relation to baking properties of frozen dough.

    Science.gov (United States)

    Tao, Han; Wang, Pei; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-02-10

    The impact of freezing on the wheat starches with different particle size was studied using a range of characterization methods including X-ray diffraction, differential scanning calorimetry, the Rapid Visco Analyser and a reconstitution dough system. Wheat starches were fractionated into A- and B-type granules, and then subjected to freezing/thawing treatment for 3 cycles. The freezing treatment did not cause apparent damage on A-type granular surface but induced cracked structure on B-type granules. It facilitated materials such as amylose, proteins, and lipids leaching from starch granule and an increase in gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from freezing-treated B-granules while the crumb firmness significantly increased (p>0.05). No marked differences were observed in the counterparts of A-granules after freezing treatment. It seemed that the B-type granules were more sensitive to the freezing/thawing treatment, thus facilitating structural transformations from dough to bread. Results indicated that the deterioration in frozen bread quality derived from starch could be minimized by increasing the A-granules content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of a small amount of sodium carbonate on konjac glucomannan-induced changes in wheat starch gel.

    Science.gov (United States)

    Zhou, Yun; Zhao, Dan; Winkworth-Smith, Charles G; Foster, Tim J; Nirasawa, Satoru; Tatsumi, Eizo; Cheng, Yongqiang

    2015-02-13

    Wheat starch gels were produced with konjac glucomannan (KGM) and low concentrations of Na2CO3 (0.1-0.2 wt% of starch) using a rapid viscosity analyzer (RVA). The gelling properties of wheat starch in varying ratios of KGM and Na2CO3 were characterized by differential scanning calorimetry (DSC), rheometry and confocal laser scanning microscopy (CLSM). A small amount of Na2CO3 resulted in gels with increased elasticity whereas structural ordering during retrogradation was insignificantly affected. Comparison of CLSM images of composite gels revealed that Na2CO3 at 0.2 wt% of starch allowed the formation of fiber-like extensions around scattered swollen granules by KGM and amylose interaction, making swollen granules disperse within the micro phase, which was not typical in CLSM images of gels in the absence of Na2CO3. Dynamic storage modulus and dynamic power law exponent were substantially higher than those observed for the same concentration of KGM in the presence of Na2CO3, supporting the hypothesis that Na2CO3 could promote strong interchain associations between KGM and starch components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Pasta quality as impacted by the type of flour and starch and the level of egg addition.

    Science.gov (United States)

    Saleh, Mohammed; Al-Ismail, Khalid; Ajo, Radwan

    2017-10-01

    This study investigated the effects of substituting wheat flour with fractions of different starch types and egg levels on pasta quality. First order mixture response surface model was used where the effects of various starch types and egg levels on pasta quality were evaluated. Coefficients of estimation were determined and fractional contribution of wheat, starch type and egg levels were evaluated. Egg levels negatively (p egg level from 33 to 0%. Flow behavior index of treatments solution with various fractions of starch types and egg level ranged from 0.34 to 1.42 and was significantly (p cooked pasta quality including firmness, stickiness, cooking loss, and water uptake, keeping with consumer acceptability through varying starch type and egg level. Results show that flour and starch type and egg level interaction play significant role in pasta blends formulation. Moreover, substitution of wheat flour with acorn, native or modified corn and potato starches fractions, as well as with lupine, rice, tapioca, and stabilized rice bran flours would have significant effects on the physical properties and acceptability of various cereal products. For instance, the use of rice bran in potentially developed products would enhance the consumption of whole grain foods, resulting in improved intake of fiber and other healthy components. © 2016 Wiley Periodicals, Inc.

  2. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.

    Science.gov (United States)

    Moore, Samuel A; Ai, Yongfeng; Chang, Fengdan; Jane, Jay-lin

    2015-01-22

    This study aimed to understand differences in the resistant starch (RS) contents of native and modified starches obtained using two standard methods of RS content analysis: AOAC Method 991.43 and 2002.02. The largest differences were observed in native potato starch, cross-linked wheat distarch phosphate, and high-amylose corn starch stearic-acid complex (RS5) between using AOAC Method 991.43 with Bacillus licheniformis α-amylase (BL) and AOAC Method 2002.02 with porcine pancreatic α-amylase (PPA). To determine possible reasons for these differences, we hydrolyzed raw-starch granules with BL and PPA with equal activity at pH 6.9 and 37°C for up to 84 h and observed the starch granules displayed distinct morphological differences after the hydrolysis. Starches hydrolyzed by BL showed erosion on the surface of the granules; those hydrolyzed by PPA showed pitting on granule surfaces. These results suggested that enzyme reaction mechanisms, including the sizes of the binding sites and the reaction patterns of the two enzymes, contributed to the differences in the RS contents obtained using different methods of RS analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch

    Directory of Open Access Journals (Sweden)

    Ornanong S. Kittipongpatana

    2015-01-01

    Full Text Available Native jackfruit seed starch (JFS contains 30% w/w type II resistant starch (RS2 and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC, temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2% was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16. FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in Tg and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged.

  4. Effect of physico-chemical starch properties on bread quality and ageing (model study)

    International Nuclear Information System (INIS)

    Gambus, H.

    1997-01-01

    Wheat, rye and triticale starches, both native and those subjected to: segregation according to small granules (type B) and the large ones (type A), defatting with n-propanol and NaOH solution and irradiation by gamma rays at doses 3 and 5 kGy, as well as oat starch were analysed to determine their basic physico-chemical properties. Then all these starches were used in test with baking model pup loaves (40 g) from artificially composed flour, according to starch-gluten system based on recipe (for 4 pup loaves): 80 g starch d.m., 20 g dry vital gluten d.m., 8 g sugar, 3 g salt, 1 g yeast and 70 cm 3 water at 30 o C. Starch was the only alternative component in baking recipes. Additionally, wheat breads of 250 g were baked, in which part of flour was replaced by wheat and triticale starch fraction of large granules, irradiated rye and wheat starches, as well as by oat starch. Pup loaves and 250 g-loaves were evaluated on the day baking and during 3-day storage. Following parameters were determined: volume, penetration and crumb moisture and content of dry matter in crust. Also, sensory scores were performed. In addition, every day water extract from the pup loaves crumbs was prepared and in it dry matter and blue value as an indicator of soluble amylose were determined as well as carbohydrate substances were identified according to molecular mass using gel chromatography. Based on the results obtained negative effects of small starch granules and of a supplement of oat starch on bread quality were found, in spite of a beneficial effect of fatty substances contained in it, on retardation of the crumb hardening process. Also, a positive share of starch phospholipids was ascertained, not only in the retardation of amylose retrogradation but also in stabilization of crumb pores. It was observed that intensity of amylose retrogradation in crumb is determined by both the content of fatty substances in starch granules and the ratio of bound water by starch and protein

  5. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis.

    Science.gov (United States)

    Baks, Tim; Bruins, Marieke E; Matser, Ariette M; Janssen, Anja E M; Boom, Remko M

    2008-01-23

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with alpha-amylase from Bacillus licheniformis were compared. Suspensions of native starch or starch gelatinized at different conditions either with or without enzyme were hydrolyzed. During hydrolysis, the oligosaccharide concentration, the dextrose equivalent, and the enzyme activity were determined. We found that the hydrolyzate composition was affected by the type of starch pretreatment and the enzyme addition point but that it was just minimally affected by the pressure applied during hydrolysis, as long as gelatinization was complete. The differences between hydrolysis of thermally gelatinized, high-pressure gelatinized, and native starch were explained by considering the granule structure and the specific surface area of the granules. These results show that the hydrolyzate composition can be influenced by choosing different process sequences and conditions.

  6. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert; Hamer, Rob; Loos, Katja

    2015-01-01

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis.

  7. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Hamer, R.J.; Loos, K.

    2015-01-01

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis.

  8. Rheological and microstructural properties of Irradiated starch

    International Nuclear Information System (INIS)

    Atrous Turki, Hager

    2011-01-01

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  9. A new method to study simple shear processing of wheat gluten-starch mixtures

    NARCIS (Netherlands)

    Peighambardoust, S.H.; Goot, A.J. van der; Hamer, R.J.; Boom, R.M.

    2004-01-01

    This article introduces a new method that uses a shearing device to study the effect of simple shear on the overall properties of pasta-like products made from commercial wheat gluten-starch (GS) blends. The shear-processed GS samples had a lower cooking loss (CL) and a higher swelling index (SI)

  10. Inhibition of starch absorption by dietary fibre. A comparative study of wheat bran, sugar-beet fibre, and pea fibre

    DEFF Research Database (Denmark)

    Hamberg, O; Rumessen, J J; Gudmand-Høyer, E

    1989-01-01

    The effect of dietary fibre on starch absorption was investigated in 8 healthy subjects. Amounts of starch escaping small-bowel absorption was assessed by comparison of breath H2 excretion after test meals and after lactulose (10g). After ingestion of bread made from 100g of wheat flour increases...

  11. DSC studies of retrogradation and amylose-lipid transition taking place in gamma-irradiated wheat starch

    International Nuclear Information System (INIS)

    Ciesla, K.; Gluszewski, W.; Eliasson, A.C.

    2006-01-01

    It has been already shown that degradation resulting from gamma irradiation induces a decrease in order of starch granules and influences gelatinisation taking place during heating of starch and flour suspensions. In presented paper, DSC (differential scanning calorimetry) studies were carried out for wheat starch, non-irradiated and irradiated using doses in the range from 5 to 30 kGy. The influence of the conditions applied during DSC measurements on the possibility to observe differences between the amylose-lipid complex transition and retrogradation taking place in the non-irradiated and particularly irradiated starch samples was checked. The better differentiation between the amylose-lipid complex transition taking place in particular samples accompanied by the better reproducity were obtained in the case of dense suspensions as compared to the watery suspensions as well as during the first analysis performed for the recrystallised gels

  12. Hydrolysis of wheat B-starch and characterisation of acetylated maltodextrin.

    Science.gov (United States)

    Smrčková, Petra; Horský, Jiří; Šárka, Evžen; Koláček, Jaroslav; Netopilík, Miloš; Walterová, Zuzana; Kruliš, Zdeněk; Synytsya, Andrey; Hrušková, Kateřina

    2013-10-15

    Wheat B-starch was hydrolysed by α-amylase "Liquozyme supra" from Bacillus licheniformis at 90 °C and pH 7. After 2 h, the dextrose equivalent was 18; according to size exclusion chromatography, however, the hydrolysate contained not only dominant malto-oligosaccharides with the degree of polymerisation (DP)40. This non-uniformity of acetylated maltodextrin, both with respect to DP and to DS, must be taken into account in the development of acetylated-maltodextrin applications such as use as plasticisers or compatibilisers in biodegradable composites. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Cozar, O. [Academy of Romanian Scientists, Splaiul Independentei 54, 050094, Bucharest, Romania and National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch (Romania); Filip, C.; Tripon, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Cioica, N.; Coţa, C.; Nagy, E. M. [National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch, RO-400458 Cluj-Napoca (Romania)

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  14. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2016-12-01

    Partially hydrolyzed guar gum was prepared using enzymatic hydrolysis of native guar gum that can be utilized as soluble fiber source. The effect of partially hydrolyzed guar gum (PHGG) on pasting, thermo-mechanical and rheological properties of wheat flour was investigated using rapid visco-analyzer, Mixolab and Microdoughlab. Wheat flour was replaced with 1-5g PHGG per 100g of wheat flour on weight basis. PHGG addition decreased the peak, trough, breakdown, setback and final viscosity of wheat flour. Water absorption and amylase activity of wheat dough were increased whereas starch gelatinization and protein weakening of wheat dough were reduced as a result of PHGG addition to wheat flour. PHGG addition also increased the peak dough height, arrival time, dough development time, dough stability and peak energy of wheat dough system. However, dough softening was decreased after PHGG addition to wheat flour dough. Overall, it can be assumed that PHGG has influenced the properties of wheat flour dough system by decreasing the RVA viscosities and increasing the water absorption and starch gelatinization of wheat dough system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Total antioxidant capacity and starch digestibility of muffins baked with rice, wheat, oat, corn and barley flour.

    Science.gov (United States)

    Soong, Yean Yean; Tan, Seow Peng; Leong, Lai Peng; Henry, Jeya Kumar

    2014-12-01

    Muffins are a popular snack consumed in western and emerging countries. Increased glycemic load has been implicated in the aetiology of diabetes. This study examined the starch digestibility of muffins baked with rice, wheat, corn, oat and barley flour. Rapidly digested starch (RDS) was greatest in rice (445 mg/g) and wheat (444 mg/g) muffins, followed by oat (416 mg/g), corn (402 mg/g) and barley (387 mg/g). Total phenolic content was found to be positively correlated with total antioxidative capacity and inversely related to the RDS of muffins. The phenolic content was highest in muffin baked with barley flour (1,687 μg/g), followed by corn (1,454 μg/g), oat (945 μg/g), wheat (705 μg/g), and rice (675 μg/g) flour. Browning was shown not to correlate with free radical scavenging capacity and digestibility of muffins. The presence of high phenolic content and low RDS makes barley muffin an ideal snack to modulate glycemic response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications

    Directory of Open Access Journals (Sweden)

    Broglie Karen E

    2008-09-01

    Full Text Available Abstract Background Starch is of great importance to humans as a food and biomaterial, and the amount and structure of starch made in plants is determined in part by starch synthase (SS activity. Five SS isoforms, SSI, II, III, IV and Granule Bound SSI, have been identified, each with a unique catalytic role in starch synthesis. The basic mode of action of SSs is known; however our knowledge of several aspects of SS enzymology at the structural and mechanistic level is incomplete. To gain a better understanding of the differences in SS sequences that underscore their specificity, the previously uncharacterised SSIVb from wheat was cloned and extensive bioinformatics analyses of this and other SSs sequences were done. Results The wheat SSIV cDNA is most similar to rice SSIVb with which it shows synteny and shares a similar exon-intron arrangement. The wheat SSIVb gene was preferentially expressed in leaf and was not regulated by a circadian clock. Phylogenetic analysis showed that in plants, SSIV is closely related to SSIII, while SSI, SSII and Granule Bound SSI clustered together and distinctions between the two groups can be made at the genetic level and included chromosomal location and intron conservation. Further, identified differences at the amino acid level in their glycosyltransferase domains, predicted secondary structures, global conformations and conserved residues might be indicative of intragroup functional associations. Conclusion Based on bioinformatics analysis of the catalytic region of 36 SSs and 3 glycogen synthases (GSs, it is suggested that the valine residue in the highly conserved K-X-G-G-L motif in SSIII and SSIV may be a determining feature of primer specificity of these SSs as compared to GBSSI, SSI and SSII. In GBSSI, the Ile485 residue may partially explain that enzyme's unique catalytic features. The flexible 380s Loop in the starch catalytic domain may be important in defining the specificity of action for each

  17. Influence of sodium chloride on shear flow induced starch-gluten separation from Soissons wheat dough

    NARCIS (Netherlands)

    Zalm, van der E.E.J.; Goot, van der A.J.; Boom, R.M.

    2010-01-01

    Wheat dough can be separated into a starch-rich and a gluten-rich fraction by subjecting the dough to curvilinear shear flow. This paper presents the effect of salt (NaCl) addition on the shear-induced separation process. The separation (defined as the changes in protein concentration in the various

  18. Effect of sorghum flour addition on in vitro starch digestibility, cooking quality, and consumer acceptability of durum wheat pasta.

    Science.gov (United States)

    Khan, Imran; Yousif, Adel M; Johnson, Stuart K; Gamlath, Shirani

    2014-08-01

    Whole grain sorghum is a valuable source of resistant starch and polyphenolic antioxidants and its addition into staple food like pasta may reduce the starch digestibility. However, incorporating nondurum wheat materials into pasta provides a challenge in terms of maintaining cooking quality and consumer acceptability. Pasta was prepared from 100% durum wheat semolina (DWS) as control or by replacing DWS with either wholegrain red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30%, and 40% incorporation levels, following a laboratory-scale procedure. Pasta samples were evaluated for proximate composition, in vitro starch digestibility, cooking quality, and consumer acceptability. The addition of both RSF and WSF lowered the extent of in vitro starch digestion at all substitution levels compared to the control pasta. The rapidly digestible starch was lowered in all the sorghum-containing pastas compared to the control pasta. Neither RSF or WSF addition affected the pasta quality attributes (water absorption, swelling index, dry matter, adhesiveness, cohesiveness, and springiness), except color and hardness which were negatively affected. Consumer sensory results indicated that pasta samples containing 20% and 30% RSF or WSF had acceptable palatability based on meeting one or both of the preset acceptability criteria. It is concluded that the addition of wholegrain sorghum flour to pasta at 30% incorporation level is possible to reduce starch digestibility, while maintaining adequate cooking quality and consumer acceptability. © 2014 Institute of Food Technologists®

  19. A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects

    Directory of Open Access Journals (Sweden)

    Elin Östman

    2011-08-01

    Full Text Available Previous studies indicate that elevated amylose content in products from rice, corn, and barley induce lower postprandial glycaemic responses and higher levels of resistant starch (RS. Consumption of slowly digestible carbohydrates and RS has been associated with health benefits such as decreased risk of diabetes and cardiovascular disease.To evaluate the postprandial glucose and insulin responses in vivo to bread products based on a novel wheat genotype with elevated amylose content (38%.Bread was baked from a unique wheat genotype with elevated amylose content, using baking conditions known to promote amylose retrogradation. Included test products were bread based on whole grain wheat with elevated amylose content (EAW, EAW with added lactic acid (EAW-la, and ordinary whole grain wheat bread (WGW. All test breads were baked at pumpernickel conditions (20 hours, 120°C. A conventionally baked white wheat bread (REF was used as reference. Resistant starch (RS content was measured in vitro and postprandial glucose and insulin responses were tested in 14 healthy subjects.The results showed a significantly higher RS content (on total starch basis in breads based on EAW than in WGW (p<0.001. Lactic acid further increased RS (p<0.001 compared with both WGW and EAW. Breads baked with EAW induced lower postprandial glucose response than REF during the first 120 min (p<0.05, but there were no significant differences in insulin responses. Increased RS content per test portion was correlated to a reduced glycaemic index (GI (r= − 0.571, p<0.001.This study indicates that wheat with elevated amylose content may be preferable to other wheat genotypes considering RS formation. Further research is needed to test the hypothesis that bread with elevated amylose content can improve postprandial glycaemic response.

  20. Propriedades químicas e de pasta dos amidos de trigo e milho fosforilados Chemical and past properties of wheat and maize starches phosphorilads

    Directory of Open Access Journals (Sweden)

    Williams Pereira Batista

    2010-03-01

    Full Text Available Os amidos de trigo e milho foram fosforilados com tripolifosfato de sódio (TPS em 4 diferentes níveis de adição. As viscosidades máximas da pasta de trigo aumentaram e as temperaturas de pasta diminuíram à medida que cresceram os graus de substituição de grupos fosfato, enquanto que, para o amido de milho, as viscosidades máximas aumentaram e as temperaturas de pasta mantiveram-se constantes. Os amidos fosforilados (amido/água 1:10 foram submetidos à cocção (100,0 ºC/1,0 minuto, secagem (40,0 ºC/~4,0% de umidade e moagem (diâmetro de partícula, Φ = 0,149 mm para determinar o teor de amido resistente (AR. Para o menor grau de substituição de grupos fosfato no amido de trigo (0,0029, foi encontrado um teor de amido resistente de 30,46% e no amido de milho de 24,36%. Para o maior grau de substituição no amido de trigo (0,0127, foi encontrado um teor de AR de 46,69%, enquanto para o amido de milho, 28,40%. O aumento do grau de substituição, em ambos os casos, parece induzir um aumento no teor de amido resistente, e a fosforilação com TPS mostrou ser um excelente método para produzir quantidades significativas de amido resistente tanto no amido de trigo como no amido de milho.Wheat and maize starches were phosphorylated with sodium tripolyphosphate (TPS at 4 different levels of addition. The maximum viscosities of the wheat doughs formed were increased and the dough temperatures decreased as the degrees of substitution of phosphate groups were increased; while for the maize starch the viscosities were increased and the dough temperatures remained constant. The phosphorylated starches (starch/water, 1:10 were subjected to cooking (100 ºC/1 minute, followed by drying (40 ºC/~ 4.0 per cent moisture and milling (particle diameter, Φ = 0.149 mm to determine the resistant starch (RS content. For the lowest degree of substitution of phosphate groups in wheat starch (0.0029, resistant starch content of 30.46 per cent was found

  1. Effect of Sucrose Esters on the Physicochemical Properties of Wheat ...

    African Journals Online (AJOL)

    HP

    Purpose: To investigate the effect of sucrose esters on the physicochemical properties of wheat starch. Methods: Sucrose ester was mixed with wheat starch extracted from normal soft wheat cultivars and heated. Change in starch properties arising from the interaction between were assessed for starch blue value, viscosity ...

  2. Effect of a small amount of sodium carbonate on konjac glucomannan-induced changes in thermal behavior of wheat starch.

    Science.gov (United States)

    Zhou, Yun; Winkworth-Smith, Charles G; Wang, Yu; Liang, Jianfen; Foster, Tim J; Cheng, Yongqiang

    2014-12-19

    The effects of konjac glucomannan (KGM) on thermal behavior of wheat starch have been studied in the presence of low concentrations of Na2CO3 (0.1-0.2 wt% of starch). Confocal laser scanning microscopy (CLSM) allows the visualization of the starch gelatinization process and granule remnants in starch pastes. Heating the starch dispersion in KGM-Na2CO3 solution significantly delays granule swelling and inhibits amylose leaching, whereas Na2CO3 alone, at the same concentration, has little effect. Na2CO3 assists KGM in producing the extremely high viscosity of starch paste, attributing to a less remarkable breakdown of viscosity in subsequent heating, and protecting starch granules against crystallite melting. The distinct partially networked film around the surface of starch granules is evident in the CLSM images. We propose that Na2CO3 could trigger the formation of complexes between KGM and starch polymers, which exerts a protective effect on granular structure and modifying gelatinization characteristics of the mixtures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Structural changes of starch during baking and staling of rye bread.

    Science.gov (United States)

    Mihhalevski, Anna; Heinmaa, Ivo; Traksmaa, Rainer; Pehk, Tõnis; Mere, Arvo; Paalme, Toomas

    2012-08-29

    Rye sourdough breads go stale more slowly than wheat breads. To understand the peculiarities of bread staling, rye sourdough bread, wheat bread, and a number of starches were studied using wide-angle X-ray diffraction, nuclear magnetic resonance ((13)C CP MAS NMR, (1)H NMR, (31)P NMR), polarized light microscopy, rheological methods, microcalorimetry, and measurement of water activity. The degree of crystallinity of starch in breads decreased with hydration and baking to 3% and increased during 11 days of storage to 21% in rye sourdough bread and to 26% in wheat bread. (13)C NMR spectra show that the chemical structures of rye and wheat amylopectin and amylose contents are very similar; differences were found in the starch phospholipid fraction characterized by (31)P NMR. The (13)C CP MAS NMR spectra demonstrate that starch in rye sourdough breads crystallize in different forms than in wheat bread. It is proposed that different proportions of water incorporation into the crystalline structure of starch during staling and changes in starch fine structure cause the different rates of staling of rye and wheat bread.

  4. DSC Studies of Retrogradation and Amylose-Lipid Complex Transition Taking Place in Gamma Irradiated Wheat Starch

    International Nuclear Information System (INIS)

    Ciesla, K.

    2006-01-01

    Degradation resulting from gamma irradiation induces decrease in order of starch granules and influences the processes occurring in starch-water system. Differential scanning calorimetry (DSC) was applied at present for studying the effect of radiation with doses of 5 - 30 kGy on amylose-lipid complex transition and retrogradation occurring in wheat starch gels. Influence of the conditions applied during DSC measurements and intermediate storage was tested on the possibility to observe radiation effect. Wheat starch was irradiated with 60 C o gamma rays in a gamma cell Issledovatiel placed in the Department of Radiation Chemistry, INCT. DSC measurements were performed for ca. 50% and ca. 20% gels during heating - cooling - heating cycles (up to 3 cycles) in the temperature range 10 - 150 degree at heating and cooling rates of 10, 5 and 2.5 degree min - 1. The Seiko DSC 6200 calorimeter was used. Decrease in amylose-lipid complex transition temperature was found already after irradiation of wheat starch with a dose of 5 kGy showing modificatin of the complex structure. The differences between the irradiated and the non-irradiated samples became the easier seen in the every foregoing heating or cooling cycle as compared to the preceeding one. It is because that thermal treatment causes decrease of transition temperature in all the irradiated samples, with no effect or increase of that temperature observed in the non-irradiated ones. Irradiation hinders retrogradation taking place in ca. 50% gels but facilitates retrogradation occurring in ca. 20 % gels. Moreover, the expanded differences between the amylose-lipid complex formed in the irradiated and non-irradiated gels result due to their recrystallisation. Storage of the gels induces decrease in the temperature of the complex transition as compared to the last cycle of the first analysis. That decrease was, however, more significant in the case of all the irradiated samples than in the case of the initial sample. In

  5. The important role of salivary α-amylase in the gastric digestion of wheat bread starch.

    Science.gov (United States)

    Freitas, Daniela; Le Feunteun, Steven; Panouillé, Maud; Souchon, Isabelle

    2018-01-24

    The role of salivary α-amylase (HSA) in starch digestion is often overlooked in favour of that of pancreatic α-amylase due to the short duration of the oral phase. Although it is generally accepted that the amylase of salivary origin can continue to be active in the stomach, studies ascertaining its contribution are lacking. This study aimed to address this issue by coupling in vitro oral processing with an in vitro dynamic system that mimicked different postprandial gastric pH reduction kinetics observed in vivo following a snack- or lunch-type meal. The digestion of both starch and protein from wheat bread as well as the interplay between the two processes were studied. We have observed that the amylolytic activity of saliva plays a preponderant role hydrolysing up to 80% of bread starch in the first 30 min of gastric digestion. Amylolysis evolved exponentially and nearly superimposing curves were obtained regardless of the acidification profiles, revealing its high efficiency.

  6. Evaluation of the Disintegrant Properties of Native Starches of Five New Cassava Varieties in Paracetamol Tablet Formulations

    Directory of Open Access Journals (Sweden)

    Frank Kumah Adjei

    2017-01-01

    Full Text Available The disintegrant potential of native starches of five new cassava (Manihot esculenta Crantz. varieties developed by the Crops Research Institute of Ghana (CRIG was studied in paracetamol tablet formulations. The yield of the starches ranged from 8.0 to 26.7%. The starches were basic (pH: 8.1–9.9, with satisfactory moisture content (≤15%, swelling capacity (≥20%, ash values (0.05 to those containing maize starch BP. The disintegration times of the tablets decreased with increase in concentration of the cassava starches. The tablets passed the disintegration test (DT ≤ 15 min and exhibited faster disintegration times (p>0.05 than those containing maize starch BP. The disintegration efficiency ratio (DER and the disintegration parameter DERc of the tablets showed that cassava starches V20, V40, and V50 had better disintegrant activity than maize starch BP. The tablets passed the dissolution test for immediate release tablets (≥70% release in 45 min with dissolution rates similar to those containing maize starch BP.

  7. Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine fecal microbiota in vitro

    Science.gov (United States)

    Aims: The goal was to determine the effect of starch source (corn, oats and wheat) and concentration on: 1) total amylolytic bacteria, Group D Gram-positive cocci (GPC), lactobacilli, and lactate-utilizing bacteria, and 2) fermentation by equine microflora. Methods and Results: When fecal washed cel...

  8. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  9. Development of oxidised and heat-moisture treated potato starch film.

    Science.gov (United States)

    Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra

    2012-05-01

    This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Microfiltration of wheat starch suspensions using multichannel ceramic membrane

    Directory of Open Access Journals (Sweden)

    Ikonić Bojana B.

    2011-01-01

    Full Text Available This work investigates influence of different process parameters such as transmembrane pressure, flow rate and concentration of wheat starch suspension on the average permeate flux and permeate flux decline. Used membrane in all experiments was 19 channels ceramic membrane with 0.2 μm pore size. Experimental results were analyzed using response surface methodology. It is observed that the significant average permeate flux enhancement of 200% was achieved by the increase of the transmembrane pressure, while the increase of flow rate and concentration affected the increase in average permeate flux in the range of 40-100%. Permeate flux decline was almost independent of the transmembrane pressure, but the increase of the flow rate, as well as the decrease of the concentration led to decrease of permeate flux decline in the range of 20-50%.

  11. Paenibacillus granivorans sp. nov., a new Paenibacillus Species which Degrades Native Potato Starch Granules

    NARCIS (Netherlands)

    Maarel, M.J.E.C. van der; Veen, A.; Wijbenga, D.J.

    2000-01-01

    From a native potato starch-degrading enrichment culture, strain A30 had been isolated and had tentatively been identified as a member of the Bacillus firmus/lentus group (WIJBENGA et al. Appl. Microbiol. Biotechnol. 35, 180-184, 1991). In this paper the isolate A30 is further characterized using

  12. Influence of phosphate esters on the annealing properties of starch

    DEFF Research Database (Denmark)

    Wischmann, Bente; Muhrbeck, Per

    1998-01-01

    The effects of annealing on native potato, waxy maize, and phosphorylated waxy maize starches were compared. Phosphorylated waxy maize starch responded to annealing in a manner between that of the naturally phosphorylated potato starch and that of the native waxy maize starch. The gelatinisation...... end-point temperature was increased, whereas in the native waxy maize it was decreased. On the other hand, the onset temperature change was much larger in potato starch than in the two waxy maize starches. Steeping also yielded intermediate effects on the phosphorylated waxy maize starch....... It was concluded that the phosphate groups have similar effects as they do in the native, naturally phosphorylated potato starch, although the substitution pattern is not entirely the same in the artificially phosphorylated starch....

  13. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch-whey protein blend edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-02-01

    Starch and whey protein isolate and their mixtures were used for making edible films. Moisture sorption isotherms, water vapour permeability, sorption of aroma compounds, microstructure, water contact angle and surface properties were investigated. With increasing protein content, the microstructure changes became more homogeneous. The water vapour permeability increases with both the humidity gradient and the starch content. For all films, the hygroscopicity increases with starch content. Surface properties change according to the starch/whey protein ratio and are mainly related to the polar component of the surface tension. Films composed of 80% starch and 20% whey proteins have more hydrophobic surfaces than the other films due to specific interactions. The effect of carbohydrate/protein ratio significantly influences the microstructure, the surface wettability and the barrier properties of wheat starch-whey protein blend films. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals.

    Science.gov (United States)

    Mukurumbira, Agnes; Mariano, Marcos; Dufresne, Alain; Mellem, John J; Amonsou, Eric O

    2017-09-01

    Amadumbe (Colocasia esculenta), commonly known as taro is a tropical tuber that produces starch-rich underground corms. In this study, the physicochemical properties of starch nanocrystals (SNC) prepared by acid hydrolysis of amadumbe starches were investigated. Two varieties of amadumbe corms were used for starch extraction. Amadumbe starches produced substantially high yield (25%) of SNC's. These nanocrystals appeared as aggregated and individual particles and possessed square-like platelet morphology with size: 50-100nm. FTIR revealed high peak intensities corresponding to OH stretch, CH stretch and H 2 O bending vibrations for SNCs compared to their native starch counterparts. Both the native starch and SNC exhibited the A-type crystalline pattern. However, amadumbe SNCs showed higher degree of crystallinity and slightly reduced melting temperatures than their native starches. Amadumbe SNCs presented similar thermal decomposition property as their native starches. Amadumbe starch nanocrystals may have potential application in biocomposite films due to their square-like platelet morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Pre-anthesis high temperature acclimation alleviates the negative effects of postanthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Liu, Fulai

    2012-01-01

    The potential role of pre-anthesis high temperature acclimation in alleviating the negative effects of post-anthesis heat stress on stem stored carbohydrate remobilization and grain starch accumulation in wheat was investigated. The treatments included no heat-stress (CC), heat stress at pre...... had much higher starch content, and caused less modified B-type starch granule size indicators than the CH plants. Our results indicated that, compared with the non-acclimated plants, the pre-anthesis high temperature acclimation effectively enhanced carbohydrate remobilization from stems to grains...

  16. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  17. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta.

    Science.gov (United States)

    Okamoto, Kenji; Nitta, Yasuyuki; Maekawa, Nitaro; Yanase, Hideshi

    2011-03-07

    The white rot fungus Trametes hirsuta produced ethanol from a variety of hexoses: glucose, mannose, cellobiose and maltose, with yields of 0.49, 0.48, 0.47 and 0.47 g/g of ethanol per sugar utilized, respectively. In addition, this fungus showed relatively favorable xylose consumption and ethanol production with a yield of 0.44 g/g. T. hirsuta was capable of directly fermenting starch, wheat bran and rice straw to ethanol without acid or enzymatic hydrolysis. Maximum ethanol concentrations of 9.1, 4.3 and 3.0 g/l, corresponding to 89.2%, 78.8% and 57.4% of the theoretical yield, were obtained when the fungus was grown in a medium containing 20 g/l starch, wheat bran or rice straw, respectively. The fermentation of rice straw pretreated with ball milling led to a small improvement in the ethanol yield: 3.4 g ethanol/20 g ball-milled rice straw. As T. hirsuta is an efficient microorganism capable of hydrolyzing biomass to fermentable sugars and directly converting them to ethanol, it may represent a suitable microorganism in consolidated bioprocessing applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Autoclave and beta-amylolysis lead to reduced in vitro digestibility of starch.

    Science.gov (United States)

    Hickman, B Elliot; Janaswamy, Srinivas; Yao, Yuan

    2009-08-12

    In this study, a combination of autoclave and beta-amylolysis was used to modulate the digestibility of normal corn starch (NCS) and wheat starch (WS). The modification procedure comprised three cycles of autoclave at 35% moisture content and 121 degrees C, beta-amylolysis, and one additional cycle of autoclave. Starch materials were sampled at each stage and characterized. The fine structure of starch was determined using high-performance size-exclusion chromatography, the micromorphology of starch dispersion was imaged using cryo-SEM, the crystalline pattern was evaluated using wide-angle X-ray powder diffraction, and the digestibility was measured using Englyst assay. After beta-amylolysis, amylose was enriched (from 25.4 to 33.2% for NCS and from 27.5 to 32.8% for WS) and the branch density was increased (from 5.2 to 7.7% for NCS and from 5.3 to 7.9% for WS). Cryo-SEM images showed that the autoclave treatment led to the formation of a low-swelling, high-density gel network, whereas beta-amylolysis nearly demolished the network structure. The loss of A-type crystalline structure and the formation of B- and V-type structures resulted from autoclave, which suggests the formation of amylose-based ordered structure. Englyst assay indicated that, due to beta-amylolysis, the resistant starch (RS) content was increased to 30 from 11% of native NCS and to 23 from 9% of native WS. In contrast, autoclave showed only minor impact on RS levels. The increase of RS observed in this study is associated with enhanced branch density, which is different from the four types of RS commonly defined.

  19. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    Science.gov (United States)

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  20. NUTRITIONAL CHARACTERISTICS OF EMMER WHEAT VARIETIES

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2015-02-01

    Full Text Available The objective of this study was to evaluate the nutritional compounds (fat, sugars, crude protein, soluble fiber, ash and starch of four emmer wheat varieties grown under the conditions of organic farming system. The experiment was established on Scientific Research base Dolná Malanta, near Nitra in Slovakia during 2010 – 2011 and 2011 – 2012 growing seasons. Nutritional parameters, except crude protein content, were not influenced by the variety and weather conditions. Agnone variety had the highest content of fat, crude protein and starch but the lowest content of soluble dietary fiber. The lowest values of fat, crude protein had Molise sel Colli variety; Farvento variety had the lowest sugars and starch content. Emmer wheat as ancient wheat has a unique composition in secondary components, such as starch, which may play a role as functional food ingredients.

  1. Chemically Modified Starch; Allyl- and Epoxy-Starch Derivatives: Their Synthesis and Characterization

    NARCIS (Netherlands)

    Franssen, M.C.R.; Boeriu, C.

    2014-01-01

    Both native and modified starches, such as starch that is pregelatinized, extruded, acid-converted, cross-linked, and substituted, are widely used in industry. This chapter describes a mild two-step process for the synthesis of novel, highly reactive granular epoxy-starch derivatives. Via this

  2. The influence of α-amylase supplementation, γ-irradiation (60Co) as well as long time of storage of wheat grain on flour technological properties

    International Nuclear Information System (INIS)

    Warchalewski, J.R.

    1989-01-01

    The varieties of winter wheat, Aria and Beta, were studied. The Aria variety was stored for the period of four years. The part of wheat grain from Beta variety was irradiated with γ rays ( 60 Co). In extracts from wheat kernels and flour protein content, total α- and β-amylolytic activity as well as α-amylolytic activity were determined, α-amylases of native and fungal origin were added to the flour obtained from samples of stored wheat kernels (Aria), irradiated and non-irradiated (Beta). Consequently native α-amylase activity of flour increased by 25% and 50%, respectively. Extensive technological estimation of grain and flour with amylase supplements was carried out. The study included: sedimentation analysis, falling number test, milling experiment, farinogram and extensogram analyses, measurement of the degree of damaged starch and flour colour, as well as baking experiment. The obtained experimental loaves of bread were tested for their ability to remain fresh. It was found out that the stored grain flour was characterized by the highest α-amylolytic activity and the lowest falling number value, whereas the irradiated grain flour showed the highest degree of starch damage and water absorption. When α-amylase supplementation to doughs was not accompanied by either irradiation or storage of grain, it definitely changed their physical properties for the worse. The negative influence of native α-amylases appeared to be less significant than that of fungal α-amylases. The positive influence of α-amylase supplementations, especially of those increasing by 25% the native α-amylolytic activity of flour on volume, and freshness of loaves of bread was observed. (author)

  3. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2012-02-01

    Full Text Available This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR. Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L. The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E. By using the developed process scheme, a highly clear hydrolysate with dextrose equivalent (DE approximately 97 could be produced, provided the increase of solution viscosity during the liquefaction was precisely controlled. The excessive space time could result in reduction in conversion degree of starch. Moreover, a residence time distribution study confirmed that the EMR could be modelled as a simple continuous stirred tank reactor (CSTR. Using Lineweaver-Burk analysis, the apparent Michaelis-Menten constant (Km and glucose production rate constant (k2 were 552 (g/l and 4.04 (min-1, respectively. Application of simple CSTR model with those kinetic parameters was quietly appropriate to predict the reactor’s performance at low space time.

  4. Hydration properties and phosphorous speciation in native, gelatinized and enzymatically modified potato starch analyzed by solid-state MAS NMR

    DEFF Research Database (Denmark)

    Larsen, Flemming H.; Kasprzak, Miroslaw Marek; Lærke, Helle Nygaard

    2013-01-01

    Hydration of granular, gelatinized and molecularly modified states of potato starch in terms of molecular mobility were analyzed by 13C and 31P solid-state MAS NMR. Gelatinization (GEL) tremendously reduced the immobile fraction compared to native (NA) starch granules. This effect was enhanced...... by enzyme-assisted catalytic branching with branching enzyme (BE) or combined BE and β-amylase (BB) catalyzed exo-hydrolysis. Carbons of the glycosidic α-1,6 linkages required high hydration rates before adopting uniform chemical shifts indicating solid-state disorder and poor water accessibility...... regions was only observed in NA starch. Moreover phosphorous was observed in a minor pH-insensitive form and as major phosphate in hydrated GEL and BE starches....

  5. Changes in physicochemical properties and in vitro starch digestion of native and extruded maize flours subjected to branching enzyme and maltogenic α-amylase treatment.

    Science.gov (United States)

    Román, Laura; Martínez, Mario M; Rosell, Cristina M; Gómez, Manuel

    2017-08-01

    Extrusion is an increasingly used type of processing which combined with enzymatic action could open extended possibilities for obtaining clean label modified flours. In this study, native and extruded maize flours were modified using branching enzyme (B) and a combination of branching enzyme and maltogenic α-amylase (BMA) in order to modulate their hydrolysis properties. The microstructure, pasting properties, in vitro starch hydrolysis and resistant starch content of the flours were investigated. Whereas BMA treatment led to greater number of holes on the granule surface in native samples, B and BMA extruded samples showed rougher surfaces with cavities. A reduction in the retrogradation trend was observed for B and BMA native flours, in opposition to the flat pasting profile of their extruded counterparts. The glucose release increased gradually for native flours as the time of reaction did, whereas for extruded flours a fast increase of glucose release was observed during the first minutes of reaction, and kept till the end, indicating a greater accessibility to their porous structure. These results suggested that, in enzymatically treated extruded samples, changes produced at larger hierarchical levels in their starch structure could have masked a slowdown in the starch digestion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Process for the production of starch and alcohol from substances containing starch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N B; McFate, H A; Eubanks, E M

    1969-01-01

    Almost complete extraction of starch from wheat, rice, maize, etc., is achieved more economically then by conventional processes. Starch-containing cereal is soaked, the magma is broken and the seed removed. The magma is then drained and separated into a liquid filtrate consisting of starch, gluten and fine fibers, and a solid residue made up of coarse fibers, husks and grit. The liquid filtrate is sieved to remove the fine fibers, and then centrifuged to obtain pure, gluten-free starch. The solid residue is treated with a mineral acid in a converter to give sugar, thus forming a material which is fermented and distilled to give alcohol.

  7. A comparative study of the physicochemical properties of starches ...

    African Journals Online (AJOL)

    Some properties of starches from cassava, potato and sweet potato were compared with cereal starches from maize, wheat, millet and sorghum. The aim was to determine the properties of tuber and root crop starches and compare them with cereal starches in addition to unravelling the potential of commonly grown ...

  8. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.

    Science.gov (United States)

    Shang, Yaqian; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-06-13

    This paper describes a new method to prepare spherulites from normal corn starch by a combination of enzymatic (mixtures of α-amylase and amyloglucosidase) and acid hydrolysis followed by recrystallization of the hydrolyzed products. The resulting spherulites contained a higher proportion of chains with a degree of polymerization (DP) of 6-12 and a lower proportion of chains with DP of 25-36, compared to those of native starch. The spherulites had an even particle size of about 2 μm and a typical B-type crystallinity. The amounts of long- and short-range molecular order of double helices in starch spherulites were larger, but the quality of starch crystallites was poorer, compared to that of native starch. This study showed an efficient method for preparing starch spherulites with uniform granule morphology and small particle size from normal corn starch. The ratios of α-amylase and amyloglucosidase in enzymatic hydrolysis had little effect on the structure of the starch spherulites.

  9. Effect of low-doses gamma radiation on physico-chemical properties of cereal starches

    International Nuclear Information System (INIS)

    Gambus, H.; Juszczak, L.; Achremowicz, B.

    1995-01-01

    Wheat starch of Emika variety was treated with 3 and 5 kGy doses of gamma radiation, rye starch of Dankowskie Zlote variety and triticale starch of Dagro variety - with 3 kGy doses. Radiation of this starch caused an increase of reduction ability and water solubility at 60 and 80 o C. However with the increased radiation doses a significant decrease of maximum viscosity and of the viscosity of starch pastes being cooled to 50% was observed. Mild radiopolimerization also decreased the degree of retrogradation of wheat and rye starch pastes stored at above 0 o C. (author)

  10. Physicochemical characterization of starches from seven improved ...

    African Journals Online (AJOL)

    SARAH

    2014-01-31

    Jan 31, 2014 ... Key words: Cassava, starch, functional properties, industrial utilization. ... in demand for starch (Davis et al., 2002). Potato, maize, wheat and cassava are the major ... ambient temperature and stored at 4 °C for 4 weeks.

  11. Characterization of chestnut (Castanea sativa, mill starch for industrial utilization

    Directory of Open Access Journals (Sweden)

    Demiate Ivo Mottin

    2001-01-01

    Full Text Available Studies were conducted to characterize the chestnut and its starch. Chemical composition of the chestnuts showed high level of starch. Moisture level in the raw nuts was around 50g/100g in wet basis and starch content, around 80g/100g in dry basis; other nut flour components were protein (5.58 g/100g, lipid (5.39 g/100g, crude fiber (2.34 g/100g and ash (2.14 g/100g. Starch fraction was chemically characterized in order to identify the granule quality as compared with those of cassava and corn. This fraction showed more lipids and proteins than the other starches. Chestnut starch granules showed peculiar shape, smaller than the control starches and low amount of damaged units. Chemical composition concerning amylose : amylopectin ratio was intermediate to that presented by cassava and corn starch granules. Water absorption at different temperatures as well as solubility were also intermediate but closer to that presented by cassava granules. The same behavior was observed in the interaction with dimethyl-sulfoxide. Native starch granules and those submitted to enzymatic treatment with commercial alpha-amylase and also with enzymes from germinated wheat were observed by scanning electronic microscopy. Water suspensions of chestnut starch granules were heated to form pastes that were studied comparatively to those obtained with cassava and corn starches. Viscographic pattern of chestnut starch pastes showed a characteristic profile with high initial viscosity but peak absence, high resistance to mechanical stirring under hot conditions and high final viscosity. There was no way to compare it with the paste viscographic profiles obtained with the control starches. Chestnut starch pastes were stable down to pH 4 but unstable at pH 3. The water losses observed in the chestnut starch pastes after freeze-thaw cycles showed more similarity to the pattern observed in corn starch pastes as well as clarity and strength of the gel. In general the results

  12. Combination process method of lactic acid hydrolysis and hydrogen peroxide oxidation for cassava starch modification

    Science.gov (United States)

    Sumardiono, Siswo; Pudjihastuti, Isti; Budiyono, Hartanto, Hansen; Sophiana, Intan Clarissa

    2017-05-01

    Indonesia is one of the world's largest wheat importer, some research are conducted to find other carbohydrate sources which can replace wheat. Cassava is very easy to find and grown in tropical climates especially Indonesia. The research is focused on cassava starch modification as a substitute for wheat flour in order to reduce consumption of wheat flour. The aim of this research is to assess the effect of temperature, pH, and the concentration of H2O2 in modifying cassava starch which. The combination methods are lactic acid hydroxylation and hydrogen peroxide oxidation to improve baking expansion. The carboxyl group, carbonyl group, swelling power, starch solubility, and baking expansion of starch are analized and calculated. Results showed that the modified cassava starch can substitute wheat flour with optimum conditions process at a concentration of H2O2 is 1.5% w/w, oxidation temperature is 50°C, and pH is 3 by the value of swelling power is 6.82%, solubility is 0.02%, and baking expansion is 7.2 cm3/gram.

  13. Adaptation to the digestion of nutrients of a starch diet or a non-starch polysaccharide diet in group-housed pregnant sows

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Kemp, B.; Hartog, den L.A.; Schrama, J.W.; Verstegen, M.W.A.

    2002-01-01

    A trial was conducted with twenty group-housed pregnant sows to study the adaptation in nutrient digestibility to a starch-rich diet or a diet with a high level of fermentable non-starch polysaccharides (NSP) during a time period of 6 weeks. The starch-rich diet was primarily composed of wheat, peas

  14. Preparation and Characterization of Some Polyethylene Modified- Starch Biodegradable Films

    International Nuclear Information System (INIS)

    Badrana, A.S.; Ramadanb, A.M.; Ibrahim, N.A.; Kahild, T.; Hussienc, H.A.

    2005-01-01

    Blends of LDPE with soluble starch, wheat flour and commercial starch were prepared by mixing starch (or flour) with styrene then blending the mixture with LDPE, The starch percents vary between 5 and 50% of the total weight. Their physical and mechanical properties were recorded and compared with pure LDPE. It was observed that the increase in starch or wheat flour contents of the mixture was reversibly proportional to the tensile strength and % elongation. Samples were tested for water absorption. All of the samples were insoluble in cold and boiling water. Moisture uptake increased with immersion time and increasing starch content. The changes in the tensile strength of LDPE/starch (or wheat flour) after the course of thermal oxidation was measured. These results show negligible changes in the tensile strength of the control sample as compared to that of the samples containing the additives. Oxidation processes take advantage of the high temperatures (40-50 degree C) and the time. It was also observed that after 10 weeks of soil burial, the mechanical properties of the films decrease, mainly, due to starch removal from the films. Also, for the weight loss a drastic decrease was observed after 10 weeks of soil burial thereafter it preceded slowly. The LDPE/ starch strips showed weight loss after treating with a-amylase this due to hydrolysis and leaching of the starch. The rate of starch hydrolysis increases with the increase in starch content of the sample. The influence of addition of starch on the overall migration of these films, with different food simulant, was studied, at different temperatures (-4 degree. 25 degree and 40 degree C). All values were significantly lower than the upper limit for overall migration set by the EU (10 mg/dirf) for food grade plastics packaging materials

  15. Acetylation and characterization of banana (Musa paradisiaca) starch.

    Science.gov (United States)

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  16. Significance of starch properties and quantity on sponge cake volume

    Science.gov (United States)

    We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy and waxy endosperm, and hard wheat, were tested for amylose content, pasting properties, and SC baking quality. S...

  17. Proteomic analysis of the impacts of powdery mildew on wheat grain.

    Science.gov (United States)

    Li, Jie; Liu, Xinhao; Yang, Xiwen; Li, Yongchun; Wang, Chenyang; He, Dexian

    2018-09-30

    Powdery mildew of wheat is one of the major foliar diseases, causing significant yield loss and flour quality change. In this study, grain protein and starch response to powdery mildew infection were investigated. Total protein, glutenin and gliadin exhibited a greater increase in grains from infected wheat, while the content of total starch and amylopectin was decreased. Comparative proteomic analysis demonstrated that the overabundant protein synthesis-related proteins might facilitate the accumulation of storage proteins in grains from infected plants. The significant increase in triticin, serpin and HMW-GS in grains from infected wheat might relate to the superior gluten quality. In addition, overabundant carbohydrate metabolism-related proteins in grains from infected wheat were conducive to the depletion of starch, whereas the decreased abundance of ADP glucose pyrophosphorylase might be related to the deficiency of starch synthesis. These results provide a deeper understanding on the change of wheat quality under powdery mildew infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. PREDICTION OF WHITE FLOUR QUALITY OBTAINED BY INDUSTRIAL MILLING OF WHEAT

    Directory of Open Access Journals (Sweden)

    IULIANA APRODU

    2014-08-01

    Full Text Available In order to establish the relations between quality of the wheat and white flour obtained through industrial milling, several parameters related to functional properties of the proteins and starch were analyzed. The parameters defining the proteins functionality are wet gluten, Gluten index, deformation energy of dough and minimum torque C2 and allowed establishing significant correlations between wheat and flour. Concerning the starch baking performance, the parameters that allowed establishing significant correlations between wheat and flour are falling number value, amylase activity, starch gelatinization and cooking stability range. Analyzing the trend of variation of the quality parameters given by Mixolab and Alveograph tests for wheat and flour, one can see that it is possible to predict the flour quality based on wheat quality.

  19. Comparison of various types of starch when used in meat sausages.

    Science.gov (United States)

    Skrede, G

    1989-01-01

    Technological and sensory properties of meat sausages formulated with 4·0% of either potato flour, modified (acetylated distarch phosphate) potato starch, wheat, corn or tapioca starch were compared. Sausages were analyzed after cooking at temperatures between 65 and 85°C followed by storage at 5°C and -25°C. Characteristics evaluated were weight loss during cooking and storage, instrumentally and sensory assessed firmness, taste and smell of sausages. The results revealed differences in the suitability of starches for use in meat sausages. Part of the differences could be ascribed to differences in gelatination properties of the starches. With the criteria used for evaluating quality, potato flour was rated as the best suited starch followed by wheat starch while tapioca was rated as the least suited. Corn starch required cooking temperatures above 75°C and showed relatively low freeze/thaw stability. The modified potato starch stored well both above and below the freezing point. Copyright © 1989. Published by Elsevier Ltd.

  20. Effect of starch type on the physico-chemical properties of edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-05-01

    Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Effects of Treatments on Batu Banana Flour and Percentage of Wheat Substitution on The Resistant Starch, In Vitro Starch Digestibility Content and Palatability of Cookies Made with Banana (Musa balbisiana Colla) Flour

    Science.gov (United States)

    Ratnasari, D.; Rustanti, N.; Arifan, F.; Afifah, DN

    2018-02-01

    Diabetes mellitus (DM) is the most common endocrine disease worldwide. Resistant starch is polysaccharide that is recommended for DM patient diets. One of the staple crops containing resistant starch is banana. It is the fourth most important staple crop in the world and critical for food security, best suited plant in warm, frost-free, and coastal climates area. Among banana varieties, Batu bananas (Musa balbisiana Colla) had the highest content of resistant starch (~39%), but its use as a food ingredient is limited. Inclusion of Batu banana flour into cookies manufacturing would both increase the economic value of Batu bananas and provide alternative snacks for DM patients. Here we sought to examine whether cookies made with modified Batu banana flour would be a suitable snack for DM patients. This study used a completely randomized design with two factors: substitution of Batu banana flour (25%, 50%,75%) for wheat-based flour and Batu banana flour treatment methods (no treatment, autoclaving-cooling, autoclaving-cooling-spontaneous fermentation). The resistant starch and in vitro starch digestibility levels were analyzed using two-way ANOVA and Tukey test, whereas the acceptance level was analyzed by Friedman and Wilcoxon tests. The content of resistant starch and in vitro starch digestibility of the different treatments ranged from 3.10 to 15.79% and 16.03 to 52.59%, respectively. Both factors differed significantly (p0.05). Meanwhile, palatability in terms of color, aroma, texture, and flavor differed significantly among the different treatments and starch contents (ppatients. Keywords: Batu banana, cookies, resistant starch, in vitro starch digestibility

  2. Comparative studies of starch susceptibilities to α-amylase ...

    African Journals Online (AJOL)

    ayoade

    of the four starch samples varied; amylose content of starch from maize varieties was higher than ... plants as an energy store. ... staple foods as potatoes, wheat, maize (corn), rice and ... of its various chemical and physical properties, can be.

  3. COMPARISON AMONG PRE-GELATINIZED STARCHES OF DIFFERENT BOTANICAL ORIGINS USED IN NOBLE CRAYFISH ASTACUS ASTACUS DIETS

    Directory of Open Access Journals (Sweden)

    D’AGARO E.

    2006-01-01

    Full Text Available The objective of the present experiment was to compare the biological value and the binding functionality of four pre-gelatinized starches (wheat, diet 1; waxy maize, diet 2; maize, diet 3 and potato, diet 4 used in crayfish diets. 360 juvenile of A. astacus (initial b.w.: 0.70 ± 0.15 g were cultured in 12 tanks for 43d. Growth performance were significantly higher in crayfish fed diets containing wheat and waxy maize compared to those containing maize and potato pre-gelatinized starches. Disintegration in water and shear force tests of diets confirmed the superior binding capability of pre-gelatinized starches obtained from wheat and waxy maize. These results suggest that the pregelatinized wheat and waxy maize starches are the best choice for the production of diets for the noble crayfish.

  4. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  5. Biodegradable polymers by reactive blending trans-esterification of thermoplastic starch with poly (vinyl acetate) and poly (vinyl acetate-co-butyl acrylate)

    CSIR Research Space (South Africa)

    Vargha, V

    2005-04-01

    Full Text Available . Partial trans-esterification took place between wheat starch and the polymers. The blends appeared as homogenous, translucent films with one glass transition temperature range, between that of starch and of the polymer. The presence of wheat starch...

  6. Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography.

    Science.gov (United States)

    Ahmadi-Abhari, S; Woortman, A J J; Hamer, R J; Loos, K

    2013-12-15

    Amylose forms inclusion complexes with lysophosphatidylcholine (LPC), that decrease the susceptibility of amylose to amylase degradation. This study on the influence of complexation on starch susceptibility to amylase explains the nature of this protective effect. Wheat starch suspensions (9% w/w) containing 0.5-5% LPC were subjected to hydrolysis by porcine pancreatic α-amylase at 37 °C for several digestion times. The digesta were analysed by size-exclusion chromatography (SEC). The molar mass distribution was closely dependent on the digestion time and amount of LPC. This study precisely demonstrates the alteration of the digestion profile of starch on a molecular level, influenced by amylose-LPC complexation; however the effect depends on the digestion time. During 15 and 30 min digestion, inclusion complexes not only protect amylopectin in the initial hydrolysis stage, but also demonstrate lower susceptibility of the molecular amylose complexes to amylase hydrolysis. Digestion for 240 min resulted in a lower oligosaccharide peak concentration, in the presence of a high LPC concentration, which is related to less degradation of complexed amylose fraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Modification of cassava starch using combination process lactic acid hydrolysis and micro wave heating to increase coated peanut expansion quality

    Science.gov (United States)

    Sumardiono, Siswo; Pudjihastuti, Isti; Jos, Bakti; Taufani, Muhammad; Yahya, Faad

    2017-05-01

    Modified cassava starch is very prospective products in the food industry. The main consideration of this study is the increasing volume of imported wheat and the demand for modified cassava starch industry. The purpose of this study is the assessing of lactic acid hydrolysis and microwave heating impact to the physicochemical and rheological properties of modified cassava starch, and test applications of modified cassava starch to coated peanut expansion quality. Experimental variables include the concentration of lactic acid (0.5% w/w, 1% w/w; 2% w/w), a time of hydrolysis (15, 30, 45 minutes), a time of microwave heating (1, 2, 3 hours). The research step is by dissolving lactic acid using aquadest in the stirred tank reactor, then added cassava starch. Hydrolysed cassava starch was then heated by microwave. Physicochemical properties and rheology of the modified cassava starch is determined by the solubility, swelling power, and test congestion. The optimum obtained results indicate that solubility, swelling power, congestion test, respectively for 19.75%; 24.25% and 826.10% in the hydrolysis treatment for 15 minutes, 1% w lactic acid and microwave heating 3 hours. The physicochemical and rheological properties of modified cassava starch have changed significantly when compared to the native cassava starch. Furthermore, these modified cassava starch are expected to be used for the substitution of food products.

  8. Hydroxypropylation of pigeon pea (cajanus cajan) starch: Preparation, functional characterizations and enzymatic digestibility

    International Nuclear Information System (INIS)

    Lawal, O.S.

    2008-05-01

    Hydroxypropyl starch derivatives were prepared from pigeon pea starch (NPPS) which is an unconventional starch source. Functional parameters and characterization of both native and modified starches were carried out. The starch granules appeared oval or elliptical in shape with sizes ranging from 7 - 40 μm in width and 10 . 30 μm in length. Hydroxypropylation did not alter the shape of the starch granules in a pronounced way. Generally, the x-ray diffractograms of both native and hydroxypropyl derivatives showed the 'C' pattern. However, slight reductions were observed in the intensity of starches after modification. At all temperatures studied (30 - 90 deg. C), swelling and solubility of hydroxypropylated starches were higher than the NPPS. Progressive increases in swelling capacity and solubility were observed as the MS increased among the hydroxypropylated starches. Hydroxypropylation reduced starch paste turbidity on storage. Also, studies showed that syneresis reduced after hydroxypropylation. In addition, syneresis reduced as the MS of the hydroxypropyl starches increased. The results indicate that pasting temperature and peak temperature reduced after modification but peak viscosity increased in hydroxypropylated starch derivatives compared with the native starch. Setback reduced in hydroxypropylated starches compared with the native starch. Enthalpy of gelatinization and percentage retrogradation reduced after hydroxypropylation and progressive reductions were observed as the MS increased among the starch derivatives. Hydroxypropylation increased enzymatic digestibility. (author)

  9. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.

    Science.gov (United States)

    Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D

    2016-05-01

    During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Utilization of sweetpotato starches and flours as composites with ...

    African Journals Online (AJOL)

    Hussein

    2015-01-07

    Jan 7, 2015 ... Also, blends of wheat and sweet potato starch were developed in the ratios 80:20 ... Functional properties of wheat: sweet potato composite flour ..... 32: 115-119. Ulm SG (1988) The effect of Storage Condition on Selected.

  11. Effect of nitrogen fertilizer on distribution of starch granules in different regions of wheat endosperm

    Directory of Open Access Journals (Sweden)

    Fei Xiong

    2014-02-01

    Full Text Available This study provided visual evidence of a nitrogen effect on starch granules (SGs in wheat endosperm. Winter wheat (Titicum aestivum L. cultivar Xumai 30 was cultured under no nitrogen (control and 240 kg ha− 1 of nitrogen applied at the booting stage. The number, morphology, and size of A- and B-type SGs in subaleurone of dorsal endosperm (SDE, center of dorsal endosperm (CDE, modified aleurone (MA, subaleurone of ventral endosperm (SVE, and center of ventral endosperm (CVE were observed under light and electron microscopes. (1 The distribution of SGs in SDE was similar to that in SVE, the distributions of SGs in CDE and CVE were similar, but the distribution of SGs in MA was different from those in the other four endosperm regions. The number of SGs in the five endosperm regions was in the order SDE > CDE > SVE > CVE > MA. (2 Nitrogen increased the number of A- and B-type SGs in SDE and SVE. Nitrogen also increased the number of B-type SGs but decreased the number of A-type SGs in CDE and CVE. Nitrogen decreased the numbers of A-type and B-type SGs in MA. The results suggest that increased N fertilizer application mainly increased the numbers of small SGs and decreased the numbers of large SGs, but that the results varied in different regions of the wheat endosperm.

  12. Lima Bean Starch-Based Hydrogels | Oladebeye | Nigerian Journal ...

    African Journals Online (AJOL)

    Hydrogels were prepared by crosslinking native lima bean starch and polyvinyl alcohol (PVA) with glutaraldehyde (GA) at varying proportions in an acidic medium. The native starch (N-LBS) and hydrogels (L-GA (low glutaraldehyde) and H-GA (high glutaraldehyde)) were examined for their water absorption capacity (WAC) ...

  13. Comparative Evaluation of Some Properties of Native and Oxidized ...

    African Journals Online (AJOL)

    The study was designed to produce native starches from cassava, yam and rice, and to modify a portion of the native starches by oxidation and compare their properties. The modification process was carried out by treating the native starches with food grade sodium hypochlorite (NaOCl). The proximate, swelling index and ...

  14. Characterization of Gamma-Irradiated Egyptian Wheat Flour

    International Nuclear Information System (INIS)

    Amer, H.H.; Attia, A. A.; Elsayed, A.A.; Ali, M.A.

    2008-01-01

    Physical, rheological and baking properties of bread Shamy, prepared from gamma-irradiated Egyptian wheat flour up to 25 KGy as one of common types of bread in Egypt, were studied and the acceptability of bread was evaluated by sensory tests. All amylo-, farino-, and extensograph characteristics and also sample ph showed significant decrease as irradiation dose increased. Such results could be explained in terms of loss of unique elastic and cohesive properties of wheat gluten and starch damage upon increment of radiation dose. The improvement in properties of bread, baked from flour irradiated up to 7.5 KGy, could be explained on the basis of a simulation in gas production during dough fermentation due to increase in starch degradation products. However, bread, prepared from wheat samples irradiated above 7.5 KGy, exhibited significantly lower values of acceptance because of physico-chemical changes in both starch and gluten

  15. Protein and starch concentrates of air-classified field pea and zero-tannin faba bean for weaned pigs.

    Science.gov (United States)

    Gunawardena, C K; Zijlstra, R T; Goonewardene, L A; Beltranena, E

    2010-08-01

    Air-classified pulse (non-oilseed legume) protein and starch may replace specialty protein and starch feedstuffs in diets for weaned pigs. In Exp. 1, three specialty protein sources (5% soy protein concentrate, 5% corn gluten meal, and 5% menhaden meal in the control diet) were replaced with 16% zero-tannin hulled or dehulled faba bean, or 17.5% field pea protein concentrate. In total, 192 group-housed pigs (2 gilts and 2 barrows per pen; BW = 7.5 +/- 1.4 kg) were fed wheat-based diets (3.60 Mcal/kg of DE and 3.3 g of standardized ileal digestible Lys/Mcal DE) over 28 d for 12 pen observations per each of 4 diets. Overall, protein source did not affect ADFI, ADG, or G:F. Apparent total tract digestibility (ATTD) of DM, GE, and P was greater (P bean and field pea protein concentrate diets than the diet with 3 specialty protein sources. In Exp. 2, faba bean and field pea starch concentrates were compared with corn, wheat, tapioca, and potato starch as dietary energy sources. In total, 36 individually housed barrows (BW = 8.0 +/- 1.5 kg) were fed 1 of 6 diets for 15 d. Feces and urine were collected from d 8 to 14, and jugular blood was sampled after overnight fast and refeeding on d 15. Starch source did not affect N retention as a percentage of N intake. For d 0 to 14, ADFI of pigs fed field pea starch was greater (P bean starch. Pigs fed tapioca, field pea, wheat, or corn starch grew faster (P bean or potato starch. For d 0 to 14, pigs fed corn or wheat starch had a 0.1 greater (P bean, field pea, or potato starch. The ATTD of DM, GE, CP, and starch and the DE value of potato starch were much less (P bean, wheat, and potato starch, respectively. However, postprandial plasma insulin tended to be 844 and 577 pmol/L greater (P bean and corn starch, respectively, than for pigs fed potato starch. The high insulin response of pigs fed faba starch could not be explained. In conclusion, air-classified pulse protein concentrates can replace specialty protein feedstuffs in

  16. Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch

    International Nuclear Information System (INIS)

    Wang Zuohua; Xiang Bo; Cheng Rumei; Li Yijiu

    2010-01-01

    In this paper, different starches were modified by diethylenetriamine. The native starch reacted with diethylenetriamine giving CAS, whereas the enzymatic hydrolysis starch was modified by diethylenetriamine producing CAES. Adsorption capacities of CAES for four acid dyes, namely, Acid orange 7 (AO7), Acid orange 10 (AO10), Acid green 25 (AG25) and Acid red 18 (AR18) have been determined to be 2.521, 1.242, 1.798 and 1.570 mmol g -1 , respectively. In all cases, CAES has exhibited higher sorption ability than CAS, and the increment for these dyes took the sequence of AO7 (0.944 mmol g -1 ) > AO10 (0.592 mmol g -1 ) > AR18 (0.411 mmol g -1 ) > AG25 (0.047 mmol g -1 ). Sorption kinetics and isotherms analysis showed that these sorption processes were better fitted to pseudo-second-order equation and Langmuir equation. Chemical sorption mechanisms were confirmed by studying the effects of pH, ionic strength and hydrogen bonding. Thermodynamic parameters of these dyes onto CAES and CAS were also observed and it indicated that these sorption processes were exothermic and spontaneous in nature.

  17. The Effect of Natuzyme in the Diets Containing Non-Starch Polysaccharides on Meat Quality of Native Chicken

    Directory of Open Access Journals (Sweden)

    S Suhermiyati

    2011-05-01

    Full Text Available Abstract. The purpose of this research was to determine the effect of the use of Natuzyme in feed containing non-starch polysaccharides on the quality of chicken meat. Materials used were 71 native hens of 18 week-old. The experiment was conducted using Completely Randomized Design (CRD, 3 x 3 factorial pattern. Each treatment was repeated three times and was tested further with Duncan t test. The first treatment was the use of non-starch polysaccharides (R with the levels of 0, 5 and 10%. The second treatment was the use of Natuzyme (S with the levels of 0, 0.1 and 0.2%. The variables measured were: energy consumption, fat consumption, carcass weight, meat glycogen, meat fat, and cholesterol of meat. The results showed that the treatments did not significantly affect energy consumption, fat consumption, carcass weight and fat content of meat. The use of non-starch polysaccharides did not significantly affect the levels of meat glycogen, while the use of Natuzyme significantly affected the levels of meat cholesterol. The conclusion is that the Natuzyme only works on feedstuffs, not in the chicken digestive tract. The sources of non-starch polysaccharide in feedstuffs can be used as an energy source for chickens until a level of 10%. Key Words: Natuzyme, non-starch polysaccharides, meat quality

  18. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties.

    Science.gov (United States)

    Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra

    2017-04-15

    Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Starch-based carbohydrates display the bifidogenic and butyrogenic properties in pH-controlled faecal fermentation

    DEFF Research Database (Denmark)

    Plongbunjong, Vijitra; Graidist, Potchanapond; Knudsen, Knud Erik Bach

    2017-01-01

    Starch-based carbohydrates, native rice starch (NRS), isomaltooligosaccharide produced from native rice starch (rIMO), commercial isomaltooligosaccharide (cIMO), resistant starch type 2 (RS2) and type 3 (RS3) were investigated the bifidogenic and butyrogenic properties. The result confirmed...

  20. The effect of gamma irradiation on the functional properties of various starches: A comparative study

    International Nuclear Information System (INIS)

    Benbettaieb, Nasreddine

    2010-01-01

    Irradiation is one of the most effective methods able to change starch structure and its functional properties. Effects of irradiation are largely related to particular structure and molecular organisation of starch from various botanical sources. In this research, the effect of gamma irradiation (3, 5, 10, 20, 35 and 50kGy) on the rheological, structural, and morphological properties of three starch varieties (potato, tapioca and wheat) was studied. Rheological analyses show that all the starches develop different behaviours during gelatinization. Potato starch yielded the high swelling power (SP) and exhibited a maximum value of consistency during pasting, followed by that of tapioca one. The lower values of SP and maximum consistency were observed in the case of wheat starch. For all starch varieties, the pic consistency during pasting decrease with increasing irradiation dose. An increase in the SP was observed for all the studied starches irradiated with lower dose (until 20kGy). This parameter decreases at higher doses. On the other hand, irradiation improves the water solubility index (WSI) of all the studied starch. In addition, spectra of Fourier transformed infrared spectroscopy (FTIR) showed that the irradiated starch displayed a significant decrease in the intensity of the OH stretch (3000; 3600 cm -1 ), C H stretch (between 2800 and 3000 cm -1 ), bending mode of water (between 1600 and 1800 cm -1 ) and in the bending mode of glycosidic linkage (between 900 and 950cm -1 ). Structural analysis using electron spins resonance (ESR) illustrates the presence of three signals in 3490, 3500 and 3510 G, respectively. These signals confirm the presence of free radicals in the tapioca and wheat starches through radiation treatment. The X-ray diffraction (XRD) spectra showed that potato starch has B type morphology while tapioca and wheat starches have a crystalline A type morphology. In the same analysis, it was shown that irradiation treatment has no major

  1. Chemical, morphological, rheological and thermal properties of Solanum lycocarpum phosphorylated starches

    Directory of Open Access Journals (Sweden)

    Diego Palmiro Ramirez Ascheri

    2014-08-01

    Full Text Available The increasing need for starches with specific characteristics makes it important to study unconventional starches and their modifications in order to meet consumer demands. The aim of this work was to study physicochemical characteristics of native starch and phosphate starch of S. lycocarpum. Native starch was phosphated with sodium tripolyphosphate (5-11% added with stirring. Chemical composition, morphology, density, binding ability to cold water, swelling power and solubility index, turbidity and syneresis, rheological and calorimetric properties were determined. Phosphorus was not detected in the native sample, but the phosphating process produced modified starches with phosphorus contents of 0.015, 0.092 and 0.397%, with the capacity of absorbing more water, either cold or hot. Rheological data showed the strong influence of phosphorus content on viscosity of phosphate starch, with lower pasting temperature and peak viscosity higher than those of native starch. Enthalpy was negatively correlated with the phosphorus content, requiring 9.7; 8.5; 8.1 and 6.4 kJ g-1 of energy for the transition from the amorphous to the crystalline state for the starch granules with phosphorus contents of 0; 0.015; 0.092 and 0.397%, respectively. Cluster analysis and principal component analysis showed that starches with 0.015 and 0.092% phosphorus have similar characteristics and are different from the others. Our results show that the characteristics of phosphate modified S. lycocarpum starch have optimal conditions to meet the demands of raw materials, which require greater consistency in stickiness, combined with low rates of retrogradation and syneresis.

  2. Properties and applications of starch-converting enzymes of the α-amylase family

    NARCIS (Netherlands)

    Maarel, Marc J.E.C. van der; Veen, Bart van der; Uitdehaag, Joost C.M.; Leemhuis, Hans; Dijkhuizen, L.

    2002-01-01

    Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of

  3. Properties and applications of starch-converting enzymes of the alpha-amylase family

    NARCIS (Netherlands)

    van der Maarel, MJEC; van der Veen, B; Uitdehaag, JCM; Leemhuis, H; Dijkhuizen, L

    2002-01-01

    Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of

  4. Effects of water on starch-g-polystyrene and starch-g-poly(methyl acrylate) extrudates

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1982-01-01

    Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45; 68% of the polystyrene formed was grafted to starch, and corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and plasticizing effects of water are summarized

  5. Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer.

    Science.gov (United States)

    Sun, Yujie; Hu, Qiongen; Qian, Jiangtao; Li, Ting; Ma, Piming; Shi, Dongjian; Dong, Weifu; Chen, Mingqing

    2016-03-30

    Based on stearyl chloride and native starch, esterified starch were prepared and the chemical structure was characterized by (1)H NMR and FTIR. It was found that stearyl chloride was an efficient agent to fabricate esterified starch with high degree of substitution (DS). During the melt blending of esterified starch (80 wt%) and poly(caprolactone) (PCL, 20 wt%), it was shown the torque of PCL/esterified starch was much lower than that of PCL/native starch without any plasticizer, and further decreased with increasing DS. Compared with PCL/native starch, the tensile properties of PCL/esterified starch composites were significantly enhanced. The tensile strength and elongation at break were increased from 2.7 MPa to 56% for PCL/native starch composites to 9.1 MPa and 626% for PCL/esterified starch ones with DS of 1.50, respectively. SEM observation revealed the esterified starch particles in matrix became smaller and more uniform. In addition, the water resistance and hydrophobic character of PCL/esterified starch composites were improved. PCL composites containing 80 wt% esterified starch with favorable mechanical properties would have great potential applications in broad areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A radioimmunoassay for wheat gliadin to assess the suitability of gluten free foods for patients with coeliac disease.

    Science.gov (United States)

    Ciclitira, P J; Ellis, H J; Evans, D J; Lennox, E S

    1985-03-01

    Coeliac disease is a clinical condition characterised by malabsorption secondary to abnormalities of the small intestine. The condition is known to be exacerbated by wheat gliadin, rye, barley and possibly oats. The only assays that are available for testing for the presence of wheat gluten in foods are double diffusion against rabbit anti-gliadin antiserum and measurement of Kjeldahl nitrogen in products derived from wheat flour. We have developed a radioimmunoassay for wheat gliadin with a detection limit of 1 ng. Nominally gluten free foods based on wheat starch have been shown to contain up to 1.9 X 10(-2)% wheat gliadin. Bread made from Nutregen wheat starch which has now been withdrawn contains 6.4 mg gliadin per standard 30 g slice. A radioimmunoassay for wheat gliadin could be used to define standards for the suitability of gluten free products based on wheat starch for patients with coeliac disease.

  7. The effect of acid hydrolysis on the technological functional properties of pinhão (Araucaria brasiliensis starch

    Directory of Open Access Journals (Sweden)

    Roberta Cruz Silveira Thys

    2013-02-01

    Full Text Available Technological functional properties of native and acid-thinned pinhão (seeds of Araucária angustifolia, Brazilian pine starches were evaluated and compared to those of native and acid-thinned corn starches. The starches were hydrolyzed (3.2 mol.L-1 HCl, 44 ºC, 6 hours and evaluated before and after the hydrolysis reaction in terms of formation, melting point and thermo-reversibility of gel starches, retrogradation (in a 30-day period and measurements every three days, paste freezing and thawing stability (after six freezing and thawing cycles, swelling power, and solubility. The results of light transmittance (% of pastes of native and acid-thinned pinhão starches was higher (lower tendency to retrogradation than that obtained for corn starches after similar storage period. Native pinhão starch (NPS presented lower syneresis than native corn starch (NCS when submitted to freeze-thaw cycles. The acid hydrolysis increased the syneresis of the two native varieties under storage at 5 ºC and after freezing and thawing cycles. The solubility of NPS was lower than that of native corn starch at 25, 50, and 70 ºC. However, for the acid-thinned pinhão starch (APS, this property was significantly higher (p < 0.05 when compared to that of acid-thinned corn starch (ACS. From the results obtained, it can be said that the acid treatment was efficient in producing a potential fat substitute from pinhão starch variety, but this ability must be further investigated.

  8. DEVELOPMENT OF TECHNOLOGY FOR WHEAT PROCESSING INTO ALCOHOL AND PROTEIN PRODUCT

    Directory of Open Access Journals (Sweden)

    T. I. Romanyuk

    2015-01-01

    Full Text Available In the alcohol industry it is important to create non-waste technology for grain processing into alcohol. The aim of research was the development of technology for wheat processing into ethanol and protein product. We studied the process of enzymatic hydrolysis of starch with glucoamylase of Glucogam preparation. We determined the optimal dosage of the enzyme 8 units. GlA/g of starch, and the temperature of 55°C. In the study of protein hydrolysis by the concomitant to glucoamylase protease of enzyme Glucogam preparation accumulation of amino nitrogen of 4.5 mg / cm 3 in 7 hours of bioconversion takes place. Separation of the resulting saccharified mass was carried out by centrifugation into the filtrate and protein mass. Centrifugation was carried out at a rotational speed of 2500 rev / min for 8 minutes. Protein was dried to 5% moisture content at temperatures not exceeding 35°C, milled, and examined its properties in comparison with native wheat gluten. The resulting product had the following characteristics: the solubility of 10%, water-holding capacity of 1.53 g / g, and fat binding capacity of 1.9 g /g. We investigated the process of fermentation of clarified wort with the dry solids concentration of 14%. We used the yeast Saccharomyces cerevisiae of race XII and Saccharomyces cerevisiae of race IMB Y-5007 in the dose of 120 million cells per 1 cm3 of wort. Optimum composition of mineral salts was determined. For the yeasts of race XII and IMB Y-5007 fertilizing with diammonium phosphate in a dosage of 1.5 g / dm3 is necessary. The alcohol yield when using the yeasts of race IMB Y-5007 was 60.7 dal/ ton of conditional starch, when using yeasts of race XII it accounts 60,6 dal / ton of conditional starch.

  9. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules.

    Science.gov (United States)

    Israkarn, Kamolwan; Na Nakornpanom, Nantarat; Hongsprabhas, Parichat

    2014-05-25

    This study explored the influences of envelope integrity of cooked starch granules on physicochemical and thermophysical properties of mungbean and cassava starches. Alkali treatment was used to selectively leach amylose from the amorphous region of both starches and partially fragmented starch molecules into lower-molecular-weight polymers. It was found that despite the loss of 40% of the original content of amylose, both mungbean and cassava starches retained similar crystallinities, gelatinization temperature ranges, and pasting profiles compared to the native starches. However, the loss of granule-bound starch synthases during alkali treatment and subsequent alkali cooking in excess water played significant roles in determining granular disintegration. The alterations in envelope integrity due to the negative charge repulsion among polymers within the envelope of swollen granules, and the fragmentation of starch molecules, were responsible for the alterations in thermophysical properties of mungbean and cassava starches cooked under alkaline conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Biduski, Bárbara; Evangelho, Jarine Amaral do; Bruni, Graziella Pinheiro; Antunes, Mariana Dias; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    Biodegradable films of native or acetylated starches with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. The tensile strength of the acetylated starch film was lower than those of the native starch film, without fibers. The addition of fibers increased the tensile strength and decreased the elongation and the moisture of native and acetylated starches films. The acetylated starch film showed higher water solubility when compared to native starch film. The addition of cellulose fibers reduced the water solubility of the acetylated starch film. The films reinforced with cellulose fiber exhibited a higher initial decomposition temperature and thermal stability. The mechanical, barrier, solubility, and thermal properties are factors which direct the type of the film application in packaging for food products. The films elaborated with acetylated starches of low degree of substitution were not effective in a reduction of the water vapor permeability. The addition of the cellulose fiber in acetylated and native starches films can contribute to the development of more resistant films to be applied in food systems that need to maintain their integrity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. High insoluble fibre content increases in vitro starch digestibility in partially baked breads.

    Science.gov (United States)

    Ronda, Felicidad; Rivero, Pablo; Caballero, Pedro A; Quilez, Joan

    2012-12-01

    Wheat breads prepared from frozen partially baked breads were characterized by their content of rapidly digestible starch (RDS) and slowly digestible starch (SDS) by the in vitro starch digestibility method developed by Englyst. Breads with different contents and types of fibre and breads prepared with different fermentation processes were studied. Bread with inulin and with a double fermentation had the lowest RDS content of 58.8 ± 1.7 and 60.0 ± 1.9 (% dry matter), respectively. Wheat bran bread, seeded bread, triple fermentation white bread and baguette-type bread showed values of RDS between 63.1 ± 1.7 and 65.7 ± 1.7 with no significant differences between them (p breads than in breads with added fibre. The highest values of the starch digestive rate index (SDRI) were obtained by the three types of breads with added fibre, which ranged from 91.8 ± 3.5 to 95.8 ± 3.5 versus 80.2 ± 3.5 to 87.5 ± 3.5 for white wheat breads. A significant (p bread crumbs corroborated this statement.

  12. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    Science.gov (United States)

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  13. Effect of starch fermentation in the rumen on voluntary intake of ...

    African Journals Online (AJOL)

    The effect of starch fermentation in the rumen on the kinetics of roughage digestion, was studied using 12 sheep fed three roughages, viz. lucerne hay, maize cob leaves and wheat straw. The amount of starch infused per day was increased from o to 600 g/d in steps of 20 g/d over 30 days. The amount of starch infused was ...

  14. Microwave fixation enhances gluten fibril formation in wheat endosperm

    Science.gov (United States)

    The wheat storage proteins, primarily glutenin and gliadin, contribute unique functional properties in food products and play a critical role in determining the end-use quality of wheat. In the wheat endosperm these proteins form a proteinaceous matrix deposited among starch granules only to be brou...

  15. Rheological, pasting, thermal and retrogradation properties of octenyl succinic anhydride modified potato starch

    Directory of Open Access Journals (Sweden)

    Chuin WON

    Full Text Available Abstract The objective of the present study was to investigate the rheological, pasting, and thermal properties of octenyl succinic anhydrate (OSA-modified potato starch. Potato starch was modified using different concentrations of OSA (0, 1, 3, and 5%, v/v. The degree of substitution (DS for the OSA-modified starch ranged from 0.0012 to 0.0055. The amylose leaching values of native and OSA-modified potato starch with different DS levels were in the range of 47.09-87.32%. The gel strength values of the OSA-modified starch were lower than those of native potato starch. Rapid Visco Analyzer data showed that peak, hot pasting, final and setback viscosities of the native starch decreased after OSA modification. Dynamic shear rheological tests, conducted at 4 °C, indicated that OSA-modified potato starch had weak gel-like behavior with the storage moduli (G' higher than the loss moduli (G” over most of the frequency ranges (0.63-63.8 rad·s-1.

  16. A radioimmunoassay for wheat gliadin to assess the suitability of gluten free foods for patients with coeliac disease

    International Nuclear Information System (INIS)

    Ciclitira, P.J.; Ellis, H.J.; Evans, D.J.; Lennox, E.S.

    1985-01-01

    Coeliac disease is a clinical condition characterised by malabsorption secondary to abnormalities of the small intestine. The condition is known to be exacerbated by wheat gliadin, rye, barley and possibly oats. The only assays that are available for testing for the presence of wheat gluten in foods are double diffusion against rabbit anti-gliadin antiserum and measurement of Kjeldahl nitrogen in products derived from wheat flour. We have developed a radioimmunoassay for wheat gliadin with a detection limit of 1 ng. Nominally gluten free foods based on wheat starch have been shown to contain up to 1.9x10 -2 % wheat gliadin. Bread made from Nutregen wheat starch which has now been withdrawn contains 6.4 mg gliadin per standard 30 g slice. A radioimmunoassay for wheat gliadin could be used to define standards for the suitability of gluten free products based on wheat starch for patients with coeliac disease. (author)

  17. Digestion of Starch Granules from Maize, Potato and Wheat by Larvae of the the Yellow Mealworm, Tenebrio molitor and the Mexican Bean Weevil, Zabrotes subfasciatus

    Science.gov (United States)

    Meireles, Elaine A.; Carneiro, Cíntia N. B.; DaMatta, Renato A.; Samuels, Richard I.; Silva, Carlos P.

    2009-01-01

    Scanning electron microscopy images were taken of starch granules from different sources following exposure in vivo and in vitro to gut α-amylases isolated from Tenebrio molitor L. (Coleoptera: Tenebrionidae) and Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae). One α-amylase was isolated from whole larval midguts of T. molitor using non-denaturing SDS-PAGE, while two other α-amylase fractions were isolated from whole larval midguts of Z. subfasciatus using hydrophobic interaction chromatography., Digested starch granules from larvae fed on maize, potato or wheat were isolated from midgut contents. Combinations of starch granules with isolated α-amylases from both species showed similar patterns of granule degradation. In vitro enzymatic degradation of maize starch granules by the three different α-amylase fractions began by creating small holes and crater-like areas on the surface of the granules. Over time, these holes increased in number and area resulting in extensive degradation of the granule structure. Granules from potato did not show formation of pits and craters on their surface, but presented extensive erosion in their interior. For all types of starch, as soon as the interior of the starch granule was reached, the inner layers of amylose and amylopectin were differentially hydrolyzed, resulting in a striated pattern. These data support the hypothesis that the pattern of starch degradation depends more on the granule type than on the α-amylase involved. PMID:19619014

  18. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  19. Separation of carbohydrate and protein from wheat for the production of energy and food: conventional and proposed process

    Energy Technology Data Exchange (ETDEWEB)

    Hunwick, R J

    1980-09-01

    Historically, wheat has been wet-fractionated to produce starch and gluten, items of value for a broad range of industries as diverse as baking, paper manufacture and sweetener production. In Australia wheat flour has traditionally been the raw material for starch and gluten production with demand for gluten largely dictating starch production. Although this industry is of considerable economic significance in this country, plant throughputs are quite small in a global context. This situation could change dramatically if alcohol derived from wheat were to make a significant contribution to Australia's transport fuel requirements. This paper examines in general terms the impact such a trend could have on starch production in Australia. Traditional flowsheets based upon wheat flour as the raw material are discussed, the most important being the Martin process in which a thick dough is made which is repeatedly washed to liberate starch, bran and solubles as a starch 'milk' from the gluten mass. The starch milk is refined to fractionate its components into relatively pure materials. Recent efforts to improve this technology have been directed towards lowering water consumption mainly to simplify effluent disposal. These have led to the various batter processes which are briefly described. When the object is to produce large quantities of alcohol it is questioned whether it is justified to commence with flour. Whole wheat may be a better feedstock whence wheat could be wet-milled in a manner similar to that employed on a massive scale in North America, in particular for corn (maize). Current corn wet-milling practice is mentioned as an introduction to a summary of novel wet wheat milling flowsheets. Equipment generally used in these flowsheets is described.

  20. Propriedades de pasta de amidos de arroz nativo e acetilados Pasting properties of native and acetylated rice starches

    Directory of Open Access Journals (Sweden)

    Josiane Bartz

    2012-05-01

    Full Text Available O amido de arroz apresenta características favoráveis a muitas aplicações industriais; no entanto, a natureza hidrofílica do amido na forma nativa pode apresentar algumas limitações para determinados tipos de processamento. Neste estudo, amido de arroz com médio teor de amilose foi acetilado sob catálise alcalina em duas condições reacionais para produzir acetatos de amido com diferentes graus de substituição (GS. A introdução de grupos acetila ao amido foi confirmada por espectroscopia de infravermelho com transformada de Fourier (FT-IV e os acetatos de amido produzidos foram avaliados quanto às suas propriedades de pasta em viscoamilógrafo (RVA. A acetilação ocasionou reduções em todas as propriedades de pasta avaliadas (temperatura de pasta, viscosidade mínima, pico de viscosidade, viscosidade final e tendência à retrogradação, sendo a redução mais intensa no amido acetilado com maior GS.Rice starch has characteristics suitable to many industrial applications, however, the hydrophilic nature of the starch in native form may present some limitations for some uses. In this study, rice starch with medium amylose content was acetylated under alkaline catalysis on two reaction conditions to produce starch acetates with different degrees of substitution (DS. The introduction of acetyl groups to the starch was confirmed by infrared Fourier transform (FT-IR and starch acetates produced were evaluated for their paste properties in viscoelastograf (RVA. Acetylation caused reductions in all properties paste (paste temperature, minimum viscosity, peak viscosity, final viscosity and retrogradation tendency being the most intense reduction in acetylated starch with greater GS.

  1. Xylanase and Protease Increase Solubilization of Non-Starch Polysaccharides and Nutrient Release of Corn- and Wheat Distillers Dried Grains with Solubles

    DEFF Research Database (Denmark)

    Pedersen, Mads Brøgger; Dalsgaard, Søren; Arent, Susan

    2015-01-01

    The use of distiller dried grains with solubles (DDGS) as alternative to conventional animal feed for non-ruminants is challenged by the high content of non-starch polysaccharides and varying protein quality. In this study the enzymatic degradation of corn- and wheat DDGS was evaluated, in vitro...... of this xylanase. The current in vitro results indicate a high potential of xylanase in combination with protease to efficiently degrade DDGS and promote nutrient release in diets for non-ruminant animals....

  2. Wheat: The Whole Story.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  3. Physicochemical Properties of Gamma-Irradiated Corn Starch

    International Nuclear Information System (INIS)

    Lee, Y.J.; Lim, S.T.; Kim, S.Y.; Han, S.M.; Kim, H.M.; Kang, I.J.

    2006-01-01

    Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples

  4. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes

    Directory of Open Access Journals (Sweden)

    Masci Stefania

    2010-07-01

    Full Text Available Abstract Background High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa were silenced using the RNA interference (RNAi technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium. Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR. Conclusion We have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable.

  5. Application of oxidized starch in bake-only chicken nuggets.

    Science.gov (United States)

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    There is a need to reduce the fat content in fried foods because of increasing health concerns from consumers. Oxidized starches have been utilized in many coating applications for their adhesion ability. However, it is not known if they perform similarly in bake-only products. This study investigated the application of oxidized starch in bake-only chicken nuggets. Oxidized starches were prepared from 7 starches and analyzed for gelatinization and pasting properties. Chicken nuggets were prepared using batter containing wheat flour, oxidized starch, salt, and leavening agents prior to steaming, oven baking, freezing, and final oven baking for sensory evaluation. All nuggets were analyzed for hardness by a textural analyzer, crispness by an acoustic sound, and sensory characteristics by a trained panel. The oxidation level used in the study did not alter the gelatinization temperature of most starches, but increased the peak pasting viscosity of both types of corn and rice starches and decreased that of tapioca and potato starches. There were slight differences in peak force and acoustic reading between some treatments; however, the differences were not consistent with starch type or amylose content. There was no difference among the treatments as well as between the control with wheat flour and the treatments partially replaced with oxidized starches in all sensory attributes of bake-only nuggets evaluated by the trained panel. There is a need to reduce the fat content in fried food, such as chicken nuggets, because of increasing childhood obesity. Oxidized starches are widely used in coating applications for their adhesion ability. This study investigated the source of oxidized starches in steam-baked coated nuggets for their textural and sensorial properties. The findings from this research will provide an understanding of the contributions of starch source and oxidation to the texture and sensory attributes of bake-only nuggets, and future directions to improve

  6. Relation among different parameters of damaged starch content, falling number and mechanical damage level

    Directory of Open Access Journals (Sweden)

    Živančev Dragan

    2012-01-01

    Full Text Available This work presents examination of damaged starch content expressed by different parameters, which were obtained by iodometric method presented by the Chopin Company using their SD matic instrument on wheat flour samples. Two wheat samples were similar by protein level (14.6 and 14.2% on dry basis matter and different by Falling number values (409 and 121 s. Wheat flours were gained by single-stage and two-stage extraction in laboratory milling system. Eight independent measurements of every wheat flour sample were statistically analyzed by method of variance. It was found that Chopin iodometric method shows that damaged starch content expressed by different parameters is related to Falling number value and damage caused by the pressure and shear forces generated during roller milling.

  7. Optimisation of resistant starch II and III levels in durum wheat pasta to reduce in vitro digestibility while maintaining processing and sensory characteristics.

    Science.gov (United States)

    Aravind, Nisha; Sissons, Mike; Fellows, Christopher M; Blazek, Jaroslav; Gilbert, Elliot P

    2013-01-15

    Foods with elevated levels of resistant starch (RS) may have beneficial effects on human health. Pasta was enriched with commercial resistant starches (RSII, Hi Maize™ 1043; RSIII, Novelose 330™) at 10%, 20% and 50% substitution of semolina for RSII and 10% and 20% for RSIII and compared with pasta made from 100% durum wheat semolina to investigate technological, sensory, in vitro starch digestibility and structural properties. The resultant RS content of pasta increased from 1.9% to ∼21% and was not reduced on cooking. Significantly, the results indicate that 10% and 20% RSII and RSIII substitution of semolina had no significant effects on pasta cooking loss, texture and sensory properties, with only a minimal reduction in pasta yellowness. Both RS types lowered the extent of in vitro starch hydrolysis compared to that of control pasta. X-ray diffraction and small-angle scattering verified the incorporation of RS and, compared to the control sample, identified enhanced crystallinity and a changed molecular arrangement following digestion. These results can be contrasted with the negative impact on pasta resulting from substitution with equivalent amounts of more traditional dietary fibre such as bran. The study suggests that these RS-containing formulations may be ideal sources for the preparation of pasta with reduced starch digestibility. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Separation of carbohydrate and protein from wheat for the production of energy and food: conventional and proposed process

    Energy Technology Data Exchange (ETDEWEB)

    Hunwick, R.J.

    1980-09-01

    Historically, wheat has been wet-fractionated to produce starch and gluten, items of value for a broad range of industries as diverse as baking, paper manufacture and sweetener production. In Australia wheat flour has traditionally been the raw material for starch and gluten production with demand for gluten largely dictating starch production. Although this industry is of considerable economic significance in this country, plant throughputs are quite small in a global context. This situation could change dramatically if alcohol derived from wheat were to make a significant contribution to Australia's transport fuel requirements. This paper examines in general terms the impact such a trend could have on starch production in Australia. Traditional flowsheets based upon wheat flour as the raw material are discussed, the most important being the Martin process in which a thick dough is made which is repeatedly washed to liberate starch, bran and solubles as a starch 'milk' from the gluten mass. The starch milk is refined to fractionate its components into relatively pure materials. Recent efforts to improve this technology have been directed towards lowering water consumption mainly to simplify effluent disposal. These have led to the various batter processes which are briefly described. When the object is to produce large quantities of alcohol it is questioned whether it is justified to commence with flour. Whole wheat may be a better feedstock whence wheat could be wet-milled in a manner similar to that employed on a massive scale in North America, in particular for corn (maize). Current corn wet-milling practice is mentioned as an introduction to a summary of novel wet wheat milling flowsheets. Equipment generally used in these flowsheets is described.

  9. Energy and exergy analyses of native cassava starch drying in a tray dryer

    International Nuclear Information System (INIS)

    Aviara, Ndubisi A.; Onuoha, Lovelyn N.; Falola, Oluwakemi E.; Igbeka, Joseph C.

    2014-01-01

    Energy and exergy analyses of native cassava starch drying in a tray dryer were carried out to assess the performance of the system in terms of energy utilization, energy utilization ratio, energy efficiency, exergy inflow and outflow, exergy loss and exegetic efficiency. The results indicated that for the starch with ash content of 0.76%, 0.85% crude protein, 0.16% crude fat, negligible amount of fiber, average granule size of 14.1 μm, pH of 5.88, amylose content of 23.45% and degree of crystallinity of 22.34%, energy utilization and energy utilization ratio increased from 1.93 to 5.51 J/s and 0.65 to 0.6 as the drying temperature increased from 40 to 60 °C. Energy efficiency increased from 16.036 to 30.645%, while exergy inflow, outflow and losses increased from 0.399 to 2.686, 0.055 to 0.555 and 0.344 to 2.131 J/s respectively in the above temperature range. Exergetic efficiency increased with increase in both drying air temperature and energy utilization and was lower than energy efficiency. Exergetic improvement potential also increased with increase in drying air temperature. Model equations that could be used to express the energy and exergy parameters as a function of drying temperature were established. - Highlights: • Energy and exergy analyses of cassava starch drying in a tray dryer were carried out. • Energy utilization increased with drying temperature. • Energy efficiency was higher than exergy efficiency. • Energy and exergy efficiencies increased with increase in temperature. • Improvement potential increased with increase in temperature

  10. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.

    Science.gov (United States)

    Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald

    2011-03-14

    The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.

  11. Quality characteristics of northern-style Chinese steamed bread prepared from soft red winter wheat flours with waxy wheat flour substitution

    Science.gov (United States)

    Quality characteristics of Chinese steamed bread (CSB) prepared from two soft red winter (SRW) wheat flours blended with 0-30% waxy wheat flour (WWF) were determined to estimate the influence of starch amylose content. The increased proportion of WWF in blends raised mixograph absorption with insign...

  12. Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast

    International Nuclear Information System (INIS)

    Cripwell, Rosemary; Favaro, Lorenzo; Rose, Shaunita H.; Basaglia, Marina; Cagnin, Lorenzo; Casella, Sergio; Zyl, Willem van

    2015-01-01

    Highlights: • A cocktail of recombinant cellulases was proposed for wheat bran hydrolysis. • Optimal conditions for enzymatic hydrolysis of wheat bran were determined. • Recombinant amylolytic strains completely hydrolysed the starch in wheat bran. • Addition of cellulases to SSF with amylolytic strains enhanced ethanol yield. - Abstract: Wheat bran, generated from the milling of wheat, represents a promising feedstock for the production of bioethanol. This substrate consists of three main components: starch, hemicellulose and cellulose. The optimal conditions for wheat bran hydrolysis have been determined using a recombinant cellulase cocktail (RCC), which contains two cellobiohydrolases, an endoglucanase and a β-glucosidase. The 10% (w/v, expressed in terms of dry matter) substrate loading yielded the most glucose, while the 2% loading gave the best hydrolysis efficiency (degree of saccharification) using unmilled wheat bran. The ethanol production of two industrial amylolytic Saccharomyces cerevisiae strains, MEL2[TLG1-SFA1] and M2n[TLG1-SFA1], were compared in a simultaneous saccharification and fermentation (SSF) for 10% wheat bran loading with or without the supplementation of optimised RCC. The recombinant yeast S. cerevisiae MEL2[TLG1-SFA1] and M2n[TLG1-SFA1] completely hydrolysed wheat bran’s starch producing similar amounts of ethanol (5.3 ± 0.14 g/L and 5.0 ± 0.09 g/L, respectively). Supplementing SSF with RCC resulted in additional ethanol production of about 2.0 g/L. Scanning electron microscopy confirmed the effectiveness of both RCC and engineered amylolytic strains in terms of cellulose and starch depolymerisation. This study demonstrated that untreated wheat bran could be a promising ready-to-use substrate for ethanol production. The addition of crude recombinant cellulases improved ethanol yields in the SSF process and S. cerevisiae MEL2[TLG1-SFA1] and M2n[TLG1-SFA1] strains can efficiently convert wheat bran’s starch to ethanol.

  13. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Fundamental Study on the Impact of Gluten-Free Starches on the Quality of Gluten-Free Model Breads

    Directory of Open Access Journals (Sweden)

    Stefan W. Horstmann

    2016-04-01

    Full Text Available Starch is widely used as an ingredient and significantly contributes to texture, appearance, and overall acceptability of cereal based foods, playing an important role due to its ability to form a matrix, entrapping air bubbles. A detailed characterisation of five gluten-free starches (corn, wheat, rice, tapioca, potato was performed in this study. In addition, the influence of these starches, with different compositional and morphological properties, was evaluated on a simple gluten-free model bread system. The morphological characterisation, evaluated using scanning electron microscopy, revealed some similarities among the starches, which could be linked to the baking performance of the breads. Moreover, the lipid content, though representing one of the minor components in starch, was found to have an influence on pasting, bread making, and staling. Quality differences in cereal root and tuber starch based breads were observed. However, under the baking conditions used, gluten-free rendered wheat starch performed best, followed by potato starch, in terms of loaf volume and cell structure. Tapioca starch and rice starch based breads were not further analysed, due to an inferior baking performance. This is the first study to evaluate gluten-free starch on a simple model bread system.

  15. Wheat B-starch based polymeric materials

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Kruliš, Zdeněk; Šárka, E.

    2011-01-01

    Roč. 105, č. 9 (2011), s. 731 ISSN 0009-2770. [International Conference on Polysaccharides-Glycoscience /7./. 02.11.2011-04.11.2011, Prague] R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable plastic * polycaprolactone * B- starch Subject RIV: JI - Composite Materials

  16. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martín, C.; Nieuwenhuijzen, N.H. van; Hamer, R.J.; Vliet, T. van

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  17. Crystallinity changes in wheat starch during the bread-making process: starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martin, C.; Nieuwenhuijzen, van N.H.; Hamer, R.J.; Vliet, van T.

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  18. The properties of two starch super absorbent polymers synthesized by gamma radiation

    International Nuclear Information System (INIS)

    Wang Changbao; Zhao Yongfu; Li Lili; Ji Ping; Shi Yan; Ge Cailin; Wang Zhidong

    2013-01-01

    Two types of super absorbent polymers were synthesized from corn starch, wheat starch and acrylic acid under gamma irradiation, without any initiator. The water absorption capacity of the super absorbent products were studied. The results indicated that the prepared polymer from wheat starch per gram could absorb 755 g distilled water, 249 g tap water, and 80 g 0.9% NaCl; and the polymer from corn starch per gram could absorb 747 g distilled water, 238 g tap water, and 84 g 0.9% NaCl. The absorption capacity of the two polymers was decreased quickly at first and then slow down with the concentration of NaCl solutions increased. The two polymers have similar absorption capacity in pH value between 4 and 11 for distilled water and at temperature between 4 and 60℃ for distilled water. The two polymers have good water retention properties in high temperature and pressure conditions. (authors)

  19. The effect of water volume and mixing time on physical properties of bread made from modified cassava starch-wheat composite flour

    Science.gov (United States)

    Srirejeki, S.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.; Laksono, P. W.

    2018-03-01

    Modification of cassava starch with soaking in the whey (by product on cheese production) resulted in changes of the flour characteristics. Adjustments of processing condition are important to be studied in the making of bread from modified cassava starch and wheat composite flour (30:70). This research aims to determine the effect of water volume and mixing time on the physical properties of the bread. The experimental design of this research was Completely Randomized Factorial Design (CRFD) with two factors which were water volume and mixing time. The variation of water volume significantly affected on bread height, dough volume, dough specific volume, and crust thickness. The variation of mixing time had a significant effect on the increase of dough volume and dough specific volume. The combination of water volume and mixing time had a significant effect on dough height, bread volume, bread specific volume, baking expansion, and weight loss.

  20. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  1. Biorefinery Concept Development Based on Wheat Flour Milling

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Orth, Rick J.; Werpy, Todd A.; Gao, Johnway; Eakin, David E.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Murry, J; Flagg, Anthony; Lahman, L; Mennel, D; Lin, C J.; Landucci, Ron; Crockett, John; Peterson, Charles L.

    2002-09-22

    We are developing an innovative process for the recovery of a starch-rich product from millfeed (the low-value byproduct of wheat flour milling); enzymatic processing of the starch to glucose; and the subsequent processes for conversion of that glucose into a value-added product by either a catalytic or a fermentation process. We have completed the development of the starch recovery step with enzymatic processing and the assessment of its economic viability. The processes to use the glucose product as feedstock for catalytic processing and fermentation processing have been tested in the laboratory. Catalytic processing of the glucose from the extracted starch for polyol production is based on catalytic hydrogenation to sorbitol. Alternatively, fermentation of the extracted starch-derived glucose also provides a pathway to value-added chemical products via a platform chemical, lactic acid. The paper includes results from all the processing areas addressed. Starch extraction and glucose generation from wheat milling byproducts are presented with laboratory and scaled-up processing results. Results of fermentation of the glucose product to lactic acid in shaker flask tests are presented, documenting the minimal requirements for nutrient addition. Stirred batch reactor tests of catalytic hydrogenation of the glucose product to sorbitol are presented with a discussion of contaminant effects on the catalyst.

  2. Starch Characteristics Linked to Gluten-Free Products

    Directory of Open Access Journals (Sweden)

    Stefan W. Horstmann

    2017-04-01

    Full Text Available The increasing prevalence of coeliac disease (CD and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  3. Starch Characteristics Linked to Gluten-Free Products.

    Science.gov (United States)

    Horstmann, Stefan W; Lynch, Kieran M; Arendt, Elke K

    2017-04-06

    The increasing prevalence of coeliac disease (CD) and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  4. Effect of starch as hydrocolloids for formation of a stable emulsion system in food

    Directory of Open Access Journals (Sweden)

    O. Lugovska

    2015-05-01

    Full Text Available Іntroduction. It is necessary to determine the effect of the physicochemical properties of native and modified starches in their use in food. Matherials and methods. Investigated two samples of food emulsions using starches of different nature of origin (native, modified starch. Using laboratory balances, volume of cylinders determined percentage of water separation during freezing and unfreezing emulsions; Brukfild viscometer measured the viscosity increase depending on the time, temperature and pH of food emulsions. Results. When freezing / unfreezing emulsion of native starch in the first cycle of water has been separated by 8% in the second cycle of 38%, the third 50%, in contrast to the emulsion with modified starch water separation starts from the fourth cycle slightly, in the fifth cycle percentage of water separation is 1%, the sixth cycle of 3 %. As a result, studies of viscosity versus time, temperature and pH of food emulsions proved that in an acidic medium at pH 6.5 viscosity emulsion with modified starch is stored and then increases over a longer time compared with the emulsion of native starch where the viscosity at the beginning of the storage period increases and then decreases. Conclusions. Investigated the properties of native starch in the emulsion show that their use in industrial processes can lead to blockage of the heat exchanger, and the viscosity of the output of the production process is unpredictable and varies greatly depending on the combination of temperature and mechanical stress. It makes use in the manufacture of modified starches that combines a combination of two types of modifications: stabilization and crosslinking.

  5. Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats

    Science.gov (United States)

    Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...

  6. Physicochemical properties of maca starch.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Tribological properties of rice starch in liquid and semi-solid food model systems

    NARCIS (Netherlands)

    Liu, K.; Stieger, M.A.; Linden, van der E.; Velde, van de Fred

    2016-01-01

    This study investigated the tribological and rheological properties of liquid and semi-solid food model systems containing micro-granular rice starch. Native (uncooked) and gelatinized rice starch dispersions, o/w emulsions and emulsion-filled gelatin gels were studied as food model systems. Native

  8. Structural and physical effects of aroma compound binding to native starch granules

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted; Jensen, Susanne L.; Ziegler, Gregory

    2012-01-01

    , potato and pea starches used represent different typical structural and chemical starch characteristics. Retention of the different aroma compounds varied from a few to one hundred percent and starch was found to induce as well as reduce aroma evaporation depending on the aroma compound and the starch...

  9. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis

    NARCIS (Netherlands)

    Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with ¿-amylase from

  10. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing

    NARCIS (Netherlands)

    Janssen, Léon P.B.M.; Karman, Andre P.; Graaf, Robbert A. de

    Four different starch sources, namely waxy maize, wheat, potato and pea starch were extruded with the plasticizer glycerol, the latter in concentrations of 15, 20 and 25% (w/w). The glass transition temperatures of the resulting thermoplastic products were measured by Dynamic Mechanical Thermal

  11. Preparation and characterization of polymeric nanoparticles from Gadong starch

    Energy Technology Data Exchange (ETDEWEB)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Lazim, Azwan Mat [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Fazry, Shazrul [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  12. Preparation and characterization of polymeric nanoparticles from Gadong starch

    Science.gov (United States)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Fazry, Shazrul; Lazim, Azwan Mat

    2015-09-01

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  13. Preparation and characterization of polymeric nanoparticles from Gadong starch

    International Nuclear Information System (INIS)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Lazim, Azwan Mat; Fazry, Shazrul

    2015-01-01

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm

  14. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    Science.gov (United States)

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    Directory of Open Access Journals (Sweden)

    Erdei Borbála

    2012-03-01

    Full Text Available Abstract Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS, resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and

  16. Fractional rate of degradation (kd) of starch in the rumen and its ...

    African Journals Online (AJOL)

    Fractional rate of degradation (kd) of fermentable nutrients in the rumen is an important parameter in modern feed evaluation systems based on mechanistic models. Estimates of kd for starch was obtained on 19 starch sources originating from barley, wheat, oat, maize and peas and treated in different ways both chemically ...

  17. Effect of Multiple Freezing/Thawing Cycles on the Structural and Functional Properties of Waxy Rice Starch

    Science.gov (United States)

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water. PMID:26018506

  18. Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch.

    Directory of Open Access Journals (Sweden)

    Han Tao

    Full Text Available The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS, as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL. The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water.

  19. Effect of flour particle size and damaged starch on the quality of cookies.

    Science.gov (United States)

    Barak, Sheweta; Mudgil, Deepak; Khatkar, B S

    2014-07-01

    Two wheat varieties 'C 306' and 'WH 542' were milled to obtain flour fractions of different particle sizes. Various physicochemical parameters such as wet and dry gluten, falling number, solvent retention capacity (SRC), alkaline water retention capacity (AWRC) and damaged starch content of the flour fractions were analyzed. The damaged starch values ranged from 5.14% to 14.79% for different flour fractions and increased significantly with decrease in particle size. AWRC and SRC of the flour fractions also increased with decrease in particle size. AWRC(r = 0.659) showed positive correlation and cookie spread ratio (r = -0.826) was strongly negatively correlated with the damaged starch levels. Hardness of the cookies in term of compression force showed increasing trend as damaged starch of the flour fractions increased. Spread ratio of the cookies ranged from 6.72 to 10.12. Wheat flour of particle size greater than 150 μm produced cookies with best quality.

  20. Effect of water volume based on water absorption and mixing time on physical properties of tapioca starchwheat composite bread

    Science.gov (United States)

    Prameswari, I. K.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.

    2018-05-01

    Tapioca starch application in bread processing change water absorption level by the dough, while sufficient mixing time makes the optimal water absorption. This research aims to determine the effect of variations in water volume and mixing time on physical properties of tapioca starchwheat composite bread and the best method for the composite bread processing. This research used Complete Randomized Factorial Design (CRFD) with two factors: variations of water volume (111,8 ml, 117,4 ml, 123 ml) and mixing time (16 minutes, 17 minutes 36 seconds, 19 minutes 12 seconds). The result showed that water volume significantly affected on dough volume, bread volume and specific volume, baking expansion, and crust thickness. Mixing time significantly affected on dough volume and specific volume, bread volume and specific volume, baking expansion, bread height, and crust thickness. While the combination of water volume and mixing time significantly affected for all physical properties parameters except crust thickness.

  1. Effect of Sucrose Esters on the Physicochemical Properties of Wheat ...

    African Journals Online (AJOL)

    In addition, the structure and thermodynamic properties of the modified starch were analyzed by Fourier transform infrared spectroscopy (FITR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Results: The properties of wheat starch changed greatly by adding different sucrose esters to their ...

  2. Characterization of Lentinus edodes β-glucan influencing the in vitro starch digestibility of wheat starch gel.

    Science.gov (United States)

    Zhuang, Haining; Chen, Zhongqiu; Feng, Tao; Yang, Yan; Zhang, Jingsong; Liu, Guodong; Li, Zhaofeng; Ye, Ran

    2017-06-01

    Lentinus edodes β-glucan (abbreviated LEBG) was prepared from fruiting bodies of Lentinus edodes. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of LEBG were measured to be 1.868×10 6 g/mol and 1.007, respectively. In addition, the monosaccharide composition of LEBG was composed of arabinose, galactose, glucose, xylose, mannose with a molar ratio of 5:11:18:644:16. After adding LEBG, both G' and G″ of starch gel increased. This is mainly because the connecting points between the molecular chains of LEBG and starch formed so that gel network structures were enhanced. The peak temperature in the heat flow diagram shifted to a higher temperature and the peak area of the endothermic enthalpy increased. Furthermore, LEBG can significantly inhibit starch hydrolysis. The predicted glycemic index (pGI) values were reduced when starch was replaced with LEBG at 20% (w/w). It might indicate that LEBG was suitable to develop low GI noodle or bread. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Isolation, Modification and Characterization of Tiger-Nut, Maize ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-13

    Apr 13, 2018 ... ... starch properties. SEM images showed that morphological architecture of granules was ... food starch are corn, potato, wheat, cassava/tapioca, rice and maize are ... rice, pea, sago, oat, barley, rye, amaranth and certain other source of .... Micrographs of native and oxidized starch are shown in Figure 1.

  4. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch

    Science.gov (United States)

    Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2018-01-01

    The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.

  5. Effects of pregelatinized vs. native potato starch on intestinal weight and stomach lesions of pigs housed in barren pens or on straw bedding

    NARCIS (Netherlands)

    Bolhuis, J.E.; Brand, van den H.; Staals, S.; Gerrits, W.J.J.

    2007-01-01

    In a 2 × 2 factorial arrangement, 16 groups of 12 pigs (approximately 25 kg) were assigned to either barren or straw housing and to native or pregelatinized potato starch included in the diet (35%) to investigate effects on intestinal weight and gastric lesions. Pigs were fed restrictedly (2.5 ×

  6. Uninterrupted heat-treatment of starch raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Bronshtein, D Z

    1958-01-01

    A setup is presented, with a Rekord grinder, a Khronos scale, and other equipment of Soviet manufacture, in which oats, rye, wheat, and other grains are treated at 42 to 45 degrees prior to their use as raw materials in the ethanol industry. These materials are analyzed with respect to H/sub 2/O, starch, bulk, weight, screen analysis, and the final ethanol yields/ton of such raw materials. In a three year run in plant, this heat-treatment was advantageous, as compared to the former treatment of the starch materials.

  7. Uninterrupted heat-treatment of starch raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Bronshtein, D Z

    1958-01-01

    A setup is presented, with a Rekord grinder, a Khronos scale, and other equipment of Soviet manufacture, in which oats, rye, wheat, and other grains are treated at 42 to 45/sup 0/ prior to their use as raw materials in the ethanol industry. These materials are analyzed with respect to H/sub 2/O, starch, bulk weight, screen analysis, and the final ethanol yields/ton of such raw materials. In a three year run in a plant, this heat-treatment was advantageous, as compared to the former treatment of the starch materials.

  8. Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites.

    Science.gov (United States)

    Schmitt, H; Prashantha, K; Soulestin, J; Lacrampe, M F; Krawczak, P

    2012-07-01

    Novel bionanocomposites based on halloysite nanotubes as nanofillers and plasticized starch as polymeric matrix were successfully prepared by melt-extrusion for the first time. Both modified and non modified halloysites were added at different weight contents. The structural, morphological, thermal and mechanical properties of plasticized starch/halloysites nanocomposites were investigated. Melt-compounding appears to be a suitable process to uniformly disperse nanotubes in the plasticized starch matrix. Interactions between plasticized starch and halloysites in the nanocomposites and microstructure modifications were monitored using Fourier transfer infrared spectroscopy, X-ray diffraction and dynamic mechanical analysis. Addition of halloysite nanotubes slightly enhances the thermal stability of starch (onset temperature of degradation delayed to higher temperatures). The tensile mechanical properties of starch are also significantly improved (up to +144% for Young's modulus and up to +29% for strength) upon addition of both modified and unmodified halloysites, interestingly without loss of ductility. Modified halloysites lead to significantly higher Young's modulus than unmodified halloysites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. SIFAT FUNGSIONAL PATI GARUT HASIL MODIFIKASI HIDROKSIPROPILASI DAN TAUT SILANG [Functional Properties of Hydroxypropylated and Crosslinked Arrowroot Starch

    Directory of Open Access Journals (Sweden)

    Rijanti Rahaju Maulani1*

    2013-06-01

    Full Text Available Dual-modified arrowroot starch using hydroxypropylation and cross-linking methods was carried out to overcome the deficiency in of native arrowroot starches for food processing application. The modification applied the combination concentration of propylene oxide (8, 10, and 12% and ratio of sodium trimetaphosphate (STMP:sodium tripolyphosphate (STPP (1%:4%, 2%:5%, and 3%:6%. The resulting dual-modified arrowroot starches had lower gelatinization temperature (68.45–70.00ºC than that of native arrowroot starch (72.85ºC. The modified arrowroot starches also had a higher peak viscosity (>5500 cp than that of native arrowroot starch (4209 cP. Breakdown and setback viscosity of modified arrowroot starch was higher values than the native. At acidic pH, the viscosity decreased at different levels of temperature changes as compared to that of normal pH. Modified starch made with 8% propylene oxide and ratio of STMP: STPP 2%:5% and 3%:6%; as well as that made with 10% propylene oxide and 1% STMP:4% STPP had the lowest syneresis tendency. Decrease in the paste clarity occured with increasing concentration of STMP:STPP. The sedimentation volume of the modified starch was higher (29.17-35.83% than that of native starch (28.08%, except for those made with 1% STMP: 4% STPP at concentration of propylene oxide 8% and 12%. The gel strength increased (61.77-78.97 gf at 8% propylene oxide, but decreased (66.50-47.77 gf at higher concentrations.

  10. Starch molecular fractionation of bread wheat varieties Fraccionamiento molecular del almidón de variedades trigo pan

    Directory of Open Access Journals (Sweden)

    V. Corcuera

    2007-06-01

    Full Text Available The starch composition of bread making wheat seeds (Triticum aestivum subsp. vulgare of the Argentine commercial varieties Buck Charrua, Buck Ombú, Buck Guaraní, Buck Catriel and Buck Poncho was analyzed by two different methods. One of these depends on the differential solubility of amylose and amylopectin in a water:butanol mixture whilst the other process is based on the use of the lectin Concanavalin A. These methods were complemented by spectrophotometric determinations to enable the identification of the á-D- glucanes and also improved the comparative quantitation of the amylose and amylopectin fractions. As a result of this, no significant variations for starch content (ANOVA, F4- 8= 0.7; p ≥ 0.05 were found among these varieties, although strong differences were found for amylose (ANOVA, F4- 8= 44.4; p ≥ 0.01 and amylopectin content (ANOVA, F4- 8= 77.1; p ≥ 0.01. These results and the fact that no differences were found for amylose (ANOVA, F2- 8= 0.3 and amylopectin among years within the same variety (ANOVA, F2- 8:0.8 at p ≥0.01 led to the conclusion that the diverse properties and end-uses of the starch mainly depend on the genotype, and that starch quality is null or scarcely influenced by the environment. This knowledge must be taken into account for wheat breeding purposes.Se analizó la composición del almidón de granos de trigo pan (Triticum aestivum subsp. v u l g a r e de las variedades comerciales argentinas Buck Charrúa, Buck Ombú, Buck Guaraní, Buck Catriel y Buck Poncho mediante dos métodos diferentes. Uno de ellos depende de la solubilidad diferencial de la amilosa y amilopectina en una mezcla de agua:butanol, mientras que el otro proceso está basado en el uso de la lectina Concanavalina A. Estos métodos fueron complementados mediante determinaciones espectrofotométricas que facilitaron la identificación de los á-D-glucanos y también permitieron mejorar la cuantificación comparativa de las fracciones

  11. Effect of resistant wheat starch on subjective appetite and food intake in healthy adults.

    Science.gov (United States)

    Emilien, Christine H; Hsu, Walter H; Hollis, James H

    The aim of this study was to determine the effect of replacing standard wheat flour (SWF) with resistant wheat starch (RWS) on markers of appetite and food intake in healthy adults. A randomized, single-blind, crossover study was conducted with 27 healthy adults (ages 23 ± 2 y with a body mass index of 23.0 ± 3.0 kg/m 2 ). After an overnight fast, muffins that contained only SWF or muffins in which 40% of the SWF was replaced with RWS were consumed as part of the breakfast meal. Appetite questionnaires and plasma samples were collected before the test meal and at 10 time points after meal consumption. An ad libitum meal was provided 240 min after breakfast, and the amount eaten was recorded. Food intake was recorded over the remainder of the day using a diet diary, and appetite was measured hourly using appetite questionnaires. Plasma was assayed to measure biomarkers of satiety and glycemia. Replacing SWF with RWS had no effect on subjective appetite or energy intake at the lunch meal (P > 0.05). Total daily energy intake (including the breakfast meal) was reduced by 179 kcal when participants consumed the RWS muffins (P = 0.05). Replacing SWF with RWS reduced plasma insulin (P  0.05). These results indicate that replacing SWF with RWS decreases plasma insulin concentration and reduces energy intake over a 24-h period. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of Gamma Irradiation on the Physicochemical and Functional Properties of Cassava Starch

    International Nuclear Information System (INIS)

    Asare, I.K.

    2011-10-01

    Cassava (Manihot esculanta Crantz) is popularly consumed as a staple food crop in many tropical countries in Africa, South America and Asia. In Africa the crop has been recognized as more than a subsistence crop. The crop is very important and commercially serves as a raw material for industries with significant effect on the economy of a country. Cassava roots contain high starch content and approximately half of the total roots produced is used for the production of starch for industrial purposes. Limitation to utilization of cassava roots by processors is due to its high perishability and bulkness, while native starches are structurally too weak and funtionally restricted for a wide variety of industrial applications. The objective of the project was to determine the effect of gamma irradiation as a modifying agent on native starch from three cassava varieties namely Ankra, Bosome nsia and TME419. Gamma radiation doses applied ranged between 0 - 20kGy and changes in physicochemical, functional and pasting indices of the starch were measured. Physicochemical indices measured were moisture content, amylose content, carbohydrate content, pH, ash content, fat content, protein content and L*a*b* values. Functional indices mesured were water absorption capacity, solubility index, bulk density, swelling power, fat absorption capacity, emulsion capacity, emulsion stability and least gelation concentration. Pasting indices measured were gelatinzation temperature, peak viscosity, viscosity at 92 degrees C and 50 degrees C, breakdown viscosity and setback viscosity. The pH, amylose content, carbohydrate content and ash content of native starch from Ankra, Bosome nsia and TME 419 were respectively 8.06, 7.80 and 7.18, 17.62%, 19.46% and 23.54%, 56.11%, 52.43% and 35.70%, 0.11%, 0.19% and 0.12%. The water absortion capacity and least gelation concentration of native starch from Ankra, Bosome nsia and TME 419 were 12.3%, 13.0% and 10.0%, respectively, least gelation

  13. Effect of Hydroxypropylation on Functional Properties of Different Cultivars of Sweet Potato Starch in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Suraji Senanayake

    2014-01-01

    Full Text Available Starches obtained from different cultivars of sweet potatoes commonly consumed in Sri Lanka, were chemically modified with hydroxypropyl substitution, to analyze the changes in the physicochemical properties. Significant changes (P<0.05 in the crude digestibility level, thermal properties, and the water separation (syneresis of starch gels (7.0% db during cold and frozen storage were observed due to the modification. Hydroxypropylation increased the gel stability, water solubility, digestibility, and storage stability of the native starches in the cold storage to a significant level. Lowered gelatinization and retrogradation enthalpies as well as gelatinization temperature were observed for derivatized starches compared to the native starch. Low levels of pasting stability with increased levels of breakdown and reduced cold paste viscosity were observed in the hydroxypropylated starch samples except for the Malaysian cultivar (S5. Chemically modified starch gels stored under cold storage did not show a syneresis for two weeks in the cycle and the frozen storage showed much improved stability in the starch gels within the four-week cycle. Chemical modification of sweet potato starch with hydroxyl propyl substitution can enhance the functional characteristics of the native starch which will improve its potential application in the food industry.

  14. Enzymic hydrolysis of starch in continuous alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yarovenko, V.L.; Pykhova, S.V.; Ustinnikov, B.A.; Lazareva, A.N.; Makeev, D.M.

    1965-01-01

    Fermentations were conducted on a plant scale, using starch of various origins, e.g., potatoes, wheat, and other cereals, and as enzyme source a number of strains of Aspergillus oryzae, A. awamori, A. usamii, A. niger, A. batatae, and Bacillus mesentericus. The starches were broken down to a molecular weight between 900 and 1600; time requirements differed from those commonly known. Comparison of these enzymic actions to that of standard malt discloses that in breaking down a potato starch from a molecular weight of 268,000 to one of 1353 to 1556, the malt and A. Oryzae require 1 hour, whereas A. awamori and B. mesentericus require 18, and a different strain of A. awamori requires 24 hours.

  15. Caracterização de amidos de mandioca nativos e modificados e utilização em produtos panificados Characterization of native and modified cassava starches and their use in baked products

    Directory of Open Access Journals (Sweden)

    Krischina Singer Aplevicz

    2007-09-01

    Full Text Available O amido de mandioca é utilizado como ingrediente principal na fabricação de biscoitos e pão de queijo. O polvilho azedo é um produto artesanal, sem padrão de qualidade estabelecido, com problemas de higiene em seu processamento e de oferta. O trabalho teve como objetivo caracterizar amidos de mandioca nativos e modificados e testá-los na elaboração de pão de queijo e biscoito de polvilho. As principais características que diferem o polvilho azedo do amido de mandioca nativo, também denominado polvilho doce são: acidez, grau de expansão, viscosidade, claridade de pasta, sinérese e poder redutor. Foram aplicados nos produtos panificados quatro tipos de amidos, sendo polvilho doce, azedo, amido modificado com peróxido de hidrogênio e amido modificado comercial Expandex® 160003. Obtidos os produtos panificados, foi determinada a composição físico-química e observado que os tipos de amidos influenciaram nas características internas, externas e no sabor. Os produtos panificados foram submetidos à análise sensorial de aceitabilidade, utilizando-se a escala hedônica de nove pontos, com provadores não-treinados. As amostras de pão de queijo contendo amido modificado oxidado com peróxido de hidrogênio foram as que apresentaram o melhor resultado entre as formulações. Para as amostras de biscoito de polvilho, as elaboradas com polvilho azedo e com Expandex® 160003 foram superiores e não diferiram estatisticamente.Cassava starch is used as the main ingredient in the production of biscuits and Brazilian cheese bread. The processing and sale of sour cassava starch - an artisanal product with no established standard of quality - is marked by hygiene problems and its commercial availability is uncertain. The purpose of this study was to characterize native and modified cassava starches and test them in cheese bread and cassava starch biscuit recipes. The main characteristics that differentiate sour starch from native cassava

  16. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat.

    Science.gov (United States)

    Geng, Juan; Li, Liqun; Lv, Qian; Zhao, Yi; Liu, Yan; Zhang, Li; Li, Xuejun

    2017-12-01

    Functional allelic variants of TaGW2 - 6A produce large grains, possibly via changes in endosperm cells and dry matter by regulating the expression of cytokinins and starch-related genes via the ubiquitin-proteasome system. In wheat, TaGW2-6A coding region allelic variants are closely related to the grain width and weight, but how this region affects grain development has not been fully elucidated; thus, we explored its influence on grain development based mainly on histological and grain filling analyses. We found that the insertion type (NIL31) TaGW2-6A allelic variants exhibited increases in cell numbers and cell size, thereby resulting in a larger (wider) grain size with an accelerated grain milk filling rate, and increases in grain width and weight. We also found that cytokinin (CK) synthesis genes and key starch biosynthesis enzyme AGPase genes were significantly upregulated in the TaGW2-6A allelic variants, while CK degradation genes and starch biosynthesis-negative regulators were downregulated in the TaGW2-6A allelic variants, which was consistent with the changes in cells and grain filling. Thus, we speculate that TaGW2-6A allelic variants are linked with CK signaling, but they also influence the accumulation of starch by regulating the expression of related genes via the ubiquitin-proteasome system to control the grain size and grain weight.

  17. Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2013-01-01

    Integrating of lignocellulose-based and starch-rich biomass-based hydrogen production was investigated by mixing wheat straw hydrolysate with a wheat grain hydrolysate for improved fermentation. Enzymatic pretreatment and hydrolysis of wheat grains led to a hydrolysate with a sugar concentration of

  18. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  19. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    International Nuclear Information System (INIS)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del

    2013-01-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  20. Effect of dietary starch source on milk production and composition of ...

    African Journals Online (AJOL)

    huis

    The larger granules of more enzyme-resistant B-type crystalline starch in ... of nonstructural carbohydrates increases the utilization of ruminal ammonia-N ..... An improved enzymatic method for the determination of native and modified starch. J.

  1. Prececal digestibility of various sources of starch in minipigs with or without experimentally induced exocrine pancreatic insufficiency.

    Science.gov (United States)

    Mösseler, A; Kramer, N; Becker, C; Gregory, P C; Kamphues, J

    2012-12-01

    Low prececal digestibility of starch leads to a higher starch flux into the hindgut, causing a forced microbial fermentation, energy losses, and meteorism. For exocrine pancreatic insufficiency (EPI), lack of pancreatic amylase can be compensated mostly by hindgut fermentation of starch. Even in pigs with complete loss of pancreatic secretion, starch digestibility over the entire tract is reaching levels of controls. To optimize diets for human patients with EPI, the proportion of starch that is digested by the ileum is important. Minipigs were fitted with an ileocecal reentrant fistula (n = 8) to determine prececal digestibility of starch. In 5 minipigs the pancreatic duct was ligated (PL) to induce EPI; 3 minipigs served as controls (Con). Various starch sources were tested in a 1-d screening test; therefore, disappearance rate (DR) instead of digestibility was used. Test meals consisted of 169 g DM of a basal diet plus 67.5 g DM of the starch (without thermal treatment; purified; starch content of 89 to 94.5%) and Cr(2)O(3). The test meal contained (% of DM) starch, 67; crude fat, 1.69; CP, 15; crude fiber, 2.0; and Cr(2)O(3), 0.25. In PL, prececal DR of starch was lower than in Con (P 90%) but was lower (P < 0.05) for potato (Solanum tuberosum) starch (75.4%). In PL, prececal DR of starch was higher (P < 0.05) for wheat (Triticum aestivum) starch (61.2%) than corn (Zea mays) starch (43.0%) and rice (Oryza sativa) starch (29.2%) and intermediate for potato and field pea (Pisum sativum) starch. For patients with EPI, wheat starch seems favorable due to the higher prececal digestibility whereas raw corn and rice starch should be avoided.

  2. Characterization of starch and other components from African crops and quality evaluation of derived products

    International Nuclear Information System (INIS)

    Quattrucci, E.; Acquistucci, R.; Carcea, M.; Cubadda, R.

    1997-01-01

    Research was carried out on African staple foods on characterization of components of cereals and tubers, and quality evaluation of foods manufactured from composite flours. Cereal starch, alimentary fiber and minerals from cassava were investigated. Starch was isolated under conditions of minimum damage from seeds of three sorghum and two fonio cultivars, and its physico-chemical properties were compared with commercial wheat starch. Fiber, ash and mineral content of samples of genetically improved varieties of cassava from Ghana were determined to understand the role of factors that influence texture of cooked products. Bread and pasta were produced from either triticale alone or in combination with different amounts of cassava flour, and by varying the amount of wheat flour. The organoleptic quality of the raw materials and final products were determined. (author). 15 refs, 10 tabs

  3. Characterization of starch and other components from African crops and quality evaluation of derived products

    Energy Technology Data Exchange (ETDEWEB)

    Quattrucci, E; Acquistucci, R; Carcea, M [National Insti. of Nutrion, Rome (Italy); Cubadda, R [University of Molise, Campobasso (Italy)

    1997-07-01

    Research was carried out on African staple foods on characterization of components of cereals and tubers, and quality evaluation of foods manufactured from composite flours. Cereal starch, alimentary fiber and minerals from cassava were investigated. Starch was isolated under conditions of minimum damage from seeds of three sorghum and two fonio cultivars, and its physico-chemical properties were compared with commercial wheat starch. Fiber, ash and mineral content of samples of genetically improved varieties of cassava from Ghana were determined to understand the role of factors that influence texture of cooked products. Bread and pasta were produced from either triticale alone or in combination with different amounts of cassava flour, and by varying the amount of wheat flour. The organoleptic quality of the raw materials and final products were determined. (author). 15 refs, 10 tabs.

  4. Impact of ancient cereals, pseudocereals and legumes on starch hydrolysis and antiradical activity of technologically viable blended breads.

    Science.gov (United States)

    Collar, Concha; Jiménez, Teresa; Conte, Paola; Fadda, Costantino

    2014-11-26

    Wheat flour replacement from 22.5% up to 45% by incorporation of ternary blends of teff (T), green pea (GP) and buckwheat (BW) flours provided technologically viable and acceptable sensory rated multigrain breads with superior nutritional value compared to the 100% wheat flour (WT) counterparts. Blended breads exhibited superior nutritional composition, larger amounts of bioaccessible polyphenols, higher anti-radical activity, and lower and slower starch digestibility. Simultaneous lower rapidly digestible starch (57.1%) and higher slowly digestible starch (12.9%) and resistant starch (2.8%) contents (g per 100g fresh bread), considered suitable nutritional trends for dietary starch fractions, were met by the blend formulated 7.5% T, 15% GP, 15% BK. The associated mixture that replaced 37.5% WT, showed a rather lower extent and slower rate of starch hydrolysis with medium-low values for C∞, and H90, and lowest k, and intermediate expected Glycaemic Index (86). All multigrain breads can be labelled as source of dietary fibre (≥ 3 g dietary fibre/100g bread). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Preparation And Physicochemical Properties of Octenyl Succinic Anhydride (OSA) Modified Sago Starch

    International Nuclear Information System (INIS)

    Nur Farhana Zainal Abiddin; Anida Yusoff; Noorlaila Ahmad

    2016-01-01

    Starch from sago (Metroxylon sagu) was esterified with octenyl succinic anhydride (OSA) in order to regulate its shortcoming by adding amphiphilic properties. The objective of this work is to determine the physicochemical properties of native sago and OSA sago starches. The OSA sago starch was produced according to the optimum condition generated via response surface methodology (RSM) with 5.00 % OSA at pH 7.20 and a reaction time of 9.65 hours. The esterified sago starch gives a degree of substitution (DS) value of 0.012. The physicochemical properties of OSA sago starch was determined by measuring the amylose content, laser diffraction particle size analyzer, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The amylose content for OSA sago starch was found to be reduced after esterification reaction. The particle size of OSA sago starch was found to increase significantly (p<0.05) compared to their native starches. Scanning electron microscopy (SEM) revealed that OSA starch developed slightly rough surface and their edges lost some definition. FT-IR spectroscopy shows that there was appearance of new absorption correspond to ester carbonyl group (1717 cm -1 ) and carboxylate RCOO- (1569 cm -1 ). This study showed that the physicochemical properties of modified starches were influenced not only by DS but also on the botanical origin of the starches. (author)

  6. The Effect of Variety and Growing Conditions on the Chemical Composition and Nutritive Value of Wheat for Broilers

    Directory of Open Access Journals (Sweden)

    M. E. E. Ball

    2013-03-01

    Full Text Available The aim of this study was to examine the effect of variety and growing conditions of wheat on broiler performance and nutrient digestibility. One hundred and sixty-four wheat samples, collected from a wide range of different sources, locations, varieties and years, were analyzed for a range of chemical and physical parameters. Chemical and physical parameters measured included specific weight, thousand grain weight (TG, in vitro viscosity, gross energy, N, NDF, starch, total and soluble non-starch polysaccharides (NSP, lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles. Ninety-four of the wheat samples were selected for inclusion in four bird trials. Birds were housed in individual wire metabolizm cages from 7 to 28 d and offered water and feed ad libitum. Dry matter intake (DMI, live weight gain (LWG and gain:feed were determined weekly. A balance collection was carried out from 14 to 21 d for determination of apparent metabolizable energy (AME, ME:gain, DM retention, oil and NDF digestibility. At 28 d the birds were sacrificed, the contents of the jejunum removed for determination of in vivo viscosity and the contents of the ileum removed for determination of ileal DM, starch and protein digestibility. The wheat samples used in the study had wide-ranging chemical and physical parameters, leading to bird DMI, LWG, gain:feed, ME:GE, AME content and ileal starch and protein digestibility being significantly (p<0.05 affected by wheat sample. A high level of N fertilizer application to the English and NI wheat samples tended to benefit bird performance, with increases of up to 3.4, 7.2 and 3.8% in DMI, LWG and gain:feed, respectively. Fungicide application also appeared to have a positive effect on bird performance, with fungicide treated (+F wheat increasing bird DMI, LWG and gain:feed by 6.6, 9.3 and 2.7%, over the non-fungicide treated (-F wheats. An increase (p<0.1 of 9.3% in gain:feed was also observed at the

  7. Natural Variation in Grain Composition of Wheat and Related Cereals

    OpenAIRE

    Shewry, Peter R; Hawkesford, Malcolm J; Piironen, Vieno; Lampi, Anna-Maija; Gebruers, Kurt; Boros, Danuta; Andersson, Annica AM; Åman, Per; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2013-01-01

    The wheat grain comprises three groups of major components, starch, protein, and cell wall polysaccharides (dietary fiber), and a range of minor components that may confer benefits to human health. Detailed analyses of dietary fiber and other bioactive components were carried out under the EU FP6 HEALTHGRAIN program on 150 bread wheat lines grown on a single site, 50 lines of other wheat species and other cereals grown on the same site, and 23−26 bread wheat lines grown in six environments. P...

  8. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    Science.gov (United States)

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Utilization and effects of gamma rays in conservation of wheat seeds

    International Nuclear Information System (INIS)

    Alvarenga, Moema Goncalves de; Mendes, Adrienne Marie Silveira; Carmo, Vildete Aparecida Sousa.

    1989-01-01

    The process of conservation and treatment of wheat by irradiation was studied. The advantages of this method in relation to conventional method were analysed. The radiation effects were observed to different radiation doses on wheat metabolism, proteins, starch, alpha-amylases and physical-chemical characteristics. 30 refs., 22 tabs

  10. A Comparative Study of the Characteristics of Cross-Linked, Oxidized and Dual-Modified Rice Starches

    OpenAIRE

    Xiao, Hua-Xi; Lin, Qin-Lu; Liu, Gao-Qiang; Yu, Feng-Xiang

    2012-01-01

    Rice starch was cross-linked with epichlorohydrin (0.3%, w/w, on a dry starch basis) and oxidized with sodium hypochlorite (2.5% w/w), respectively. Two dual-modified rice starch samples (oxidized cross-linked rice starch and cross-linked oxidized rice starch) were obtained by the oxidation of cross-linked rice starch and the cross-linking of oxidized rice starch at the same level of reagents. The physicochemical properties of native rice starch, cross-linked rice starch and oxidized rice sta...

  11. Effect of conventional and extrusion pelleting on in situ ruminal degradability of starch, protein, and fibre in cattle

    DEFF Research Database (Denmark)

    Razzaghi, Ali; Larsen, Mogens; Lund, Peter

    2016-01-01

    +50% sugar beet pulp (SBP), or 50% maize+50% SBP. Meals were pelleted by either conventional pelleting, or by cooking extrusion using two distinct settings giving pellets with either high density (HD) or low density (LD). Ruminal degradation of starch, crude protein (CP) and NDF, and intestinal...... affected ruminal degradability of starch, protein, and NDF differently depending on both type of cereal and composition of the concentrate mixture.......>Pelleting>Meal). In contradiction, ESD for pure wheat and wheat mixtures was reduced, though differences were minor. Conventional pelleting reduced the effective protein degradability (EPD) for pure wheat, but extrusion did not further affect the EPD. In contrast, the most intense processing with extrusion LD increased EPD...

  12. Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    2014-04-01

    Full Text Available The objective of this study was to investigate whether and how exogenous abscisic acid (ABA is involved in mediating starch accumulation in the grain and redistribution of carbohydrates during grain filling of two wheat cultivars with different staygreen characteristics. At blooming stage, plants of Wennong 6 (a staygreen cultivar and Jimai 20 (control were sprayed with 10 mg L− 1 abscisic acid (ABA for 3 days. The application of ABA significantly (P < 0.05 increased grain filling rate, starch accumulation rate and content, remobilization of dry matters to kernels, and 1000-grain weight of the two cultivars. Exogenous ABA markedly (P < 0.05 increased grain yield at maturity, and Wennong 6 and Jiami 20 showed 14.14% and 4.86% higher compared yield than the control. Dry matter accumulation after anthesis of Wennong 6 was also significantly (P < 0.05 influenced by exogenous ABA, whereas that of Jimai 20 was unchanged. Application of ABA increased endogenous zeatin riboside (ZR content 7 days after anthesis (DAA, and spraying ABA significantly increased endogenous indole-3-acetic acid (IAA and ABA contents from 7 to 21 DAA and decreased gibberellin (GA3 content at 14 DAA, but increased GA3 content from 21 to 35 DAA. The results suggested that increased yield of staygreen was due to greater starch assimilation owing to a higher filling rate and longer grain-filling duration.

  13. Physical and mechanical properties of LDPE incorporated with different starch sources

    Science.gov (United States)

    Kormin, Shaharuddin; Kormin, Faridah; Dalour Hossen Beg, Mohammad; Bijarimi Mat Piah, Mohd

    2017-08-01

    In this study it was investigated the incorporation of different starches, such as sago starch, corn starch, potato starch, tapioca starch and wheat starch, in low-density polyethylene matrix (LDPE) to enhanced mechanical properties and to obtain partially biodegradable product with the aim to reduce the plastics wastes in the environment. For comparison, virgin LDPE, LDPE with different sources of starch blends were prepared and characterized under the same conditions. The starches were mixed to the LDPE using a twin screw extruder to guarantee the homogeneity of the formulations. The compound were shaping processed by injection moulding. The characterization of those compounds was done by physical (density, MFI), mechanical (Universal tensile machine). The addition of starch to LDPE reduced the MFI values, the tensile strength, elongation at break and impact strength, whereas the elastic modulus, flexural modulus and flexural strength increased. LDPE/SS show the good mechanical behavior compared to other formulation. The physical and mechanical properties were evident when 5 and 30 wt% were added. Water uptake increased with increased starch content and immersion time. The time taken for the composites to equilibrate was about one month even when they were immersed completely in water.

  14. Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers.

    Science.gov (United States)

    Han, Fei; Gao, Chunmei; Liu, Mingzhu

    2013-10-01

    Acetylated corn starch was successfully synthesized and optimized by the reaction of native corn starch with acetic anhydride and acetic acid in the presence of sulfuric acid as a catalyst. The optimal degree of substitution of 2.85 was obtained. Starch-based nanoparticles were fabricated by a simple and novel nanoprecipitation procedure, by the dropwise addition of water to acetone solution of acetylated starch under stirring. Fourier transform infrared spectrometry showed that acetylated starch had some new bands at 1750, 1375 and 1240 cm(-1) while acetylated starch nanoparticles presented the identical peaks as the drug-loaded acetylated starch nanoparticles and the acetylated starch. Wide angle X-ray diffraction indicated that A-type pattern of native starch was completely transformed into the V-type pattern of Acetylated starch and starch-based nanoparticles show the similar type pattern with the acetylated starch. The scanning electron microscopy showed that the different sizes of pores formed on the acetylated starch granules were utterly converted into the uniform-sized spherical nanoparticles after the nanoprecipitation. The encapsulation efficiency and diameter of nanoparticle can be adjusted by the degree of substitution, the volume ratio of nonsolvent to solvent and the weight ratio of acetylated starch to drug. It was also depicted that the release behaviors of drug-loaded nanoparticles depend on the size of nanoparticles and the degree of substitution of the acetylated starch. Release studies prove that the starch-based nanoparticles with uniform size can be used for the encapsulation of hydrophobic drug and attained the sustained and controllable drug release carriers.

  15. Evaluation of the technological and sensory properties of durum wheat spaghetti enriched with different dietary fibres.

    Science.gov (United States)

    Rakhesh, Nisha; Fellows, Christopher M; Sissons, Mike

    2015-01-01

    The incorporation of fibres, whether insoluble or soluble, in durum wheat pasta negatively impacts desirable end-use properties, especially if incorporated in significant amounts. Fibres can disrupt the starch-protein matrix of the dough during pasta preparation and can also often swell more readily with water than starch, competing with the starch for water during dough development. Similar degrees of substitution with different fibres gave markedly different impacts on firmness, stickiness, cooking loss and sensory attributes, suggesting that results obtained for one fibre cannot readily be generalized to other fibres. The in vitro starch digestibility of the pastas was significantly reduced when resistant starch, β-glucan-enriched flour, carboxymethyl cellulose or guar gum was incorporated but increased when pollard or inulin was added. In many instances, different sources of the same fibre gave dramatically different impacts on the properties of cooked durum wheat pasta. © 2014 Society of Chemical Industry.

  16. Effects of Native Banana Starch Supplementation on Body Weight and Insulin Sensitivity in Obese Type 2 Diabetics

    Science.gov (United States)

    Ble-Castillo, Jorge L.; Aparicio-Trápala, María A.; Francisco-Luria, Mateo U.; Córdova-Uscanga, Rubén; Rodríguez-Hernández, Arturo; Méndez, José D.; Díaz-Zagoya, Juan C.

    2010-01-01

    Few fiber supplements have been studied for physiological effectiveness. The effects of native banana starch (NBS) and soy milk (control) on body weight and insulin sensitivity in obese type 2 diabetics were compared using a blind within-subject crossover design. Subjects undertook two phases of 4-week supplementation either with NBS or soy milk. Patients on NBS lost more body weight than when they were on control treatment. Plasma insulin and HOMA-I were reduced after NBS consumption, compared with baseline levels, but not significantly when compared to the control treatment. Results support the use of NBS as part of dietary fiber supplementation. PMID:20623003

  17. Studies on rye starch properties and modification. Pt. 1. Composition and properties of rye starch granules

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, F; Radosta, S; Richter, M; Kettlitz, B [Zentralinstitut fuer Ernaehrung, Potsdam (Germany); Gernat, C [Zentralinstitut fuer Molekularbiologie, Berlin (Germany)

    1991-09-01

    Rye is considered as a potential raw material for starch industry. Starting from a survey of technical procedures of isolating starches from rye-flour and -grits investigations will be reported, which were performed on pilot plant- and laboratory-isolated rye starches. The present paper deals with its granule appearance and composition. A distribution of granule size between small granules ({<=} 10 {mu}m - 15%) and large granules ({>=} 11 ... {<=} 40 {mu}m = 85%) is typical for the totality of the starches. Differing distributions depend on the conditions of isolation: The entity of starch containing samples resulted from the latoratory procedures under investigation. Large-granule starch preparations were isolated in the pilot plant: The centrifuge-overflow contains the small-granule fraction which is high in impurities. Granule crystallinity amounts to 16%. The crystalline component - like in wheat and triticale starches - consists predominantly of A-polymorph - with up to 9% of the B-type. The isotherms of water exchange are of the cereal type. The contents of minor constituents largely relate to the small granule fraction which assembles the majority of crude protein, pentosans and lipids, which are difficult to remove. Lipid components in all fractions influence the results of linear chain-iodine interactions and they must be removed to proceed from apparent to absolute polysaccharide indices. The absolute amylose contents amount to {approx equal} 25% for large granule samples and to 20-21% for small granule samples. The average chain-length of iodine binding helical regions was determined with 220-240 AGU. (orig.).

  18. Nutritional and Nutraceutical Properties of Triticum dicoccum Wheat and Its Health Benefits: An Overview.

    Science.gov (United States)

    Dhanavath, Srinu; Prasada Rao, U J S

    2017-10-01

    Triticum dicoccum wheat is one of the ancient wheat species and is gaining popularity due to its suggested health benefits as well as its suitability for organic farming. In some parts of the world, certain traditional foods prepared with dicoccum wheat are preferred due to their better taste, texture, and flavor. It is rich in bioactive compounds and its starch has been reported to have slow digestibility. However, content and composition of bioactive compounds is reported to vary depending on the geographical location, seasonal variations, varieties used, and the analytical methods followed. Therefore, in the present study, we report the food uses, digestibility of starch, nutritional and nutraceutical compositions of dicoccum wheat grown in different parts of the world, and also its health benefits in ameliorating diabetes and celiac disease. © 2017 Institute of Food Technologists®.

  19. Glycogenesis and de novo lipid synthesis from dietary starch in juvenile gilthead sea bream (Sparus aurata) quantified with stable isotopes

    DEFF Research Database (Denmark)

    Ekmann, Kim Schøn; Dalsgaard, Anne Johanne Tang; Holm, Jørgen

    2013-01-01

    the metabolic fate of dietary starch, 0·7% wheat starch was replaced with isotope-labelled starch (.98% 13C). Fish were fed the experimental diets for three consecutive 10 d periods, and isotope ratio MS was applied to quantify 13C enrichment of liver and whole-body glycogen and lipid pools over the three...

  20. Evaluation of Blue Value in different plant materials as a tool for rapid starch determination

    Directory of Open Access Journals (Sweden)

    Bogusław Samotus

    2014-01-01

    Full Text Available In order to determine the concentration of starch in plant materials from the intensity of the blue iodine complex, it is necessary to know the Blue Value (B.V., which is defined in this paper as the absorbancy of 100 mg of a starch-iodine complex in 100 ml of aqueous solution. An adequate amount of plant material is treated with a hot CaCl2 solution for 1/2 hour and the solute is diluted to 25 ml with CaCl2. This basic solution serves to measure absorbancy, as well as for starch determination. The first measurement is done by the dilution of a proper amount of basic solution with water and after adding a diluted iodine-iodide solution the reading of B.V. is taken off. The second measurement is done by the precipitation of a starch iodine complex from a proper amount of the basic solution, which is then purified, destroyed by Na2SO3 solution, and starch is determined by the anthrone method. These two readings serve for the establishing of B.V. for the starch. Once established, B.V. can be used for starch determination in the proper plant material. A high degree of variation of the B.V. was found. The highest B.V. was obtained for wrinkled pea seeds (17.4; walnut, potato, smooth pea and pear gave values from 12.6 to 11.0, common bean and broad bean - 10.3 and 9.7, Triticale, carrot, rye, wheat and garden parsley from 8.7 to 8.0 and maize, oat, normal rice from 7.6 to 6.2. The B.V. for amylose was 25.3, for potato starch 12.4, soluble starch 11.9, wheat starch 8.8 and for Triticale and rye starches, 8.7.

  1. Nanostructural morphology of plasticized wheat gluten and modified potato starch composites: relationship to mechanical and barrier properties.

    Science.gov (United States)

    Muneer, Faraz; Andersson, Mariette; Koch, Kristine; Menzel, Carolin; Hedenqvist, Mikael S; Gällstedt, Mikael; Plivelic, Tomás S; Kuktaite, Ramune

    2015-03-09

    In the present study, we were able to produce composites of wheat gluten (WG) protein and a novel genetically modified potato starch (MPS) with attractive mechanical and gas barrier properties using extrusion. Characterization of the MPS revealed an altered chain length distribution of the amylopectin fraction and slightly increased amylose content compared to wild type potato starch. WG and MPS of different ratios plasticized with either glycerol or glycerol and water were extruded at 110 and 130 °C. The nanomorphology of the composites showed the MPS having semicrystalline structure of a characteristic lamellar arrangement with an approximately 100 Å period observed by small-angle X-ray scattering and a B-type crystal structure observed by wide-angle X-ray scattering analysis. WG has a structure resembling the hexagonal macromolecular arrangement as reported previously in WG films. A larger amount of β-sheets was observed in the samples 70/30 and 30/70 WG-MPS processed at 130 °C with 45% glycerol. Highly polymerized WG protein was found in the samples processed at 130 °C versus 110 °C. Also, greater amounts of WG protein in the blend resulted in greater extensibility (110 °C) and a decrease in both E-modulus and maximum stress at 110 and 130 °C, respectively. Under ambient conditions the WG-MPS composite (70/30) with 45% glycerol showed excellent gas barrier properties to be further explored in multilayer film packaging applications.

  2. High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes

    Directory of Open Access Journals (Sweden)

    Botticella Ermelinda

    2011-11-01

    Full Text Available Abstract Background Manipulation of the amylose-amylopectin ratio in cereal starch has been identified as a major target for the production of starches with novel functional properties. In wheat, silencing of starch branching enzyme genes by a transgenic approach reportedly caused an increase of amylose content up to 70% of total starch, exhibiting novel and interesting nutritional characteristics. In this work, the functionality of starch branching enzyme IIa (SBEIIa has been targeted in bread wheat by TILLING. An EMS-mutagenised wheat population has been screened using High Resolution Melting of PCR products to identify functional SNPs in the three homoeologous genes encoding the target enzyme in the hexaploid genome. Results This analysis resulted in the identification of 56, 14 and 53 new allelic variants respectively for SBEIIa-A, SBEIIa-B and SBEIIa-D. The effects of the mutations on protein structure and functionality were evaluated by a bioinformatic approach. Two putative null alleles containing non-sense or splice site mutations were identified for each of the three homoeologous SBEIIa genes; qRT-PCR analysis showed a significant decrease of their gene expression and resulted in increased amylose content. Pyramiding of different single null homoeologous allowed to isolate double null mutants showing an increase of amylose content up to 21% compared to the control. Conclusion TILLING has successfully been used to generate novel alleles for SBEIIa genes known to control amylose content in wheat. Single and double null SBEIIa genotypes have been found to show a significant increase in amylose content.

  3. Effect of Some Oligosaccharides on Functional Properties of Wheat ...

    African Journals Online (AJOL)

    The peak viscosity of wheat starch with oligosaccharides increased from 3238 ± 8 to 3822 ... International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African .... Measurement of water activity (Aw) during.

  4. Effects of Radiation on Mechanical Properties of Poly (butylene succinate) and Cassava Starch Blends

    International Nuclear Information System (INIS)

    Hemvichian, K.; Dechasasawat, K.; Kangsumrith, W.; Suwanmala, P.

    2014-01-01

    This research compared the effects of gamma and electron beam irradiation at different doses on the mechanical properties of polymer blends between poly(butylene succinate) (PBS) and cassava starch. Two types of starch were used to prepare thermoplastic starch (TPS), native cassava starch and hydrophobic starch. PBS/TPS blends were compounded at five different weight ratios using a twin-screw extruder. Mechanical properties and degradation were evaluated in comparison to unirradiated samples. Results indicated that the incorpora- tion of TPS prepared from native cassava starch decreased the mechanical properties of PBS/TPS blends, whereas the addition of TPS prepared from hydrophobic starch improved the mechanical properties of the blends. In addition, the maximum mechanical properties of PBS/TPS blends were achieved when samples were exposed to irradiation at 120 kGy. Using soil burial evaluation, the degradation rate of blends was found to increase with the addition of TPS. Therefore we have demonstrated in this study that the type of TPS and irradiation treatment can significantly alter the mechanical properties and degradation of PBS/TPS blends.

  5. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2012-06-01

    Full Text Available Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435, was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS of 1.04 and 0.0072 respectively. Esterification of corn starch with palmitic acid was confirmed by UV spectroscopy and IR spectroscopy. The results of emulsifying property analysis showed that the starch palmitate with higher DS contributes to the higher emulsifying property (67.6% and emulsion stability (79.6% than the native starch (5.3% and 3.9%. Modified starch obtained by esterification that possesses emulsifying properties and has long chain fatty acids, like palmitic acid, has been widely used in the food, pharmaceutical and biomedical applications industries.

  6. Continuous-flow electro-assisted acid hydrolysis of granular potato starch via inductive methodology.

    Science.gov (United States)

    Li, Dandan; Yang, Na; Jin, Yamei; Guo, Lunan; Zhou, Yuyi; Xie, Zhengjun; Jin, Zhengyu; Xu, Xueming

    2017-08-15

    The induced electric field assisted hydrochloric acid (IEF-HCl) hydrolysis of potato starch was investigated in a fluidic system. The impact of various reaction parameters on the hydrolysis rate, including reactor number (1-4), salt type (KCl, MgCl 2 , FeCl 3 ), salt concentration (3-12%), temperature (40-55°C), and hydrolysis time (0-60h), were comprehensively assessed. Under optimal conditions, the maximum reducing sugar content in the hydrolysates was 10.59g/L. X-ray diffraction suggested that the crystallinity of IEF-HCl-modified starches increased with the intensification of hydrolysis but was lower than that of native starch. Scanning electron microscopy indicated that the surface and interior regions of starch granules were disrupted by the hydrolysis. The solubility of IEF-HCl-modified starches increased compared to native starch while their swelling power decreased, contributing to a decline in paste viscosity. These results suggest that IEF is a notable potential electrotechnology to conventional hydrolysis under mild conditions without any electrode touching the subject. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch.

    Science.gov (United States)

    Toraya-Avilés, Rocío; Segura-Campos, Maira; Chel-Guerrero, Luis; Betancur-Ancona, David

    2017-06-01

    Cassava (Manihot esculenta Crantz) native starch was treated with pyroconversion and enzymatic hydrolysis to produce a pyrodextrin and an enzyme-resistant maltodextrin. Some nutritional characteristics were quantified for both compounds. Pyroconversion was done using a 160:1 (p/v) starch:HCl ratio, 90 °C temperature and 3 h reaction time. The resulting pyrodextrin contained 46.21% indigestible starch and 78.86% dietary fiber. Thermostable α-amylase (0.01%) was used to hydrolyze the pyrodextrin at 95 °C for 5 min. The resulting resistant maltodextrin contained 24.45% dextrose equivalents, 56.06% indigestible starch and 86.62% dietary fiber. Compared to the cassava native starch, the pyrodextrin exhibited 56% solubility at room temperature and the resistant maltodextrin 100%. The glycemic index value for the resistant maltodextrin was 59% in healthy persons. Its high indigestible starch and dietary fiber contents, as well as its complete solubility, make the resistant maltodextrin a promising ingredient for raising dietary fiber content in a wide range of foods, especially in drinks, dairy products, creams and soups.

  8. Convenient synthetic method of starch/lactic acid graft copolymer ...

    Indian Academy of Sciences (India)

    is a potentially useful and completely biodegradable material for biodegradable plastics because of its nontoxic, low cost and its natural abundance which can be obtained from many crops including corn, wheat, rice, potato and so on (Tester and Karkallas 2002). Therefore, modification of starch, physi- cally and chemically ...

  9. Plantain starch granules morphology, crystallinity, structure transition, and size evolution upon acid hydrolysis.

    Science.gov (United States)

    Hernández-Jaimes, C; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2013-06-05

    Plantain native starch was hydrolysed with sulphuric acid for twenty days. Hydrolysis kinetics was described by a logistic function, with a zero-order rate during the first seven days, followed by a slower kinetics dynamics at longer times. X-ray diffraction results revealed a that gradual increase in crystallinity occurred during the first seven days, followed by a decrease to values similar to those found in the native starch. Differential scanning calorimetry analysis suggested a sharp structure transition by the seventh day probably due to a molecular rearrangement of the starch blocklets and inhomogeneous erosion of the amorphous regions and semi crystalline lamellae. Scanning electron micrographs showed that starch granules morphology was continually degraded from an initial oval-like shape to irregular shapes due to aggregation effects. Granule size distribution broadened as hydrolysis time proceeded probably due to fragmentation and agglomeration phenomena of the hydrolysed starch granules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Flour quality and kernel hardness connection in winter wheat

    Directory of Open Access Journals (Sweden)

    Szabó B. P.

    2016-12-01

    Full Text Available Kernel hardness is controlled by friabilin protein and it depends on the relation between protein matrix and starch granules. Friabilin is present in high concentration in soft grain varieties and in low concentration in hard grain varieties. The high gluten, hard wheat our generally contains about 12.0–13.0% crude protein under Mid-European conditions. The relationship between wheat protein content and kernel texture is usually positive and kernel texture influences the power consumption during milling. Hard-textured wheat grains require more grinding energy than soft-textured grains.

  11. Modification of Cassava Starch Using Lactic Acid Hydrolysis in The Rotary-UV Dryer to Improve Physichocemical Properties

    Directory of Open Access Journals (Sweden)

    Sumardiono Siswo

    2018-01-01

    Full Text Available Food security should be supported in an effort to utilize local products into import substitution products. Cassava starch has the potential to be developed into semi-finished products in the form of flour or starch which does not contain gluten but can inflate large baking process, potentially as a substitute for wheat flour-the main ingredient for making bread. The characteristic of the starch is influenced by the type of starch composition and structure. Natural starch has physicochemical properties i.e. a long time cooking and pasta formed hard. These constraints allow us to modify cassava starch by a combination of lactic acid hydrolysis and drying with rotary UV system. Modified cassava starch is expected to be used as a substitute for wheat flour. The aim of the research which is a combination of lactic acid hydrolysis and drying using a rotary UV system is to examine the optimum operating conditions in the drying process of starch hydrolysis with parameter the physicochemical and rheological properties of modified cassava starch. The initial process study is to hydrolyze cassava starch using lactic acid. Furthermore, hydrolyzed cassava starch is then dried using UV light in the rotary dryers system. There are a variety of changing variables, i.e. time of irradiation cassava starch-lactic acid hydrolysis products in the rotary UV light and air drying temperature. The research results show that modified starch has a better characteristic than the natural starch. From the analysis, the best point of swelling power, solubility and baking expansion is consequently 15.62 g/g; 24.19 %; 2.21 ml/gr. The FTIR result shows that there is no significant difference of the chemical structure because the starch modification only change the physical characteristics. From the SEM analysis, we can know that the size of the starch’s granule changes between the natural starch and the modified starch..

  12. Effect of Sucrose Esters on the Physicochemical Properties of Wheat ...

    African Journals Online (AJOL)

    HP

    In addition, the structure and thermodynamic properties of the ... Journal Citation Reports/Science Edition, Directory of Open Access Journals ... functional differences between wheat starches ..... esters cosurfactant microemulsion systems for.

  13. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Arntzen, Magnus Ø.; Svensson, Birte

    2016-01-01

    of Aspergillus nidulans grown on cereal starches from wheat and high-amylose (HA) maize, as well as legume starch from pea for 5 days. Aspergillus nidulans grew efficiently on cereal starches, whereas growth on pea starch was poor. The secretomes at days 3-5 were starch-type dependent as also reflected...... by amylolytic activity measurements. Nearly half of the 312 proteins in the secretomes were carbohydrate-active enzymes (CAZymes), mostly glycoside hydrolases (GHs) and oxidative auxiliary activities (AAs). The abundance of the GH13 α-amylase (AmyB) decreased with time, as opposed to other starch...

  14. Multi-scale structures and pasting characteristics of starch in whole-wheat flour treated by superfine grinding.

    Science.gov (United States)

    Niu, Meng; Zhang, Binjia; Jia, Caihua; Zhao, Siming

    2017-11-01

    The multi-scale structures and pasting properties of starch in WWF were investigated after superfine grinding. Five particle size distributions of WWF and their corresponding starch were obtained. The grinding process reduced the particle size of WWF and starch. However, a slight increase of fragments from starch granules was observed with enhanced grinding strength because of the small decrease in starch particle size and the existence of other WWF components that undertook some of shearing force and friction during grinding. A prominent reduction in starch crystallinity was resulted due to the destruction of crystalline structure by grinding. Small-angle X-ray scattering analyses indicated the disordering in starch semi-crystalline lamellae with thinner lamellae thickness. Additionally, the 13 C Nuclear Magnetic Resonance spectra demonstrated the alterations in starch chain conformation by varying peak areas of starch carbons (C1 and C4). Along with these structural changes, Starch pasting characteristics showed substantial variations, indicating decreased viscosities and higher pasting stability. The results suggest that the grinding treatments influenced the structures and pasting properties of starch even at a non-separated state, the changes in starch structures were related to the variations in starch gelatinization characteristics. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis and characterization of carboxymethyl potato starch and its application in reactive dye printing.

    Science.gov (United States)

    Zhang, Bing; Gong, Honghong; Lü, Shaoyu; Ni, Boli; Liu, Mingzhu; Gao, Chunmei; Huang, Yinjuan; Han, Fei

    2012-11-01

    Carboxymethyl potato starch (CMPS) was synthesized with a simple dry and multi-step method as a product of the reaction of native potato starch and monochloroacetic acid in the presence of sodium hydroxide. The influence of the molar ratio of sodium hydroxide to anhydroglucose unit, the volume of 95% (v/v) ethanol, the rotation rate of motor driven stirrer and the reaction time for degree of substitution (DS) were evaluated. The product was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). FTIR spectrometry showed new bonds at 1618 and 1424 cm⁻¹ when native starch underwent carboxymethylation. SEM pictures showed that the smooth surface of native starch particles was mostly ruptured. XRD revealed that starch crystallinity was reduced after carboxymethylation. The viscosity of the mixture paste of carboxymethyl starch and sodium alginate (SA) was measured using a rotational viscometer. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with SA. And the results indicated that the mixed paste could partially replace SA as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Utilization of modified starch from avocado (Persea americana Mill.) seed in cream soup production

    Science.gov (United States)

    Cornelia, M.; Christianti, A.

    2018-01-01

    Avocado (Persea americana Mill.) seed was often seen as waste and underutilized resources, especially in the food industry. The aim of this research was to modify the structure of avocado seed starch using the cross-linking method, to improve the viscosity stability in the cream soup. In the preliminary research, starch was isolated from the seed and modified by STPP (sodium tripolyphosphate) with 2%, 4%, and 6% concentration and were reacted for 1, 2, and 3 hours. Starches were analyzed for moisture and ash content, paste clarity, gel strength, swelling power, solubility, yield, and degree of whiteness. Based on the analysis results, the best reaction time and STPP concentration was 6% at 1 hour reaction time. Native starch and the best-modified starch were applied in the cream soup and compared with commercial cream soup. Cream soups were analyzed for viscosity stability using viscometer in 0, 1, 3, and 5 hours after storage in room temperature. The result showed that cream soup using modified starch has better viscosity stability than native starch and commercial cream soup after 5 hours storage, which was 181.7 ± 4.85 cP. Sensory analysis showed that cream soup using modified starch was more acceptable than the others. Avocado seed modified starch has phosphate group that strengthen the starch chain to prevent viscosity breakdown.

  17. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    Science.gov (United States)

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  18. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  19. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: Pasting behavior and surface morphology

    NARCIS (Netherlands)

    Huang, J.; Chen Zenghong,; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, H.A.

    2014-01-01

    o understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated,

  20. Effect of pullulanase debranching and storage temperatures on structural characteristics and digestibility of sweet potato starch

    Directory of Open Access Journals (Sweden)

    Ayenampudi Surendra Babu

    2018-04-01

    Full Text Available The effect of autoclaving (120 °C/30 min, debranching (2% pullulanase/1 h and storage at 4 °C (DS4 or 32 °C (DS32 or 60 °C (DS60 for 24 h on starch fractions, functional, pasting, thermal and structural properties of sweet potato starch was investigated. Results showed that DS4 sample displayed the lower functional properties than other modified starches. Debranching showed a significant increase in the apparent amylose content of native starch from 18.56% to 25%. A higher yield of RS (28.76% was observed in debranched starch stored at 4 °C (DS4 due to the higher degree of retrogradation. All debranched starches showed a substantial decrease in pasting profile and higher gelatinization temperatures than in native starch. B + V X-ray diffraction pattern was observed in debranched starches with increased crystallinity value. The scanning electron micrographs of debranched starches showed rough plate-like surfaces with irregularly shaped structures were observed due to debranching and retrogradation during storage. The study concludes that a combination of autoclaving, debranching and subsequent storage at 4 °C is best technique to produce a higher amount of resistant starch in the sweet potato starch. Keywords: Pullulanase, Functional properties, Resistant starch, RVA, XRD, SEM

  1. Antisense RNA mediated inhibition of granule - bound starch synthase gene expression in potato

    NARCIS (Netherlands)

    Kuipers, A.

    1994-01-01

    Potato starch and its derivatives are widely used in several fields of application. The manufacturing of most products requires the modification of native starch with respect to, for example, viscosity and physical stability. In addition to the currently used physical, chemical and

  2. Genetic controls on starch amylose content in wheat and rice grains

    Indian Academy of Sciences (India)

    2014-04-07

    Apr 7, 2014 ... cuboid in appearance and smaller than wheat or maize. (figure 3; Kaur et al. 2007). ..... gaps in our knowledge. Due to the hexaploid ...... Makino A 2011 Photosynthesis, grain yield, and nitrogen utilization in rice and wheat.

  3. Heat damage and in vitro starch digestibility of puffed wheat kernels.

    Science.gov (United States)

    Cattaneo, Stefano; Hidalgo, Alyssa; Masotti, Fabio; Stuknytė, Milda; Brandolini, Andrea; De Noni, Ivano

    2015-12-01

    The effect of processing conditions on heat damage, starch digestibility, release of advanced glycation end products (AGEs) and antioxidant capacity of puffed cereals was studied. The determination of several markers arising from Maillard reaction proved pyrraline (PYR) and hydroxymethylfurfural (HMF) as the most reliable indices of heat load applied during puffing. The considerable heat load was evidenced by the high levels of both PYR (57.6-153.4 mg kg(-1) dry matter) and HMF (13-51.2 mg kg(-1) dry matter). For cost and simplicity, HMF looked like the most appropriate index in puffed cereals. Puffing influenced starch in vitro digestibility, being most of the starch (81-93%) hydrolyzed to maltotriose, maltose and glucose whereas only limited amounts of AGEs were released. The relevant antioxidant capacity revealed by digested puffed kernels can be ascribed to both the new formed Maillard reaction products and the conditions adopted during in vitro digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of endogenous proteins and lipids on starch digestibility in rice flour.

    Science.gov (United States)

    Ye, Jiangping; Hu, Xiuting; Luo, Shunjing; McClements, David Julian; Liang, Lu; Liu, Chengmei

    2018-04-01

    The composition and structure of the food matrix can have a major impact on the digestion. The aim of this work was to investigate the effects of endogenous proteins and lipids on starch digestibility in rice flour, with an emphasis on establishing the underlying physicochemical mechanisms involved. Native long-grain indica rice flour and rice flour with the lipids and/or proteins removed were subjected to a simulated digestion in vitro. A significant increase in starch digestibility was observed after removal of proteins, lipids, or both. The starch digestibility of the rice flour without lipids was slightly lower than that without proteins, even though the proteins content was about 10-fold higher than the lipids content. Microstructural analysis suggested that the proteins and lipids were normally attached to the surfaces of the starch granules in the native rice flour, thus inhibiting their contact with digestive enzymes. Moreover, the proteins and lipids restricted the swelling of the starch granules, which may have decreased their digestion by reducing their surface areas. In addition, amylose-lipid complex was detected in the rice flour, which is also known to slow down starch digestion. These results have important implications for the design of foods with improved nutritional profiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Relationship between population growth of the red flour beetle Tribolium castaneum and protein and carbohydrate content in flour and starch.

    Science.gov (United States)

    Wong, Nellie; Lee, Chow-Yang

    2011-12-01

    The effects of eight diets (atta flour, wheat flour, self-rising flour, rice flour, custard powder, corn flour, tapioca starch, and potato starch) on the development of the red flour beetle, Tribolium castaneum (Herbst), reared at 29-31 degrees C and 66-70% RH were assessed. Five pairs of male and female T. castaneum were reared on the respective diets for 28 d before the experimental setup was dismantled and adult counts were recorded. In another experiment, the insects were allowed to mate and oviposit in each flour or starch type over a period of 7 d before being removed. The counting of pupae and adult emergence began on the day of emergence and was continued on a daily basis until day 140. Proximate analysis was performed for chemical composition of each diet, and the numbers of new adults that developed were found to be positively correlated (r2 = 0.97; P flour > wheat flour > self-rising flour > rice flour > custard powder > corn flour > tapioca starch > potato starch. T. castaneum larval development to the pupal and adult stages developed significantly faster in atta flour (P flour. Fewer adults emerged from wheat flour, self-rising flour, and rice flour, and no new emergences were recorded for the remaining diets. Developmental rate was much slower in beetles reared on diets in which a low number in progeny was produced. These data illustrate that different diets can influence the sustainability of these insects and affect their development and growth.

  6. In vitro amylolysis of pulse and hylon VII starches explained in terms of their composition, morphology, granule architecture and interaction between hydrolysed starch chains.

    Science.gov (United States)

    Maaran, S; Hoover, R; Vamadevan, V; Waduge, R N; Liu, Q

    2016-02-01

    The objective of this study was to understand the factors underlying the susceptibility of pulse (lablab bean, navy bean, rice bean, tepary bean, velvet bean, and wrinkled pea) and hylon VII starches towards in vitro hydrolysis by the combined action of pancreatin and amyloglucosidase. The time taken to reach an equivalent level of hydrolysis (50%) varied significantly among the starches. Changes to molecular order, crystallinity, double helical content, radial orientation of starch chains (polarized light), enthalpy and apparent amylose content during the progress of hydrolysis showed that rate and extent of hydrolysis were influenced both by the structure of the native starches at different levels (molecular, mesoscopic, microscopic) of granule organization, and by the extent of retrogradation between hydrolysed starch chains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Physical and mechanical properties of biobased materials - Starch polylactate and polyhydroxybutyrate

    DEFF Research Database (Denmark)

    Bergenholtz, Karina P.; Nielsen, Per Væggemose; Olsen, M.B.

    2001-01-01

    Commercial and semi-commercial biobased materials (Polylactate, PLA, polyhydroxybutyrate, PHB, wheat starch and corn starch) were investigated. Physical and mechanical characterisation (tensile strength, elongation, tear strength, compression, gas permeability (CO2 and O-2) and water vapour...... permeability (WVP)) was examined. Tests on both films and cups show potential use of these materials for primary food packaging, especially PLA and PHB. An interesting O-2:CO2 permeability ratio (1:7 to 1:12) was seen, which make these materials suitable for packaging of food with high respiration...

  8. Synchrotron X-ray Scattering Analysis of the Interaction Between Corn Starch and an Exogenous Lipid During Hydrothermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    E Hernandez-Hernandez; C Avila-Orta; B Hsiao; j Castro-Rosas; J Gallegos-Infante; J Morales-Castro; L Ochoa-Martinez; C Gomez-Aldapa

    2011-12-31

    Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 C. When adding LCP, water absorption decreased within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.

  9. Distribution of phosphorus and hydroxypropyl groups within granules of modified sweet potato starches as determined after chemical peeling

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin, Z.; Buwalda, P.; Gruppen, H.

    2015-01-01

    The distributions of phosphorus and hydroxypropyl groups within granules of cross-linked and hydroxypropylated sweet potato starches were investigated. Chemical surface peeling of starch granules was performed after sieving of native and modified starches into large-size (diameter = 20 µm) and

  10. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    Science.gov (United States)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.

  11. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    International Nuclear Information System (INIS)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm −1 and 3272 cm −1 , respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm −1 . The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity

  12. OPTIMIZATION OF TABLET FORMULATIONS BASED ON STARCH LACTOSE GRANULATIONS FOR USE IN TROPICAL COUNTRIES

    NARCIS (Netherlands)

    BOS, CE; BOLHUIS, GK; LERK, CF

    1991-01-01

    Several granulations consisting of alpha-lactose monohydrate 200 mesh and native starch (corn, potato, rice or tapioca) were prepared. The influence of starch concentration, storage temperature and relative humidity on the physical properties of the tablets prepared from these granulations was

  13. Comparative Emulsifying Properties of Octenyl Succinic Anhydride (OSA-Modified Starch: Granular Form vs Dissolved State.

    Directory of Open Access Journals (Sweden)

    María Matos

    Full Text Available The emulsifying ability of OSA-modified and native starch in the granular form, in the dissolved state and a combination of both was compared. This study aims to understand mixed systems of particles and dissolved starch with respect to what species dominates at droplet interfaces and how stability is affected by addition of one of the species to already formed emulsions. It was possible to create emulsions with OSA-modified starch isolated from Quinoa as sole emulsifier. Similar droplet sizes were obtained with emulsions prepared at 7% (w/w oil content using OSA-modified starch in the granular form or molecularly dissolved but large differences were observed regarding stability. Pickering emulsions kept their droplet size constant after one month while emulsions formulated with OSA-modified starch dissolved exhibited coalescence. All emulsions stabilized combining OSA-modified starch in granular form and in solution showed larger mean droplet sizes with no significant differences with respect to the order of addition. These emulsions were unstable due to coalescence regarding presence of free oil. Similar results were obtained when emulsions were prepared by combining OSA-modified granules with native starch in solution. The degree of surface coverage of starch granules was much lower in presence of starch in solution which indicates that OSA-starch is more surface active in the dissolved state than in granular form, although it led to unstable systems compared to starch granule stabilized Pickering emulsions, which demonstrated to be extremely stable.

  14. Effects of single and dual physical modifications on pinhão starch.

    Science.gov (United States)

    Pinto, Vânia Zanella; Vanier, Nathan Levien; Deon, Vinicius Gonçalves; Moomand, Khalid; El Halal, Shanise Lisie Mello; Zavareze, Elessandra da Rosa; Lim, Loong-Tak; Dias, Alvaro Renato Guerra

    2015-11-15

    Pinhão starch was modified by annealing (ANN), heat-moisture (HMT) or sonication (SNT) treatments. The starch was also modified by a combination of these treatments (ANN-HMT, ANN-SNT, HMT-ANN, HMT-SNT, SNT-ANN, SNT-HMT). Whole starch and debranched starch fractions were analyzed by gel-permeation chromatography. Moreover, crystallinity, morphology, swelling power, solubility, pasting and gelatinization characteristics were evaluated. Native and single ANN and SNT-treated starches exhibited a CA-type crystalline structure while other modified starches showed an A-type structure. The relative crystallinity increased in ANN-treated starches and decreased in single HMT- and SNT-treated starches. The ANN, HMT and SNT did not provide visible cracks, notches or grooves to pinhão starch granule. SNT applied as second treatment was able to increase the peak viscosity of single ANN- and HMT-treated starches. HMT used alone or in dual modifications promoted the strongest effect on gelatinization temperatures and enthalpy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Basis for selecting soft wheat for end-use quality

    Science.gov (United States)

    Within the United States, end-use quality of soft wheat (Triticum aestivum L.) is determined by several genetically controlled components: milling yield, flour particle size, and baking characteristics related to flour water absorption caused by glutenin macropolymer, non-starch polysaccharides, and...

  17. Effects of Xylanase Supplementation on Growth Performance, Nutrient Digestibility and Non-starch Polysaccharide Degradation in Different Sections of the Gastrointestinal Tract of Broilers Fed Wheat-based Diets

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2014-06-01

    Full Text Available This experiment was performed to investigate the effects of exogenous xylanase supplementation on performance, nutrient digestibility and the degradation of non-starch polysaccharides (NSP in different sections of the gastrointestinal tract (GIT of broilers fed wheat-based diets. A total of 120 7-day-old Arbor Acres broiler chicks were randomly allotted to two wheat-based experimental diets supplemented with 0 or 1.0 g/kg xylanase. Each treatment was composed of 6 replicates with 10 birds each. Diets were given to the birds from 7 to 21 days of age. The results showed that xylanase supplementation did not affect feed intake, but increased body weight gain of broiler at 21 day of age by 5.8% (pjejunum>duodenum>>gizzard> caecum. The supplementation of xylanse increased ileal isomaltriose concentration (p<0.05, but did not affect the concentrations of isomaltose, panose and 1-kestose in the digesta of all GIT sections. These results suggest that supplementation of xylanase to wheat-based diets cuts the arabinoxylan backbone into small fragments (mainly arabinose and xylose in the ileum, jejunum and duodenum, and enhances digestibilites of nutrients by decreasing digesta viscosity. The release of arabinose and xylose in the small intestine may also be the important contributors to the growth-promoting effect of xylanase in broilers fed wheat-based diets.

  18. Natural variation in grain composition of wheat and related cereals.

    Science.gov (United States)

    Shewry, Peter R; Hawkesford, Malcolm J; Piironen, Vieno; Lampi, Ann-Maija; Gebruers, Kurt; Boros, Danuta; Andersson, Annica A M; Åman, Per; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2013-09-04

    The wheat grain comprises three groups of major components, starch, protein, and cell wall polysaccharides (dietary fiber), and a range of minor components that may confer benefits to human health. Detailed analyses of dietary fiber and other bioactive components were carried out under the EU FP6 HEALTHGRAIN program on 150 bread wheat lines grown on a single site, 50 lines of other wheat species and other cereals grown on the same site, and 23-26 bread wheat lines grown in six environments. Principal component analysis allowed the 150 bread wheat lines to be classified on the basis of differences in their contents of bioactive components and wheat species (bread, durum, spelt, emmer, and einkorn wheats) to be clearly separated from related cereals (barley, rye, and oats). Such multivariate analyses could be used to define substantial equivalence when novel (including transgenic) cereals are considered.

  19. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch.

    Science.gov (United States)

    Li, Hongyan; Zhu, Yanqiao; Jiao, Aiquan; Zhao, Jianwei; Chen, Xiaoming; Wei, Benxi; Hu, Xiuting; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-04-01

    The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of α-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that α-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (ΔH) were observed during the combined hydrolysis. These results suggest that α-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents.

    Science.gov (United States)

    Wei, Benxi; Hu, Xiuting; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-11-01

    The effect of defatting on the physiochemical properties and the acid hydrolysis rate of maize starch with different amylose contents was evaluated in this study. The increase in the number of pores and the stripping of starch surface layers were observed after defatting by scanning electron microscopy. X-ray diffraction spectrum showed that the peaks attributing to the amylose-lipid complex disappeared. The relative crystallinity increased by 19% for high-amylose maize starch (HMS) on defatting, while the other tested starches virtually unchanged. Differential scanning calorimetry study indicated an increase in the thermal stability for the defatted starches. Compared with native waxy maize starch, the acid hydrolysis rate of the defatted one increased by 6% after 10 days. For normal maize starch (NMS) and HMS, the higher rate of hydrolysis was observed during the first 5 days. Thereafter, the hydrolysis rate was lower than that of their native counterpart. The increase in susceptibility to acid hydrolysis (in the first 5 days) was mainly attributed to the defective and porous structures formed during defatting process, while the decrease of hydrolysis rate for NMS and HMS samples (after the first 5 days) probably resulted from the increase in the relative crystallinity. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Effect of Fortification with Fish (Pseudophycis bachus) Powder on Nutritional Quality of Durum Wheat Pasta.

    Science.gov (United States)

    Desai, Ajay S; Brennan, Margaret A; Brennan, Charles S

    2018-04-17

    This paper investigates the nutraceutical (phenolic content and antioxidant activity) and nutritional potential (protein and starch digestibility) of supplementation of durum wheat semolina with 5–20% fish powder ( Pseudophycis bachus ). In general, all enriched pasta with fish powder showed a significant decrease ( p pasta. The potentially bioaccessible fraction of pasta enriched with 20% fish powder (FP) was characterized as having a 177–191% increase in phenolic content and a 145–556% higher antiradical activity. Elevation of these parameters in fortified pasta was accompanied by interaction of wheat starch, protein, and fish powder protein. Supplementation of fish powder also influenced protein digestibility (a reduction from 84.60% for control pasta to 80.80% for pasta with 20% fish powder). Fortification improved the nutraceutical and nutritional potential of the studied pasta with the effects depending on factors including protein-starch-phenolic interactions.

  2. Effect of flour particle size and damaged starch on the quality of cookies

    OpenAIRE

    Barak, Sheweta; Mudgil, Deepak; Khatkar, B. S.

    2012-01-01

    Two wheat varieties ‘C 306’ and ‘WH 542’ were milled to obtain flour fractions of different particle sizes. Various physicochemical parameters such as wet and dry gluten, falling number, solvent retention capacity (SRC), alkaline water retention capacity (AWRC) and damaged starch content of the flour fractions were analyzed. The damaged starch values ranged from 5.14% to 14.79% for different flour fractions and increased significantly with decrease in particle size. AWRC and SRC of the flour ...

  3. Influence of process conditions on the separation behaviour of starch-gluten systems

    NARCIS (Netherlands)

    Zalm, van der E.E.J.; Goot, van der A.J.; Boom, R.M.

    2009-01-01

    Separation of wheat flour into its constituents starch and gluten was studied using a cone-cone shearing device, with emphasis on the effect of rotation rate, processing time, temperature and water content. This study confirms the two step mechanism previously proposed for the gluten migration:

  4. Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

    Science.gov (United States)

    Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria

    2014-01-01

    Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

  5. Modification of foxtail millet starch by combining physical, chemical and enzymatic methods.

    Science.gov (United States)

    Dey, Ashim; Sit, Nandan

    2017-02-01

    Modification of foxtail millet starch was carried out by heat moisture treatment (HT), acid hydrolysis (AH), enzymatic treatment (EH), Ultrasound treatment (UT) and their combinations. A total of 15 modified starches were prepared by combining the various methods and properties were compared with native starch. The solubilities of the starches modified by HT were found to decrease whereas for other single modifications it increased. It also increased with number of modifications applied. The swelling power decreased for all the modified starches and a decrease in swelling power was observed with increase in number of modifications. Freeze-thaw stability improved for starches modified by single physical modifications i.e. HT and UT. Decrease in viscosities was observed for the modified starches and was particularly affected by AH. The pasting temperature was found to increase for those modified starches where HT was carried out. The modified starches gave softer gels. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties.

    Science.gov (United States)

    Trung, Phan Thanh Bao; Ngoc, Luu Bui Bao; Hoa, Phan Ngoc; Tien, Nguyen Ngoc Thanh; Hung, Pham Van

    2017-12-01

    The objective of this study is to investigate the change in physicochemical properties and digestibility of starches isolated from colored sweet potato varieties under heat-moisture treatment (HMT) or annealing treatment (ANN). The results showed that morphology and X-ray diffraction patterns of the sweet potato starches remained unchanged after the HMT or ANN. The HMT significantly reduced peak viscosity, breakdown and setback and significantly increased pasting temperature, trough and final viscosities of the sweet potato starches. The swelling powers and solubility of the heat-moisture treated starches were significantly lower than those of the native or annealed starches. The decreased rapid digestible starch and the increased slowly digestible and resistant starch contents of the sweet potato starches after HMT or ANN as compared to those of the native starches were observed. The resistant starch (RS) contents of the heat-moisture treated sweet potato starches were in a range of 30.6-39.3%, significantly higher than those of the annealed starches (28.8-32.0%). The strong impact of the HMT on physicochemical properties and RS formation of the sweet potato starches compared to the ANN might be due to the high stability of the occurred interactions between starch molecules and amylopectin chains during treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Structural and functional properties of alkali-treated high-amylose rice starch.

    Science.gov (United States)

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Characterization of native and oxidized starches of two varieties of Peruvian carrot (Arracacia xanthorrhiza, B. from two production areas of Paraná state, Brazil

    Directory of Open Access Journals (Sweden)

    Luciana Shizue Matsuguma

    2009-06-01

    Full Text Available Two commercial varieties of Peruvian carrot ('Amarela de Carandaí' and 'Senador Amaral' were processed into flour, starch and bagasse and chemically evaluated. The starch was extracted, modified with H2O2 and characterized by the physicochemical methods. By using the methylene blue dyeing, the granules of the modified starches showed intense blue color. The carboxyl content, the reducing power and the amount of the water liberated from the pastes after the freeze-thawing were higher for the oxidized starches and their pastes were clearer than those of the native starches of the two varieties from the two production areas. The RVA viscoamylography showed that the modified starches had lower viscosities with differences between the varieties. In the thermal analysis, the temperatures of the pyrolysis were higher for the native (310.37, 299.08, 311.18 ºC than for the modified starches (294.16, 296.65 e 293.29 ºC for both the varieties. This difference could be related with the larger surface of the granules due to the partial degradation promoted by the chemical modification. In almost all results, the differences were evident between the varieties but not for the cultivation places.No presente trabalho duas variedades comerciais de mandioquinha-salsa ('Amarela de Carandaí' e 'Senador Amaral' obtidas dos municípios de Castro e de Piraí do Sul (Paraná foram processadas para a obtenção de farinha, farelo e amido e essas três frações foram caracterizadas quimicamente. O amido foi extraído, modificado com H2O2 e caracterizado por meio de análises físico-químicas. Na coloração com azul de metileno os grânulos dos amidos oxidados apresentaram coloração azul mais intensa. O teor de carboxilas, o poder redutor e a quantidade de água liberada das pastas foram maiores para as amostras de amidos modificados. As pastas dos amidos modificados foram mais claras que as dos nativos. Na análise viscoamilográfica (RVA os amidos modificados

  9. Relationship of damaged starch with some physicochemical parameters in assessment of wheat flour quality

    International Nuclear Information System (INIS)

    Ali, R.; Khan, M.S.; Sayeed, S.A.; Mobin, L.

    2014-01-01

    The samples of 18 different semi hard flour from four different mills were analyzed for damaged starch (DS) and for various other physicochemical properties through Kernalyzer, solvent retention capacity (SRC) profile, Farinograph, Micro Visco-Amylo-Graph and Glutomatic to establish the correlations that may exist among them. It was found that water absorption and dough development time from Farinograph, beginning of gelatinization, peak, trough and final viscosities from Micro Visco-Amylo-Graph, sodium carbonate and lactic acid values from SRC tests, retained and passed gluten from Glutomatic while the protein from Kernalyzer were closely related to damaged starch as determined by enzymatic analysis using Megazyme kit. The particle size analysis showed that amount of large particle i.e. >160 micron is inversely proportional to percentage of damaged starch. Alkaline water retention capacity (AWRC) and sodium carbonate SRC values are directly related as the increase in damaged starch will also increase the water absorption/ holding capacity of flour. The overall exercise has revealed that lengthy enzymatic damaged starch analysis which requires skilled manpower as well, may be replaced by certain instrumental and simple SRC analysis especially for commercial purposes where rapid tests are so much desired. An interesting correlation was found between the DS and the difference in water absorption measured from Farinograph and Glutomatic. It is clearly demonstrated that starch intact to gluten proteins is invisibly damaged during milling. (author)

  10. Physicochemical, structural and thermal properties of oxidized, acetylated and dual-modified common bean (Phaseolus vulgaris L. starch

    Directory of Open Access Journals (Sweden)

    José Pedro WOJEICCHOWSKI

    2018-03-01

    Full Text Available Abstract Common beans are rich in protein and complex carbohydrates that are valuable for the human diet. Starch is the most abundant individual component; however, in its native form it has limited applications and modifications are necessary to overcome technological restrictions. The aim of this study was to evaluate the influence of oxidation, acetylation and dual-modification (oxidation-acetylation on the physicochemical, structural and thermal properties of common bean starch. The degree of substitution of the acetylated starches was compatible with food use. Fourier transform infrared spectra confirmed the acetylation of the bean starch, with a peak at 1,735cm-1. The granules of the bean starch were oval to spherical in shape, with no differences between the native and modified samples. Typical C-type diffraction of legume starches was found. The modified samples showed a reduced relative crystallinity and lower enthalpy change of gelatinization. The oxidized starch showed the highest peak viscosity, hardness, and gel adhesiveness due to the presence of functional groups. An increase in solubility and swelling power was observed, and the oxidized-acetylated starch presented the highest values. The properties of the modified bean starches made them suitable for application in breaded/battered foods, mainly due to improved textural attributes.

  11. Rheological Behavior, Granule Size Distribution and Differential Scanning Calorimetry of Cross-Linked Banana (Musa paradisiaca) Starch.

    Science.gov (United States)

    Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo

    2008-07-01

    Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.

  12. Enhanced gluten properties in soft kernel durum wheat

    Science.gov (United States)

    Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...

  13. Differential representation of albumins and globulins during grain development in durum wheat and its possible functional consequences.

    Science.gov (United States)

    Arena, Simona; D'Ambrosio, Chiara; Vitale, Monica; Mazzeo, Fiorella; Mamone, Gianfranco; Di Stasio, Luigia; Maccaferri, Marco; Curci, Pasquale Luca; Sonnante, Gabriella; Zambrano, Nicola; Scaloni, Andrea

    2017-06-06

    Durum wheat (Triticum turgidum ssp. durum (Desf.) Husn.) is an economically important crop used for the production of semolina, which is the basis of pasta and other food products. Its grains provide proteins and starch for human consumption. Grain development is a key process in wheat physiology; it is highly affected by a number of enzymes that control the metabolic processes governing accumulation of starch and storage proteins and ultimately grain weight. Most of these enzymes are present in the albumin/globulin grain fraction, which represents about a quarter of total seed proteins. With the aim to describe the dynamic profile of the albumin/globulin fraction during durum wheat grain development, we performed a proteomic analysis of this subproteome using a two-dimensional differential gel electrophoresis (2D-DIGE)-based approach and compared six developmental stages. A total of 285 differentially (237 over- and 48 under-) represented spots was identified by nanoLC-ESI-LIT-MS/MS, which were associated with 217 non-redundant Triticum sequence entries. Quantitative protein dynamics demonstrated that carbon metabolism, energy, protein destination/storage, disease/defense and cell growth/division functional categories were highly affected during grain development, concomitantly with progressive grain size increase and starch/protein reserve accumulation. Bioinformatic interaction prediction revealed a complex network of differentially represented proteins mainly centered at enzymes involved in carbon and protein metabolism. A description of 18 proteins associated with wheat flour human allergies was also obtained; these components showed augmented levels at the last developmental stages. By providing a comprehensive understanding of the molecular basis of durum wheat grain development, yield and quality formation, this study provides the foundation and reveals potential biomarkers for further investigations of durum wheat breeding and semolina quality. A 2D

  14. Application of wheat B-starch in biodegradable plastic materials

    Czech Academy of Sciences Publication Activity Database

    Šárka, E.; Kruliš, Zdeněk; Kotek, Jiří; Růžek, L.; Korbářová, A.; Bubník, Z.; Růžková, M.

    2011-01-01

    Roč. 29, č. 3 (2011), s. 232-242 ISSN 1212-1800 R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable plastic * polycaprolactone * B-starch Subject RIV: JI - Composite Materials Impact factor: 0.522, year: 2011 http://www.agriculturejournals.cz/publicFiles/39918.pdf

  15. Study on physico-chemical properties of dialdehyde yam starch with different aldehyde group contents

    International Nuclear Information System (INIS)

    Zhang, Liming; Liu, Peng; Wang, Yugao; Gao, Wenyuan

    2011-01-01

    Dialdehyde yam starches (DASs) are prepared and characterized. Compared with native starch, viscosity average molecular weight of DASs decreases, and the extent of degradation depends on content of the aldehyde groups. Fourier transform infrared (FT-IR) spectra confirm that the characteristic peak for C=O group at 1732 cm -1 is enhanced with the increasing of content of the aldehyde groups. Scanning electron microscopy (SEM) micrographs show that the surface of starch granules becomes wrinkled. X-ray diffraction (XRD) patterns clearly indicate that their crystallinity decreases with the increasing content of the aldehyde groups before they become amorphous at higher oxidation states. The experimental results of thermogravimetric analysis (TGA) show that DASs have poor stability as compared to native starch. With the increase in content of the aldehyde groups, the thermal stability of DAS declines gradually. According to the results of differential scanning calorimetry (DSC), gelatinization temperature (T o and T p ) of DASs are increased, whereas the gelatinization enthalpy decreased.

  16. Functional properties of extruded nano composites based on cassava starch, polyvinyl alcohol and montmorillonite

    International Nuclear Information System (INIS)

    Debiagi, Flavia; Matsuda, Daniel K.M.; Marengo, Vitor A.; Vercelheze, Ana Elisa S.; Mali, Suzana

    2011-01-01

    The objectives of this work were to produce biodegradable trays based on cassava starch (native or modified by acid), sugarcane fibers and nano clay (sodium montmorillonite) and also to characterize the produced trays according to their density, tensile strength, X-ray diffraction and biodegradability. The trays were obtained by thermoforming into a hydraulic press coupled to a Teflon mold (18 x 23 cm) at 130 degree C/ 20 min and 100 bars of pressure. The peak related to the nano clay (2 = 7.1 o ) were not observed in XRD patterns of the trays, suggesting the formation of an exfoliated structure in the nano composite. The addition of modified starch increased tensile strength and density of the samples, and the addition of fibers and nano clays decreased the tensile strength of native and modified starch trays. The weight loss of trays was not affected by the starch type, however the addition of fibers increased the biodegradation and the addition of nano clays decreased. (author)

  17. Development of maleated starches using an internal mixer

    International Nuclear Information System (INIS)

    Dias, Fernanda T.G.; Andrade, Cristina T.

    2009-01-01

    Novel maleated starches (MSt) were prepared by chemical modification of cornstarch with maleic anhydride (MA), using an internal mixer as a reactor. Benzoyl peroxide (BPO) was chosen as initiator. Physico-chemical parameters were determined for the process carried out at different MA contents, under the same reaction conditions. Processing was carried out at 50 deg C, 30 rpm for 8 min.Torque developed during processing was given by the digital display of the rheometer, and the total specific mechanical energy (SME) input was estimated. FTIR measurements confirmed the successful incorporation of MA into the starch backbone. In addition, WAXS diffraction analyses revealed disruption of the crystalline structure of native starch for the products. Such reactions promoted by MA reduced the crystallinity of the products. The results indicated that the MA content had a significant effect on the characteristics of the processed starch samples. (author)

  18. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality

    Science.gov (United States)

    Durum wheat (Triticum turgidum ssp. durum) is considered unsuitable for the majority of commercial bread production because its weak gluten strength combined with flour particle size and flour starch damage after milling are not commensurate with hexaploid wheat flours. Recently a new durum cultivar...

  19. Effect of Phosphorylation and Copper(II or Iron(II Ions Enrichment on Some Physicochemical Properties of Spelt Starch

    Directory of Open Access Journals (Sweden)

    Jacek Rożnowski

    Full Text Available ABSTRACT: This paper provides an assessment of the effect of saturation of spelt starch and monostarch phosphate with copper or iron ions on selected physicochemical properties of the resulting modified starches. Native and modified spelt starch samples were analyzed for selected mineral element content using Atomic Absorption Spectroscopy (AAS. Thermodynamic properties were measured using DSC, and pasting properties by RVA. Flow curves of 5% pastes were plotted and described using the Herschel-Bulkley model. The structure recovery ratio was measured. AAS analysis established the presence of iron(II and copper(II ions in the samples of modified starches and that potassium and magnesium ions had leached from them. In comparison to unfortified samples, enriching native starch with copper(II ions decreases value of all temperatures of phase transformation about 1.3-2.7 °C, but in case of monostarch phosphates bigger changes (2.8-3.7 °C were observed. Fortified native spelt starch with copper(II ions caused increasing the final viscosity of paste from 362 to 429 mPa·s. However, presence iron(II ions in samples caused reduced its final viscosity by 170 (spelt starch and 103 mPa·s (monostarch phosphate. Furthermore, enriching monostarch phosphate contributed to reduce degree of structure recovery of pastes from 70.9% to 66.6% in case of copper(II ions and to 59.9% in case of iron(II ions.

  20. Physicochemical and functional properties of gamma irradiated buckwheat and potato starch

    Science.gov (United States)

    Verma, Ruchi; Jan, Shumaila; Rani, Savita; Jan, Kulsum; Swer, Tanya L.; Prakash, Kumar S.; Dar, M. Z.; Bashir, Khalid

    2018-03-01

    Starches isolated from buckwheat and potato were subject to different doses of irradiation at 0, 5, 10, 15 and 20 kGy. Native and irradiated starch samples were evaluated for their physicochemical and functional properties to assess the effect of gamma irradiation. Apparent amylose content decreased significantly from 26.84% to 22.12% and 27.01 to 16.11% for buckwheat and potato starch respectively as the dose increased. A significant decrease was observed in pH, swelling power and syneresis as the dose increased for both buckwheat and potato starch. pH decreased from 5.20 to 3.81 and 5.81 to 3.95 for buckwheat and potato starch, respectively. Carboxyl content, freeze thaw stability, water and oil absorption capacity and transmittance showed increasing trend with increasing irradiation dose. Carboxyl content increased from 0% to 0.23% and 0-0.22% for buckwheat and potato starch, respectively.

  1. Purification and physicochemical properties of α-amylase from irradiated wheat

    International Nuclear Information System (INIS)

    Machaiah, J.P.; Vakil, U.K.

    1981-01-01

    α-Amylases from control and gamma-irradiated (at 0.2 and 2.0 kGy dose levels) wheat seedlings were purified to homogeneity and characterized. The molecular weight of the enzyme from a 2 kGy irradiated sample was slightly lower than that of the control; other general and catalytic properties also showed some differences. α-Amylase from the irradiated (2kGy) sample had a narrow range of pH optimum and was inactivated faster at alkaline pH and by heat treatment than the enzyme from unirradiated wheat. A high apparent Michaelis constant (Ksub(m)) and a low maximal velocity (Vsub(max)) for the hydrolysis of soluble starch catalyzed by the enzyme from irradiated (2kGy) wheat, suggested some modifications in the formation of the substrate α-amylase complex. Further, of the total number of amino acid residues lost on irradiation, dicarboxylic amino acids constituted the largest percentage; these structural alterations in the enzyme may be responsible for its partial inactivation. The total sugars liberated upon amylolysis of starch with the 2kGy irradiated enzyme were lower than control, and there was accumulation of higher maltodextrins in the place of maltose. (auth.)

  2. DIFFERENCES BETWEEN WHEAT CULTIVARS IN GRAIN PARAMETERS RELATED TO ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Daniela Mikulíková

    2011-12-01

    Full Text Available Wheat grain samples from sixteen winter cultivars originated from four localities were evaluated and compared in traits related to ethanol production as grain yield, grain hardness, content of protein, starch and amylose, and α-amylase activity. Results obtained indicate significant differences between cultivars in amylose content, α-amylase activity, and grain hardness compared to grain yield, protein content, and starch content where differences were not significant. The amylose content, α-amylase activity, and grain hardness were affected by cultivar. Both testing methods for starch fermentation - separated hydrolysis and fermentation (SHF and simultaneous saccharification and fermentation (SSF revealed difference between cultivars in ethanol yield.

  3. Effect of wheat flour characteristics on sponge cake quality.

    Science.gov (United States)

    Moiraghi, Malena; de la Hera, Esther; Pérez, Gabriela T; Gómez, Manuel

    2013-02-01

    To select the flour parameters that relate strongly to cake-making performance, in this study the relationship between sponge cake quality, solvent retention capacity (SRC) profile and flour physicochemical characteristics was investigated using 38 soft wheat samples of different origins. Particle size average, protein, damaged starch, water-soluble pentosans, total pentosans, SRC and pasting properties were analysed. Sponge cake volume and crumb texture were measured to evaluate cake quality. Cluster analysis was applied to assess differences in flour quality parameters among wheat lines based on the SRC profile. Cluster 1 showed significantly higher sponge cake volume and crumb softness, finer particle size and lower SRC sucrose, SRC carbonate, SRC water, damaged starch and protein content. Particle size, damaged starch, protein, thickening capacity and SRC parameters correlated negatively with sponge cake volume, while total pentosans and pasting temperature showed the opposite effect. The negative correlations between cake volume and SRC parameters along with the cluster analysis results indicated that flours with smaller particle size, lower absorption capacity and higher pasting temperature had better cake-making performance. Some simple analyses, such as SRC, particle size distribution and pasting properties, may help to choose flours suitable for cake making. Copyright © 2012 Society of Chemical Industry.

  4. Investigation of photo-biodegradation of starch-filled polyethylene films under the environment conditions of Tehran

    International Nuclear Information System (INIS)

    Naeimian, F.; Khoylou, F.; Sheikh, N.; Akhavan, A.; Hassanpour, S.; Sohrabpour, M.

    2006-01-01

    In this work biodegradable polymers have been formulated for packaging purposes and with a view to reduce the environmental accumulation of plastic waste. Degradation of the polymers under the specific weathering conditions of Tehran was studied. In this work low-density polyethylene was formulated with two wheat starch concentrations, maleic anhydride, glycerol as well as a pro-oxidant system of oleic acid, benzoyl peroxide and ferric stearate. The formulated master batches were mixed by using a laboratory two-roll mill at 190 d ig C prepared master batches were mixed with the commercial low-density polyethylene to prepare compounds 1 and 2 containing 1.2 and 6.4 percents wheat starch. The low-density polyethylene control films as well as the formulated compounds were compression moulded in a hot press at 130 d ig C films were subjected to three general conditions of atmospheric exposure, buried in soil and combined conditions of soil burial/ atmospheric exposure. The three environmental conditions impact upon the formulated and control films were investigated through tensile strength, elongation-at-break, carbonyl index, water absorption, weight loss as well as SEM analysis. The microbial investigation was followed by growing the Penicillium Asymmetrica, which had the main population in microbial flora of the soil, on formulated and control films. The studies revealed that the incorporation of this pro-oxidant system with the addition of 6.4% wheat starch enhance the degradation rate of commercial low-density polyethylene films to a significant degree

  5. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo.

    Science.gov (United States)

    Harlow, Brittany E; Lawrence, Laurie M; Harris, Patricia A; Aiken, Glen E; Flythe, Michael D

    2017-01-01

    Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of exogenous lactobacilli on pH and the growth of amylolytic and lactate-utilizing bacteria. Feces were collected from 3 mature geldings fed grass hay with access to pasture. Fecal microbes were harvested by differential centrifugation, washed, and re-suspended in anaerobic media containing ground corn, wheat, or oats at 1.6% (w/v) starch and one of five treatments: Control (substrate only), L. acidophilus, L. buchneri, L. reuteri, or an equal mixture of all three (107 cells/mL, final concentration). After 24 h of incubation (37°C, 160 rpm), samples were collected for pH and enumerations of total amylolytics, Group D Gram-positive cocci (GPC; Enterococci, Streptococci), lactobacilli, and lactate-utilizing bacteria. Enumeration data were log transformed prior to ANOVA (SAS, v. 9.3). Lactobacilli inhibited pH decline in corn and wheat fermentations (P Exogenous lactobacilli decreased amylolytics, while increasing lactate-utilizers in corn and wheat fermentations (P Exogenous lactobacilli decreased the initial (first 8 h) rate of starch catalysis when wheat was the substrate, but did not decrease total (24 h) starch utilization in any case. These results indicate that exogenous lactobacilli can impact the microbial community and pH of cereal grain fermentations by equine fecal microflora ex vivo. Additionally, dead (autoclaved) exogenous lactobacilli had similar effects as live lactobacilli on fermentation. This latter result indicates that the mechanism by which lactobacilli impact other amylolytic bacteria is not simple resource competition.

  6. Physical characteristics of chemically modified starch from potatoes, evaluated by X-ray diffraction, SEM and NMR

    International Nuclear Information System (INIS)

    Sivolil; Perez, E.

    1995-01-01

    The aim of this study was to compare the physical characteristics of chemically modified starch by cross-linking and methylation in order to observe the changes occurred in the molecule which could give it a positive and specific application. The physical characteristics were evaluated by morphometric analysis using analytical methods as scanning electron microscopy, x-ray diffraction and nuclear magnetic resonance in solid state. The results point for all the evaluated characteristics that the cross-linked starch from potato maintains a granular size and shape similar to native starch, through some granules were affected since they presented cracks and outlet of internal material; the introduction of phosphate groups in the molecule is evident in the NMR spectra: the methylated starch from potato changed in a drastic way the structure of granules since the size increased from 9 to 53 μm of the native starch to 44 to 181 μm for the methylated, the X-ray spectra shows a formation of crystals, banishing the characteristic standard type B, likewise with NMR a modification of starch was observed due to the presence of methyl groups. (Author)

  7. Effects of dietary starch and protein levels on milk production and composition of dairy cows fed high concentrate diet

    Directory of Open Access Journals (Sweden)

    Mustafa Güçlü Sucak

    2017-07-01

    Full Text Available Abstract Twenty eight Holstein cows (averaged 41±31.5 and 82±24 days in milk, and 30.4±3.49 and 29.0±2.22 kg/d milk yield were fed a high concentrate diet (70:30 concentrate to forage to examine effects on milk production and composition. The cows were randomly assigned to receive four dietary treatments according to a 2 x 2 factorial arrangement. Factors were starch (14% and 22% and protein (15% and 18%. Wheat straw was used as forage source. The study lasted 6 weeks. Dry matter intake was not affected (P> 0.05 by the dietary treatments in the study. Milk yield increased with increased dietary protein level (P< 0.01. Milk urea nitrogen concentrations were affected by dietary protein and starch levels, but there was no interaction effect. Nitrogen efficiency (Milk N/N intake was decreased by increasing in dietary protein level (P< 0.01. In conclusion, the cows fed total mixed ration (TMR containing low level of wheat straw responded better when dietary protein increased. But, efficiency of N use and N excretion to the environment were worsened. Key words: Dairy cattle, milk composition, protein, starch, wheat straw

  8. Acetylation of banana (Musa paradisiaca L.) and corn (Zea mays L.) starches using a microwave heating procedure and iodine as catalyst: II. Rheological and structural studies.

    Science.gov (United States)

    Sánchez-Rivera, Mirna M; Almanza-Benitez, Sirlen; Bello-Perez, Luis A; Mendez-Montealvo, Guadalupe; Núñez-Santiago, María C; Rodriguez-Ambriz, Sandra L; Gutierrez-Meráz, Felipe

    2013-02-15

    The effect of iodine concentration on the acetylation of starches with low and moderate degree of substitution (DS<0.5) and its impact on the physicochemical feature and structural features was evaluated. The acetylated starches were prepared with 0.03 mol anhydroglucose unit, 0.12 mol of anhydride acetic, and 0.6, 0.9 or 1.4 mM of molecular iodine as catalyst in a sealed Teflon vessel using microwave heating (600 W/2 min). Pasting profile and rheological properties were obtained under steady flow; dynamic oscillatory test was used. Structural features were obtained by HPSEC-RI. In acetylated starches, DS and acetyl groups increased when the iodine concentration increased, corn starch showed higher values than banana starch. The viscosity of acetylated starches decreased relative to unmodified starches while, acetylated corn starch had lower value than acetylated banana starch. In the flow curves, a non-Newtonian pattern (shear-thinning) was shown in the pastes of native and modified starches. Storage modulus (G') and loss modulus (G") showed low dependence on frequency (G'αω(0.1); G"αω(0.2)) on frequency sweep test, which is characteristic of a viscoelastic gel. Debranched native banana and corn starches presented trimodal chain-length distribution. The pattern was maintained in the acetylated starches, but with different level of short and long chains. The structural differences in native and acetylated samples explain the rheological characteristics in both starches. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Functional Characterization of Bean Zaragoza Starch (Phaseolus Lunatus L. and Quantification of the Resistant Starch

    Directory of Open Access Journals (Sweden)

    Piedad M. Montero-Castillo

    2013-06-01

    Full Text Available Legumes are a potential source of starch, representing between 30 and 50% of its dry weight, this is an essential energy source for humans. Currently its use is widespread in the food industry as an additive or raw material in food compounds, due to its nutritional, functional properties as a thickening agent and stabilizer of suspensions and dispersions. We evaluated several functional properties of starch variety zaragoza red bean, was obtained initial gelatinization temperature and final (71°C (81°C respectively, the solubility was 8.3% at 90°C, swelling power was 6.6% at 80°C, and water retention capacity was 4.4% at 80°C. The apparent viscosity was evaluated between 20 and 75 °C giving as results viscosities between 1.096 and 0.98 Cp respectively. The results showed that the tested temperatures significantly affect the solubility, swelling power, water holding capacity and viscosity of the starch. The amylose and amylopectin content was 21.1% and 78.19%. Finally, was obtained 9,24% resistant starch and compared with other conventional non starchy sources in order to acquire new knowledge about this material native to the Colombian Caribbean coast.

  10. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.

    Science.gov (United States)

    Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun

    2016-01-01

    Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.

  11. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    Science.gov (United States)

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-05-01

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Encapsulation and delivery of food ingredients using starch based systems.

    Science.gov (United States)

    Zhu, Fan

    2017-08-15

    Functional ingredients can be encapsulated by various wall materials for controlled release in food and digestion systems. Starch, as one of the most abundant natural carbohydrate polymers, is non-allergenic, GRAS, and cheap. There has been increasing interest of using starch in native and modified forms to encapsulate food ingredients such as flavours, lipids, polyphenols, carotenoids, vitamins, enzymes, and probiotics. Starches from various botanical sources in granular or amorphous forms are modified by chemical, physical, and/or enzymatic means to obtain the desired properties for targeted encapsulation. Other wall materials are also employed in combination with starch to facilitate some types of encapsulation. Various methods of crafting the starch-based encapsulation such as electrospinning, spray drying, antisolvent, amylose inclusion complexation, and nano-emulsification are introduced in this mini-review. The physicochemical and structural properties of the particles are described. The encapsulation systems can positively influence the controlled release of food ingredients in food and nutritional applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Application of ultra high pressure (UHP) in starch chemistry.

    Science.gov (United States)

    Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol

    2012-01-01

    Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.

  14. Purification and physicochemical properties of. cap alpha. -amylase from irradiated wheat

    Energy Technology Data Exchange (ETDEWEB)

    Machaiah, J P; Vakil, U K [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1981-06-01

    ..cap alpha..-Amylases from control and gamma-irradiated (at 0.2 and 2.0 kGy dose levels) wheat seedlings were purified to homogeneity and characterized. The molecular weight of the enzyme from a 2 kGy irradiated sample was slightly lower than that of the control; other general and catalytic properties also showed some differences. ..cap alpha..-Amylase from the irradiated (2kGy) sample had a narrow range of pH optimum and was inactivated faster at alkaline pH and by heat treatment than the enzyme from unirradiated wheat. A high apparent Michaelis constant (Ksub(m)) and a low maximal velocity (Vsub(max)) for the hydrolysis of soluble starch catalyzed by the enzyme from irradiated (2kGy) wheat, suggested some modifications in the formation of the substrate ..cap alpha..-amylase complex. Further, of the total number of amino acid residues lost on irradiation, dicarboxylic amino acids constituted the largest percentage; these structural alterations in the enzyme may be responsible for its partial inactivation. The total sugars liberated upon amylolysis of starch with the 2kGy irradiated enzyme were lower than control, and there was accumulation of higher maltodextrins in the place of maltose.

  15. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R; Gidley, Michael J; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function.

  16. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Directory of Open Access Journals (Sweden)

    Sushil Dhital

    Full Text Available Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph, and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary

  17. Mammalian Mucosal α-Glucosidases Coordinate with α-Amylase in the Initial Starch Hydrolysis Stage to Have a Role in Starch Digestion beyond Glucogenesis

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R.; Gidley, Michael J.; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function. PMID

  18. Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques

    Science.gov (United States)

    Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.

    2015-06-01

    Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.

  19. ESR study of the effects of water, methanol, and ethanol on gamma-irradiation of starch

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1981-01-01

    This investigation deals with the nature and relative abundance of stable radicals formed by gamma-irradiation of wheat starch at room temperature. Additions of equal weights of water, methanol, and ethanol were equally effective in reducing the content of stable radicals in starch which contained about 12% water before the additions. When, however, the starting material was dried starch with 2.9% initial water content additional water and methanol were better radical scavengers than ethanol. This difference is attributed to the superior ability of water and methanol to permeate the starch structure. Superficially different ESR spectra were obtained in products made by irradiating starch and starch that contained added water or methanol. Computer simulation of these spectra showed that they could be matched by superposition of the spectra of the same four component radicals, with some adjustments of relative intensities and peak widths. The structure of these radicals have been deduced from the spectral assignments and relative effects of the three solvents used on the intensities of the respective ESR spectra

  20. Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with Fusarium graminearum.

    Science.gov (United States)

    Masci, Stefania; Laino, Paolo; Janni, Michela; Botticella, Ermelinda; Di Carli, Mariasole; Benvenuto, Eugenio; Danieli, Pier Paolo; Lilley, Kathryn S; Lafiandra, Domenico; D'Ovidio, Renato

    2015-04-22

    Fusarium head blight, caused by the fungus Fusarium graminearum, has a detrimental effect on both productivity and qualitative properties of wheat. To evaluate its impact on wheat flour, we compared its effect on quality-related parameters between a transgenic bread wheat line expressing a bean polygalacturonase inhibiting protein (PGIP) and its control line. We have compared metabolic proteins, the amounts of gluten proteins and their relative ratios, starch content, yield, extent of pathogen contamination, and deoxynivalenol (DON) accumulation. These comparisons showed that Fusarium significantly decreases the amount of starch in infected control plants, but not in infected PGIP plants. The flour of PGIP plants contained also a lower amount of pathogen biomass and DON accumulation. Conversely, both gluten and metabolic proteins were not significantly influenced either by the transgene or by fungal infection. These results indicate that the transgenic PGIP expression reduces the level of infection, without changing significantly the wheat seed proteome and other quality-related parameters.

  1. Effect of wheat gluten proteins on bioethanol yield from grain

    Energy Technology Data Exchange (ETDEWEB)

    Buresova, Iva [Agrotest Fyto, Ltd., Havlickova 2787/121, 767 01 Kromeriz (Czech Republic); Hrivna, Ludek [Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-04-15

    Bioethanol can be used as motor fuel and/or as a gasoline enhancer. A high yield feedstock for bioethanol production is cereal grain. Cereal grains containing less gluten proteins (glutenin and gliadin), but high starch, are favoured by distillers because they increase the bioethanol conversion. The direct effect of wheat gluten proteins on bioethanol yield was studied on triticale grain. Examined triticale Presto 1R.1D{sub 5+10}-2 and Presto Valdy were developed by introducing selected segments of wheat chromosome 1D into triticale chromosome 1R. Even if the samples analysed in this study do not afford to make definitive assumptions, it can be noticed that in analysed cases the presence of gliadin had more significant effect on investigated parameters than the presence of glutenin. Despite the presence of glutenin subunits did not significantly decrease the investigated parameters - specific weight, Hagberg falling number and starch content in grain met the requirements for grain for bioethanol production - protein content was higher than is optimal. The fermentation experiments demonstrated good bioethanol yields but depression in grain yields caused by the presence of wheat gliadin and glutenin decreased the energy balance of Presto Valdy and Presto 1R.1D{sub 5+10}-2. (author)

  2. Effects of food deprivation and particle size of ground wheat on digestibility of food components in broilers fed on a pelleted diet.

    Science.gov (United States)

    Péron, A; Bastianelli, D; Oury, F X; Gomez, J; Carré, B

    2005-04-01

    The first aim of the experiment was to study the effect of wheat (Triticum aestivum) particle size on the digestibility of starch in a pelleted diet given to broilers. The second aim was to study the consequences of food deprivation before the excreta collection period (from 21 to 24 d). Wheat from a strong hardness cultivar was incorporated at 546.1 g/kg in diets. The other main ingredients were soybean meal (353.5 g/kg) and rapeseed oil (55.0 g/kg). Diets were given as pellets. The experimental design was a 2 x 2 factorial design testing two particle sizes of wheat flour and two procedures of a balance experiment (with or without food deprivation). Birds given diet C (wheat coarse grinding before pelleting) had significantly greater gizzard weight than birds fed on diet F (wheat fine grinding before pelleting). Starch digestibility value was significantly increased when birds were fed on diet F. This effect was halved by food deprivation. No significant effect of grain particle size was observed for protein and lipid digestibility values. However, food deprivation decreased apparent protein digestibility, with an effect which was more pronounced for fine than for coarse grinding. AMEN of the diet was significantly improved by fine grinding of wheat and decreased by food deprivation. However, no significant differences in growth performance were induced by differences in wheat grinding. No significant effect of grinding was observed on the water excretion:feed intake ratio. No significant difference was observed for vent score between treatments. There was over-excretion of starch in the first hours of refeeding following food deprivation.

  3. Brosimum Alicastrum as a Novel Starch Source for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Edgar Olguin-Maciel

    2017-10-01

    Full Text Available Ramon (Brosimum alicastrum is a forest tree native to the Mesoamerican region and the Caribbean. The flour obtained from Ramon seeds is 75% carbohydrate, of which 63% is starch, indicating its potential as a novel raw material for bioethanol production. The objective of this study was to produce ethanol from Ramon flour using a 90 °C thermic treatment for 30 min and a native yeast strain (Candida tropicalis for the fermentation process. In addition, the structure of the flour and the effects of pretreatment were observed via scanning electron microscopy. The native yeast strain was superior to the commercial strain, fermenting 98.8% of the reducing sugar (RS at 48 h and generating 31% more ethanol than commercial yeast. One ton of flour yielded 213 L of ethanol. These results suggest that Ramon flour is an excellent candidate for ethanol production. This is the first report on bioethanol production using the starch from Ramon seed flour and a native yeast strain isolated from this feedstock. This alternative material for bioethanol production minimizes the competition between food and energy production, a priority for Mexico that has led to significant changes in public policies to enhance the development of renewable energies.

  4. Quinoa starch granules as stabilizing particles for production of Pickering emulsions.

    Science.gov (United States)

    Rayner, Marilyn; Sjöö, Malin; Timgren, Anna; Dejmek, Petr

    2012-01-01

    Intact starch granules isolated from quinoa (Chenopodium quinoa Willd.) were used to stabilize emulsion drops in so-called Pickering emulsions. Miglyol 812 was used as dispersed phase and a phosphate buffer (pH7) with different salt (NaCl) concentrations was used as the continuous phase. The starch granules were hydrophobically modified to different degrees by octenyl succinic anhydride (OSA) or by dry heat treatment at 120 degrees C in order to study the effect on the resulting emulsion drop size. The degree of OSA-modification had a low to moderate impact on drop size. The highest level of modification (4.66%) showed the largest mean drop size, and lowest amount of free starch, which could be an effect of a higher degree of aggregation of the starch granules and, thereby, also the emulsion drops stabilized by them. The heat treated starch granules had a poor stabilizing ability and only the starch heated for the longest time (150 min at 120 degrees C) had a better emulsifying capacity than the un-modified native starch granules. The effect of salt concentration was rather limited. However, an increased concentration of salt slightly increased the mean drop size and the elastic modulus.

  5. Bambara-wheat composite flour: rheological behavior of dough and functionality in bread.

    Science.gov (United States)

    Erukainure, Ochuko L; Okafor, Jane N C; Ogunji, Akinyele; Ukazu, Happiness; Okafor, Ebele N; Eboagwu, Ijeoma L

    2016-11-01

    The rheological behavior and functional properties of doughs from bambara-wheat composite flour was investigated. Bambara-wheat composite flour was prepared by substituting wheat with 0%, 10%, 15%, and 20% of bambara flour. The rheological behavior of their dough was analyzed with Mixolab. Breads produced from the flour were analyzed for physical characteristics. Organoleptic analysis was carried out by 20 panelists. Mixolab analysis revealed, except for stability time, depreciating values for dough consistency (C1), protein weakening (C2), starch gelatinization (C3), amylase activity (C4), and retrogradation (C5) as the inclusion of bambara flour increased. Physical characteristics of the loaves revealed significant ( P  baking characteristics.

  6. Impact of bran components on the quality of whole wheat bread

    Science.gov (United States)

    Whole grains contain components, such as dietary fiber, starch, fat, antioxidant nutrients, minerals, vitamin, lignans, and phenolic compounds, which are beneficial to human health. Most of the beneficial components are found in the germ and bran as part of a wheat kernel, which are reduced in the ...

  7. Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries

    DEFF Research Database (Denmark)

    Kamal-Eldin, A; Lærke, Helle Nygaard; Bach Knudsen, Knud Erik

    2009-01-01

    , compared to wheat bran, regarding structure and content of nutrients as well as a number of presumably bioactive compounds. Design: Six different rye brans from Sweden, Denmark and Finland were analysed and compared with two wheat brans regarding colour, particle size distribution, microscopic structures...... and chemical composition including proximal components, vitamins, minerals and bioactive compounds. Results: Rye brans were generally greener in colour and smaller in particle size than wheat brans. The rye brans varied considerably in their starch content (13.2-28.3%), which reflected variable inclusion...

  8. Recycle bioreactor for bioethanol production from wheat starch. 1. Cold enzyme hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, X.; Hill, G.A.; MacDonald, D.G. [Department of Chemical Engineering, Saskatchewan (Canada)

    2001-06-01

    A 5 L membrane bioreactor system has been designed and operated at low temperature to hydrolyze starch granules directly to sugars using barley {alpha}-amylase. The system includes a temperature and pH controlled, well-mixed bioreactor; microfilters to separate and recycle granules; and ultrafilters to separate and recycle enzyme molecules. Operation in batch mode demonstrated similar kinetics and low productivity observed earlier in shake flasks, whereas continuous flow operation was not successful due to enzyme inhibition and degradation. Sequential batch mode operation, involving filtration after each batch hydrolysis, produced optimum productivity measured at 0.16 grams of starch granules hydrolyzed per gram of enzyme per hour for more than 100 hours of operation. (author)

  9. Chemical and Physical Predictors of the Nutritive Value of Wheat in Broiler Diets

    Directory of Open Access Journals (Sweden)

    M. E. E. Ball

    2013-01-01

    Full Text Available The aim of this study was to establish relationships between chemical and physical parameters of wheat with performance and digestibilities of feed components in broiler chickens fed on wheat-based diets. Ninety-four wheat samples were selected for inclusion in four bird trials. Birds were housed in individual wire metabolism cages from 7 to 28 d and offered water and feed ad libitum. Dry matter intake (DMI, liveweight gain (LWG and gain:feed were measured weekly. A balance collection was carried out from 14 to 21 d for determination of apparent metabolizable energy (AME, ME:gain, dry matter retention, oil and neutral detergent fibre (NDF digestibility. At 28 d the birds were humanely killed, the contents of the jejunum removed for determination of in vivo viscosity and the contents of the ileum removed for determination of ileal dry matter, starch and protein digestibility. When wheat parameters were correlated with bird performance data, it was found that specific weight was not significantly (p>0.05 related to bird performance. Bird DMI, LWG and gain:feed were best correlated (p<0.05 with the rate of starch digestion, although the coefficients of correlation (r were still low (0.246 to 0.523. A negative relationship (p<0.01 between AME and total (r = −0.432 and soluble (r = −0.304 non starch polysaccharide (NSP was observed in this study. Thousand grain weight (TG was positively correlated with DMI (r = 0.299, LWG (r = 0.343 and gain:feed (r = 0.371. When establishing multiple regression relationships, correlation coefficients greater than 0.8 were achieved for DMI, LWG, gain:feed and ileal crude protein digestibility. However, the economics involved in determining the parameters involved in the regressions make the process impractical.

  10. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  11. Modulating rheo-kinetics of native starch films towards improved wet-strength

    DEFF Research Database (Denmark)

    Gillgren, Thomas; Blennow, Andreas; Pettersson, Anders J.

    2011-01-01

    properties of the films – an increase in the amylose content resulted in both a higher stress and strain at break. Interestingly, there was no correlation between the speed of hydration and mechanical water resistance of the films. Generally, the films were clear and transparent, even after wetting...... highly different starch types derived from potato and cereal sources of normal and mutant and transgenic backgrounds. A new improved technique was developed to permit the dynamic mechanical analysis of films in the presence of water. It was found that the amylose content was decisive for the mechanical....... Transgenic potato starch with a low content of phosphate displayed an extraordinary combination of high robustness, transparency, mechanical strength and extensibility even in a wet condition. The combination of optimal phosphate and amylose concentrations in this sample probably favoured hydration...

  12. A comparison of native tallgrass prairie and plains bluestem forage systems for cow-calf production in the southern great plains.

    Science.gov (United States)

    Coleman, S W; Phillips, W A; Volesky, J D; Buchanan, D

    2001-07-01

    The objective of this study was to compare an introduced warm-season perennial grass (plains bluestem, Bothriochloa ischaemum) to native tallgrass prairie for cow-calf production. Three systems were used, two based on tallgrass prairie with two different forms of protein supplementation and one based on plains bluestem as the primary forage. The systems were as follows: 1) native tallgrass prairie with pelleted oilseed meal as the winter protein supplement (native-control); 2) native tallgrass prairie with limited access to wheat pasture as the winter protein supplement (native-wheat); and 3) plains bluestem with limited access to wheat pasture as the protein supplement (bluestem-wheat). Oilseed meal protein supplements were fed twice weekly. Cows grazing wheat pasture were allowed 6 h of grazing twice weekly. Ninety-nine cows per year were used over the 3-yr study. Cows were sired by either Charolais, Gelbvieh, Angus, or Hereford bulls out of commercial Angus-Hereford dams. Calves were sired by Simmental bulls. Calving and weaning rate increased over time but did not differ among systems or breed types. System did not influence the size or body condition score of cows or the performance of calves, but changes in the weight and condition scores of cows were greater on either native system than on the bluestem-wheat system. Cows from Charolais and Gelbvieh bulls were taller (P < 0.05), and heavier (P < 0.05), and weaned heavier (P < 0.05) calves than cows from Angus or Hereford bulls. The weight of cows on the bluestem-wheat system tended to decrease over time, whereas cows grazing on the native systems tended to gain weight over time. The native-control system was the most profitable system based on cow production. If excess hay produced from the bluestem-wheat system was sold as a cash crop, then this system was the most profitable. In general, we conclude that limit-grazing wheat pasture is a viable alternative to oilseed meal as protein supplement for wintering

  13. Cassava starch as a stabilizer of soy-based beverages.

    Science.gov (United States)

    Drunkler, Northon Lee; Leite, Rodrigo Santos; Mandarino, José Marcos Gontijo; Ida, Elza Iouko; Demiate, Ivo Mottin

    2012-10-01

    Soy-based beverages are presented as healthy food alternatives for human nutrition. Cassava (Manihot esculenta, Crantz) starch is relatively inexpensive, widely available in Brazil and is broadly used by the food industry due to its desired properties that result from pasting. The objective of this study was to develop soy-based beverages with good sensory quality using native cassava starch as a stabilizer and maintaining the nutritional value that makes this product a functional food. The developed formulations featured a range of cassava starch and soybean extract concentrations, which were tested in a 2² experimental design with three central points. The results of sensory analysis showed that the studied variables (cassava starch and soybean extract concentrations) did not have a significant effect with respect to a 5% probability level. When considering the apparent viscosity, on the other hand, the variables had a significant effect: the increase in soybean extract and cassava starch concentrations caused an increase in the viscosity of the final product. The profile of isoflavones in the tested formulations was similar to the profiles reported in other papers, with a predominance of the conjugated glycosides over the aglycone forms.

  14. Effects of Acute Ingestion of Native Banana Starch on Glycemic Response Evaluated by Continuous Glucose Monitoring in Obese and Lean Subjects

    Directory of Open Access Journals (Sweden)

    Guadalupe Jiménez-Domínguez

    2015-07-01

    Full Text Available An abnormal glycemic profile, including postprandial glycemia and acute glucose spikes, precedes the onset of overt diabetes in obese subjects. Previous studies have shown the beneficial effects of chronic native banana starch (NBS supplementation. In this study, we examined the effects of acute ingestion of NBS on glycemic profiles by means of continuous glucose monitoring in obese and lean subjects. In a crossover study, obese and lean subjects consumed beverages containing either 38.3 g of NBS or 38.3 g of digestible corn starch (DCS twice daily during 4 days. On day 5, a 3-h meal tolerance test (MTT was performed to evaluate glucose and insulin responses. After 1 week of washout period, treatments were inverted. NBS supplementation reduced the 48-h glycemia AUC in lean, obese, and in the combined group of lean and obese subjects in comparison with DCS. Postprandial glucose and insulin responses at MTT were reduced after NBS in comparison with DCS in all groups. However, no changes were observed in glycemic variability (GV indexes between groups. In conclusion, acute NBS supplementation improved postprandial glucose and insulin responses in obese and lean subjects during 48 h of everyday life and at MTT. Further research to elucidate the mechanism behind these changes is required.

  15. Characterization and evaluation of acid-modified starch of Dioscorea oppositifolia (Chinese yam as a binder in chloroquine phosphate tablets

    Directory of Open Access Journals (Sweden)

    Adenike Okunlola

    2013-12-01

    Full Text Available Chinese yam (Dioscorea oppositifolia starch modified by acid hydrolysis was characterized and compared with native starch as a binder in chloroquine phosphate tablet formulations. The physicochemical and compressional properties (using density measurements and the Heckel and Kawakita equations of modified Chinese yam starch were determined, and its quantitative effects as a binder on the mechanical and release properties of chloroquine phosphate were analyzed using a 2³ full factorial design. The nature (X1, concentration of starch (X2 and packing fraction (X3 were taken as independent variables and the crushing strength-friability ratio (CSFR, disintegration time (DT and dissolution time (t80 as dependent variables. Acid-modified Chinese yam starch showed a marked reduction (p<0.05 in amylose content and viscosity but increased swelling and water-binding properties. The modified starch had a faster onset and greater amount of plastic flow. Changing the binder from native to acid-modified form led to significant increases (p<0.05 in CSFR and DT but a decrease in t80. An increase in binder concentration and packing fraction gave similar results for CSFR and DT only. These results suggest that acid-modified Chinese yam starches may be useful as tablet binders when high bond strength and fast dissolution are required.

  16. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.

    Science.gov (United States)

    Kim, Hee-Young; Park, Dong June; Kim, Jong-Yea; Lim, Seung-Taik

    2013-10-15

    Waxy maize starch in an aqueous sulfuric acid solution (3.16 M, 14.7% solids) was hydrolyzed for 2-6 days, either isothermally at 40 °C or 4 °C, or at cycled temperatures of 4 and 40 °C (1 day each). The starch hydrolyzates were recovered as precipitates after centrifuging the dispersion (10,000 rpm, 10 min). The yield of starch hydrolyzates depended on the hydrolysis temperature and time, which varied from 6.8% to 78%. The starch hydrolyzed at 40 °C or 4/40 °C exhibited increased crystallinity determined by X-ray diffraction analysis, but melted in broader temperature range (from 60 °C to 110 °C). However, the starch hydrolyzed at 4 °C displayed the crystallinity and melting endotherm similar to those of native starch. The starch hydrolyzates recovered by centrifugation were re-dispersed in water (15% solids), and the dispersion was treated by an ultrasonic treatment (60% amplitude, 3min). The ultrasonication effectively fragmented the starch hydrolyzates to nanoparticles. The hydrolyzates obtained after 6 days of hydrolysis were more resistant to the ultrasonication than those after 2 or 4 days, regardless of hydrolysis temperatures. The starch nanoparticles could be prepared with high yield (78%) and crystallinity by 4 °C hydrolysis for 6 days followed by ultrasonication. Scanning electron microscopy revealed that the starch nanoparticles had globular shapes with diameters ranging from 50 to 90 nm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effect of heat–moisture treatment on digestibility of different cultivars of sweet potato (Ipomea batatas (L.) Lam) starch

    Science.gov (United States)

    Senanayake, Suraji; Gunaratne, Anil; Ranaweera, K K D S; Bamunuarachchi, Arthur

    2014-01-01

    Different heat–moisture levels were applied to native starches from different cultivars of sweet potatoes available in Sri Lanka (Wariyapola red, Wariyapola white, Pallepola variety, Malaysian variety and CARI 273) to study the digestibility level. Samples were treated with 20, 25, and 30% moisture at 85°C and 120°C for 6 h and in vitro starch digestibility was tested with porcine pancreatin enzyme. A range of 19.3–23.5% digestibility was shown by the native starches with no significant difference (P digestibility level of the hydrothermally modified starches and the moisture content showed a positive impact on the digestibility. Heat–moisture treatment at 85°C brought an overall increase in digestibility and temperature beyond 85°C had a negative impact. No significant difference (P digestibility was observed with 20% and 25% moisture at 85°C and increased level were seen at 85°C and 30% moisture. PMID:25473497

  18. β – Glucanos en almidón nativo de fruta pan y su potencial uso en alimentos funcionales

    Directory of Open Access Journals (Sweden)

    Quezada-Correa, Lady

    2017-09-01

    Full Text Available The main objective of the research was to determine β – glucans content present in native starch from breadfruit (Artocarpus altilis cultivated in Ecuador southern coast and its potential use in functional foods. The starch was obtained throughout the wet method; the sample was subjected to β-glucosidase enzymatic action to determine β-glucan content; glucose content was then quantified through visible UV spectrophotometry techniques at a wavelength of 510 nm. The starch percentage present in the breadfruit cultivar was 55.40%, whereas the β-glucan content was 4.39%. This value reported is higher than those reported previously for some cereals such as oats, barley, rye, wheat, among others, widely used in the food industry. The β-glucans content, present in native starch of breadfruit, makes this cultivar an interesting source of starch to be considered, as a matrix or input, in the manufacturing of nutraceuticals or functional foods.

  19. The glycogen of Galdieria sulphuraria as alternative to starch for the production of slowly digestible and resistant glucose polymers

    NARCIS (Netherlands)

    Martinez-Garcia, Marta; Kormpa, Akrivi; van der Maarel, Marc J. E. C.

    2017-01-01

    Highly branched glucose polymers produced from starch are applied in various products, such as peritoneal dialysis solutions and sports drinks. Due to its insoluble, granular nature, the use of native starch as substrate requires an energy consuming pre-treatment to achieve solubilization at the

  20. Compositional profile and variation of Distillers Dried Grains with Solubles from various origins with focus on non-starch polysaccharides

    DEFF Research Database (Denmark)

    Pedersen, Mads Brøgger; Dalsgaard, S.; Knudsen, Knud Erik Bach

    2014-01-01

    nutrients (e.g. protein, fat, fibre and minerals) after fermentation of starch to ethanol. Corn DDGS differentiated from wheat DDGS by a greater content of fat (P≤0.006), insoluble-NSP (Pcellulose (P=0.032), and arabinose/xylose (P....001). Wheat DDGS differentiated from corn DDGS by a greater content of ash (P=0.001), soluble-NSP (Plignin (P...Corn-, wheat- and mixed cereal Distillers' Dried Grains with Solubles (DDGS) were investigated for compositional variability among DDGS origins, ethanol plants, and the relationship between corn and corresponding DDGS. A total of 138 DDGS samples were analyzed by use of Near Infrared Reflectance...

  1. Digestibility of pasta made with three wheat types: a preliminary study.

    Science.gov (United States)

    Simonato, Barbara; Curioni, Andrea; Pasini, Gabriella

    2015-05-01

    The aim of this study was to assess the digestibility of the protein and starch in pasta made with different cereals, i.e. Triticum durum, Triticum polonicum and Triticum dicoccum, and to measure the glycemic index (GI) of the different types of pasta. The digestibility of the starch in T.polonicum pasta differed significantly from the others. It seemed to be less digested than dicoccum and durum wheat pasta. T.polonicum pasta also had a lower glycemic index, while there were no significant differences in the protein digestibility of the three types of pasta. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. DEVELOPMENT OF ADHESIVE TO THE BASIS OF CORN AND CASSAVA STARCH

    Directory of Open Access Journals (Sweden)

    Rosane Furtado Fabrício

    2014-05-01

    Full Text Available Corn and native cassava starch were modified by oxidation and acid hydrolysis, aiming to develop paper and paperboard stickers. The oxidation was made with Sodium hypochlorite (NaOCl in two distinct concentrations of active chloride which is present on oxidizing agent solution. The synthesis resulting products were used to make stickers and they were compared to corn and cassava starch based stickers without any modification, as well as commercial stickers based on polyvinyl acetate (PVA. Two different methodologies were tested using acid hydrolysis to modify corn and cassava starch, both using phosphoric acid (H3PO4 in order to obtain dextrin and subsequently use it in the production of stickers and also comparing them to petrochemical-based commercial stickers. Considering the different starch modifications methods (oxidation and acid hydrolysis, stickers based on renewable raw material were obtained, which combine biodegradability, low costs and availability.

  3. Effects of charge-carrying amino acids on the gelatinization and retrogradation properties of potato starch.

    Science.gov (United States)

    Chen, Wenting; Zhou, Hongxian; Yang, Hong; Cui, Min

    2015-01-15

    The objective of this study was to evaluate the effects of charge-carrying amino acids (lysine (Lys), arginine (Arg), aspartic acid (Asp) and glutamic acid (Glu)) on the gelatinization and retrogradation properties of potato starch. Acidic amino acids (Asp and Glu) showed a decreasing trend in swelling power and granule size of potato starch, but increased amylose leaching and gelatinization temperature. Alkaline amino acid (Arg) showed an increasing trend in swelling power and granule size of potato starch, but decreasing amylose leaching and gelatinization temperature. Lys had no effect on the swelling power of potato starch, except at a high content (0.2 mol/kg). Like other two acidic amino acids, Lys also increased gelatinization temperature. Moreover, the addition of alkaline amino acids (Arg) decreased syneresis value of potato starch but acidic amino acids (Asp and Glu) increased it. Compared to Arg, the syneresis of potato starch with Lys was similar to that of its native starch. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of Phosphorylation and Copper(II) or Iron(II) Ions Enrichment on Some Physicochemical Properties of Spelt Starch

    OpenAIRE

    Rożnowski, Jacek; Fortuna, Teresa; Nowak, Katarzyna; Szuba, Edyta

    2016-01-01

    ABSTRACT: This paper provides an assessment of the effect of saturation of spelt starch and monostarch phosphate with copper or iron ions on selected physicochemical properties of the resulting modified starches. Native and modified spelt starch samples were analyzed for selected mineral element content using Atomic Absorption Spectroscopy (AAS). Thermodynamic properties were measured using DSC, and pasting properties by RVA. Flow curves of 5% pastes were plotted and described using the Hersc...

  5. Electron beam technology for modifying the functional properties of maize starch

    International Nuclear Information System (INIS)

    Nemtanu, M.R.; Minea, R.; Kahraman, K.; Koksel, H.; Ng, P.K.W.; Popescu, M.I.; Mitru, E.

    2007-01-01

    Maize starch is a versatile biopolymer with a wide field of applications (e.g. foods, pharmaceutical products, adhesives, etc.). Nowadays there is a continuous and intensive search for new methods and techniques to modify its functional properties due to the fact that native form of starch may exhibit some disadvantages in certain applications. Radiation technology is frequently used to change the properties of different polymeric materials. Thus, the goal of the work is to discuss the application of accelerated electron beams on maize starch in the view of changing some of its functional properties. Maize starch has been irradiated with doses up to 52.15 kGy by using electron beam technology and the modifications of differential scanning calorimetry (DSC) and pasting characteristics, paste clarity, freezing and thawing stability as well as colorimetric characteristics have been investigated. The results of the study revealed that the measured properties can be modified by electron beam treatment and, therefore, this method can be an efficient and ecological alternative to obtain modified maize starch

  6. Morphological and starch structural characteristics of the Japonica rice mutant variety Seolgaeng for dry-milled flour

    Science.gov (United States)

    Producing fine, good quality rice flour is more difficult than wheat flour because the rice grain is harder. In this study, we analyzed the relationship between the morphology and starch of kernels from genetically different rice varieties that can be used to make dry-milled flour. The non-glutinous...

  7. Sensory and rheological properties of transgenically and chemically modified starch ingredients as evaluated in a food product model

    DEFF Research Database (Denmark)

    Ahmt, T.; Wischmann, Bente; Blennow, A.

    2004-01-01

    gels with a higher tendency to retrograde and a low freeze/thaw stability as compared to starches with shorter amylopectin chains and lower phosphorous content. The textural properties of the food product model prepared from genetically and chemically modified starches were characterised by sensory......Starches derived from five genetically modified potato lines, two chemically modified potato starches and two native starches from potato and maize were subjected to physical and chemical analyses and their functionality evaluated in a milk-based food product model. The transgenic starches were...... and rheological analyses. To clearly visualise the effects of the modifications, data was evaluated by radar plots and multiple regression analysis (chemometrics). Genetically modified potato starches with longer amylopectin chains and increased phosphorous content gave a more gelled and a shorter texture...

  8. DEVELOPMENT OF A FUNCTIONAL PURPOSE WHIPPED BREAD WHOLE GRAIN WHEAT, RYE AND WHEAT BRAN

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2015-01-01

    Full Text Available The article discusses the development of whipped bakery products enriched with dietary fiber, minerals, vitamins retinol, tocopherol, group, polyunsaturated fatty acids through the use of rye and wheat bran and flour of wholegrain wheat. The main raw material for enrichment whipped bakery products used wheat bran and rye. Choice of rye and wheat bran as supplementation prepared whipped bread is explained not only from the point of view of the rationality of the use of this secondary raw materials, but also its rich vitamin and mineral composition. Wheat bran contain the necessary man of b vitamins, including B1, B2, B6, PP and others. Found provitamin a (carotene and vitamin E (tocopherol. Bran is rich in mineral substances. Among them potassium, magnesium, chromium, zinc, copper, selenium and other trace elements. Thanks to this composition bran are essential dietary product. They are rich in insoluble fiber and can be useful to reduce the risk of developing colon cancer. Rye bran contain dietary fiber, tocopherol E, thiamin B1, Riboflavin B2, Pantothenic acid B5, B4 (choline, nicotinic acid B3, etc. In the bran rich set of microelements and macroelements such as iron, calcium, magnesium, phosphorus, potassium, zinc, iodine, selenium, chromium, etc. the Introduction in the diet, bran rye contribute to the prevention and treatment of atherosclerosis, diabetes and anemia. They restore blood pressure, reduce blood sugar levels and improve the cardiovascular system. Flour from wholegrain wheat is the main supplier of bread protein and starch, while preserving the maximum of the original nutritional value of the grain, enriched whipped bread macro - and micronutrients. The analysis of the chemical composition of flour from wholegrain wheat, rye and wheat bran leads to the conclusion that the choice of these types of materials suitable for making the recipe whipped bakery products, because their use can increase the content in bread is not only the

  9. Swelling Kinetics of Waxy Maize Starch

    Science.gov (United States)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  10. ENZYMATIC DETERMINATION OF STARCH IN DOCE DE LEITE USING DIALYSIS

    Directory of Open Access Journals (Sweden)

    DEMIATE Ivo Motim

    2001-01-01

    Full Text Available The importance of starch for the food industry makes it necessary to develop new, fast, economic and accurate methodologies for its quantification. In the present paper starch hydrolysis using commercial enzymes of industrial grade are studied aiming to develop an easy and cheap analysis, available to a greater number of industries and technicians. The proposed method is simple, divided in a first step where soluble sugars are eliminated from the samples by using dialysis, followed by starch hydrolysis of the retained fraction with a thermoresistent bacterial alfa-amylase (Termamyl 120L® and an amyloglucosidase (AMG 300L®. The hydrolysis conditions were those suggested by the enzyme producer. After the hydrolysis step the material was dialysed again for the extraction of glucose that was quantified by the glucose-oxidase colorimetric reactant. The results allowed the construction of calibration equations for starch determination on the analyzed samples. These samples were produced on a laboratory scale and native and acid-modified corn starches were added in known concentrations. By considering the final dilutions employed for glucose determination on the samples, it was possible to confirm that they were identical to that of the glucose-oxidase reactant calibration.

  11. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films

    Directory of Open Access Journals (Sweden)

    Ewelina Basiak

    2018-04-01

    Full Text Available As starch is an inexpensive, filmogenic, easily processable and a widely available material, it is a material that can be utilized in the creation of biodegradable films and containers, presenting as a viable alternative to polymers derived from petrol. Moreover, starch could also be used to create edible coatings for fresh foods in order to extend shelf life. As such, wheat starch films with two glycerol contents were formulated to mimic the effects of compounds currently used to coat fruit. Their structural and functional properties were characterized. This study found that the transfer properties of starch films containing 33% of plasticizer was less effective than film comprised of 50% glycerol. Water diffusivity, oxygen permeability, and water vapor permeability at two different humidity gradients, surface tension, works of surface adhesion and cohesion, and moisture sorption were tested. Glycerol content does not play a significant role on the color or mechanical properties. This work shows that glycerol can strongly affect the functional properties of starch-based coatings and films.

  12. Organic acid profile of commercial sour cassava starch

    Directory of Open Access Journals (Sweden)

    DEMIATE I.M.

    1999-01-01

    Full Text Available Organic acids are present in sour cassava starch ("polvilho azedo" and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g, acetic (0 to 0.068 g/100g, propionic (0 to 0.013 g/100g and butyric (0 to 0.057 g/100g, that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

  13. Technological characteristics of yeast-containing cakes production using waxy wheat flour

    Directory of Open Access Journals (Sweden)

    K. Iorgachova

    2016-12-01

    Full Text Available This article shows the feasibility of using waxy wheat flour, the starch of which doesn`t contain amylose, in order to stabilize the quality of yeast-containing cakes. The influence of the waxy wheat flour mass fraction and the stage of its adding on the physical, chemical and organoleptic characteristics of the products are studied. According to the technological properties of a new type of wheat flour, two methods of its adding are proposed ‒ adding the maximum amount of waxy wheat flour at dough kneading stage or using the mixture of waxy and bakery wheat flours for kneading sourdough and dough. It is shown that the replacement of 60 % bakery wheat flour with waxy wheat flour in the recipe of yeast-containing cakes at the dough kneading stage contributes to the production of products with higher quality and organoleptic characteristics compared to both the control and cakes based on a mixture of different types of wheat flour. These samples are characterized by increased by 1.7 – 11.3 % specific volume, porosity – 2.6 – 5.5 % and the total deformation of the crumb – 6.5 – 41.4 %.

  14. Increased accuracy of starch granule type quantification using mixture distributions

    OpenAIRE

    Tanaka, Emi; Ral, Jean-Phillippe F.; Li, Sean; Gaire, Raj; Cavanagh, Colin R.; Cullis, Brian R.; Whan, Alex

    2017-01-01

    Background The proportion of granule types in wheat starch is an important characteristic that can affect its functionality. It is widely accepted that granule types are either large, disc-shaped A-type granules or small, spherical B-type granules. Additionally, there are some reports of the tiny C-type granules. The differences between these granule types are due to its carbohydrate composition and crystallinity which is highly, but not perfectly, correlated with the granule size. A majority...

  15. IDENTIFICATION AND CHARACTERIZATION OF THE SUCROSE SYNTHASE 2 GENE (Sus2 IN DURUM WHEAT

    Directory of Open Access Journals (Sweden)

    Mariateresa eVolpicella

    2016-03-01

    Full Text Available Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for sucrose synthase in durum wheat (cultivars Ciccio and Svevo is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur and 5-BIL42. The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modelling approaches. The combined results of SUS2 expression and activity levels were then considered in the light of their possible involvement in starch yield.

  16. Assessment of Nutrient Contents of Modified Finger Millet (Eleusine coracana Starch

    Directory of Open Access Journals (Sweden)

    Tukura Bitrus Wokhe

    2017-02-01

    Full Text Available Modification processes can change the physicochemical and structural properties of native starch, thereby increasing its industrial applications. Finger millet starch (FMS was modified with casava starch (CS, guar gum (GG and xanthan gum (XG modifiers at the ratios of 95:5%, 90:10%, 80:20% and 75: 25%, for each of the modifier. The proximate and mineral compositions of the modified starch were determined using standard methods. Atomic absorption spectrometry method was used to quantify the mineral contents of the modified starch. Proximate contents of the modified FMS starch varied according to the type of the modifier and FMS/modifier ratios. Concentrations of carbohydrate in CS (66.97±0.03%, GG (64.42±0.05% and XG (64.64 ± 0.01% FMS modified starches were highest at 10%, 25% and 5% of the modifier contents repectively. The highest levels of fat in GG (8.91±0.02%, XG (7.89±0.01 and ash (3.55±0.02% in CS modified starches were recorded when the quantity of the modifiers were increased to 25%. Fatty acid levels in the modified starches varied in the order of XG (7.74±0.03% at 20% > GG (7.13±0.02% at 25% > CS (5.14±0.20% at 10%. At 25% modifier contents, levels of mineral element were highest in the modified CS and GG starches. Modifications decreased Mg, Mn, Fe, Zn, and Cu contents, while the concentrations Na, K, Ca and P increased. The modified starches can be used for production of some foods for specific health purposes.

  17. Comparisons of Copy Number, Genomic Structure, and Conserved Motifs for α-Amylase Genes from Barley, Rice, and Wheat

    Directory of Open Access Journals (Sweden)

    Qisen Zhang

    2017-10-01

    Full Text Available Barley is an important crop for the production of malt and beer. However, crops such as rice and wheat are rarely used for malting. α-amylase is the key enzyme that degrades starch during malting. In this study, we compared the genomic properties, gene copies, and conserved promoter motifs of α-amylase genes in barley, rice, and wheat. In all three crops, α-amylase consists of four subfamilies designated amy1, amy2, amy3, and amy4. In wheat and barley, members of amy1 and amy2 genes are localized on chromosomes 6 and 7, respectively. In rice, members of amy1 genes are found on chromosomes 1 and 2, and amy2 genes on chromosome 6. The barley genome has six amy1 members and three amy2 members. The wheat B genome contains four amy1 members and three amy2 members, while the rice genome has three amy1 members and one amy2 member. The B genome has mostly amy1 and amy2 members among the three wheat genomes. Amy1 promoters from all three crop genomes contain a GA-responsive complex consisting of a GA-responsive element (CAATAAA, pyrimidine box (CCTTTT and TATCCAT/C box. This study has shown that amy1 and amy2 from both wheat and barley have similar genomic properties, including exon/intron structures and GA-responsive elements on promoters, but these differ in rice. Like barley, wheat should have sufficient amy activity to degrade starch completely during malting. Other factors, such as high protein with haze issues and the lack of husk causing Lauting difficulty, may limit the use of wheat for brewing.

  18. New perspectives of starch: Synthesis and in vitro assessment of novel thiolated mucoadhesive derivatives.

    Science.gov (United States)

    Jelkmann, Max; Bonengel, Sonja; Menzel, Claudia; Markovic, Svetislav; Bernkop-Schnürch, Andreas

    2018-05-11

    The purpose of this study was to develop a novel thiolated starch polymer with improved mucoadhesive properties by conjugation of cysteamine to starch as a natural polymer of restricted mucoadhesive properties. Aldehyde substructures were integrated into starch via oxidative cleavage of vicinal diols by increasing amounts of sodium periodate followed by covalent attachment of cysteamine to oxidized starch via reductive amination. Thiol groups were quantified via Ellman's reaction and their impact on mucoadhesion was analyzed by rheological investigations, the rotating cylinder method and tensile studies on porcine mucosa. The total amount of immobilized thiol groups revealed a correlation between degree of oxidation and thiolation. Modified starch demonstrated an up to 1.66-fold increase in water uptake in comparison to native starch. Modification of starch resulted in greatly improved cohesive properties and improvement in mucoadhesion. Rheological investigations revealed a 2- to 4-fold rise in viscosity of mucus. Tensile studies revealed a linear correlation between degree of oxidation/thiolation and enhancement of maximum detachment force and total work adhesion. In terms of these results, thiolated starch is a new, promising, polymer in the field of mucoadhesive drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion.

    Science.gov (United States)

    Smith, Frances; Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A; Gates, Fred K; Wickham, Martin S J; Shewry, Peter R; Bakalis, Serafim; Padfield, Philip; Mills, E N Clare

    2015-10-01

    Resistance of proteins to gastrointestinal digestion may play a role in determining immune-mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS-PAGE and immunoblotting using monoclonal antibodies specific for celiac-toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten-starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Milling of rice grains: effects of starch/flour structures on gelatinization and pasting properties.

    Science.gov (United States)

    Hasjim, Jovin; Li, Enpeng; Dhital, Sushil

    2013-01-30

    Starch gelatinization and flour pasting properties were determined and correlated with four different levels of starch structures in rice flour, i.e. flour particle size, degree of damaged starch granules, whole molecular size, and molecular branching structure. Onset starch-gelatinization temperatures were not significantly different among all flour samples, but peak and conclusion starch-gelatinization temperatures were significantly different and were strongly correlated with the flour particle size, indicating that rice flour with larger particle size has a greater barrier for heat transfer. There were slight differences in the enthalpy of starch gelatinization, which are likely associated with the disruption of crystalline structure in starch granules by the milling processes. Flours with volume-median diameter ≥56 μm did not show a defined peak viscosity in the RVA viscogram, possibly due to the presence of native protein and/or cell-wall structure stabilizing the swollen starch granules against the rupture caused by shear during heating. Furthermore, RVA final viscosity of flour was strongly correlated with the degree of damage to starch granules, suggesting the contribution of granular structure, possibly in swollen form. The results from this study allow the improvement in the manufacture and the selection criteria of rice flour with desirable gelatinization and pasting properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Sorption and vapor transmission properties of uncompressed and compressed microcellular starch foam.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur P; Takeoka, Gary; Orts, William J; Wood, Delilah; Widmaier, Robert

    2002-11-20

    Microcellular starch foams (MCFs) are made by a solvent-exchange process and consist of a porous matrix with pores generally ranging from approximately 2 microm to submicrometer size. MCF may potentially be useful as a slow-release agent for volatile compounds because of its ability to sorb chemicals from the atmosphere and to absorb liquids into its porous structure, and because it can be compressed to form a starch plastic. MCF made of high-amylose corn and wheat starches was prepared with or without 2% (w/w) silicone oil (SO) or palmitic acid (PA). The MCF was loaded with 1% of various volatile compounds with vapor pressures ranging from 0.02 to 28 mm. The MCF depressed the vapor pressure from 0.37 to 37% compared to a control containing no MCF. Incorporating SO or PA in the matrix of the MCF had little effect on sorption of volatiles. Compressing MCF at 1.4, 6.9, and 69 MPa made a starch plastic with varying porosity. The vapor transmission rate of various volatile compounds through MCF was positively correlated to the vapor pressure of the test compound but was inversely proportional to the compression force used to form the starch plastic. The results indicate that uncompressed and compressed MCFs could be effective slow-release agents for a variety of volatile compounds, especially if used together.

  2. Effects of dietary carbohydrates sources on lipids compositions in abalone, Haliotis discus hannai Ino

    Science.gov (United States)

    Wang, Weifang; Mai, Kangsen; Zhang, Wenbing; Xu, Wei; Ai, Qinghui; Yao, Chunfeng; Li, Huitao

    2009-09-01

    A study was conducted to evaluate the effects of dietary carbohydrates on triglyceride, cholesterol and fatty acid concentrations in abalone, Haliotis discus hannai Ino. Six semi-purified diets with different carbohydrates (dextrin, heat-treated wheat starch, wheat starch, corn starch, tapioca starch and potato starch, respectively), all containing a carbohydrate level of 33.5%, were fed to abalone (initial shell length: 29.98 mm ± 0.09 mm; initial weight: 3.42 g ± 0.02 g) for 24 weeks in a recirculation system. The results indicate that serum triglyceride concentrations were significantly ( P abalone fed with dextrin, heat-treated wheat starch and wheat starch than those fed with corn starch, and serum cholesterol concentrations were significantly ( P abalone fed with dextrin, heat-treated wheat starch than those fed with corn starch. Fatty acid C20:4n-6 in the foot muscles were significantly ( P abalone fed with dextrin than those fed with wheat starch, corn starch, tapioca starch and potato starch. Fatty acid C20:4n-6 in hepatopancreas was significantly ( P abalone fed with heat-treated wheat starch than those fed with corn starch, tapioca starch and potato starch. Fatty acid C22:6n-3 in the foot muscles were significantly ( P abalone fed with dextrin and heat-treated wheat starch than those fed with wheat starch and potato starch.

  3. The Glycemic Response Does Not Reflect the In Vivo Starch Digestibility of Fiber-Rich Wheat Products in Healthy Men

    NARCIS (Netherlands)

    Eelderink, C.; Moerdijk-Poortvliet, T.C.W.; Wang, H.W.; Schepers, M.; Preston, T.; Boer, T.; Vonk, R.J.; Schierbeek, H.; Priebe, M.G.

    2012-01-01

    Starchy food products differ in the rate of starch digestion, which can affect their metabolic impact. In this study, we examined how the in vivo starch digestibility is reflected by the glycemic response, because this response is often used to predict starch digestibility. Ten healthy male

  4. The studies on the preparation of instant noodles from wheat flour supplementing withs weet potato flour

    OpenAIRE

    Taneya, M.L.J.; Biswas, M.M.H.; Shams-Ud-Din, M.

    2014-01-01

    The study reports on the effect of composite flours consisting of wheat and sweet potato flour on the physicochemical and sensory properties of instant noodles. Sweet potato flour was incorporated into wheat flour at flour replacement levels of 0, 10, 20 and 30%. The levels of sweet potato flours increased in the formulations of instant noodle that increased ash, starch, crude fiber and total carbohydrate contents but decreased level of protein. The instant noodles with 20% sweet potato flour...

  5. Nutritional and technological quality of the durum wheat

    Directory of Open Access Journals (Sweden)

    Zina Flagella

    Full Text Available Durum wheat quality is a complex system that combines yield characteristics, cultivation conditions and certification requirements. In this review, the technological and nutritional aspects of grain quality were evaluated in relation to the influence of climate and agronomic practices. In particular, the technological quality was investigated with regard to the kind of processed product (pasta, bread, couscous, burghul. The influence of nitrogen and sulphur nutrition, temperature, water regime and organic farming on grain quality was evaluated. Furthermore, the nutritional characteristics of durum wheat related to starch, proteins, lipids, vitamins, fibres and mineral ions content were examined. Special focus was on the antioxidant activity capable of preventing chronic and degenerative diseases thanks to the high content in bioactive compounds, as phenols, tocols, carotenoids and fibres in whole grain. In the light of the new direction of the Community agricultural policy and of the growing interest in human nutrition, two prospects for development of the durum wheat sector were delineated: i developing certified products (PGI, PDO and organic; ii promoting production and processing technologies aimed at increasing the level of bioactive compounds in durum wheat grain and its by-products.

  6. Chemical changes of starch during boiling, in alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Sotskaya, B P; Smirnova, V A

    1961-01-01

    The chemical conversion of potato starch during heating was dependent upon the pH and the heat regime. Under mild conditions, at pH 6.5 the molecular weight remained similar to that of the native starch and the reducing value increased only 0.0007%; at pH 3.5 the molecular weight dropped to about 3900 and the reducing value increased to 3.83%, and at pH 2.4 a mixture of glucose and oligosaccharides was formed. Under a more rigorous regime, at pH 6.5, the molecular weight decreased 6 to 7 times and the reducing value was 0.45%. At pH 2.4 glucose was the conversion product formed.

  7. Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids.

    Science.gov (United States)

    Chao, Chen; Yu, Jinglin; Wang, Shuo; Copeland, Les; Wang, Shujun

    2018-01-10

    This study aimed to reveal the mechanism of formation of complexes between native maize starch (NMS) and different types of lipids, namely palmitic acid (PA), monopalmitate glycerol (MPG), dipalmitate glycerol (DPG), and tripalmitate glycerol (TPG). The complexing index followed the order of MPG (96.3%) > PA (41.8%) > TPG (8.3%) > DPG (1.1%), indicating that MPG formed more complexes with NMS than PA, and that few complexes were formed between NMS and DPG and TPG. The NMS-PA complex presented higher thermal transition temperatures and lower enthalpy change than the NMS-MPG complex, indicating that although MPG formed more starch complexes, they had less stable crystalline structures than the complex between NMS and PA. X-ray diffraction (XRD) and Raman spectroscopy showed that both MPG and PA formed V-type crystalline structures with NMS, and confirmed that no complexes were formed between NMS and DPG and TPG. We conclude that the monoglyceride formed more starch-lipid complex with maize starch than PA, but that the monoglyceride complex had a less stable structure than that formed with PA. The di- and triglycerides did not form complexes with maize starch.

  8. Modified Starch of Sorghum Mutant Line Zh-30 for High Fiber Muffin Products

    Directory of Open Access Journals (Sweden)

    D.D.S. Santosa

    2009-01-01

    Full Text Available Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30 has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour.

  9. Modified Starch of Sorghum Mutant Line Zh-30 For High Fiber Muffin Products

    International Nuclear Information System (INIS)

    Santosa, D. D. S; Human, S

    2009-01-01

    Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30) has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour (author)

  10. Isolation and characterization of starch from industrial fresh pasta by-product and its potential use in sugar-snap cookie making.

    Science.gov (United States)

    Ellouzi, Soumaya Zouari; Driss, Dorra; Maktouf, Sameh; Neifar, Mohamed; Kobbi, Ameni; Kamoun, Hounaida; Chaabouni, Semia Ellouze; Ghorbel, Raoudha Ellouze

    2015-09-01

    In this paper, starch was extracted from fresh pasta by-product (PS) and its chemical composition and physical and microscopic characteristics were determined. Commercial wheat starch (CS) was used as reference. In general, purity was similar between starches studied. However, others compounds such as protein, lipid and ash were significantly different. PS starch granules had large lenticular-shape (25-33 μm) and small spherical-shape (5-8 μm). The pH and color of PS starch were similar to those reported for CS starch. On the other hand, PS had higher water absorption capacity, viscosity and cooking stability than CS. The gelatinization temperature of PS was similar to that of CS (60 and 61 °C). At high temperature (90 °C) both starches had similar rheological behavior. The results achieved suggest that PS starch has potential for application in food systems requiring high processing temperatures such the manufacture of sugar snap cookie. The effects of PS starch addition on the dough making stage and the final cookie quality were analyzed. Improvements in dough cohesiveness (24 %) and springiness (10 %) were significant relative to those of CS dough. Texture profile analysis confirmed the rheological changes.

  11. Significance of thermal transitions on starch digestibility and firming kinetics of restricted water mixed flour bread matrices.

    Science.gov (United States)

    Collar, Concha; Jiménez, Teresa; Conte, Paola; Piga, Antonio

    2015-05-20

    The impact of wheat (WT) flour replacement up to 45% (weight basis) by incorporation of ternary blends of teff (T), green pea (GP) and buckwheat (BW) flours on the thermal profiles of quaternary blended dough matrices have been investigated by simulating baking, cooling, and storage in differential scanning calorimeter (DSC) pans. Endothermal transitions related to suitable patterns for low and slow starch hydrolysis, softer crumb and retarded firming kinetics in blended breads include delayed temperatures for starch gelatinization, and for the dissociation of amylose-lipid complex. In addition, (a) higher stability for the amylose-lipid inclusion complex, (b) lower energy for starch gelatinization, (c) lower limiting melting enthalpy and (d) slower rate for amylopectin retrogradation meet thermal requirements for achieving suitable textural and starch digestibility features in blended breads, fulfilled by adding T/GP/BW to replace 45% of WT flour in blended dough formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure.

    Science.gov (United States)

    Liu, Hang; Fan, Huanhuan; Cao, Rong; Blanchard, Christopher; Wang, Min

    2016-11-01

    A nonthermal processing technology, high hydrostatic pressure (HHP) treatment, was investigated to assess its influence on the physicochemical properties and in vitro digestibility of sorghum starch (SS). There was no change in the 'A'-type crystalline pattern of SS after the pressure treatments at 120-480MPa. However, treatment at 600MPa produced a pattern similar to 'B'-type crystalline. HHP treatment also resulted in SS granules with rough surfaces. Measured amylose content, water absorption capacity, alkaline water retention, pasting temperature and thermostability increased with increasing pressure levels, while the oil absorption capacity, swelling power, relative crystallinity and viscosity decreased. Compared with native starch, HHP-modified SS samples had lower in vitro hydrolysis, reduced amount of rapidly digestible starch, as well as increased levels of slowly digestible starch and resistant starch. These results indicate that HHP treatment is an effective modification method for altering in vitro digestibility and physicochemical properties of SS. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas

    2018-01-01

    Application of starch in industry frequently requires extensive modification. This is usually achieved by chemical and/or physical modification that is time-consuming and often expensive and polluting. To impart functionality as early as possible in the starch production chain, modification can...... be achieved directly as part of the developing starch storage roots, tubers, and seeds and grains of the crop. Starch has been a strong driver for human development and is now the most important energy provider in the diet forcing the development of novel and valuable starch qualities for specific...... applications. Among the most important structures that can be targeted include starch phosphorylation chain transfer/branching generating chemically substituted and chain length-modified starches such as resistant and health-promoting high-amylose starch. Starch bioengineering has been employed for more than...

  14. Effect of chitosan on the behaviour of the wheat B-starch nanocomposite

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kaprálková, Ludmila; Brožová, Libuše; Hromádková, Jiřina; Kotek, Jiří

    2013-01-01

    Roč. 46, April (2013), s. 186-190 ISSN 0926-6690 R&D Projects: GA AV ČR IAA200500904 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : B-starch * chitosan * montmorillonite Subject RIV: JI - Composite Materials Impact factor: 3.208, year: 2013

  15. Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization

    International Nuclear Information System (INIS)

    López, Olivia V.; García, María A.

    2012-01-01

    Biodegradable films from ahipa, cassava and corn native starches were developed by casting method and their physicochemical, mechanical and barrier properties were analyzed taking into account the different starch botanical sources. Filmogenic suspensions were prepared; their rheological behaviors were studied and all of them exhibited film-forming ability. However, mechanical assays demonstrated that unplasticized films were too rigid, limiting their technological applications. Thus, 1.5% w/w of glycerol as plasticizer was added to filmogenic suspensions and film flexibility and extensibility were improved, this effect was more significant for ahipa and cassava starch films. Furthermore, thickness, moisture content and water solubility of the developed films were increased when plasticizer was incorporated. Glycerol addition reduced film water vapor permeability and the lowest reduction corresponded to cassava starch films due to the high viscosity of its filmogenic suspensions. Plasticized starch films resulted to be UV radiation barriers; ahipa starch films had the lowest light absorption capacity and higher transparency than cassava and corn starch films. Dynamic-mechanical analysis indicated that plasticized films were partially miscible systems exhibiting two relaxations, one attributed to the starch-rich phase and the other to the glycerol-rich one. Likewise, it could be demonstrated that glycerol exerted a major plasticizing effect on ahipa starch matrixes. Highlights: ► Ahipa, cassava and corn starch films were developed by casting method. ► Glycerol effect on film mechanical behavior was major for tuberous starch films. ► Ahipa starch films resulted to be more transparent with lower UV absorption capacity. ► Plasticized films were partially miscible systems: with a glycerol-rich and a starch-rich phase. ► Glycerol exerted a major plasticizing effect on ahipa starch films.

  16. Carboxymethyl starch/montmorillonite composite microparticles: Properties and controlled release of isoproturon.

    Science.gov (United States)

    Wilpiszewska, Katarzyna; Spychaj, Tadeusz; Paździoch, Waldemar

    2016-01-20

    Preparation of novel high substituted carboxymethyl starch-based microparticles containing sodium montmorillonite (MMT) by crosslinking with Al(3+) was described. For preparing nanocomposite granules carboxymethyl starch (CMS) from native potato starch as well as CMS from amylopectin has been used. The hydrophilic CMS/MMT composite systems were used for herbicide, i.e. isoproturon encapsulation (ca. 75% encapsulation efficiency). The herbicide release rate from CMS/MMT composites in water was significantly reduced when compared to commercial isoproturon: 95% released after ca. 700 h and ca. 24h, respectively. Leaching in soil from composite systems was relatively slower than release in water. After a series of eight irrigations leached about 10% of isoproturon loaded. The CMS/MMT carriers could reduce the potential leaching of herbicide and beneficially reduce pollution of the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of pH on Physicochemical Properties of Cassava Starch Modification Using Ozone

    Directory of Open Access Journals (Sweden)

    Pudjihastuti Isti

    2018-01-01

    Full Text Available Nowadays, starch modification is carried out in order to change the native properties into the better ones, such as high stability, brightness, and better texture. The objectives of this study are to investigate the effect of pH on carboxyl content, swelling power, and water solubility of starch. This research was divided into two main stages, i.e. starch modification by ozone oxidation and analysis. The physicochemical properties of modified cassava starch were investigated under various reaction pH of 7-10 and the reaction time between 0-240 minutes. Reaction condition at pH 10 provided the higher value of carboxyl content and water solubility, but the lower of swelling power. This increase in solubility indicates that the modified oxidation starch readily dissolves in water, due to its small size granules and high amylose content. The significant changes of both parameters were achieved in the first 120 minutes of ozone reaction times. The graphic pattern of water solubility was in contrast with swelling power.

  18. Effect of reducing dietary forage in lower starch diets on performance, ruminal characteristics, and nutrient digestibility in lactating Holstein cows.

    Science.gov (United States)

    Farmer, E R; Tucker, H A; Dann, H M; Cotanch, K W; Mooney, C S; Lock, A L; Yagi, K; Grant, R J

    2014-09-01

    This experiment evaluated the effect of feeding a lower starch diet (21% of dry matter) with different amounts of forage (52, 47, 43, and 39% of dry matter) on lactational performance, chewing activity, ruminal fermentation and turnover, microbial N yield, and total-tract nutrient digestibility. Dietary forage consisted of a mixture of corn and haycrop silages, and as dietary forage content was reduced, chopped wheat straw (0-10% of dry matter) was added in an effort to maintain chewing activity. Dietary concentrate was adjusted (corn meal, nonforage fiber sources, and protein sources) to maintain similar amounts of starch and other carbohydrate and protein fractions among the diets. Sixteen lactating Holstein cows were used in replicated 4×4 Latin squares with 21-d periods. Dry matter intake increased while physically effective neutral detergent fiber (peNDF1.18) intake was reduced as forage content decreased from 52 to 39%. However, reducing dietary forage did not influence milk yield or composition, although we observed changes in dry matter intake. Time spent chewing, eating, and ruminating (expressed as minutes per day or as minutes per kilogram of NDF intake) were not affected by reducing dietary forage. However, addition of chopped wheat straw to the diets resulted in greater time spent chewing and eating per kilogram of peNDF1.18 consumed. Reducing dietary forage from 52 to 39% did not affect ruminal pH, ruminal digesta volume and mass, ruminal pool size of NDF or starch, ruminal digesta mat consistency, or microbial N yield. Ruminal acetate-to-propionate ratio was reduced, ruminal turnover rates of NDF and starch were greater, and total-tract digestibility of fiber diminished as dietary forage content decreased. Reducing the dietary forage content from 52 to 39% of dry matter, while increasing wheat straw inclusion to maintain chewing and rumen function, resulted in similar milk yield and composition although feed intake increased. With the lower starch

  19. Improved Quantitation of Gluten in Wheat Starch for Celiac Disease Patients by Gel-Permeation High-Performance Liquid Chromatography with Fluorescence Detection (GP-HPLC-FLD).

    Science.gov (United States)

    Scherf, Katharina Anne; Wieser, Herbert; Koehler, Peter

    2016-10-12

    Purified wheat starch (WSt) is commonly used in gluten-free products for celiac disease (CD) patients. It is mostly well-tolerated, but doubts about its safety for CD patients persist. One reason may be that most ELISA kits primarily recognize the alcohol-soluble gliadin fraction of gluten, but insufficiently target the alcohol-insoluble glutenin fraction. To address this problem, a new sensitive method based on the sequential extraction of gliadins, glutenins, and gluten from WSt followed by gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD) was developed. It revealed that considerable amounts of glutenins were present in most WSt. The gluten contents quantitated by GP-HPLC-FLD as sum of gliadins and glutenins were higher than those by R5 ELISA (gluten as gliadin content multiplied by a factor of 2) in 19 out of 26 WSt. Despite its limited selectivity, GP-HPLC-FLD may be applied as confirmatory method to ELISA to quantitate gluten in WSt.

  20. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    Science.gov (United States)

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.

  1. CO2-Induced Changes in Wheat Grain Composition: Meta-Analysis and Response Functions

    Directory of Open Access Journals (Sweden)

    Malin C. Broberg

    2017-04-01

    Full Text Available Elevated carbon dioxide (eCO2 stimulates wheat grain yield, but simultaneously reduces protein/nitrogen (N concentration. Also, other essential nutrients are subject to change. This study is a synthesis of wheat experiments with eCO2, estimating the effects on N, minerals (B, Ca, Cd, Fe, K, Mg, Mn, Na, P, S, Zn, and starch. The analysis was performed by (i deriving response functions to assess the gradual change in element concentration with increasing CO2 concentration, (ii meta-analysis to test the average magnitude and significance of observed effects, and (iii relating CO2 effects on minerals to effects on N and grain yield. Responses ranged from zero to strong negative effects of eCO2 on mineral concentration, with the largest reductions for the nutritionally important elements of N, Fe, S, Zn, and Mg. Together with the positive but small and non-significant effect on starch concentration, the large variation in effects suggests that CO2-induced responses cannot be explained only by a simple dilution model. To explain the observed pattern, uptake and transport mechanisms may have to be considered, along with the link of different elements to N uptake. Our study shows that eCO2 has a significant effect on wheat grain stoichiometry, with implications for human nutrition in a world of rising CO2.

  2. Next-generation non-starch polysaccharide-degrading, multi-carbohydrase complex rich in xylanase and arabinofuranosidase to enhance broiler feed digestibility.

    Science.gov (United States)

    Cozannet, Pierre; Kidd, Michael T; Montanhini Neto, Roberto; Geraert, Pierre-André

    2017-08-01

    This study was carried out to evaluate the effect of a multi-carbohydrase complex (MCC) rich in xylanase (Xyl) and arabinofuranosidase (Abf) on overall broiler feed digestibility in broilers. Energy utilization and digestibility of dry matter (DM), organic matter (OM), protein, starch, fat, and insoluble and soluble fibers were measured using the mass-balance method. The experiment was carried out on 120 broilers (3-week-old chickens). Broilers were distributed over 8 treatments to evaluate the effect of the dietary arabinoxylan content and nutrient density with and without MCC (Rovabio® Advance). The graded content of arabinoxylan (AX) was obtained using different raw materials (wheat, rye, barley, and dried distillers' wheat). Diet-energy density was modified with added fat. Measurements indicated that nutrient density and AX content had a significant effect on most digestibility parameters. Apparent metabolizable energy (AME) was significantly increased (265 kcal kg-1) by MCC. The addition of MCC also resulted in significant improvement in the digestibility of all evaluated nutrients, with average improvements of 3.0, 3.3, 3.2, 3.0, 6.2, 2.9, 5.8, and 3.8% units for DM, OM, protein, starch, fat, insoluble and soluble fibers, and energy utilization, respectively. The interaction between MCC and diet composition was significant for the digestibility of OM, fat, protein, and energy. Nutrient digestibility and diet AME were negatively correlated with AX content (P digestible nutrient (i.e., starch, protein, fat, insoluble and soluble fibers) content with and without MCC (R2 = 0.87; RSD = 78 kcal kg-1). This study confirms that the presence of AX in wheat-based diets and wheat-based diets with other cereals and cereal by-products reduces nutrient digestibility in broiler chickens. Furthermore, the dietary addition of MCC, which is rich in Xyn and Abf, reduced deleterious effect of fiber and improved overall nutrient digestibility in broiler diets. © 2017 Poultry

  3. Induced variability for protein content in bread wheat

    International Nuclear Information System (INIS)

    Singhal, N.C.; Jain, H.K.; Austin, A.

    1978-01-01

    The negative correlation observed between seed weight and percentage of protein in the seeds of bread wheat is a function of the fact that increase in seed size is commonly associated with a disproportionately large deposition of starch relative to the protein. The present study, as well as our earlier analysis, shows that exceptional genotypes of bread wheat do exist in which increase in seed weight is associated with a relatively larger synthesis of protein. In the course of the present investigation on radiation-induced variability, genotypes showing more efficient synthesis of storage proteins in their seeds have been identified in the M 2 and M 3 generations. The induced variability, thus, makes it possible to break the negative correlation between seed weight and percentage of protein in the seed. Based on these findings, it has been suggested that in a protein improvement programme on bread wheat it should be useful to select in the segregating generation plants showing increase in seed size, some of which can be expected to be relatively more efficient in protein synthesis and give higher protein yields. (author)

  4. Physical and functional properties of arrowroot starch extrudates.

    Science.gov (United States)

    Jyothi, A N; Sheriff, J T; Sajeev, M S

    2009-03-01

    Arrowroot starch, a commercially underexploited tuber starch but having potential digestive and medicinal properties, has been subjected to extrusion cooking using a single screw food extruder. Different levels of feed moisture (12%, 14%, and 16%) and extrusion temperatures (140, 150, 160, 170, 180, and 190 degrees C) were used for extrusion. The physical properties--bulk density, true density, porosity, and expansion ratio; functional properties such as water absorption index, water solubility index, oil absorption index, pasting, rheological, and textural properties; and in vitro enzyme digestibility of the extrudates were determined. The expansion ratio of the extrudates ranged from 3.22 to 6.09. The water absorption index (6.52 to 8.85 g gel/g dry sample), water solubility index (15.92% to 41.31%), and oil absorption index (0.50 to 1.70 g/g) were higher for the extrudates in comparison to native starch (1.81 g gel/g dry sample, 1.16% and 0.60 g/g, respectively). The rheological properties, storage modulus, and loss modulus of the gelatinized powdered extrudates were significantly lower (P extruded at higher feed moisture and lower extrusion temperature, whereas snap force and energy were higher at lower feed moisture and temperature. There was a significant decrease in the percentage digestibility of arrowroot starch (30.07% after 30 min of incubation with the enzyme) after extrusion (25.27% to 30.56%). Extrusion cooking of arrowroot starch resulted in products with very good expansion, color, and lower digestibility, which can be exploited for its potential use as a snack food.

  5. ON THE ISSUE OF IMPORT SUBSTITUTION OF DEEP PROCESSING PRODUCTS FROM GRAIN AND POTATO

    Directory of Open Access Journals (Sweden)

    N. R. Andreev

    2014-01-01

    Full Text Available Summary. The analysis of structure of starch containing raw materials processing in Russia Federation is provided in the article. There was noted an increase in volumes of corn and wheat processing, however the share of processed potato is still low (below 4%. It was established that Russian starch products and starch sweeteners are on the same level on quality as best European samples and they are very competitive. Market demand in crystalline glucose for food and medical purposes (over 30 thous. tons is fully covered by import. The volume of import of modified starches exceeds 80 % of total consumption. The biggest volume of import among native starches belongs to potato starch – over 60 %. The article provides suggestions on import substitution of mentioned starch products. The growth of starch production in Russia was accompanied by concentration of production at large enterprises. So, in 2013 over 90 % of glucose syrup was produced at six enterprises, over 80 % of dry starch – at five enterprises. Efficiency of corn and wheat processing into starch and starch products is achieved by production and selling of co-products (dry gluten, gluten, corn germ or corn oil, corn extract, feed products.Development of starch sweeteners production from starch could be achieved by expanding the consumption areas of different kinds of glucose syrup and production of glucose-fructose syrups as full substitute of sugar, providing import substitution of sugar, crystalline glucose of food and medicine purpose, deep processing of glucose into polyols (sorbit, maltit, polylactites, aminoacids.

  6. Thermal behavior of native and hydrophobized wheat gluten, gliadin and glutenin-rich fractions by modulated DSC.

    Science.gov (United States)

    Micard, V; Guilbert, S

    2000-06-13

    The glass transition temperature (T(g)) of hydrophobized and native wheat gluten and its protein fractions, with water mass fraction from 0 to 0.2, was studied using modulated differential scanning calorimetry. The T(g) values of unplasticized products were approximately 175 degrees C whatever the treatment (hydrophobization) or the fraction tested, except for the gliadin-rich fraction (162 degrees C). Experimental change in heat capacity at the glass transition (DeltaC(p)) ranged from 0.32 to 0. 50 J/g/ degrees C depending on the gluten fractions. The Gordon-Taylor fit of T(g) evolution as a function of water content showed that glutenin-rich fractions were more sensitive to water plasticization than the gliadin-rich fraction. The Kwei equation gave better fit to experimental data and demonstrated that the water plasticization of gluten and its fractions is influenced by secondary interactions. However, the application of the Couchman-Karasz equation without fitting predicts satisfactorily the plasticization of gluten proteins by water.

  7. Effects of tempering (annealing), acid hydrolysis, low-citric acid substitution on chemical and physicochemical properties of starches of four yam (Dioscorea spp.) cultivars.

    Science.gov (United States)

    Falade, Kolawole O; Ayetigbo, Oluwatoyin E

    2017-05-01

    The effects of tempering (annealing), acid hydrolysis and low-citric acid substitution on chemical and physicochemical properties of starches of four Nigerian yam cultivars were investigated. Crude fat and protein contents of the native starches decreased significantly after the modifications, while nitrogen-free extract increased significantly with acid hydrolysis and citric acid substitution. Acid hydrolysis and low-citric acid substitution reduced the least concentration for gel formation of the starches from 4 to 2% w/v, but tempering had no effect. Swelling power of the starches reduced significantly, and water solubility increased significantly at 75 and 85 °C, especially with acid hydrolysis and low-citric acid substitution. However, tempering significantly reduced starch solubility in the four cultivars. Paste clarity of starches of white (29.17%), water (18.90%), yellow (30.90%) and bitter (10.57%) yams reduced significantly with tempering to 14.43, 11.83, 16.93 and 7.27%, but increased significantly with acid hydrolysis to 41.40, 35.37, 28.77 and 32.33%, and low-citric acid substitution to 36.60, 44.17, 50.67 and 14.33%, respectively. Pasting properties such as peak, trough, breakdown, final, and setback viscosities and peak time of native starches reduced significantly with acid hydrolysis and low-citric acid substitution, however, tempering significantly increased their pasting temperature, peak time, setback and final viscosities.

  8. Effects of Post-harvest Storage Duration and Variety on Nutrient Digestibility and Energy Content Wheat in Finishing Pigs.

    Science.gov (United States)

    Guo, P P; Li, P L; Li, Z C; Stein, H H; Liu, L; Xia, T; Yang, Y Y; Ma, Y X

    2015-10-01

    This study was conducted to investigate the effects of post-harvest storage duration and wheat variety on the digestibility and energy content of new season wheat fed to finishing pigs. Two wheat varieties (Shi and Zhong) were harvested in 2013 and stored in the warehouse of the Fengning Pig Experimental Base at China Agricultural University for 3, 6, 9, or 12 mo. For each storage period, 12 barrows were placed in metabolism crates and allotted to diets containing 1 of the 2 wheat varieties in a randomized complete block design. The experimental diets contained 97.34% wheat and 2.66% of a vitamin and trace mineral premix. With an extension of storage duration from 3 mo to 12 mo, the gross energy (GE) and crude protein (CP) of the wheat decreased by 2.0% and 12.01%, respectively, while the concentration of neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch content increased by 30.26%, 19.08%, and 2.46%, respectively. Total non-starch polysaccharide, total arabinose, total xylose and total mannose contents decreased by 46.27%, 45.80%, 41.71%, and 75.66%, respectively. However, there were no significant differences in the chemical composition between the two wheat varieties with the exception of ADF which was approximately 13.37% lower in Shi. With an extension of storage duration from 3 mo to 12 mo, the digestible energy (DE), metabolizable energy (ME) content and the apparent total tract digestibility of GE, CP, dry matter, organic matter, ether extract, ADF and metabolizability of energy in wheat decreased linearly (pdigestibility of NDF changed quadratically (pdigestibility (pdigestibility of variety Zhong was stable during 9 mo of storage, while the CP digestibility of variety Shi decreased (p<0.05). In conclusion, the GE, DE, and ME of wheat was stable during the first 3 to 6 mo of post-harvest storage, and decreased during the following 6 to 12 mo of storage under the conditions of this study.

  9. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte

    2012-01-01

    Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley...... or wheat flour as the sole nutrient source to mimic the host–pathogen interaction. A gel‐based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty‐nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation...... between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction in barley...

  10. Structural and mechanical characteristics of film using modified corn starch by the same two chemical processes used in different sequences.

    Science.gov (United States)

    Qiu, Liping; Hu, Fei; Peng, Yali

    2013-01-16

    Structure of dual modified starches, cross-linked esterified corn starch (CES) and esterified cross-linked corn starch (ECS), and product films (CEF and ECF) were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction and scanning electron microscopy (SEM). The peak 1730cm(-1) of IR spectra confirmed the formation of ester carbonyl groups in starch matrix. The sequence of modification procedure had an impact on the final modification degree, resulting in structural differences of modified starches and starch films. Compared to native starch film (NF), CEF and ECF showed improved transparence (77.59% and 74.39% respectively) with compact structure, lower crystallinity (6.5% and 7.4% respectively). Results of mechanical test indicated that structure of ECF was more flexible than CEF, whereas tensile strength was higher in CEF. Accordingly, complex modification could be an effective method to adequate properties of starch films for specific processing requirements. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Bioethanol production by inherent enzymes from rye and wheat with addition of organic farming cheese whey

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Christensen, Anne Deen; Thomsen, Mette Hedegaard

    2011-01-01

    . Throughout our studies, wheat and rye grain was used as raw material in bioethanol production with the purpose of producing in situ enzymes (during germination) for the hydrolysis of starch in the grains and compared with commercial amylase enzyme preparations. Whey permeate was incorporated into the grain...

  12. Biochemical and sensory evaluation of wheat bran supplemented sorghum kisra bread

    International Nuclear Information System (INIS)

    Mallasy, Limya Osman Husain

    1998-05-01

    Studies were carried out on the effects of addition of wheat bran to sorghum flour (Dabar cultivar) at two levels extraction rates (72% and 80%). Samples were fermented for 14hr and the PH, titrable acidity, crude fibre, protein, total solid, total soluble solids and reducing sugars of fermented batter were determined at 2 hrs intervals. Results indicated that addition of wheat bran either before or after fermentation increased the PH there was decrease in titrable acidity. Reducing sugar contents decrease as a result of addition of wheat bran. Addition of wheat bran result in increasing protein content (15.7%m 19.0% and 20.7% for control, 80%S/WB and 72% S/WB. respectively at the end of fermentation) and also increase of crude fibre content. Addition of wheat bran to sorghum batter either before or after fermentation was accompanied by increase in viscosity ( from 145.1 cp for control to 203.1 cp and 209.8 cp fpr 80%S/WB and 72%S/WB blends respectively). Starch content was determined using iodine spectrophotometry, the moisture content of kisra bread containing wheat bran was significant higher compared with control and lower in available calories. Kisra bread containing wheat bran was lower in reducing sugars 7.42% for control to 5.2% and 4.2% and 4.5% for kisra containing wheat bran, a higher reduction in total carbohydrate were observed in samples containing wheat bran added after fermentation.Kisra containing wheat bran before fermentation gave significantly lower in vitro protein digestabilities. Addition of wheat bran after fermentation resulted in still lower decrease in IVPD compared to addition before fermentation. Sensory evaluation of kisra containing wheat bran indicated significant preference for kisra containing wheat bran compared to the control kisra

  13. Biochemical and sensory evaluation of wheat bran supplemented sorghum kisra bread

    Energy Technology Data Exchange (ETDEWEB)

    Mallasy, Limya Osman Husain [Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum (Sudan)

    1998-05-01

    Studies were carried out on the effects of addition of wheat bran to sorghum flour (Dabar cultivar) at two levels extraction rates (72% and 80%). Samples were fermented for 14hr and the PH, titrable acidity, crude fibre, protein, total solid, total soluble solids and reducing sugars of fermented batter were determined at 2 hrs intervals. Results indicated that addition of wheat bran either before or after fermentation increased the PH there was decrease in titrable acidity. Reducing sugar contents decrease as a result of addition of wheat bran. Addition of wheat bran result in increasing protein content (15.7%m 19.0% and 20.7% for control, 80%S/WB and 72% S/WB. respectively at the end of fermentation) and also increase of crude fibre content. Addition of wheat bran to sorghum batter either before or after fermentation was accompanied by increase in viscosity ( from 145.1 cp for control to 203.1 cp and 209.8 cp fpr 80%S/WB and 72%S/WB blends respectively). Starch content was determined using iodine spectrophotometry, the moisture content of kisra bread containing wheat bran was significant higher compared with control and lower in available calories. Kisra bread containing wheat bran was lower in reducing sugars 7.42% for control to 5.2% and 4.2% and 4.5% for kisra containing wheat bran, a higher reduction in total carbohydrate were observed in samples containing wheat bran added after fermentation.Kisra containing wheat bran before fermentation gave significantly lower in vitro protein digestabilities. Addition of wheat bran after fermentation resulted in still lower decrease in IVPD compared to addition before fermentation. Sensory evaluation of kisra containing wheat bran indicated significant preference for kisra containing wheat bran compared to the control kisra. 132 refs., 14 tabs., 7 figs.

  14. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  15. LUBRICANT SENSITIVITY IN RELATION TO BULK-DENSITY FOR GRANULATIONS BASED ON STARCH OR CELLULOSE

    NARCIS (Netherlands)

    BOS, CE; VROMANS, H; LERK, CF

    1991-01-01

    The study described in this paper was concerned with the susceptibility to lubrication with magnesium stearate of tablets compressed from granulations based on native starches or on modified celluloses. Different properties of the granulations, like particle size, flowability and surface area, were

  16. THE EFFECT OF NON-STARCH POLYSACCHARIDES DERIVED FROM DIFFERENT GRAINS ON PERFORMANCE AND DIGESTIVE ACTIVITY IN LAYING HENS

    Directory of Open Access Journals (Sweden)

    S. Hartini

    2014-10-01

    Full Text Available An experiment was conducted to observe the effect of non-starch polysaccharides (NSP onperformance and digestive activity of laying hens. Thirty-two ISA Brown hens were individually cagedand offered four diets (wheat-based, millrun-based, barley-based, and barley-enzymes diets for 10weeks. The present experiment was assigned in a completely randomized design with 8 replicates perdietary treatment. Wheat- and barley diets caused significantly higher (P<0.05 viscosity than otherdiets. Increased viscosity caused lower digesta dry matter (DM (P<0.01 and higher excreta moisture(P<0.05. The wheat diet did not cause a negative effect on intestinal starch digestibility, feed intake, andbird performance (P>0.05. Birds fed the barley-based diet had lower weight gain (P<0.05 and highercaecal weight (P<0.05 than those given other diets. Enzyme supplementation on barley dietssignificantly (P<0.05 reduced jejunal digesta viscosity and caecal weight, increased weight gain(P<0.05 and ileal digesta DM (P<0.01, and numerically reduced excreta moisture. The current studydemonstrated that NSP have a profound effect on digesta viscosity, performance, and digestive organs ofbirds; however, the NSP action may be modified by an interaction with each other and with other cellwallcomponents of grains in the gut. Enzyme supplementation reduced the negative effect of digestaviscosity.

  17. Elucidation of substituted ester group position in octenylsuccinic anhydride modified sugary maize soluble starch.

    Science.gov (United States)

    Ye, Fan; Miao, Ming; Huang, Chao; Lu, Keyu; Jiang, Bo; Zhang, Tao

    2014-12-03

    The octenylsuccinic groups in esterification-modified sugary maize soluble starches with a low (0.0191) or high (0.0504) degree of substitution (DS) were investigated by amyloglucosidase hydrolysis followed by a combination of chemical and physical analysis. The results showed the zeta-potential remained at approximately the same value regardless of excessive hydrolysis. The weight-average molecular weight decreased rapidly and reached 1.22 × 10(7) and 1.60 × 10(7) g/mol after 120 min for low-DS and high-DS octenylsuccinic anhydride (OSA) modified starch, respectively. The pattern of z-average radius of gyration as well as particle size change was similar to that of Mw, and z-average radius of gyration decreased much more slowly, especially for high-DS OSA starch. Compared to native starch, two characteristic absorption peaks at 1726.76 and 1571.83 cm(-1) were observed in FT-IR spectra, and the intensity of absorption peaks increased with increasing DS. The NMR results showed that OSA starch had several additional peaks at 0.8-3.0 ppm and a shoulder at 5.56 ppm for OSA substituents, which were grafted at O-2 and O-3 positions in soluble starch. The even distribution of OSA groups in the center area of soluble starch particle has been directly shown under CLSM. Most substitutions were located near branching points of soluble starch particles for a low-DS modified starch, whereas the substituted ester groups were located near branching points as well as at the nonreducing ends in OSA starch with a high DS.

  18. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    . However, only retinyl palmitate formed a complex with amylopectin. In general, ascorbyl palmitate resulted in the highest complexation, followed by retinyl palmitate and phytosterol ester. The presence of native lipids in Hylon VII starch did not inhibit complex formation. On the contrary, native lipids appear to increase the complexation yield and thermal stability of the starch-fatty acid ester inclusion complexes, possibly due to the formation of ternary complexes. From the three fatty acid esters studied, only ascorbyl palmitate was entrapped in starch spherulites. Various structures including round spherulites, various sizes of torus-shape spherulites, non-spherulitic birefringent and non-birefringent particles, "balloon" morphologies, and gel-like material were formed depending on processing conditions. However, only the torus-shape spherulites, and some non-spherulitic birefringent and non-birefringent particles showed ascorbyl palmitate entrapment. The % yield of the precipitate increased with higher % of added Hylon VII, and decreased with higher heating temperature and faster cooling rates. The amount of entrapped ascorbyl palmitate in the starch precipitate seems to be governed by the amount of this compound added during processing. This study showed that starch can form inclusion complexes with fatty acid esters which may be used for the delivery of certain bioactive molecules. In addition, encapsulation of fatty acid esters in starch spherulites may be a good potential delivery system for water soluble bioactive molecules. However, further research is necessary to gain a better understanding of the type of molecules that can be entrapped in starch spherulites, and the factors affecting spherulitic crystallization and bioactive compound entrapment.

  19. Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites

    International Nuclear Information System (INIS)

    Fama, Lucia; Bittante, Ana Monica B.Q.; Sobral, Paulo J.A.; Goyanes, Silvia; Gerschenson, Lia N.

    2010-01-01

    Biocomposites with two different fillers, garlic and wheat bran, were studied. They were based on cassava starch and contained glycerol as a plasticizer and potassium sorbate as an antimicrobial agent and were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and infrared spectroscopy (IR). The mechanical performance at room and lower temperatures was also studied. SEM micrographies of fractured surfaces of the wheat bran composite films showed some ruptured particles of fiber while fibrils of garlic on the order of nanometers were observed when garlic composite films were studied. Mechanical tests, at room temperature, showed that the addition of wheat bran led to an increment in the storage modulus (E') and hardening and a decrease in Tan δ, while the garlic composite showed a diminishing in the E' and hardening and did not produce significant changes in Tan δ values when compared with systems without fillers (matrix). In the range between -90 deg. C and 20 deg. C, all the materials studied presented two peaks in the Tan δ curve. In the case of the wheat bran composite, both relaxation peaks shifted slightly to higher temperatures, broadened and diminished their intensity when compared with those of the matrix; however garlic composite showed a similar behavior to the matrix. DSC thermograms of aqueous systems showed a slight shift of gelatinization temperature (T gelatinization ) to higher values when the fillers were present. Thermograms of films showed that both, garlic and wheat bran composites, had a lower melting point than the matrix. IR data indicated that interaction between starch and fillers determined an increase in the availability of hydroxyl groups to be involved in a dynamic exchange with water.

  20. Rain-induced spring wheat harvest losses

    Science.gov (United States)

    Bauer, A.; Black, A. L. (Principal Investigator)

    1983-01-01

    When rain or a combination of rain and high humidity delay wheat harvest, losses can occur in grain yield and/or grain quality. Yield losses can result from shattering, from reduction in test weight, and in the case of windrowed grain, from rooting of sprouting grain at the soil: windrow contact. Losses in grain quality can result from reduction in test weight and from sprouting. Sprouting causes a degradation of grain proteins and starches, hence flour quality is reduced, and the grain price deteriorates to the value of feed grain. Although losses in grain yield and quality are rain-induced, these losses do not necessarily occur because a standing or windrowed crop is wetted by rain. Spike water concentration in hard red spring wheat must be increased to about 45-49% before sprouting is initiated in grain that has overcome dormancy. The time required to overcome this dormancy after the cultivar has dried to 12 to 14% water concentration differs with hard red spring cultivars. The effect of rain on threshing-ready standing and windrowed hard red spring wheat grain yeild and quality was evaluated. A goal was to develop the capability to forecast the extent of expected loss of grain yield and quality from specific climatic events that delay threshing.

  1. Effect of starch isolation method on properties of sweet potato starch

    Directory of Open Access Journals (Sweden)

    A. SURENDRA BABU

    2014-08-01

    Full Text Available Isolation method of starch with different agents influences starch properties, which provide attention for studying the most appropriate method for isolation of starch. In the present study sweet potato starch was isolated by Sodium metabisulphate (M1, Sodium chloride (M2, and Distilled water (M3 methods and these were assessed for functional, chemical, pasting and structural properties. M3 yielded the greatest recovery of starch (10.20%. Isolation methods significantly changed swelling power and pasting properties but starches exhibited similar chemical properties. Sweet potato starches possessed C-type diffraction pattern. Small size granules of 2.90 μm were noticed in SEM of M3 starch. A high degree positive correlation was found between ash, amylose, and total starch content. The study concluded that isolation methods brought changes in yield, pasting and structural properties of sweet potato starch.

  2. Influence of waxy rice flour substitution for wheat flour on characteristics of batter and freeze-thawed cake.

    Science.gov (United States)

    Jongsutjarittam, Nisachon; Charoenrein, Sanguansri

    2013-09-12

    This study aimed to improve the freeze-thawed cake properties by10-20% waxy rice flour (WRF) substitution for wheat flour (WF). Viscosity of WRF-substituted batters was lower; consequently, trapped air was less uniformly distributed than WF batter. After five freeze-thaw cycles, firmness and enthalpy of melting retrograded amylopectin of WF- and WRF-substituted cakes increased and the matrix surrounding the air pores from SEM images was denser than in fresh-baked cakes. Sensory evaluation showed an increase in firmness and a decrease in firmness acceptability of freeze-thawed cakes. However, freeze-thawed cake with WRF substitution had significantly less firmness, less dense matrix and more acceptability than WF cake. This could have been due to a low amylose content of WRF and the spread of ruptured waxy rice starch granules around swollen wheat starch granules as observed by CLSM. Thus, WRF could be used for WF substitution to improve the firmness in freeze-thawed cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Site and extent of starch degradation in the dairy cow - a comparison between in vivo, in situ and in vitro measurements.

    NARCIS (Netherlands)

    Hindle, V.A.; Vuuren, van A.M.; Klop, A.; Mathijssen-Kamman, A.A.; Gelder, van A.H.; Cone, J.W.

    2005-01-01

    Prediction of the supply of glycogenic precursors to dairy cows and the site of degradation of wheat, maize and potato starch (PS) were determined in an in vivo experiment and the results were compared with data obtained from experiments involving in situ nylon bag and in vitro gas production

  4. Microstructural characteristics and gastro-small intestinal digestion in vitro of potato starch: Effects of refrigerated storage and reheating in microwave.

    Science.gov (United States)

    Colussi, Rosana; Singh, Jaspreet; Kaur, Lovedeep; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra; Stewart, Robert B; Singh, Harjinder

    2017-07-01

    The objective of our study was to evaluate paste clarity, retrogradation (syneresis %), thermal characteristics and kinetics of glucose release during in vitro gastro-small intestinal digestion of freshly cooked and refrigerated potato starch. Freshly cooked starch pastes had a paste clarity of 71%, which decreased to 35.4% whereas syneresis (%) increased after 7days of refrigerated storage. The X-ray and thermal characteristics of native, retrograded and microwave reheated starch samples differed significantly from each other. For the freshly cooked starch pastes, ∼88% starch hydrolysis was observed at the end (150min) of digestion under simulated gastro-small intestinal conditions that decreased to ∼70% for the 7day stored pastes. The hydrolysis (%) of refrigerated pastes increased to 86% and 92% after one and two cycles of microwave reheating, respectively. These results contribute to the understanding of starch retrogradation in relation to starch digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enzymatic conversion of starch in twin-screw HTST-extruder

    Energy Technology Data Exchange (ETDEWEB)

    Hakulin, S; Linko, Y Y; Linko, P; Seiler, K; Seibel, W

    1983-12-01

    Wheat starch was liquefied to DE 25-30 employing heat stable ..cap alpha..-amylase and twin-screw Werner and Pfleiderer Continua 58 HTST-extruder. Most significant reduction in batch saccharification time was obtained when starch was liquefied as a slurry containing 60% water at 120/sup 0/C mass temperature, feed rate 1 500 g min/sup -1/, screw rotation rate 250 min/sup -1/, and 0.9% (w/w, d.s.) Novo Termamyl 120 L ..cap alpha..-amylase was added immediately after initiation of gelatinization in the extruder. Saccharification was carried out at 60/sup 0/C employing 0.36 (w/w, d.s.) Novo glucoamylase 150 L to reach a DE 96 in 22 h. Best total conversion was, however, obtained when also saccharification was initiated in the extruder by adding glucoamylase just before the die element, after lowering mass temperature to 60/sup 0/C, and by allowing the saccharification to continue at 60/sup 0/C after extrusion processing to reach a DE 94 in 5 h and DE 97 in 21 h.

  6. Effect of potato (Solanum tuberosum addition on dough properties, sensory qualities and resistant starch content of bread

    Directory of Open Access Journals (Sweden)

    Maria Lidia IANCU

    2015-08-01

    Full Text Available The aim of this study is to assess the effects of adding different varieties of boiled potatoes-pasta (PP, Impala (I and Orchestra (O, to wheat flour in bread making. These potato varieties were used to replace wholemeal 1250 type flour (F1 and hard wheat semolina flour (F2 in different concentrations: 5%, 10%, 20%, 30%. The rheological properties of dough with added potato were assessed by means of the flour-graphic technique. The study also determined the amount of resistant starch (RS, non-resistant starch (n-RS, total starch (TS and moisture content of the potato bread. The results showed that the water absorption (WA in the potato dough containing salt and yeast decreased by 28.8% (F2-I-PP, and by 41.2% (F1-I-PP respectively. The same happened with the dough development time, dough stability and quality number. We found out that the degree of dough softening was increased, as was the moisture content of the bread, which went from 47.7% (O-PP-F2 to 50.3% (I-PP-F1. The level of the ten analyzed sensory properties led to the conclusion that, by adding up to 20% PP, we enhance the bread quality. The RS content increased by 5.1 g/100 g d.m. for F1 bread for the 30% (O-PP-F2 potato content batch. In F2 bread, the RS content increased by up to 5.11g/100 g d.m. for the 30% (O-PP-F2 potato content batch. Given the method of analysis, RS may be a mixture of RS2 (natural granule starch and RS3 (retrograde or non crystalline retrograde. Therefore, potato bread is very healthy and recommended for its nutritional benefits.

  7. Preparation and characterization of jackfruit seed starch/poly (vinyl alcohol) (PVA) blend film

    Science.gov (United States)

    Sarifuddin, N.; Shahrim, N. A.; Rani, N. N. S. A.; Zaki, H. H. M.; Azhar, A. Z. A.

    2018-01-01

    From the environmental point of view, biodegradable materials have been rapidly developed in the past years. PVA is one of the biodegradable synthetic polymers commonly used, but its degradation rate is slow. As an alternative to reduce plastic waste and accelerate the degradation process, PVA frequently blended with other natural polymers to improve its biodegradability. The natural polymer such as starch has high potential in enhancing PVA biodegradability by blending both components. The usage of starch extracted from agriculture wastes such as jackfruit seed is quite promising. In this study, jackfruit seed starch (JFSS)/poly (vinyl alcohol) (PVA) blend films were prepared using the solution casting method. The effect of starch content on the mechanical (tensile strength and elongation to break %) and physical properties of the tested films were investigated. The optimum tensile strength was obtained at 10.45 MPa when 4 wt. % of starch added to the blend. But, decreasing trend of tensile strength was found upon increasing the amount of starch beyond 4 wt. % in starch/PVA blend films. Nevertheless, elongation at break decreases with the increase in starch content. The mechanical properties of the blend films are supported by the Field Emission Scanning Electron Microscopy (FESEM), in which the native JFSS granules are wetted by PVA continuous phase with good dispersion and less agglomeration. The incorporation of JFSS in PVA has also resulted in the appearance of hydrogen bond peak, which evidenced by Fourier Transform Infrared (FTIR). Additionally, the biodegradation rate of JFSS/PVA was evaluated through soil burial test.

  8. Effect of Maltodextrins on the Rheological Properties of Potato Starch Pastes and Gels

    Directory of Open Access Journals (Sweden)

    Lesław Juszczak

    2013-01-01

    Full Text Available The study examines the effects of maltodextrins saccharified to various degrees on some rheological properties of potato starch dispersions. Pasting characteristics, flow curves, and mechanical spectra were determined for native potato starch and for its blends with potato maltodextrins having dextrose equivalents (DE of 10.5, 18.4, and 26.5. The results showed that medium-saccharified maltodextrin (DE = 18.4 gave the strongest effect, manifesting itself as a considerable reduction in the viscosity at pasting, a decrease in apparent viscosity during flow, and a decrease in the storage and loss moduli. Addition of high-(DE = 26.5 or low-(DE = 10.5 saccharified maltodextrins had a markedly smaller effect on the rheological properties of starch. The differences in the effects produced by the maltodextrins are closely connected to the degree of polymerisation of the maltooligosaccharides in the systems.

  9. Effect of gamma-irradiation of wheat on voltile flavor components of bread

    International Nuclear Information System (INIS)

    Rao, V.S.; Vakil, U.K.; Bandyopadhyay, C.; Sreenivasan, A.

    1978-01-01

    Comparative sensory and objective evaluations of bread prepared from wheat flour, irradiated at different doses, have been carried out. The preference of bread decreases with higher radiation dose (1 Mrad) due to increase in off-flavor intensity. Total carbonyl contents are increased in irradiated products. A significant inverse correlation between consumer preference and total carbonyls as well as GLC headspace vapor analysis, is established. An attempt has been made to postulate a mechanism for the excessive formation of volatiles, imparting off-flavor in bread from irradiated wheat. It is suggested that they may arise from the volatile degradation products of amino acids and proteins or by their interaction with reducing sugars, the ultimate radiation-induced breakdown product of starch

  10. Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents.

    Science.gov (United States)

    Zdanowicz, Magdalena; Johansson, Caisa

    2016-10-20

    The aim of this work was to prepare two- and three-components deep eutectic solvents (DES) and investigate their potential as starch plasticizers. Starch/DES films were prepared via casting method. Mechanical properties, water vapor- and oxygen transmission rates were measured; additionally contact angle and moisture sorption were determined and FTIR analysis was applied on the films. Native potato starch and hydroxypropylated and oxidized starch (HOPS) with common plasticizers (e.g. polyols, urea) and DES were studied. Moreover, influence of three methods of DES introduction and concentration of plasticizer on the films properties were compared. HOPS films were prepared by two methods: as non-cured and cured samples. Some of DESs containing citrate anion exhibited crosslinking ability of polysaccharide matrix. Non-cured HOPS/DES films exhibited more favourable mechanical and barrier properties than cured analogue films. Samples prepared with unmodified potato starch had higher mechanical and barrier properties than films made with HOPS. Starch-based films plasticized with novel DESs with parallel crosslinking activity exhibited satisfactory mechanical and barrier properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Properties of lotus seed starch-glycerin monostearin complexes formed by high pressure homogenization.

    Science.gov (United States)

    Chen, Bingyan; Zeng, Shaoxiao; Zeng, Hongliang; Guo, Zebin; Zhang, Yi; Zheng, Baodong

    2017-07-01

    Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high pressure homogenization (HPH) process, and the effect of HPH on the physicochemical properties of LS-GMS complexes was investigated. The results of Fourier transform infrared spectroscopy and complex index analysis showed that LS-GMS complexes were formed at 40MPa by HPH and the complex index increased with the increase of homogenization pressure. Scanning electron microscopy displayed LS-GMS complexes present more nest-shape structure with increasing homogenization pressure. X-ray diffraction and differential scanning calorimetry results revealed that V-type crystalline polymorph was formed between LS and GMS, with higher homogenization pressure producing an increasingly stable complex. LS-GMS complex inhibited starch granules swelling, solubility and pasting development, which further reduced peak and breakdown viscosity. During storage, LS-GMS complexes prepared by 70-100MPa had higher Avrami exponent values and lower recrystallization rates compared with native starch, which suggested a lower retrogradation trendency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours.

    Science.gov (United States)

    Abebe, Workineh; Collar, Concha; Ronda, Felicidad

    2015-01-22

    Tef grain is becoming very attractive in the Western countries since it is a gluten-free grain with appreciated nutritional advantages. However there is little information of its functional properties and starch digestibility and how they are affected by variety type and particle size distribution. This work evaluates the effect of the grain variety and the mill used on tef flour physico-chemical and functional properties, mainly derived from starch behavior. In vitro starch digestibility of the flours by Englyst method was assessed. Two types of mills were used to obtain whole flours of different granulation. Rice and wheat flours were analyzed as references. Protein molecular weight distribution and flour structure by SEM were also analyzed to justify some of the differences found among the cereals studied. Tef cultivar and mill type exhibited important effect on granulation, bulking density and starch damage, affecting the processing performance of the flours and determining the hydration and pasting properties. The color was darker although one of the white varieties had a lightness near the reference flours. Different granulation of tef flour induced different in vitro starch digestibility. The disc attrition mill led to higher starch digestibility rate index and rapidly available glucose, probably as consequence of a higher damaged starch content. The results confirm the adequacy of tef flour as ingredient in the formulation of new cereal based foods and the importance of the variety and the mill on its functional properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound...... phosphate compared with potato tuber starch and in order to investigate the effect of increased endosperm starch phosphate, the potato starch phosphorylating enzyme glucan water dikinase (StGWD) was overexpressed specifically in the developing barley endosperm. StGWD overexpressors showed wild......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...

  14. Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols

    DEFF Research Database (Denmark)

    Cervera, Mirna Fernández; Karjalainen, Milja; Airaksinen, Sari

    2004-01-01

    The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer...... in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly...

  15. Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fama, Lucia [Physics Department, School of Exact and Natural Sciences, University of Buenos Aires (UBA) and CONICET, Ciudad Universitaria, (1428) Buenos Aires (Argentina); Bittante, Ana Monica B.Q.; Sobral, Paulo J.A. [Food Engineering Department, FZEA, University of Sao Paulo, PO Box 23, 13635-900 Pirassununga (SP) (Brazil); Goyanes, Silvia [Physics Department, School of Exact and Natural Sciences, University of Buenos Aires (UBA) and CONICET, Ciudad Universitaria, (1428) Buenos Aires (Argentina); Gerschenson, Lia N., E-mail: lia@di.fcen.uba.ar [Industry Department, School of Exact and Natural Sciences, University of Buenos Aires (UBA) and CONICET, Ciudad Universitaria, (1428) Buenos Aires (Argentina)

    2010-07-20

    Biocomposites with two different fillers, garlic and wheat bran, were studied. They were based on cassava starch and contained glycerol as a plasticizer and potassium sorbate as an antimicrobial agent and were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and infrared spectroscopy (IR). The mechanical performance at room and lower temperatures was also studied. SEM micrographies of fractured surfaces of the wheat bran composite films showed some ruptured particles of fiber while fibrils of garlic on the order of nanometers were observed when garlic composite films were studied. Mechanical tests, at room temperature, showed that the addition of wheat bran led to an increment in the storage modulus (E') and hardening and a decrease in Tan {delta}, while the garlic composite showed a diminishing in the E' and hardening and did not produce significant changes in Tan {delta} values when compared with systems without fillers (matrix). In the range between -90 deg. C and 20 deg. C, all the materials studied presented two peaks in the Tan {delta} curve. In the case of the wheat bran composite, both relaxation peaks shifted slightly to higher temperatures, broadened and diminished their intensity when compared with those of the matrix; however garlic composite showed a similar behavior to the matrix. DSC thermograms of aqueous systems showed a slight shift of gelatinization temperature (T{sub gelatinization}) to higher values when the fillers were present. Thermograms of films showed that both, garlic and wheat bran composites, had a lower melting point than the matrix. IR data indicated that interaction between starch and fillers determined an increase in the availability of hydroxyl groups to be involved in a dynamic exchange with water.

  16. Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches.

    Science.gov (United States)

    Przetaczek-Rożnowska, Izabela

    2017-08-01

    The aim of the study was to characterize the selected physicochemical, thermal and rheological properties of pumpkin starches and compared with the properties of potato and corn starches used as control samples. Pumpkin starches could be used in the food industry as a free gluten starch. Better thermal and rheological properties could contribute to reduce the costs of food production. The syneresis of pumpkin starches was similar to that of potato starch but much lower than that for corn starch. Pasting temperatures of pumpkin starches were lower by 17-21.7°C and their final viscosities were over 1000cP higher than corn paste, but were close to the values obtained for potato starch. The thermodynamic characteristic showed that the transformation temperatures of pumpkin starches were lower than those measured for control starches. A level of retrogradation was much lower in pumpkin starch pastes (32-48%) than was in the case of corn (59%) or potato (77%) starches. The pumpkin starches gels were characterized by a much greater hardness, cohesiveness and chewiness, than potato or corn starches gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The effect of baking and enzymatic treatment on the structural properties of wheat starch.

    Science.gov (United States)

    Fuentes, Catalina; Zielke, Claudia; Prakash, Manish; Kumar, Puneeth; Peñarrieta, J Mauricio; Eliasson, Ann-Charlotte; Nilsson, Lars

    2016-12-15

    In this study, bread was baked with and without the addition of α-amylase. Starch was extracted from the baked bread and its molecular properties were characterized using (1)H NMR and asymmetric flow field-flow fractionation (AF4) connected to multi-angle light scattering (MALS) and other detectors. The approach allows determination of molar mass, root- mean-square radius and apparent density as well as the average degree of branching of amylopectin. The results show that starch size and structure is affected as a result of the baking process. The effect is larger when α-amylase is added. The changes include both a decrease molar mass and size as well as an increase in apparent density. Moreover, an increase in average degree of branching and the number of reducing ends H-1(β-r) and H-1(α-r) can be observed. Copyright © 2016. Published by Elsevier Ltd.

  18. Starch grains reveal early root crop horticulture in the Panamanian tropical forest.

    Science.gov (United States)

    Piperno, D R; Ranere, A J; Holst, I; Hansell, P

    2000-10-19

    Native American populations are known to have cultivated a large number of plants and domesticated them for their starch-rich underground organs. Suggestions that the likely source of many of these crops, the tropical forest, was an early and influential centre of plant husbandry have long been controversial because the organic remains of roots and tubers are poorly preserved in archaeological sediments from the humid tropics. Here we report the occurrence of starch grains identifiable as manioc (Manihot esculenta Crantz), yams (Dioscorea sp.) and arrowroot (Maranta arundinacea L.) on assemblages of plant milling stones from preceramic horizons at the Aguadulce Shelter, Panama, dated between 7,000 and 5,000 years before present (BP). The artefacts also contain maize starch (Zea mays L.), indicating that early horticultural systems in this region were mixtures of root and seed crops. The data provide the earliest direct evidence for root crop cultivation in the Americas, and support an ancient and independent emergence of plant domestication in the lowland Neotropical forest.

  19. Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile under microwave irradiation

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Potato starch-graft-poly(acrylonitrile could be efficiently synthesized using small concentration of ammonium peroxydisulfate (0.0014M in aqueous medium under microwave irradiation. A representative microwave synthesized graft copolymer was characterized using Fourier Transform Infrared Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy and Thermogravimetric Analysis. Under microwave conditions oxygen removal from the reaction vessel was not required and the graft copolymer was obtained in high yield using very small amount of ammonium peroxydisulfate, however using the same amount of ammonium peroxydisulfate (0.0014M on thermostatic water bath no grafting was observed up to 98°C (even in inert atmosphere. Raising the concentration of the initiator to 0.24 M resulted into 10% grafting at 50 °C but in inert atmosphere.The viscosity/shear stability of the grafted starch (aqueous solution and water/saline retention ability of the microwave synthesized graft copolymer were also studied and compared with that of the native potato starch.

  20. Production of raw cassava starch-degrading enzyme by Penicillium and its use in conversion of raw cassava flour to ethanol.

    Science.gov (United States)

    Lin, Hai-Juan; Xian, Liang; Zhang, Qiu-Jiang; Luo, Xue-Mei; Xu, Qiang-Sheng; Yang, Qi; Duan, Cheng-Jie; Liu, Jun-Liang; Tang, Ji-Liang; Feng, Jia-Xun

    2011-06-01

    A newly isolated strain Penicillium sp. GXU20 produced a raw starch-degrading enzyme which showed optimum activity towards raw cassava starch at pH 4.5 and 50 °C. Maximum raw cassava starch-degrading enzyme (RCSDE) activity of 20 U/ml was achieved when GXU20 was cultivated under optimized conditions using wheat bran (3.0% w/v) and soybean meal (2.5% w/v) as carbon and nitrogen sources at pH 5.0 and 28 °C. This represented about a sixfold increment as compared with the activity obtained under basal conditions. Starch hydrolysis degree of 95% of raw cassava flour (150 g/l) was achieved after 72 h of digestion by crude RCSDE (30 U/g flour). Ethanol yield reached 53.3 g/l with fermentation efficiency of 92% after 48 h of simultaneous saccharification and fermentation of raw cassava flour at 150 g/l using the RCSDE (30 U/g flour), carried out at pH 4.0 and 40 °C. This strain and its RCSDE have potential applications in processing of raw cassava starch to ethanol.

  1. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Bonwell, E.; Fisher, T.; Fritz, A.; Wetzel, D.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including β-sheet. Modeling of a-helix and β-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 μm thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 μm diameter or confocal 5 μm x 5 μm spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current breeding lines show a

  2. Starch phosphorylation plays an important role in starch biosynthesis

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Dechesne, Annemarie; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Starch phosphate esters are crucial in starch metabolism and render valuable functionality to starches for various industrial applications. A potato glucan, water dikinase (GWD1) was introduced in tubers of two different potato genetic backgrounds: an amylose-containing line Kardal and the

  3. Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation

    OpenAIRE

    Osorio, Marlon A.; Restrepo, David; Velásquez-Cock, Jorge A.; Zuluaga, Robin O.; Montoya, Ursula; Rojas, Orlando; Gañán, Piedad F.; Marin, Diana; Castro, Cristina I.

    2014-01-01

    In this paper, a nanocomposite based on thermoplastic starch (TPS) reinforced with bacterial cellulose (BC) nanoribbons was synthesized by in situ fermentation and chemical crosslinking. BC nanoribbons were produced by a Colombian native strain of Gluconacetobacter medellinensis; the nanocomposite was plasticized with glycerol and crosslinked with citric acid. The reinforcement percentage in the nanocomposites remained constant throughout the fermentation time because of the TPS absorption ca...

  4. Correction of wheat meal falling number to a common barometric pressure at simulated laboratory elevations of 0 to 1500 meters

    Science.gov (United States)

    Falling number, a procedure that indirectly gauges germination enzyme activity in wheat by its measurement of the viscous behavior of a heated starch-water mixture, is affected by the immersion water bath temperature. Maintained at boiling point, the water bath temperature is determined by barometr...

  5. Effect of dispersion parameters on the consolidation of starch-loaded hydroxyapatite slurry

    Directory of Open Access Journals (Sweden)

    Yasser M.Z. Ahmed

    2014-09-01

    Full Text Available The influence of some parameters controlling the hydroxyapatite (HA suspension rheology in terms of heat treatment of the HA powder prior to suspension preparation, suspension solid loading and the amount of corn starch addition was thoroughly investigated. The heat treatment of powder at 1100 °C prior to suspension preparation was found to be extremely efficient in preparing suspensions with high solid loading of 59 vol.%. In contrast, the highest solid loading that could be developed from the non-heat treated powder was 14 vol.%. This phenomenon is consequence of the changes in the physical and chemical properties of the powder after the heat treatment step. The amount of native corn starch addition has ranged from 10 to 40 vol.%. The addition of corn starch leads to the high retardation in the suspension viscosity, particularly at low shear rate. On the contrary, at higher shear rate the situation is completely different. The properties of the consolidated green sample (produced from suspensions containing various corn starch amounts in terms of relative density and compressive strength were studied. The results indicated that even though there were no considerable changes in the relative density, the compressive strength was sharply increased with increasing starch amount content until it reached a maximum at 30 vol.% and then decreased thereafter.

  6. Qualidade física e sensorial de biscoitos doces com fécula de mandioca Physical and sensorial quality of sweet cookies with cassava starch

    Directory of Open Access Journals (Sweden)

    Jucyanne Carvalho Vieira

    2010-12-01

    Full Text Available Neste trabalho, foi avaliada a substituição de 5, 10 e 15% de farinha de trigo por fécula de mandioca na elaboração de biscoito doce. Ambas, farinha e fécula, foram submetidas à caracterização físico-química, reológica e análise térmica diferencial (DTA. Os biscoitos produzidos foram comparados por meio de análises sensoriais e microbiológicas. O resultado da análise térmica diferencial não mostrou qualquer alteração no comportamento de gelatinização do amido. O teste de aceitação sensorial mostrou que a crocância foi o único atributo que apresentou diferença significativa, indicando a viabilidade técnica de substituição da farinha de trigo por 15% de fécula de mandioca.This research evaluated the substitution of 5, 10 and 15% of wheat flour for cassava starch in sweet cookies production. Both, flour and starch were submitted to the physicochemical, rheological and differential thermal analysis (DTA. The produced cookies were compared through sensory and microbiological analyses. The DTA result didn´t show any alteration in the starch gelatinization behavior. The result of the sensory acceptance analysis showed that crispness is the unique attribute that presented significant difference, indicating the technical viability of wheat flour substitution for 15% of cassava starch.

  7. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  9. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Estimation of the in situ degradation of the washout fraction of starch by using a modified in situ protocol and in vitro measurements

    NARCIS (Netherlands)

    Jonge, de L.H.; Laar, van H.; Dijkstra, J.

    2015-01-01

    The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder

  11. Efeito do tamanho dos grânulos nas características estruturais e físico-químicas do amido de trigo Effect of granule size on the structural and physicochemical characteristics of wheat starch

    Directory of Open Access Journals (Sweden)

    Patrícia Guedes Yonemoto

    2007-12-01

    Full Text Available A distribuição de tamanho dos grânulos influencia diretamente a composição química do amido, afetando sua funcionalidade, características de gelatinização, susceptibilidade enzimática, e cristalinidade. Os grânulos de amido de trigo possuem distribuição bimodal de tamanho e são divididos em grânulos tipo A (10-40 µm e B (15 µm e pequenos (Granule size distribution directly influences the chemical composition of starch, affecting its functionality, characteristics of gelatinization, enzymatic susceptibility and crystallinity. Wheat starch granules exhibit a bimodal size distribution and are divided into type A (10-40 µm and type B (15 µm and small granules (<10 µm. Starches of different sizes were analyzed to determine their lysophospholipid and amylose content, X-ray patterns, enzymatic susceptibility, swelling power, and thermal and pasting properties. They were also examined under a scanning electron microscope. Independent of the cultivar studied, large granules showed an average diameter of 22 µm and were lentil-shaped, while small granules showed an average diameter of 6 µm and were spherical. The large granules exhibited lower lysophospholipids content, higher amylose content and a lower index of crystallinity (IC than the small granules. Despite their higher crystallinity, small granules were more susceptible to hydrolysis than large ones, suggesting that the enzymatic susceptibility of small granules is related to its larger surface area.

  12. The "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology.

    Science.gov (United States)

    Slade, Louise; Levine, Harry

    2018-04-13

    This article reviews the application of the "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. The areas of patents and patented technologies reviewed here include: (a) soft-from-the-freezer ice creams and freezer-storage-stable frozen bread dough products, based on "cryostabilization technology" of frozen foods, utilizing commercial starch hydrolysis products (SHPs); (b) glassy-matrix encapsulation technology for flavors and other volatiles, based on structure-function relationships for commercial SHPs; (c) production of stabilized whole-grain wheat flours for biscuit products, based on the application of "solvent retention capacity" technology to develop flours with reduced damaged starch; (d) production of improved-quality, low-moisture cookies and crackers, based on pentosanase enzyme technology; (e) production of "baked-not-fried," chip-like, starch-based snack products, based on the use of commercial modified-starch ingredients with selected functionality; (f) accelerated staling of a starch-based food product from baked bread crumb, based on the kinetics of starch retrogradation, treated as a crystallization process for a partially crystalline glassy polymer system; and (g) a process for producing an enzyme-resistant starch, for use as a reduced-calorie flour replacer in a wide range of grain-based food products, including cookies, extruded expanded snacks, and breakfast cereals.

  13. Effects of cyclodextrin glycosiltransferase modified starch and cyclodextrins on plasma glucose and lipids metabolism in mice

    Science.gov (United States)

    The potential functional and nutritional benefits of granular starch treated with cyclodextrin glycosyltransferase (CGTase) and the released cyclodextrins (CDs) were explored in in vivo studies. The metabolic effects of diets in the C57BL/6J mouse containing native and enzymatically modified corn st...

  14. Dielectric properties of wheat flour mixed with oat meal

    Science.gov (United States)

    Łuczycka, D.; Czubaszek, A.; Fujarczuk, M.; Pruski, K.

    2013-03-01

    Possibilities of using electric methods for determining admixtures of oat meal to wheat flour, type 650 are presented. In wheat flour, oat meal and mixtures containing 10, 20 and 30% of the oat meal, moisture, protein, starch and ash content, sedimentation value, yield and softening of wet gluten were determined. In samples containing 0, 5, 10, 15, 20, 25, 30 and 100% of oat meal, the dielectric loss factor and conductivity were determined using an impedance analyzer for electromagnetic field frequency ranging from 0.1-20 kHz. It was found that the dielectric loss factor varied for tested material. The best distinguishing between tested mixtures was obtained at the measuring electromagnetic field frequency of 20 kHz. The loss factor was significantly correlated with the yield of wet gluten and the sedimentation value, parameters indicating the amount and quality of gluten proteins in flour.

  15. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  16. Effects of Post-harvest Storage Duration and Variety on Nutrient Digestibility and Energy Content Wheat in Finishing Pigs

    Directory of Open Access Journals (Sweden)

    P. P. Guo

    2015-10-01

    Full Text Available This study was conducted to investigate the effects of post-harvest storage duration and wheat variety on the digestibility and energy content of new season wheat fed to finishing pigs. Two wheat varieties (Shi and Zhong were harvested in 2013 and stored in the warehouse of the Fengning Pig Experimental Base at China Agricultural University for 3, 6, 9, or 12 mo. For each storage period, 12 barrows were placed in metabolism crates and allotted to diets containing 1 of the 2 wheat varieties in a randomized complete block design. The experimental diets contained 97.34% wheat and 2.66% of a vitamin and trace mineral premix. With an extension of storage duration from 3 mo to 12 mo, the gross energy (GE and crude protein (CP of the wheat decreased by 2.0% and 12.01%, respectively, while the concentration of neutral detergent fiber (NDF, acid detergent fiber (ADF and starch content increased by 30.26%, 19.08%, and 2.46%, respectively. Total non-starch polysaccharide, total arabinose, total xylose and total mannose contents decreased by 46.27%, 45.80%, 41.71%, and 75.66%, respectively. However, there were no significant differences in the chemical composition between the two wheat varieties with the exception of ADF which was approximately 13.37% lower in Shi. With an extension of storage duration from 3 mo to 12 mo, the digestible energy (DE, metabolizable energy (ME content and the apparent total tract digestibility of GE, CP, dry matter, organic matter, ether extract, ADF and metabolizability of energy in wheat decreased linearly (p<0.01 by 5.74%, 7.60%, 3.75%, 3.88%, 3.50%, 2.47%, 26.22%, 27.62%, and 3.94%, respectively. But the digestibility of NDF changed quadratically (p<0.01. There was an interaction between wheat variety and storage time for CP digestibility (p<0.05, such that the CP digestibility of variety Zhong was stable during 9 mo of storage, while the CP digestibility of variety Shi decreased (p<0.05. In conclusion, the GE, DE, and ME

  17. EVALUACIÓN DE LAS PROPIEDADES QUÍMICAS Y FUNCIONALES DEL ALMIDÓN NATIVO DE ÑAME CONGO ( Dioscorea bulbifera L. PARA PREDECIR SUS POSIBLES USOS TECNOLÓGICOS I EVALUATION OF CHEMICAL AND FUNCTIONAL PROPERTIES OF NATIVE STARCH OF CONGO YAM ( Dioscorea bulbifera L. TO PREDICT ITS POSSIBLE TECHNOLOGICAL USES

    Directory of Open Access Journals (Sweden)

    Ninoska Meaño Correa

    2018-04-01

    Full Text Available In Venezuela, the starches are mostly obtained from corn, potato, yuca and rice. Nonetheless, there are other sources for starch production and local consumption whose potential could be exploited, seeking alternatives to increase the added value to local agricultural products. Question arose about to evaluate chemical and functional properties of native starch from congo yam in order to predict its possible uses. With this purpose, bulbs of congo yam were collected in the town of Santa Ana of Anzoategui state, Venezuela, and starch was extracted from them for evaluating the yield, purity, chemical composition, amylose content, gel clarity, swelling power and solubility. The starch yield was 7.44%, and its purity was 99.29%. The chemical composition (on dry basis was of 11.29% moisture, 0.29% protein, 0.21% fat, 0.21% ash and 0.0047% phosphorus. The average content of amylose and amylopectin was 30.63 and 69.37%, respectively. As to the functional properties of starchits swelling power had a maximum of 49.05 g gel/g of starch at 95°C, clear gel formation with a transmittance rate of 91 % and a solubility that increases as the temperature rises. These results indicate that the yam congo is a source of starch with advantageous properties, a high amylose content, a clear gel with high swelling power

  18. Study on the synthesis and physicochemical properties of starch acetate with low substitution under microwave assistance.

    Science.gov (United States)

    Lin, Derong; Zhou, Wei; Zhao, Jingjing; Lan, Weijie; Chen, Rongming; Li, Yutong; Xing, Baoshan; Li, Zhuohao; Xiao, Mengshi; Wu, Zhijun; Li, Xindan; Chen, Rongna; Zhang, Xingwen; Chen, Hong; Zhang, Qing; Qin, Wen; Li, Suqing

    2017-10-01

    In this study, synthesis and physicochemical properties of starch acetate with low substitution under microwave were studied. A three-level-three-factorial Central Composite Design using Response Surface Methodology (RSM) was employed to optimize the reaction conditions. The optimal parameters are as follows: amount of acetic anhydride of 12%, radiation time of 11min, and microwave power of 100W. These optimal conditions predicted by RSM were confirmed that the degree of substitution (DS) of acetate starch is 0.0691mg/g and the physical and chemical properties of natural corn starch (NCS) and corn starch acetate (ACS) were further studied.The transparency, water separation, water absorption, expansion force, and solubility of ACS low substitution are better than NCS, while the NCS's hydrolysis percentage is higher than ACS, which indicate that the modified corn starch has better performance than native corn starch. The surface morphology of the corn starch acetate was examined by scanning electron microscope (SEM), which showed that it had a smooth surface and a spherical and polygonal shape. However, samples' shape is irregular. Crystal structure was observed by X-ray diffraction, and the ACS can determine the level of microwave technology that can destroy the extent of the crystal and amorphous regions. Fourier transform infrared (FTIR) spectroscopy shows that around 1750cm -1 carbonyl signal determines acetylation bonding successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Enzyme-modified starch as an oil delivery system for bake-only chicken nuggets.

    Science.gov (United States)

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    This study investigated the effects of enzyme modification on starch as an effective oil delivery system for bake-only chicken nuggets. Various native starches were hydrolyzed by amyloglucosidase to a hydrolysis degree of 20% to 25% and plated with 50% (w/w, starch dry basis) with canola oil to create a starch-oil matrix. This matrix was then blended into a dry ingredient blend for batter and breader components. Nuggets were prepared by coated with predust, hydrated batter, and breader, and the coated nuggets were steam-baked until fully cooked and then frozen until texture and sensory analyses. The enzyme-modified starches showed a significant decrease in pasting viscosities for all starch types. For textural properties of nuggets, no clear relationship was found between peak force and starch source or amylose content. Sensory attributes related to fried foods (for example, crispness and mouth-coating) did not significantly differ between bake-only nuggets formulated using the enzyme-modified starches and the partially fried and baked ones. The present findings suggest that enzyme-modified starches can deliver sufficient quantity of oil to create sensory attributes similar to those of partially fried chicken nuggets. Further study is needed to optimize the coating formulation of bake-only chicken nugget to become close to the fried one in sensory aspects. The food industry has become increasingly focused on healthier items. Frying imparts several critical and desirable product functionalities, such as developing texture and color, and providing mouth-feel and flavor. The food industry has yet to duplicate all of the unique characteristics of fried chicken nuggets with a baking process. This study investigated the application of enzyme-modified starch as an oil delivery system in bake-only chicken nugget formulation in attempts to provide characteristics of fried items. This information is useful to improve the nutritional value of fried food by eliminating the

  20. Thermoplastic starch materials prepared from rice starch

    International Nuclear Information System (INIS)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S.

    2009-01-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  1. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling

    DEFF Research Database (Denmark)

    Zhang, Chuanhui; Jiang, Dong; Liu, Fulai

    2010-01-01

    with the temporally change patterns of starch synthase activities and relative gene expression levels. For instance, activities of soluble and granule-bound starch synthases (designated SSS and GBSS) peaked at 20 and 24 DAF. Genes encoding isoforms of starch synthases expressed at different grain filling periods...

  2. Design starch: stochastic modeling of starch granule biogenesis.

    Science.gov (United States)

    Raguin, Adélaïde; Ebenhöh, Oliver

    2017-08-15

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. © 2017 The Author(s).

  3. Design starch: stochastic modeling of starch granule biogenesis

    Science.gov (United States)

    Ebenhöh, Oliver

    2017-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. PMID:28673938

  4. The effect of acid hydrolysis on the technological functional properties of pinhão (Araucaria brasiliensis starch Efeito da hidrólise ácida nas propriedades funcionais tecnológicas do amido de pinhão (Araucaria brasiliensis

    Directory of Open Access Journals (Sweden)

    Roberta Cruz Silveira Thys

    2013-02-01

    Full Text Available Technological functional properties of native and acid-thinned pinhão (seeds of Araucária angustifolia, Brazilian pine starches were evaluated and compared to those of native and acid-thinned corn starches. The starches were hydrolyzed (3.2 mol.L-1 HCl, 44 ºC, 6 hours and evaluated before and after the hydrolysis reaction in terms of formation, melting point and thermo-reversibility of gel starches, retrogradation (in a 30-day period and measurements every three days, paste freezing and thawing stability (after six freezing and thawing cycles, swelling power, and solubility. The results of light transmittance (% of pastes of native and acid-thinned pinhão starches was higher (lower tendency to retrogradation than that obtained for corn starches after similar storage period. Native pinhão starch (NPS presented lower syneresis than native corn starch (NCS when submitted to freeze-thaw cycles. The acid hydrolysis increased the syneresis of the two native varieties under storage at 5 ºC and after freezing and thawing cycles. The solubility of NPS was lower than that of native corn starch at 25, 50, and 70 ºC. However, for the acid-thinned pinhão starch (APS, this property was significantly higher (p As propriedades funcionais tecnológicas do amido nativo e modificado (hidrólise ácida de pinhão (Araucaria angustifólia foram comparadas às propriedades do amido nativo e ácido hidrolisado de milho. As espécies de amido foram hidrolisadas (3.2 mol.L-1 HCl, 44 ºC, 6 horas e avaliadas, antes e após a reação de hidrólise, de acordo com as análises de formação, fusão e termorreversão do gel, retrogradação (em um período de 30 dias, com medidas a cada 3 dias, estabilidade ao congelamento e descongelamento (após 6 ciclos de congelamento e descongelamento, poder de inchamento e índice de solubilidade. Os resultados obtidos demonstraram que o amido de pinhão apresenta menor tendência à retrogradação quando comparado ao amido

  5. Effect of banana pulp and peel flour on physicochemical properties and in vitro starch digestibility of yellow alkaline noodles.

    Science.gov (United States)

    Ramli, Saifullah; Alkarkhi, Abbas F M; Shin Yong, Yeoh; Min-Tze, Liong; Easa, Azhar Mat

    2009-01-01

    The present study describes the utilization of banana--Cavendish (Musa acuminata L., cv cavendshii) and Dream (Musa acuminata colla. AAA, cv 'Berangan')--pulp and peel flours as functional ingredients in yellow alkaline noodles. Noodles were prepared by partial substitution of wheat flour with ripe banana pulp or peel flours. In most cases, the starch hydrolysis index, predicted glycaemic index (pGI) and physicochemical properties of cooked noodles were affected by banana flour addition. In general, the pGI values of cooked noodles were in the order; banana peel noodles banana pulp noodles peel flour was higher in total dietary fibre but lower in resistant starch contents than the pulp flour, the low pGI of banana peel noodles was mainly due to its high dietary fibre content. In conclusion, banana pulp and peel flour could be useful for controlling starch hydrolysis of yellow noodles, even though some physicochemical properties of the noodles were altered.

  6. VARIABILITY OF AMYLOSE AND AMYLOPECTIN IN WINTER WHEAT AND SELECTION FOR SPECIAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Nikolina Weg Krstičević

    2015-06-01

    Full Text Available The aim of this study was to investigate the variability of amylose and amylopectin in 24 Croatian and six foreign winter wheat varieties and to detect the potential of these varieties for special purposes. Starch composition analysis was based on the separation of amylose and amylopectin and the determination of their amounts and ratios. Analysis of the amount of amylose and amylopectin determined statistically highly significant differences between the varieties. The tested varieties are mostly bread wheat of different quality which have the usual content of amylose and amylopectin. Some varieties were identified among them with high amylopectin and low amylose content and one variety with high amylose content. They have the potential in future breeding programs and selection for special purposes.

  7. Thermo-mechanic and sensory properties of wheat and rye breads produced with varying concentration of the additive

    Directory of Open Access Journals (Sweden)

    Demin Mirjana A.

    2013-01-01

    Full Text Available The effects of different concentrations of the complex additive containing emulsifiers, oxido-reductive substances and enzymes, on the rheological conditions of dough, and on the sensory properties of three groups of bread were investigated. The best initial quality and the lowest degree of protein network weakening had the dough obtained from mixed wheat and rye flours. The best expected baking properties were shown by the white wheat flour due to the least damage of its starch. The use of the additive has an effect on the absorption of water and on the majority of C-values of all sorts of flour. The amount of additive had a significant effect on the sensory properties of wheat bread crumb texture. Also, storage duration significantly affected (p <0.01 the sensory properties of integral wheat bread aroma-taste and the weighted mean score. The interaction of these two factors had no significant effect on any of sensory properties of the investigated groups of bread.

  8. Characterization of Chemical and Physical Properties of Hydroxypropylated and Cross-linked Arrowroot (Marantha arundinacea Starch

    Directory of Open Access Journals (Sweden)

    Rijanti Rahaju Maulani

    2013-12-01

    Full Text Available The modern food industry and a variety of food products require tolerant starch as raw material for processing in a broad range of techniques, from preparation to storage and distribution. Dual modification of arrowroot starch using hydroxypropylation and cross-linking was carried out to overcome the lack of native arrowroot starch in food processing application. The modifications applied were: combined propylene oxide (8%, 10%, and 12%; sodium tri meta phosphate/STMP (1%, 2%, and 3%; and sodium tri poly phosphate/STPP (4%, 5%, and 6%. These modifications significantly affected the composition of the amylose and amylopectin and the amount of phosphorus in the granules. Higher amounts of phosphate salt gave a higher phosphorus content, which increased the degree of substitution (DS and the degree of cross-link. Arrowroot starch that was modified using a concentration of 8-10% propylene oxide and 1-2% STMP : 3-5% STPP produced a starch with < 0.4% phosphorus content. A higher concentration of propylene oxide provided a higher degree of hydroxypropyl. The changed physical properties of the modified granular arrowroot starch were examined through SEM testing, and its changed crystalline patterns through X-ray diffraction measurements. Especially, provision of a high concentration of propylene oxide (12% combined with 3% STMP : 6% STPP affected the granular morphology and the crystallinity.

  9. Heat, Acid and Chemically Induced Unfolding Pathways, Conformational Stability and Structure-Function Relationship in Wheat α-Amylase.

    Directory of Open Access Journals (Sweden)

    Kritika Singh

    Full Text Available Wheat α-amylase, a multi-domain protein with immense industrial applications, belongs to α+β class of proteins with native molecular mass of 32 kDa. In the present study, the pathways leading to denaturation and the relevant unfolded states of this multi-domain, robust enzyme from wheat were discerned under the influence of temperature, pH and chemical denaturants. The structural and functional aspects along with thermodynamic parameters for α-amylase unfolding were probed and analyzed using fluorescence, circular dichroism and enzyme assay methods. The enzyme exhibited remarkable stability up to 70°C with tendency to aggregate at higher temperature. Acid induced unfolding was also incomplete with respect to the structural content of the enzyme. Strong ANS binding at pH 2.0 suggested the existence of a partially unfolded intermediate state. The enzyme was structurally and functionally stable in the pH range 4.0-9.0 with 88% recovery of hydrolytic activity. Careful examination of biophysical properties of intermediate states populated in urea and GdHCl induced denaturation suggests that α-amylase unfolding undergoes irreversible and non-coincidental cooperative transitions, as opposed to previous reports of two-state unfolding. Our investigation highlights several structural features of the enzyme in relation to its catalytic activity. Since, α-amylase has been comprehensively exploited for use in a range of starch-based industries, in addition to its physiological significance in plants and animals, knowledge regarding its stability and folding aspects will promote its biotechnological applications.

  10. Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives

    NARCIS (Netherlands)

    Broeren, Martijn L.M.; Kuling, Lody; Worrell, Ernst; Shen, Li

    2017-01-01

    Starch plastics are developed for their biobased origin and potential biodegradability. To assist the development of sustainable starch plastics, this paper quantifies the environmental impacts of starch plastics produced from either virgin starch or starch reclaimed from wastewater. A

  11. Thermal and mechanical properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, H; Vorwerg, W; Rihm, R

    2014-02-15

    The current study examined thermal and mechanical properties of fatty acid starch esters (FASEs). All highly soluble esters were obtained by the sustainable, homogeneous transesterification of fatty acid vinyl esters in dimethylsulfoxide (DMSO). Casted films of products with a degree of substitution (DS) of 1.40-1.73 were compared with highly substituted ones (DS 2.20-2.63). All films were free of any plasticizer additives. Hydrophobic surfaces were characterized by contact angle measurements. Dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) revealed thermal transitions (T(g), T(m)) which were influenced by the internal plasticizing effect of the ester groups. Thermal gravimetric analysis (TGA) measurements showed the increased thermal stability toward native starch. Tensile tests revealed the decreasing strength and stiffness of the products with increasing ester-group chain length while the elongation increased up to the ester group laurate and after that decreased. Esters of the longest fatty acids, palmitate and stearate turned out to be brittle materials due to super molecular structures of the ester chains such as confirmed by X-ray. Summarized products with a DS 1.40-1.73 featured more "starch-like" properties with tensile strength up to outstanding 43 MPa, while products with a DS >2 behaved more "oil-like". Both classes of esters should be tested as a serious alternative to commercial starch blends and petrol-based plastics. The term Cnumber is attributed to the number of total C-Atoms of the fatty acid (e.g. C6=Hexanoate). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Genetic variation at loci controlling quality traits in spring wheat

    International Nuclear Information System (INIS)

    Ali, N.; Iqbal, M.; Asif, M.

    2013-01-01

    Selection for quality traits in bread wheat (Triticum aestivum L.) during early breeding generations requires quick analytical methods that need small grain samples. Marker assisted selection can be useful for the improvement of quality traits in wheat. The present study was conducted to screen 117 Pakistani adapted spring wheat varieties with DNA markers linked with genes controlling composition of low and high molecular weight glutenin subunits (LMW-GS and HMW-GS, respectively), starch viscosity, Polyphenol oxidase (PPO) activity and grain hardness. DNA fragments associated with the presence/absence of quality related genes were amplified using Polymerase chain reaction (PCR) and detected using agarose gel electrophoresis. Positive allele of beta-secalin, which indicates presence of 1B.1R translocation, was found in 77 (66%) varieties. The marker PPO05 was found in 30 (26%) varieties, indicating lower PPO activity. Grain hardness controlled by Pinb-D1b allele was present in 49 (42%) varieties. Allele Wx-B1b which confers superior noodle quality was found in 48 (41%) varieties. HMW-GS encoded by Glu-D1d allele that exerts a positive effect on dough strength was present in 115 (98%) varieties. LMW-GS alleles Glu-A3d and Glu-B3 were observed in 21 (18%) and 76 (65%) varieties, respectively. Results of the present study may help wheat breeders in selecting parents for improving desirable quality attributes of future wheat varieties. The varieties, identified having desirable quality genes, in this study can be used in the wheat breeding programs aiming to improve quality traits. Early generation marker assisted selection can help to efficiently utilize resources of a breeding program. (author)

  13. Assessment of chapatti quality of wheat varieties based on physicochemical, rheological and sensory traits.

    Science.gov (United States)

    Kundu, Manju; Khatkar, Bhupendar Singh; Gulia, Neelam

    2017-07-01

    Fifty wheat varieties were assessed for chapatti quality using grain characteristics, dough rheological properties and pasting characteristics. Results revealed that 88% of wheat varieties studied were medium-hard to hard based on kernel texture. Water absorption and damaged starch were found to be important parameters for chapatti quality as both parameters had significant positive effect on the pliability and puffing height of chapatti. Protein content and gluten strength parameters like SDS sedimentation volume, dough stability and gluten index were found to have a negative impact on chapatti quality. Based on chapatti quality assessment the wheat varieties were classified into four distinct clusters viz. good, acceptable, fair and poor for chapatti making. It was elucidated that 46% of the varieties studied were good to acceptable for chapatti making, while 54% resulted in fair or poor chapatti quality thereby clearly indicating the need to establish and substantiate the development of product-specific varieties. Copyright © 2016. Published by Elsevier Ltd.

  14. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride.

    Science.gov (United States)

    Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin

    2013-03-01

    Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d 32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products.

  15. Textural behavior of gels formed by rice starch and whey protein isolate: Concentration and crosshead velocities

    Directory of Open Access Journals (Sweden)

    Thiago Novaes Silva

    Full Text Available ABSTRACT Fabricated food gels involving the use of hydrocolloids are gaining polpularity as confectionery/convenience foods. Starch is commonly combined with a hydrocolloid (protein our polyssacharides, particularly in the food industry, since native starches generally do not have ideal properties for the preparation of food products. Therefore the texture studies of starch-protein mixtures could provide a new approach in producing starch-based food products, being thus acritical attribute that needs to be carefully adjusted to the consumer liking. This work investigated the texture and rheological properties of mixed gels of different concentrations of rice starch (15%, 17.5%, and 20% and whey protein isolate (0%, 3%, and 6% with different crosshead velocities (0.05, 5.0, and 10.0 mm/s using a Box-Behnken experimental design. The samples were submitted to uniaxial compression tests with 80% deformation in order to determinate the following rheological parameters: Young’s modulus, fracture stress, fracture deformation, recoverable energy, and apparent biaxial elongational viscosity. Gels with a higher rice starch concentration that were submitted to higher test velocities were more rigid and resistant, while the whey protein isolate concentration had little influence on these properties. The gels showed a higher recoverable energy when the crosshead velocity was higher, and the apparent biaxial elongational viscosity was also influenced by this factor. Therefore, mixed gels exhibit different properties depending on the rice starch concentration and crosshead velocity.

  16. In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sadjadi, M.S., E-mail: msadjad@gmail.com [Department of Chemistry, Science and Research Branch, Islamic Azad University, Poonak, Tehran (Iran, Islamic Republic of); Meskinfam, M. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Poonak, Tehran (Iran, Islamic Republic of); Sadeghi, B. [Department of Chemistry, Tonekabon Branch, Islamic Azad university, Tonekabon (Iran, Islamic Republic of); Jazdarreh, H. [Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2010-11-01

    In this work, we report the synthesis of bone-like hydroxyapatite (HAp) nanorods in wheat starch matrix via a biomimetic process. Characterization of the samples was performed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Scanning and transmission electron microscopy (SEM and TEM) were used to determine the size, shape and morphology of nano-HAp. The results indicate that, the shape and morphology of nHAp is influenced by the presence of starch as a template agent and rod-like nHAp similar to the inorganic component in the human body is obtained at room temperature. In vitro bioactivity of the synthesized HAp nanocomposites was finally verified by comparison of the HAp's structures and morphology before and after immersion in simulated body fluid (SBF) solution for 3, 7, and 14 days.

  17. The enzymatic determination of starch in food, feed and raw materials of the starch industry

    NARCIS (Netherlands)

    Brunt, K.; Sanders, P.; Rozema, T.

    1998-01-01

    An enzymatic starch determination which can be used for the analysis of starch in a very broad range of different samples is evaluated, ranging from starch in plants, feed and food to industrial applications as starch in starch. The method is based on a complete enzymatic conversion of the starch

  18. Physicochemical, rheological, thermal, and bread making properties of flour obtained from irradiated wheat

    International Nuclear Information System (INIS)

    Singer, Carolina Sobral

    2006-01-01

    Most of the methods that are nowadays used for food preservation derive from old times. Besides these methods, new non-thermal methods have been developed in order to improve food quality during its processing. Irradiation technology has a great contribution potential to improve preservation, storage and distribution of foods. Several studies from international literature have reported the efficiency of irradiation process on microbiological control of grains and their products. Due to the low technological quality of national wheat, Brazil depends on its import. Wheat is the main ingredient of bread which is one of the most important products of Brazilian people's diet. The objective of this work was to study the effect of ionizing radiation on wheat on physicochemical, rheological, and thermal properties of flour produced from this wheat, and consequently, its performance on bread making. All experiments were conducted on laboratory scale. Wheat was submitted to irradiation on different doses (0.0; 0.5; 1.0 and 2.0 kGy) and flour produced underwent physicochemical, rheological, thermal and microbiological analyses. Flour bread making performance was measured through quality of bread. None of the physicochemical, rheological or thermal parameters was influenced by irradiation, with the exception of Falling Number, which decreased significantly with the increase of irradiation dose, indicating the effect of irradiation on wheat starch, and consequently on dough's gelatinization. Bread quality parameters did also not show significant differences, and sensory analysis showed that bread produced from irradiated and non irradiated wheat did not present perceivable flavor. (author)

  19. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Hidayet; Kargi, Fikret; Kapdan, Ilgi K. [Department of Environmental Engineering, Dokuz Eylul University, Buca, Izmir (Turkey)

    2009-03-15

    Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H{sub 2} g{sup -1} starch and a specific hydrogen production rate of 32.1 ml H{sub 2} g{sup -1} h{sup -1}. (author)

  20. Modeling cereal starch hydrolysis during simultaneous saccharification and lactic acid fermentation; case of a sorghum-based fermented beverage, gowé.

    Science.gov (United States)

    Mestres, Christian; Bettencourt, Munanga de J C; Loiseau, Gérard; Matignon, Brigitte; Grabulos, Joël; Achir, Nawel

    2017-10-01

    Gowé is an acidic beverage obtained after simultaneous saccharification and fermentation (SSF) of sorghum. A previous paper focused on modeling the growth of lactic acid bacteria during gowé processing. This paper focuses on modeling starch amylolysis to build an aggregated SSF model. The activity of α-amylase was modeled as a function of temperature and pH, and the hydrolysis rates of both native and soluble starch were modeled via a Michaelis-Menten equation taking into account the maltose and glucose inhibition constants. The robustness of the parameter estimators was ensured by step by step identification in sets of experiments conducted with different proportions of native and gelatinized starch by modifying the pre-cooking temperature. The aggregated model was validated on experimental data and showed that both the pre-cooking and fermentation parameters, particularly temperature, are significant levers for controlling not only acid and sugar contents but also the expected viscosity of the final product. This generic approach could be used as a tool to optimize the sanitary and sensory quality of fermentation of other starchy products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    Science.gov (United States)

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Starch Digestibility and Functional Properties of Rice Starch Subjected to Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Luís Fernando Polesi

    2018-01-01

    Full Text Available This study investigated the effect of gamma radiation on the digestibility and functional properties of rice starch. Rice cultivars IRGA417 and IAC202 were used for isolation of starch by the alkaline method. Starch samples were irradiated with 1, 2 and 5 kGy doses of 60Co at a rate of 0.4 kGy/h. A control sample, which was not irradiated, was used for comparison. Irradiated and control starches were characterized by in vitro starch digestibility, total dietary fiber, color, water absorption index, water solubility index, syneresis, swelling factor, amylose leaching, pasting properties and gel firmness. Irradiations changed starch digestibility differently in either cultivar. Increasing radiation doses promoted increase in the color parameter b* (yellow, elevation in the capacity to absorb water, and solubility in water as well as the amylose leached from granules for both cultivars. Pasting properties showed a decrease that was proportional to the dose applied, caused by the depolymerization of starch molecules. Gel firmness of the starch from IAC202 was inversely proportional to the radiation dose applied, whereas for IRGA417, there was a reduction at 5 kGy dose. Rice starches can be modified by irradiation to exhibit different functional characteristics and they can be used by the food industries in products such as soups, desserts, flans, puddings and others.

  4. Digestion and metabolism of carbohydrates in fish

    OpenAIRE

    Abro, Rani

    2014-01-01

    This thesis deals with the digestion and metabolism of carbohydrates in Arctic charr, Eurasian perch and tilapia. Two sources of carbohydrates, native starch (wheat) and chitin (zygomycete biomass), were evaluated. Gut tissue of Arctic charr displayed significant chitinase activity, of both endo- and exo-chitinase forms. Moreover, the distribution pattern along the gastrointestinal tract of Arctic charr differed between endo-chitinase and exo-chitinase. The endo-chitinase activity in sto...

  5. Starch meets biotechnology : in planta modification of starch composition and functionalities

    NARCIS (Netherlands)

    Xu, Xuan

    2016-01-01

    Storage starch is an energy reservoir for plants and the major source of calories in the human diet. Starch is used in a broad range of industrial applications, as a cheap, abundant, renewable and biodegradable biopolymer. However, starch needs to be modified before it can fulfill the required

  6. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.

    Science.gov (United States)

    MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J

    2017-07-20

    Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. The influence of altered gravity on carbohydrate metabolism in excised wheat leaves

    Science.gov (United States)

    Obenland, D. M.; Brown, C. S.

    1994-01-01

    We developed a system to study the influence of altered gravity on carbohydrate metabolism in excised wheat leaves by means of clinorotation. The use of excised leaves in our clinostat studies offered a number of advantages over the use of whole plants, most important of which were minimization of exogenous mechanical stress and a greater amount of carbohydrate accumulation during the time of treatment. We found that horizontal clinorotation of excised wheat leaves resulted in significant reductions in the accumulation of fructose, sucrose, starch and fructan relative to control, vertically clinorotated leaves. Photosynthesis, dark respiration and the extractable activities of ADP glucose pyrophosphorylase (EC 2.7.7.27), sucrose phosphate synthase (EC 2.4.4.14), sucrose sucrose fructosyltransferase (EC 2.4.1.99), and fructan hydrolase (EC 3.2.1.80) were unchanged due to altered gravity treatment.

  8. A study of a novel coprocessed dry binder composed of α-lactose monohydrate, microcrystalline cellulose and corn starch.

    Science.gov (United States)

    Mužíková, Jitka; Srbová, Alena; Svačinová, Petra

    2017-12-01

    This paper deals with a study of the novel coprocessed dry binder Combilac®, which contains 70% of α-lactose monohydrate, 20% of microcrystalline cellulose and 10% of native corn starch. These tests include flow properties, compressibility, lubricant sensitivity, tensile strength and disintegration time of tablets. Compressibility is evaluated by means of the energy profile of compression process, test of stress relaxation and tablet strength. The above-mentioned parameters are also evaluated in the physical mixture of α-lactose monohydrate, microcrystalline cellulose and native corn starch and compared with Combilac. Combilac shows much better flowability than the physical mixture of the used dry binders. Its compressibility is better, tablets possess a higher tensile strength. Neither Combilac, nor the physical mixture can be compressed without lubricants due to high friction and sticking to the matrix. Combilac has a higher lubricant sensitivity than the physical mixture of the dry binders. Disintegration time of Combilac tablets is comparable with the disintegration time of tablets made from the physical mixture.

  9. Improvement of Emulsifying Properties of Wheat Gluten Hydrolysate λ-Carrageenan Conjugates

    Directory of Open Access Journals (Sweden)

    Jin-Shui Wang

    2006-01-01

    Full Text Available Gluten hydrolysate was prepared through limited enzymatic hydrolysis of wheat gluten resulting from the byproducts of wheat starch. The enzyme applied in the present study was Protamex. Response surface methodology was used to investigate the effects of pH, gluten hydrolysate (GHPλ-carrageenan (C ratio and reaction time on emulsifying properties of the GHP-C conjugate. The regression model for emulsion activity index (EAI was significant at p=0.001, while reaction time had a significant effect on EAI of the conjugate with regression coefficient of 4.25. The interactions of pH and GHP/ C ratio, and GHP/C ratio and reaction time significantly affected the EAI of the conjugate. Both the emulsifying property and nitrogen solubility index (NSI of GHP-C conjugate prepared under the optimal conditions increased more remarkably, compared to the control. The denaturation temperature of GHP-C conjugate obviously increased compared to wheat gluten. The addition of GHP-C conjugate had different effects on dough characteristics. Moreover, this conjugate can delay the increase in the bread crumb firmness during storage. It demonstrated that this conjugate couldimprove the dough characteristics and had anti-staling properties of bread.

  10. Resistant starch in cassava products

    Directory of Open Access Journals (Sweden)

    Bruna Letícia Buzati Pereira

    2014-06-01

    Full Text Available Found in different foods, starch is the most important source of carbohydrates in the diet. Some factors present in starchy foods influence the rate at which the starch is hydrolyzed and absorbed in vivo. Due the importance of cassava products in Brazilian diet, the objective of this study was to analyze total starch, resistant starch, and digestible starch contents in commercial cassava products. Thirty three commercial cassava products from different brands, classifications, and origin were analyzed. The method used for determination of resistant starch consisted of an enzymatic process to calculate the final content of resistant starch considering the concentration of glucose released and analyzed. The results showed significant differences between the products. Among the flours and seasoned flours analyzed, the highest levels of resistant starch were observed in the flour from Bahia state (2.21% and the seasoned flour from Paraná state (1.93%. Starch, tapioca, and sago showed levels of resistant starch ranging from 0.56 to 1.1%. The cassava products analyzed can be considered good sources of resistant starch; which make them beneficial products to the gastrointestinal tract.

  11. Characterization of tropical starches modified with potassium permanganate and lactic acid

    Directory of Open Access Journals (Sweden)

    Fabiano Franco Takizawa

    2004-11-01

    Full Text Available In the present work some tropical starches were modified by an oxidative chemical treatment with potassium permanganate and lactic acid. The native and modified samples were evaluated by mid-infrared spectroscopy, differential dyeing, pH, expansion power, solubility and swelling power, clarity of the pastes, susceptibility to syneresis, carboxyl content and reducing power. All modified samples presented dark blue color, higher expansion power (except corn starch, carboxyl content and reducing power. The solubility of the modified starch granules was very high at 90ºC. At this temperature, it was not possible to measure their swelling power. The viscographic analysis showed decrease in peak viscosity and higher degree of cooking instability. The principal component analysis of the mid-infrared spectra allowed separation between native and modified samples due to the presence of carboxyl groups. The expansion was inversely related with amylose content of the starches.No presente trabalho alguns amidos tropicais foram modificados por tratamento oxidativo com permanganato de potássio e ácido lático. Amidos nativos e modificados foram avaliadas por espectroscopia na região do infravermelho médio, coloração diferencial, pH, propriedade de expansão, poder de inchamento e solubilidade, claridade das pastas, susceptibilidade a sinérese, teor carboxilas e poder redutor. Todas as amostras modificadas adquiriram intensa coloração azul quando suspensas em azul de metileno, maiores valores de expansão (exceto o amido de milho, teor de carboxilas e poder redutor. A solubilidade dos grânulos dos amidos modificados foi muito alta a temperatura de 90°C, não tendo sido possível medir o poder de inchamento. A análise viscográfica mostrou um decréscimo no pico de viscosidade e alta instabilidade ao cozimento. A análise dos componentes principais dos espectros de infravermelho médio permitiu a separação entre as amostras nativas e modificadas

  12. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  13. The effect of rolled barley, sodium hydroxide-treated wheat or maize cob silage on digestive enzymes activity in the alimentary tract of dairy cows

    DEFF Research Database (Denmark)

    Moharrey, A.; Hymøller, Lone; Weisbjerg, Martin Riis

    2017-01-01

    In the present study digestive enzyme activities were studied in the rumen, intestine and faeces of dairy cows fed rations differing in starch source. Three total mixed rations were prepared for dairy cows with maize cob silage (MCS), sodium hydroxide-treated wheat (SHW) or rolled barley as starch...... DM (2.61 vs 2.91 and 3.15%) and a higher ash content (30.99 vs 29.24 and 24.31%) in the ruminal fluid without affecting enzyme activities. Positive correlation between lipolytic and amylolitic activities in ruminal fluid was stated, which supported the hypothesis that amylolytic bacteria provide...... energy for lipolytic bacteria. So, the enzymes activities in the different parts of the digestive tract were not affected by the different starch sources....

  14. In vitro digestibility of banana starch cookies.

    Science.gov (United States)

    Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Méndez-Montealvo, Guadalupe; Tovar, Juscelino

    2004-01-01

    Banana starch was isolated and used for preparation of two types of cookies. Chemical composition and digestibility tests were carried out on banana starch and the food products, and these results were compared with corn starch. Ash, protein, and fat levels in banana starch were higher than in corn starch. The high ash amount in banana starch could be due to the potassium content present in this fruit. Proximal analysis was similar between products prepared with banana starch and those based on corn starch. The available starch content of the banana starch preparation was 60% (dmb). The cookies had lower available starch than the starches while banana starch had lower susceptibility to the in vitro alpha-amylolysis reaction. Banana starch and its products had higher resistant starch levels than those made with corn starch.

  15. Effects of cooking methods and starch structures on starch hydrolysis rates of rice.

    Science.gov (United States)

    Reed, Michael O; Ai, Yongfeng; Leutcher, Josh L; Jane, Jay-lin

    2013-07-01

    This study aimed to understand effects of different cooking methods, including steamed, pilaf, and traditional stir-fried, on starch hydrolysis rates of rice. Rice grains of 3 varieties, japonica, indica, and waxy, were used for the study. Rice starch was isolated from the grain and characterized. Amylose contents of starches from japonica, indica, and waxy rice were 13.5%, 18.0%, and 0.9%, respectively. The onset gelatinization temperature of indica starch (71.6 °C) was higher than that of the japonica and waxy starch (56.0 and 56.8 °C, respectively). The difference was attributed to longer amylopectin branch chains of the indica starch. Starch hydrolysis rates and resistant starch (RS) contents of the rice varieties differed after they were cooked using different methods. Stir-fried rice displayed the least starch hydrolysis rate followed by pilaf rice and steamed rice for each rice variety. RS contents of freshly steamed japonica, indica, and waxy rice were 0.7%, 6.6%, and 1.3%, respectively; those of rice pilaf were 12.1%, 13.2%, and 3.4%, respectively; and the stir-fried rice displayed the largest RS contents of 15.8%, 16.6%, and 12.1%, respectively. Mechanisms of the large RS contents of the stir-fried rice were studied. With the least starch hydrolysis rate and the largest RS content, stir-fried rice would be a desirable way of preparing rice for food to reduce postprandial blood glucose and insulin responses and to improve colon health of humans. © 2013 Institute of Food Technologists®

  16. Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat.

    Science.gov (United States)

    Rey, Elodie; Abrouk, Michael; Keeble-Gagnère, Gabriel; Karafiátová, Miroslava; Vrána, Jan; Balzergue, Sandrine; Soubigou-Taconnat, Ludivine; Brunaud, Véronique; Martin-Magniette, Marie-Laure; Endo, Takashi R; Bartoš, Jan; Appels, Rudi; Doležel, Jaroslav

    2018-03-06

    Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Evaluasi Mutu dan Penerimaan Panelis terhadap Rainbow Cake yang Dibuat dari Tepung Terigu dan Pati Sagu Lokal

    Directory of Open Access Journals (Sweden)

    Usman Pato

    2014-10-01

    Full Text Available Riau is one of the sago starch-producing province in Indonesia. Nowadays, sago starch has been utilized to produce various types of tradisional foods. The aim of this study was to compare the quality of rainbow cake produced by the addition of 30% sago starch and rainbow cake using 100% wheat flour and to evaluate panelist acceptance of these rainbow cakes. This study used a Completely Randomized Design (CRD with two treatments and eight replications thus obtained 16 experimental units. The treatments were TS1 (100% wheat and 0%sago starch and TS2 (70% wheat flour and 30%sago starch. The parameters observed were moisture, ash, sucrose and fat contents as well as panelist acceptance test. The results of this study indicated that rainbow cake of TS1 treatment (100% wheat flour and 0%sago starch had no significant difference with rainbow cake of TS2 treatment (70% wheat flour and 30% sago starch in case of ash and sucrose contents, but had significant effect on moisture and fat contents of rainbow cake. Based on the panelist acceptance test, the rainbow cake made from 70% wheat flour and sago starch 30% could be accepted by panelists similar to commercial rainbow cake.

  18. Preliminary Study on the Synthesis of Phosphorylated Mung Bean Starch: The Effect of pH on the Physicochemical and Functional Properties

    Directory of Open Access Journals (Sweden)

    Illona Nathania

    2017-11-01

    Full Text Available Mung bean (Vigna radiate L. is a grain legume widely cultivated in tropical and sub-tropical regions. Mung bean seeds contain a significant amount of carbohydrate (63%-w/w and are easily digested compared to seeds from other legumes. Mung bean starch has the potential to be used as thickener or gelling agents in food industries. Certain functional properties of mung bean starch, however, still need to be improved. In this research, a preliminary study was performed to upgrade mung bean starch properties using phosphorylation reaction. In particular, the effect of starch suspension pH (6–10 on the functional properties of the modified products was investigated. Phosphorylation was carried out at 130 °C, for 2 h using sodium tripolyphosphate (STPP with an intake of 5%-w based on dry starch. The phosphorylated products were subsequently washed with water and dried. The experimental results show that the P-content of the phosphorylated mung bean starch is accessible in the range of 0.04–0.08%. The solubility (6.09–11.37%-w/w and swelling power (9.88–11.17 g/g of the modified starch products have been improved compared to native starch (solubility = 6.06 %-w/w, swelling power = 8.05 g/g. Phosphorylation also proved to increase peak viscosity, paste clarity, and water absorption/oil absorption capacity of the products.

  19. Avaliação dietética de amidos pelas respostas glicêmica e insulinêmica em cães Dietary evaluation of starches through glycemic and insulinemic responses in healthy dogs

    Directory of Open Access Journals (Sweden)

    G.B. Silveira

    2004-10-01

    Full Text Available Avaliaram-se, em cães saudáveis, os efeitos da fonte e do tipo de processamento do amido presente no alimento sobre as concentrações de insulina e glicose plasmáticas pós-prandiais. Foram utilizados oito cães da raça Beagle, adultos, alimentados com quatro regimes: amido cru de trigo (ACT, amido gelatinizado de trigo (AGT, amido cru de mandioca (ACM e amido gelatinizado de mandioca (AGM. As amostras de sangue foram coletadas mediante punção da veia braquial aos 0, 70, 140, 250 e 360 minutos pós-prandiais. O regime não influenciou a glicemia, mas alterou a concentração sangüínea de insulina (PThe effects of both starch source and processing in dog chow on postprandial plasma glucose and insulin concentrations in eight healthy adult Beagle dogs fed on four dietary regimens, raw wheat starch (RWS, gelatinized wheat starch (GWS, raw cassava starch (RCS and gelatinized cassava starch (GCS were studied. Blood samples were collected by brachial vein puncture at 0, 70, 140, 250 and 360 minutes postprandially. The diet had no influence on glycemia, but changed serum insulin concentration (P<0.05. Total areas under the insulinemic curve did not differ for RWS and GCS diets, but they were larger than those for GWS and RCS, as a result of the viscosity of GWS and of the resistance to enzymatic attack of RCS diet. These results suggest that GWS diet could be indicated to minimize the insulinic postprandial response and to maintain the euglycemia.

  20. Effect of chemically processed bonemeal alone and in combination with organic materials on plant growth. [Part] I : Rice-wheat rotation in an alluvial soil

    International Nuclear Information System (INIS)

    Ramasami, S.; Vimal, O.P.

    1975-01-01

    The effect of chemically processed bonemeal added 60 kg P 2 O /ha alone and in combination with various organic materials viz., wheat straw and rice straw 3 tons/hs, starch 500 kg/ha and EDTA 250 kg/ha was studied on rice in an alluvial soil. The residual effect was studied on wheat using 32 P as a tracer. The results showed that in the first crop(rice) bonemeal organic matter combination had a significant effect both on dry matter yield and nutrient uptake. In the second crop (wheat) except chemically processed honemeal in combination with EDTA, all other combinations showed a marked positive effect on yield, total P-uptake and 'A' values. Comparison of P-uptake from soil and fertilizer indicated that there was a marked residual effect on the subsequent wheat crop. (author)

  1. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    Science.gov (United States)

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    Science.gov (United States)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  4. Process design and optimization of novel wheat-based continuous bioethanol production system.

    Science.gov (United States)

    Arifeen, Najmul; Wang, Ruohang; Kookos, Ioannis K; Webb, Colin; Koutinas, Apostolis A

    2007-01-01

    A novel design of a wheat-based biorefinery for bioethanol production, including wheat milling, gluten extraction as byproduct, fungal submerged fermentation for enzyme production, starch hydrolysis, fungal biomass autolysis for nutrient regeneration, yeast fermentation with recycling integrated with a pervaporation membrane for ethanol concentration, and fuel-grade ethanol purification by pressure swing distillation (PSD), was optimized in continuous mode using the equation-based software General Algebraic Modelling System (GAMS). The novel wheat biorefining strategy could result in a production cost within the range of dollars 0.96-0.50 gal(-1) ethanol (dollars 0.25-0.13 L(-1) ethanol) when the production capacity of the plant is within the range of 10-33.5 million gal y(-1) (37.85-126.8 million L y(-1)). The production of value-added byproducts (e.g., bran-rich pearlings, gluten, pure yeast cells) was identified as a crucial factor for improving the economics of fuel ethanol production from wheat. Integration of yeast fermentation with pervaporation membrane could result in the concentration of ethanol in the fermentation outlet stream (up to 40 mol %). The application of a PSD system that consisted of a low-pressure and a high-pressure column and employing heat integration between the high- and low-pressure columns resulted in reduced operating cost (up to 44%) for fuel-grade ethanol production.

  5. Variation in levels of non-starch polysaccharides and endogenous endo-1,4-β-xylanases affects the nutritive value of wheat for poultry.

    Science.gov (United States)

    Cardoso, V; Fernandes, E A; Santos, H M M; Maçãs, B; Lordelo, M M; Telo da Gama, Luis; Ferreira, L M A; Fontes, C M G A; Ribeiro, T

    2018-04-01

    1. Endo-1,4-β-xylanase is known to improve the nutritive value of wheat-based diets for poultry by degrading dietary arabinoxylans. However, broilers' response to supplementation of wheat-based diets with exogenous endo-1,4-β-xylanase is not always observed. 2. In this study, 108 different wheat lots were analysed for levels of extract viscosity as well as for endogenous endo-1,4-β-xylanase activity, and the impact of these two variables in animal performance was tested. 3. Results revealed that endogenous endo-1,4-β-xylanase activity and extract viscosity content varied widely among different wheat lots. Thus, a trial was conducted to evaluate the efficacy of exogenous enzyme supplementation in broiler diets using wheats with different levels of extract viscosity and endogenous endo-1,4-β-xylanase activity. 4. The data revealed that exogenous enzyme supplementation was only effective when the wheat present in the diet had high levels of extract viscosity (14.8 cP) with low endogenous endo-1,4-β-xylanase activity (347.0 U/kg). Nevertheless, it is apparent that exogenous microbial xylanases reduce digesta extract viscosity and feed conversion ratio independently of the endogenous properties presented by different wheat lots. 5. The data suggest that extract viscosity and/or endogenous endo-1,4-β-xylanase activity affect the response to enzyme supplementation by poultry fed on wheat-based diets.

  6. Sugarcane starch: quantitative determination and characterization

    Directory of Open Access Journals (Sweden)

    Joelise de Alencar Figueira

    2011-09-01

    Full Text Available Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.

  7. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack.

    Science.gov (United States)

    Patil, Swapnil S; Brennan, Margaret A; Mason, Susan L; Brennan, Charles S

    2016-04-06

    Cereal food products are an important part of the human diet with wheat being the most commonly consumed cereal in many parts of the world. Extruded snack products are increasing in consumer interest due to their texture and ease of use. However, wheat based foods are rich in starch and are associated with high glycaemic impact products. Although legume materials are generally rich in fibre and protein and may be of high nutritive value, there is a paucity of research regarding their use in extruded snack food products. The aim of this study was to prepare wheat-based extrudates using four different legume flours: lentil, chickpea, green pea, and yellow pea flour. The effects of adding legumes to wheat-based snacks at different levels (0%, 5%, 10%, and 15%) during extrusion were investigated in terms of protein digestibility. It was observed that fortification of snacks with legumes caused a slight increase in the protein content by 1%-1.5% w/w, and the extrusion technique increased the protein digestibility by 37%-62% w/v. The product developed by extrusion was found to be low in fat and moisture content.

  8. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack

    Directory of Open Access Journals (Sweden)

    Swapnil S. Patil

    2016-04-01

    Full Text Available Cereal food products are an important part of the human diet with wheat being the most commonly consumed cereal in many parts of the world. Extruded snack products are increasing in consumer interest due to their texture and ease of use. However, wheat based foods are rich in starch and are associated with high glycaemic impact products. Although legume materials are generally rich in fibre and protein and may be of high nutritive value, there is a paucity of research regarding their use in extruded snack food products. The aim of this study was to prepare wheat-based extrudates using four different legume flours: lentil, chickpea, green pea, and yellow pea flour. The effects of adding legumes to wheat-based snacks at different levels (0%, 5%, 10%, and 15% during extrusion were investigated in terms of protein digestibility. It was observed that fortification of snacks with legumes caused a slight increase in the protein content by 1%–1.5% w/w, and the extrusion technique increased the protein digestibility by 37%–62% w/v. The product developed by extrusion was found to be low in fat and moisture content.

  9. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Thermomechanical treatment of starch

    NARCIS (Netherlands)

    Goot, van der A.J.; Einde, van den R.M.

    2006-01-01

    Starch is used as a major component in many food and nonfood applications and determines the overall product properties to a large extent. It is therefore important to understand the effect of processing on starch. Many starch-based products are produced using a thermal as well as a mechanical

  11. Fractionation of hairless canary seed (Phalaris canariensis) into starch, protein, and oil.

    Science.gov (United States)

    Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann; Gray, Danielle

    2010-06-09

    Canary seed is an important specialty crop in Canada. The current market for this true cereal (i.e., belonging to the family Poaceae as wheat) is limited to feed for caged birds. However, canary seed holds a promise for many food and industrial applications based on its composition. Three wet milling procedures based on ethanol (E), water (W), and alkaline (A) extractions used in different order were investigated to determine extraction efficiency and purity of starch, protein, oil, and fiber separated from hairless canary seed, a variety developed for human consumption. Highest extraction efficiencies were obtained when canary seed was defatted with ethanol and then extracted with alkali and water (EAW process). Using this process, approximately 92% pure starch, 75% pure protein, and oil were recovered from canary seed groats. The highest purity of protein, however, was obtained when canary seed was fractionated by the EWA process, that is, defatted and then extracted with water followed by alkali. Fiber component separated prior to alkaline extraction contained high amounts of nonfiber components as indicated by its yield. The EAW extraction process seems to be more promising in canary seed fractionation based on recovery and purity of components.

  12. Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67

    Directory of Open Access Journals (Sweden)

    T. R. Shamala

    2012-09-01

    Full Text Available Polyhydroxyalkanoates (PHA and α-amylase (α-1,4 glucan-4-glucanohydrolase, E.C. 3.2.1.1 were co-produced by Bacillus sp. CFR-67 using unhydrolysed corn starch as a substrate. Bacterial growth and polymer production were enhanced with the supplementation of hydrolysates of wheat bran (WBH or rice bran (RBH individually or in combination (5-20 g L-1, based on weight of soluble substrates-SS. In batch cultivation, a mixture of WBH and RBH (1:1, 10 g L-1 of SS along with ammonium acetate (1.75 g L-1 and corn starch (30 g L-1 produced maximum quantity of biomass (10 g L-1 and PHA (5.9 g L-1. The polymer thus produced was a copolymer of polyhydroxybutyrate-co-hydroxyvalerate of 95:5 to 90:10 mol%. Presence of WBH and corn starch (10-50 g L-1 in the medium enhanced fermentative yield of α-amylase (2-40 U mL-1 min-1. The enzyme was active in a wide range of pH (4-9 and temperature (40-60ºC. This is the first report on simultaneous production of copolymer of bacterial PHA and α-amylase from unhydrolysed corn starch and agro-industrial residues as substrates.

  13. Starch Bioengineering in Barley

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana

    , the effects of engineering high levels of phosphate and amylose content on starch physico-chemical properties were evaluated by various biochemical and morphological studies. As a result, a substantial increase of 10-fold phosphate content and ~99% amylose content with high-resistant starch was observed...... in storage reserve accumulation, metabolite accumulation in AO but no significant differences were observed in HP compared to WT. Scanning electron microscopy and confocal microscopy revealed the details in topography and internal structures of the starch granules in these lines. The results demonstrated......Starch represents the most important carbohydrate used for food and feed purposes. Increasingly, it is also used as a renewable raw material, as a source of biofuel, and for many different industrial applications. Progress in understanding starch biosynthesis, and investigations of the genes...

  14. Future cereal starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas; Jensen, Susanne Langgård; Shaik, Shahnoor Sultana

    2013-01-01

    The importance of cereal starch production worldwide cannot be overrated. However, the qualities and resulting values of existing raw and processed starch do not fully meet future demands for environmentally friendly production of renewable, advanced biomaterials, functional foods, and biomedical...... additives. New approaches for starch bioengineering are needed. In this review, we discuss cereal starch from a combined universal bioresource point of view. The combination of new biotechniques and clean technology methods can be implemented to replace, for example, chemical modification. The recently...... released cereal genomes and the exploding advancement in whole genome sequencing now pave the road for identifying new genes to be exploited to generate a multitude of completely new starch functionalities directly in the cereal grain, converting cereal crops to production plants. Newly released genome...

  15. The influence of starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Benes, K.; Wit, D. de

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5–30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  16. Buckwheat and quinoa seeds as supplements in wheat bread production

    Directory of Open Access Journals (Sweden)

    Demin Mirjana A.

    2013-01-01

    Full Text Available The aim of this work was to compare the nutritional characteristics of wheat bread with the bread produced of wheat flour supplemented with quinoa and buckwheat seeds. Bread making properties of these blends were analyzed in order to investigate their ability to make moulded bread. Quinoa (Chenopodium quinoa Will. and buckwheat seeds were grown in the vicinity of Belgrade, Serbia. The addition of pseudocereal seeds (at levels of 30% and 40% and a selected technological process, which included hydrothermal preparation of supplements, resulted with a valuable effect on nutritive value of breads. In comparison with the wheat bread that was used as control sample, the protein increase of 2% and the increase of crude fiber content at around 0.5% in 30% supplemented breads were registered. Furthermore, the incorporation of both seeds mixture at the level of 40%, increased the content of protein for 2.5% and fiber content for 0.4%. In regard to the starch, fat, and ash contents there were no major differences. The investigated breads were nutritionally superior to the wheat bread. Chemical composition of the selected seeds was also investigated. The results showed that the blends containing either 30% or 40% of selected seeds expressed high potential for the production of molded breads, as new baking products with enhanced nutritional composition. The applied technological procedure was modified in such way that for all blended combination of supplements it changed rheological properties of dough. Furthermore, it resulted in a good volume of breads with excellent sensory properties of aroma-odor and taste.

  17. Starch degradation by irradiation

    International Nuclear Information System (INIS)

    Pruzinec, J.; Hola, O.

    1987-01-01

    The effect of high energy irradiation on various starch samples was studied. The radiation dose varied between 43 and 200.9 kGy. The viscosity of starch samples were determined by Hoeppler's method. The percentual solubility of the matter in dry starch was evaluated. The viscosity and solubility values are presented. (author) 14 refs

  18. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    Science.gov (United States)

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  19. Arbuscular mycorrhizal strategy for zinc mycoremediation and diminished translocation to shoots and grains in wheat

    Science.gov (United States)

    2017-01-01

    Mycoremediation is an on-site remediation strategy, which employs fungi to degrade or sequester contaminants from the environment. The present work focused on the bioremediation of soils contaminated with zinc by the use of a native mycorrhizal fungi (AM) called Funneliformis geosporum (Nicol. & Gerd.) Walker & Schüßler. Experiments were performed using Triticum aestivum L. cv. Gemmeza-10 at different concentrations of Zn (50, 100, 200 mg kg-1) and inoculated with or without F. geosporum. The results showed that the dry weight of mycorrhizal wheat increased at Zn stressed plants as compared to the non-Zn-stressed control plants. The concentrations of Zn also had an inhibitory effect on the yield of dry root and shoot of non-mycorrhizal wheat. The photosynthetic pigment fractions were significantly affected by Zn treatments and mycorrhizal inoculation, where in all treatments, the content of the photosynthetic pigment fractions decreased as the Zn concentration increased in the soil. However, the level of minerals of shoots, roots, and grains was greatly influenced by Zn-treatment and by inoculation with F. geosporum. Treatment with Zn in the soil increased Cu and Zn concentrations in the root, shoot and grains, however, other minerals (P, S, K, Ca and Fe) concentration was decreased. Inoculation of wheat with AM fungi significantly reduced the accumulation of Zn and depressed its translocation in shoots and grains of wheat. In conclusion, inoculation with a native F. geosporum-improves yields of wheat under higher levels of Zn and is possible to be applied for the improvement of zinc contaminated soil. PMID:29145471

  20. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.