WorldWideScience

Sample records for native understory plants

  1. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer ( Odocoileus virginianus ) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km 2 , and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m 2 quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs ( Eurybia divaricata , Maianthemum racemosum , Polygonatum pubescens and Trillium recurvatum ) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  2. Foraging behavioral of Phylloscartes ventralis (Aves, Tyrannidae in native and planted forests of southern Brazil

    Directory of Open Access Journals (Sweden)

    André de Mendonça-Lima

    2014-12-01

    Full Text Available Few studies have related the effects of silviculture practices to the behavior of bird species in the Neotropics. The present study examined the foraging behavior of Phylloscartes ventralis (Temminck, 1824 in a native forest and in silviculture areas of Pinus elliotti and Araucaria angustifolia with different structures and ages. We tested two general hypotheses: (1 areas of commercial forest plantation change the foraging behavior of P. ventralis in relation to native forest, and (2 the foraging behavior of P. ventralis in silviculture areas with understories (complex structures is different from its behavior in areas without understory. The results showed that P. ventralis changed its foraging behavior depending on the type of forest, and on the presence of an understory in silviculture areas. Main changes involved the height and angle of substrate where the prey was captured. Phylloscartes ventralis showed the same set of attack maneuvers, with more maneuvers type in young Pinus planted without understory. The frequency of use of attack maneuvers was more similar in areas of silviculture with understory and in the native forest. The results highlight the importance of an understory structure and the utilization of native plant species in silviculture practices, to the foraging behavior of native bird species.

  3. Restoring Native Forest Understory: The Influence of Ferns and Light in a Hawaiian Experiment

    Directory of Open Access Journals (Sweden)

    Robert Shallenberger

    2013-03-01

    Full Text Available Ecological restoration is an increasingly important component of sustainable land management. We explore potential facilitative relationships for enhancing the cost-effectiveness of restoring native forest understory, focusing on two factors: (1 overstory shade and (2 possible facilitation by a fern (Dryopteris wallichiana, one of few native colonists of pasture in our montane Hawaiˈi study system. We planted 720 understory tree seedlings and over 4000 seeds of six species under six planting treatments: a full factorial combination of low, medium and high light, situating plantings in either the presence or absence of a mature fern. After three years, 75% of outplanted seedlings survived. Seedling survivorship was significantly higher in the presence of a fern (79% vs. 71% without a fern and in medium and low light conditions (81% vs. 64% in high light. Relative height was highest at low to medium light levels. After 2.2 years, 2.8% of the planted seeds germinated. We observed no significant differences in seed germination relative to light level or fern presence. Analyzing several approaches, we found nursery germination of seeds followed by outplanting ca. 20% less costly than direct seeding in the field. This study opens new questions about facilitation mechanisms that have the potential to increase the extent and effectiveness of restoration efforts.

  4. Should Exotic Eucalyptus be Planted in Subtropical China: Insights from Understory Plant Diversity in Two Contrasting Eucalyptus Chronosequences.

    Science.gov (United States)

    Wu, Jianping; Fan, Houbao; Liu, Wenfei; Huang, Guomin; Tang, Jianfu; Zeng, Ruijin; Huang, Jing; Liu, Zhanfeng

    2015-11-01

    Although Eucalyptus is widely planted in South China, whose effects on native biodiversity are unclear. The objective of this study was to quantify the richness and composition of understory plants in two contrasting Eucalyptus chronosequences in South China. One was in Zhangzhou City with plantation age of 2, 4, and 6 years after clear-cutting Chinese fir forests, while the other was in Heshan City with plantation age of 2, 3, and 24 years that reforested on barren lands. Results showed that the richness of understory plants and functional groups was not significantly altered in the Zhangzhou chronosequence, while increased in the 24-year-old plantations, with a significantly larger proportion of woody plants than the younger plantations for the Heshan chronosequence. Moreover, a higher richness of woody plants accompanied by a lower richness of herbaceous species was detected in the Zhangzhou chronosequence compared with the Heshan one. To balance the need for pulp production and plant diversity conservation, we suggest that intercropping approaches between exotic Eucalyptus plantations and native forests should be considered in the fast rotation Eucalyptus plantations. However, Eucalyptus plantations may be used as pioneer species to sustain ecosystem functioning for the degraded lands.

  5. Site quality influence over understory plant diversity in old-growth and harvested Nothofagus pumilio forests

    Directory of Open Access Journals (Sweden)

    E. A. Gallo

    2013-04-01

    Full Text Available Aim of study: The effects and interactions of shelterwood forest harvesting and site qualities over understory plant species diversity and composition were compared among primary and harvested Nothofagus pumilio forests.Area of study: Tierra del Fuego (Argentina, on three pure conditions (one and six year-old harvested, and primary without previous harvesting forests and three site qualities (high, medium and low.Material and Methods: Understory richness and cover (% were registered in five replicates of 1 hectare each per treatment. Taxonomic species were classified in categories (groups, origin and life forms. Two-way ANOVAs and multivariate analyses were conducted.Main results: Shelterwood harvesting and site quality significantly influenced understory cover and richness, which allow the introduction of native and exotic species and increasing of dicot and monocot covers. In dicots, monocots, exotics and total groups, higher richness and covers were related to time. Meanwhile, cover reached similar high values in all site qualities on dicot, native and total groups. On the other hand, monocot and exotic richness and cover remain similar in primary and recently harvested forests, and greatly increased in old harvested forests. Mosses and ferns were among the most sensitive groups.Research highlights: Impacts of shelterwood cut depend on site quality of the stands and time since harvesting occurs. For this, different site quality stands should received differential attention in the development of conservation strategies, as well as variations in the shelterwood implementation (as irregularity and patchiness should be considered to better promote understory plant species conservation inside managed areas.Key words: plant species conservation; years after harvesting; forest management; Tierra del Fuego.

  6. Limits to understory plant restoration following fuel-reduction treatments in a piñon-juniper woodland.

    Science.gov (United States)

    Redmond, Miranda D; Zelikova, Tamara J; Barger, Nichole N

    2014-11-01

    National fuel-reduction programs aim to reduce the risk of wildland fires to human communities and to restore forest and rangeland ecosystems to resemble their historical structure, function, and diversity. There are a number of factors, such as seed bank dynamics, post-treatment climate, and herbivory, which determine whether this latter goal may be achieved. Here, we examine the short-term (2 years) vegetation response to fuel-reduction treatments (mechanical mastication, broadcast burn, and pile burn) and seeding of native grasses on understory vegetation in an upland piñon-juniper woodland in southeast Utah. We also examine how wildlife herbivory affects the success of fuel-reduction treatments. Herbaceous cover increased in response to fuel-reduction treatments in all seeded treatments, with the broadcast burn and mastication having greater increases (234 and 160 %, respectively) in herbaceous cover than the pile burn (32 %). In the absence of seeding, herbaceous cover only increased in the broadcast burn (32 %). Notably, fuel-reduction treatments, but not seeding, strongly affected herbaceous plant composition. All fuel-reduction treatments increased the relative density of invasive species, especially in the broadcast burn, which shifted the plant community composition from one dominated by perennial graminoids to one dominated by annual forbs. Herbivory by wildlife reduced understory plant cover by over 40 % and altered plant community composition. If the primary management goal is to enhance understory cover while promoting native species abundance, our study suggests that mastication may be the most effective treatment strategy in these upland piñon-juniper woodlands. Seed applications and wildlife exclosures further enhanced herbaceous cover following fuel-reduction treatments.

  7. Understory plant diversity in mixed and pure plantations of jatropha curcas vs. native vegetation in the lower-middle reaches of the lancang-meikong river watershed, china

    International Nuclear Information System (INIS)

    Ou, G.L.; Ma, H.C.; Tang, J.R.

    2015-01-01

    22 plots at the Xiaoheijiang base, located in the lower-middle reaches of the Lancang-Meikong River in China, were investigated to analyze the understory biodiversity of Jatropha curcas plantations. Two kinds of mixed modes of J. curcas (mixed plantation with Macadamia integrifolia and mixed plantation with shrub species) and a pure plantation of J. curcas were planted, while the native vegetation served as a control. The plots were distributed along the gradients of forest management, succession and elevation by CCA analysis. Species richness was not significantly different for the different types of plantation, but the evenness of species could be affected, especially for the total community and the understory by planting J. curcas. The diversity and evenness indices of species were affected for the mixed plantation with different proportions of M. integrifolia, especially for the shrub layer, the Shannon diversity index and Pilou evenness index showed significant differences. And for the different mixed shrub species, only the Shannon diversity index and Pilou evenness index were significantly different. Finally, from the perspective of biological diversity, J.curcas plantation with shrub species would be a recommended planting model for ecological restoration in a dry-hot valley area, while J. curcas plantation with M. integrifolia would be an effective planting model to balance crop yield and food security. (author)

  8. Biotic constraints on the establishment and performance of native, naturalized, and invasive plants in Pacific Northwest (USA steppe and forest

    Directory of Open Access Journals (Sweden)

    Brian M. Connolly

    2017-02-01

    Full Text Available Factors that cause differential establishment among naturalized, invasive, and native species are inadequately documented, much less often quantified among different communities. We evaluated the effects of seed addition and disturbance (i.e., understory canopy removal on the establishment and seedling biomass among two naturalized, two invasive, and two native species (1 forb, 1 grass in each group within steppe and low elevation forest communities in eastern Washington, USA. Establishment within each plant immigrant class was enhanced by seed addition: naturalized species showed the greatest difference in establishment between seed addition and no seed addition plots, native and invasive species establishment also increased following seed addition but not to the same magnitude as naturalized species. Within seed addition plots, understory canopy disturbance resulted in significant increases in plant establishment (regardless of plant immigration class relative to undisturbed plots and the magnitude of this effect was comparable between steppe and adjacent forest. However, regardless of disturbance treatment fewer invasive plants established in the forest than in the steppe, whereas native and naturalized plant establishment did not differ between the habitats. Individual biomass of naturalized species were consistently greater in disturbed (canopy removed versus undisturbed control plots and naturalized species were also larger in the steppe than in the forest at the time of harvest. Similar trends in plant size were observed for the native and invasive species, but the differences in biomass for these two immigration classes between disturbance treatments and between habitats were not significant. We found that strong limitations of non-native species is correlated with intact canopy cover within the forest understory, likely driven by the direct or indirect consequences of low light transmittance through the arboreal and understory canopy

  9. Understory vegetation response to mechanical mastication and other fuels treatments in a ponderosa pine forest

    Science.gov (United States)

    Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp

    2010-01-01

    Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a secondgrowth ponderosa pine forest....

  10. Coevolution between invasive and native plants driven by chemical competition and soil biota.

    Science.gov (United States)

    Lankau, Richard A

    2012-07-10

    Although reciprocal evolutionary responses between interacting species are a driving force behind the diversity of life, pairwise coevolution between plant competitors has received less attention than other species interactions and has been considered relatively less important in explaining ecological patterns. However, the success of species transported across biogeographic boundaries suggests a stronger role for evolutionary relationships in shaping plant interactions. Alliaria petiolata is a Eurasian species that has invaded North American forest understories, where it competes with native understory species in part by producing compounds that directly and indirectly slow the growth of competing species. Here I show that populations of A. petiolata from areas with a greater density of interspecific competitors invest more in a toxic allelochemical under common conditions. Furthermore, populations of a native competitor from areas with highly toxic invaders are more tolerant to competition from the invader, suggesting coevolutionary dynamics between the species. Field reciprocal transplants confirmed that native populations more tolerant to the invader had higher fitness when the invader was common, but these traits came at a cost when the invader was rare. Exotic species are often detrimentally dominant in their new range due to their evolutionary novelty; however, the development of new coevolutionary relationships may act to integrate exotic species into native communities.

  11. [Understory effects on overstory trees: A review.

    Science.gov (United States)

    Du, Zhong; Cai, Xiao Hu; Bao, Wei Kai; Chen, Huai; Pan, Hong Li

    2016-03-01

    Plant-plant interactions play a key role in regulating the composition and structure of communities and ecosystems. Studies of plant-plant interactions in forest ecosystems have traditionally concentrated on either tree-tree interactions or overstory species' impacts on understory plants. The possible effects of understory species on overstory trees have received less attention. We summarized the effects of understory species on soil physiological properties, soil fauna activities, leaf litter decomposition, and ecophysiology and growth of the overstory species. Then the effects of distur-bance on understory-overstory interactions were discussed. Finally, an ecophysiology-based concept model of understory effects on overstory trees was proposed. Understory removal experiments showed that the study area, overstory species age, soil fertility and understory species could significantly affect the understory-overstory interactions.

  12. The influence of canopy-layer composition on understory plant diversity in southern temperate forests

    Directory of Open Access Journals (Sweden)

    Luciana Mestre

    2017-05-01

    Full Text Available Background Understory plants represents the largest component of biodiversity in most forest ecosystems and plays a key role in forest functioning. Despite their importance, the influence of overstory-layer composition on understory plant diversity is relatively poorly understood within deciduous-evergreen broadleaved mixed forests. The aim of this work was to evaluate how tree overstory-layer composition influences on understory-layer diversity in three forest types (monospecific deciduous Nothofagus pumilio (Np, monospecific evergreen Nothofagus betuloides (Nb, and mixed N. pumilio-N. betuloides (M forests, comparing also between two geographical locations (coast and mountain to estimate differences at landscape level. Results We recorded 46 plant species: 4 ferns, 12 monocots, and 30 dicots. Canopy-layer composition influences the herb-layer structure and diversity in two different ways: while mixed forests have greater similarity to evergreen forests in the understory structural features, deciduous and mixed were similar in terms of the specific composition of plant assemblage. Deciduous pure stands were the most diverse, meanwhile evergreen stands were least diverse. Lack of exclusive species of mixed forest could represent a transition where evergreen and deciduous communities meet and integrate. Moreover, landscape has a major influence on the structure, diversity and richness of understory vegetation of pure and mixed forests likely associated to the magnitude and frequency of natural disturbances, where mountain forest not only had highest herb-layer diversity but also more exclusive species. Conclusions Our study suggests that mixed Nothofagus forest supports coexistence of both pure deciduous and pure evergreen understory plant species and different assemblages in coastal and mountain sites. Maintaining the mixture of canopy patch types within mixed stands will be important for conserving the natural patterns of understory plant

  13. Intraspecific variability and reaction norms of forest understory plant species traits

    Science.gov (United States)

    Burton, Julia I.; Perakis, Steven; McKenzie, Sean C.; Lawrence, Caitlin E.; Puettmann, Klaus J.

    2017-01-01

    Trait-based models of ecological communities typically assume intraspecific variation in functional traits is not important, though such variation can change species trait rankings along gradients in resources and environmental conditions, and thus influence community structure and function.We examined the degree of intraspecific relative to interspecific variation, and reaction norms of 11 functional traits for 57 forest understory plant species, including: intrinsic water-use efficiency (iWUE), Δ15N, 5 leaf traits, 2 stem traits and 2 root traits along gradients in light, nitrogen, moisture and understory cover.Our results indicate that interspecific trait variation exceeded intraspecific variation by at least 50% for most, but not all traits. Intraspecific variation in Δ15N, iWUE, leaf nitrogen content and root traits was high (47-70%) compared with most leaf traits and stem traits (13-38%).Δ15N varied primarily along gradients in abiotic conditions, while light and understory cover were relatively less important. iWUE was related primarily to light transmission, reflecting increases in photosynthesis relative to stomatal conductance. Leaf traits varied mainly as a function of light availability, with some reaction norms depending on understory cover. Plant height increased with understory cover, while stem specific density was related primarily to light. Resources, environmental conditions and understory cover did not contribute strongly to the observed variation in root traits.Gradients in resources, environmental conditions and competition all appear to control intraspecific variability in most traits to some extent. However, our results suggest that species cross-over (i.e., trait rank reversals) along the gradients measured here are generally not a concern.Intraspecific variability in understory plant species traits can be considerable. However, trait data collected under a narrow range of environmental conditions appears sufficient to establish species

  14. Post-Fire Peat Land Understory Plant in Rimba Panjang, Sumatera, Indonesia

    Science.gov (United States)

    Firdaus, L. N.; Nursal; Wulandari, Sri; Syafi'i, Wan; Fauziah, Yuslim

    2017-12-01

    The existence of understory plants during early post-fire succession is essential in term of natural post-fire ecological restoration. More than fifty percent of fire incidents in Riau, Sumatera, Indonesia occurred in shallow peat lands which have the huge impact on vegetation damage. This study aims to explore the understory plants species and diversity in post-fire peat land at Rimba Panjang, Kampar Regency, Sumatera, Indonesia. By using survey method, the observations were conducted on 150 plots which were distributed randomly over four locations based on the year after fire: 2009, 2014, 2015 and 2016. We found respectively 12, 14, 19 and 17 species at that sites with respective Shannon Wiener diversity index were 1.72, 2.00, 2.14 and 2.40. All the sites were dominated by Stenochlaena palustris (Burm.). Coverage percentage of understory vegetation were respectively 28.87%, 25.50%, 51.60% and 54.13%. Overall, we found 31 species of 17 familia. The result showed that the species composition, diversity index and coverage percentage of understory plant are likely to decrease in line with the length of time after the fire. Post peatland fires in Rimba Panjang are still having the characteristics of the peat swamp habitat which was dominated by Stenochlaena palustris (Burm.). Ecological restoration of that habitat is still possible, but it is necessary to consider technological and socio-economical aspects of local communities.

  15. Differences in Plant Traits among N-fixing Trees in Hawaii Affect Understory Nitrogen Cycling

    Science.gov (United States)

    August-Schmidt, E.; D'Antonio, C. M.

    2016-12-01

    Nitrogen (N) fixing trees are frequently used to restore soil functions to degraded ecosystems because they can increase soil organic matter and N availability. Although N-fixers are lumped into a single functional group, the quality and quantity of the plant material they produce and the rate at which they accrete and add N to the cycling pool likely vary. This talk will focus on the questions: (1) How does N-cycling differ among N-fixing tree species? And (2) Which plant traits are most important in distinguishing the soil N environment? To address these questions, we investigated planted stands of two Hawaiian native N-fixing trees (Acacia koa and Sophora chrysophylla) and `natural' stands of an invasive N-fixing tree (Morella faya) in burned seasonal submontane woodlands in Hawaii Volcanoes National Park. We measured the relative availability of nitrogen in the soil pool and understory plant community as well as characterizing the rate and amount of N cycling in these stands both in the field and using long term soil incubations in the laboratory. We found that N is cycled very differently under these three N-fixers and that this correlates with differences in their leaf traits. S. chrysophylla had the highest foliar %N and highest specific leaf area, and stands of these trees are associated with faster N-cycling, resulting in greater N availability compared to all other site types. Incubated S. chrysophylla soils mineralized almost twice as much N as any other soil type over the course of the experiment. The comparatively high-N environment under S. chrysophylla suggests that litter quality may be more important than litter quantity in determining nitrogen availability to the understory community.

  16. Long-term deer exclusion has complex effects on a suburban forest understory

    Science.gov (United States)

    Faison, Edward K.; Foster, David R.; DeStefano, Stephen

    2016-01-01

    Herbivory by deer is one of the leading biotic disturbances on forest understories (i.e., herbs, small shrubs, and small tree seedlings). A large body of research has reported declines in height, abundance, and reproductive capacity of forbs and woody plants coupled with increases in abundance of graminoids, ferns, and exotic species due to deer herbivory. Less clear is the extent to which (and the direction in which) deer alter herbaceous layer diversity, where much of the plant diversity in a forest occurs. We examined the effect of 15 y of deer exclusion on the understory of a suburban hardwood forest in Connecticut exposed to decades of intensive herbivory by white-tailed deer (Odocoileus virginianus). We compared species richness (at subplot and plot scale), individual species and life form group abundance (% cover), and community composition between grazed and exclosure plots, as well as between mesic and wet soil blocks. Forb cover was more than twice as abundant in exclosure as in grazed plots, whereas sedge (Carex spp.) cover was 28 times more abundant, and exotic species cover generally higher in grazed than in exclosure plots. Native and exotic species richness were both higher in grazed than exclosure plots at the subplot scale, and native herbaceous richness was higher in grazed plots at both spatial scales. In contrast, native shrub richness increased with deer exclusion at the plot scale. Our results suggest that deer exclusion had contrasting effects on species richness, depending on plant life form, but that overall richness of both exotic and native plants declined with deer exclusion. In addition, site heterogeneity remained an important driver of vegetation dynamics even in the midst of high deer densities.

  17. Assessing tolerance of longleaf pine understory herbaceous plants to herbicide applications in a container nursery

    Science.gov (United States)

    D. Paul Jackson; Scott A. Enebak; James West; Drew Hinnant

    2015-01-01

    Renewed efforts in longleaf pine (Pinus palustris Mill.) ecosystem restoration has increased interest in the commercial production of understory herbaceous species. Successful establishment of understory herbaceous species is enhanced when using quality nursery-grown plants that have a better chance of survival after outplanting. Nursery growing practices have not been...

  18. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    Science.gov (United States)

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  19. Community-level plant-soil feedbacks explain landscape distribution of native and non-native plants.

    Science.gov (United States)

    Kulmatiski, Andrew

    2018-02-01

    Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa , and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata . Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors

  20. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests

    Science.gov (United States)

    McIntosh, Anne C. S.; Macdonald, S. Ellen; Quideau, Sylvie A.

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  1. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  2. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  3. Understory succession in post-agricultural oak plantations

    DEFF Research Database (Denmark)

    Brunet, Jörg; Valtinat, Karin; Mayr, Marian Lajos

    2011-01-01

    The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post-agricultural planta......The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post...... forested stands, which maintained differences in species composition. The development of a shrub layer seemed to imply a competitive advantage for forest specialists compared to generalist species. For successful recovery of a rich understory, we suggest that post-arable plantations should be established......, and woody species. The group of forest specialists may approach the richness of continuously forested sites after 60-80 years in non-fragmented plantations, but many forest species were sensitive to habitat fragmentation. Open-land species richness decreased during succession, while the richness of woody...

  4. Infrared heater system for warming tropical forest understory plants and soils

    Science.gov (United States)

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  5. Dry coniferous forest restoration and understory plant diversity: The importance of community heterogeneity and the scale of observation

    Science.gov (United States)

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...

  6. Developing and Testing a Robust, Multi-Scale Framework for the Recovery of Longleaf Pine Understory Communities

    Science.gov (United States)

    2015-05-01

    effects on seed germination of native and invasive Eastern deciduous forest understory plants. Forest Ecology and Management 261:1401–1408. Estes, J...Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204...in longleaf pine savannas. Figure 3.3.2. Results of multivariate classification and regression tree analysis. Figure 3.3.3. Comparison of Classes

  7. Monoterpene emissions from an understory species, Pteridium aquilinum

    Science.gov (United States)

    Madronich, Monica B.; Greenberg, James P.; Wessman, Carol A.; Guenther, Alex B.

    2012-07-01

    Monoterpene emissions from the dominant understory species Pteridium aquilinum (Bracken fern) in a mixed temperate forest were measured in the field during the summers of 2006, 2007 and 2008. The results showed that Bracken fern emitted monoterpenes at different rates depending if the plants were located in the understory or in open areas. Understory plants emitted monoterpene levels ranging from 0.002 to 13 μgC gdw-1 h-1. Open area plants emitted monoterpene levels ranging from 0.005 to 2.21 μgC gdw-1 h-1. During the summer of 2008 greenhouse studies were performed to complement the field studies. Only 3% of the greenhouse Bracken fern plants emitted substantial amounts of monoterpenes. The average emission, 0.15 μgC gdw-1 h-1 ± 0.9 μgC gdw-1 h-1, was much lower than that observed in the field. The factors controlling monoterpene emissions are not clear, but this study provides evidence of the potential importance of understory vegetation to ecosystem total hydrocarbon emissions and emphasizes the need for longer-term field studies.

  8. Effects of past logging and grazing on understory plant communities in a montane Colorado forest

    Science.gov (United States)

    Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stohlgren, T.J.

    2009-01-01

    Throughout Pinus ponderosa-Pseudotsuga menziesii forests of the southern Colorado Front Range, USA, intense logging and domestic grazing began at the time of Euro-American settlement in the late 1800s and continued until the early 1900s. We investigated the long-term impacts of these settlement-era activities on understory plant communities by comparing understory composition at a historically logged and grazed site to that of an environmentally similar site which was protected from past use. We found that species richness and cover within functional groups rarely differed between sites in either upland or riparian areas. Multivariate analyses revealed little difference in species composition between sites on uplands, though compositional differences were apparent in riparian zones. Our findings suggest that settlement-era logging and grazing have had only minor long-term impacts on understories of upland Front Range P. ponderosa-P. menziesii forests, though they have had a greater long-term influence on riparian understories, where these activities were likely the most intense. ?? 2008 Springer Science+Business Media B.V.

  9. Native fruit traits may mediate dispersal competition between native and non-native plants

    Directory of Open Access Journals (Sweden)

    Clare Aslan

    2012-02-01

    Full Text Available Seed disperser preferences may mediate the impact of invasive, non-native plant species on their new ecological communities. Significant seed disperser preference for invasives over native species could facilitate the spread of the invasives while impeding native plant dispersal. Such competition for dispersers could negatively impact the fitness of some native plants. Here, we review published literature to identify circumstances under which preference for non-native fruits occurs. The importance of fruit attraction is underscored by several studies demonstrating that invasive, fleshy-fruited plant species are particularly attractive to regional frugivores. A small set of studies directly compare frugivore preference for native vs. invasive species, and we find that different designs and goals within such studies frequently yield contrasting results. When similar native and non-native plant species have been compared, frugivores have tended to show preference for the non-natives. This preference appears to stem from enhanced feeding efficiency or accessibility associated with the non-native fruits. On the other hand, studies examining preference within existing suites of co-occurring species, with no attempt to maximize fruit similarity, show mixed results, with frugivores in most cases acting opportunistically or preferring native species. A simple, exploratory meta-analysis finds significant preference for native species when these studies are examined as a group. We illustrate the contrasting findings typical of these two approaches with results from two small-scale aviary experiments we conducted to determine preference by frugivorous bird species in northern California. In these case studies, native birds preferred the native fruit species as long as it was dissimilar from non-native fruits, while non-native European starlings preferred non-native fruit. However, native birds showed slight, non-significant preference for non-native fruit

  10. Loblolly pine seedling response to competition from exotic vs. native plants

    Science.gov (United States)

    Pedram Daneshgar; Shibu Jose; Craig Ramsey; Robin Collins

    2006-01-01

    A field study was conducted in Santa Rosa County, FL to test the hypothesis that an exotic understory would exert a higher degree of competition on tree seedling establishment and growth than native vegetation. The study site was a 60 ha cutover area infested with the invasive exotic cogongrass [Imperata cylindrica (L.) Raeusch.]. A completely...

  11. Understory vegetation

    Science.gov (United States)

    Steve Sutherland; Todd F. Hutchinson; Jennifer L. Windus

    2003-01-01

    This chapter documents patterns of species composition and diversity within the understory vegetation layer and provides a species list for the four study areas in southern Ohio. Within each of 108 plots, we recorded the frequency of all vascular plant species in sixteen 2-m² quadrats. We recorded 297 species, including 187 forbs (176 perennials, 9 annuals, 2...

  12. Herbivores modify selection on plant functional traits in a temperate rainforest understory.

    Science.gov (United States)

    Salgado-Luarte, Cristian; Gianoli, Ernesto

    2012-08-01

    There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.

  13. Understory plant diversity in riparian alder-conifer stands after logging in southeast Alaska.

    Science.gov (United States)

    Robert L. Deal

    1997-01-01

    Stand structure, tree height growth, and understory plant diversity were assessed in five mixed alder-conifer stands after logging in southeast Alaska. Tree species composition ranged from 7- to 91-percent alder, and basal area ranged from 30 to 55 m2/ha. The alder exhibited rapid early height growth, but recent growth has slowed considerably. Some conifers have...

  14. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion.

    Science.gov (United States)

    Connolly, B M; Pearson, D E; Mack, R N

    2014-07-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food preference. We evaluated the effect of postdispersal seed predators on the establishment of invasive, naturalized, and native species within and between adjacent forest and steppe communities of eastern Washington, USA that differ in severity of plant invasion. Seed removal from trays placed within guild-specific exclosures revealed that small mammals were the dominant seed predators in both forest and steppe. Seeds of invasive species (Bromus tectorum, Cirsium arvense) were removed significantly less than the seeds of native (Pseudoroegneria spicata, Balsamorhiza sagittata) and naturalized (Secale cereale, Centaurea cyanus) species. Seed predation limited seedling emergence and establishment in both communities in the absence of competition in a pattern reflecting natural plant abundance: S. cereale was most suppressed, B. tectorum was least suppressed, and P. spicata was suppressed at an intermediate level. Furthermore, seed predation reduced the residual seed bank for all species. Seed mass correlated with seed removal rates in the forest and their subsequent effects on plant recruitment; larger seeds were removed at higher rates than smaller seeds. Our vegetation surveys indicate higher densities and canopy cover of nonnative species occur in the steppe compared with the forest understory, suggesting the steppe may be more susceptible to invasion. Seed predation alone, however, did not result in significant differences in establishment for any species between these communities, presumably due to similar total small-mammal abundance between communities. Consequently, preferential seed predation by small

  15. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  16. Periphyton density is similar on native and non-native plant species

    NARCIS (Netherlands)

    Grutters, B.M.C.; Gross, Elisabeth M.; van Donk, E.; Bakker, E.S.

    2017-01-01

    Non-native plants increasingly dominate the vegetation in aquatic ecosystems and thrive in eutrophic conditions. In eutrophic conditions, submerged plants risk being overgrown by epiphytic algae; however, if non-native plants are less susceptible to periphyton than natives, this would contribute to

  17. Understory Structure and Vascular Plant Diversity in Naturally Regenerated Deciduous Forests and Spruce Plantations on Similar Clear-Cuts: Implications for Forest Regeneration Strategy Selection

    Directory of Open Access Journals (Sweden)

    ZhiQiang Fang

    2014-04-01

    Full Text Available The active effect of natural regeneration on understory vegetation and diversity on clear-cut forestlands, in contrast to conifer reforestation, is still controversial. Here we investigated differences in understory vegetation by comparing naturally regenerated deciduous forests (NR and reforested spruce plantations (SP aged 20–40 years on 12 similar clear-cuts of subalpine old-growth spruce-fir forests from the eastern Tibetan Plateau. We found that 283 of the 334 vascular plant species recorded were present in NR plots, while only 264 species occurred in SP plots. This was consistent with richer species, higher cover, and stem (or shoot density of tree seedlings, shrubs, and ferns in the NR plots than in the SP plots. Moreover, understory plant diversity was limited under dense canopy cover, which occurred more frequently in the SP plots. Our findings implied that natural deciduous tree regeneration could better preserve understory vegetation and biodiversity than spruce reforestation after clear-cutting. This result further informed practices to reduce tree canopy cover for spruce plantations or to integrate natural regeneration and reforestation for clear-cuts in order to promote understory vegetation and species diversity conservation.

  18. Susceptibility to Phytophthora ramorum and inoculum production potential of some common eastern forest understory plant species

    Science.gov (United States)

    Paul W. Tooley; Marsha Browning

    2009-01-01

    Twenty-five plant species (21 genera, 14 families), which comprise a portion of the understory in forests of the Eastern United States, were evaluated for susceptibility to infection by Phytophthora ramorum. The degree to which P. ramorum is able to form sporangia and chlamydospores was also assessed on...

  19. Passive restoration following ungulate removal in a highly disturbed tropical wet forest devoid of native seed dispersers

    Science.gov (United States)

    Nafus, Melia; Savidge, Julie A.; Yackel Adams, Amy A.; Christy, Michelle T.; Reed, Robert

    2018-01-01

    Overabundant ungulate populations can alter forests. Concurrently, global declines of seed dispersers may threaten native forest structure and function. On an island largely devoid of native vertebrate seed dispersers, we monitored forest succession for 7 years following ungulate exclusion from a 5-ha area and adjacent plots with ungulates still present. We observed succession from open scrub to forest and understory cover by non-native plants declined. Two trees, native Hibiscus tiliaceus and non-native Leucaena leucocephala, accounted for most forest regeneration, with the latter dominant. Neither species is dependent on animal dispersers nor was there strong evidence that plants dependent on dispersers migrated into the 5-ha study area. Passive restoration following ungulate removal may facilitate restoration, but did not show promise for fully restoring native forest on Guam. Restoration of native forest plants in bird depopulated areas will likely require active outplanting of native seedlings, control of factors resulting in bird loss, and reintroduction of seed dispersers.

  20. Novel weapons testing: are invasive plants more chemically defended than native plants?

    Directory of Open Access Journals (Sweden)

    Eric M Lind

    2010-05-01

    Full Text Available Exotic species have been hypothesized to successfully invade new habitats by virtue of possessing novel biochemistry that repels native enemies. Despite the pivotal long-term consequences of invasion for native food-webs, to date there are no experimental studies examining directly whether exotic plants are any more or less biochemically deterrent than native plants to native herbivores.In a direct test of this hypothesis using herbivore feeding assays with chemical extracts from 19 invasive plants and 21 co-occurring native plants, we show that invasive plant biochemistry is no more deterrent (on average to a native generalist herbivore than extracts from native plants. There was no relationship between extract deterrence and length of time since introduction, suggesting that time has not mitigated putative biochemical novelty. Moreover, the least deterrent plant extracts were from the most abundant species in the field, a pattern that held for both native and exotic plants. Analysis of chemical deterrence in context with morphological defenses and growth-related traits showed that native and exotic plants had similar trade-offs among traits.Overall, our results suggest that particular invasive species may possess deterrent secondary chemistry, but it does not appear to be a general pattern resulting from evolutionary mismatches between exotic plants and native herbivores. Thus, fundamentally similar processes may promote the ecological success of both native and exotic species.

  1. Elevated native terrestrial snail abundance and diversity in association with an invasive understory shrub, Berberis thunbergii, in a North American deciduous forest

    Science.gov (United States)

    Utz, Ryan M.; Pearce, Timothy A.; Lewis, Danielle L.; Mannino, Joseph C.

    2018-01-01

    Invasive terrestrial plants often substantially reshape environments, yet how such invasions affect terrestrial snail assemblages remains understudied. We investigated how snail assemblages in deciduous forest soils with dense Berberis thunbergii (Japanese barberry), an invasive shrub in eastern North America, differ from forest areas lacking the shrub. Leaf litter and soil samples were collected from forest patches with dense B. thunbergii understories and adjacent control areas within two exurban forest tracts in western Pennsylvania, U.S.A. Snails were identified to species and quantified by standard diversity metrics. Contrary to our expectations, snails were significantly more abundant and diverse in B. thunbergii-invaded areas. Despite differences in abundance, the snail community composition did not differ between invaded and control habitats. The terrestrial snail assemblage we observed, which was composed entirely of native species, appears to respond favorably to B. thunbergii invasion and therefore may not be negatively impacted by physicochemical changes to soils typically observed in association with the plant. Such findings could reflect the fact that B. thunbergii likely creates more favorable habitat for snails by creating cooler, more humid, and more alkaline soil environments. However, the snail assemblages we retrieved may consist mostly of species with high tolerance to environmental degradation due to a legacy of land use change and acid deposition in the region.

  2. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  3. Native plants fare better against an introduced competitor with native microbes and lower nitrogen availability.

    Science.gov (United States)

    Gaya Shivega, W; Aldrich-Wolfe, Laura

    2017-01-24

    While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species, and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice-versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. Native plant community response to alien plant invasion and removal

    Directory of Open Access Journals (Sweden)

    Jara ANDREU

    2011-01-01

    Full Text Available Given the potential ecological impacts of invasive species, removal of alien plants has become an important management challenge and a high priority for environmental managers. To consider that a removal effort has been successful requires both, the effective elimination of alien plants and the restoration of the native plant community back to its historical composition and function. We present a conceptual framework based on observational and experimental data that compares invaded, non-invaded and removal sites to quantify invaders’ impacts and native plant recover after their removal. We also conduct a meta-analysis to quantitatively evaluate the impacts of plant invaders and the consequences of their removal on the native plant community, across a variety of ecosystems around the world. Our results that invasion by alien plants is responsible for a local decline in native species richness and abundance. Our analysis also provides evidence that after removal, the native vegetation has the potential to recover to a pre-invasion target state. Our review reveal that observational and experimental approaches are rarely used in concert, and that reference sites are scarcely employed to assess native species recovery after removal. However, we believe that comparing invaded, non-invaded and removal sites offer the opportunity to obtain scientific information with relevance for management.

  5. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    Energy Technology Data Exchange (ETDEWEB)

    Brudvig, Lars A. [Department of Plant Biology, Michigan State University; Orrock, John L. [Department of Zoology, University of Wisconsin; Damschen, Ellen I. [Department of Zoology, University of Wisconsin; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  6. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities

    Science.gov (United States)

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; Collins, Cathy D.; Hahn, Philip G.; Mattingly, W. Brett; Veldman, Joseph W.; Walker, Joan L.

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  7. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    Directory of Open Access Journals (Sweden)

    Lars A Brudvig

    Full Text Available Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities, and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes. Our study demonstrates

  8. Tamarisk coalition - native riparian plant materials program

    Science.gov (United States)

    Stacy Kolegas

    2012-01-01

    The Tamarisk Coalition (TC), a nonprofit organization dedicated to riparian restoration in the western United States, has created a Native Plant Materials Program to address the identified need for native riparian plant species for use in revegetation efforts on the Colorado Plateau. The specific components of the Native Plant Materials Program include: 1) provide seed...

  9. Native grass hydroseed development : establishment protocols for three native Hawaiian plants on roadside areas.

    Science.gov (United States)

    2012-08-01

    The biggest mistake with using native plants on Hawaiis roadways is to assume that native plants do not require : nutrient enhancement or supplemental water to establish on these sites. The establishment of native plants will : require a detailed ...

  10. Important biological factors for utilizing native plant species

    Science.gov (United States)

    Loren E. Wiesner

    1999-01-01

    Native plant species are valuable resources for revegetation of disturbed ecosystems. The success of these plantings is dependent on the native species selected, quality of seed used, condition of the soil, environmental conditions before and after planting, planting equipment used, time of planting, and other factors. Most native species contain dormant seed. Dormancy...

  11. The environment, not space, dominantly structures the landscape patterns of the richness and composition of the tropical understory vegetation.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Hu

    Full Text Available The mechanisms driving the spatial patterns of species richness and composition are essential to the understanding of biodiversity. Numerous studies separately identify the contributions of the environment (niche process and space (neutral process to the species richness or composition at different scales, but few studies have investigated the contributions of both types of processes in the two types of data at the landscape scale. In this study, we partitioned the spatial variations in all, exotic and native understory plant species richness and composition constrained by environmental variables and space in 134 plots that were spread across 10 counties in Hainan Island in southern China. The 134 plots included 70 rubber (Hevea brasiliensis plantation plots, 50 eucalyptus (Eucalyptus urophylla plantation plots, and 14 secondary forest plots. RDA based variation partitioning was run to assess the contribution of environment and space to species richness and composition. The results showed that the environmental variables alone explained a large proportion of the variations in both the species richness and composition of all, native, and exotic species. The RDA results indicated that overstory composition (forest type here plays a leading role in determining species richness and composition patterns. The alpha and beta diversities of the secondary forest plots were markedly higher than that of the two plantations. In conclusion, niche differentiation processes are the principal mechanisms that shape the alpha and beta diversities of understory plant species in Hainan Island.

  12. Non-native plant invasions of United States National parks

    Science.gov (United States)

    Allen, J.A.; Brown, C.S.; Stohlgren, T.J.

    2009-01-01

    The United States National Park Service was created to protect and make accessible to the public the nation's most precious natural resources and cultural features for present and future generations. However, this heritage is threatened by the invasion of non-native plants, animals, and pathogens. To evaluate the scope of invasions, the USNPS has inventoried non-native plant species in the 216 parks that have significant natural resources, documenting the identity of non-native species. We investigated relationships among non-native plant species richness, the number of threatened and endangered plant species, native species richness, latitude, elevation, park area and park corridors and vectors. Parks with many threatened and endangered plants and high native plant species richness also had high non-native plant species richness. Non-native plant species richness was correlated with number of visitors and kilometers of backcountry trails and rivers. In addition, this work reveals patterns that can be further explored empirically to understand the underlying mechanisms. ?? Springer Science+Business Media B.V. 2008.

  13. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants

    NARCIS (Netherlands)

    Grutters, Bart M.C.; Saccomanno, Benedetta; Gross, Elisabeth M.; Van de Waal, Dedmer B.; van Donk, Ellen; Bakker, Elisabeth S.

    2017-01-01

    Secondary compounds can contribute to the success of non-native plant species if they reduce damage by native herbivores or inhibit the growth of native plant competitors. However, there is opposing evidence on whether the secondary com- pounds of non-native plant species are stronger than those of

  14. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Science.gov (United States)

    Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun

    2017-07-01

    Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest

  15. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Directory of Open Access Journals (Sweden)

    D. Tian

    2017-07-01

    Full Text Available Reactive nitrogen (N increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m  ×  20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings, and ground-cover plants (ferns according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height of 5–10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha−1 yr−1 and N100 fertilized plots (100 kg N ha−1 yr−1, while the growth of median and large trees with a DBH of  >  10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical

  16. Prescribed burning for understory restoration

    Science.gov (United States)

    Kenneth W. Outcalt

    2006-01-01

    Because the longleaf ecosystem evolved with and is adapted to frequent fire, every 2 to 8 years, prescribed burning is often useful for restoring understory communities to a diverse ground layer of grasses, herbs, and small shrubs. This restoration provides habitat for a number of plant and animal species that are restricted to or found mostly in longleaf pine...

  17. Prevention, early detection and containment of invasive, nonnative plants in the Hawaiian Islands: current efforts and needs

    Science.gov (United States)

    Christoph Kueffer,; Loope, Lloyd

    2009-01-01

    Introduction: Invasive, non-native plants (or environmental weeds) have long been recognized as a major threat to the native biodiversity of oceanic islands (Cronk & Fuller, 1995; Denslow, 2003). Globally, several hundred non-native plant species have been reported to have major impacts on natural areas on oceanic islands (Kueffer et al., 2009). In Hawaii, at least some 50 non-native plant species reach dominance in natural areas (Kueffer et al., 2009) and many of them are known to impact ecosystem processes or biodiversity. One example is the invasive Australian tree fern (Cyathea cooperi), which has been shown to be very efficient at utilizing soil nitrogen and can grow six times as rapidly in height, maintain four times more fronds, and produce significantly more fertile fronds per month than the native Hawaiian endemic tree ferns, Cibotium spp. (Durand & Goldstein, 2001a, b). Additionally, while native tree ferns provide an ideal substrate for epiphytic growth of many understory ferns and flowering plants, the Australian tree fern has the effect of impoverishing the understory and failing to support an abundance of native epiphytes (Medeiros & Loope, 1993). Other notorious examples of invasive plant species problematic for biodiversity and ecosystem processes in Hawaii include miconia (Miconia calvescens), strawberry guava (Psidium cattleianum), albizia (Falcataria moluccana), firetree (Morella faya), clidemia (Clidemia hirta), kahili ginger (Hedychium gardnerianum), and fountain grass (Pennisetum setaceum), to name just a few. Fireweed (Senecio madagascariensis) is a recent example of a seriously problematic invasive species for Hawaii’s agriculture and is damaging certain high-elevations native ecosystems as well.

  18. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion.

    Directory of Open Access Journals (Sweden)

    Jennifer N Smith

    Full Text Available Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe's architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations.

  19. Effects of understory vegetation and litter on plant nitrogen (N, phosphorus (P, N:P ratio and their relationships with growth rate of indigenous seedlings in subtropical plantations.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Establishing seedlings in subtropical plantations is very important for forest health, succession and management. Information on seedling nutrient concentrations is essential for both the selection of suitable indigenous tree species to accelerate succession of the established plantation and sustainable forest management. In this study, we investigated the concentrations of nitrogen ([N], phosphorus ([P], and N:P ratio in leaves, stems and roots of seedlings of three indigenous tree species (Castanopsis chinensis, Michelia chapensis and Psychotria rubra transplanted with removing or retaining understory vegetation and litter at two typical subtropical forest plantations (Eucalyptus plantation and native species plantation. We also measured the relative growth rate (RGR of seedling height, and developed the relationships between RGR and leaf [N], [P] and N:P ratio. Results showed that treatments of understory vegetation and associated litter (i.e. removal or retained generally had no significant effects on leaf [N], [P], N:P ratio and RGR of the transplanted tree seedlings for the experimental period. But among different species, there were significant differences in nutrient concentrations. M. chapensis and P. rubra had higher [N] and [P] compared to C. chinensis. [N] and [P] also varied among different plant tissues with much higher values in leaves than in roots for all indigenous species. RGR of indigenous tree seedlings was mostly positively correlated with leaf [N] and [P], but negatively correlated with leaf N:P ratio. Considering the low [P] and high N:P ratio observed in the introduced indigenous tree seedlings, we propose that the current experimental plantations might be P limited for plant growth.

  20. South Texas Native Plant Restoration Project

    Science.gov (United States)

    2012-10-01

    The South Texas Native Plant Restoration Project was a resounding success in that the primary goal of : developing commercial sources of native seed has been substantially met. By the conclusion of the project : on August 31, 2011, 20 native seed sou...

  1. Developing native plant nurseries in emerging market areas

    Science.gov (United States)

    Elliott Duemler

    2012-01-01

    The importance of developing a market for quality native plant materials in a region prior to the establishment of a nursery is crucial to ensure its success. Certain tactics can be applied to help develop a demand for native plant materials in a region. Using these tactics will help create a new market for native plant materials.

  2. Response of native insect communities to invasive plants.

    Science.gov (United States)

    Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.

  3. Understanding Utah's Native Plant Market: Coordinating Public and Private Interest

    OpenAIRE

    Hooper, Virginia Harding

    2003-01-01

    Changes in Lone Peak Conservation Nursery customer profiles cause state nursery leaders to question what their products are being used for and how trends in native plant use are changing the market for Utah native plants. The Utah native plant market is changing as interest in native plants is expanding to meet new conservation objectives, oftentimes in urban settings. This newer demand for native plants appears to be motivated by current changes in urban conservation behavior, continued popu...

  4. Spatial Autocorrelation Patterns of Understory Plant Species in a Subtropical Rainforest at Lanjenchi, Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Su-Wei Fan

    2010-06-01

    Full Text Available Many studies described relationships between plant species and intrinsic or exogenous factors, but few quantified spatial scales of species patterns. In this study, quantitative methods were used to explore the spatial scale of understory species (including resident and transient species, in order to identify the influential factors of species distribution. Resident species (including herbaceous species, climbers and tree ferns < 1 m high were investigated on seven transects, each 5-meter wide and 300-meter long, at Lanjenchi plot in Nanjenshan Reserve, southern Taiwan. Transient species (seedling of canopy, subcanopy and shrub species < 1 cm diameter at breast height were censused in three of the seven transects. The herb coverage and seedling abundance were calculated for each 5 × 5 m quadrat along the transects, and Moran’s I and Galiano’s new local variance (NLV indices were then used to identify the spatial scale of autocorrelation for each species. Patterns of species abundance of understory layer varied among species at fine scale within 50 meters. Resident species showed a higher proportion of significant autocorrelation than the transient species. Species with large size or prolonged fronds or stems tended to show larger scales in autocorrelation. However, dispersal syndromes and fruit types did not relate to any species’ spatial patterns. Several species showed a significant autocorrelation at a 180-meter class which happened to correspond to the local replicates of topographical features in hilltops. The spatial patterns of understory species at Lanjenchi plot are mainly influenced by species’ intrinsic traits and topographical characteristics.

  5. Can the Understory Affect the Hymenoptera Parasitoids in a Eucalyptus Plantation?

    Directory of Open Access Journals (Sweden)

    Onice Teresinha Dall'Oglio

    Full Text Available The understory in forest plantations can increase richness and diversity of natural enemies due to greater plant species richness. The objective of this study was to test the hypothesis that the presence of the understory and climatic season in the region (wet or dry can increase the richness and abundance of Hymenoptera parasitoids in Eucalyptus plantations, in the municipality of Belo Oriente, Minas Gerais State, Brazil. In each eucalyptus cultivation (five areas of cultivation ten Malaise traps were installed, five with the understory and five without it. A total of 9,639 individuals from 30 families of the Hymenoptera parasitoids were collected, with Mymaridae, Scelionidae, Encyrtidae and Braconidae being the most collected ones with 4,934, 1,212, 619 and 612 individuals, respectively. The eucalyptus stands with and without the understory showed percentage of individuals 45.65% and 54.35% collected, respectively. The understory did not represent a positive effect on the overall abundance of the individuals Hymenoptera in the E. grandis stands, but rather exerted a positive effect on the specific families of the parasitoids of this order.

  6. Can the Understory Affect the Hymenoptera Parasitoids in a Eucalyptus Plantation?

    Science.gov (United States)

    Dall’Oglio, Onice Teresinha; Ribeiro, Rafael Coelho; Ramalho, Francisco de Souza; Fernandes, Flávio Lemes; Wilcken, Carlos Frederico; de Assis Júnior, Sebastião Lourenço; Rueda, Rosa Angélica Plata; Serrão, José Eduardo; Zanuncio, José Cola

    2016-01-01

    The understory in forest plantations can increase richness and diversity of natural enemies due to greater plant species richness. The objective of this study was to test the hypothesis that the presence of the understory and climatic season in the region (wet or dry) can increase the richness and abundance of Hymenoptera parasitoids in Eucalyptus plantations, in the municipality of Belo Oriente, Minas Gerais State, Brazil. In each eucalyptus cultivation (five areas of cultivation) ten Malaise traps were installed, five with the understory and five without it. A total of 9,639 individuals from 30 families of the Hymenoptera parasitoids were collected, with Mymaridae, Scelionidae, Encyrtidae and Braconidae being the most collected ones with 4,934, 1,212, 619 and 612 individuals, respectively. The eucalyptus stands with and without the understory showed percentage of individuals 45.65% and 54.35% collected, respectively. The understory did not represent a positive effect on the overall abundance of the individuals Hymenoptera in the E. grandis stands, but rather exerted a positive effect on the specific families of the parasitoids of this order. PMID:26954578

  7. Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum

    Science.gov (United States)

    Isabell von Rein; Arthur Gessler; Katrin Premke; Claudia Keitel; Andreas Ulrich; Zachary E. Kayler

    2016-01-01

    Drought duration and intensity are expected to increase with global climate change. How changes in water availability and temperature affect the combined plant–soil–microorganism response remains uncertain. We excavated soil monoliths from a beech (Fagus sylvatica L.) forest, thus keeping the understory plant–microbe communities intact, imposed an...

  8. Differential responses of invasive Celastrus orbiculatus (Celastraceae) and native C. scandens to changes in light quality.

    Science.gov (United States)

    Leicht, Stacey A; Silander, John A

    2006-07-01

    When plants are subjected to leaf canopy shade in forest understories or from neighboring plants, they not only experience reduced light quantity, but light quality in lowered red : far red light (R : FR). Growth and other developmental responses of plants in reduced R : FR can vary and are not consistent across species. We compared how an invasive liana, Celastrus orbiculatus, and its closely related native congener, C. scandens, responded to changes in the R : FR under controlled, simulated understory conditions. We measured a suite of morphological and growth attributes under control, neutral shading, and low R : FR light treatments. Celastrus orbiculatus showed an increase in height, aboveground biomass, and total leaf mass in reduced R : FR treatments as compared to the neutral shade, while C. scandens had increased stem diameter, single leaf area, and leaf mass to stem mass ratio. These differences provide a mechanistic understanding of the ability of C. orbiculatus to increase height and actively forage for light resources in forest understories, while C. scandens appears unable to forage for light and instead depends upon a light gap forming. The plastic growth response of C. orbiculatus in shaded conditions points to its success in forested habitats where C. scandens is largely absent.

  9. Do invasive alien plants benefit more from global environmental change than native plants?

    Science.gov (United States)

    Liu, Yanjie; Oduor, Ayub M O; Zhang, Zhen; Manea, Anthony; Tooth, Ifeanna M; Leishman, Michelle R; Xu, Xingliang; van Kleunen, Mark

    2017-08-01

    Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO 2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta-analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above-mentioned global environmental change components. We found that elevated temperature and CO 2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: P = 0.051; increased precipitation: P = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (P = 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO 2 enrichment, may further increase the spread of invasive plants in the future. © 2017 John Wiley & Sons Ltd.

  10. MBS Native Plant Communities

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data layer contains results of the Minnesota County Biological Survey (MCBS). It includes polygons representing the highest quality native plant communities...

  11. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach.

    Directory of Open Access Journals (Sweden)

    Kim Meijer

    Full Text Available During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native. Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.

  12. Alien plant invasions and native plant extinctions: a six-threshold framework

    Science.gov (United States)

    Downey, Paul O.; Richardson, David M.

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat—in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the ‘extinction trajectory’, global extinction being the final threshold. Although there are no documented examples of either ‘in the wild’ (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1–3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader

  13. Neighbour tolerance, not suppression, provides competitive advantage to non-native plants.

    Science.gov (United States)

    Golivets, Marina; Wallin, Kimberly F

    2018-05-01

    High competitive ability has often been invoked as a key determinant of invasion success and ecological impacts of non-native plants. Yet our understanding of the strategies that non-natives use to gain competitive dominance remains limited. Particularly, it remains unknown whether the two non-mutually exclusive competitive strategies, neighbour suppression and neighbour tolerance, are equally important for the competitive advantage of non-native plants. Here, we analyse data from 192 peer-reviewed studies on pairwise plant competition within a Bayesian multilevel meta-analytic framework and show that non-native plants outperform their native counterparts due to high tolerance of competition, as opposed to strong suppressive ability. Competitive tolerance ability of non-native plants was driven by neighbour's origin and was expressed in response to a heterospecific native but not heterospecific non-native neighbour. In contrast to natives, non-native species were not more suppressed by hetero- vs. conspecific neighbours, which was partially due to higher intensity of intraspecific competition among non-natives. Heterogeneity in the data was primarily associated with methodological differences among studies and not with phylogenetic relatedness among species. Altogether, our synthesis demonstrates that non-native plants are competitively distinct from native plants and challenges the common notion that neighbour suppression is the primary strategy for plant invasion success. © 2018 John Wiley & Sons Ltd/CNRS.

  14. Resource Limitations Influence Growth and Vigor of Idaho Fescue, a Common Understory Species in Pacific Northwest Ponderosa Pine Forests

    Directory of Open Access Journals (Sweden)

    Craig A. Carr

    2016-12-01

    Full Text Available Alterations in under-canopy resource availability associated with elevated ponderosa pine (Pinus ponderosa Dougl. abundance can negatively influence understory vegetation. Experimental evidence linking under-canopy resource availability and understory vegetation is scarce. Yet this information would be beneficial in developing management strategies to recover desired understory species. We tested the effects of varying nitrogen (N and light availability on Idaho fescue (Festuca idahoensis Elmer, the dominant understory species in ponderosa pine/Idaho fescue plant associations in eastern Oregon. In a greenhouse experiment, two levels of N (50 kg∙N∙ha−1 and 0 kg∙N∙ha−1 and shade (80% shade and 0% shade were applied in a split-plot design to individual potted plants grown in soil collected from high abundance pine stands. Plants grown in unshaded conditions produced greater root (p = 0.0027 and shoot (p = 0.0017 biomass and higher cover values (p = 0.0378 compared to those in the shaded treatments. The addition of N had little effect on plant growth (p = 0.1602, 0.5129, and 0.0853 for shoot biomass, root biomass, and cover, respectively, suggesting that soils in high-density ponderosa pine stands that lack understory vegetation were not N deficient and Idaho fescue plants grown in these soils were not N limited. Management activities that increase under-canopy light availability will promote the conditions necessary for Idaho fescue recovery. However, successful restoration may be constrained by a lack of residual fescue or the invasion of more competitive understory vegetation.

  15. Exotic Invasive Shrub Glossy Buckthorn Reduces Restoration Potential for Native Forest Herbs

    Directory of Open Access Journals (Sweden)

    Caroline Hamelin

    2017-02-01

    Full Text Available Invasive glossy buckthorn could reduce restoration potential for understory native forest herbs by compromising their growth and biodiversity. Few studies of glossy buckthorn’s effects on forest herbs exist, and none were done in early-successional, partially open hardwood forests. This study was conducted in a mature hybrid poplar plantation invaded by buckthorn, located in southeastern Québec. We tested the effect of buckthorn removal on the growth of three forest herb species, whether this effect varied among species, and if canopy type (two poplar clones influenced this effect. Forest herbs were planted in herbicide (buckthorn removed and control treatments in the plantation understory, an environment similar to that of early-successional hardwood forests. Over the first two growing seasons, species showed specific reactions to buckthorn cover. Mean relative growth rate (RGR for Asarum canadense and Polygonatum pubescens was increased in the herbicide treatment (48% and 33%, respectively and decreased in the control treatment (−35% and −33%, respectively. Sanguinaria canadensis growth was the highest among species, with no difference between treatments. No effects of canopy type were detected. Results suggest that planting forest herbs for restoration purposes may be unsuccessful if buckthorn is present. Important changes in understory flora biodiversity are likely to occur over the long term in forests invaded by buckthorn.

  16. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  17. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae outbreak in pine forests.

    Directory of Open Access Journals (Sweden)

    Gregory J Pec

    Full Text Available The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae in lodgepole pine (Pinus contorta forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  18. Fleshy fruit removal and nutritional composition of winter-fruiting plants: a comparison of non-native invasive and native species

    Science.gov (United States)

    Cathryn H. Greenberg; Scott T. Walter

    2010-01-01

    Invasive, non-native plants threaten forest ecosystems by reducing native plant species richness and potentially altering ecosystem processes. Seed dispersal is critical for successful invasion and range expansion by non-native plants; dispersal is likely to be enhanced if they can successfully compete with native plants for disperser services. Fruit production by non-...

  19. Direct and Indirect Influence of Non-Native Neighbours on Pollination and Fruit Production of a Native Plant.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Castaño

    Full Text Available Entomophilous non-native plants can directly affect the pollination and reproductive success of native plant species and also indirectly, by altering the composition and abundance of floral resources in the invaded community. Separating direct from indirect effects is critical for understanding the mechanisms underlying the impacts of non-native species on recipient communities.Our aims are: (a to explore both the direct effect of the non-native Hedysarum coronarium and its indirect effect, mediated by the alteration of floral diversity, on the pollinator visitation rate and fructification of the native Leopoldia comosa and (b to distinguish whether the effects of the non-native species were due to its floral display or to its vegetative interactions.We conducted field observations within a flower removal experimental setup (i.e. non-native species present, absent and with its inflorescences removed at the neighbourhood scale.Our study illustrates the complexity of mechanisms involved in the impacts of non-native species on native species. Overall, Hedysarum increased pollinator visitation rates to Leopoldia target plants as a result of direct and indirect effects acting in the same direction. Due to its floral display, Hedysarum exerted a direct magnet effect attracting visits to native target plants, especially those made by the honeybee. Indirectly, Hedysarum also increased the visitation rate of native target plants. Due to the competition for resources mediated by its vegetative parts, it decreased floral diversity in the neighbourhoods, which was negatively related to the visitation rate to native target plants. Hedysarum overall also increased the fructification of Leopoldia target plants, even though such an increase was the result of other indirect effects compensating for the observed negative indirect effect mediated by the decrease of floral diversity.

  20. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    Science.gov (United States)

    Yang, Long; Wang, Jun; Huang, Yuhui; Hui, Dafeng; Wen, Meili

    2014-01-01

    For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm) and bottom (0-50 cm) of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants) than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  1. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    Directory of Open Access Journals (Sweden)

    Long Yang

    Full Text Available For the purposes of forest restoration, carbon (C fixation, and economic improvement, eucalyptus (Eucalyptus urophylla has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm and bottom (0-50 cm of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  2. Alien plant invasions and native plant extinctions: a six-threshold framework.

    Science.gov (United States)

    Downey, Paul O; Richardson, David M

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat-in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the 'extinction trajectory', global extinction being the final threshold. Although there are no documented examples of either 'in the wild' (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1-3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader threat

  3. Conversion of native terrestrial ecosystems in Hawai‘i to novel grazing systems: a review

    Science.gov (United States)

    Leopold, Christina R.; Hess, Steven C.

    2017-01-01

    The remote oceanic islands of Hawai‘i exemplify the transformative effects that non-native herbivorous mammals can bring to isolated terrestrial ecosystems. We reviewed published literature containing systematically collected, analyzed, and peer-reviewed original data specifically addressing direct effects of non-native hoofed mammals (ungulates) on terrestrial ecosystems, and indirect effects and interactions on ecosystem processes in Hawai‘i. The effects of ungulates on native vegetation and ecosystems were addressed in 58 original studies and mostly showed strong short-term regeneration of dominant native trees and understory ferns after ungulate removal, but unassisted recovery was dependent on the extent of previous degradation. Ungulates were associated with herbivory, bark-stripping, disturbance by hoof action, soil erosion, enhanced nutrient cycling from the interaction of herbivory and grasses, and increased pyrogenicity and competition between native plants and pasture grasses. No studies demonstrated that ungulates benefitted native ecosystems except in short-term fire-risk reduction. However, non-native plants became problematic and continued to proliferate after release from herbivory, including at least 11 species of non-native pasture grasses that had become established prior to ungulate removal. Competition from non-native grasses inhibited native species regeneration where degradation was extensive. These processes have created novel grazing systems which, in some cases, have irreversibly altered Hawaii’s terrestrial ecology. Non-native plant control and outplanting of rarer native species will be necessary for recovery where degradation has been extensive. Lack of unassisted recovery in some locations should not be construed as a reason to not attempt restoration of other ecosystems.

  4. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  5. Species-specific associations between overstory and understory tree species in a semideciduous tropical forest

    Directory of Open Access Journals (Sweden)

    Flaviana Maluf Souza

    2015-03-01

    Full Text Available We investigated the occurrence of associations between overstory and understory tree species in a semideciduous tropical forest. We identified and measured all trees of nine canopy species with diameter at breast height ≥4.8 cm in a 10.24 ha plot and recorded all individuals beneath their canopies ("understory individuals" within the same diameter class. The total density of understory individuals did not significantly differ under different overstory species. One overstory species (Ceiba speciosa showed higher understory species richness compared with five other species. There was a strong positive association between three overstory species (Esenbeckia leiocarpa, Savia dictyocarpa, and C. speciosa and the density of seven understory species (Balfourodendron riedelianum, Chrysophyllum gonocarpum, E. leiocarpa, Holocalyx balansae, Machaerium stipitatum, Rhaminidium elaeocarpum, and S. dictyocarpa. These results probably reflect the outcome of a complex set of interactions including facilitation and competition, and further studies are necessary to better understand the magnitude and type of the effects of individual overstory species on understory species. The occurrence of species-specific associations shown here reinforces the importance of non-random processes in structuring plant communities and suggest that the influence of overstory species on understory species in high-diversity forests may be more significant than previously thought.

  6. Multi-scale spatial controls of understory vegetation in Douglas-fir–western hemlock forests of western Oregon, USA

    Science.gov (United States)

    Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann

    2014-01-01

    Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...

  7. Vegetation assessment of forests of Pagan Island, Commonwealth of the Northern Mariana Islands

    Science.gov (United States)

    Pratt, Linda W.

    2011-01-01

    As part of the Marianas Expedition Wildlife Surveys-2010, the forest vegetation of the island of Pagan, Commonwealth of the Northern Mariana Islands (CNMI), was sampled with a series of systematic plots along 13 transects established for monitoring forest bird populations. Shrubland and grassland were also sampled in the northern half of the island. Data collected were woody plant density, tree diameter at breast height, woody plant density in height classes below 2 m, and ground cover measured with the point-intercept method. Coconut forests (Cocos nucifera) were generally found to have low native tree diversity, little regeneration of trees and shrubs in the forest understory, and little live ground cover. The sole exception was a coconut-dominated forest of the northeast side of the island that exhibited high native tree diversity and a large number of young native trees in the understory. Ironwood (Casuarina equisetifolia) forests on the northern half of the island were nearly monocultures with almost no trees other than ironwood in vegetation plots, few woody plants in the understory, and low ground cover dominated by native ferns. Mixed native forests of both northern and southern sections of the island had a diversity of native tree species in both the canopy and the sparse understory. Ground cover of native forests in the north had a mix of native and alien species, but that of the southern half of the island was dominated by native ferns and woody plants.

  8. Do native parasitic plants cause more damage to exotic invasive hosts than native non-invasive hosts? An implication for biocontrol.

    Science.gov (United States)

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.

  9. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in Eucalyptus monocultures.

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    Full Text Available Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon-Wiener diversity index (H' and Pielou evenness index (J and the increase in Simpson dominance index (λ after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.

  10. Detecting fragmentation extinction thresholds for forest understory plant species in peninsular Spain.

    Science.gov (United States)

    Rueda, Marta; Moreno Saiz, Juan Carlos; Morales-Castilla, Ignacio; Albuquerque, Fabio S; Ferrero, Mila; Rodríguez, Miguel Á

    2015-01-01

    primary importance for the persistence of understory plants, to neglect the impact of fragmentation for some species can lead them to local extinction.

  11. Detecting fragmentation extinction thresholds for forest understory plant species in peninsular Spain.

    Directory of Open Access Journals (Sweden)

    Marta Rueda

    forest amount is of primary importance for the persistence of understory plants, to neglect the impact of fragmentation for some species can lead them to local extinction.

  12. Wanted and unwanted nature: Invasive plants and the alien–native dichotomy

    OpenAIRE

    Qvenild, Marte

    2013-01-01

    This thesis explores how plants are perceived and categorised as alien, invasive and native respectively at individual, professional, and political levels. The thesis demonstrates how perceptions of and interactions with plants happen in ways that do not always correspond to the environmental authorities definitions of alienness and nativeness. As alienness and nativeness are concepts that are spatiotemporal in character, the labelling of plants as alien or native often involve value-laden di...

  13. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    NARCIS (Netherlands)

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Putten, van der W.H.

    2012-01-01

    Invasive non-native plant species often harbor fewer herbivorous insects than related native plant species. However, little is known about how herbivorous insects on non-native plants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  14. Are invasive plants more competitive than native conspecifics? Patterns vary with competitors

    Science.gov (United States)

    Zheng, Yulong; Feng, Yulong; Valiente-Banuet, Alfonso; Li, Yangping; Liao, Zhiyong; Zhang, Jiaolin; Chen, Yajun

    2015-10-01

    Invasive plants are sometimes considered to be more competitive than their native conspecifics, according to the prediction that the invader reallocates resources from defense to growth due to liberation of natural enemies [‘Evolution of Increased Competitive Ability’ (EICA) hypothesis]. However, the differences in competitive ability may depend on the identity of competitors. In order to test the effects of competitors, Ageratina adenophora plants from both native and invasive ranges competed directly, and competed with native residents from both invasive (China) and native (Mexico) ranges respectively. Invasive A. adenophora plants were more competitive than their conspecifics from native populations when competing with natives from China (interspecific competition), but not when competing with natives from Mexico. Invasive A. adenophora plants also showed higher competitive ability when grown in high-density monoculture communities of plants from the same population (intrapopulation competition). In contrast, invasive A. adenophora plants showed lower competitive ability when competing with plants from native populations (intraspecific competition). Our results indicated that in the invasive range A. adenophora has evolved to effectively cope with co-occurring natives and high density environments, contributing to invasion success. Here, we showed the significant effects of competitors, which should be considered carefully when testing the EICA hypothesis.

  15. Competitive effects of non-native plants are lowest in native plant communities that are most vulnerable to invasion

    Science.gov (United States)

    J.Stephen Brewer; W. Chase Bailey

    2014-01-01

    Despite widespread acknowledgment that disturbance favors invasion, a hypothesis that has received little attention is whether non-native invaders have greater competitive effects on native plants in undisturbed habitats than in disturbed habitats. This hypothesis derives from the assumption that competitive interactions are more persistent in habitats that have not...

  16. The formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  17. Native Plants and Seeds, Oh My! Fifth Graders Explore an Unfamiliar Subject While Learning Plant Basics

    Science.gov (United States)

    Pauley, Lauren; Weege, Kendra; Koomen, Michele Hollingsworth

    2016-01-01

    Native plants are not typically the kinds of plants that are used in elementary classroom studies of plant biology. More commonly, students sprout beans or investigate with fast plants. At the time the authors started their plant unit (November), the school-yard garden had an abundance of native plants that had just started seeding, including…

  18. Ontogenetic stage, plant vigor and sex mediate herbivory loads in a dioecious understory herb

    Science.gov (United States)

    Selaković, Sara; Vujić, Vukica; Stanisavljević, Nemanja; Jovanović, Živko; Radović, Svetlana; Cvetković, Dragana

    2017-11-01

    Plant-herbivore interactions can be mediated by plant apparency, defensive and nutritional quality traits that change through plant ontogeny, resulting in age-specific herbivory. In dioecious species, opposing allocation patterns in defense may lead to sex-biased herbivory. Here, we examine how onto stage and plant sex determine levels of herbivore damage in understory herb Mercurialis perennis under field conditions. We analyzed variation in plant size (height, total leaf area), physical (specific leaf area) and chemical (total phenolic and condensed tannins contents) defense, and nutritional quality (total water, soluble protein and nonstructural carbohydrate contents) during the shift from reproductive to post-reproductive stage. Furthermore, we explored correlations between the analyzed traits and levels of foliar damage. Post-reproductive plants had lower levels of chemical defense, and larger leaf area removed, in spite of having lower nutritive quality. Opposing patterns of intersexual differences were detected in protein and phenolic contents during reproductive stage, while in post-reproductive stage total leaf area was sexually dimorphic. Female-biased herbivory was apparent only after reproduction. Plant size parameters combined with condensed tannins content determined levels of foliar damage during post-reproductive stage, while the only trait covarying with herbivory in reproductive stage was total nonstructural carbohydrate content. Our results support claims of optimal defense theory - sensitive stage of reproduction was better defended. We conclude that different combinations of plant traits mediated interactions with herbivores in mature stages. Differences in reproductive allocation between the sexes may not immediately translate into different levels of damage, stressing the need for considering different ontogenetic stages when exploring sex bias in herbivory.

  19. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2016-04-01

    Full Text Available Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant impact. Total plant species richness and cover decreased with disturbance severity, such that the greatest richness was in low severity burns (average 28 species per 1-m2 quadrat and plant cover was lowest in the high severity burns (average 16%. However, the response of individual plant groups differed. Lichens and bryophytes were most common in low severity burns and were effectively eliminated from the regenerating plant community at higher burn severities. In contrast, graminoid cover and richness were positively related to burn severity, while forbs did not respond significantly to burn severity, but were impacted by changes in soil chemistry with increased cover at pH >4.9. Our results indicate the importance of non-vascular plants to the overall plant community in this harsh environment and that the plant community is environmentally limited rather than recruitment or competition limited, as is often the case in more mesic forest types. If fire frequency and severity increase as predicted, we may see a shift in plant communities from stress-tolerant species, such as lichens and ericaceous shrubs, to more colonizing species, such as certain graminoids.

  20. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    Science.gov (United States)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  1. Right under Their Noses: Native Plants in the Schoolyard.

    Science.gov (United States)

    Reed, Bracken

    2003-01-01

    A Portland (Oregon) middle school teacher teaches an ethnobotany class using plants identified in Lewis and Clark's journals. After months of learning about native plants, Native American culture, and the Lewis and Clark Expedition, the class culminates in a 3-day canoe trip down the Columbia River. A Lewis and Clark Rediscovery grant provides…

  2. Changes in Patterns of Understory Leaf Phenology and Herbivory following Hurricane Damage.

    Science.gov (United States)

    Pilar Angulo-Sandoval; H. Fernandez-Marin; J. K. Zimmerman; T. M. Aide

    2004-01-01

    Hurricanes are important disturbance events in many forested ecosystems. They can have strong effects on both forest structure and animal populations, and yet few studies have considered the impacts on plant–animal interactions. Reduction of canopy cover by severe winds increases light availability to understory plants, providing an opportunity for increased growth. An...

  3. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...... abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects...... and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during...

  4. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    Science.gov (United States)

    Clause, Julia; Forey, Estelle; Lortie, Christopher J.; Lambert, Adam M.; Barot, Sébastien

    2015-04-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant species are correlated, and ii) to test whether seed ingestion by these worms alters the soil seed bank by evaluating the composition of seeds in casts relative to uningested soil. Sampling locations were selected based on historical land-use practices, including presence or absence of tilling, and revegetation by seed using Phalaris aquatica. Only non-native earthworm species were found, dominated by the invasive European species Aporrectodea trapezoides. Earthworm abundance was significantly higher in the grassland blocks dominated by non-native plant species, and these sites had higher carbon and moisture contents. Earthworm abundance was also positively related to increased emergence of non-native seedlings, but had no effect on that of native seedlings. Plant species richness and total seedling emergence were higher in casts than in uningested soils. This study suggests that there is a potential effect of non-native earthworms in promoting non-native and likely invasive plant species within grasslands, due to seed-plant-earthworm interactions via soil modification or to seed ingestion by earthworms and subsequent cast effects on grassland dynamics. This study supports a growing body of literature for earthworms as ecosystem engineers but highlights the relative importance of considering non-native-native interactions with the associated plant community.

  5. Native-plant hosts of Meloidogyne spp. from Western Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Vanessa A. Antes

    2012-04-01

    Full Text Available The present study was focused on the parasitism of Meloidogyne species on the roots of native nursery plants from the Atlantic forest. Native plants were selected from a commercial nursery in Western Paraná, searching for the natural infection of Meloidogyne. Also, the seeds of native plants were cultivated in sterile soil and inoculated with M. incognita. In both the experiments, the number of galls and number of eggs and J2 per root, allied to the reproduction factor of M. incognita on each inoculated plant were assessed. Natural infection by M. javanica was found on Cordia ecalyculata, Citharexyllum myrianthum and Aspidosperma subincanum and by M. incognita on Croton urucurana, Lonchocarpus muehlbergianus, Tabebuia impetiginosa and T. serratifolia. Meloidogyne incognita induced galls formation on Genipa americana, Schinus terebinthifolius and Rollinia mucosa after inoculation, which suggested that those plants could host this nematode in natural biomes. Nursery soil should be disinfested before seeding the native forest plants for reforestation purposes

  6. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms.

    Directory of Open Access Journals (Sweden)

    Kristina A Stinson

    2006-05-01

    Full Text Available The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi. Our results elucidate an indirect mechanism by which invasive plants can impact native flora, and may help explain how this plant successfully invades relatively undisturbed forest habitat.

  7. Unique competitive effects of lianas and trees in a tropical forest understory.

    Science.gov (United States)

    Wright, Alexandra; Tobin, Mike; Mangan, Scott; Schnitzer, Stefan A

    2015-02-01

    Lianas are an important component of tropical forests, contributing up to 25% of the woody stems and 35% of woody species diversity. Lianas invest less in structural support but more in leaves compared to trees of similar biomass. These physiological and morphological differences suggest that lianas may interact with neighboring plants in ways that are different from similarly sized trees. However, the vast majority of past liana competition studies have failed to identify the unique competitive effects of lianas by controlling for the amount of biomass removed. We assessed liana competition in the forest understory over the course of 3 years by removing liana biomass and an equal amount of tree biomass in 40 plots at 10 sites in a secondary tropical moist forest in central Panama. We found that growth of understory trees and lianas, as well as planted seedlings, was limited due to competitive effects from both lianas and trees, though the competitive impacts varied by species, season, and size of neighbors. The removal of trees resulted in greater survival of planted seedlings compared to the removal of lianas, apparently related to a greater release from competition for light. In contrast, lianas had a species-specific negative effect on drought-tolerant Dipteryx oleifera seedlings during the dry season, potentially due to competition for water. We conclude that, at local scales, lianas and trees have unique and differential effects on understory dynamics, with lianas potentially competing more strongly during the dry season, and trees competing more strongly for light.

  8. Influence of Removal of a Non-native Tree Species Mimosa caesalpiniifolia Benth. on the Regenerating Plant Communities in a Tropical Semideciduous Forest Under Restoration in Brazil

    Science.gov (United States)

    Podadera, Diego S.; Engel, Vera L.; Parrotta, John A.; Machado, Deivid L.; Sato, Luciane M.; Durigan, Giselda

    2015-11-01

    Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species ( Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.

  9. Floristic conservation value, nested understory floras, and the development of second-growth forest.

    Science.gov (United States)

    Spyreas, Greg; Matthews, Jeffrey W

    2006-08-01

    Nestedness analysis can reveal patterns of plant composition and diversity among forest patches. For nested floral assemblages, the plants occupying any one patch are a nested subset of the plants present in successively more speciose patches. Elimination of sensitive understory plants with human disturbance is one of several mechanisms hypothesized to generate nonrandom, nested floral distributions. Hypotheses explaining distributions of understory plants remain unsubstantiated across broad landscapes of varying forest types and disturbance histories. We sampled the vegetation of 51 floodplain and 55 upland forests across Illinois (USA) to examine how the diversity, composition, and nestedness of understory floras related to their overstory growth and structure (basal area), and their overall floristic conservation value (mean C). We found that plant assemblages were nested with respect to site species richness, such that rare plants indicated diverse forests. Floras were also nested with respect to site mean C and basal area (BA). However, in an opposite pattern from what we had expected, floras of high-BA stands were nested subsets of those of low-BA stands. A set of early-successional plants restricted to low-BA stands, and more importantly, the absence of a set of true forest plants in high-BA stands, accounted for this pattern. Additionally, we observed a decrease in species richness with increasing BA. These results are consistent with the hypothesis that recovery of true forest plants does not occur concurrently with overstory regeneration following massive anthropogenic disturbance. Nestedness by site mean C indicates that high conservation value (conservative) plants co-occur in highly diverse stands; these forests are assumed to be less disturbed historically. Because site mean C was uncorrelated with BA, BA-neutral disturbances such as livestock usage are suggested as accounting for between-site differences in mean C. When considered individually

  10. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations

    Science.gov (United States)

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality. PMID:29377926

  11. Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species.

    Science.gov (United States)

    Naumburg, Elke; Ellsworth, David S

    2002-04-01

    Instantaneous measurements of photosynthesis are often implicitly or explicitly scaled to longer time frames to provide an understanding of plant performance in a given environment. For plants growing in a forest understory, results from photosynthetic light response curves in conjunction with diurnal light data are frequently extrapolated to daily photosynthesis (A(day)), ignoring dynamic photosynthetic responses to light. In this study, we evaluated the importance of two factors on A(day) estimates: dynamic physiological responses to photosynthetic photon flux density (PPFD); and time-resolution of the PPFD data used for modeling. We used a dynamic photosynthesis model to investigate how these factors interact with species-specific photosynthetic traits, forest type, and sky conditions to affect the accuracy of A(day) predictions. Increasing time-averaging of PPFD significantly increased the relative overestimation of A(day) similarly for all study species because of the nonlinear response of photosynthesis to PPFD (15% with 5-min PPFD means). Depending on the light environment characteristics and species-specific dynamic responses to PPFD, understory tree A(day) can be overestimated by 6-42% for the study species by ignoring these dynamics. Although these overestimates decrease under cloudy conditions where direct sunlight and consequently understory sunfleck radiation is reduced, they are still significant. Within a species, overestimation of A(day) as a result of ignoring dynamic responses was highly dependent on daily sunfleck PPFD and the frequency and irradiance of sunflecks. Overall, large overestimates of A(day) in understory trees may cause misleading inferences concerning species growth and competition in forest understories with sunlight. We conclude that comparisons of A(day) among co-occurring understory species in deep shade will be enhanced by consideration of sunflecks by using high-resolution PPFD data and understanding the physiological

  12. Native plant development and deployment [Section VII

    Science.gov (United States)

    Jessica Wright; Kas Dumroese; Amy Symstad; Theresa Pitts-Singer; Jim Cane; Gary Krupnick; Peggy Olwell; Byron Love; Elizabeth Sellers; John Englert; Troy Wood

    2015-01-01

    Native plant materials are needed to create, enhance, or restore pollinator habitat. They provide critical foraging and breeding areas for wild and managed pollinator species, including transnational migratory species such as hummingbirds and monarch butterflies. Although many pollinators and plants are generalists, some have limited, obligate relationships (i.e., one...

  13. Native and non-native plants provide similar refuge to invertebrate prey, but less than artificial plants

    NARCIS (Netherlands)

    Grutters, Bart; Pollux, B.J.A.; Verberk, W.C.E.P.; Bakker, E.S.

    2015-01-01

    Non-native species introductions are widespread and can affect ecosystem functioning by altering the structure of food webs. Invading plants often modify habitat structure, which may affect the suitability of vegetation as refuge and could thus impact predator-prey dynamics. Yet little is known

  14. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.

    Science.gov (United States)

    Delagrange, Sylvain; Messier, Christian; Lechowicz, Martin J; Dizengremel, Pierre

    2004-07-01

    In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller. Copyright 2004 Heron Publishing

  15. Are native songbird populations affected by non-native plant invasion?

    Science.gov (United States)

    Amanda M. Conover; Christopher K. Williams; Vincent. D' Amico

    2011-01-01

    Development into forested areas is occurring rapidly across the United States, and many of the remnant forests within suburban landscapes are being fragmented into smaller patches, impacting the quality of this habitat for avian species. An ecological effect linked to forest fragmentation is the invasion of non-native plants into the ecosystem.

  16. Herbivore preference for native vs. exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve.

    Directory of Open Access Journals (Sweden)

    Wendy E Morrison

    2011-03-01

    Full Text Available Enemy release and biotic resistance are competing, but not mutually exclusive, hypotheses addressing the success or failure of non-native plants entering a new region. Enemy release predicts that exotic plants become invasive by escaping their co-adapted herbivores and by being unrecognized or unpalatable to native herbivores that have not been selected to consume them. In contrast, biotic resistance predicts that native generalist herbivores will suppress exotic plants that will not have been selected to deter these herbivores. We tested these hypotheses using five generalist herbivores from North or South America and nine confamilial pairs of native and exotic aquatic plants. Four of five herbivores showed 2.4-17.3 fold preferences for exotic over native plants. Three species of South American apple snails (Pomacea sp. preferred North American over South American macrophytes, while a North American crayfish Procambarus spiculifer preferred South American, Asian, and Australian macrophytes over North American relatives. Apple snails have their center of diversity in South America, but a single species (Pomacea paludosa occurs in North America. This species, with a South American lineage but a North American distribution, did not differentiate between South American and North American plants. Its preferences correlated with preferences of its South American relatives rather than with preferences of the North American crayfish, consistent with evolutionary inertia due to its South American lineage. Tests of plant traits indicated that the crayfish responded primarily to plant structure, the apple snails primarily to plant chemistry, and that plant protein concentration played no detectable role. Generalist herbivores preferred non-native plants, suggesting that intact guilds of native, generalist herbivores may provide biotic resistance to plant invasions. Past invasions may have been facilitated by removal of native herbivores, introduction of

  17. Arthropod assemblages on native and nonnative plant species of a coastal reserve in California.

    Science.gov (United States)

    Fork, Susanne K

    2010-06-01

    Biological invasions by nonnative plant species are a widespread phenomenon. Many studies have shown strong ecological impacts of plant invasions on native plant communities and ecosystem processes. Far fewer studies have examined effects on associated animal communities. From the perspective of a reserve's land management, I addressed the question of whether arthropod assemblages on two nonnative plant species of concern were impoverished compared with those assemblages associated with two predominant native plant species of that reserve. If the nonnative plant species, Conium maculatum L., and Phalaris aquatica L., supported highly depauperate arthropod assemblages compared with the native plant species, Baccharis pilularis De Candolle and Leymus triticoides (Buckley) Pilger, this finding would provide additional support for prioritizing removal of nonnatives and restoration of natives. I assessed invertebrate assemblages at the taxonomic levels of arthropod orders, Coleoptera families, and Formicidae species, using univariate analyses to examine community attributes (richness and abundance) and multivariate techniques to assess arthropod assemblage community composition differences among plant species. Arthropod richness estimates by taxonomic level between native and nonnative vegetation showed varying results. Overall, arthropod richness of the selected nonnative plants, examined at higher taxonomic resolution, was not necessarily less diverse than two of common native plants found on the reserve, although differences were found among plant species. Impacts of certain nonnative plant species on arthropod assemblages may be more difficult to elucidate than those impacts shown on native plants and ecosystem processes.

  18. Spatial and temporal variability of canopy cover and understory light in a Cerrado of Southern Brazil

    Directory of Open Access Journals (Sweden)

    JP. Lemos-Filho

    Full Text Available Canopy cover has significant effects on the understory environment, including upon light availability for seedling growth. The aim of the present study was to verify spatial heterogeneity and seasonal changes in the canopy cover of a dense Cerrado area, and their relationship to understory photosynthetic active radiation availability. Leaf area index (LAI values in the rainy season varied from 0.9 to 4.83, with 40% of the values ranging from 4.0 to 5.0, while in the dry season LAI varied from 0.74 to 3.3, with 53% of the values oscilating from 2.0 to 3.0. Understory light (Qi and the Lambert-Beer ratio (Qi/Qo were taken around noon on sunny days (between 11:00 AM and 1:00 PM. They were also statistically different (p < 0.01 between the dry and wet seasons, with 72% of sampled points in the rainy season presenting photosynthetic photon flux density (PPFD values lower than 250 μmol.m-2/s around noon, whereas in the dry season, most PPFD values varied from 1500 to 1817 μmol.m-2/s , thus providing high light availability for understory plants. In most of the studied sites, understory plants did not even receive enough light for 50% of their photosynthetic capacity in the wet season. In contrast during the dry season, Qi/Qo values of 0.8 to 1.0 were observed in more than 50% of the points, thereby allowing for photosynthetic light saturation. Thus, light variability around noon was higher during the dry season than in the wet season, its heterogeneity being related to spatial complexity in the canopy cover.

  19. Weed biocontrol insects reduce native plant recruitment through second-order apparent competition

    Science.gov (United States)

    Dean E. Pearson; Ragan M. Callaway

    2008-01-01

    Small-mammal seed predation is an important force structuring native-plant communities that may also influence exotic-plant invasions. In the intermountain West, deer mice (Peromyscus maniculatus) are prominent predators of native-plant seeds, but they avoid consuming seeds of certain widespread invasives like spotted knapweed (Centaurea...

  20. Airborne laser scanner (LiDAR) proxies for understory light conditions

    DEFF Research Database (Denmark)

    Alexander, Cici; Moeslund, Jesper Erenskjold; Bøcher, Peder Klith

    2013-01-01

    to community structure. Angular canopy closure is more closely related to the direct and indirect light experienced by a plant or an animal than vertical canopy cover, but more challenging to estimate. We used airborne laser scanner (ALS) data to estimate canopy cover for 210 5-m radius vegetation plots......Canopy cover and canopy closure are two closely related measures of vegetation structure. They are used for estimating understory light conditions and their influence on a broad range of biological components in forest ecosystems, from the demography and population dynamics of individual species...... of azimuth and zenith angle intervals which contained points. We compared these estimates with field-based estimates using densiometer for 60 vegetation plots in forest. Finally, we compared ALS-based estimates of canopy cover and canopy closure to field-based estimates of understory light, based...

  1. Involvement of allelopathy in inhibition of understory growth in red pine forests.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2017-11-01

    Japanese red pine (Pinus densiflora Sieb. et Zucc.) forests are characterized by sparse understory vegetation although sunlight intensity on the forest floor is sufficient for undergrowth. The possible involvement of pine allelopathy in the establishment of the sparse understory vegetation was investigated. The soil of the red pine forest floor had growth inhibitory activity on six test plant species including Lolium multiflorum, which was observed at the edge of the forest but not in the forest. Two growth inhibitory substances were isolated from the soil and characterized to be 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid. Those compounds are probably formed by degradation process of resin acids. Resin acids are produced by pine and delivered into the soil under the pine trees through balsam and defoliation. Threshold concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid for the growth inhibition of L. multiflorum were 30 and 10μM, respectively. The concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid in the soil were 312 and 397μM, respectively, which are sufficient concentrations to cause the growth inhibition because of the threshold. These results suggest that those compounds are able to work as allelopathic agents and may prevent from the invasion of herbaceous plants into the forests by inhibiting their growth. Therefore, allelopathy of red pine may be involved in the formation of the sparse understory vegetation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Weed-biocontrol insects reduce native-plant recruitment through second-order apparent competition.

    Science.gov (United States)

    Pearson, Dean E; Callaway, Ragan M

    2008-09-01

    Small-mammal seed predation is an important force structuring native-plant communities that may also influence exotic-plant invasions. In the intermountain West, deer mice (Peromyscus maniculatus) are prominent predators of native-plant seeds, but they avoid consuming seeds of certain widespread invasives like spotted knapweed (Centaurea maculosa). These mice also consume the biological-control insects Urophora spp. introduced to control C. maculosa, and this food resource substantially increases deer mouse populations. Thus, mice may play an important role in the invasion and management of C. maculosa through food-web interactions. We examined deer mouse seed predation and its effects on seedling emergence and establishment of a dominant native grass, Pseudoroegneria spicata, and forb, Balsamorhiza sagittata, in C. maculosa-invaded grasslands that were treated with herbicide to suppress C. maculosa or left untreated as controls. Deer mice readily took seeds of both native plants but removed 2-20 times more of the larger B. sagittata seeds than the smaller P. spicata seeds. Seed predation reduced emergence and establishment of both species but had greater impacts on B. sagittata. The intensity of seed predation corresponded with annual and seasonal changes in deer mouse abundance, suggesting that abundance largely determined mouse impacts on native-plant seeds. Accordingly, herbicide treatments that reduced mouse abundance by suppressing C. maculosa and its associated biocontrol food subsidies to mice also reduced seed predation and decreased the impact of deer mice on B. sagittata establishment. These results provide evidence that Urophora biocontrol agents may exacerbate the negative effects of C. maculosa on native plants through a form of second-order apparent competition-a biocontrol indirect effect that has not been previously documented. Herbicide suppressed C. maculosa and Urophora, reducing mouse populations and moderating seed predation on native plants

  3. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  4. A preliminary study of effects of feral pig density on native Hawaiian montane rainforest vegetation

    Science.gov (United States)

    Scheffler, Pamela Y.; Pratt, Linda; Foote, David; Magnacca, Karl

    2012-01-01

    This study aimed to examine the effects of different levels of pig density on native Hawaiian forest vegetation. Pig sign was measured across four pig management units in the 'Öla'a Forest from 1998 through 2004 and pig density estimated based upon pig activity. Six paired vegetation monitoring plots were established in the units, each pair straddling a pig fence. Percent cover and species richness of understory vegetation, ground cover, alien species, and preferred pig forage plants were measured in 1997 and 2003 and compared with pig density estimates. Rainfall and hunting effort and success by management personnel were also tracked over the study period. Vegetation monitoring found a higher percentage of native plants in pig-free or low-pig areas compared to those with medium or high pig densities, with no significant change in the percent native plant species between the first and second monitoring periods. Differences between plots were strongly affected by location, with a higher percentage of native plants in western plots, where pig damage has historically been lower. Expansion of this survey with more plots would help improve the statistical power to detect differences in vegetation caused by pigs. Because of the limited vegetation sampling in this study, the results must be viewed as descriptive. We compare the vegetation within 30 x 30 m plots across three thresholds of historical pig density and show how pig densities can change in unanticipated directions within management units. While these results cannot be extrapolated to area-wide effects of pig activity, these data do contribute to a growing body of information on the impacts of feral pigs on Hawaiian plant communities.

  5. The invasive plant Alternanthera philoxeroides was suppressed more intensively than its native congener by a native generalist: implications for the biotic resistance hypothesis.

    Directory of Open Access Journals (Sweden)

    Shufeng Fan

    Full Text Available Prior studies on preferences of native herbivores for native or exotic plants have tested both the enemy release hypothesis and the biotic resistance hypothesis and have reported inconsistent results. The different levels of resistance of native and exotic plants to native herbivores could resolve this controversy, but little attention has been paid to this issue. In this study, we investigated population performance, photosynthesis, leaf nitrogen concentration, and the constitutive and induced resistances of the successful invasive plant, Alternanthera philoxeroides, and its native congener, Alternanthera sessilis, in the presence of three population densities of the grasshopper, Atractomorpha sinensis. When the grasshopper was absent, leaf biomass, total biomass, photosynthesis, and leaf nitrogen concentration of A. philoxeroides were higher than those of A. sessilis. However, the morphological and physiological performances of A. philoxeroides were all decreased more intensively than A. sessilis after herbivory by grasshoppers. Especially as the concentrations of constitutive lignin and cellulose in leaf of A. philoxeroides were higher than A. sessilis, A. philoxeroides exhibited increased leaf lignin concentration to reduce its palatability only at severe herbivore load, whereas, leaf lignin, cellulose, and polyphenolic concentrations of A. sessilis all increased with increasing herbivory pressure, and cellulose and polyphenolic concentrations were higher in A. sessilis than in A. philoxeroides after herbivory. Our study indicated that the capability of the invasive plant to respond to native insect damage was lower than the native plant, and the invasive plant was suppressed more intensively than its native congener by the native insect. Our results support the biotic resistance hypothesis and suggest that native herbivores can constrain the abundance and reduce the adverse effects of invasive species.

  6. Impact of the invasive plant Syzigium jambos (Myrtaceae on patterns of understory seedling abundance in a Tropical Premontane Forest, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gerardo Avalos

    2006-06-01

    Full Text Available Habitat fragmentation, along with other human-induced disturbances, increase the vulnerability of native habitats to be invaded by aggressive, ecologically released, exotic species. Syzigium jambos (L. Alston (Myrtaceae, Rose Apple is an important invader still spreading throughout Hawaii, the Antilles, Central and South America. This study examines the effects of S. jambos on plant understory diversity in a 25 ha Tropical Premontane Moist Forest in Atenas, Alajuela, Costa Rica, a protected watershed that supplies drinking water for several human communities. Our final objective is to develop a management strategy combining water protection with the preservation of a representative sample of the original plant diversity in the area. Thirty 2 X 2 m plots were distributed throughout the Municipal Forest maintaining a minimum of 10 m between plots, and 2 m from trails, to sample all understory seedlings and saplings of S. jambos, Coffea arabica (coffee and tree seedlings. We found a clear dominance of S. jambos over all other understory plants. Of the total 1 285 sampled plants, S. jambos comprised 51%, coffee seedlings represented 14,78%, being the rest tree seedlings. Syzigium jambos had the highest density (5.46 plants/m2, S.D. = 6.44 compared to tree (3.67 plants/ m2, S.D. = 3.44 and coffee seedlings (1.58 plants/ m2, S.D. = 2.13. There was a highly significant negative relationship between the relative abundance of S. jambos and tree (r2 = 0.52, p La fragmentación del hábitat, junto con otros disturbios antropogénicos, aumentan la vulnerabilidad de los ambientes nativos a la invasión por especies exóticas, agresivas y sin controles ecológicos. Syzigium jambos (L. Alston (Myrtaceae, Manzana Rosa es una invasora importante que todavía está extendiendose en Hawaii, Las Antillas, Centro y Suramérica. Este estudio examina los efectos de S. jambos sobre la diversidad de plantas del sotobosque en un Bosque Húmedo Premontano de 25 ha en

  7. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    OpenAIRE

    Clause, J.; Forey, E.; Lortie, C. J.; Lambert, A. M.; Barot, Sébastien

    2015-01-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant ...

  8. The role of plant-soil feedbacks in driving native-species recovery.

    Science.gov (United States)

    Yelenik, Stephanie G; Levine, Jonathan M

    2011-01-01

    The impacts of exotic plants on soil nutrient cycling are often hypothesized to reinforce their dominance, but this mechanism is rarely tested, especially in relation to other ecological factors. In this manuscript we evaluate the influence of biogeochemically mediated plant-soil feedbacks on native shrub recovery in an invaded island ecosystem. The introduction of exotic grasses and grazing to Santa Cruz Island, California, USA, converted native shrublands (dominated by Artemisia californica and Eriogonum arborescens) into exotic-dominated grasslands (dominated by Avena barbata) over a century ago, altering nutrient-cycling regimes. To test the hypothesis that exotic grass impacts on soils alter reestablishment of native plants, we implemented a field-based soil transplant experiment in three years that varied widely in rainfall. Our results showed that growth of Avena and Artemisia seedlings was greater on soils influenced by their heterospecific competitor. Theory suggests that the resulting plant-soil feedback should facilitate the recovery of Artemisia in grasslands, although four years of monitoring showed no such recovery, despite ample seed rain. By contrast, we found that species effects on soils lead to weak to negligible feedbacks for Eriogonum arborescens, yet this shrub readily colonized the grasslands. Thus, plant-soil feedbacks quantified under natural climate and competitive conditions did not match native-plant recovery patterns. We also found that feedbacks changed with climate and competition regimes, and that these latter factors generally had stronger effects on seedling growth than species effects on soils. We conclude that even when plant-soil feedbacks influence the balance between native and exotic species, their influence may be small relative to other ecological processes.

  9. Variability in understory evapotranspiration with overstory density in Siberian larch forests

    Science.gov (United States)

    Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.

    2016-12-01

    Arctic ecosystems are changing rapidly in response to amplified rates of climate change. Increased vegetation productivity, altered ecosystem carbon and hydrologic cycling, and increased wildfire severity are among the key responses to changing permafrost and climate conditions. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem affected by these modifications. Understory vegetation in these ecosystems, which typically have low canopy cover, may account for half of all water fluxes. Despite the potential importance of the understory for ecosystem water exchange, there has been relatively little research examining variability in understory evapotranspiration in boreal larch forests. In particular, the water balance of understory shrubs and mosses is largely undefined and could provide insight on how understory vegetation and our changing climate interact. This is especially important because both observed increases in vegetation productivity and wildfire severity could lead to increases in forests density, altering the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. In order to better understand variability in understory evapotranspiration we measured in larch forests with differing overstory density and permafrost conditions that likely vary as a consequence of fire severity. We used the static chamber technique to measure fluxes across a range of understory vegetation types and environmental conditions. In general, we found that the understory vegetation in low density stands transpires more than that in high density stands. This tends to be correlated with a larger amount of aboveground biomass in the low density stands, and an increase in solar radiation, due to less shading by overstory trees. These results will help us to better understand water balances, evapotranspiration variability, and productivity changes associated with climate on understory vegetation. Additionally

  10. Season and severity of prescribed burn in ponderosa pine forests: implications for understory native and exotic plants.

    Science.gov (United States)

    Becky K. Kerns; Walter G. Thies; Christine G. Niwa

    2006-01-01

    We investigated herbaceous richness and cover in relation to fire season and severity, and other variables, five growing seasons following prescribed fires. Data were collected from six stands consisting of three randomly applied treatments: no burn, spring burn, and fall burn. Fall burns had significantly more exotic/native annual/biennial (an/bi) species and greater...

  11. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  12. Public lakes, private lakeshore: Modeling protection of native aquatic plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-01-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  13. Herbivory more limiting than competition on early and established native plants in an invaded meadow.

    Science.gov (United States)

    Gonzales, Emily K; Arcese, Peter

    2008-12-01

    The dominance of nonnative plants coupled with declines of native plants suggests that competitive displacement drives extinctions, yet empirical examples are rare. Herbivores, however, can alter vegetation structure and reduce diversity when abundant. Herbivores may act on mature, reproductive life stages whereas some of the strongest competitive effects might occur at early life stages that are difficult to observe. For example, competition by perennial nonnative grasses can interfere with the establishment of native seeds. We contrasted the effects of ungulate herbivory and competition by neighboring plants on the performance of native plant species at early and established life stages in invaded oak meadows. We recorded growth, survival, and flowering in two native species transplanted as established plants, six native species grown from seed, and five extant lily species as part of two 2 x 2 factorial experiments that manipulated herbivory and competition. Herbivory reduced the performance of nearly all focal native species at early and established life stages, whereas competition had few measurable effects. Our results suggest that herbivory has a greater local influence on native plant species than competition and that reducing herbivore impacts will be required to successfully restore endangered oak meadows where ungulates are now abundant.

  14. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses

    Science.gov (United States)

    Hawkes, C.V.; Belnap, J.; D'Antonio, C.; Firestone, M.K.

    2006-01-01

    Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem. ?? Springer 2006.

  15. Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species.

    Science.gov (United States)

    Orrock, John L; Dutra, Humberto P; Marquis, Robert J; Barber, Nicholas

    2015-04-01

    Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition.

  16. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners.

    Science.gov (United States)

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-07-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential.

  17. Emergence of native plant seeds in response to seed pelleting, planting depth, scarification, and soil anti-crusting treatment, 2009

    Science.gov (United States)

    Clint Shock; Erik Feibert; Lamont Saunders; Nancy Shaw

    2010-01-01

    Seed of native plants is needed to restore rangelands of the Intermountain West. Reliable commercial seed production is desirable to provide the quantity of seed needed for restoration efforts. Establishment of native seed crops has been difficult, because fall-planted seed is susceptible to bird damage, soil crusting, and soil erosion. Fall planting is important for...

  18. Non-native vascular plants from Canary Islands (Spain): nomenclatural and taxonomical adjustments

    OpenAIRE

    Verloove, F.

    2013-01-01

    Se propone correcciones taxonómicas y nomenclaturales respecto a 88 taxones no nativos de la lista de plantas vasculares de las Islas Canarias (España). Non-native vascular plants from Canary Islands (Spain): nomenclatural and taxonomical adjustments. Corrections and other adjustments are proposed for 88 non-native taxa from the checklist of vascular plants from the Canary Islands (Spain).

  19. Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics

    Science.gov (United States)

    Nijland, Wiebe; Nielsen, Scott E.; Coops, Nicholas C.; Wulder, Michael A.; Stenhouse, Gordon B.

    2014-01-01

    Food and habitat resources are critical components of wildlife management and conservation efforts. The grizzly bear (Ursus arctos) has diverse diets and habitat requirements particularly for understory plant species, which are impacted by human developments and forest management activities. We use light detection and ranging (LiDAR) data to predict the occurrence of 14 understory plant species relevant to bear forage and compare our predictions with more conventional climate- and land cover-based models. We use boosted regression trees to model each of the 14 understory species across 4435 km2 using occurrence (presence-absence) data from 1941 field plots. Three sets of models were fitted: climate only, climate and basic land and forest covers from Landsat 30-m imagery, and a climate- and LiDAR-derived model describing both the terrain and forest canopy. Resulting model accuracies varied widely among species. Overall, 8 of 14 species models were improved by including the LiDAR-derived variables. For climate-only models, mean annual precipitation and frost-free periods were the most important variables. With inclusion of LiDAR-derived attributes, depth-to-water table, terrain-intercepted annual radiation, and elevation were most often selected. This suggests that fine-scale terrain conditions affect the distribution of the studied species more than canopy conditions.

  20. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in 4 northern hardwood tree species

    International Nuclear Information System (INIS)

    Sefcik, L.T.; Zak, D.R.; Ellsworth, D.S.

    2006-01-01

    Stimulation of photosynthesis in response to elevated carbon dioxide (CO 2 ) varies among tree species and species groups. In this study, seedling responses to elevated atmospheric carbon dioxide (CO 2 ) concentrations and solar irradiance over 2 growing seasons were investigated for shade tolerant Acer saccharum Marsh.; Fagus grandifolia J.F. Ehrh; and shade-intolerant Prunus serotina. Seedlings were exposed to a combination of elevated and ambient concentrations of CO 2 and understory shade in open-top chambers placed in a forest understory. It was observed that the elevated CO 2 treatment increased mean light-saturated net photosynthetic rates by 63 per cent in the shade-tolerant species and 67 per cent in the shade-intolerant species. When measured at the elevated CO 2 , long-term enhancement of photosynthesis was 10 per cent lower than the instantaneous enhancement observed in ambient-CO 2 -grown plants. As the growth irradiance increased, proportional enhancement due to elevated CO 2 decreased from 97 per cent for plants grown in deep shade to 47 per cent for plants grown in moderate shade. Results indicated that in nitrogen (N) limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO 2 enriched atmosphere than trees growing in more moderate shade, due to greater down-regulation. It was concluded that if elevated CO 2 levels promote the survival of shade-intolerant species in dim understory light, the future composition and dynamics of successional forest communities may be altered. 70 refs., 2 tabs., 3 figs

  1. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  2. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  3. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  4. Native plant naming by high-school students of different socioeconomic status: implications for botany education

    Science.gov (United States)

    Bermudez, Gonzalo M. A.; Díaz, Sandra; De Longhi, Ana L.

    2018-01-01

    People's diminished awareness of plants, affected by anthropogenic environmental deterioration, has challenged science education to overcome the obstacles impeding a better understanding of their meaning and value. The aim of this study was to investigate the influence of the socioeconomic status of high-school students, as indicated by their attendance at private or state schools, on their knowledge of native plants. In total, 321 students aged 15-18 were asked to write down 10 plants native to Córdoba, Argentina, in a freelist questionnaire. Students listed a mean of 6.8 species of a total of 165 different categories of plant names. The majority of the species named were exotic to Córdoba (63%) or Argentina (50.6%, of which 33.8% were adventitious), indicating an 'adventitious-to-native' effect by which all spontaneously reproducing plants were presumed to be native species. However, the 20 most frequently named plants were mainly native, with 'Algarrobo' (Prosopis spp.) and 'Espinillo' (Vachellia caven) being the most mentioned. Students' socioeconomic status had a significant effect on the number of species named, with the students of state schools (where the less well-off sectors of the society attend) mentioning more species and, among these, more native ones than the students from private schools. Furthermore, we defined size, colour and scent as being conspicuous traits of plant flowers that are relevant for human perception, and found that the most frequently named adventitious species, unlike the native ones, were those exhibiting big brightly-coloured flowers which ranged from being inodorous to having medium intensity scents.

  5. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    Directory of Open Access Journals (Sweden)

    Joshua P Averett

    Full Text Available Mountain environments are currently among the ecosystems least invaded by non-native species; however, mountains are increasingly under threat of non-native plant invasion. The slow pace of exotic plant invasions in mountain ecosystems is likely due to a combination of low anthropogenic disturbances, low propagule supply, and extreme/steep environmental gradients. The importance of any one of these factors is debated and likely ecosystem dependent. We evaluated the importance of various correlates of plant invasions in the Wallowa Mountain Range of northeastern Oregon and explored whether non-native species distributions differed from native species along an elevation gradient. Vascular plant communities were sampled in summer 2012 along three mountain roads. Transects (n = 20 were evenly stratified by elevation (~70 m intervals along each road. Vascular plant species abundances and environmental parameters were measured. We used indicator species analysis to identify habitat affinities for non-native species. Plots were ordinated in species space, joint plots and non-parametric multiplicative regression were used to relate species and community variation to environmental variables. Non-native species richness decreased continuously with increasing elevation. In contrast, native species richness displayed a unimodal distribution with maximum richness occurring at mid-elevations. Species composition was strongly related to elevation and canopy openness. Overlays of trait and environmental factors onto non-metric multidimensional ordinations identified the montane-subalpine community transition and over-story canopy closure exceeding 60% as potential barriers to non-native species establishment. Unlike native species, non-native species showed little evidence for high-elevation or closed-canopy specialization. These data suggest that non-native plants currently found in the Wallowa Mountains are dependent on open canopies and disturbance for

  6. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    Science.gov (United States)

    Averett, Joshua P; McCune, Bruce; Parks, Catherine G; Naylor, Bridgett J; DelCurto, Tim; Mata-González, Ricardo

    2016-01-01

    Mountain environments are currently among the ecosystems least invaded by non-native species; however, mountains are increasingly under threat of non-native plant invasion. The slow pace of exotic plant invasions in mountain ecosystems is likely due to a combination of low anthropogenic disturbances, low propagule supply, and extreme/steep environmental gradients. The importance of any one of these factors is debated and likely ecosystem dependent. We evaluated the importance of various correlates of plant invasions in the Wallowa Mountain Range of northeastern Oregon and explored whether non-native species distributions differed from native species along an elevation gradient. Vascular plant communities were sampled in summer 2012 along three mountain roads. Transects (n = 20) were evenly stratified by elevation (~70 m intervals) along each road. Vascular plant species abundances and environmental parameters were measured. We used indicator species analysis to identify habitat affinities for non-native species. Plots were ordinated in species space, joint plots and non-parametric multiplicative regression were used to relate species and community variation to environmental variables. Non-native species richness decreased continuously with increasing elevation. In contrast, native species richness displayed a unimodal distribution with maximum richness occurring at mid-elevations. Species composition was strongly related to elevation and canopy openness. Overlays of trait and environmental factors onto non-metric multidimensional ordinations identified the montane-subalpine community transition and over-story canopy closure exceeding 60% as potential barriers to non-native species establishment. Unlike native species, non-native species showed little evidence for high-elevation or closed-canopy specialization. These data suggest that non-native plants currently found in the Wallowa Mountains are dependent on open canopies and disturbance for establishment in low

  7. Market perceptions and opportunities for native plant production on the southern Colorado Plateau

    Science.gov (United States)

    Donna L. Peppin; Peter Z. Fule; Janet C. Lynn; Anne L. Mottek-Lucas; Carolyn Hull Sieg

    2010-01-01

    Increases in revegetation activities have created a large demand for locally adapted native plant materials (NPM) in the southwestern United States. Currently, there is a minimal supply of local genotypes to meet this demand. We investigated the potential for the initiation of a native plant market in the southern Colorado Plateau. Through a literature search,...

  8. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  9. Plant mutualisms with rhizosphere microbiota in introduced versus native ranges

    NARCIS (Netherlands)

    Shelby, Natasha; Duncan, Richard P.; van der Putten, Wim H.; McGinn, Kevin J.; Weser, Carolin; Hulme, Philip E.

    2016-01-01

    * The performance of introduced plants can be limited by the availability of soil mutualists outside their native range, but how interactions with mutualists differ between ranges is largely unknown. If mutualists are absent, incompatible or parasitic, plants may compensate by investing more in root

  10. Effect of understory management on phenological responses of eastern black walnut on an alluvial Arkansas soil

    Science.gov (United States)

    Black walnut (Juglans nigra L.) is commonly grown in agroforestry practices for nuts and/or timber with little knowledge of how understory herbage management might affect tree phenology. We compared black walnut plant type (variety and wild-type) for phenological response in date of budburst, leaf ...

  11. Distribution and dynamics of the invasive native hay-scented fern

    Science.gov (United States)

    Songlin Fei; Peter Gould; Melanie Kaeser; Kim. Steiner

    2010-01-01

    The spread and dominance of the invasive native hay-scented fern in the understory is one of the most significant changes to affect the forest ecosystems in the northeastern United States in the last century. We studied changes in the distribution and dynamics of hay-scented fern at a large scale over a 10-yr period in Pennsylvania. The study included 56 stands...

  12. Native American plant resources in the Yucca Mountain Area, Nevada

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Evans, M.J.; Halmo, D.B.

    1989-11-01

    This report presents Native American interpretations of and concerns for plant resources on or near Yucca Mountain, Nevada. This one of three research reports regarding Native American cultural resources that may be affected by site characterization activities related to the Yucca Mountain high-level radioactive waste disposal facility. Representatives of the sixteen involved American Indian tribes identified and interpreted plant resources as part of a consultation relationship between themselves and the US Department of Energy (DOE). Participants in the ethnobotany studies included botanists who have conducted, and continue to conduct, botanical studies for the Yucca Mountain Project. This report is to be used to review research procedures and findings regarding the process of consulting with the sixteen tribes, interviews with tribal plant specialists and elders, and findings from the ethnobotanical visits with representatives of the sixteen tribes. An annual report will include a chapter that summarizes the key findings from this plant resources study. 23 refs., 75 figs., 39 tabs

  13. Native American plant resources in the Yucca Mountain Area, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Stoffle, R.W.; Evans, M.J.; Halmo, D.B. [Michigan Univ., Ann Arbor, MI (USA). Inst. for Social Research; Niles, W.E.; O`Farrell, J.T. [EG and G Energy Measurements, Inc., Goleta, CA (USA)

    1989-11-01

    This report presents Native American interpretations of and concerns for plant resources on or near Yucca Mountain, Nevada. This one of three research reports regarding Native American cultural resources that may be affected by site characterization activities related to the Yucca Mountain high-level radioactive waste disposal facility. Representatives of the sixteen involved American Indian tribes identified and interpreted plant resources as part of a consultation relationship between themselves and the US Department of Energy (DOE). Participants in the ethnobotany studies included botanists who have conducted, and continue to conduct, botanical studies for the Yucca Mountain Project. This report is to be used to review research procedures and findings regarding the process of consulting with the sixteen tribes, interviews with tribal plant specialists and elders, and findings from the ethnobotanical visits with representatives of the sixteen tribes. An annual report will include a chapter that summarizes the key findings from this plant resources study. 23 refs., 75 figs., 39 tabs.

  14. Understory biomass from southern pine forests as a fuel source

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T.T. [Univ. of Arkansas, Monticello, AR (United States); Baker, J.B. [USDA Forest Service, Monticello, AR (United States)

    1993-12-31

    The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2 ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.

  15. Fuels planning: science synthesis and integration; environmental consequences fact sheet 10: The Understory Response Model

    Science.gov (United States)

    Steve Sutherland; Melanie Miller

    2005-01-01

    The Understory Response Model is a species-specific computer model that qualitatively predicts change in total species biomass for grasses, forbs, and shrubs after thinning, prescribed fire, or wildfire. The model examines the effect of fuels management on plant survivorship and reproduction. This fact sheet identifies the intended users and uses, required inputs, what...

  16. Monitoring shifts in plant diversity in response to climate change: A method for landscapes

    Science.gov (United States)

    Stohlgren, T.J.; Owen, A.J.; Lee, M.

    2000-01-01

    Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.

  17. Acer negundo invasion along a successional gradient: early direct facilitation by native pioneers and late indirect facilitation by conspecifics.

    Science.gov (United States)

    Saccone, Patrick; Pagès, Jean-Philippe; Girel, Jacky; Brun, Jean-Jacques; Michalet, Richard

    2010-08-01

    *Here, we analysed the role of direct and indirect plant interactions in the invasion process of Acer negundo along a natural successional gradient in the Middle Rhone floodplain (France). We addressed two questions: What are the responses of the invasive Acer seedlings to native communities' effects along the successional gradient? What are the effects of the invasive Acer adult trees on the native communities? *In the three communities (Salix, Acer and Fraxinus stands) we transplanted juveniles of the invasive and juveniles of the natives within the forest and in experimental gaps, and with and without the herb layer. We also quantified changes in understory functional composition, light, nitrogen and moisture among treatments. *Acer seedlings were directly facilitated for survival in the Salix and Acer communities and indirectly facilitated for growth by adult Acer through the reduction of the abundance of highly competitive herbaceous competitors. *We conclude that direct facilitation by the tree canopy of the native pioneer Salix is very likely the main biotic process that induced colonization of the invasive Acer in the floodplain and that indirect facilitation by adult conspecifics contributed to population establishment.

  18. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness?

    Science.gov (United States)

    Dong, Li-Jia; Yu, Hong-Wei; He, Wei-Ming

    2015-11-17

    Whether plant invasions pose a great threat to native plant diversity is still hotly debated due to conflicting findings. More importantly, we know little about the mechanisms of invasion impacts on native plant richness. We examined how Solidago canadensis invasion influenced native plants using data from 291 pairs of invaded and uninvaded plots covering an entire invaded range, and quantified the relative contributions of climate, recipient communities, and S. canadensis to invasion impacts. There were three types of invasion consequences for native plant species richness (i.e., positive, neutral, and negative impacts). Overall, the relative contributions of recipient communities, S. canadensis and climate to invasion impacts were 71.39%, 21.46% and 7.15%, respectively; furthermore, the roles of recipient communities, S. canadensis and climate were largely ascribed to plant diversity, density and cover, and precipitation. In terms of direct effects, invasion impacts were negatively linked to temperature and native plant communities, and positively to precipitation and soil microbes. Soil microbes were crucial in the network of indirect effects on invasion impacts. These findings suggest that the characteristics of recipient communities are the most important determinants of invasion impacts and that invasion impacts may be a continuum across an entire invaded range.

  19. Soil microbial community structure and function responses to successive planting of Eucalyptus.

    Science.gov (United States)

    Chen, Falin; Zheng, Hua; Zhang, Kai; Ouyang, Zhiyun; Li, Huailin; Wu, Bing; Shi, Qian

    2013-10-01

    Many studies have shown soil degradation after the conversion of native forests to exotic Eucalyptus plantations. However, few studies have investigated the long-term impacts of short-rotation forestry practices on soil microorganisms. The impacts of Eucalyptus successive rotations on soil microbial communities were evaluated by comparing phospholipid fatty acid (PLFA) abundances, compositions, and enzyme activities of native Pinus massoniana plantations and adjacent 1st, 2nd, 3rd, 4th generation Eucalyptus plantations. The conversion from P. massoniana to Eucalyptus plantations significantly decreased soil microbial community size and enzyme activities, and increased microbial physiological stress. However, the PLFA abundances formed "u" shaped quadratic functions with Eucalyptus plantation age. Alternatively, physiological stress biomarkers, the ratios of monounsaturated to saturated fatty acid and Gram+ to Gram- bacteria, formed "n"' shaped quadratic functions, and the ratio of cy17:0 to 16:1omega7c decreased with plantation age. The activities of phenol oxidase, peroxidase, and acid phosphatase increased with Eucalyptus plantation age, while the cellobiohydrolase activity formed "u" shaped quadratic functions. Soil N:P, alkaline hydrolytic nitrogen, soil organic carbon, and understory cover largely explained the variation in PLFA profiles while soil N:P, alkaline hydrolytic nitrogen, and understory cover explained most of the variability in enzyme activity. In conclusion, soil microbial structure and function under Eucalyptus plantations were strongly impacted by plantation age. Most of the changes could be explained by altered soil resource availability and understory cover associated with successive planting of Eucalyptus. Our results highlight the importance of plantation age for assessing the impacts of plantation conversion as well as the importance of reducing disturbance for plantation management.

  20. Differential responses of invasive and native plants to warming with simulated changes in diurnal temperature ranges.

    Science.gov (United States)

    Chen, Bao-Ming; Gao, Yang; Liao, Hui-Xuan; Peng, Shao-Lin

    2017-07-01

    Although many studies have documented the effects of global warming on invasive plants, little is known about whether the effects of warming on plant invasion differ depending on the imposed change in different diurnal temperature ranges (DTR). We tested the impact of warming with DTR change on seed germination and seedling growth of eight species in the family Asteraceae. Four of these are invasive ( Eupatorium catarium , Mikania micrantha , Biodens pilosa var. radiate , Ageratum conyzoides ) in China, and four are native ( Sonchus arvensis , Senecios candens , Pterocypsela indica , Eupatorium fortunei ). Four temperature treatments were set in growth chambers (three warming by 3 °C with different DTRs and control), and experiments were run to mimic wintertime and summertime conditions. The control treatment ( T c ) was set to the mean temperature for the corresponding time of year, and the three warming treatments were symmetric (i.e. equal night-and-day) (DTR sym ), asymmetric warming with increased (DTR inc ) and decreased (DTR dec ) DTR. The warming treatments did not affect seed germination of invasive species under any of the conditions, but DTR sym and DTR inc increased seed germination of natives relative to the control, suggesting that warming may not increase success of these invasive plant species via effects on seed germination of invasive plants relative to native plants. The invasive plants had higher biomass and greater stem allocation than the native ones under all of the warming treatments. Wintertime warming increased the biomass of the invasive and wintertime DTR sym and DTR inc increased that of the native plants, whereas summertime asymmetric warming decreased the biomass of the invasives but not the natives. Therefore, warming may not facilitate invasion of these invasive species due to the suppressive effects of summertime warming (particularly the asymmetric warming) on growth. Compared with DTR sym , DTR dec decreased the biomass of

  1. Relative floral density of an invasive plant affects pollinator foraging behaviour on a native plant

    Directory of Open Access Journals (Sweden)

    Amy Marie Iler

    2014-08-01

    Full Text Available Interactions between invasive and native plants for pollinators vary from competition to facilitation of pollination of native plants. Theory predicts that relative floral densities should account for some of this variation in outcomes, with facilitation at low floral densities and competition at high floral densities of the invader. We tested this prediction by quantifying pollination and female reproductive success of a native herb, Geranium maculatum, in three experimental arrays that varied in floral density of the invasive shrub Lonicera maackii: control (no L. maackii, low floral density of L. maackii, and high floral density of L. maackii. A low density of L. maackii flowers was associated with an increase in pollinator visitation rate to G. maculatum flowers and an increase in conspecific pollen deposition compared to controls and high density arrays. Increased visitation rates were not associated with an increase in the number of visitors to low density arrays, suggesting instead that a behavioural switch in visitation within the array accounted for increased pollen deposition. In contrast, the only evidence of competition in high density arrays was a shorter duration of visits to G. maculatum flowers relative to the other treatments. The number of seeds per flower did not vary among treatments, although trends in seeds per flower were consistent with patterns of pollinator foraging behaviour. Given increased pollinator visits and pollen deposition at a low density of the invader, our study indicates that complete eradication of invasives as a management or restoration technique may have unintended negative consequences for pollination of native plants.

  2. An invasive plant alters phenotypic selection on the vegetative growth of a native congener.

    Science.gov (United States)

    Beans, Carolyn M; Roach, Deborah A

    2015-02-01

    The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.

  3. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-01-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in

  4. Cryoconservation of plant germplasm native to Brazil | Civatti ...

    African Journals Online (AJOL)

    The preservation of biological material at -196°C, that is, at liquid nitrogen temperature, or its vapor (between -150 and -178°C), is a long-term storage procedure called cryopreservation or cryoconservation. This article reports studies made in Brazil for cryoconservation of native plant species and highlights what might be ...

  5. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.

    Science.gov (United States)

    Palmroth, Sari; Bach, Lisbet Holm; Nordin, Annika; Palmqvist, Kristin

    2014-06-01

    Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha(-1) year(-1). N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.

  6. Determination of native woody landscape plants in Bursa and Uludag

    African Journals Online (AJOL)

    Around Bursa and Uludag is a wide range of native woody plants of which are commonly used for landscape planning. The present study pointed out a total of 72 plant species, consisting of 36 trees, 32 shrubs, 7 treelets and 4 climber groups, around the region which are notified to be suitable for rural and urban planning ...

  7. Understory response to disturbance: an investigation of prescribed burning and understory thinning treatments

    Science.gov (United States)

    Benjamin J. Dolan; George R. Parker

    2003-01-01

    Lack of disturbance in the Central Hardwood Region has caused a decrease in abundance of shade-intolerant species, such as oaks (Quercus spp.) and hickories (Carya spp.), in the forest understory, while shade-tolerant species have proliferated. The goal of this research is to determine how two disturbances, prescribed fire and...

  8. Greater soil carbon accumulation in deeper soils in native- than in exotic-dominated grassland plantings in the southern Plains

    Science.gov (United States)

    Wilsey, B. J.; Xu, X.; Polley, H. W.; Hofmockel, K. S.

    2017-12-01

    Global change includes invasion by non-native plant species, and invasion may affect carbon cycling and storage. We tested predictions in central Texas in an experiment that compares mixtures of all exotic or all native species under two summer irrigation treatments (128 or 0 mm) that varies the amount of summer drought stress. At the end of the eighth growing season after establishment, soils were sampled in 10 cm increments to 100 cm depth to determine if soil C differed among treatments, and if treatments differentially affected soil C in deeper soils. Soil C content was significantly (5%) higher under native plantings than under exotic species plantings (P plantings increased with depth, and native plantings had higher soil C in deeper soil layers than in surface layers (native-exotic x depth, P plantings had decreasing soil C with depth. Soil C:N ratio and δ13C/12C were also significantly affected by native-exotic status, with soils in exotic plots having a significantly greater C4 contribution than native soils. Soil C was unaffected by summer irrigation treatments. Our results suggest that a significant amount of carbon could be sequestered by replacing exotic plant species with native species in the southern Plains, and that more work should be conducted at deeper soil depths. If we had restricted our analyses to surface soil layers (e.g. top 30 cm), we would have failed to detect depth differences between natives and exotics.

  9. Plant establishment and soil microenvironments in Utah juniper masticated woodlands

    Science.gov (United States)

    Kert R. Young

    2012-01-01

    Juniper (Juniperus spp.) encroachment into sagebrush (Artemisia spp.) and bunchgrass communities has reduced understory plant cover and allowed juniper trees to dominate millions of hectares of semiarid rangelands. Trees are mechanically masticated or shredded to decrease wildfire potential and increase desirable understory plant cover. When trees are masticated after...

  10. Arthropod prey of Wilson's Warblers in the understory of Douglas-fir forests

    Science.gov (United States)

    Hagar, J.C.; Dugger, K.M.; Starkey, E.E.

    2007-01-01

    Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.

  11. Interaction of historical and nonhistorical disturbances maintains native plant communities.

    Science.gov (United States)

    Davies, K W; Svejcar, T J; Bates, J D

    2009-09-01

    Historical disturbance regimes are often considered a critical element in maintaining native plant communities. However, the response of plant communities to disturbance may be fundamentally altered as a consequence of invasive plants, climate change, or prior disturbances. The appropriateness of historical disturbance patterns under modern conditions and the interactions among disturbances are issues that ecologists must address to protect and restore native plant communities. We evaluated the response of Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh plant communities to their historical disturbance regime compared to other disturbance regimes. The historical disturbance regime of these plant communities was periodic fires with minimal grazing by large herbivores. We also investigated the influence of prior disturbance (grazing) on the response of these communities to subsequent disturbance (burning). Treatments were: (1) ungrazed (livestock grazing excluded since 1936) and unburned, (2) grazed and unburned, (3) ungrazed and burned (burned in 1993), and (4) grazed and burned. The ungrazed-burned treatment emulated the historical disturbance regime. Vegetation cover, density, and biomass production were measured the 12th, 13th, and 14th year post-burning. Prior to burning the presence of Bromus tectorum L., an exotic annual grass, was minimal (resilience to more severe disturbances. Modern deviations from historical conditions can alter ecosystem response to disturbances, thus restoring the historical disturbance regime may not be an appropriate strategy for all ecosystems.

  12. An Invasive Clonal Plant Benefits from Clonal Integration More than a Co-Occurring Native Plant in Nutrient-Patchy and Competitive Environments

    Science.gov (United States)

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits

  13. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    Directory of Open Access Journals (Sweden)

    Antonio Rigueiro-Rodríguez

    2012-02-01

    Full Text Available Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener and beta (Jaccard and Magurran biodiversity for a period of four years in a P. radiata silvopastoral system. The experiment consisted of a randomized block design of two treatments (continuous and rotational grazing. Biomass, and species abundances were measured - biodiversity metrics were calculated based on these results for a two years of grazing and two years of post-grazing periods. Both continuous and rotational grazing systems were useful tools for reducing biomass and, therefore, fire risk. The rotational grazing system caused damage to the U. europaeus shrub, limiting its recovery once grazing was stopped. However, the more intensive grazing of U. europaeus plants under rotational had a positive effect on both alpha and beta biodiversity indexes due to the low capacity of food selection in the whole plot rather than continuous grazing systems. Biomass was not affected by the grazing system; however the rotational grazing system is more appropriate to reduce U. europaeus biomass and therefore forest fire risk at a long term and to enhance pasture biodiversity than the continuous grazing system.

  14. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria.

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy

    Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB), with the addition of small amounts of compost and a chemical fertilizer (NPK). The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest.

  15. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria

    Directory of Open Access Journals (Sweden)

    Andimuthu Ramachandran

    2016-01-01

    Full Text Available Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB, with the addition of small amounts of compost and a chemical fertilizer (NPK. The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest.

  16. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  17. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  18. Evolution under changing climates: climatic niche stasis despite rapid evolution in a non-native plant.

    Science.gov (United States)

    Alexander, Jake M

    2013-09-22

    A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.

  19. Dwarf Mistletoe on Red Fir . . . infection and control in understory stands

    Science.gov (United States)

    Robert F. Scharpf

    1969-01-01

    Height and age of understory red fir (Abies magnifica A. Murr.) were related to dwarf mistletoe (Arceuthobiilm campylopodum f. abietinum) infection from the surrounding overstory red fir on four National Forests in California. Percentage of trees infected and intensity of infection increased significantly as height of understory...

  20. Static terrestrial laser scanning of juvenile understory trees for field phenotyping

    Science.gov (United States)

    Wang, Huanhuan; Lin, Yi

    2014-11-01

    This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.

  1. Impacts of Panicum maximum Jacq. invasion and its manual weeding on the wood plant regeneration in the understory of a restoration site Efeitos da invasão por Panicum maximum Jacq. e do seu controle manual sobre a regeneração de plantas lenhosas no sub-bosque de um reflorestamento

    Directory of Open Access Journals (Sweden)

    Gabriela Ribeiro de Andrade

    2012-06-01

    Full Text Available Responsible for considerable annual losses of biodiversity in natural ecosystems, invasive alien species cause important conservation problems, leading native species to local extinction. This study examined the relationship among the coverage of Guinea-grass (Panicum maximum Jacq., its manual weeding and the woody plant diversity of a restoration site. The site is a reforestation created using native species but due to spacing and species composition grass still dominates its understory more than 17 years after. Preliminary results showed that it is a barrier to the establishment of native species. In this study, we established 20 plots of 5m x 5m divided into two treatments, control and removal of P. maximum, to investigate the impact of manual weeding on the understory in a period of 90 days. Grass cover and canopy openness were also recorded. The grass cover had negative correlation with the abundance of plants, with the species richness and abundance of tree species. Canopy openness had a negative influence on the species richness, on abundance and richness of tree species, but not showed correlation with P. maximum. After grass removal, both abundance of seedling and species richness had no significant differences, so the manual weeding did not cause a negative impact in short time on the regeneration of the understory due to accidental native plant uprooting. However, a positive impact is expected only after a longer period of observation, after successive removals of invasive herbaceous and increased chance of colonization of the area by regenerating seedlings.Responsáveis por perdas anuais consideráveis na biodiversidade dos ecossistemas naturais, as espécies exóticas invasoras causam sérios problemas à conservação, levando muitas espécies à extinção local. Este estudo analisou o efeito da cobertura de capim-colonião (Panicum maximum Jacq. no sub-bosque de um reflorestamento dominado há mais de 17 anos por essa gram

  2. Glyphosate and Dicamba Inhibit Flowering of Native Willamette Valley Plants

    Science.gov (United States)

    Successful flowering is essential for reproduction of native plants and production of food for herbivores. It is also an important alternative endpoint for assessment of ecological risks from chemical stressors such as herbicides. We evaluated flowering phenology after herbicide...

  3. Data from: Plant mutualisms with rhizosphere microbiota in introduced versus native ranges

    NARCIS (Netherlands)

    Shelby, Natasha; Duncan, Richard P.; Putten, van der W.H.; Mcginn, Kevin J.; Weser, Carolin; Hulme, Philip E.

    2016-01-01

    The performance of introduced plants can be limited by the availability of soil mutualists outside their native range, but how interactions with mutualists differ between ranges is largely unknown. If mutualists are absent, incompatible or parasitic, plants may compensate by investing more in root

  4. No universal scale-dependent impacts of invasive species on native plant species richness.

    Science.gov (United States)

    Stohlgren, Thomas J; Rejmánek, Marcel

    2014-01-01

    A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species-area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316-318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness-log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.

  5. On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2006-01-01

    The mechanistic basis underpinning forest succession is the gap-phase paradigm in which overstory disturbance interacts with seedling and sapling shade tolerance to determine successional trajectories. The theory, and ensuing simulation models, typically assume that understory plants have little impact on the advance regeneration layer's composition. We challenge...

  6. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    Science.gov (United States)

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).

  7. Direct and indirect effects of a dense understory on tree seedling recruitment in temperate forests: habitat-mediated predation versus competition

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2008-01-01

    In forests characterized by a dense woody and herbaceous understory layer, seedling recruitment is often directly suppressed via interspecific competition. Alternatively, these dense layers may indirectly lower tree recruitment by providing a haven for seed and seedling predators that prey on neighboring plant species. To simultaneously...

  8. Cultural plant harvests on federal lands: perspectives from members of the Northwest Native American Basketweavers Association

    Science.gov (United States)

    Rebecca Dobkins; Ceara Lewis; Susan Hummel; Emily. Dickey

    2016-01-01

    Native Americans who wish to harvest forest plants for traditional uses report difficulties gaining access to federal lands in the northwestern United States. To learn more about this issue, we reviewed the published literature on site access and resource harvests by tribal members and discussed it with Native American traditional users of plant resources. Specifically...

  9. Variation among chlorine concentration ratios for native and agronomic plants

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.; Macdonald, C.R.

    1999-01-01

    Variation among plant/soil concentration ratios (CRs) for important radionuclides requires attention because it is a major source of uncertainty in nuclear environmental safety assessments. For agronomic plants, variation among plant species is easy to deal with because there are relatively few species. In natural settings, there are vastly more species and the question becomes how to develop representative statistical distributions of CRs. Chlorine (Cl) is a good element with which to address this problem, because 36 Cl is a key radionuclide in nuclear waste disposal and yet stable Cl is easily measured in the environment. We measured CRs (dry weight basis) for Cl among edible parts of agronomic plants at one site, and found a geometric mean (GM) of 10, a geometric standard deviation (GSD) of 1.9 and a range of 5-66. When the GM was weighted by the relative contributions of the various plants to the human diet, it rose to 16. Among native plants at five sites, each site representative of a specific environment, the GMs were 4.0-13 and the GSDs were 2.9-6.2. The CRs for individual species ranged from 0.8 to 170. However, when weighted by relative contributions of the plants to selected animal diets, the GMs were as high as 50. The conclusions are that: the variation in CR for agronomic plants is a subset of the variation among native or all plants, variation among species (the GSD) can be sixfold, and variation among species is large enough that typical diets of specific animals could expose them to several-fold higher amounts of Cl (or 36 Cl) than expected from generic CR values. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Comparing herbaceous plant communities in active and passive riparian restoration.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Understanding the efficacy of passive (reduction or cessation of environmental stress and active (typically involving planting or seeding restoration strategies is important for the design of successful revegetation of degraded riparian habitat, but studies explicitly comparing restoration outcomes are uncommon. We sampled the understory herbaceous plant community of 103 riparian sites varying in age since restoration (0 to 39 years and revegetation technique (active, passive, or none to compare the utility of different approaches on restoration success across sites. We found that landform type, percent shade, and summer flow helped explain differences in the understory functional community across all sites. In passively restored sites, grass and forb cover and richness were inversely related to site age, but in actively restored sites forb cover and richness were inversely related to site age. Native cover and richness were lower with passive restoration compared to active restoration. Invasive species cover and richness were not significantly different across sites. Although some of our results suggest that active restoration would best enhance native species in degraded riparian areas, this work also highlights some of the context-dependency that has been found to mediate restoration outcomes. For example, since the effects of passive restoration can be quite rapid, this approach might be more useful than active restoration in situations where rapid dominance of pioneer species is required to arrest major soil loss through erosion. As a result, we caution against labeling one restoration technique as better than another. Managers should identify ideal restoration outcomes in the context of historic and current site characteristics (as well as a range of acceptable alternative states and choose restoration approaches that best facilitate the achievement of revegetation goals.

  11. Effects of introduced and indigenous viruses on native plants: exploring their disease causing potential at the agro-ecological interface.

    Science.gov (United States)

    Vincent, Stuart J; Coutts, Brenda A; Jones, Roger A C

    2014-01-01

    The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (viruses readily. To establish their potential to cause severe or mild systemic symptoms in different native plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host-virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface.

  12. Response of understory vegetation over 10 years after thinning in an old-growth cedar and cypress plantation overgrazed by sika deer in eastern Japan

    Directory of Open Access Journals (Sweden)

    Atsushi Tamura

    2017-01-01

    Full Text Available Background Forest management strategies such as thinning have long been used to enhance ecosystem functions, especially in plantations. Thinning in plantations with high deer density, however, may not yield a desired increase in understory vegetation because deer graze on germinating plants after thinning. Here, we examine the changes in understory vegetation after thinning in plantations that have been overgrazed by sika deer to provide insight into the effects of thinning on ecosystem functions such as soil conservation and biological diversity. Methods We conducted our survey in the Tanzawa Mountains of eastern Japan. We surveyed the change in understory vegetation within and outside of three deer exclosures on a single slope with three levels of understory vegetation cover: sparse (1%, exclosure “US”, moderate (30%, exclosure “MM”, and dense (80%, exclosure “LD” over 10 years after a 30% thinning of an old-growth cedar and cypress plantation which was overgrazed by sika deer. Results Understory vegetation cover, biomass and species richness increased within and outside the “US” and “MM” exclosures after thinning, and biomass was greater within than outside the exclosures at 10 years after thinning. Unpalatable species dominated both “US” and “MM” exclosures before thinning, and trees and shrubs dominated within the exclosures over time after thinning. In contrast, unpalatable, grazing-tolerant, perennial, and annual species increased outside the “US” and “MM” exclosures. No noticeable changes were observed within and outside the “LD” exclosure when compared with the “US” and “MM” exclosures. Conclusions Our results suggest that thinning a stand by 30% based on volume resulted in an increase in understory vegetation cover mainly composed of both unpalatable and grazing-tolerant species in a plantation forest where understory vegetation is sparse or moderate and sika deer density is high. We

  13. Using organic fertilizers in forest and native plant nurseries

    Science.gov (United States)

    Thomas D. Landis; R. Kasten Dumroese

    2012-01-01

    Since World War II, synthetic fertilizers have been used almost exclusively to grow forest and native plant nursery crops because they are quickly soluble and readily taken up by crops, producing the rapid growth rates that are necessary in nursery culture. In recent years, however, a wide variety of new organic fertilizers have become available. We divided these...

  14. Use and valuation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia

    Science.gov (United States)

    2013-01-01

    Background Medicinal plant species contribute significantly to folk medicine in Colombia. However, few local studies have investigated whether species used are introduced or native and whether there is a difference in importance of native and introduced medicinal plant species. The aim of the present study was to describe the use of medicinal plants within two municipalities, Campo Hermoso and Zetaquira, both in the department of Boyacá, Colombia and to assess the importance of native and introduced plants to healers, amateur healers and local people. As local healers including amateur healers have no history of introduced species our working hypotheses (H1-2) were that H1: native and introduced medicinal plant species are of equal importance and H2: healers and amateur healers do not differentiate in their preferences between native and introduced medicinal plant species. Methods Ten villages were included in the study. A combination of quantitative and qualitative methods was used including questionnaires, semi-structured interviews, in- depth interviews, and open talks. Voucher specimens were collected in home gardens and during field walks. For data analysis, we calculated use value indices and Jaccard index and tested for the above hypothesis using Spearman rank-correlation coefficients and Wilcoxon-Mann–Whitney tests. Results Eighty medicinal plant species were described by locals as the most frequently used. Of these, 78 species were taxonomically identified, distributed within 41 families and 74 genera, which included 35 native species and 43 introduced. The highest valued families were: Asteraceae, Lamiaceae, Apiaceae, Rutaceae and Verbenaceae. The species ranked highest according to their Use Values, in both municipalities, were Mentha suaveolens Ehrh., Ambrosia cumanensis Kunth, and Verbena littoralis Kunth. Introduced species were more important than native ones in Zetaquira, while there was no difference in importance in Campo Hermoso. While healers

  15. Enhancement of understory productivity by asynchronous phenology with overstory competitors in a temperate deciduous forest.

    Science.gov (United States)

    Jolly, William M; Nemani, Ramakrishna; Running, Steven W

    2004-09-01

    Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.

  16. Herbicides: an unexpected ally for native plants in the war against invasive species

    Science.gov (United States)

    Andrea Watts; Tim Harrington; Dave Peter

    2015-01-01

    Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...

  17. Impacts of Carpobrotus edulis (L. N.E.Br. on the germination, establishment and survival of native plants: a clue for assessing its competitive strength.

    Directory of Open Access Journals (Sweden)

    Ana Novoa

    Full Text Available Does Carpobrotus edulis have an impact on native plants? How do C. edulis' soil residual effects affect the maintenance of native populations? What is the extent of interspecific competition in its invasion process? In order to answer those questions, we established pure and mixed cultures of native species and C. edulis on soil collected from invaded and native areas of Mediterranean coastal dunes in the Iberian Peninsula. We examined the impact of the invader on the germination, growth and survival of seeds and adult plants of two native plant species (Malcolmia littorea (L. R.Br, and Scabiosa atropurpurea L. growing with ramets or seeds of C. edulis. Residual effects of C. edulis on soils affected the germination process and early growth of native plants in different ways, depending on plant species and density. Interspecific competition significantly reduced the germination and early growth of native plants but this result was soil, density, timing and plant species dependent. Also, at any density of adult individuals of C. edulis, established native adult plants were not competitive. Moreover, ramets of C. edulis had a lethal effect on native plants, which died in a short period of time. Even the presence of C. edulis seedlings prevents the recruitment of native species. In conclusion, C. edulis have strong negative impacts on the germination, growth and survival of the native species M. littorea and S. atropurpurea. These impacts were highly depended on the development stages of native and invasive plants. Our findings are crucial for new strategies of biodiversity conservation in coastal habitats.

  18. Impacts of Carpobrotus edulis (L.) N.E.Br. on the Germination, Establishment and Survival of Native Plants: A Clue for Assessing Its Competitive Strength

    Science.gov (United States)

    Novoa, Ana; González, Luís

    2014-01-01

    Does Carpobrotus edulis have an impact on native plants? How do C. edulis’ soil residual effects affect the maintenance of native populations? What is the extent of interspecific competition in its invasion process? In order to answer those questions, we established pure and mixed cultures of native species and C. edulis on soil collected from invaded and native areas of Mediterranean coastal dunes in the Iberian Peninsula. We examined the impact of the invader on the germination, growth and survival of seeds and adult plants of two native plant species (Malcolmia littorea (L.) R.Br, and Scabiosa atropurpurea L.) growing with ramets or seeds of C. edulis. Residual effects of C. edulis on soils affected the germination process and early growth of native plants in different ways, depending on plant species and density. Interspecific competition significantly reduced the germination and early growth of native plants but this result was soil, density, timing and plant species dependent. Also, at any density of adult individuals of C. edulis, established native adult plants were not competitive. Moreover, ramets of C. edulis had a lethal effect on native plants, which died in a short period of time. Even the presence of C. edulis seedlings prevents the recruitment of native species. In conclusion, C. edulis have strong negative impacts on the germination, growth and survival of the native species M. littorea and S. atropurpurea. These impacts were highly depended on the development stages of native and invasive plants. Our findings are crucial for new strategies of biodiversity conservation in coastal habitats. PMID:25210924

  19. Impacts of Carpobrotus edulis (L.) N.E.Br. on the germination, establishment and survival of native plants: a clue for assessing its competitive strength.

    Science.gov (United States)

    Novoa, Ana; González, Luís

    2014-01-01

    Does Carpobrotus edulis have an impact on native plants? How do C. edulis' soil residual effects affect the maintenance of native populations? What is the extent of interspecific competition in its invasion process? In order to answer those questions, we established pure and mixed cultures of native species and C. edulis on soil collected from invaded and native areas of Mediterranean coastal dunes in the Iberian Peninsula. We examined the impact of the invader on the germination, growth and survival of seeds and adult plants of two native plant species (Malcolmia littorea (L.) R.Br, and Scabiosa atropurpurea L.) growing with ramets or seeds of C. edulis. Residual effects of C. edulis on soils affected the germination process and early growth of native plants in different ways, depending on plant species and density. Interspecific competition significantly reduced the germination and early growth of native plants but this result was soil, density, timing and plant species dependent. Also, at any density of adult individuals of C. edulis, established native adult plants were not competitive. Moreover, ramets of C. edulis had a lethal effect on native plants, which died in a short period of time. Even the presence of C. edulis seedlings prevents the recruitment of native species. In conclusion, C. edulis have strong negative impacts on the germination, growth and survival of the native species M. littorea and S. atropurpurea. These impacts were highly depended on the development stages of native and invasive plants. Our findings are crucial for new strategies of biodiversity conservation in coastal habitats.

  20. Effects of thinning, burning, seeding, and slash arrangements on understory communities in pinyon-juniper woodlands of northern Arizona

    Directory of Open Access Journals (Sweden)

    Maria Irwin

    2011-11-01

    Full Text Available Pinyon-juniper woodlands are a dominant ecosystem in the American Southwest that have been increasing in density over the last century, generating concerns about the effects on wildlife habitat, livestock forage, and wildfire risk. We tested 16 treatment combinations designed to restore stands to historic conditions by examining the impact on understory plant richness and abundance. We thinned three sites comprised of different parent soil materials: limestone, sandstone, and basalt. Each site had one of four slash arrangements: piled, broadcast, clustered, or no thinning. Each of these arrangements received a different burning/seeding treatment: prescribed fire, seeding, prescribed fire and seeding, or none. This study corresponded with the driest period in the last 55 years, and plant species richness decreased by an average of 40% from the previous year in the control plots. Richness was significantly different due to slash arrangement at the basalt site only. Burning or seeding did not affect richness at any of the sites. Plant species abundance was generally low and not influenced by treatment or site. This study demonstrates that extensive ecosystem manipulation in the pinyon-juniper woodlands of northern Arizona did not affect understory richness or abundance the first year after treatment during a drought.

  1. Effects of thinning, burning, seeding, and slash arrangements on understory communities in pinyon-juniper woodlands of northern Arizona

    Directory of Open Access Journals (Sweden)

    Maria R. Irwin

    2011-06-01

    Full Text Available Pinyon-juniper woodlands are a dominant ecosystem in the American Southwest that have been increasing in density over the last century, generating concerns about the effects on wildlife habitat, livestock forage, and wildfire risk. We tested 16 treatment combinations designed to restore stands to historic conditions by examining the impact on understory plant richness and abundance. We thinned three sites comprised of different parent soil materials: limestone, sandstone, and basalt. Each site had one of four slash arrangements: piled, broadcast, clustered, or no thinning. Each of these arrangements received a different burning/seeding treatment: prescribed fire, seeding, prescribed fire and seeding, or none. This study corresponded with the driest period in the last 55 years, and plant species richness decreased by an average of 40% from the previous year in the control plots. Richness was significantly different due to slash arrangement at the basalt site only. Burning or seeding did not affect richness at any of the sites. Plant species abundance was generally low and not influenced by treatment or site. This study demonstrates that extensive ecosystem manipulation in the pinyon-juniper woodlands of northern Arizona did not affect understory richness or abundance the first year after treatment during a drought.

  2. Growth form and distribution of introduced plants in their native and non-native ranges in Eastern Asia and North America

    Science.gov (United States)

    Robert E. Ricklefs; Qinfeng Guo; Hong Qian

    2008-01-01

    There is a growing interest in understanding the influence of plant traits on their ability to spread in non-native regions. Many studies addressing this issue have been based on relatively small areas or restricted taxonomic groups. Here, we analyse a large data base involving 1567 plant species introduced between Eastern Asia and North America or from elsewhere to...

  3. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest

    Science.gov (United States)

    Burton, J.A.; Hallgren, S.W.; Fuhlendorf, S.D.; Leslie, David M.

    2011-01-01

    Ecosystems in the eastern United States that were shaped by fire over thousands of years of anthropogenic burning recently have been subjected to fire suppression resulting in significant changes in vegetation composition and structure and encroachment by invasive species. Renewed interest in use of fire to manage such ecosystems will require knowledge of effects of fire regime on vegetation. We studied the effects of one aspect of the fire regime, fire frequency, on biomass, cover and diversity of understory vegetation in upland oak forests prescribe-burned for 20 years at different frequencies ranging from zero to five fires per decade. Overstory canopy closure ranged from 88 to 96% and was not affected by fire frequency indicating high tolerance of large trees for even the most frequent burning. Understory species richness and cover was dominated by woody reproduction followed in descending order by forbs, C3 graminoids, C4 grasses, and legumes. Woody plant understory cover did not change with fire frequency and increased 30% from one to three years after a burn. Both forbs and C3 graminoids showed a linear increase in species richness and cover as fire frequency increased. In contrast, C4 grasses and legumes did not show a response to fire frequency. The reduction of litter by fire may have encouraged regeneration of herbaceous plants and helped explain the positive response of forbs and C3 graminoids to increasing fire frequency. Our results showed that herbaceous biomass, cover, and diversity can be managed with long-term prescribed fire under the closed canopy of upland oak forests. ?? 2011 Springer Science+Business Media B.V.

  4. Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges

    NARCIS (Netherlands)

    Reinhart, K.O.; Packer, A.; Van der Putten, W.H.; Clay, K.A.

    2003-01-01

    One explanation for the higher abundance of invasive species in their non-native than native ranges is the escape from natural enemies. But there are few experimental studies comparing the parallel impact of enemies (or competitors and mutualists) on a plant species in its native and invaded ranges,

  5. The Spread of Non-native Plant Species Collection of Cibodas Botanical Garden into Mt. Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Musyarofah Zuhri

    2013-05-01

    Full Text Available The role of botanic garden in spread of non-native plant species has concerned of international worldwide. This study aimed to study the extent of non-native plant species from Cibodas Botanical Garden (CBG which invades into natural rainforest. A line transect was made edge-to-interior with 1,600 m in distance from CBG boundary. Result showed that distance from CBG was not significant in correlation with non-native tree and treelet density. Furthermore, presence of existing CBG’s plant collection was not a single aspect which influenced presence and abundance. Three invasive species possibly was escape from CBG and it showed edge-to-interior in stems density, i.e. Cinchona pubescens, Calliandra calothyrsus and Cestrum aurantiacum. The patterns of non-native species were influenced by presence of ditch across transect, existence of human trail, and the other non-native species did not have general pattern of spread distribution. Overall, botanical gardens should minimize the risk of unintentional introduced plant by perform site-specific risk assessment.

  6. Setting Priorities for Monitoring and Managing Non-native Plants: Toward a Practical Approach.

    Science.gov (United States)

    Koch, Christiane; Jeschke, Jonathan M; Overbeck, Gerhard E; Kollmann, Johannes

    2016-09-01

    Land managers face the challenge to set priorities in monitoring and managing non-native plant species, as resources are limited and not all non-natives become invasive. Existing frameworks that have been proposed to rank non-native species require extensive information on their distribution, abundance, and impact. This information is difficult to obtain and often not available for many species and regions. National watch or priority lists are helpful, but it is questionable whether they provide sufficient information for environmental management on a regional scale. We therefore propose a decision tree that ranks species based on more simple albeit robust information, but still provides reliable management recommendations. To test the decision tree, we collected and evaluated distribution data from non-native plants in highland grasslands of Southern Brazil. We compared the results with a national list from the Brazilian Invasive Species Database for the state to discuss advantages and disadvantages of the different approaches on a regional scale. Out of 38 non-native species found, only four were also present on the national list. If management would solely rely on this list, many species that were identified as spreading based on the decision tree would go unnoticed. With the suggested scheme, it is possible to assign species to active management, to monitoring, or further evaluation. While national lists are certainly important, management on a regional scale should employ additional tools that adequately consider the actual risk of non-natives to become invasive.

  7. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log......-transformed species numbers as dependent and log-transformed modified area (i.e. area not covered with barren lava) as an independent variable. This holds both for total species number, for native species number, for endemic species number and for total number of seed plants as well as number of endemic seed plants...

  8. Investigation of fungal root colonizers of the invasive plant Vincetoxicum rossicum and co-occurring local native plants in a field and woodland area in Southern Ontario

    Directory of Open Access Journals (Sweden)

    Cindy Bongard

    2013-06-01

    Full Text Available Fungal communities forming associations with plant roots have generally been described as ranging from symbiotic to parasitic. Disruptions to these associations consequently can have significant impacts on native plant communities. We examined how invasion by Vincetoxicum rossicum, a plant native to Europe, can alter both the arbuscular mycorrhizal fungi, as well as the general fungal communities associating with native plant roots in both field and woodland sites in Southern Ontario. In two different sites in the Greater Toronto Area, we took advantage of invasion by V. rossicum and neighbouring uninvaded sites to investigate the fungal communities associating with local plant roots, including goldenrod (Solidago spp., wild red raspberry (Rubus idaeus, Canada anemone (Anemone canadensis, meadow rue (Thalictrum dioicum, and wild ginger (Asarum canadense. Fungi colonizing roots were characterized with terminal restriction fragment length polymorphism (T-RFLP analysis of amplified total fungal (TF and arbuscular mycorrhizal fungal (AMF ribosomal fragments. We saw a significant effect of the presence of this invader on the diversity of TF phylotypes colonizing native plant roots, and a composition shift of both the TF and AMF community in native roots in both sites. In native communities invaded by V. rossicum, a significant increase in richness and colonization density of TF suggests that invaders such as V. rossicum may be able to influence the composition of soil fungi available to natives, possibly via mechanisms such as increased carbon provision or antibiosis attributable to unique root exudates.

  9. Effects of Introduced and Indigenous Viruses on Native Plants: Exploring Their Disease Causing Potential at the Agro-Ecological Interface

    Science.gov (United States)

    Vincent, Stuart J.; Coutts, Brenda A.; Jones, Roger A. C.

    2014-01-01

    The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host–virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface. PMID:24621926

  10. Can native plant species be preserved in an anthropogenic forest landscape dominated by aliens? A case study from Mediterranean Chile

    Directory of Open Access Journals (Sweden)

    Steffi Heinrichs

    2016-06-01

    Full Text Available Plantations with fast growing exotic tree species can negatively affect native plant species diversity and promote the spread of alien species. Mediterranean Chile experienced major landscape changes with a vast expansion of industrial plantations of Pinus radiata in the past. However, with increasing knowledge of biodiversity effects on ecosystem services Chilean forest owners now aim to integrate the conservation of native biodiversity into forest management, but data on native species diversity and establishment within a plantation landscape is scarce. Here we investigated plant species diversity and composition in four forest management options applied within a landscape dominated by P. radiata plantations in comparison to an unmanaged reference: (i a clear cut, (ii a strip cut, (iii a native canopy of Nothofagus glauca and (iv a young P. radiata plantation. We wanted to assess if native plant species can be maintained either by natural regeneration or by planting of native tree species (Nothofagus glauca, N. obliqua, Quillaja saponaria within this landscape. Results show a high diversity of native and forest plant species within the different management options indicating a high potential for native biodiversity restoration within an anthropogenic landscape. In particular, herbaceous species can benefit from management. They are rare in unmanaged natural forests that are characterized by low light conditions and a thick litter layer. Management, however, also promoted a diversity of alien species. The rapid spread of alien grass species after management can deter an initial establishment of native tree species or the survival and growth after planting mainly under dry but less under sufficient moisture conditions. The most unsuccessful option for promoting native plant species was clear cutting in a dry area where alien grasses were abundant. For drought-tolerant tree species such as Quillaja saponaria, though

  11. Driving Factors of Understory Evapotranspiration within a Siberian Larch Forest

    Science.gov (United States)

    Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.; Spawn, S.; Farmer, S.

    2017-12-01

    Amplified rates of climate change are causing alterations in vegetation productivity, hydrologic cycling, and wildfire severity and intensity in arctic ecosystems. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem that are affected by these modifications. These forests cover 2.5 million km2 with densities ranging from spare to thick. The current average canopy cover is at around 17% and is expected to increase with the observed increases in vegetation productivity and wildfire. These projected changes in forest density can alter the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. Low density boreal forests have much higher rates of understory evapotranspiration and can contribute as much as 80% to total ecosystem evapotranspiration, while the understory in high density forests is responsible for only around 15% of total ecosystem evapotranspiration. The objective of this research is to understand why there are changes in understory evapotranspiration with varying overstory density by looking at light levels, biomass, vegetation, and air and soil differences. To better learn about these differences in understory evapotranspiration in boreal larch forests the driving factors of evapotranspiration were measured within a burn scar with varying densities of high, medium, and low. Water fluxes were conducted using the static chamber technique under different environmental conditions. Furthermore, controlling factors of evapotranspiration such as photosynethically active radiation, vapor pressure deficit, soil moisture, moss cover, biomass, and leaf area index were measured or derived. In general, we found that low density areas have highest rates of evapotranspiration due to larger amount of biomass, and increased access to light, despite low levels of soil moisture. These results can help us understand how and why total ecosystem water exchange will change in boreal larch forests

  12. Asymmetric effects of native and exotic invasive shrubs on ecology of the West Nile virus vector Culex pipiens (Diptera: Culicidae).

    Science.gov (United States)

    Gardner, Allison M; Allan, Brian F; Frisbie, Lauren A; Muturi, Ephantus J

    2015-06-16

    Exotic invasive plants alter the structure and function of native ecosystems and may influence the distribution and abundance of arthropod disease vectors by modifying habitat quality. This study investigated how invasive plants alter the ecology of Culex pipiens, an important vector of West Nile virus (WNV) in northeastern and midwestern regions of the United States. Field and laboratory experiments were conducted to test the hypothesis that three native leaf species (Rubus allegheniensis, blackberry; Sambucus canadensis, elderberry; and Amelanchier laevis, serviceberry), and three exotic invasive leaf species (Lonicera maackii, Amur honeysuckle; Elaeagnus umbellata, autumn olive; and Rosa multiflora, multiflora rose) alter Cx. pipiens oviposition site selection, emergence rates, development time, and adult body size. The relative abundance of seven bacterial phyla in infusions of the six leaf species also was determined using quantitative real-time polymerase chain reaction to test the hypothesis that variation in emergence, development, and oviposition site selection is correlated to differences in the diversity and abundance of bacteria associated with different leaf species, important determinants of nutrient quality and availability for mosquito larvae. Leaf detritus from invasive honeysuckle and autumn olive yielded significantly higher adult emergence rates compared to detritus from the remaining leaf species and honeysuckle alleviated the negative effects of intraspecific competition on adult emergence. Conversely, leaves of native blackberry acted as an ecological trap, generating high oviposition but low emergence rates. Variation in bacterial flora associated with different leaf species may explain this asymmetrical production of mosquitoes: emergence rates and oviposition rates were positively correlated to bacterial abundance and diversity, respectively. We conclude that the displacement of native understory plant species by certain invasive shrubs

  13. Selection and Vegetative Propagation of Native Woody Plants for Water-Wise Landscaping

    OpenAIRE

    Rupp, Larry A; Varga, William A; Anderson, David

    2011-01-01

    Native woody plants with ornamental characteristics such as brilliant fall color, dwarf form, or glossy leaves have potential for use in water conserving urban landscapes. Individual accessions with one or more of these unique characteristics were identified based on the recommendations of a wide range of plant enthusiasts (both professional and amateur). Documentation of these accessions has been done through locating plants on-site where possible and then developing a record based on digita...

  14. Invasion of a dominant floral resource: effects on the floral community and pollination of native plants.

    Science.gov (United States)

    Goodell, Karen; Parker, Ingrid M

    2017-01-01

    Through competition for pollinators, invasive plants may suppress native flora. Community-level studies provide an integrative assessment of invasion impacts and insights into factors that influence the vulnerability of different native species. We investigated effects of the nonnative herb Lythrum salicaria on pollination of native species in 14 fens of the eastern United States. We compared visitors per flower for 122 native plant species in invaded and uninvaded fens and incorporated a landscape-scale experiment, removing L. salicaria flowers from three of the invaded fens. Total flower densities were more than three times higher in invaded than uninvaded or removal sites when L. salicaria was blooming. Despite an increase in number of visitors with number of flowers per area, visitors per native flower declined with increasing numbers of flowers. Therefore, L. salicaria invasion depressed visitation to native flowers. In removal sites, visitation to native flowers was similar to uninvaded sites, confirming the observational results and also suggesting that invasion had not generated a persistent build-up of visitor populations. To study species-level impacts, we examined effects of invasion on visitors per flower for the 36 plant species flowering in both invaded and uninvaded fens. On average, the effect of invasion represented about a 20% reduction in visits per flower. We measured the influence of plant traits on vulnerability to L. salicaria invasion using meta-analysis. Bilaterally symmetrical flowers experienced stronger impacts on visitation, and similarity in flower color to L. salicaria weakly intensified competition with the invader for visitors. Finally, we assessed the reproductive consequences of competition with the invader in a dominant flowering shrub, Dasiphora fruticosa. Despite the negative effect of invasion on pollinator visitation in this species, pollen limitation of seed production was not stronger in invaded than in uninvaded

  15. Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China

    International Nuclear Information System (INIS)

    Lu Xiankai; Mo Jiangming; Gilliam, Frank S.; Yu Guirui; Zhang Wei; Fang Yunting; Huang Juan

    2011-01-01

    Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (with harvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha -1 yr -1 , and 100 kg N ha -1 yr -1 . Nitrogen additions did not significantly affect understory plant richness, density, and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in this forest. In the rehabilitated forest, species richness and density showed no significant response to N additions; however, understory cover decreased significantly in the N-treated plots, largely a function of a significant increase in canopy closure. Our results suggest that responses of plant diversity to N deposition may vary with different land-use history, and rehabilitated forests may be more sensitive to N deposition. - Highlights: → Nitrogen addition had no significant effect on understory plant diversity in the disturbed forest. → Nitrogen addition significantly decreased understory plant cover. → Nitrogen addition had no effect on richness and density in the rehabilitated forest. → The decrease is largely a function of a significant increase in canopy closure. → Land-use practices may dominate the responses of plant diversity to N addition. - Research in disturbed forests of southeastern China demonstrates that land-use history can substantially alter effects of excess nitrogen deposition on plant diversity of tropical forest ecosystems.

  16. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    Science.gov (United States)

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  17. Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present

    Science.gov (United States)

    E.T. Nilsen; T.T. Lei; S.W. Semones

    2009-01-01

    We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s...

  18. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    Science.gov (United States)

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  19. Propagation and Establishment of Native Plants for Vegetative Restoration of Aquatic Ecosystems

    Science.gov (United States)

    2013-06-01

    ERDC/EL TR-13-9 ii Abstract Aquatic plants are a vital, but often missing, component of shallow, freshwater systems. Manmade systems, such as... water quality problems; development of noxious algal blooms; and, often, susceptibility to invasion by harmful, non-native, aquatic weeds. If...emergent aquatic plants that we have successfully used in founder colony establishment in US water bodies. ............................................. 7

  20. Influence of light and soil moisture on Sierran mixed-conifer understory communities.

    Science.gov (United States)

    Malcolm North; Brian Oakley; Rob Fiegener; Andrew Gray; Michael. Barbour

    2005-01-01

    Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with...

  1. DNA barcoding the native flowering plants and conifers of Wales.

    Directory of Open Access Journals (Sweden)

    Natasha de Vere

    Full Text Available We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species. Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85% are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments, formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.

  2. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    Directory of Open Access Journals (Sweden)

    Tess Nahanni Grainger

    Full Text Available Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest

  3. Considering the unintentional consequences of pollinator gardens for urban native plants: is the road to extinction paved with good intentions?

    Science.gov (United States)

    Johnson, Anna L; Fetters, Andrea M; Ashman, Tia-Lynn

    2017-09-01

    Urban centers are important foci for plant biodiversity and yet widespread planting of wildflower gardens in cities to sustain pollinator biodiversity is on the rise, without full consideration of potential ecological consequences. The impact of intentional wildflower plantings on remnant native plant diversity in urban and peri-urban settings has not received attention, although shared pollinators are likely to mediate several types of biotic interactions between human-introduced plants and remnant native ones. Additionally, if wildflower species escape gardens these indirect effects may be compounded with direct ones. We review the potential positive and negative impacts of wildflower gardens on urban native flowering plants, and we reveal substantial gaps in our knowledge. We present a roadmap for research to address whether wildflower gardens, while benefiting pollinators, could also hasten the extinction of native remnant plants in urban settings, or whether they could have other effects that enrich urban biodiversity. Goals of future wildflower mixes should consider the totality of potential interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    Science.gov (United States)

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions. No claim to US Government works. New Phytologist © 2015 New Phytologist Trust.

  5. Evaluation of Promoting Roadside Revegetation: An Integrated Approach to Establishing Native Plants

    Science.gov (United States)

    2017-12-01

    This report documents an evaluation of outcomes associated with Roadside Revegetation: A Practical Guide to Working with Native Plants, a 2007 guide encouraging agencies to adopt improved roadside revegetation practices.(1) It should be of interest t...

  6. Maintenance of a living understory enhances soil carbon sequestration in subtropical orchards.

    Science.gov (United States)

    Liu, Zhanfeng; Lin, Yongbiao; Lu, Hongfang; Ding, Mingmao; Tan, Yaowen; Xu, Shejin; Fu, Shenglei

    2013-01-01

    Orchard understory represents an important component of the orchards, performing numerous functions related to soil quality, water relations and microclimate, but little attention has been paid on its effect on soil C sequestration. In the face of global climate change, fruit producers also require techniques that increase carbon (C) sequestration in a cost-effective manner. Here we present a case study to compare the effects of understory management (sod culture vs. clean tillage) on soil C sequestration in four subtropical orchards. The results of a 10-year study indicated that the maintenance of sod significantly enhanced the soil C stock in the top 1 m of orchard soils. Relative to clean tillage, sod culture increased annual soil C sequestration by 2.85 t C ha(-1), suggesting that understory management based on sod culture offers promising potential for soil carbon sequestration. Considering that China has the largest area of orchards in the world and that few of these orchards currently have sod understories, the establishment and maintenance of sod in orchards can help China increase C sequestration and greatly contribute to achieving CO2 reduction targets at a regional scale and potentially at a national scale.

  7. Functional plant types drive plant interactions in a Mediterranean mountain range

    Directory of Open Access Journals (Sweden)

    Petr eMacek

    2016-05-01

    Full Text Available Shrubs have both positive (facilitation and negative (competition effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional groups on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat.Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions.There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions.

  8. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    Science.gov (United States)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  9. Understory bamboo discrimination using a winter image

    NARCIS (Netherlands)

    Wang, T.; Skidmore, A.K.; Toxopeus, A.G.; Liu, X.

    2009-01-01

    In this study, a new approach is presented that combines forest phenology and Landsat vegetation indices to estimate evergreen understory bamboo coverage in a mixed temperate forest. It was found that vegetation indices, especially the normalized difference vegetation index (NDVI) derived from

  10. Thermogravimetric analysis of forest understory grasses

    Science.gov (United States)

    Thomas Elder; John S. Kush; Sharon M. Hermann

    2011-01-01

    Forest understory grasses are of significance in the initiation, establishment and maintenance of fire, whether used as a management tool or when occurring as wildfire. The fundamental thermal properties of such grasses are critical to their behavior in fire situations and have been investigated in the current work by the application of thermogravimetric analysis (TGA...

  11. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide.

    Science.gov (United States)

    Manea, Anthony; Leishman, Michelle R

    2011-03-01

    We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO(2) because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO(2). A series of competition experiments under ambient and elevated CO(2) glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO(2) concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO(2) concentration. However, there was a significant interaction between plant type and CO(2) treatment due to reduced competitive response of native species under elevated compared with ambient CO(2) conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO(2). We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO(2) treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO(2) conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO(2) conditions. Under predicted future atmospheric CO(2) conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO(2) conditions, the ecological and

  12. Understory Density Characteristics in Several Midlatitude Temperature Forests

    National Research Council Canada - National Science Library

    Krause, Paul

    2003-01-01

    Understory density can have impacts on such military activities as cross-country mobility, bivouac, cover and concealment, and line of sight Airborne sensors provide a fairly good mechanism for measuring the overstory...

  13. Subirrigation for production of native plants in nurseries - concepts, current knowledge, and implementation

    Science.gov (United States)

    Justin L. Schmal; Kas Dumroese; Anthony S. Davis; Jeremy Pinto; Douglass F. Jacobs

    2011-01-01

    Subirrigation, a method whereby water is allowed to move upward into the growing medium by capillary action, has been the focus of recent research in forest and conservation nurseries growing a wide variety of native plants. Subirrigation reduces the amount of water needed for producing high-quality plants, discharged wastewater, and leaching of nutrients compared with...

  14. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    Science.gov (United States)

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  15. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  16. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-02-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention.

  17. Status and management of non-native plant invasion in three of the largest national parks in the United States

    Directory of Open Access Journals (Sweden)

    Scott Abella

    2015-06-01

    Full Text Available Globally, invasion by non-native plants threatens resources that nature reserves are designated to protect. We assessed the status of non-native plant invasion on 1,662, 0.1-ha plots in Death Valley National Park, Mojave National Preserve, and Lake Mead National Recreation Area. These parks comprise 2.5 million ha, 23% of the national park land in the contiguous USA. At least one non-native species inhabited 82% of plots. Thirty-one percent of plots contained one non-native species, 30% two, 17% three, and 4% four to ten non-native species. Red brome (Bromus rubens, an ‘ecosystem engineer’ that alters fire regimes, was most widespread, infesting 60% of plots. By identifying frequency of species through this assessment, early detection and treatment can target infrequent species or minimally invaded sites, while containment strategies could focus on established invaders. We further compared two existing systems for prioritizing species for management and found that a third of species on plots had no rankings available. Moreover, rankings did not always agree between ranking systems for species that were ranked. Presence of multiple non-native species complicates treatment, and while we found that 40% of plots contained both forb and grass invaders, exploiting accelerated phenology of non-natives (compared to native annuals might help manage multi-species invasions. Large sizes of these parks and scale of invasion are formidable challenges for management. Yet, precisely because of their size, these reserves represent opportunities to conserve large landscapes of native species by managing non-native plant invasions.

  18. The long-tongued hawkmoth pollinator niche for native and invasive plants in Africa.

    Science.gov (United States)

    Johnson, Steven D; Raguso, Robert A

    2016-01-01

    Unrelated organisms that share similar niches often exhibit patterns of convergent evolution in functional traits. Based on bimodal distributions of hawkmoth tongue lengths and tubular white flowers in Africa, this study hypothesized that long-tongued hawkmoths comprise a pollination niche (ecological opportunity) that is distinct from that of shorter-tongued hawkmoths. Field observations, light trapping, camera surveillance and pollen load analysis were used to identify pollinators of plant species with very long-tubed (>8 cm) flowers. The nectar properties and spectral reflectance of these flowers were also measured. The frequency distributions of proboscis length for all captured hawkmoths and floral tube length for a representative sample of night-blooming plant species were determined. The geographical distributions of both native and introduced plant species with very long floral tubes were mapped. The convolvulus hawkmoth Agrius convolvuli is identified as the most important pollinator of African plants with very long-tubed flowers. Plants pollinated by this hawkmoth species tend to have a very long (approx. 10 cm) and narrow flower tube or spur, white flowers and large volumes of dilute nectar. It is estimated that >70 grassland and savanna plant species in Africa belong to the Agrius pollination guild. In South Africa, at least 23 native species have very long floral tubes, and pollination by A. convolvuli or, rarely, by the closely related hawkmoth Coelonia fulvinotata, has been confirmed for 11 of these species. The guild is strikingly absent from the species-rich Cape floral region and now includes at least four non-native invasive species with long-tubed flowers that are pre-adapted for pollination by A. convolvuli. This study highlights the value of a niche perspective on pollination, which provides a framework for making predictions about the ecological importance of keystone pollinators, and for understanding patterns of convergent evolution and

  19. Dynamics of Understory Shrub Biomass in Six Young Plantations of Southern Subtropical China

    Directory of Open Access Journals (Sweden)

    Yuanqi Chen

    2017-11-01

    Full Text Available Understory shrubs are an important component of forest ecosystems and drive ecosystem processes, such as ecosystem carbon cycling. However, shrub biomass carbon stocks have rarely been reported, which limits our understanding of ecosystem C stock and cycling. In this study, we evaluated carbon accumulation of shrub species using allometric equations based on height and basal diameter in six subtropical plantations at the age of 1, 3, 4 and 6 years. The results showed that plantation type did not significantly affect the total biomass of shrubs, but it significantly affected the biomass of Rhodomyrtus tomentosa, Ilex asprella, Clerodendrum fortunatum and Baeckea frutescens. The biomass of dominant shrub species R. tomentosa, I. asprella, Gardenia jasminoides and Melastoma candidum increased with stand age, while the biomass of C. fortunatum and B. frutescens decreased. The inconsistent biomass-time patterns of different shrub species may be the primary reason for the altered total shrub biomass in each plantation. Consequently, we proposed that R. tomentosa, I. asprella, G. jasminoides and M. candidum could be preferable for understory carbon accumulation and should be maintained or planted because of their important functions in carbon accumulation and high economic values in the young plantations of southern subtropical China.

  20. Diet of Wilson's warblers and distribution of arthropod prey in the understory of Douglas-fir forests

    Science.gov (United States)

    Hagar, Joan C.; Dugger, Kate; Starkey, Edward E.

    2007-01-01

    Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.

  1. Modulation of legume defense signaling pathways by native and non-native pea aphid clones

    Directory of Open Access Journals (Sweden)

    Carlos Sanchez-Arcos

    2016-12-01

    Full Text Available The pea aphid (Acyrthosiphon pisum is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research it is still unclear why pea aphid host races (biotypes are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea aphid host races. To find out whether legume species vary in their defense responses to different pea aphid host races, we measured the amounts of salicylic acid (SA, the jasmonic acid-isoleucine conjugate (JA-Ile, other jasmonate precursors and derivatives, and abscisic acid (ABA in four different species (Medicago sativa, Trifolium pratense, Pisum sativum, V. faba after infestation by native and non-native pea aphid clones of various host races. Additionally, we assessed the performance of the clones on the four plant species. On M. sativa and T. pratense, non-native clones that were barely able to survive or reproduce, triggered a strong SA and JA-Ile response, whereas infestation with native clones led to lower levels of both phytohormones. On P. sativum, non-native clones, which survived or reproduced to a certain extent, induced fluctuating SA and JA-Ile levels, whereas the native clone triggered only a weak SA and JA-Ile response. On the universal host V. faba all aphid clones triggered only low SA levels initially, but induced clone-specific patterns of SA and JA-Ile later on. The levels of the active JA-Ile conjugate and of the other JA-pathway metabolites measured showed in many cases similar patterns, suggesting that the reduction in JA signaling was due to an effect upstream of OPDA. ABA levels were downregulated in all aphid clone-plant combinations and were therefore probably not decisive factors for aphid-plant compatibility. Our results

  2. Impacts of Climate Variability on Non-native Plant Invasion in the Western U.S.

    Science.gov (United States)

    Bradley, B. A.

    2006-12-01

    Plant invasions are changing ecosystem structure and function throughout the United States. In many areas of the west, invasive species such as tamarisk (Tamarix spp.), cheatgrass (Bromus tectorum), and yellow starthistle (Centaurea solstitialis) dominate landscapes. Expansion of these species is occurring at a staggering rate, and invasion rates may change in the future as native ecosystems become more or less susceptible to invasion because of changes in climate. For example, evidence suggests that some plant invaders are favored under increased ambient CO2 levels, potentially leading to increased invasion with continued greenhouse gas emissions. In this work, I predict how western invasive plant species may also be affected by changes in climate variability. According to IPCC reports, rising ocean temperatures may change the frequency and intensity of El Niño events, potentially resulting in wetter El Niño years and/or more extreme and lengthier drought. In semi-arid systems, changing frequency or magnitude of extreme weather events may further shift the competitive balance between native and invasive species. For example, cheatgrass and yellow starthistle, both annual invaders, display high inter-annual variability in response to water availability. As a result, plants are larger and produce more seeds than native competitors during extreme wet years. This phenological response is so strong in cheatgrass communities that it can be observed in regional satellite records. Further, dense cheatgrass growth leads to a secondary feedback in the form of wildfire; higher density cheatgrass increases fire frequency in shrublands and enables further cheatgrass colonization. In this work, I synthesize knowledge of invasive plant phenological response under different climate conditions, drawing on information gathered through geographical mapping efforts at state or regional levels by university and agency researchers. Using the ranges of climate tolerance from current

  3. Native plant recovery in study plots after fennel (Foeniculum vulgare) control on Santa Cruz Island

    Science.gov (United States)

    Power, Paula; Stanley, Thomas R.; Cowan, Clark; Robertson, James R.

    2014-01-01

    Santa Cruz Island is the largest of the California Channel Islands and supports a diverse and unique flora which includes 9 federally listed species. Sheep, cattle, and pigs, introduced to the island in the mid-1800s, disturbed the soil, browsed native vegetation, and facilitated the spread of exotic invasive plants. Recent removal of introduced herbivores on the island led to the release of invasive fennel (Foeniculum vulgare), which expanded to become the dominant vegetation in some areas and has impeded the recovery of some native plant communities. In 2007, Channel Islands National Park initiated a program to control fennel using triclopyr on the eastern 10% of the island. We established replicate paired plots (seeded and nonseeded) at Scorpion Anchorage and Smugglers Cove, where notably dense fennel infestations (>10% cover) occurred, to evaluate the effectiveness of native seed augmentation following fennel removal. Five years after fennel removal, vegetative cover increased as litter and bare ground cover decreased significantly (P species increased at Scorpion Anchorage in both seeded and nonseeded plots. At Smugglers Cove, exotic cover decreased significantly (P = 0.0001) as native cover comprised of Eriogonum arborescensand Leptosyne gigantea increased significantly (P < 0.0001) in seeded plots only. Nonseeded plots at Smugglers Cove were dominated by exotic annual grasses, primarily Avena barbata. The data indicate that seeding with appropriate native seed is a critical step in restoration following fennel control in areas where the native seed bank is depauperate.

  4. Wild and native plants and mushrooms sold in the open-air markets of south-eastern Poland.

    Science.gov (United States)

    Kasper-Pakosz, Renata; Pietras, Marcin; Łuczaj, Łukasz

    2016-10-07

    The study of plants and fungi sold in open-air markets is an important part of ethnobotanical enquiry. Only few such studies were carried out in Europe. Four of the largest open-air markets of south-eastern Poland were visited regularly, and the plants sold in them were recorded between 2013 and 2015. The aim of the study was to record native and/or wild species sold in the markets. All the plants sold in the markets were photographed regularly. In each market, 25 sellers were interviewed. Voucher specimens were collected and fungi were identified using DNA barcoding. Altogether, 468 species of plants were recorded, 117 of them native to south-eastern Poland - 19 only collected from the wild and 11 both wild and cultivated. Seventeen of the species are under legal protection. Most protected plants were sold from cultivation, although proper authorization procedures had not been performed. Thirty-two species of fungi were sold (including two cultivated species), all of them for culinary purposes. Two species (Lactarius quieticolor, Leccinum schistophilum) are new to the mycobiota of Poland. Ornamental plants constituted a large section of the market, and they dominated the group of native species. Food plants dominated among wild-collected plants and were sold mainly as fruits for jams, juices and alcoholic drinks, or as culinary herbs. Very few medicinal or green vegetable plants were sold. An interesting feature of the markets was the sale of Ledum palustre as an insect repellent. Finding two species of fungi which are new to Poland highlights the importance of DNA barcoding in ethnomycological studies. Most items in the markets are ornamental plants, or edible fruits and mushrooms. Very few medicinal plants and green vegetables are sold, which differentiates the markets from southern European ones. Such a pattern is probably the model for most central European markets.

  5. Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient.

    Science.gov (United States)

    Haider, Sylvia; Kueffer, Christoph; Edwards, Peter J; Alexander, Jake M

    2012-09-01

    A non-native plant species spreading along an environmental gradient may need to adjust its growth to the prevailing conditions that it encounters by a combination of phenotypic plasticity and genetic adaptation. There have been several studies of how non-native species respond to changing environmental conditions along latitudinal gradients, but much less is known about elevational gradients. We conducted a climate chamber experiment to investigate plastic and genetically based growth responses of 13 herbaceous non-native plants along an elevational gradient from 100 to 2,000 m a.s.l. in Tenerife. Conditions in the field ranged from high anthropogenic disturbance but generally favourable temperatures for plant growth in the lower half of the gradient, to low disturbance but much cooler conditions in the upper half. We collected seed from low, mid and high elevations and grew them in climate chambers under the characteristic temperatures at these three elevations. Growth of all species was reduced under lower temperatures along both halves of the gradient. We found consistent genetically based differences in growth over the upper elevational gradient, with plants from high-elevation sites growing more slowly than those from mid-elevation ones, while the pattern in the lower part of the gradient was more mixed. Our data suggest that many non-native plants might respond to climate along elevational gradients by genetically based changes in key traits, especially at higher elevations where low temperatures probably impose a stronger selection pressure. At lower elevations, where anthropogenic influences are greater, higher gene flow and frequent disturbance might favour genotypes with broad ecological amplitudes. Thus the importance of evolutionary processes for invasion success is likely to be context-dependent.

  6. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site.

    Science.gov (United States)

    Marrugo-Negrete, José; Marrugo-Madrid, Siday; Pinedo-Hernández, José; Durango-Hernández, José; Díez, Sergi

    2016-01-15

    Artisanal and small-scale gold mining (ASGM) is the largest sector of demand for mercury (Hg), and therefore, one of the major sources of Hg pollution in the environment. This study was conducted in the Alacrán gold-mining site, one of the most important ASGM sites in Colombia, to identify native plant species growing in Hg-contaminated soils used for agricultural purposes, and to assess their potential as phytoremediation systems. Twenty-four native plant species were identified and analysed for total Hg (THg) in different tissues (roots, stems, and leaves) and in underlying soils. Accumulation factors (AF) in the shoots, translocation (TF) from roots to shoots, and bioconcentration (BCF) from soil-to-roots were determined. Different tissues from all plant species were classified in the order of decreasing accumulation of Hg as follows: roots > leaves > stems. THg concentrations in soil ranged from 230 to 6320 ng g(-1). TF values varied from 0.33 to 1.73, with high values in the lower Hg-contaminated soils. No correlation was found between soils with low concentrations of Hg and plant leaves, indicating that TF is not a very accurate indicator, since most of the Hg input to leaves at ASGM sites comes from the atmosphere. On the other hand, the BCF ranged from 0.28 to 0.99, with Jatropha curcas showing the highest value. Despite their low biomass production, several herbs and sub-shrubs are suitable for phytoremediation application in the field, due to their fast growth and high AF values in large and easily harvestable plant parts. Among these species, herbs such as Piper marginathum and Stecherus bifidus, and the sub-shrubs J. curcas and Capsicum annuum are promising native plants with the potential to be used in the phytoremediation of soils in tropical areas that are impacted by mining.

  7. Landscape patterns of understory composition and richness across a moisture and nitrogen mineralization gradient in Ohio (U.S.A.) Quercus forests

    Science.gov (United States)

    Todd F. Hutchinson; Ralph E.J. Boerner; Louis R. Iverson; Steve Sutherland; Elaine Kennedy Sutherland

    1999-01-01

    This study quantified relationships of understory vascular plant species composition and richness along environmental gradients over a broad spatial scale in second-growth oak forests in eastern North America. Species frequencies were recorded in 108 25 x 25 m plots in four study sites extending over 70 km in southern Ohio, U.S.A. The plots were stratified into three...

  8. Native plant development and restoration program for the Great Basin, USA

    Science.gov (United States)

    N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur

    2008-01-01

    The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...

  9. Simulating Various Terrestrial and Uav LIDAR Scanning Configurations for Understory Forest Structure Modelling

    Science.gov (United States)

    Hämmerle, M.; Lukač, N.; Chen, K.-C.; Koma, Zs.; Wang, C.-K.; Anders, K.; Höfle, B.

    2017-09-01

    Information about the 3D structure of understory vegetation is of high relevance in forestry research and management (e.g., for complete biomass estimations). However, it has been hardly investigated systematically with state-of-the-art methods such as static terrestrial laser scanning (TLS) or laser scanning from unmanned aerial vehicle platforms (ULS). A prominent challenge for scanning forests is posed by occlusion, calling for proper TLS scan position or ULS flight line configurations in order to achieve an accurate representation of understory vegetation. The aim of our study is to examine the effect of TLS or ULS scanning strategies on (1) the height of individual understory trees and (2) understory canopy height raster models. We simulate full-waveform TLS and ULS point clouds of a virtual forest plot captured from various combinations of max. 12 TLS scan positions or 3 ULS flight lines. The accuracy of the respective datasets is evaluated with reference values given by the virtually scanned 3D triangle mesh tree models. TLS tree height underestimations range up to 1.84 m (15.30 % of tree height) for single TLS scan positions, but combining three scan positions reduces the underestimation to maximum 0.31 m (2.41 %). Combining ULS flight lines also results in improved tree height representation, with a maximum underestimation of 0.24 m (2.15 %). The presented simulation approach offers a complementary source of information for efficient planning of field campaigns aiming at understory vegetation modelling.

  10. SIMULATING VARIOUS TERRESTRIAL AND UAV LIDAR SCANNING CONFIGURATIONS FOR UNDERSTORY FOREST STRUCTURE MODELLING

    Directory of Open Access Journals (Sweden)

    M. Hämmerle

    2017-09-01

    Full Text Available Information about the 3D structure of understory vegetation is of high relevance in forestry research and management (e.g., for complete biomass estimations. However, it has been hardly investigated systematically with state-of-the-art methods such as static terrestrial laser scanning (TLS or laser scanning from unmanned aerial vehicle platforms (ULS. A prominent challenge for scanning forests is posed by occlusion, calling for proper TLS scan position or ULS flight line configurations in order to achieve an accurate representation of understory vegetation. The aim of our study is to examine the effect of TLS or ULS scanning strategies on (1 the height of individual understory trees and (2 understory canopy height raster models. We simulate full-waveform TLS and ULS point clouds of a virtual forest plot captured from various combinations of max. 12 TLS scan positions or 3 ULS flight lines. The accuracy of the respective datasets is evaluated with reference values given by the virtually scanned 3D triangle mesh tree models. TLS tree height underestimations range up to 1.84 m (15.30 % of tree height for single TLS scan positions, but combining three scan positions reduces the underestimation to maximum 0.31 m (2.41 %. Combining ULS flight lines also results in improved tree height representation, with a maximum underestimation of 0.24 m (2.15 %. The presented simulation approach offers a complementary source of information for efficient planning of field campaigns aiming at understory vegetation modelling.

  11. Uptake of uranium by native aquatic plants: potential for bioindication and phytoremediation

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available The work presented here is a part the on going study on the uraniferous geochemical province of Central Portugal in which, the use of aquatic plants as indicators of uranium contamination is being probed using aquatic plants emphasizing their potential use in the emerging phytotechnologies. Even though we have observed very low concentration of U in the fresh waters of the studied sites we found a set of vegetable species with the ability to accumulate U in concentrations which are orders of magnitude higher than the surrounding environment. We have observed that Apium nodiflorum, Callitriche stagnalis, Lemna minor and Fontinalis antipyretica accumulated significant amounts of uranium, whereas Oenanthe crocata excluded U. These results indicate substantial scope for proper radiophytoremediation and phytosociological investigation exploiting the native flora. These species show great potential for phytoremediation because they are endemic and easy to grow in their native conditions. A. nodiflorum and C. stagnalis have high bioproductivity and yield good biomass.

  12. First detection in the USA: new plant pathogen, Phytophthora tentaculata, in native plant nurseries and restoration sites in California

    Science.gov (United States)

    S. Rooney-Latham; C. L. Blomquist; T. Swiecki; E. Bernhardt; S.J. Frankel

    2015-01-01

    Phytophthora tentaculata Kröber & Marwitz, has been detected in several native plant nurseries in 4 California counties and in restoration sites on orange sticky monkey flower (Diplacus aurantiacus subsp. aurantiacus (W. Curtis) Jeps. [Scrophulariaceae]), toyon (Heteromeles...

  13. Understory vegetation data quality assessment for the Interior West Forest and Inventory Analysis program

    Science.gov (United States)

    Paul L. Patterson; Renee A. O' Brien

    2011-01-01

    The Interior West Forest Inventory and Analysis (IW-FIA) program of the USDA Forest Service collects field data on understory vegetation structure that have broad applications. In IW-FIA one aspect of quality assurance is assessed based on the repeatability of field measurements. The understory vegetation protocol consists of two suites of measurements; (1) the...

  14. Biochar effects on the nursery propagation of 4 northern Rocky Mountain native plant species

    Science.gov (United States)

    Clarice P. Matt; Christopher R. Keyes; R. Kasten Dumroese

    2018-01-01

    Biochar has emerged as a promising potential amendment of soilless nursery media for plant propagation. With this greenhouse study we used biochar to displace standard soilless nursery media at 4 rates (0, 15, 30, and 45% [v:v]) and then examined media chemistry, irrigation frequency, and the growth of 4 northern Rocky Mountain native plant species: Clarkia pulchella...

  15. Modeling invasive alien plant species in river systems: Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    Science.gov (United States)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G. W.; Egger, G.; Leuven, R. S. E. W.; Middelkoop, H.

    2017-08-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding interactions of invasive and native species and their combined effects on river dynamics is essential for developing cost-effective management strategies. However, numerical models for simulating long-term effects of these processes are lacking. This paper investigates how an invasive alien plant species affects native riparian vegetation and hydro-morphodynamics. A morphodynamic model has been coupled to a dynamic vegetation model that predicts establishment, growth and mortality of riparian trees. We introduced an invasive alien species with life-history traits based on Japanese Knotweed (Fallopia japonica), and investigated effects of low- and high propagule pressure on invasion speed, native vegetation and hydro-morphodynamic processes. Results show that high propagule pressure leads to a decline in native species cover due to competition and the creation of unfavorable native colonization sites. With low propagule pressure the invader facilitates native seedling survival by creating favorable hydro-morphodynamic conditions at colonization sites. With high invader abundance, water levels are raised and sediment transport is reduced during the growing season. In winter, when the above-ground invader biomass is gone, results are reversed and the floodplain is more prone to erosion. Invasion effects thus depend on seasonal above- and below ground dynamic vegetation properties and persistence of the invader, on the characteristics of native species it replaces, and the combined interactions with hydro-morphodynamics.

  16. Mapping snags and understory shrubs for LiDAR based assessment of wildlife habitat suitability

    Science.gov (United States)

    Sebastian Martinuzzi; Lee A. Vierling; William A. Gould; Michael J. Falkowski; Jeffrey S. Evans; Andrew T. Hudak; Kerri T. Vierling

    2009-01-01

    The lack of maps depicting forest three-dimensional structure, particularly as pertaining to snags and understory shrub species distribution, is a major limitation for managing wildlife habitat in forests. Developing new techniques to remotely map snags and understory shrubs is therefore an important need. To address this, we first evaluated the use of LiDAR data for...

  17. Geographic structuring and transgenerational maternal effects shape germination in native, but not introduced, populations of a widespread plant invader.

    Science.gov (United States)

    Alba, Christina; Moravcová, Lenka; Pyšek, Petr

    2016-05-01

    Germination is critical in determining species distributions and invasion dynamics. However, is it unclear how often invasive populations evolve germination characteristics different from native populations, because few studies have isolated genetic variation by using seed from garden-grown plants. Additionally, while herbivore-induced transgenerational effects are common, it is unknown whether maternal herbivory differentially shapes germination in native and introduced offspring. We explored germination in native and introduced populations of the North American invader Verbascum thapsus using seed from garden-grown maternal plants, half of which were protected from herbivores. To elucidate (1) germination niche breadth and (2) whether germination conditions affected expression of genetic structuring among populations, we germinated seed under four ecologically relevant temperature regimes. Native populations had a wide germination niche breadth, germinating as well as or better than introduced populations. At cooler temperatures, native populations exhibited a genetically based environmental cline indicative of local adaptation, with populations from warmer locales germinating better than populations from cooler locales. However, this cline was obscured when maternal plants were attacked by herbivores, revealing that local stressors can override the expression of geographic structuring. Introduced populations did not exhibit clinal variation, suggesting its disruption during the introduction process. Native and introduced populations have evolved genetic differences in germination. The result of this difference manifests in a wider germination niche breadth in natives, suggesting that the invasive behavior of V. thapsus in North America is attributable to other factors. © 2016 Botanical Society of America.

  18. Educational outreach and impacts of white-tailed deer browse on native and invasive plants at the Crooked Creek Environmental Learning Center, Armstrong County, Pennsylvania

    Science.gov (United States)

    Lindsay, Lisa O.

    Overabundance of deer can assist the intrusion of invasive plants through browse, leading to homogenization of plant communities. Public attitudes towards native and invasive plant species and white-tailed deer browse related to personal experiences, can be changed through education focusing public awareness of ramifications of deer browse on native and invasive plants. I developed an interactive, interpretive Self-Guided Walking Tour brochure of the "You Can Trail" to provide an educational outreach program for visitors of Crooked Creek Environmental Learning Center that includes ecologically important native and invasive plants species from my investigation. This research study focuses on the overall abundance of native and invasive plant species once Odocoileus virginianus have been removed from the landscape during collection periods in June and September 2013 from exclosure and access plots that were maintained for seven years. Similarity of abundance were found in native and invasive abundance of forbs, bushes and percentage of ground cover. Differences included native bush volume being greater than invasive bush volume in the access plot in June with opposing results in the exclosure plot, being greater in invasive bush volume. However, in September, native and invasive bush volume was similar within the exclosure plot, while invasive bush volume decreased in the access plot. Invasive vines recorded in the June access plot were absent in the September collection period.

  19. ESTABLISHMENT TECHNIQUES FOR TROPICAL LEGUMES IN THE UNDERSTORY OF A EUCALYPTUS PLANTATION

    Directory of Open Access Journals (Sweden)

    Maria Luiza Franceschi Nicodemo

    2015-04-01

    Full Text Available This study evaluated establishment methods for a mixture of herbaceous forage legumes [Centrosema acutifolium, Clitoria ternatea, Pueraria phaseoloides, Stylosanthes Campo Grande (Stylosanthes capitata + S. macrocephala, Calopogonium mucunoides, Lablab purpureus, Arachis pintoi, and Aeschynomene villosa] under the shade of an Eucalyptus grandis plantation submitted to thinning (40% 8 years after planting in Anhembi, São Paulo (22°40'S, 48°10'W, altitude of 455 m. The experiment started in December 2008 and consisted of the comparison of the following four types of seed incorporation by light disc harrowing: (1 broadcast sowing without seed incorporation; disc harrowing before (2 or after (3 planting, and (4 disc harrowing before and after planting. Ninety days after planting, the number of legume plants/m2 and the percentage of ground cover by the plants varied between the treatments tested; however, the treatments had no effect on the dry matter accumulation of forage legumes. Disc harrowing before planting yielded superior results compared to the treatments without disc harrowing and disc harrowing after planting. At the end of the experimental period, the plots contained Arachis, Centrosema, Stylosanthes, and Pueraria. The dry matter accumulated by Centrosema corresponded to 73% of total dry matter yield of the plots. The participation of Arachis, Centrosema and Stylosanthes in final dry matter composition of the plots varied according to establishment method. The advantages of the use of species mixtures rather than monocultures in the understory of forest plantations were discussed.

  20. Goods and services provided by native plants in desert ecosystems: Examples from the northwestern coastal desert of Egypt

    Directory of Open Access Journals (Sweden)

    Laila M. Bidak

    2015-01-01

    Full Text Available About one third of the earth’s land surface is covered by deserts that have low and variable rainfall, nutrient-poor soils, and little vegetation cover. Here, we focus on the goods and services offered by desert ecosystems using the northwestern coastal desert of Egypt extending from Burg El-Arab to El-Salloum as an example. We conducted field surveys and collected other data to identify the goods services and provided by native plant species. A total of 322 native plant species were compiled. The direct services provided by these native plants included sources of food, medicine, and energy; indirect vegetation services included promotion of biodiversity, water storage, and soil fertility. The plant diversity in this ecosystem provided economic service benefits, such as sources of fodder, fuel-wood, and traditional medicinal plants. Changes in land use and recent ill-managed human activities may influence the availability of these services and strongly impact biodiversity and habitat availability. Although deserts are fragile and support low levels of productivity, they provide a variety of goods and services whose continuing availability is contingent upon the adoption of rational land management practices.

  1. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa

    CSIR Research Space (South Africa)

    Clarkson, C

    2004-06-01

    Full Text Available Leucas martinicensis (L.) R.Br. BP01204 Whole plant DCM/MeOH (1:1) 0.813.3 Water 0.7 > 100 Ocimum americanum L. var. americanum BP01210 Whole plant DCM/MeOH (1:1) 0.14.2 Water 0.8 > 100 Salvia repens Burch. ex Benth. BP00998 Whole plant DCM/MeOH (1:1) 1... al., 1997) and Ocimum americanum L. var. ameri- canum (Lamiaceae) (Vieira et al., 2003), there are no reports on their antiplasmodial activity. Several representatives Table 2 Native or naturalised South African plants with high antiplasmodial...

  2. A model for estimating understory vegetation response to fertilization and precipitation in loblolly pine plantations

    Science.gov (United States)

    Curtis L. VanderSchaaf; Ryan W. McKnight; Thomas R. Fox; H. Lee Allen

    2010-01-01

    A model form is presented, where the model contains regressors selected for inclusion based on biological rationale, to predict how fertilization, precipitation amounts, and overstory stand density affect understory vegetation biomass. Due to time, economic, and logistic constraints, datasets of large sample sizes generally do not exist for understory vegetation. Thus...

  3. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai–Tibet Plateau, China

    International Nuclear Information System (INIS)

    Wu, Huawu; Li, Xiao-Yan; Jiang, Zhiyun; Chen, Huiying; Zhang, Cicheng; Xiao, Xiong

    2016-01-01

    Plant water use patterns reflect the complex interactions between different functional types and environmental conditions in water-limited ecosystems. However, the mechanisms underlying the water use patterns of plants in the alpine desert of the Qinghai–Tibet Plateau remain poorly understood. This study investigated seasonal variations in the water sources of herbs (Carex moorcroftii, Astragalus adsurgens) and shrubs (Artemisia oxycephala, Hippophae rhamnoides) using stable oxygen-18 isotope methods. The results indicated that the native herbs (C. moorcroftii, A. adsurgens) and one of the shrubs (A. oxycephala) mainly relied on water from the shallow layer (0–30 cm) throughout the growing season, while the introduced shrub (H. rhamnoides) showed plasticity in switching between water from shallow and deep soil layers depending on soil water availability. All studied plants primarily depended on water from shallow soil layers early in the season. The differences of water use patterns between the introduced and native plants are closely linked with the range of active root zones when competing for water. Our findings will facilitate the mechanistic understanding of plant–soil–water relations in alpine desert ecosystems and provide information for screening introduced species for sand fixation. - Highlights: • Stable oxygen-18 in soil water experienced great evaporation enrichment. • H. rhamnoides experiences a flexible plasticity to switch between shallow and deep soil water. • Native plants mostly relied on shallow and middle soil water. • Water-use patterns by introduced-native plants are controlled by root characteristics.

  4. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    Science.gov (United States)

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.

  5. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    Science.gov (United States)

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  6. Influence of primitive Biłgoraj horses on the glossy buckthorn (Frangula alnus)-dominated understory in a mixed coniferous forest

    Science.gov (United States)

    Klich, Daniel

    2018-02-01

    Changes in the understory dominated by glossy buckthorn Frangula alnus via the influence of primitive horses were analyzed in a 28-year-old enclosure in the village of Szklarnia at the Biłgoraj Horse-Breeding Centre near Janów Lubelski (eastern Poland). The analysis was conducted in 20 circular plots (30 m2) defined in adjacent, similar forest stands (enclosed and control). Disturbance by the horses, mainly through trampling, caused numerous paths to form within the glossy buckthorn-dominated understory and led to a decrease in density of stems of lower height classes (30-80 and 81-130 cm, respectively). An increase in species diversity at the expense of glossy buckthorn density was also observed. The horses' trampling caused an increase in Padus avium density and the encroachment of other woody plant species that were less shade-tolerant and grew well in soils rich in nutrients. An increase in the density of woody plants over 180 cm above ground was observed within the enclosure, which was probably the result of the horses' excretion of feces. The results presented here provide new insight into the ecological role that horses play in forest-meadow landscape mosaics, which, via altering the development of vegetation, may contribute to an increase in biodiversity within forest habitats.

  7. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    Science.gov (United States)

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  8. BOREAS TE-9 In Situ Understory Spectral Reflectance Within the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Supronowicz, Jan; Edwards, Geoffrey; Viau, Alain; Thomson, Keith

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. Spectral reflection coefficients of the forest understory at the ground level, in three boreal forest sites of Northern Manitoba (56 N latitude and 98 W longitude), were obtained and analyzed in 1994. In particular, angular variation of the reflection coefficients in the old jack pine and young jack pine forests, as well as nadir reflection coefficient in the young aspen forest, were investigated. The complexity of understory composition and the light patterns limited quantitative conclusions; however, a number of interesting trends in the behavior of the measured values can be inferred. In particular, the unique spectral profiles of lichens show very strongly in the old jack pine understory, yet are definitely less conspicuous for young jack pine, and virtually absent in the aspen forest. The angular variation of the reflection coefficient by the young pine understory seems to be significantly toned down by fine-structured branches and their shadows. Our study also indicates how difficult the ground reflection coefficient problem in a forest is, compared to certain previously investigated areas that have a more uniform appearance, such as prairie grassland, bare soil, or agricultural crops. This is due to several factors, generally typical of a forest environment, that may influence the overall understory reflection coefficient, including: (1) a strong diversity of the forest floor due to the presence of dead tree trunks, holes in the ground, patches of different types of vegetation or litter, etc.; (2) pronounced 3-D structures at the ground level, such as shrubs, bushes, and young trees; and (3) an irregular shadow mosaic, which not only varies with the time of the day, causing intensity variations, but likely also effectively modifies the spectrum of the

  9. Germination and growth of native and invasive plants on soil associated with biological control of tamarisk (Tamarix spp.)

    Science.gov (United States)

    Sherry, Rebecca A.; Shafroth, Patrick B.; Belnap, Jayne; Ostoja, Steven M.; Reed, Sasha C.

    2016-01-01

    Introductions of biocontrol beetles (tamarisk beetles) are causing dieback of exotic tamarisk in riparian zones across the western United States, yet factors that determine plant communities that follow tamarisk dieback are poorly understood. Tamarisk-dominated soils are generally higher in nutrients, organic matter, and salts than nearby soils, and these soil attributes might influence the trajectory of community change. To assess physical and chemical drivers of plant colonization after beetle-induced tamarisk dieback, we conducted separate germination and growth experiments using soil and litter collected beneath defoliated tamarisk trees. Focal species were two common native (red threeawn, sand dropseed) and two common invasive exotic plants (Russian knapweed, downy brome), planted alone and in combination. Nutrient, salinity, wood chip, and litter manipulations examined how tamarisk litter affects the growth of other species in a context of riparian zone management. Tamarisk litter, tamarisk litter leachate, and fertilization with inorganic nutrients increased growth in all species, but the effect was larger on the exotic plants. Salinity of 4 dS m−1 benefitted Russian knapweed, which also showed the largest positive responses to added nutrients. Litter and wood chips generally delayed and decreased germination; however, a thinner layer of wood chips increased growth slightly. Time to germination was lengthened by most treatments for natives, was not affected in exotic Russian knapweed, and was sometimes decreased in downy brome. Because natives showed only small positive responses to litter and fertilization and large negative responses to competition, Russian knapweed and downy brome are likely to perform better than these two native species following tamarisk dieback.

  10. Arbuscular and Ectomycorrhizal Fungi Associated with the Invasive Brazilian Pepper Tree (Schinus terebinthifolius) and Two Native Plants in South Florida

    Science.gov (United States)

    Dawkins, Karim; Esiobu, Nwadiuto

    2017-01-01

    The potential role of soil fungi in the invasion of the Brazilian pepper tree (Schinus terebinthifolius—BP) in Florida is not known; although the low biotic resistance of Florida soils is often invoked to explain the prevalence of many invasive species. To gain an initial insight into BP's mycorrhizal associations, this study examined the rhizobiome of BP and two native plants (Hamelia patens and Bidens alba) across six locations. Arbuscular mycorrhizal fungi (AMF) associated with the roots of the target plants and bulk soil was characterized by spore morphotyping. Sequence analysis of metagenomic DNA from lateral roots/rhizosphere of BP (n = 52) and a native shrub H. patens (n = 37) on the same parcel yielded other fungal associates. Overall, the total population of AMF associated with BP was about two folds greater than that of the two native plants (p = 0.0001) growing on the same site. The dominant AMF under Schinus were members of the common Glomus and Rhizophagus spp. By contrast, the most prevalent AMF in the bulk soil and rhizosphere of the two Florida native plants, Acaulospora spp (29%) was sharply diminished (9%) under BP rhizosphere. Analysis of the ITS2 sequences also showed that Schinus rhizosphere had a high relative abundance of ectomycorrhizal fungi (76.5%) compared to the native H. patens (2.6%), with the species Lactifluus hygrophoroides (Basidiomycota) being the most prevalent at 61.5% (p < 0.05). Unlike the native plants where pathogenic fungi like Phyllosticta sp., Phoma sp., and Neofusicoccum andium were present (8.1% for H. patens), only one potentially pathogenic fungal taxon was detected (3.9%) under BP. The striking disparity in the relative abundance of AMF and other fungal types between BP and the native species is quite significant. Fungal symbionts could aide plant invasion via resource-use efficiency and other poorly defined mechanisms of protection from pathogens in their invaded range. This report exposes a potentially

  11. The potential of novel native plant materials for the restoration of novel ecosystems

    Directory of Open Access Journals (Sweden)

    T.A. Jones

    2015-05-01

    Full Text Available Abstract Extensive ecological change has been sustained by many dryland ecosystems throughout the world, resulting in conversion to so-called novel ecosystems. It is within such ecological contexts that native plant materials destined for ecological applications must be able to function. In the Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis [Beetle & A.M. Young] S.L. Welsh ecosystems of the Intermountain West, for example, novel ecosystem structure and functioning are pervasive. Invasive species, particularly annual grasses, fuel repeated wildfires that drive previously stable ecosystem states across thresholds to less desirable states that are highly recalcitrant to restoration efforts. Structural changes include reductions of native flora, damage to biological soil crusts, and alterations to soil microbiota. Functional changes include altered hydrologic and nutrient cycling, leading to permanent losses of soil organic matter and nitrogen that favor the invaders. We argue that there is an important place in restoration for plant materials that are novel and/or non-local that have been developed to be more effective in the novel ecosystems for which they are intended, thus qualifying them as “ecologically appropriate.” Such plant materials may be considered as an alternative to natural/local “genetically appropriate” plant materials, which are sometimes deemed best adapted due to vetting by historical evolutionary processes.

  12. Evergreen understory dynamics in Coweeta forest, North Carolina

    Science.gov (United States)

    M.M. Dobbs; Albert J. Parker

    2004-01-01

    A number of studies have elucidated the distributional patterns of various components of Southern Appalachian forests. The evergreen understory here is composed largely of a dominant ericaceous shrub, Rhododendron maximum L., which is believed to be expanding and inhibiting the development of other species with consequent impacts on overall forest...

  13. Controlling Japanese barberry: Alternative methods and impact on tick populations

    Science.gov (United States)

    Jeffrey S. Ward; Scott C. Williams; Thomas E. Worthley

    2011-01-01

    Japanese barberry (Berberis thunbergii) is classified as invasive in 20 states and four Canadian provinces. It is also established in another 11 states. In addition to forming dense thickets that can inhibit forest regeneration and native herbaceous plant populations, barberry understories can harbor greatly enhanced levels of blacklegged ticks (

  14. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion

    Science.gov (United States)

    B. M. Connolly; D. E. Pearson; R. N. Mack

    2014-01-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food...

  15. Responses to invasion and invader removal differ between native and exotic plant groups in a coastal dune.

    Science.gov (United States)

    Magnoli, Susan M; Kleinhesselink, Andrew R; Cushman, J Hall

    2013-12-01

    The spread of exotic, invasive species is a global phenomenon that is recognized as a major source of environmental change. Although many studies have addressed the effects of exotic plants on the communities they invade, few have quantified the effects of invader removal on plant communities, or considered the degree to which different plant groups vary in response to invasion and invader removal. We evaluated the effects of an exotic succulent, iceplant (Carpobrotus edulis), on a coastal dune plant community in northern California, as well as the community responses to its removal. To assess possible mechanisms by which iceplant affects other plants, we also evaluated its above- and belowground influences on the germination and growth of a dominant exotic annual grass, Bromus diandrus. We found that iceplant invasion was associated with reduced native plant cover as well as increased cover and density of some exotic plants-especially exotic annual grasses. However, iceplant removal did not necessarily lead to a reversal of these effects: removal increased the cover and density of both native and exotic species. We also found that B. diandrus grown in iceplant patches, or in soil where iceplant had been removed, had poorer germination and growth than B. diandrus grown in soil not influenced by iceplant. This suggests that the influence of iceplant on this dune plant community occurs, at least in part, due to belowground effects, and that these effects remain after iceplant has been removed. Our study demonstrates the importance of considering how exotic invasive plants affect not only native species, but also co-occurring exotic taxa. It also shows that combining observational studies with removal experiments can lead to important insights into the influence of invaders and the mechanisms of their effects.

  16. [Litter decomposition and soil faunal diversity of two understory plant debris in the alpine timberline ecotone of western Sichuan in a snow cover season].

    Science.gov (United States)

    He, Run-lian; Chen, Ya-mei; Deng, Chang-chun; Yan, Wan-qin; Zhang, Jian; Liu, Yang

    2015-03-01

    In order to understand the relationship between litter decomposition and soil fauna diversity during snow cover season, litterbags with plant debris of Actinothuidium hookeri, Cystopteris montana, two representative understory plants in the alpine timberline ecotone, and their mixed litter were incubated in the dark coniferous forest, timberline and alpine meadow, respectively. After a snow cover season, the mass loss and soil fauna in litterbags were investigated. After decomposition with a snow cover season, alpine meadow showed the highest mass loss of plant debris in comparison with coniferous forest and timberline, and the mass loss of A. hookeri was more significant. The mixture of two plants debris accelerated the mass loss, especially in the timberline. A total of 968 soil invertebrates, which belonged to 5 classes, 10 orders and 35 families, were captured in litterbags. Acarina and Collembola were the dominant groups in plant debris. The numbers of individuals and groups of soil faunal communities in litter of timberline were higher than those of alpine meadow and dark coniferous forest. Canonical correspondence analysis (CCA) indicated that the groups of soil animals were related closely with the average temperature, and endemic species such as Isoptera and Geophilomorpha were observed only in coniferous forest, while Hemiptera and Psocoptera only in.the alpine meadow. The diversity of soil faunal community was more affected by plant debris varieties in the timberline than in the coniferous forest and alpine meadow. Multiple regression analysis indicated that the average temperature and snow depth explained 30.8% of the variation of litter mass loss rate, soil animals explained 8.3%, and altogether explained 34.1%. Snow was one of the most critical factors impacting the decomposition of A. hookeri and C. montana debris in the alpine timberline ecotone.

  17. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  18. A nonnative and a native fungal plant pathogen similarly stimulate ectomycorrhizal development but are perceived differently by a fungal symbiont.

    Science.gov (United States)

    Zampieri, Elisa; Giordano, Luana; Lione, Guglielmo; Vizzini, Alfredo; Sillo, Fabiano; Balestrini, Raffaella; Gonthier, Paolo

    2017-03-01

    The effects of plant symbionts on host defence responses against pathogens have been extensively documented, but little is known about the impact of pathogens on the symbiosis and if such an impact may differ for nonnative and native pathogens. Here, this issue was addressed in a study of the model system comprising Pinus pinea, its ectomycorrhizal symbiont Tuber borchii, and the nonnative and native pathogens Heterobasidion irregulare and Heterobasidion annosum, respectively. In a 6-month inoculation experiment and using both in planta and gene expression analyses, we tested the hypothesis that H. irregulare has greater effects on the symbiosis than H. annosum. Although the two pathogens induced the same morphological reaction in the plant-symbiont complex, with mycorrhizal density increasing exponentially with pathogen colonization of the host, the number of target genes regulated in T. borchii in plants inoculated with the native pathogen (i.e. 67% of tested genes) was more than twice that in plants inoculated with the nonnative pathogen (i.e. 27% of genes). Although the two fungal pathogens did not differentially affect the amount of ectomycorrhizas, the fungal symbiont perceived their presence differently. The results may suggest that the symbiont has the ability to recognize a self/native and a nonself/nonnative pathogen, probably through host plant-mediated signal transduction. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Wood and understory production under a range of ponderosa pine stocking levels, Black Hills, South Dakota

    Science.gov (United States)

    Daniel W. Uresk; Carleton B. Edminster; Kieth E. Severson

    2000-01-01

    Stemwood and understory production (kg ha-1) were estimated during 3 nonconsecutive years on 5 growing stock levels of ponderosa pine including clearcuts and unthinned stands. Stemwood production was consistently greater at mid- and higher pine stocking levels, and understory production was greater in stands with less pine; however, there were no...

  20. 45 CFR 670.20 - Designation of native birds.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Designation of native birds. 670.20 Section 670.20... CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS Native Mammals, Birds, Plants, and Invertebrates § 670.20 Designation of native birds. The following are designated native birds: Albatross Black-browed—Diomedea...

  1. 45 CFR 670.19 - Designation of native mammals.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Designation of native mammals. 670.19 Section 670... CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS Native Mammals, Birds, Plants, and Invertebrates § 670.19 Designation of native mammals. The following are designated native mammals: Pinnipeds: Crabeater seal—Lobodon...

  2. Dense understory dwarf bamboo alters the retention of canopy tree seeds

    Science.gov (United States)

    Qian, Feng; Zhang, Tengda; Guo, Qinxue; Tao, Jianping

    2016-05-01

    Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.

  3. Initial Response by a Native Beetle, Chrysochus auratus (Coleoptera: Chrysomelidae), to a Novel Introduced Host-Plant, Vincetoxicum rossicum (Gentianales: Apocynaceae).

    Science.gov (United States)

    deJonge, R B; Bourchier, R S; Smith, S M

    2017-06-01

    Native insects can form novel associations with introduced invasive plants and use them as a food source. The recent introduction into eastern North America of a nonnative European vine, Vincetoxicum rossicum (Kleopow) Barbar., allows us to examine the initial response of a native chrysomelid beetle, Chrysochus auratus F., that feeds on native plants in the same family as V. rossicum (Apocynaceae). We tested C. auratus on V. rossicum and closely related or co-occurring native plants (Apocynum spp., Asclepias spp., and Solidago canadensis L.) using all life stages of the beetle in lab, garden, and field experiments. Experiments measured feeding (presence or absence and amount), survival, oviposition, and whether previous exposure to V. rossicum in the lab or field affected adult beetle feeding. Beetles fed significantly less on V. rossicum than on native Apocynum hosts. Adult beetles engaged in exploratory feeding on leaves of V. rossicum and survived up to 10 d. Females oviposited on V. rossicum, eggs hatched, and larvae fed initially on the roots; however, no larvae survived beyond second instar. Beetles collected from Apocynum cannabinum L. field sites intermixed with V. rossicum were less likely to feed on this novel nonnative host than those collected from colonies further from and less likely to be exposed to V. rossicum (>5 km). Our experimental work indicates that V. rossicum may act as an oviposition sink for C. auratus and that this native beetle has not adapted to survive on this recently introduced novel host plant. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Managing Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model

    Directory of Open Access Journals (Sweden)

    Gilles Joanisse

    2013-07-01

    Full Text Available Sustainable management of boreal ecosystems involves the establishment of vigorous tree regeneration after harvest. However, two groups of understory plants influence regeneration success in eastern boreal Canada. Ericaceous shrubs are recognized to rapidly dominate susceptible boreal sites after harvest. Such dominance reduces recruitment and causes stagnant conifer growth, lasting decades on some sites. Additionally, peat accumulation due to Sphagnum growth after harvest forces the roots of regenerating conifers out of the relatively nutrient rich and warm mineral soil into the relatively nutrient poor and cool organic layer, with drastic effects on growth. Shifts from once productive black spruce forests to ericaceous heaths or paludified forests affect forest productivity and biodiversity. Under natural disturbance dynamics, fires severe enough to substantially reduce the organic layer thickness and affect ground cover species are required to establish a productive regeneration layer on such sites. We succinctly review how understory vegetation influences black spruce ecosystem dynamics in eastern boreal Canada, and present a multi-scale research model to understand, limit the loss and restore productive and diverse ecosystems in this region. Our model integrates knowledge of plant-level mechanisms in the development of silvicultural tools to sustain productivity. Fundamental knowledge is integrated at stand, landscape, regional and provincial levels to understand the distribution and dynamics of ericaceous shrubs and paludification processes and to support tactical and strategic forest management. The model can be adapted and applied to other natural resource management problems, in other biomes.

  5. Potential Use of Native and Naturalized Insect Herbivores and Fungal Pathogens of Aquatic and Wetland Plants

    National Research Council Canada - National Science Library

    Freedman, Jan E; Grodowitz, Michael J; Swindle, Robin; Nachtrieb, Julie G

    2007-01-01

    ...) scientists to identify naturalized and/or native herbivores of aquatic plants in an effort to develop alternative management strategies through an understanding of the agents' biology and ecology...

  6. Susceptibility of burned black spruce (Picea mariana) forests to non-native plant invasions in interior Alaska

    Science.gov (United States)

    Katie V. Spellman; Christa P.H. Mulder; Teresa N. Hollingsworth

    2014-01-01

    As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may be increasingly susceptible to non-native plant invasion. This study assess the role of burn...

  7. Exotic Annual Grasses in Western Rangelands: Predicting Resistance and Resilience of Native Ecosystems to Invasion (Draft)

    Science.gov (United States)

    2004-04-22

    herbivores on Ipomopsis arizonica . In addition, litter and neighboring plants can influence herbivore damage by concealing seeds and small seedlings...1991. Facilitation and interference of Quercus douglasii on understory productivity in central California. - Ecology 72: 1484- 1499. 66 Callaway, R

  8. Visitation by wild and managed bees (Hymenoptera: Apoidea) to eastern U.S. native plants for use in conservation programs.

    Science.gov (United States)

    Tuell, Julianna K; Fiedler, Anna K; Landis, Douglas; Isaacs, Rufus

    2008-06-01

    Addition of floral resources to agricultural field margins has been shown to increase abundance of beneficial insects in crop fields, but most plants recommended for this use are non-native annuals. Native perennial plants with different bloom periods can provide floral resources for bees throughout the growing season for use in pollinator conservation projects. To identify the most suitable plants for this use, we examined the relative attractiveness to wild and managed bees of 43 eastern U.S. native perennial plants, grown in a common garden setting. Floral characteristics were evaluated for their ability to predict bee abundance and taxa richness. Of the wild bees collected, the most common species (62%) was Bombus impatiens Cresson. Five other wild bee species were present between 3 and 6% of the total: Lasioglossum admirandum (Sandhouse), Hylaeus affinis (Smith), Agapostemon virescens (F.), Halictus ligatus Say, and Ceratina calcarata/dupla Robertson/Say. The remaining wild bee species were present at wild bees; 9 were highly attractive, and 20 were moderately attractive. Honey bees visited 24 of the 43 plant species at least once. Floral area was the only measured factor accounting for variation in abundance and richness of wild bees but did not explain variation in honey bee abundance. Results of this study can be used to guide selection of flowering plants to provide season-long forage for conservation of wild bees.

  9. Potential impacts of sea level rise on native plant communities and associated cultural sites in coastal areas of the main Hawaiian Islands

    Science.gov (United States)

    Jacobi, James D.; Warshauer, Frederick R.

    2017-01-01

    Hawaiian coastal vegetation is comprised of plant species that are adapted to growing in extremely harsh conditions (salt spray, wave wash, wind, and substrates with limited nutrients) found in this habitat zone. Prior to human colonization of Hawai‘i coastal vegetation extended as a continuous ring around each of the islands, broken only by stretches of recent lava flows or unstable cliff faces. However, since humans arrived in Hawai‘i many areas that originally supported native coastal plant communities have been highly altered or the native vegetation totally removed for agriculture, housing, or resort development, destroyed by fire, displaced by invasive plants, eaten by introduced mammals, or damaged by recreational use. This study was focused on identifying sites that still retain relatively intact and highly diverse native coastal plant communities throughout the main Hawaiian Islands that may be further impacted by projected sea level rise. Approximately 40 percent of Hawai‘i’s coastlines were found to still contain high quality native coastal plant communities. Most of these sites were located in areas where the coastal vegetation can still migrate inshore in response to rising sea level and associated inundation by waves. However, six sites with high-quality native coastal vegetation were found on low-lying offshore islets that will be totally inundated with a one meter increase in sea level and thirty sites were found to have some type of fixed barrier, such as a paved road or structure, which would restrict the plants from colonizing the adjacent inland areas. Many of these sites also have other cultural resources that are fixed in place and will definitely be impacted by rising sea level. The results of this study can help refine our understanding of Hawai‘i’s remaining native coastal vegetation and aid with the development of management and restoration strategies to ensure the long-term survival of these unique plant communities.

  10. Modeling below-ground biomass to improve sustainable management of Actaea racemosa, a globally important medicinal forest product

    Science.gov (United States)

    James L. Chamberlain; Gabrielle Ness; Christine J. Small; Simon J. Bonner; Elizabeth B. Hiebert

    2013-01-01

    Non-timber forest products, particularly herbaceous understory plants, support a multi-billion dollar industry and are extracted from forests worldwide for their therapeutic value. Tens of thousands of kilograms of rhizomes and roots of Actaea racemosa L., a native Appalachian forest perennial, are harvested every year and used for the treatment of...

  11. 75 FR 10457 - Andrew Pickens Ranger District; South Carolina; AP Loblolly Pine Removal and Restoration Project

    Science.gov (United States)

    2010-03-08

    ... relatively low tree densities of 25-60% forest cover with understories that are dominated by native grasses... trees exist in the overstory of most of these stands and hardwood sprouts and saplings abound in the... in pine plantations. Other stands are sparse due to poor planting success or to past logging that did...

  12. Nitrogen Addition and Understory Removal but Not Soil Warming Increased Radial Growth of Pinus cembra at Treeline in the Central Austrian Alps

    Directory of Open Access Journals (Sweden)

    Andreas Gruber

    2018-05-01

    Full Text Available Beside low temperatures, limited tree growth at the alpine treeline may also be attributed to a lack of available soil nutrients and competition with understory vegetation. Although intra-annual stem growth of Pinus cembra has been studied intensively at the alpine treeline, the responses of radial growth to soil warming, soil fertilization, and below ground competition awaits clarification. In this study we quantified the effects of nitrogen (N fertilization, soil warming, and understory removal on stem radial growth of P. cembra at treeline. Soil warming was achieved by roofing the forest floor with a transparent polyvinyl skin, while understory competition was prevented by shading the forest floor with a non-transparent foil around six trees each. Six trees received N- fertilization and six other trees served as controls. Stem growth was monitored with band dendrometers during the growing seasons 2012–2014. Our 3 years experiment showed that soil warming had no considerable effect on radial growth. Though understory removal through shading was accompanied by root-zone cooling, understory removal as well as N fertilization led to a significant increase in radial growth. Hardly affected was tree root biomass, while N-fertilization and understory removal significantly increased in 100-needle surface area and 100-needle dry mass, implying a higher amount of N stored in needles. Overall, our results demonstrate that beside low temperatures, tree growth at cold-climate boundaries may also be limited by root competition for nutrients between trees and understory vegetation. We conclude that tree understory interactions may also control treeline dynamics in a future changing environment.

  13. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    Science.gov (United States)

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  14. Seed rain under native and non-native tree species in the Cabo Rojo National Wildlife Refuge, Puerto Rico.

    Science.gov (United States)

    Arias Garcia, Andrea; Chinea, J Danilo

    2014-09-01

    Seed dispersal is a fundamental process in plant ecology and is of critical importance for the restoration of tropical communities. The lands of the Cabo Rojo National Wildlife Refuge (CRNWR), formerly under agriculture, were abandoned in the 1970s and colonized mainly by non-native tree species of degraded pastures. Here we described the seed rain under the most common native and non-native trees in the refuge in an attempt to determine if focal tree geographic origin (native versus non-native) influences seed dispersal. For this, seed rain was sampled for one year under the canopies of four native and four non-native tree species common in this refuge using 40 seed traps. No significant differences were found for the abundance of seeds, or their diversity, dispersing under native versus non-native focal tree species, nor under the different tree species. A significantly different seed species composition was observed reaching native versus non-native focal species. However, this last result could be more easily explained as a function of distance of the closest adults of the two most abundantly dispersed plant species to the seed traps than as a function of the geographic origin of the focal species. We suggest to continue the practice of planting native tree species, not only as a way to restore the community to a condition similar to the original one, but also to reduce the distances needed for effective dispersal.

  15. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects.

    Science.gov (United States)

    Hillhouse, Heidi L; Schacht, Walter H; Soper, Jonathan M; Wienhold, Carol E

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  16. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects

    Science.gov (United States)

    Hillhouse, Heidi L.; Schacht, Walter H.; Soper, Jonathan M.; Wienhold, Carol E.

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  17. Texas Native Plants Yield Compounds with Cytotoxic Activities against Prostate Cancer Cells.

    Science.gov (United States)

    Shaffer, Corena V; Cai, Shengxin; Peng, Jiangnan; Robles, Andrew J; Hartley, Rachel M; Powell, Douglas R; Du, Lin; Cichewicz, Robert H; Mooberry, Susan L

    2016-03-25

    There remains a critical need for more effective therapies for the treatment of late-stage and metastatic prostate cancers. Three Texas native plants yielded three new and three known compounds with antiproliferative and cytotoxic activities against prostate cancer cells with IC50 values in the range of 1.7-35.0 μM. A new sesquiterpene named espadalide (1), isolated from Gochnatia hypoleuca, had low micromolar potency and was highly effective in clonogenic assays. Two known bioactive germacranolides (2 and 3) were additionally isolated from G. hypoleuca. Dalea frutescens yielded two new isoprenylated chalcones, named sanjuanolide (4) and sanjoseolide (5), and the known sesquiterpenediol verbesindiol (6) was isolated from Verbesina virginica. Mechanistic studies showed that 1-4 caused G2/M accumulation and the formation of abnormal mitotic spindles. Tubulin polymerization assays revealed that 4 increased the initial rate of tubulin polymerization, but did not change total tubulin polymer levels, and 1-3 had no effects on tubulin polymerization. Despite its cytotoxic activity, compound 6 did not initiate changes in cell cycle distribution and has a mechanism of action different from the other compounds. This study demonstrates that new compounds with significant biological activities germane to unmet oncological needs can be isolated from Texas native plants.

  18. Deforestation fires versus understory fires in the Amazon Basin: What can we learn from satellite-based CO measurements?

    Science.gov (United States)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Gille, J. C.; Clerbaux, C.; George, M.

    2014-12-01

    Deforestation fires in the Amazon Basin abound during the dry season (July to October) and are mostly associated with "slash and burn" agricultural practices. Understory fires occur when fires escape from deforested areas into neighboring standing forests; they spread slowly below the canopy, affecting areas that may be comparable or even larger than clear-cut areas. The interannual variabilities of understory fires and deforestation rates appear to be uncorrelated. Areas burned in understory fires are particularly extensive during droughts. Because they progress below a canopy of living trees, understory fires and their effects are not as easily identifiable from space as deforestation fires. Here we analyze satellite remote sensing products for CO and fire to investigate differences between deforestation fires and understory fires in the Amazon Basin under varying climatic conditions. The MOPITT (Measurements Of Pollution In The Troposphere) instrument on board NASA's Terra satellite has been measuring tropospheric CO since 2000, providing the longest global CO record to date. IASI (the Infrared Atmospheric Sounding Interferometer) A and B are two instruments on board METOP-A and -B, respectively, measuring, among others, CO since 2006 and 2012. MODIS (the Moderate Resolution Imaging Spectroradiometer) instruments on board NASA's Terra and Aqua satellites provide, among other products, a daily record of fires and their effects since 2000 and 2002, respectively. The temporal extent of all these datasets allows for the detailed analysis of drought versus non-drought years. Initial results indicate that MOPITT CO emissions during the dry season peaked in 2005, 2007, and 2010. Those were draught years and coincide with peaks in area affected by understory fires.

  19. Modeling invasive alien plant species in river systems : Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NARCIS (Netherlands)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G.W.; Egger, G.; Leuven, R.S.E.W.; Middelkoop, H.

    2017-01-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding

  20. Recent achivements of the introduction and improvment of native medicinal plants in Iran

    Directory of Open Access Journals (Sweden)

    Hadian, Javad

    2016-07-01

    Full Text Available Iran is the country of different climates and rich genepool of different medicinal herbs. Both climate variation and available genetic resources, make possible the introduction and improvement of new plant varieties into agriculture. Artemisia dracunculus has been cultivated in different parts of Iran since unknown time. Satureja rechingeri is a wild endemic species growing in desert area of south west of Iran with annual rainfall of less than 250mm while, Solidago virgaurea and Equisetum arvence are native to north and northwest of Iran with more than 700 mm annual rainfall. Several experimets were conducted to introduce new varieties of these plants for economic and high quality plant material production in agricultural systems. Here some of the results are presented.

  1. Competition for light and water in a coupled soil-plant system

    Science.gov (United States)

    Manoli, Gabriele; Huang, Cheng-Wei; Bonetti, Sara; Domec, Jean-Christophe; Marani, Marco; Katul, Gabriel

    2017-10-01

    It is generally accepted that resource availability shapes the structure and function of many ecosystems. Within the soil-plant-atmosphere (SPA) system, resource availability fluctuates in space and time whereas access to resources by individuals is further impacted by plant-to-plant competition. Likewise, transport and transformation of resources within an individual plant is governed by numerous interacting biotic and abiotic processes. The work here explores the co-limitations on water losses and carbon uptake within the SPA arising from fluctuating resource availability and competition. In particular, the goal is to unfold the interplay between plant access and competition for water and light, as well as the impact of transport/redistribution processes on leaf-level carbon assimilation and water fluxes within forest stands. A framework is proposed that couples a three-dimensional representation of soil-root exchanges with a one-dimensional description of stem water flow and storage, canopy photosynthesis, and transpiration. The model links soil moisture redistribution, root water uptake, xylem water flow and storage, leaf potential and stomatal conductance as driven by supply and demand for water and carbon. The model is then used to investigate plant drought resilience of overstory-understory trees simultaneously competing for water and light. Simulation results reveal that understory-overstory interactions increase ecosystem resilience to drought (i.e. stand-level carbon assimilation rates and water fluxes can be sustained at lower root-zone soil water potentials). This resilience enhancement originates from reduced transpiration (due to shading) and hydraulic redistribution in soil supporting photosynthesis over prolonged periods of drought. In particular, the presence of different rooting systems generates localized hydraulic redistribution fluxes that sustain understory transpiration through overstory-understory interactions. Such complex SPA dynamics

  2. Consumers’ and Retailers’ Attitudes Towards a Mexican Native Species of Aztec Lily as an Ornamental Plant

    Directory of Open Access Journals (Sweden)

    Yesica Mayett-Moreno

    2018-01-01

    Full Text Available The use of native ornamental plants in urban landscapes and ornamental consumers’ designs is one strategy to preserve biodiversity. Sprekelia formosissima (L. Herb., known as Aztec lily (ALY, is one of the nearly 4000 species of native ornamental plants of Mexico. However, its domestic market is not yet developed and is virtually unknown. The objectives of this study were to: (1 compare consumers’ and retailers’ knowledge of ALY, and (2 to identify potential clusters of consumers and retailers based on their knowledge and preferences, such that marketing of the ALY could be best tailored to different market segments, leading to its sustainable commercialization. There were 464 interviews conducted in four nurseries in Mexico. Results showed only one consumer knew about the ALY; additionally, we found different behaviors in consumers and in retailers: those not interested in the ALY, but when they know it is Mexican they will acquire it; those interested no matter the ALY origin, and those who dislike the ALY because it is Mexican. Those answers suggest that improving consumers/retailers knowledge about this native flower could lead to a sustainable commercialization in Mexico, helping to ensure its conservation as well.

  3. Response of overstory and understory vegetation 37 years after prescribed burning in an aspen-dominated forest in northern Minnesota, USA – a case study

    Science.gov (United States)

    A. Dhar; C.D. Baker; H.B. Massicotte; Brian J. Palik; C.D.B. Hawkins

    2016-01-01

    Many studies have examined short-term changes in understory vegetation following prescribed burning. However, knowledge concerning longer term effects on both forest understory and overstory vegetation is lacking. This investigation was initiated to examine changes in understory (herbaceous and shrub) and overstory species composition almost four decades after logging...

  4. Phytoremediation potential and ecological and phenological changes of native pioneer plants from weathered oil spill-impacted sites at tropical wetlands.

    Science.gov (United States)

    Palma-Cruz, Felipe de J; Pérez-Vargas, Josefina; Rivera Casado, Noemí Araceli; Gómez Guzmán, Octavio; Calva-Calva, Graciano

    2016-08-01

    Pioneer native plant species from weathered oil spill-affected sites were selected to study their potential for phytoremediation on the basis of their ecological and phenological changes during the phytoremediation process. Experiments were conducted in field and in greenhouse. In field, native plants from aged oil spill-impacted sites with up 400 g of weathered petroleum hydrocarbons per kilogram soil were selected. In the impacted sites, the principal dominant plant species with potential for hydrocarbons removal were Cyperus laxus, Cyperus esculentus, and Ludwigia peploides. In greenhouse, the phenology of the selected plant species was drastically affected by the hydrocarbons level above 325 g total petroleum hydrocarbons (TPH) per kilogram soil after 2 years of phytoremediation of soils from the aged oil spill-impacted sites. From the phytoremediation treatments, a mix-culture of C. laxus, C. esculentus, and L. peploides in soil containing 325 g TPH/kg soil, from which 20.3 % were polyaromatic hydrocarbons (PAH) and 34.2 % were asphaltenes (ASF), was able to remove up 93 % of the TPH, while in unvegetated soil the TPH removal was 12.6 %. Furthermore, evaluation of the biodiversity and life forms of plant species in the impacted sites showed that phytoremediation with C. esculentus, alone or in a mix-culture with C. laxus and L. peploides, reduces the TPH to such extent that the native plant community was progressively reestablished by replacing the cultivated species resulting in the ecological recovery of the affected soil. These results demonstrate that native Cyperus species from weathered oil spill-affected sites, specifically C. esculentus and C. laxus, alone or in a mix-culture, have particular potential for phytoremediation of soils from tropical wetlands contaminated with weathered oil hydrocarbons.

  5. Properties of native plant communities do not determine exotic success during early forest succession

    Science.gov (United States)

    Aldo Compagnoni; Charles B. Halpern

    2009-01-01

    Considerable research has been devoted to understanding how plant invasions are influenced by properties of the native community and to the traits of exotic species that contribute to successful invasion. Studies of invasibility are common in successionally stable grasslands, but rare in recently disturbed or seral forests. We used 16 years of species richness and...

  6. [Allelopathic effects of invasive weed Solidago canadensis on native plants].

    Science.gov (United States)

    Mei, Lingxiao; Chen, Xin; Tang, Jianjun

    2005-12-01

    With growth chamber method, this paper studied the allelopathic potential of invasive weed Solidago canadensis on native plant species. Different concentration S. canadensis root and rhizome extracts were examined, and the test plants were Trifolium repens, Trifolium pretense, Medicago lupulina, Lolium perenne, Suaeda glauca, Plantago virginica, Kummerowia stipulacea, Festuca arundinacea, Ageratum conyzoides, Portulaca oleracea, and Amaranthus spinosus. The results showed that the allelopathic inhibitory effect of the extracts from both S. canadensis root and rhizome was enhanced with increasing concentration, and rhizome extracts had a higher effect than root extracts. At the lowest concentration (1:60), root extract had little effect on the seed germination and seedling growth of T. repens, but rhizome extract could inhibit the germination of all test plants though the inhibitory effect varied with different species. The inhibition was the greatest for grass, followed by forb and legume. 1:60 (m:m) rhizome extract had similar effects on seed germination and radicel growth, but for outgrowth, the extract could inhibit Kummerowia stipulacea, Amaranthus spinosus and Festuca arundinacea, had no significant impact on Lolium perenne, Plantago virginica, Ageratum conyzoides, Portulaca oleracea and Amaranthus spinosus, and stimulated Trifolium repens, Trifolium pretense and Medicago lupulina.

  7. Examining spring phenology of forest understory using digital photography

    Science.gov (United States)

    Liang Liang; Mark D. Schwartz; Songlin Fei

    2011-01-01

    Phenology is an important indicator of forest health in relation to energy/nutrient cycles and species interactions. Accurate characterization of forest understory phenology is a crucial part of forest phenology observation. In this study, ground plots set up in a temperate mixed forest in Wisconsin were observed with a visible-light digital camera during spring 2007....

  8. The Value of Native Plants and Local Production in an Era of Global Agriculture.

    Science.gov (United States)

    Shelef, Oren; Weisberg, Peter J; Provenza, Frederick D

    2017-01-01

    For addressing potential food shortages, a fundamental tradeoff exists between investing more resources to increasing productivity of existing crops, as opposed to increasing crop diversity by incorporating more species. We explore ways to use local plants as food resources and the potential to promote food diversity and agricultural resilience. We discuss how use of local plants and the practice of local agriculture can contribute to ongoing adaptability in times of global change. Most food crops are now produced, transported, and consumed long distances from their homelands of origin. At the same time, research and practices are directed primarily at improving the productivity of a small number of existing crops that form the cornerstone of a global food economy, rather than to increasing crop diversity. The result is a loss of agro-biodiversity, leading to a food industry that is more susceptible to abiotic and biotic stressors, and more at risk of catastrophic losses. Humans cultivate only about 150 of an estimated 30,000 edible plant species worldwide, with only 30 plant species comprising the vast majority of our diets. To some extent, these practices explain the food disparity among human populations, where nearly 1 billion people suffer insufficient nutrition and 2 billion people are obese or overweight. Commercial uses of new crops and wild plants of local origin have the potential to diversify global food production and better enable local adaptation to the diverse environments humans inhabit. We discuss the advantages, obstacles, and risks of using local plants. We also describe a case study-the missed opportunity to produce pine nuts commercially in the Western United States. We discuss the potential consequences of using local pine nuts rather than importing them overseas. Finally, we provide a list of edible native plants, and synthesize the state of research concerning the potential and challenges in using them for food production. The goal of our

  9. Classification and ordination of understory vegetation using multivariate techniques in the Pinus wallichiana forests of Swat Valley, northern Pakistan

    Science.gov (United States)

    Rahman, Inayat Ur; Khan, Nasrullah; Ali, Kishwar

    2017-04-01

    An understory vegetation survey of the Pinus wallichiana-dominated temperate forests of Swat District was carried out to inspect the structure, composition and ecological associations of the forest vegetation. A quadrat method of sampling was used to record the floristic and phytosociological data necessary for the analysis using 300 quadrats of 10 × 10 m each. Some vegetation parameters viz. frequency and density for trees (overstory vegetation) as well as for the understory vegetation were recorded. The results revealed that in total, 92 species belonging to 77 different genera and 45 families existed in the area. The largest families were Asteraceae, Rosaceae and Lamiaceae with 12, ten and nine species, respectively. Ward's agglomerative cluster analysis for tree species resulted in three floristically and ecologically distinct community types along different topographic and soil variables. Importance value indices (IVI) were also calculated for understory vegetation and were subjected to ordination techniques, i.e. canonical correspondence analysis (CCA) and detrended correspondence analysis (DCA). DCA bi-plots for stands show that most of the stands were scattered around the centre of the DCA bi-plot, identified by two slightly scattered clusters. DCA for species bi-plot clearly identified three clusters of species revealing three types of understory communities in the study area. Results of the CCA were somewhat different from the DCA showing the impact of environmental variables on the understory species. CCA results reveal that three environmental variables, i.e. altitude, slope and P (mg/kg), have a strong influence on distribution of stands and species. Impact of tree species on the understory vegetation was also tested by CCA which showed that four tree species, i.e. P. wallichiana A.B. Jackson, Juglans regia Linn., Quercus dilatata Lindl. ex Royle and Cedrus deodara (Roxb. ex Lamb.) G. Don, have strong influences on associated understory vegetation. It

  10. Impacts of cwd on understory biodiversity in forest ecosystems in the qinling mountains, china

    International Nuclear Information System (INIS)

    Yuan, J.; Wei, X.; Shang, Z.; Cheng, F.; Hu, Z.; Zheng, X.; Zhang, S.

    2015-01-01

    The stocks and characteristics of coarse woody debris (CWD) are expected to reflect forest stand features. However, despite their importance, there have been no reports of CWD stocks and characteristics in the Qinling Mountains. We measured the CWD stocks in different CWD types, decay classes and diameter classes of the five forest types in the Qinling Mountains. The highest biomass of CWD was the Pinus tabulaeformis forest (12.57 t-hm /sup -2/), occupied 5.66 percentage in the biomass of this forest, the lowest occupied 1.03 percentage in Betula albo-sinensis forest (1.82 t-hm /sup -2/). Our results revealed that there was a strong correlation between CWD and forest biomass. When the CWD biomass were 9.9 t-hm /sup -2/ and 11.6 hm /sup -2/, the biomass of Pinus armandi forest and P. tabulaeformis forest reached maximum, respectively. CWD is particularly important for biodiversity, but the importance of CWD in the control of diversity in forest systems has not been fully appreciated and certainly has not been evaluated intensively within China, especially in Qinling forests. In our research, we used species richness (S), Shannon-Wiener index (H), Simpson index (D) and Pielou evenness index (J) to assess the diversity of plant community. According to our analysis, we found 1) the effect of CWD biomass on these a diversity index was dependent on tree, shrub and herb in the five forest types, 2) the impacts of CWD biomass on understory biodiversity were more obvious, 3) With the increase of CWD biomass, the species richness (S), Shannon-Wiener index (H) and Simpson index (D) of understory increased significantly. Our results suggested that there was a relatively lower CWD biomass in the Qinling Mountains, but it had significant effects on forest biomass and diversity of plant community. Reserving CWD was important for eco-forestry, but how many and how characteristic of CWD should be retained need further research. Development of CWD reasonable strategies was

  11. Nonrandom Composition of Flower Colors in a Plant Community: Mutually Different Co-Flowering Natives and Disturbance by Aliens.

    Directory of Open Access Journals (Sweden)

    Takashi T Makino

    Full Text Available When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies, and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant-pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly.

  12. Native Michigan plants stimulate soil microbial species changes and PAH remediation at a legacy steel mill.

    Science.gov (United States)

    Thomas, John C; Cable, Edward; Dabkowski, Robert T; Gargala, Stephanie; McCall, Daniel; Pangrazzi, Garett; Pierson, Adam; Ripper, Mark; Russell, Donald K; Rugh, Clayton L

    2013-01-01

    A 1.3-acre phytoremediation site was constructed to mitigate polyaromatic hydrocarbon (PAH) contamination from a former steel mill in Michigan. Soil was amended with 10% (v/v) compost and 5% (v/v) poultry litter. The site was divided into twelve 11.89 m X 27.13 m plots, planted with approximately 35,000 native Michigan perennials, and soils sampled for three seasons. Soil microbial density generally increased in subplots of Eupatorium perfoliatum (boneset), Aster novae-angliae (New England aster), Andropogon gerardii (big bluestem), and Scirpus atrovirens (green bulrush) versus unplanted subplots. Using enumeration assays with root exudates, PAH degrading bacteria were greatest in soils beneath plants. Initially predominant, Arthrobacter were found capable of degrading a PAH cocktail in vitro, especially upon the addition of root exudate. Growth of some Arthrobacter isolates was stimulated by root exudate. The frequency of Arthrobacter declined in planted subplots with a concurrent increase in other species, including secondary PAH degraders Bacillus and Nocardioides. In subplots supporting only weeds, an increase in Pseudomonas density and little PAH removal were observed. This study supports the notion that a dynamic interplay between the soil, bacteria, and native plant root secretions likely contributes to in situ PAH phytoremediation.

  13. Vulnerability of freshwater native biodiversity to non-native ...

    Science.gov (United States)

    Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analyses, we investigate the potential threat of non-native species to threatened and endangered aquatic animal taxa inhabiting unprotected areas across the continental US. We compiled distribution information from existing publicly available databases at the watershed scale (12-digit hydrologic unit code). We mapped non-native aquatic plant and animal species richness, and an index of cumulative invasion pressure, which weights non-native richness by the time since invasion of each species. These distributions were compared to the distributions of native aquatic taxa (fish, amphibians, mollusks, and decapods) from the International Union for the Conservation of Nature (IUCN) database. We mapped the proportion of species listed by IUCN as threatened and endangered, and a species rarity index per watershed. An overlay analysis identified watersheds experiencing high pressure from non-native species and also containing high proportions of threatened and endangered species or exhibiting high species rarity. Conservation priorities were identified by generating priority indices from these overlays and mapping them relative to the distribution of protected areas across the US. Results/Conclusion

  14. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees.

    Science.gov (United States)

    Trocha, Lidia K; Kałucka, Izabela; Stasińska, Małgorzata; Nowak, Witold; Dabert, Mirosława; Leski, Tomasz; Rudawska, Maria; Oleksyn, Jacek

    2012-02-01

    Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.

  15. Ozone air pollution and foliar injury development on native plants of Switzerland

    International Nuclear Information System (INIS)

    Novak, Kristopher; Skelly, John M.; Schaub, Marcus; Kraeuchi, Norbert; Hug, Christian; Landolt, Werner; Bleuler, Peter

    2003-01-01

    Visible ozone-induced foliar injury on native forest species of Switzerland was identified and confirmed under ambient OTC-conditions and related to the current European AOT40 standard. - The objectives of this study were to examine the foliar sensitivity to ozone exposure of 12 tree, shrub, and herbaceous species native to southern Switzerland and determine the seasonal cumulative ozone exposures required to induce visible foliar injury. The study was conducted from the beginning of May through the end of August during 2000 and 2001 using an open-top chamber research facility located within the Lattecaldo Cantonal Forest Nursery in Canton Ticino, southern Switzerland (600 m asl). Plants were examined daily and dates of initial foliar injury were recorded in order to determine the cumulative AOT40 ppb h ozone exposure required to cause visible foliar injury. Plant responses to ozone varied significantly among species; 11 species exhibited visible symptoms typical of exposures to ambient ozone. The symptomatic species (from most to least sensitive) were Populus nigra, Viburnum lantana, Salix alba, Crataegus monogyna, Viburnum opulus, Tilia platyphyllos, Cornus alba, Prunus avium, Fraxinus excelsior, Ribes alpinum, and Tilia cordata; Clematis spp. did not show foliar symptoms. Of the 11 symptomatic species, five showed initial injury below the critical level AOT40 10 ppmh O 3 in the 2001 season

  16. Coexistence via coevolution driven by reduced allelochemical effects and increased tolerance to competition between invasive and native plants.

    Science.gov (United States)

    Huang, Fangfang; Lankau, Richard; Peng, Shaolin

    2018-04-01

    Coevolution can promote long-term coexistence of two competing species if selection acts to reduce the fitness inequality between competitors and/or strengthen negative frequency dependence within each population. However, clear coevolution between plant competitors has been rarely documented. Plant invasions offer opportunities to capture the process of coevolution. Here we investigated how the developing relationship between an invasive forb, Alliaria petiolata, and a native competitor, Pilea pumila, may affect their long-term coexistence, by testing the competitive effects of populations of varying lengths of co-occurrence on each other across a chronosequence of invasion history. Alliaria petiolata and P. pumila tended to develop greater tolerance to competition over invasion history. Their coexistence was promoted more by increases in stabilizing relative to equalizing processes. These changes likely stem in part from reductions in allelopathic traits in the invader and evolution of tolerance in the native. These results suggested that some native species can evolve tolerance against the competitive effects of strong invaders, which likely promoted their persistence in invaded communities. However, the potential for coevolutionary rescue of competing populations is likely to vary across native species, and evolutionary processes should not be expected to compensate for the ecological consequences of exotic invasions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Responses of Soil Organic Carbon to Long-Term Understory Removal in Subtropical Cinnamomum camphora Stands

    Directory of Open Access Journals (Sweden)

    Yacong Wu

    2014-01-01

    Full Text Available We conducted a study on a 48-year-old Cinnamomum camphora plantation in the subtropics of China, by removing understory gradually and then comparing this treatment with a control (undisturbed. This study analyzed the content and storage soil organic carbon (SOC in a soil depth of 0–60 cm. The results showed that SOC content was lower in understory removal (UR treatment, with a decrease range from 5% to 34%, and a decline of 10.16 g·kg−1 and 8.58 g·kg−1 was noticed in 0–10 cm and 10–20 cm layers, respectively, with significant differences (P<0.05. Carbon storage was reduced in UR, ranging from 2% to 43%, with a particular drastic decline of 15.39 t·hm−2 and 11.58 t·hm−2 in 0–10 cm (P<0.01 and 10–20 cm (P<0.01 layers, respectively. Content of SOC had an extremely significant (P<0.01 correlation with soil nutrients in the two stands, and the correlation coefficients of CK were higher than those of UR. Our data showed that the presence of understory favored the accumulation of soil organic carbon to a large extent. Therefore, long-term practice of understory removal weakens the function of forest ecosystem as a carbon sink.

  18. Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition.

    Science.gov (United States)

    Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping

    2011-01-01

    We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P plantations under various management practices.

  19. Native and introduced host plants of Anastrepha fraterculus and Ceratitis capitata (Diptera: Tephritidae) in northwestern Argentina.

    Science.gov (United States)

    Ovruski, Sergio; Schliserman, Pablo; Aluja, Martín

    2003-08-01

    Wild or commercially grown, native and exotic fruit were collected in 30 localities in the Tucumán province (NW Argentina) from January 1990 to December 1995 to determine their status as hosts of Anastrepha fraterculus (Wiedemann) and/or Ceratitis capitata (Wiedemann), the only two fruit fly species of economic and quarantine importance in Argentina. A total of 84,094 fruit (3,466.1 kg) representing 33 species (7 native and 26 exotic) in 15 plant families were sampled. We determined the following 17 host plant associations: Annona cherimola Miller (Annonaceae), Citrus paradisi Macfadyn (Rutaceae), Diospyros kaki L. (Ebenaceae), Eugenia uniflora L., Psidium guajava L., Myrcianthes pungens (Berg) Legrand (Myrtaceae), Ficus carica L. (Moraceae), Juglans australis Grisebach (Juglandaceae), Mangifera indica L. (Anacardiaceae), Eriobotrya japonica (Thunb.) Lindl., Prunus armeniaca L., P. domestica L., and P. persica (L.) Batsch (Rosaceae) were infested by both A. fraterculus and C. capitata. Citrus aurantium L., Citrus reticulata Blanco, Citrus sinensis (L.) Osbeck (Rutaceae), and Passiflora caerulea L. (Passifloraceae) were only infested by Ceratitis capitata. Out of a total of 99,627 adults that emerged from pupae, 69,180 (approximately 69.5%) were Anastrepha fraterculus, 30,138 (approximately 30.2%) were C. capitata, and 309 (approximately 0.3%) were an unidentified Anastrepha species. Anastrepha fraterculus predominated in native plant species while C. capitata did so in introduced species. Infestation rates (number of larvae/kg of fruit) varied sharply from year to year and between host plant species (overall there was a significant negative correlation between fruit size and infestation level). We provide information on fruiting phenology of all the reported hosts and discuss our findings in light of their practical (e.g., management of A. fraterculus and C. capitata in citrus groves) implications.

  20. The influence of ungulates on non-native plant invasions in forests and rangelands: a review.

    Science.gov (United States)

    Catherine G. Parks; Michael J. Wisdom; John G. Kie

    2005-01-01

    Herbivory by wild and domestic ungulates can strongly influence vegetation composition and productivity in forest and range ecosystems. However, the role of ungulates as contributors to the establishment and spread of non-native invasive plants is not well known. Ungulates spread seeds through endozoochory (passing through an animal's digestive tract) or...

  1. Productivity and cost of conventional understory biomass harvesting systems

    Science.gov (United States)

    Douglas E. Miller; Thomas J. Straka; Bryce J. Stokes; William Watson

    1987-01-01

    Conventional harvesting equipment was tested for removing forest understory biomass (energywood) for use as fuel. Two types of systems were tested--a one-pass system and a two-pass system. In the one-pass system, the energywood and pulpwood were harvested simultaneously. In the two-pass system, the energywood was harvested in a first pass through the stand, and the...

  2. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  3. Overexpression of the Synthetic Chimeric Native-T-phylloplanin-GFP Genes Optimized for Monocot and Dicot Plants Renders Enhanced Resistance to Blue Mold Disease in Tobacco (N. tabacum L.

    Directory of Open Access Journals (Sweden)

    Dipak K. Sahoo

    2014-01-01

    Full Text Available To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenic Nicotiana tabacum cv. KY14, a cultivar that is highly susceptible to infection by Peronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP was placed between the modified Mirabilis mosaic virus full-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applying P. tabacina sporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate that in vivo expression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, including P. tabacina in tobacco.

  4. Immobilised native plant cysteine proteases: packed-bed reactor for white wine protein stabilisation

    OpenAIRE

    Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Acciaro, Giuseppe; Zappino, Matteo; Esti, Marco

    2015-01-01

    This research presents a feasibility study of using a continuous packed-bed reactor (PBR), containing immobilised native plant cysteine proteases, as a specific and mild alternative technique relative to the usual bentonite fining for white wine protein stabilisation. The operational parameters for a PBR containing immobilised bromelain (PBR-br) or immobilised papain (PBR-pa) were optimised using model wine fortified with synthetic substrate (Bz-Phe-Val-Arg-pNA). The effectiveness of PBR-br, ...

  5. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor.

    Science.gov (United States)

    Fagan, Matthew E; DeFries, Ruth S; Sesnie, Steven E; Arroyo-Mora, J Pablo; Chazdon, Robin L

    2016-07-01

    Re-establishing connectivity between protected areas isolated by habitat clearing is a key conservation goal in the humid tropics. In northeastern Costa Rica, payments for environmental services (PES) and a government ban on deforestation have subsidized forest protection and reforestation in the San Juan-La Selva Biological Corridor (SJLSBC), resulting in a decline in mature forest loss and the expansion of tree plantations. We use field studies and graph models to assess how conservation efforts have altered functional connectivity over the last 25 years for four species of insectivorous understory birds. Field playback studies assessed how reforestation habitat quality affected the willingness of Myrmeciza exsul, Henicorhina leucosticta, Thamnophilus atrinucha, and Glyphorynchus spirurus to travel outside forest habitat for territorial defense. Observed travel distances were greatest in nonnative and native tree plantations with high understory stem density, regardless of overstory composition. In contrast, tree plantations with low stem density had travel responses comparable to open pasture for three of the four bird species. We modeled landscape connectivity for each species using graph models based on varying possible travel distances in tree plantations, gallery forests, and pastures. From 1986 to 2011, connectivity for all species declined in the SJLSBC landscape (5825 km 2 ) by 14% to 21% despite only a 4.9% net loss in forest area and the rapid expansion of tree plantations over 2% of the landscape. Plantation placement in the landscape limited their potential facilitation of connectivity because they were located either far from forest cover or within already contiguous forest areas. We mapped current connectivity bottlenecks and identified priority areas for future reforestation. We estimate that reforestation of priority areas could improve connectivity by 2% with only a 1% gain in forest cover, an impressive gain given the small area reforested

  6. Effects of Lantana camara (L.) invasion on the native vegetation of ...

    African Journals Online (AJOL)

    ... camara (L.) invasion on the native vegetation of Gonarezhou National Park, Zimbabwe. ... A total of 41 native woody species and 2 native herbaceous species were ... Keywords : Alien plants, Biodiversity, Invasive plants, Lantana camara, ...

  7. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    Science.gov (United States)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  8. Native excellence

    International Nuclear Information System (INIS)

    Bower, T.

    1992-01-01

    Syncrude Canada Ltd., operator of the oil sands mine and processing plant near Fort McMurray, Alberta, produces 11% of Canada's crude oil and is the country's largest private-sector employer of native Canadians. Syncrude has the goal of employing about 10% native Canadians, which is about the percentage of natives in the regional population. Examples are presented of successful native employment and entrepreneurship at Syncrude. Doreen Janvier, once employed at Syncrude's mine wash bays, was challenged to form her own company to contract out labor services. Her company, DJM Enterprises, now has a 2-year contract to operate three highly sophisticated wash bays used to clean mining equipment, and is looking to bid on other labor contracts. Mabel Laviolette serves as liaison between the oil containment and recovery team, who recover oil skimmed off Syncrude's tailings basin, and the area manager. The team approach and the seasonal nature of the employment fit in well with native cultural patterns. The excellence of native teamwork is also illustrated in the mine rescue team, one unit of which is entirely native Canadian. Part of Syncrude's aboriginal policy is to encourage development of aboriginal enterprises, such as native-owned Clearwater Welding and Fabricating Ltd., which has held welding and fabricating contracts with most major companies in the region and is a major supplier of skilled tradesmen to Syncrude. Syncrude also provides employment and training, encourages natives to continue their education, and promotes local community development. 4 figs

  9. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin

    Science.gov (United States)

    Preston, Todd M.

    2015-01-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82 %. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts.

  10. Restoration of the Native Plant Communities in Longleaf Pine Landscapes on the Kisatchie National Forest, Louisiana

    Science.gov (United States)

    James D. Haywood; Alton Martin; Finis L. Harris; Michael L. Elliott-Smith

    1998-01-01

    In January 1993, the Kisatchie National Forest and Southern Research Station began monitoring the effects of various management practices on overstory and midstory trees, shrubs, and understory woody and herbaceous vegetation in several longleaf pine (Pinus palustris Mill.) stands. The monitoring of these stands is part of several Ecosystem...

  11. Disking and mid- and understory removal following an above-average acorn crop in three mature oak forests in southern Indiana

    Science.gov (United States)

    Ronald A. Rathfon; Nathanael I. Lichti; Robert K. Swihart

    2008-01-01

    We disked using small-scale equipment in the understory of three mature upland oak (Quercus) forests in southern Indiana immediately following acorn dispersal in an aboveaverage seed crop year as a means of improving oak seedling establishment. Three different mid- and understory removal treatments were also applied to create favorable light...

  12. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland.

    Directory of Open Access Journals (Sweden)

    Erica N Spotswood

    Full Text Available Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species, temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.

  13. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland.

    Science.gov (United States)

    Spotswood, Erica N; Bartolome, James W; Allen-Diaz, Barbara

    2015-01-01

    Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.

  14. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  15. Establishing native warm season grasses on Eastern Kentucky strip mines

    International Nuclear Information System (INIS)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-01-01

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat

  16. Plant community variability on a small area in southeastern Montana

    Science.gov (United States)

    James G. MacCracken; Daniel W. Uresk; Richard M. Hansen

    1984-01-01

    Plant communities are inherently variable due to a number of environmental and biological forces. Canopy cover and aboveground biomass were determined for understory vegetation in plant communities of a prairie grassland-forest ecotone in southeastern Montana. Vegetation units were described using polar ordination and stepwise discriminant analysis. Nine of a total of...

  17. Performance of tropical legumes grown as understory of a eucalypt plantation in a seasonally dry area of the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Maria Luiza F. Nicodemo

    2015-09-01

    Full Text Available Nine tropical legumes were grown outside the canopy and in the understory of an 8-year-old Eucalyptus grandis stand in order to assess their seasonal production and forage quality for 4 evaluation periods. Incident photosynthetically active radiation in the understory was 18% of that outside the canopy. In the understory, production of Lablab purpureus, Centrosema schiedeanum, Clitoria ternatea, Pueraria phaseoloides, Alysicarpus vaginalis, Aeschynomene villosa, Estilosantes Campo Grande (Stylosanthes capitata + S. macrocephala, Calopogonium mucunoides and Arachis pintoi was <1 kg/ha/d for most samples. Even considering this low production, the large area available for animal production in forest plantations might justify the interest in legumes because of their high nutritive value. Lablab purpureus produced the greatest amount of dry matter in the understory in the establishment phase (12.1 kg/ha/d, but did not persist. It could be a suitable candidate for a cover legume species mixture to provide early growth. Centrosema schiedeanum developed rapidly and showed a high capacity for ground cover (>70% and persistence, and had high nitrogen concentration, thus demonstrating good potential for protecting soils and promoting nutrient cycling in forest plantations. Another species with potential is A. pintoi, which established slowly but towards the end of the experiment showed moderate to high understory ground cover.Keywords: Dry matter production, forage quality, shade, silvopastoral system.DOI: 10.17138/TGFT(3151-160

  18. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts.

    Directory of Open Access Journals (Sweden)

    Julio Miguel Grandez-Rios

    Full Text Available Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin.

  19. Iranian Native Plants on Treatment of Cutaneous Leishmaniosis: A Narrative Review.

    Science.gov (United States)

    Moghaddas, Elham; Khamesipour, Ali; Mohebali, Mehdi; Fata, Abdolmajid

    2017-01-01

    Chemotherapy still relies on the use of pentavalent antimonials, amphotericin B, paromomycin, miltefosin, and allopurinol. In this study, we explained about the native plant that grows in different regions of Iran and used as anti-leishmanial in Iran and even many other countries. This narrative review covers all information about local herbal medicine in Iran that used in treatment of cutaneous leishmaniasis in all the worlds, published in local and international journals from 1996 to 2015 using various databases including PubMed, SID, Google Scholar, Scopus, and Science Direct. Overall, 150 articles in databases were identified. Many local plants grown in some places of Iran were used to treat this endemic disease. The cutaneous leishmaniasis is also a major health problem in Iran, especially in Mashhad (Northeast of Iran). Therefore, many patients seek for herbal therapy that is cheaper and readily available. This review provides information regarding plant that exists in Iran and exhibiting effects on anti- Leishmania activity. Among the anti-leishmanial mentioned in this review, most have never been tested for cytotoxicity and very few have been tested for in vivo activity.

  20. Iranian Native Plants on Treatment of Cutaneous Leishmaniosis: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Elham MOGHADDAS

    2017-09-01

    Full Text Available Background: Chemotherapy still relies on the use of pentavalent antimonials, amphotericin B, paromomycin, miltefosin, and allopurinol. In this study, we explained about the native plant that grows in different regions of Iran and used as anti-leishmanial in Iran and even many other countries. Methods: This narrative review covers all information about local herbal medicine in Iran that used in treatment of cutaneous leishmaniasis in all the worlds, published in local and international journals from 1996 to 2015 using various databases including PubMed, SID, Google Scholar, Scopus, and Science Direct. Results: Overall, 150 articles in databases were identified. Many local plants grown in some places of Iran were used to treat this endemic disease.Conclusion: The cutaneous leishmaniasis is also a major health problem in Iran, especially in Mashhad (Northeast of Iran. Therefore, many patients seek for herbal therapy that is cheaper and readily available. This review provides information regarding plant that exists in Iran and exhibiting effects on anti- Leishmania activity. Among the anti-leishmanial mentioned in this review, most have never been tested for cytotoxicity and very few have been tested for in vivo activity.

  1. Competition and facilitation structure plant communities under nurse tree canopies in extremely stressful environments.

    Science.gov (United States)

    Al-Namazi, Ali A; El-Bana, Magdy I; Bonser, Stephen P

    2017-04-01

    Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy-dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy-dominant species can also limit the performance of edge-dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.

  2. Differences in Competitive Ability between Plants from Nonnative and Native Populations of a Tropical Invader Relates to Adaptive Responses in Abiotic and Biotic Environments

    Science.gov (United States)

    Liao, Zhi-Yong; Zhang, Ru; Barclay, Gregor F.; Feng, Yu-Long

    2013-01-01

    The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release) in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more), which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait). In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits) but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments) also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges). PMID:23977140

  3. Origins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint.

    Science.gov (United States)

    Mosyakin, S L; Bezusko, L G; Mosyakin, A S

    2007-01-01

    The article provides an overview of the problem of origin of the only native vascular plants of Antarctica, Deschampsia antartica (Poaceae) and Colobanthus quitensis (Caryophyllaceae), from the viewpoint of modern historical phytogeography and related fields of science. Some authors suggested the Tertiary relict status of these plants in Antarctica, while others favour their recent Holocene immigration. Direct data (fossil or molecular genetic ones) for solving this controversy is still lacking. However, there is no convincing evidence supporting the Tertiary relict status of these plants in Antarctica. Most probably D. antarctica and C. quitensis migrated to Antarctica in the Holocene or Late Pleistocene (last interglacial?) through bird-aided long-distance dispersal. It should be critically tested by (1) appropriate methods of molecular phylogeography, (2) molecular clock methods, if feasible, (3) direct paleobotanical studies, (4) paleoclimatic reconstructions, and (5) comparison with cases of taxa with similar distribution/dispersal patterns. The problem of the origin of Antarctic vascular plants is a perfect model for integration of modern methods of molecular phylogeography and phylogenetics, population biology, paleobiology and paleogeography for solving a long-standing enigma of historical plant geography and evolution.

  4. Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead.

    Science.gov (United States)

    Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2010-10-01

    The tolerance of wild flora to heavy-metal exposure has received very little research. In this study, the tolerance of four native tree species, four native grass species, and lettuce to copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) was investigated in a root-elongation study using Petri dishes. The results of these studies show a diverse range of responses to Cu, Zn, Cd, and Pb amongst the tested plant species. Toxicity among metals decreased in the following order: Cd ~ Cu > Pb > Zn. Metal concentrations resulting in a 50% reduction in growth (EC(50)) varied considerably, ranging from (microM) 30 (Dichanthium sericeum) to >2000 (Acacia spp.) for Cu; from 260 (Lactuca sativa) to 2000 (Acacia spp.) for Zn; from 27 (L. sativa) to 940 (Acacia holosericea) for Cd; and from 180 (L. sativa) to >1000 (Acacia spp.) for Pb. Sensitive native plant species identified included D. sericeum, Casuarina cunninghamiana, and Austrodanthonia caespitosa. However, L. sativa (lettuce) was also among the most sensitive to all four metals. Acacia species showed a high tolerance to metal exposure, suggesting that the Acacia genus shows potential for use in contaminated-site revegetation.

  5. Use of phytoproductivity data in the choice of native plant species to restore a degraded coal mining site amended with a stabilized industrial organic sludge.

    Science.gov (United States)

    Chiochetta, Claudete G; Toumi, Hela; Böhm, Renata F S; Engel, Fernanda; Poyer-Radetski, Gabriel; Rörig, Leonardo R; Adani, Fabrizio; Radetski, Claudemir M

    2017-11-01

    Coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. The arid soil resulting from acid mine drainage affects terrestrial and aquatic ecosystems, and thus, site remediation programs must be implemented to mitigate this sequential deleterious processes. A low-cost alternative material to counterbalance the affected physico-chemical-microbiological aspects of the degraded soil is the amendment with low contaminated and stabilized industrial organic sludge. The content of nutrients P and N, together with stabilized organic matter, makes this material an excellent fertilizer and soil conditioner, fostering biota colonization and succession in the degraded site. However, choice of native plant species to restore a degraded site must be guided by some minimal criteria, such as plant survival/adaptation and plant biomass productivity. Thus, in this 3-month study under environmental conditions, phytoproductivity tests with five native plant species (Surinam cherry Eugenia uniflora L., C. myrianthum-Citharexylum myrianthum, Inga-Inga spp., Brazilian peppertree Schinus terebinthifolius, and Sour cherry Prunus cerasus) were performed to assess these criteria, and additional biochemical parameters were measured in plant tissues (i.e., protein content and peroxidase activity) exposed to different soil/sludge mixture proportions. The results show that three native plants were more adequate to restore vegetation on degraded sites: Surinam cherry, C. myrianthum, and Brazilian peppertree. Thus, this study demonstrates that phytoproductivity tests associated with biochemical endpoint measurements can help in the choice of native plant species, as well as aiding in the choice of the most appropriate soil/stabilized sludge proportion in order to optimize biomass production.

  6. Organic Chemistry and the Native Plants of the Sonoran Desert: Conversion of Jojoba Oil to Biodiesel

    Science.gov (United States)

    Daconta, Lisa V.; Minger, Timothy; Nedelkova, Valentina; Zikopoulos, John N.

    2015-01-01

    A new, general approach to the organic chemistry laboratory is introduced that is based on learning about organic chemistry techniques and research methods by exploring the natural products found in local native plants. As an example of this approach for the Sonoran desert region, the extraction of jojoba oil and its transesterification to…

  7. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China.

    Science.gov (United States)

    Wang, Wenguo; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Hu, Qichun; He, Mingxiong; Li, Jiatang

    2014-01-01

    Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of "precipitation of the warmest quarter" and "annual mean temperature" were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China.

  8. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China.

    Directory of Open Access Journals (Sweden)

    Wenguo Wang

    Full Text Available Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080 on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of "precipitation of the warmest quarter" and "annual mean temperature" were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China.

  9. Invasive non-native species' provision of refugia for endangered native species.

    Science.gov (United States)

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.

  10. Effects of soil characteristics, allelopathy and frugivory on establishment of the invasive plant Carpobrotus edulis and a co-occurring native, Malcolmia littorea.

    Science.gov (United States)

    Novoa, Ana; González, Luís; Moravcová, Lenka; Pyšek, Petr

    2012-01-01

    The species Carpobrotus edulis, native to South Africa, is one of the major plant invaders of Mediterranean coastal ecosystems around the world. Invasion by C. edulis exerts a great impact on coastal habitats. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed whether soil factors, endozoochory, competition and allelopathic effects of the invader affect its own early establishment and that of the native species Malcolmia littorea. We used laboratory solutions representing different chemical composition and moisture of the soil, herbivore feeding assays to simulate seed scarification and rainwater solutions to account for the effect of differently aged C. edulis litter. We show that unlike that of the native species, germination and early growth of C. edulis was not constrained by low moisture. The establishment of C. edulis, in terms of germination and early growth, was increased by scarification of seeds following passage through the European rabbit intestines; the rabbits therefore may have potential implications for plant establishment. There was no competition between C. edulis and M. littorea. The litter of the invasive C. edulis, which remains on the soil surface for several years, releases allelopathic substances that suppress the native plant germination process and early root growth. The invasive species exhibits features that likely make it a better colonizer of sand dunes than the co-occurring native species. Allelopathic effects, ability to establish in drier microsites and efficient scarification by rabbits are among the mechanisms allowing C. edulis to invade. The results help to explain the failure of removal projects that have been carried out in order to restore dunes invaded by C. edulis, and the long-lasting effects of C. edulis litter need to be taken into account in future restoration projects.

  11. Effects of soil characteristics, allelopathy and frugivory on establishment of the invasive plant Carpobrotus edulis and a co-occurring native, Malcolmia littorea.

    Directory of Open Access Journals (Sweden)

    Ana Novoa

    Full Text Available BACKGROUND: The species Carpobrotus edulis, native to South Africa, is one of the major plant invaders of Mediterranean coastal ecosystems around the world. Invasion by C. edulis exerts a great impact on coastal habitats. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed whether soil factors, endozoochory, competition and allelopathic effects of the invader affect its own early establishment and that of the native species Malcolmia littorea. We used laboratory solutions representing different chemical composition and moisture of the soil, herbivore feeding assays to simulate seed scarification and rainwater solutions to account for the effect of differently aged C. edulis litter. PRINCIPAL FINDINGS: We show that unlike that of the native species, germination and early growth of C. edulis was not constrained by low moisture. The establishment of C. edulis, in terms of germination and early growth, was increased by scarification of seeds following passage through the European rabbit intestines; the rabbits therefore may have potential implications for plant establishment. There was no competition between C. edulis and M. littorea. The litter of the invasive C. edulis, which remains on the soil surface for several years, releases allelopathic substances that suppress the native plant germination process and early root growth. CONCLUSIONS: The invasive species exhibits features that likely make it a better colonizer of sand dunes than the co-occurring native species. Allelopathic effects, ability to establish in drier microsites and efficient scarification by rabbits are among the mechanisms allowing C. edulis to invade. The results help to explain the failure of removal projects that have been carried out in order to restore dunes invaded by C. edulis, and the long-lasting effects of C. edulis litter need to be taken into account in future

  12. Are commercially available essential oils from Australian native plants repellent to mosquitoes?

    Science.gov (United States)

    Maguranyi, Suzann K; Webb, Cameron E; Mansfield, Sarah; Russell, Richard C

    2009-09-01

    While the use of topical insect repellents, particularly those containing synthetic active ingredients such as deet (N,N-diethyl-3-methylbenzamide), are a mainstay in personal protection strategies emphasized in public health messages, there is a growing demand in the community for alternative repellents, particularly those of botanical origin and thus deemed to be "natural." This study evaluated the repellency of essential oils from 11 Australian native plants in 5% v/v formulations against Aedes aegypti, Culex quinquefasciatus, and Culex annulirostris under laboratory conditions. A blend of the top 3 performing oils was then compared with deet and a commercially available botanical insect repellent. All essential oils provided at least some protection against the 3 mosquito species, with the longest protection time (110 min) afforded by Prostanthera melissifolia against Cx. quinquefasciatus. Mean protection times against Ae. aegypti were substantially lower than those for the Culex spp. tested. Deet provided significantly longer protection against Ae. aegypti than both the 5% v/v blend of Leptospermum petersonii, Prostanthera melissifolia, and Melaleuca alternifolia (the 3 most effective oils) and the commercial botanical repellent. The results of this study indicate that these essential oils from Australian native plants offer limited protection against biting mosquitoes and that a blend of essential oils holds may offer commercial potential as a short-period repellent or under conditions of low mosquito abundance. However, it is important that public health messages continue to emphasize the greater effectiveness of deet-based repellents in areas with risks of mosquito-borne disease.

  13. Native American Foods and Cookery.

    Science.gov (United States)

    Taylor, Tom; Potter, Eloise F.

    Native Americans had a well-developed agriculture long before the arrival of the Europeans. Three staples--corn, beans, and squash--were supplemented with other gathered plants or cultivated crops such as white potatoes, sweet potatoes, pumpkins, and peanuts. Native Americans had no cows, pigs, or domesticated chickens; they depended almost…

  14. Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest

    Science.gov (United States)

    Knapp, E.E.; Schwilk, D.W.; Kane, J.M.; Keeley, J.E.

    2007-01-01

    Although the majority of fires in the western United States historically occurred during the late summer or early fall when fuels were dry and plants were dormant or nearly so, early-season prescribed burns are often ignited when fuels are still moist and plants are actively growing. The purpose of this study was to determine if burn season influences postfire vegetation recovery. Replicated early-season burn, late-season burn, and unburned control units were established in a mixed conifer forest, and understory vegetation was evaluated before and after treatment. Vegetation generally recovered rapidly after prescribed burning. However, late-season burns resulted in a temporary but significant drop in cover and a decline in species richness at the 1 m 2 scale in the following year. For two of the several taxa that were negatively affected by burning, the reduction in frequency was greater after late-season than early-season burns. Early-season burns may have moderated the effect of fire by consuming less fuel and lessening the amount of soil heating. Our results suggest that, when burned under high fuel loading conditions, many plant species respond more strongly to differences in fire intensity and severity than to timing of the burn relative to stage of plant growth. ?? 2007 NRC.

  15. A strategy for maximizing native plant material diversity for ecological restoration, germplasm conservation and genecology research

    Science.gov (United States)

    Berta Youtie; Nancy Shaw; Matt Fisk; Scott Jensen

    2012-01-01

    One of the most important steps in planning a restoration project is careful selection of ecologically adapted native plant material. As species-specific seed zone maps are not available for most species in the Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) ecoregion in the Great Basin, USA, we are employing a provisional seed zone map based on annual...

  16. The legacy of deer overabundance: long-term delays in herbaceous understory recovery

    Science.gov (United States)

    Thomas H. Pendergast; Shane M. Hanlon; Zachary M. Long; Alex Royo; Walter P. Carson

    2016-01-01

    Decades of white-tailed deer (Odocoileus virginianus (Zimmermann, 1780)) overpopulation have dramatically homogenized forests across much of the eastern United States, creating depauperate forest understory communities. The rate at which these communities recover once deer browsing has been reduced remains an open question. We evaluate overbrowsing...

  17. Temperature-dependent performance of competitive native and alien invasive plant species

    Science.gov (United States)

    Song, Uhram

    2017-10-01

    To assess the likely impacts of environmental change, the responses of two well-known invasive plant species, native Pueraria lobata and alien Humulus japonicus, to differences in growth temperature were studied in South Korea. Habitat preferences, physiological responses such as photosynthetic rates and chlorophyll contents, growth rates, and nutrient contents were quantified for each species. A competition experiment was conducted to evaluate the temperature preferences of the two species. All results indicated that the alien species H. japonicus can take advantage of elevated temperatures (35 °C) to enhance its competitive advantage against the native species P. lobata. While H. japonicus took advantage of elevated temperatures and preferred high-temperature areas, P. lobata showed reduced performance and dominance in high-temperature areas. Therefore, in future, due to global warming and urbanization, there are possibilities that H. japonicus takes advantage of elevated temperature against P. lobata that could lead to increased H. japonicus coverage over time. Therefore, consistent monitoring of both species especially where P. lobata is dominated are required because both species are found in every continents in the world. Controlling P. lobata requires thorough inspection of H. japonicus presence of the habitat in advance to prevent post P. lobata management invasion of H. japonicus.

  18. Native species that can replace exotic species in landscaping

    Directory of Open Access Journals (Sweden)

    Elisabeth Regina Tempel Stumpf

    2015-08-01

    Full Text Available Beyond aesthetics, the contemporary landscaping intends to provide other benefits for humans and environment, especially related to the environmental quality of urban spaces and conservation of the species. A trend in this direction is the reduction in the use of exotic plants in their designs, since, over time, they can become agents of replacement of native flora, as it has occurred in Rio Grande do Sul with many species introduced by settlers. However, the use of exotic species is unjustifiable, because the flora diversity of the Bioma Pampa offers many native species with appropriate features to the ornamental use. The commercial cultivation and the implantation of native species in landscaped areas constitute innovations for plant nurseries and landscapers and can provide a positive reduction in extractivism, contributing to dissemination, exploitation and preservation of native flora, and also decrease the impact of chemical products on environment. So, this work intends to identify native species of Bioma Pampa with features and uses similar to the most used exotic species at Brazilian landscaping. The species were selected from consulting books about native plants of Bioma Pampa and plants used at Brazilian landscaping, considering the similarity on habit and architecture, as well as characteristics of leafs, flowers and/or fruits and environmental conditions of occurrence and cultivation. There were identified 34 native species able to properly replace exotic species commonly used. The results show that many native species of Bioma Pampa have interesting ornamental features to landscape gardening, allowing them to replace exotic species that are traditionally cultivated.

  19. Managing succession in conifer plantations: converting young red pine (Pinus resinosa Ait.) plantations to native forest types by thinning and underplantiing

    Science.gov (United States)

    William C. Parker; Ken A. Elliott; Daniel C. Dey; Eric Boysen; Steven G. Newmaster

    2001-01-01

    The effects of thinning on growth and survival of white pine (Pinus strobus L.), white ash (Fraxinus americana L.), and red oak (Quercus rubra L.), and understory plant diversity were examined in a young red pine (Pinus resinosa Ait.) plantation. Five years after thinning, seedling diameter,...

  20. [Allelopathic interactions between invasive plant Solidago canadensis and native plant Phragmites australis].

    Science.gov (United States)

    Li, Yu-Zhe; Fan, Jiang-Wen; Yin, Xin; Yang, En-Yi; Wei, Wei; Tian, Zhi-Hui; Da, Liang-Jun

    2011-05-01

    Taking the seeds of invasive plant Solidago canadensis and native plant Phragmites australis from their mono- and co-dominant communities as allelopathic acceptors, this paper analyzed the differences in the seed germination rate and sprout length after treated with five level (12.5, 25, 50, 100, and 200 mg x mL(-1)) S. canadensis and P. australis extracts, aimed to understand the allelopathic interactions between the two species. The 1000-grain weight and seed germination rate under distilled water treatment of the two species in co-dominated community were greater than those in mono-dominant community. Low level (12.5 and 25 mg x mL(-1)) S. canadensi extracts slightly promoted the seed germination rates of S. canadensis in both mono- and co-dominant communities, but high level (50, 100, and 200 mg x mL(-1)) S. canadensi extracts had strong inhibition effect, especially for the S. canadensis in co-dominated community. No significant patterns were observed about the effects of P. australis extract on S. canadensis seed germination. The sprout length of S. canadensis seeds in both mono- and co-dominant communities decreased with increasing level of S. canadensis extract, but decreased in a fluctuation way with increasing level of P. australis extract. After treated with the extracts of P. australis or S. canadensis, the seed germination rate of P. australis in mono-dominant community was significantly greater than that in co-dominant community (P < 0.05), but there was no significant difference between these two extracts.

  1. Nonrandom Composition of Flower Colors in a Plant Community: Mutually Different Co-Flowering Natives and Disturbance by Aliens

    Science.gov (United States)

    Makino, Takashi T.; Yokoyama, Jun

    2015-01-01

    When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies), and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant–pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly. PMID:26650121

  2. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling.

    Science.gov (United States)

    Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten

    2011-11-01

    Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs.

  3. Carbon dioxide and water vapour exchange from understory species in boreal forest.

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    Although recent eddy covariance measurements in boreal forests provide CO2 and energy exchange data for the whole ecosystem, very little is known about the role of the understory vegetation. We conducted chamber flux measurements in an Alaskan black spruce forest in order to compare CO2 and water

  4. Facilitation of a native pest of rice, Stenotus rubrovittatus (Hemiptera: Miridae), by the non-native Lolium multiflorum (Cyperales: Poaceae) in an agricultural landscape.

    Science.gov (United States)

    Yoshioka, Akira; Takada, Mayura; Washitani, Izumi

    2011-10-01

    Source populations of polyphagous pests often occur on host plants other than the economically damaged crop. We evaluated the contribution of patches of a non-native meadow grass, Lolium multiflorum Lam. (Poaceae), and other weeds growing in fallow fields or meadows as source hosts of an important native pest of rice, Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae), in an agricultural landscape of northern Japan. Periodical censuses of this mirid bug by using the sweeping method, vegetation surveys, and statistical analysis revealed that L. multiflorum was the only plant species that was positively correlated with the density of adult S. rubrovittatus through two generations and thus may be the most stable and important host of the mirid bug early in the season before the colonization of rice paddies. The risk and cost of such an indirect negative effect on a crop plant through facilitation of a native pest by a non-native plant in the agricultural landscape should not be overlooked.

  5. A cytogenetic study of Korean native goat bred in the nuclear power plant using the micronucleus assay

    International Nuclear Information System (INIS)

    Kang, Chang-Mo; Ji, Young-Hoon; Lee, Hae-June; Kim, Se-Ra; Kim, Jong-Choon; Kim, Sung-Ho

    2005-01-01

    Cytogenetic and hematological analysis was performed on the peripheral blood lymphocytes (PBLs) obtained from Korean native goats bred in two nuclear power plants (Wolsong and Uljin) and a control area. The frequencies of gamma-ray-induced micronuclei (MN) in the cytokinesis-blocked (CB) lymphocytes at several doses were measured in three Korean native goats. The measurements performed after irradiation showed dose-related increases in the MN frequency in each of the donors. The results were analyzed using a linear-quadratic model with a line of best fit of y=0.1019D+0.0045D 2 +0.0093 (y=number of MN/GB cells and D=irradiation dose in Gy). The MN rates in the goats from the Wolsong and Uljin nuclear power plant, and the control area were 9.60±2.88, 6.83±1.47 and 9.88±4.32 per 1,000 CB lymphocytes, respectively. The apparent difference is not statistically significant. The MN frequencies of PBLs from goats bred in three areas means that the values are within the background variation in this experiment. The MN frequencies and hematological values were similar regardless of whether the goats were bred in the nuclear power plant or the control area. (author)

  6. Response of six non-native invasive plant species to wildfires in the northern Rocky Mountains, USA

    Science.gov (United States)

    Dennis E. Ferguson; Christine L. Craig

    2010-01-01

    This paper presents early results on the response of six non-native invasive plant species to eight wildfires on six National Forests (NFs) in the northern Rocky Mountains, USA. Stratified random sampling was used to choose 224 stands based on burn severity, habitat type series, slope steepness, stand height, and stand density. Data for this report are from 219 stands...

  7. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native Congener Alternanthera sessilis.

    Directory of Open Access Journals (Sweden)

    Yue Chen

    Full Text Available Plant invasion is one of the major threats to natural ecosystems. Phenotypic plasticity is considered to be important for promoting plant invasiveness. High tolerance of stress can also increase survival of invasive plants in adverse habitats. Limited growth and conservation of carbohydrate are considered to increase tolerance of flooding in plants. However, few studies have examined whether invasive species shows a higher phenotypic plasticity in response to waterlogging or a higher tolerance of waterlogging (lower plasticity than native species. We conducted a greenhouse experiment to compare the growth and morphological and physiological responses to waterlogging of the invasive, clonal, wetland species Alternanthera philoxeroides with those of its co-occurring, native, congeneric, clonal species Alternanthera sessilis. Plants of A. philoxeroides and A. sessilis were subjected to three treatments (control, 0 and 60 cm waterlogging. Both A. philoxeroides and A. sessilis survived all treatments. Overall growth was lower in A. philoxeroides than in A. sessilis, but waterlogging negatively affected the growth of A. philoxeroides less strongly than that of A. sessilis. Alternanthera philoxeroides thus showed less sensitivity of growth traits (lower plasticity and higher waterlogging tolerance. Moreover, the photosynthetic capacity of A. philoxeroides was higher than that of A. sessilis during waterlogging. Alternanthera philoxeroides also had higher total non-structural and non-soluble carbohydrate concentrations than A. sessilis at the end of treatments. Our results suggest that higher tolerance to waterlogging and higher photosynthetic capacity may partly explain the invasion success of A. philoxeroides in wetlands.

  8. Effects of native herbs and light on garlic mustard (Alliaria petiolata) invasion

    Science.gov (United States)

    Phillips-Mao, Laura; Larson, Diane L.; Jordan, Nicholas R.

    2014-01-01

    The degree to which invasive species drive or respond to environmental change has important implications for conservation and invasion management. Often characterized as a driver of change in North American woodlands, the invasive herb garlic mustard may instead respond to declines in native plant cover and diversity. We tested effects of native herb cover, richness, and light availability on garlic mustard invasion in a Minnesota oak woodland. We planted 50 garlic mustard seeds into plots previously planted with 0 to 10 native herb species. We measured garlic mustard seedling establishment, survival to rosette and adult stages, and average (per plant) and total (per plot) biomass and silique production. With the use of structural equation models, we analyzed direct, indirect, and net effects of native cover, richness, and light on successive garlic mustard life stages. Native plant cover had a significant negative effect on all life stages. Species richness had a significant positive effect on native cover, resulting in indirect negative effects on all garlic mustard stages, and net negative effects on adult numbers, total biomass, and silique production. Light had a strong negative effect on garlic mustard seedling establishment and a positive effect on native herb cover, resulting in significant negative net effects on garlic mustard rosette and adult numbers. However, light's net effect on total garlic mustard biomass and silique production was positive; reproductive output was high even in low-light/high-cover conditions. Combined effects of cover, richness, and light suggest that native herbs provide biotic resistance to invasion by responding to increased light availability and suppressing garlic mustard responses, although this resistance may be overwhelmed by high propagule pressure. Garlic mustard invasion may occur, in part, in response to native plant decline. Restoring native herbs and controlling garlic mustard seed production may effectively reduce

  9. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone.

    Science.gov (United States)

    Thakur, Madhav Prakash; Reich, Peter B; Fisichelli, Nicholas A; Stefanski, Artur; Cesarz, Simone; Dobies, Tomasz; Rich, Roy L; Hobbie, Sarah E; Eisenhauer, Nico

    2014-06-01

    Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.

  10. The conservation of native priority medicinal plants in a Caatinga area in Ceará, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    MARIA O. SANTOS

    2017-10-01

    Full Text Available ABSTRACT Much of the Brazilian semiarid region faces a considerable process of degradation of natural resources, and ethnobotanical studies have collaborated with important information about the use and traditional knowledge, serving as a tool to design conservation strategies of native plant species. Thus, this study aimed to determine medicinal species meriting conservation priorities in a “Caatinga” area in the northeastern of Brazilian territory. The ethnobotanical data were collected through semi-structured interviews with key subjects selected through the “snowball” technique. The availability and species conservation priority was verified by relative density, risk of collection, local use and use of diversity in the forest fragment sampled. It was recorded 42 native medicinal plants and conservation priority score was calculated for seven species, including Mimosa tenuiflora, Hymenaea courbaril, Ximenia americana and Amburana cearensis need immediate conservation and attention, since their collection does not occur in a sustainable way. In order to ensure the perpetuation of the species and the sustainability of traditional therapeutic practice there needs to be a development of conservation practices of caatinga remaining to better conserve the species of the biome.

  11. Proximity to encroaching coconut palm limits native forest water use and persistence on a Pacific atoll

    Science.gov (United States)

    Krauss, Ken W.; Duberstein, Jamie A.; Cormier, Nicole; Young, Hillary S.; Hathaway, Stacie A.

    2015-01-01

    Competition for fresh water between native and introduced plants is one important challenge facing native forests as rainfall variability increases. Competition can be especially acute for vegetation on Pacific atolls, which depend upon consistent rainfall to replenish shallow groundwater stores. Patterns of sap flow, water use, and diameter growth of Pisonia grandis trees were investigated on Sand Islet, Palmyra Atoll, Line Islands, during a period of low rainfall. Sap flow in the outer sapwood was reduced by 53% for P. grandis trees growing within coconut palm (Cocos nucifera) stands (n = 9) versus away from coconut palm (n = 9). This suggested that water uptake was being limited by coconut palm. Radial patterns of sap flow into the sapwood of P. grandis also differed between stands with and without coconut palm, such that individual tree water use for P. grandis ranged from 14 to 67 L day−1, averaging 47·8 L day−1 without coconut palm and 23·6 L day−1 with coconut palm. Diameter growth of P. grandis was measured from nine islets. In contrast to sap flow, competition with coconut palm increased diameter growth by 89%, equating to an individual tree basal area increment of 5·4 versus 10·3 mm2 day−1. Greater diameter growth countered by lower rates of water use by P. grandis trees growing in competition with coconut palm suggests that stem swell may be associated with water storage when positioned in the understory of coconut palm, and may facilitate survival when water becomes limiting until too much shading overwhelms P. grandis. 

  12. Growth responses of young Douglas-fir and tanoak 11 years after various levels of hardwood removal and understory suppression in southwestern Oregon, USA

    Science.gov (United States)

    Harrington, T.B.; Tappeiner, John C.

    1997-01-01

    At two sites in southwestern Oregon, height, diameter, and crown width of young Douglas-fir (Pseudotsuga menziesii) and sprout-origin tanoak (Lithocarpus densiflorus) were measured 1–11 years after reducing the density of a 2-year-old tanoak stand to 0%, 25%, 50%, and 100% of its initial cover. Some plots also included suppression of understory vegetation. Tanoak cover developed linearly with time, with steepness of the growth trajectory increasing at a diminishing rate with increasing percentage of initial tanoak cover. Fifth-year cover of understory vegetation declined linearly with increasing percentage of initial tanoak cover (R2 = 0.29). Survival of Douglas-fir (96–100%) differed little among initial abundances of tanoak, while growth trajectories for its size became increasingly exponential with decreasing percentage of initial tanoak cover. Eleventh-year heights of Douglas-fir were similar for 0%, 25%, and 50% of initial tanoak cover; however, diameter increased linearly with decreasing percentage of initial tanoak cover (R2 = 0.73), and the slope of the relationship steepened with understory suppression. Our results indicate that young stands exhibiting a wide range of stand compositions and productivities can be established by early manipulations of tanoak and understory abundance. Complete removal of tanoak plus understory suppression are necessary to maximize Douglas-fir growth, while productive, mixed stands can be achieved by removing 50% or more of tanoak cover.

  13. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

    Science.gov (United States)

    Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph

    2011-01-01

    Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by

  14. Minimal effectiveness of native and non-native seeding following three high-severity wildfire

    Science.gov (United States)

    Ken A. Stella; Carolyn H. Sieg; Pete Z. Fule

    2010-01-01

    The rationale for seeding following high-severity wildfires is to enhance plant cover and reduce bare ground, thus decreasing the potential for soil erosion and non-native plant invasion. However, experimental tests of the effectiveness of seeding in meeting these objectives in forests are lacking. We conducted three experimental studies of the effectiveness of seeding...

  15. Arsenic accumulation in native plants of West Bengal, India: prospects for phytoremediation but concerns with the use of medicinal plants.

    Science.gov (United States)

    Tripathi, Preeti; Dwivedi, Sanjay; Mishra, Aradhana; Kumar, Amit; Dave, Richa; Srivastava, Sudhakar; Shukla, Mridul Kumar; Srivastava, Pankaj Kumar; Chakrabarty, Debasis; Trivedi, Prabodh Kumar; Tripathi, Rudra Deo

    2012-05-01

    Arsenic (As) is a widespread environmental and food chain contaminant and class I, non-threshold carcinogen. Plants accumulate As due to ionic mimicry that is of importance as a measure of phytoremediation but of concern due to the use of plants in alternative medicine. The present study investigated As accumulation in native plants including some medicinal plants, from three districts [Chinsurah (Hoogly), Porbosthali (Bardhman), and Birnagar (Nadia)] of West Bengal, India, having a history of As pollution. A site-specific response was observed for Specific Arsenic Uptake (SAU; mg kg(-1) dw) in total number of 13 (8 aquatic and 5 terrestrial) collected plants. SAU was higher in aquatic plants (5-60 mg kg(-1) dw) than in terrestrial species (4-19 mg kg(-1) dw). The level of As was lower in medicinal plants (MPs) than in non-medicinal plants, however it was still beyond the WHO permissible limit (1 mg kg(-1) dw). The concentration of other elements (Cu, Zn, Se, and Pb) was found to be within prescribed limits in medicinal plants (MP). Among the aquatic plants, Marsilea showed the highest SAU (avg. 45 mg kg(-1) dw), however, transfer factor (TF) of As was the maximum in Centella asiatica (MP, avg. 1). Among the terrestrial plants, the maximum SAU and TF were demonstrated by Alternanthera ficoidea (avg. 15) and Phyllanthus amarus (MP, avg. 1.27), respectively. In conclusion, the direct use of MP or their by products for humans should not be practiced without proper regulation. In other way, one fern species (Marsilea) and some aquatic plants (Eichhornia crassipes and Cyperus difformis) might be suitable candidates for As phytoremediation of paddy fields.

  16. The investigation of antibacterial activity of selected native plants from North of Iran.

    Science.gov (United States)

    Koohsari, H; Ghaemi, E A; Sadegh Sheshpoli, M; Jahedi, M; Zahiri, M

    2015-01-01

    Plant derived products have been used for medicinal purposes during centuries. Bacterial resistance to currently used antibiotics has become a concern to public health. The development of bacterial super resistant strains has resulted in the currently used antibiotic agents failing to end many bacterial infections. For this reason, the search is ongoing for new antimicrobial agents, both by the design and by the synthesis of new agents, or through the search of natural sources for yet undiscovered antimicrobial agents. Herbal medications in particular have seen a revival of interest due to a perception that there is a lower incidence of adverse reactions to plant preparations compared to synthetic pharmaceuticals. Coupled with the reduced costs of plant preparations, this makes the search for natural therapeutics an attractive option. This research was carried out to assess the antibacterial activity aqueous and ethanolic extracts of six Azadshahr township Native plants in north of Iran against six species of pathogen bacteria by using three methods of Disk diffusion, Well method and MBC. The results of this research indicated that the effect of ethanol extracts were more than aqueous extract and among six plants, Lippia citriodora and Plantago major ethanol extract had the most antibacterial activity in any of the three methods. Gram-positive bacteria were more sensitive than gram-negative bacteria. Staphylococcus epidermidis and Staphylococcus aureus were the most susceptible Gram-positive bacteria.

  17. Herbarium specimens show patterns of fruiting phenology in native and invasive plant species across New England.

    Science.gov (United States)

    Gallinat, Amanda S; Russo, Luca; Melaas, Eli K; Willis, Charles G; Primack, Richard B

    2018-01-01

    Patterns of fruiting phenology in temperate ecosystems are poorly understood, despite the ecological importance of fruiting for animal nutrition and seed dispersal. Herbarium specimens represent an under-utilized resource for investigating geographical and climatic factors affecting fruiting times within species, patterns in fruiting times among species, and differences between native and non-native invasive species. We examined over 15,000 herbarium specimens, collected and housed across New England, and found 3159 specimens with ripe fruits, collected from 1849-2013. We examined patterns in fruiting phenology among 37 native and 18 invasive woody plant species common to New England. We compared fruiting dates between native and invasive species, and analyzed how fruiting phenology varies with temperature, space, and time. Spring temperature and year explained a small but significant amount of the variation in fruiting dates. Accounting for the moderate phylogenetic signal in fruiting phenology, invasive species fruited 26 days later on average than native species, with significantly greater standard deviations. Herbarium specimens can be used to detect patterns in fruiting times among species. However, the amount of intraspecific variation in fruiting times explained by temporal, geographic, and climatic predictors is small, due to a combination of low temporal resolution of fruiting specimens and the protracted nature of fruiting. Later fruiting times in invasive species, combined with delays in autumn bird migrations in New England, may increase the likelihood that migratory birds will consume and disperse invasive seeds in New England later into the year. © 2018 Botanical Society of America.

  18. Western dwarf mistletoe infects understory Jeffrey pine seedlings on Cleveland National Forest, California

    Science.gov (United States)

    Robert F. Scharpf; Detlev Vogler

    1986-01-01

    Many young, understory Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were found to be infected by western dwarf mistletoe (Arceuthobium campylopodum Engelm.) on Laguna Mountain, Cleveland National Forest, in southern California. Under heavily infected overstory, about three-fourths of the young pines (about 15 years old on the...

  19. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Attempting to restore herbaceous understories in Wyoming big sagebrush communities with mowing and seeding

    Science.gov (United States)

    Shrub steppe communities with depleted perennial herbaceous understories need to be restored to increase resilience, provide quality wildlife habitat, and improve ecosystem function. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) steppe...

  1. "I eat the manofê so it is not forgotten": local perceptions and consumption of native wild edible plants from seasonal dry forests in Brazil.

    Science.gov (United States)

    Cruz, Margarita Paloma; Medeiros, Patrícia Muniz; Sarmiento-Combariza, Iván; Peroni, Nivaldo; Albuquerque, Ulysses Paulino

    2014-05-23

    There is little information available on the factors influencing people's selection of wild plants for consumption. Studies suggest a suitable method of understanding the selection of edible plants is to assess people's perceptions of these resources. The use and knowledge of wild resources is disappearing, as is the opportunity to use them. This study analyzes people's perceptions of native wild edible plants in a rural Caatinga (seasonal dry forest) community in Northeast Brazil and the relationships between the use of these resources and socioeconomic factors. Semi-structured interviews with 39 people were conducted to form a convenience sample to gather information regarding people's perceptions of 12 native wild edible plant species. The relationships between variables were assessed by simple linear regression analysis, Pearson and Spearman correlation analyses, and in the case of nominal variables, contingency tables. The discourse of participants regarding their opinions of the use of wild plants as food was analyzed through the collective subject discourse analysis technique. Perceptions were classified into 18 categories. The most cited category was organoleptic characteristics of the edible part; more specifically, flavor. Flavor was the main positive perception associated with plant use, whereas the negative perception that most limited the use of these plants was cultural acceptance. Perceptions of the use of wild edible plants were directly correlated with both interviewee age and income. Within the studied community, people's perceptions of native wild edible plants are related to their consumption. Moreover, the study found that young people have less interest in these resources. These findings suggest that changing perceptions may affect the conservation of plants, traditional practices and the associated knowledge.

  2. Prescribed Burning and Clear-Cutting Effects on Understory Vegetation in a Pinus canariensis Stand (Gran Canaria

    Directory of Open Access Journals (Sweden)

    José Ramón Arévalo

    2014-01-01

    Full Text Available Prescribed fires are a powerful tool for reducing fire hazards by decreasing amounts of fuel. The main objective is to analyze the effects of prescribed burning on the understory vegetation composition as well as on the soil characteristics of a reforested stand of Pinus canariensis. The study attempts to identify the effects of the preburning treatment of cutting understory vegetation on the floristic parameters of the vegetation community. This study was carried out for two years following a prescribed fire in a Canarian pine stand. Cutting and burning treatment affected species composition and increased diversity. Burnt and cut plots were characterized by a diverse array of herbaceous species and by a lower abundance of Teline microphylla (endemic legume, although burning apparently induced its germination. Cut treatment was more consistently differentiated from the control plots than burnt treatment. Soil K decreased after both treatments, pH slightly decreased after cutting, while P and Ca increased after fire. From an ecological point of view, prescribed burning is a better management practice than cutting the woody species of the understory. However, long-term studies would be necessary to evaluate the effects of fire intensity, season and frequency in which the prescribed burning is applied.

  3. Prescribed burning and clear-cutting effects on understory vegetation in a Pinus canariensis stand (Gran Canaria).

    Science.gov (United States)

    Arévalo, José Ramón; Fernández-Lugo, Silvia; García-Domínguez, Celia; Naranjo-Cigala, Agustín; Grillo, Federico; Calvo, Leonor

    2014-01-01

    Prescribed fires are a powerful tool for reducing fire hazards by decreasing amounts of fuel. The main objective is to analyze the effects of prescribed burning on the understory vegetation composition as well as on the soil characteristics of a reforested stand of Pinus canariensis. The study attempts to identify the effects of the preburning treatment of cutting understory vegetation on the floristic parameters of the vegetation community. This study was carried out for two years following a prescribed fire in a Canarian pine stand. Cutting and burning treatment affected species composition and increased diversity. Burnt and cut plots were characterized by a diverse array of herbaceous species and by a lower abundance of Teline microphylla (endemic legume), although burning apparently induced its germination. Cut treatment was more consistently differentiated from the control plots than burnt treatment. Soil K decreased after both treatments, pH slightly decreased after cutting, while P and Ca increased after fire. From an ecological point of view, prescribed burning is a better management practice than cutting the woody species of the understory. However, long-term studies would be necessary to evaluate the effects of fire intensity, season and frequency in which the prescribed burning is applied.

  4. Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water.

    Science.gov (United States)

    Bashan, Yoav; Salazar, Bernardo G; Moreno, Manuel; Lopez, Blanca R; Linderman, Robert G

    2012-07-15

    Restoration of highly eroded desert land was attempted in the southern Sonoran Desert that had lost its natural capacity for self-revegetation. In six field experiments, the fields were planted with three native leguminous trees: mesquite amargo Prosopis articulata, and yellow and blue palo verde Parkinsonia microphylla and Parkinsonia florida. Restoration included inoculation with two of plant growth-promoting bacteria (PGPB; Azospirillum brasilense and Bacillus pumilus), native arbuscular mycorrhizal (AM) fungi, and small quantities of compost. Irrigation was applied, when necessary, to reach a rainy year (300 mm) of the area. The plots were maintained for 61 months. Survival of the trees was marginally affected by all supplements after 30 months, in the range of 60-90%. This variation depended on the plant species, where all young trees were established after 3 months. Plant density was a crucial variable and, in general, low plant density enhanced survival. High planting density was detrimental. Survival significantly declined in trees 61 months after planting. No general response of the trees to plant growth-promoting microorganisms and compost was found. Mesquite amargo and yellow palo verde responded well (height, number of branches, and diameter of the main stem) to inoculation with PGPB, AM fungi, and compost supplementation after three months of application. Fewer positive effects were recorded after 30 months. Blue palo verde did not respond to most treatments and had the lowest survival. Specific plant growth parameters were affected to varying degrees to inoculations or amendments, primarily depending on the tree species. Some combinations of tree/inoculant/amendment resulted in small negative effects or no response when measured after extended periods of time. Using native leguminous trees, this study demonstrated that restoration of severely eroded desert lands was possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Science.gov (United States)

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  6. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass

    Science.gov (United States)

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-01-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. PMID:25911738

  7. Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants.

    Science.gov (United States)

    Maloukh, Lina; Kumarappan, Alagappan; Jarrar, Mohammad; Salehi, Jawad; El-Wakil, Houssam; Rajya Lakshmi, T V

    2017-06-01

    DNA barcoding of United Arab Emirates (UAE) native plants is of high practical and scientific value as the plants adapt to very harsh environmental conditions that challenge their identification. Fifty-one plant species belonged to 22 families, 2 monocots, and 20 eudicots; a maximum number of species being legumes and grasses were collected. To authenticate the morphological identification of the wild plant taxa, rbcL and matK regions were used in the study. The primer universality and discriminatory power of rbcL is 100%, while it is 35% for matK locus for these plant species. The sequences were submitted to GenBank; accession numbers were obtained for all the rbcL sequences and for 6 of matK sequences. We suggest rbcL as a promising barcode locus for the tested group of 51 plants. In the present study, an inexpensive, simple method of identification of rare desert plant taxa through rbcL barcode is being reported.

  8. Cytotoxic Effects of Native and Recombinant Frutalin, a Plant Galactose-Binding Lectin, on HeLa Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Carla Oliveira

    2011-01-01

    Full Text Available Frutalin is the α-D-galactose-binding lectin isolated from breadfruit seeds. Frutalin was obtained from two different sources: native frutalin was purified from its natural origin, and recombinant frutalin was produced and purified from Pichia pastoris. This work aimed to study and compare the effect of native and recombinant frutalin on HeLa cervical cancer cells proliferation and apoptosis. Furthermore, the interaction between frutalin and the HeLa cells was investigated by confocal microscopy. Despite having different carbohydrate-binding affinities, native and recombinant frutalin showed an identical magnitude of cytotoxicity on HeLa cells growth (IC50~100 μg/mL and equally induced cell apoptosis. The interaction studies showed that both lectins were rapidly internalised and targeted to HeLa cell's nucleus. Altogether, these results indicate that frutalin action is not dependent on its sugar-binding properties. This study provides important information about the bioactivity of frutalin and contributes to the understanding of the plant lectins cytotoxic activity.

  9. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  10. Effect of long-term understory prescribed burning on standing and down dead woody material in dry upland oak forests

    Science.gov (United States)

    Polo, John A.; Hallgren, S.W.; Leslie,, David M.

    2013-01-01

    Dead woody material, long ignored or viewed as a nuisance for forest management, has gained appreciation for its many roles in the forest including wildlife habitat, nutrient storage and cycling, energy for trophic webs, protection of soil, fuel for fire and carbon storage. The growing interest in managing dead woody material has created strong demand for greater understanding of factors controlling amounts and turnover. Prescribed burning, an important management tool, may have strong effects of dead woody material given fire’s capacity to create and consume dead woody material. We determined effects of long-term understory prescribed burning on standing and down woody material in upland oak forests in south-central North America. We hypothesized that as frequency of fire increased in these stands the amount of deadwood would decrease and the fine woody material would decrease more rapidly than coarse woody material. The study was conducted in forests dominated by post oak (Quercus stellata) and blackjack oak (Quercus marilandica) in wildlife management areas where understory prescribed burning had been practiced for over 20 years and the range of burn frequencies was 0 (unburned) fires per decade (FPD) to 4.6 FPD. The amount of deadwood was low compared with more productive forests in southeastern North America. The biomass (24.7 Mg ha-1) and carbon stocks (11.7 Mg ha-1) were distributed among standing dead (22%), coarse woody debris (CWD, dia. > 7.5 cm., 12%), fine woody debris (FWD, dia. prescribed burning influenced the amount and size distribution of standing and down dead woody material. There were two explanations for the lack of a detectable effect. First, a high incidence of severe weather including ice storms and strong winds that produce large amounts of deadwood intermittently in an irregular pattern across the landscape may preclude detecting a strong effect of understory prescribed burning. Second, fire suppression during the first one-half of the

  11. A Simple Method for Retrieving Understory NDVI in Sparse Needleleaf Forests in Alaska Using MODIS BRDF Data

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2014-12-01

    Full Text Available Global products of leaf area index (LAI usually show large uncertainties in sparsely vegetated areas because the understory contribution is not negligible in reflectance modeling for the case of low to intermediate canopy cover. Therefore, many efforts have been made to include understory properties in LAI estimation algorithms. Compared with the conventional data bank method, estimation of forest understory properties from satellite data is superior in studies at a global or continental scale over long periods. However, implementation of the current remote sensing method based on multi-angular observations is complicated. As an alternative, a simple method to retrieve understory NDVI (NDVIu for sparse boreal forests was proposed in this study. The method is based on the fact that the bidirectional variation in NDVIu is smaller than that in canopy-level NDVI. To retrieve NDVIu for a certain pixel, linear extrapolation was applied using pixels within a 5 × 5 target-pixel-centered window. The NDVI values were reconstructed from the MODIS BRDF data corresponding to eight different solar-view angles. NDVIu was estimated as the average of the NDVI values corresponding to the position in which the stand NDVI had the smallest angular variation. Validation by a noise-free simulation data set yielded high agreement between estimated and true NDVIu, with R2 and RMSE of 0.99 and 0.03, respectively. Using the MODIS BRDF data, we achieved an estimate of NDVIu close to the in situ measured value (0.61 vs. 0.66 for estimate and measurement, respectively and reasonable seasonal patterns of NDVIu in 2010 to 2013. The results imply a potential application of the retrieved NDVIu to improve the estimation of overstory LAI for sparse boreal forests and ultimately to benefit studies on carbon cycle modeling over high-latitude areas.

  12. Native Grass Community Management Plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, Michael G [ORNL; Parr, Patricia Dreyer [ORNL; Cohen, Kari [ORNL

    2007-06-01

    Land managers at the Department of Energy's Oak Ridge National Laboratory in East Tennessee are restoring native warm-season grasses and wildflowers to various sites across the Oak Ridge Reservation (ORR). Some of the numerous benefits to planting native grasses and forbs include improved habitat quality for wildlife, improved aesthetic values, lower long-term maintenance costs, and compliance with Executive Order 13112 (Clinton 1999). Challenges to restoring native plants on the ORR include the need to gain experience in establishing and maintaining these communities and the potentially greater up-front costs of getting native grasses established. The goals of the native grass program are generally outlined on a fiscal-year basis. An overview of some of the issues associated with the successful and cost-effective establishment and maintenance of native grass and wildflower stands on the ORR is presented in this report.

  13. Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions?

    Science.gov (United States)

    Mary I. Williams; R. Kasten Dumroese; Deborah S. Page-Dumroese; Stuart P. Hardegree

    2016-01-01

    Direct seeding is a common large-scale restoration practice for revegetating arid and semi-arid lands, but success can be limited by moisture and temperature. Seed coating technologies that use biochar may have the potential to overcome moisture and temperature limitations on native plant germination and growth. Biochar is a popular agronomic tool for improving soil...

  14. Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests.

    Science.gov (United States)

    Veresoglou, Stavros D; Wulf, Monika; Rillig, Matthias C

    2017-02-01

    In late-successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a dataset spanning over 400 vegetation plots in the Weser-Elbe region (northwest Germany). Mycorrhizal status information was obtained from published resources, and Ellenberg indicator values were used to infer environmental data. We carried out tests for both relative richness and relative abundance of herbaceous plants. We found that the subset of herbaceous individuals that associated with AM profited when there was a high cover of AM woody plants. These relationships were retained when we accounted for environmental filtering effects using path analysis. Our findings build on the existing literature highlighting the prominent role of mycorrhiza as a coexistence mechanism in plant communities. From a nature conservation point of view, it may be possible to promote functional diversity in the forest understory through introducing AM woody trees in stands when absent.

  15. Interspecific competition between alien and native congeneric species

    Science.gov (United States)

    Garcia-Serrano, H.; Sans, F. X.; Escarré, J.

    2007-01-01

    A good way to check hypotheses explaining the invasion of ecosystems by exotic plants is to compare alien and native congeneric species. To test the hypothesis that invasive alien plants are more competitive than natives, we designed a replacement series experiment to evaluate interspecific competition between three Senecio species representing the same bushy life form: two alien species ( S. inaequidens and S. pterophorus, both from South Africa) and a native species from the south-east of the Iberian Peninsula and Maghreb ( S. malacitanus). While S. inaequidens is widespread throughout western Europe and is expanding towards the south of Spanish-French border, the geographical distribution of the recently introduced S. pterophorus is still limited to north-eastern Spain. Plants from each species were grown in pure and in mixed cultures with one of their congeners, and water availability was manipulated to evaluate the effects of water stress on competitive abilities. Our results show that the alien S. inaequidens is the most competitive species for all water conditions. The native S. malacitanus is more competitive that the alien S. pterophorus in water stress conditions, but this situation is reversed when water availability is not limiting.

  16. Asháninka medicinal plants: a case study from the native community of Bajo Quimiriki, Junín, Peru

    Directory of Open Access Journals (Sweden)

    Luziatelli Gaia

    2010-08-01

    Full Text Available Abstract Background The Asháninka Native Community Bajo Quimiriki, District Pichanaki, Junín, Peru, is located only 4 km from a larger urban area and is dissected by a major road. Therefore the loss of traditional knowledge is a main concern of the local headman and inhabitants. The present study assesses the state of traditional medicinal plant knowledge in the community and compares the local pharmacopoeia with the one from a related ethnic group. Methods Fieldwork was conducted between July and September 2007. Data were collected through semi-structured interviews, collection of medicinal plants in the homegardens, forest walks, a walk along the river banks, participant observation, informal conversation, cross check through voucher specimens and a focus group interview with children. Results Four-hundred and two medicinal plants, mainly herbs, were indicated by the informants. The most important families in terms of taxa were Asteraceae, Araceae, Rubiaceae, Euphorbiaceae, Solanaceae and Piperaceae. Eighty-four percent of the medicinal plants were wild and 63% were collected from the forest. Exotics accounted to only 2% of the medicinal plants. Problems related to the dermal system, digestive system, and cultural belief system represented 57% of all the medicinal applications. Some traditional healers received non-indigenous customers, using their knowledge as a source of income. Age and gender were significantly correlated to medicinal plant knowledge. Children knew the medicinal plants almost exclusively by their Spanish names. Sixteen percent of the medicinal plants found in this community were also reported among the Yanesha of the Pasco Region. Conclusions Despite the vicinity to a city, knowledge on medicinal plants and cultural beliefs are still abundant in this Asháninka Native Community and the medicinal plants are still available in the surroundings. Nevertheless, the use of Spanish names for the medicinal plants and the shift of

  17. Will Tidal Wetland Restoration Enhance Populations of Native Fishes?

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands might enhance populations of native fishes in the San Francisco Estuary of California. The purpose of this paper is to: (1 review the currently available information regarding the importance of tidal wetlands to native fishes in the San Francisco Estuary, (2 construct conceptual models on the basis of available information, (3 identify key areas of scientific uncertainty, and (4 identify methods to improve conceptual models and reduce uncertainty. There are few quantitative data to suggest that restoration of tidal wetlands will substantially increase populations of native fishes. On a qualitative basis, there is some support for the idea that tidal wetland restoration will increase populations of some native fishes; however, the species deriving the most benefit from restoration might not be of great management concern at present. Invasion of the San Francisco Estuary by alien plants and animals appears to be a major factor in obscuring the expected link between tidal wetlands and native fishes. Large-scale adaptive management experiments (>100 hectares appear to be the best available option for determining whether tidal wetlands will provide significant benefit to native fishes. Even if these experiments are unsuccessful at increasing native fish populations, the restored wetlands should benefit native birds, plants, and other organisms.

  18. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D. (Argonne National Lab., IL (United States)); Rastorfer, J.R. (Chicago State Univ., IL (United States). Dept. of Biological Sciences ANL/CSU Cooperative Herbarium, Chicago, IL (United States)); Van Dyke, G.D. (Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology)

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 {times}1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems {ge}2 cm dbh in 10 {times} 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs.

  19. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    International Nuclear Information System (INIS)

    Zellmer, S.D.; Rastorfer, J.R.; Van Dyke, G.D.

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 x1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems ≥2 cm dbh in 10 x 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs

  20. Nectar alkaloids decrease pollination and female reproduction in a native plant.

    Science.gov (United States)

    Adler, Lynn S; Irwin, Rebecca E

    2012-04-01

    The evolution of floral traits may be shaped by a community of floral visitors that affect plant fitness, including pollinators and floral antagonists. The role of nectar in attracting pollinators has been extensively studied, but its effects on floral antagonists are less understood. Furthermore, the composition of non-sugar nectar components, such as secondary compounds, may affect plant reproduction via changes in both pollinator and floral antagonist behavior. We manipulated the nectar alkaloid gelsemine in wild plants of the native perennial vine Gelsemium sempervirens. We crossed nectar gelsemine manipulations with a hand-pollination treatment, allowing us to determine the effect of both the trait and the interaction on plant female reproduction. We measured pollen deposition, pollen removal, and nectar robbing to assess whether gelsemine altered the behavior of mutualists and antagonists. High nectar gelsemine reduced conspecific pollen receipt by nearly half and also reduced the proportion of conspecific pollen grains received, but had no effect on nectar robbing. Although high nectar gelsemine reduced pollen removal, an estimate of male reproduction, by one-third, this effect was not statistically significant. Fruit set was limited by pollen receipt. However, this effect varied across sites such that the sites that were most pollen-limited were also the sites where nectar alkaloids had the least effect on pollen receipt, resulting in no significant effect of nectar alkaloids on fruit set. Finally, high nectar gelsemine significantly reduced seed weight; however, this effect was mediated by a mechanism other than pollen limitation. Taken together, our work suggests that nectar alkaloids are more costly than beneficial in our system, and that relatively small-scale spatial variation in trait effects and interactions could determine the selective impacts of traits such as nectar composition.

  1. Competition overwhelms the positive plant-soil feedback generated by an invasive plant.

    Science.gov (United States)

    Crawford, Kerri M; Knight, Tiffany M

    2017-01-01

    Invasive plant species can modify soils in a way that benefits their fitness more than the fitness of native species. However, it is unclear how competition among plant species alters the strength and direction of plant-soil feedbacks. We tested how community context altered plant-soil feedback between the non-native invasive forb Lespedeza cuneata and nine co-occurring native prairie species. In a series of greenhouse experiments, we grew plants individually and in communities with soils that differed in soil origin (invaded or uninvaded by L. cuneata) and in soils that were live vs. sterilized. In the absence of competition, L. cuneata produced over 60% more biomass in invaded than uninvaded soils, while native species performance was unaffected. The absence of a soil origin effect in sterile soil suggests that the positive plant-soil feedback was caused by differences in the soil biota. However, in the presence of competition, the positive effect of soil origin on L. cuneata growth disappeared. These results suggest that L. cuneata may benefit from positive plant-soil feedback when establishing populations in disturbed landscapes with few interspecific competitors, but does not support the hypothesis that plant-soil feedbacks influence competitive outcomes between L. cuneata and native plant species. These results highlight the importance of considering whether competition influences the outcome of interactions between plants and soils.

  2. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    Science.gov (United States)

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Uptake of 40K and 137Cs in native plants of the Marshall Islands.

    Science.gov (United States)

    Simon, S L; Graham, J C; Terp, S D

    2002-01-01

    Uptake of 137Cs and 40K was studied in seven native plant species of the Marshall Islands. Plant and soil samples were obtained across a broad range of soil 137Cs concentrations (0.08-3900 Bq/kg) and a narrower range of 40K soil concentrations (2.3-55 Bq/kg), but with no systematic variation of 40K relative to 137Cs. Potassium-40 concentrations in plants varied little within the range of 40K soil concentrations observed. Unlike the case for 40K, 137Cs concentrations increased in plants with increasing 137Cs soil concentrations though not precisely in a proportionate manner. The best-fit relationship between soil and plant concentrations was P = aSb where a and b are regression coefficients and P and S are plant and soil concentrations, respectively. The exponent b for 40K was zero, implying plant concentrations were a single value, while b for 137Cs varied between 0.51 and 0.82, depending on the species. For both 40K and 137Cs, we observed a decreasing concentration ratio (where concentration ratio=plant concentration/soil concentration) with increasing soil concentrations. For the CR values, the best-fit relationship was of the form CR = aSb/S = aSb(-1). For the 40K CR functions, the exponent b - 1 was close to - 1 for all species. For the 137Cs CR functions, the exponent b - 1 varied from -0.19 to -0.48. The findings presented here, aswell as those by other investigators, collectively argue against the usefulness of simplistic ratio models to accurately predict uptake of either 40K or 137Cs in plants over wide ranges of soil concentration.

  4. Non-native species in the vascular flora of highlands and mountains of Iceland

    Directory of Open Access Journals (Sweden)

    Pawel Wasowicz

    2016-01-01

    Full Text Available The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1 How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2 Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3 Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4 Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5 Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive. Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland’s highlands and mountain areas.

  5. Understory cover responses to pinon-juniper treatments across tree dominance gradients in the Great Basin

    Science.gov (United States)

    Piñon (Pinus spp.) and juniper (Juniperus spp.) trees are reduced to restore native vegetation and avoid high severity fires where they have invaded sagebrush (Artemisia tridentata Nutt.) communities. To recommend treatment implementation which avoids threshold-crossing to invasive plant dominance w...

  6. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    Science.gov (United States)

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  7. Mapuche medicinal plants: Proposition in their propagation

    Science.gov (United States)

    Paz Ovalle; Zoia Neira; Patricio Nunez

    2002-01-01

    The Mapuche (native indians from Chile) population is one of the largest populations of native indians left in America (approximately 1 million). As many of the other Native communities, they continuously struggle to maintain their rituals and customs. One of the most valuable customs for the Mapuche is the use of medicinal plants. All these plants are native plants...

  8. Extensive analysis of native and non-native Centaurea solstitialis L. populations across the world shows no traces of polyploidization

    Directory of Open Access Journals (Sweden)

    Ramona-Elena Irimia

    2017-08-01

    Full Text Available Centaurea solstitialis L. (yellow starthistle, Asteraceae is a Eurasian native plant introduced as an exotic into North and South America, and Australia, where it is regarded as a noxious invasive. Changes in ploidy level have been found to be responsible for numerous plant biological invasions, as they are involved in trait shifts critical to invasive success, like increased growth rate and biomass, longer life-span, or polycarpy. C. solstitialis had been reported to be diploid (2n = 2x = 16 chromosomes, however, actual data are scarce and sometimes contradictory. We determined for the first time the absolute nuclear DNA content by flow cytometry and estimated ploidy level in 52 natural populations of C. solstitialis across its native and non-native ranges, around the world. All the C. solstitialis populations screened were found to be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg, with no significant variation in DNA content between invasive and non-invasive genotypes. We did not find any meaningful difference among the extensive number of native and non-native C. solstitialis populations sampled around the globe, indicating that the species invasive success is not due to changes in genome size or ploidy level.

  9. Extensive analysis of native and non-native Centaurea solstitialis L. populations across the world shows no traces of polyploidization.

    Science.gov (United States)

    Irimia, Ramona-Elena; Montesinos, Daniel; Eren, Özkan; Lortie, Christopher J; French, Kristine; Cavieres, Lohengrin A; Sotes, Gastón J; Hierro, José L; Jorge, Andreia; Loureiro, João

    2017-01-01

    Centaurea solstitialis L. (yellow starthistle, Asteraceae) is a Eurasian native plant introduced as an exotic into North and South America, and Australia, where it is regarded as a noxious invasive. Changes in ploidy level have been found to be responsible for numerous plant biological invasions, as they are involved in trait shifts critical to invasive success, like increased growth rate and biomass, longer life-span, or polycarpy. C . solstitialis had been reported to be diploid (2 n  = 2 x  = 16 chromosomes), however, actual data are scarce and sometimes contradictory. We determined for the first time the absolute nuclear DNA content by flow cytometry and estimated ploidy level in 52 natural populations of C . solstitialis across its native and non-native ranges, around the world. All the C. solstitialis populations screened were found to be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg), with no significant variation in DNA content between invasive and non-invasive genotypes. We did not find any meaningful difference among the extensive number of native and non-native C . solstitialis populations sampled around the globe, indicating that the species invasive success is not due to changes in genome size or ploidy level.

  10. Photochemical efficiency of adult and young leaves of the neotropical understory shrub Psychotria limonensis (Rubiaceaein response to changes in the light environment

    Directory of Open Access Journals (Sweden)

    Gerardo Avalos

    2004-12-01

    Full Text Available We explored the short-term adjustment in photochemical efficiency (Fv /Fm in adult and young leaves of the understory neotropical shrub Psychotria limonensis Krause (Rubiaceaein response to rapid changes in the light environment.Leaves were collected from 20 individual plants growing under sun and shade conditions on Gigante Peninsula,Barro Colorado Natural Monument (Republic of Panama,during the wet season of 1996. Leaves were distributed in four sequences of light treatments (AB leaves were expanded under sun and were transferred to shade,BA leaves experienced the opposite transfer,and the controls AA and BB leaves that were expanded and maintained under sun or shade conditions.Adult and young leaves did not differ in overall photochemical efficiency.Instead,differences were found among light environments,for which leaves transferred from shade to sun showed the lowest F v /F m ratios.There was no relationship between photochemical efficiency and leaf temperature.In P.limonensis,understory plants are susceptible of photoinhibition independently of the leaf ontogenetic stage.The approach utilized in this experiment allowed the rapid exploration of this capacity, and could be applied to poorly studied understory species. Rev.Biol.Trop.52(4:839-844.Epub 2005 Jun 24.Se exploró el ajuste a corto plazo en la eficiencia fotosintética (Fv /Fm en hojas jovenes y adultas del arbusto del sotobosque neotropical Psychotria limonensis Krause (Rubiaceaeen respuesta a cambios rápidos de luz ambiental. Las hojas fueron recolectadas de 20 plantas individuales bajo condiciones de sol y sombra en Peninsula Gigante, Monumento Natural Barro Colorado (Panamá,durante la estación lluviosa de 1996.Las hojas fueron distribuidas en una secuencia cuatro tratamientos de luz (AB las hojas fueron expandidas bajo el sol y fueron transferidas a la sombra,BA las hojas experimentaron la transferencia contraria,y las hojas controles AA y BB que fueron expandidas y mantenidas

  11. COMPARISON OF ANNUAL PRODUCTION ECOLOGY OF NATIVE EELGRASS ZOSTERA MARINA AND THE NON-NATIVE DWARF EELGRASS Z. JAPONICA IN YAQUINA BAY, OREGON

    Science.gov (United States)

    When non-native plant species invade a system they often change patterns of primary production. I evaluate the contribution of the seagrass Zostera marina and it's non-native congener Z. japonica to primary production in Yaquina Bay. Few measurements of Z. japonica production e...

  12. Native plants for roadside revegetation : field evaluations and best practices identification.

    Science.gov (United States)

    2014-02-01

    Establishing native vegetation communities on roadsides can be a proactive approach to sustainable roadways. Revegetation : with native species is the preferred management practice on Idaho roadways. : The environmental and economic benefits of : inc...

  13. Gardening and landscaping practices for nesting native bees

    Science.gov (United States)

    Bees have two primary needs in life: pollen and nectar to feed themselves and their offspring, and a suitable place to nest. Guidance is increasingly available about garden flowers to plant for native bees. We know far less about accommodating the nesting needs of our native bees, but there are cer...

  14. Changes in defense of an alien plant Ambrosia artemisiifolia before and after the invasion of a native specialist enemy Ophraella communa.

    Directory of Open Access Journals (Sweden)

    Yuya Fukano

    Full Text Available The evolution of increased competitive ability hypothesis (EICA predicts that when alien plants are free from their natural enemies they evolve lower allocation to defense in order to achieve a higher growth rate. If this hypothesis is true, the converse implication would be that the defense against herbivory could be restored if a natural enemy also becomes present in the introduced range. We tested this scenario in the case of Ambrosia artemisiifolia (common ragweed - a species that invaded Japan from North America. We collected seeds from five North American populations, three populations in enemy free areas of Japan and four populations in Japan where the specialist herbivore Ophraella communa naturalized recently. Using plants grown in a common garden in Japan, we compared performance of O. communa with a bioassay experiment. Consistent with the EICA hypothesis, invasive Japanese populations of A. artemisiifolia exhibited a weakened defense against the specialist herbivores and higher growth rate than native populations. Conversely, in locations where the herbivore O. communa appeared during the past decade, populations of A. artemisiifolia exhibited stronger defensive capabilities. These results strengthen the case for EICA and suggest that defense levels of alien populations can be recuperated rapidly after the native specialist becomes present in the introduced range. Our study implies that the plant defense is evolutionary labile depending on plant-herbivore interactions.

  15. Plants used in Guatemala for the treatment of protozoal infections. I. Screening of activity to bacteria, fungi and American trypanosomes of 13 native plants.

    Science.gov (United States)

    Cáceres, A; López, B; González, S; Berger, I; Tada, I; Maki, J

    1998-10-01

    Extracts were prepared from 13 native plants used for the treatment of protozoal infections. Activity against bacteria and fungi was demonstrated by dilution procedures; Trypanosoma cruzi was evaluated in vitro against epimastigote and trypomastigotes and in vivo against trypomastigotes. In active extracts, toxicity was evaluated by Artemia salina nauplii, oral acute toxicity (1-5 g/kg) and oral and intraperitoneal subacute toxicity in mice (500 mg/kg). From the plants screened, six showed activity (Neurolaena lobata and Solanum americanum; in vitro or in vivo activity was shown by Acalypha guatemalensis, Petiveria alliacea and Tridax procumbens. Toxicity studies showed that extracts from S. americanum are toxic to A. salina (aqueous, 160 ppm). None showed acute or oral toxicity to mice; S. americanum showed intraperitoneal subacute toxicity.

  16. Effects of understory prescribed burning on shortleaf pine (Pinus echinata Mill.)/mixed-hardwood forests

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose

    2005-01-01

    We examined the effects of a single dormant season fire on overstory and understory species diversity and composition and tree seedling regeneration patterns the first and second years following a prescribed burn in the Conasauga River Watershed of southeastern Tennessee and northern Georgia. We asked: Can a single dormant season fire initiate a trajectory of overstory...

  17. Cross-scale modelling of alien and native vascular plant species richness in Great Britain: where is geodiversity information most relevant?

    Science.gov (United States)

    Bailey, Joseph; Field, Richard; Boyd, Doreen

    2016-04-01

    We assess the scale-dependency of the relationship between biodiversity and novel geodiversity information by studying spatial patterns of native and alien (archaeophytes and neophytes) vascular plant species richness at varying spatial scales across Great Britain. Instead of using a compound geodiversity metric, we study individual geodiversity components (GDCs) to advance our understanding of which aspects of 'geodiversity' are most important and at what scale. Terrestrial native (n = 1,490) and alien (n = 1,331) vascular plant species richness was modelled across the island of Great Britain at two grain sizes and several extent radii. Various GDCs (landforms, hydrology, geology) were compiled from existing national datasets and automatically extracted landform coverage information (e.g. hollows, valleys, peaks), the latter using a digital elevation model (DEM) and geomorphometric techniques. More traditional predictors of species richness (climate, widely-used topography metrics, land cover diversity, and human population) were also incorporated. Boosted Regression Tree (BRT) models were produced at all grain sizes and extents for each species group and the dominant predictors were assessed. Models with and without geodiversity data were compared. Overarching patterns indicated a clear dominance of geodiversity information at the smallest study extent (12.5km radius) and finest grain size (1x1km), which substantially decreased for each increase in extent as the contribution of climatic variables increased. The contribution of GDCs to biodiversity models was chiefly driven by landform information from geomorphometry, but hydrology (rivers and lakes), and to a lesser extent materials (soil, superficial deposits, and geology), were important, also. GDCs added significantly to vascular plant biodiversity models in Great Britain, independently of widely-used topographic metrics, particularly for native species. The wider consideration of geodiversity alongside

  18. Toxic metal tolerance in native plant species grown in a vanadium mining area.

    Science.gov (United States)

    Aihemaiti, Aikelaimu; Jiang, Jianguo; Li, De'an; Li, Tianran; Zhang, Wenjie; Ding, Xutong

    2017-12-01

    Vanadium (V) has been extensively mined in China and caused soil pollution in mining area. It has toxic effects on plants, animals and humans, posing potential health risks to communities that farm and graze cattle adjacent to the mining area. To evaluate in situ phytoremediation potentials of native plants, V, chromium, copper and zinc concentrations in roots and shoots were measured and the bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. The results showed that Setaria viridis accumulated greater than 1000 mg kg -1 V in its shoots and exhibited TF > 1 for V, Cr, Zn and BAF > 1 for Cu. The V accumulation amount in the roots of Kochia scoparia also surpassed 1000 mg kg -1 and showed TF > 1 for Zn. Chenopodium album had BAF > 1 for V and Zn and Daucus carota showed TF > 1 for Cu. Eleusine indica presented strong tolerance and high metal accumulations. S. viridis is practical for in situ phytoextractions of V, Cr and Zn and phytostabilisation of Cu in V mining area. Other species had low potential use as phytoremediation plant at multi-metal polluted sites, but showed relatively strong resistance to V, Cr, Cu and Zn toxicity, can be used to vegetate the contaminated soils and stabilise toxic metals in V mining area.

  19. 78 FR 49831 - Endangered and Threatened Wildlife and Plants; Proposed Designation of Critical Habitat for...

    Science.gov (United States)

    2013-08-15

    ... (Eugenia foetida), Thrinax (Amyris elemifera), marlberry (Ardisia escallonioides), wild coffee (Psychotria..., subcanopy, and understory; and (ii) Substrate with a thin layer of highly organic soil covering limestone or organic matter that accumulates on top of the underlying limestone rock; and (iii) A plant community of...

  20. Habitat template approach for green roofs using a native rocky sea coast plant community in Japan.

    Science.gov (United States)

    Nagase, Ayako; Tashiro-Ishii, Yurika

    2018-01-15

    The present study examined whether it is possible to simulate a local herbaceous coastal plant community on a roof, by studying the natural habitats of rocky sea coast plants and their propagation and performance on a green roof. After studying the natural habitat of coastal areas in Izu peninsula, a germination and cutting transplant study was carried out using herbaceous plants from the Jogasaki sea coast. Many plant species did not germinate at all and the use of cuttings was a better method than direct seeding. The green roof was installed in the spring of 2012 in Chiba city. Thirteen plant species from the Jogasaki sea coast, which were successfully propagated, were planted in three kinds of substrate (15 cm depth): pumice, roof tile and commercial green roof substrate. The water drainage was restricted and a reservoir with 5 cm depth of water underlaid the substrate to simulate a similar growing environment to the sea coast. Volcanic rocks were placed as mulch to create a landscape similar to that on the Jogasaki sea coast. Plant coverage on the green roof was measured every month from June 2012 to October 2014. All plants were harvested and their dry shoot weight was measured in December 2014. The type of substrate did not cause significant differences in plant survival and dry shoot weight. Sea coast plant species were divided into four categories: vigorous growth; seasonal change; disappearing after a few years; limited growth. Understanding the ecology of natural habitats was important to simulating a local landscape using native plant communities on the green roof. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    Science.gov (United States)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide

  2. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert.

    Science.gov (United States)

    Ignace, Danielle D; Huxman, Travis E; Weltzin, Jake F; Williams, David G

    2007-06-01

    Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C(4) bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO(2) response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.

  3. Feeding and development of the glassy-winged sharpshooter, Homalodisca vitripennis, on Australian native plant species and implications for Australian biosecurity.

    Directory of Open Access Journals (Sweden)

    Anna A Rathé

    Full Text Available In any insect invasion the presence or absence of suitable food and oviposition hosts in the invaded range is a key factor determining establishment success. The glassy-winged sharpshooter, Homalodisca vitripennis, is an important insect vector of the xylem-limited bacterial plant pathogen, Xylella fastidiosa, which causes disease in numerous host plants including food and feedstock crops, ornamentals and weeds. Both the pathogen and the vector are native to the Americas and are considered to be highly invasive. Neither has been detected in Australia. Twelve Australian native plant species present in the USA were observed over two years for suitability as H. vitripennis feeding, oviposition and nymph development hosts. Hosts providing evidence of adult or nymph presence were Leptospermum laevigatum, Acacia cowleana, Eremophila divaricata, Eucalyptus wandoo, Hakea laurina, Melaleuca laterita and Swainsona galegifolia. An oviposition-suitability field study was conducted with citrus, a favoured oviposition host, as a positive control. Citrus and L. laevigatum, A. cowleana, B. ericifolia×B. spinulosa, C. pulchella, E. divaricata, E. wandoo, H. laurina, and S. galegifolia were found to be oviposition hosts. Egg parasitism by the mymarid parasitoid Gonatocerus ashmeadi was observed on all Australian plants. A number of Australian plants that may facilitate H. vitripennis invasion have been identified and categorised as 'high risk' due to their ability to support all three life stages (egg, nymph and adult of the insect in the field (L. laevigatum, A. cowleana, E. divaricata, H. laurina, and S. galegifolia. The implications of these host status and natural enemy research findings are discussed and placed in an Australian invasion context.

  4. Non-native Species in Floodplain Secondary Forests in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Nor Rasidah Hashim

    2010-01-01

    Full Text Available There is an increasing concern of alien species invading our tropical ecosystems because anthropogenic land use can create conditions in which non-native species thrive. This study is an assessment of bioinvasion using a quantitative survey of non-native plant species in floodplain secondary forests in Peninsular Malaysia. The study area is known to have a long cultivation and settlement history that provides ample time for non-native species introduction. The survey results showed that introduced species constituted 23% of all the identified species, with seven species unique to riparian forest strips and eleven species unique to abandoned paddy fields and the remaining five species being shared between the two secondary forest types. There existed some habitat preferences amongst the species implying both secondary forests were potentially susceptible to bioinvasion. Fourteen species are also invasive elsewhere (PIER invasives whereas fifteen species have acquired local uses such for traditional medicine and food products. The presence of these non-native species could alter native plant succession trajectory, and eventually leads to native species impoverishment if the exotics managed to outcompete the native species. As such, the findings of this study have a far-reaching application for the national biodiversity conservation efforts because it provides the required information on bioinvasion.

  5. Plant Communities Suitable for Green Roofs in Arid Regions

    Directory of Open Access Journals (Sweden)

    Rachel Gioannini

    2018-05-01

    Full Text Available In extensive green roof settings, plant communities can be more robust than monocultures. In addition, native plants might be hardier and more ecologically sound choices than non-native plants in green roof systems. The objectives of this research were to (1 compare the performance of plant communities with that of monocultures and (2 compare the growth of natives to non-natives in a simulated green roof setting. We conducted a two-year experiment at an outdoor site in a desert environment using four plant morphological types (groundcover, forb, succulent and grass. Native plants selected were Chrysactinia mexicana, Melampodium leucanthum, Euphorbia antisyphilitica, and Nassella tenuissima, and non-natives were Delosperma nubigenum, Stachys byzantina, Sedum kamtschiaticum and Festuca glauca. Plants were assigned randomly to either monoculture or community and grown in 1 m × 1 m custom-built trays filled with 15 cm of a proprietary blend of 50/20/30 lightweight aggregate/sand/compost (by volume. Native forb, Melampodium, in community had greater coverage for four of the five measurements in the first year over native forb in monoculture and non-native forb regardless of setting. Native forb coverage was also greater than non-native forb for three of the four measurements in year 2, regardless of setting. Coverage of native grass was significantly greater than non-native grasses throughout the experiment. Coverage was also greater for eight of nine measurements for native succulent over non-natives succulent. However, non-native groundcover coverage was significantly greater than native groundcover for seven of nine measurements. On 1 November 2016, relative water content (RWC for succulents (p = 0.0424 was greatest for native Euphorbia in monoculture at 88%. Native Euphorbia also had greater RWC than non-native Sedum on 4 April 2017 (78% and 4 July 2017 (80%. However, non-native Sedum had greater root length (6548 cm, root dry weight (12.1 g

  6. A regional assessment of white-tailed deer effects on plant invasion

    Science.gov (United States)

    Mortensen, David A; Smithwick, Erica A H; Kalisz, Susan; McShea, William J; Bourg, Norman A; Parker, John D; Royo, Alejandro A; Abrams, Marc D; Apsley, David K; Blossey, Bernd; Boucher, Douglas H; Caraher, Kai L; DiTommaso, Antonio; Johnson, Sarah E; Masson, Robert; Nuzzo, Victoria A

    2018-01-01

    Abstract Herbivores can profoundly influence plant species assembly, including plant invasion, and resulting community composition. Population increases of native herbivores, e.g. white-tailed deer (Odocoileus virginianus), combined with burgeoning plant invasions raise concerns for native plant diversity and forest regeneration. While individual researchers typically test for the impact of deer on plant invasion at a few sites, the overarching influence of deer on plant invasion across regional scales is unclear. We tested the effects of deer on the abundance and diversity of introduced and native herbaceous and woody plants across 23 white-tailed deer research sites distributed across the east-central and north-eastern USA and representing a wide range of deer densities and invasive plant abundance and identity. Deer access/exclusion or deer population density did not affect introduced plant richness or community-level abundance. Native and total plant species richness, abundance (cover and stem density) and Shannon diversity were lower in deer-access vs. deer-exclusion plots. Among deer-access plots, native species richness, native and total cover, and Shannon diversity (cover) declined as deer density increased. Deer access increased the proportion of introduced species cover (but not of species richness or stem density). As deer density increased, the proportion of introduced species richness, cover and stem density all increased. Because absolute abundance of introduced plants was unaffected by deer, the increase in proportion of introduced plant abundance is likely an indirect effect of deer reducing native cover. Indicator species analysis revealed that deer access favoured three introduced plant species, including Alliaria petiolata and Microstegium vimineum, as well as four native plant species. In contrast, deer exclusion favoured three introduced plant species, including Lonicera japonica and Rosa multiflora, and 15 native plant species. Overall, native

  7. A regional assessment of white-tailed deer effects on plant invasion

    Energy Technology Data Exchange (ETDEWEB)

    Averill, Kristine M. [Ecology Intercollege Graduate Degree Program, The Pennsylvania State University, University Park, PA, USA; Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA; Mortensen, David A. [Ecology Intercollege Graduate Degree Program, The Pennsylvania State University, University Park, PA, USA; Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA; Smithwick, Erica A. H. [Ecology Intercollege Graduate Degree Program, The Pennsylvania State University, University Park, PA, USA; Department of Geography, The Pennsylvania State University, University Park, PA, USA; Kalisz, Susan [Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA; McShea, William J. [Smithsonian Conservation Biology Institute, Front Royal, VA, USA; Bourg, Norman A. [Smithsonian Conservation Biology Institute, Front Royal, VA, USA; Parker, John D. [Smithsonian Environmental Research Center, Edgewater, MD, USA; Royo, Alejandro A. [United States Department of Agriculture Forest Service, Northern Research Station, Irvine, PA, USA; Abrams, Marc D. [Ecology Intercollege Graduate Degree Program, The Pennsylvania State University, University Park, PA, USA; Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA; Apsley, David K. [Department of Extension, The Ohio State University, Jackson, OH, USA; Blossey, Bernd [Department of Natural Resources, Cornell University, Ithaca, NY, USA; Boucher, Douglas H. [Department of Biology, Hood College, Frederick, MD, USA; Caraher, Kai L. [Department of Biology, Hood College, Frederick, MD, USA; DiTommaso, Antonio [Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA; Johnson, Sarah E. [Ecology Intercollege Graduate Degree Program, The Pennsylvania State University, University Park, PA, USA; Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA; Masson, Robert [National Park Service, Morristown National Historical Park, Morristown, NJ, USA; Nuzzo, Victoria A. [Natural Area Consultants, Richford, NY, USA

    2017-12-07

    Herbivores can profoundly influence plant species assembly, including plant invasion, and resulting community composition. Population increases of native herbivores, e.g., white-tailed deer (Odocoileus virginianus), combined with burgeoning plant invasions raise concerns for native plant diversity and forest regeneration. While individual researchers typically test for the impact of deer on plant invasion at a few sites, the overarching influence of deer on plant invasion across regional scales is unclear. We tested the effects of deer on the abundance and diversity of introduced and native herbaceous and woody plants across 23 white-tailed deer research sites distributed across the east central and northeastern United States and representing a wide range of deer densities and invasive plant abundance and identity. Deer access/exclusion or deer population density did not affect introduced plant richness or community-level abundance. Native and total plant species richness, abundance (cover and stem density), and Shannon diversity were lower in deer-access vs. deer-exclusion plots. Among deer access plots, native species richness, native and total cover, and Shannon diversity (cover) declined as deer density increased. Deer access increased the proportion of introduced species cover (but not of species richness or stem density). As deer density increased, the proportion of introduced species richness, cover, and stem density all increased. Because absolute abundance of introduced plants was unaffected by deer, the increase in proportion of introduced plant abundance is likely an indirect effect of deer reducing native cover. Indicator species analysis revealed that deer access favored three introduced plant species, including Alliaria petiolata and Microstegium vimineum, as well as four native plant species. In contrast, deer exclusion favored three introduced plant species, including Lonicera japonica and Rosa multiflora, and fifteen native plant species. Overall

  8. Protected-area boundaries as filters of plant invasions.

    Science.gov (United States)

    Foxcroft, Llewellyn C; Jarošík, Vojtěch; Pyšek, Petr; Richardson, David M; Rouget, Mathieu

    2011-04-01

    Human land uses surrounding protected areas provide propagules for colonization of these areas by non-native species, and corridors between protected-area networks and drainage systems of rivers provide pathways for long-distance dispersal of non-native species. Nevertheless, the influence of protected-area boundaries on colonization of protected areas by invasive non-native species is unknown. We drew on a spatially explicit data set of more than 27,000 non-native plant presence records for South Africa's Kruger National Park to examine the role of boundaries in preventing colonization of protected areas by non-native species. The number of records of non-native invasive plants declined rapidly beyond 1500 m inside the park; thus, we believe that the park boundary limited the spread of non-native plants. The number of non-native invasive plants inside the park was a function of the amount of water runoff, density of major roads, and the presence of natural vegetation outside the park. Of the types of human-induced disturbance, only the density of major roads outside the protected area significantly increased the number of non-native plant records. Our findings suggest that the probability of incursion of invasive plants into protected areas can be quantified reliably. ©2010 Society for Conservation Biology.

  9. Biotic resistance: Exclusion of native rodent consumers releases populations of a weak invader

    Science.gov (United States)

    Dean E. Pearson; Teal Potter; John L. Maron

    2012-01-01

    Biotic resistance is a commonly invoked hypothesis to explain why most exotic plant species naturalize at low abundance. Although numerous studies have documented negative impacts of native consumers on exotic plant performance, longer-term multi-generation studies are needed to understand how native consumer damage to exotics translates to their population-level...

  10. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.

  11. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    International Nuclear Information System (INIS)

    Brown, Theresa J.; Wirth, Sharon

    1999-01-01

    . Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term ( 1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS

  12. Evaluating barriers to native seedling establishment in an invaded Hawaiian lowland wet forest

    Science.gov (United States)

    S. Cordell; R. Ostertag; B. Rowe; L. Sweinhart; L. Vasquez-Radonic; J. Michaud; T.C. Cole; J.R. Schulten

    2009-01-01

    Many tropical island forest ecosystems are dominated by non-native plant species and lack native species regeneration in the understorey. Comparison of replicated control and removal plots offers an opportunity to examine not only invasive species impacts but also the restoration potential of native species. In lowland Hawaiian wet forests little is known about native...

  13. Allelopathic exudates of cogongrass (Imperata cylindrica): implications for the performance of native pine savanna plant species in the southeastern US.

    Science.gov (United States)

    Hagan, Donald L; Jose, Shibu; Lin, Chung-Ho

    2013-02-01

    We conducted a greenhouse study to assess the effects of cogongrass (Imperata cylindrica) rhizochemicals on a suite of plants native to southeastern US pine savanna ecosystems. Our results indicated a possible allelopathic effect, although it varied by species. A ruderal grass (Andropogon arctatus) and ericaceous shrub (Lyonia ferruginea) were unaffected by irrigation with cogongrass soil "leachate" (relative to leachate from mixed native species), while a mid-successional grass (Aristida stricta Michx. var. beyrichiana) and tree (Pinus elliottii) were negatively affected. For A. stricta, we observed a 35.7 % reduction in aboveground biomass, a 21.9 % reduction in total root length, a 24.6 % reduction in specific root length and a 23.5 % reduction in total mycorrhizal root length, relative to the native leachate treatment. For P. elliottii, there was a 19.5 % reduction in percent mycorrhizal colonization and a 20.1 % reduction in total mycorrhizal root length. Comparisons with a DI water control in year two support the possibility that the treatment effects were due to the negative effects of cogongrass leachate, rather than a facilitative effect from the mixed natives. Chemical analyses identified 12 putative allelopathic compounds (mostly phenolics) in cogongrass leachate. The concentrations of most compounds were significantly lower, if they were present at all, in the native leachate. One compound was an alkaloid with a speculated structure of hexadecahydro-1-azachrysen-8-yl ester (C23H33NO4). This compound was not found in the native leachate. We hypothesize that the observed treatment effects may be attributable, at least partially, to these qualitative and quantitative differences in leachate chemistry.

  14. Short-Term Response of Native Flora to the Removal of Non-Native Shrubs in Mixed-Hardwood Forests of Indiana, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Shields

    2015-05-01

    Full Text Available While negative impacts of invasive species on native communities are well documented, less is known about how these communities respond to the removal of established populations of invasive species. With regard to invasive shrubs, studies examining native community response to removal at scales greater than experimental plots are lacking. We examined short-term effects of removing Lonicera maackii (Amur honeysuckle and other non-native shrubs on native plant taxa in six mixed-hardwood forests. Each study site contained two 0.64 ha sample areas—an area where all non-native shrubs were removed and a reference area where no treatment was implemented. We sampled vegetation in the spring and summer before and after non-native shrubs were removed. Cover and diversity of native species, and densities of native woody seedlings, increased after shrub removal. However, we also observed significant increases in L. maackii seedling densities and Alliaria petiolata (garlic mustard cover in removal areas. Changes in reference areas were less pronounced and mostly non-significant. Our results suggest that removing non-native shrubs allows short-term recovery of native communities across a range of invasion intensities. However, successful restoration will likely depend on renewed competition with invasive species that re-colonize treatment areas, the influence of herbivores, and subsequent control efforts.

  15. CO2 EFFECTS ON MOJAVE DESERT PLANT INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    L. A. DEFALCO; G. C. FERNANDEZ; S. D. SMITH; R. S. NOWAK

    2004-01-01

    Seasonal and interannual droughts characteristic of deserts have the potential to modify plant interactions as atmospheric CO{sub 2} concentrations continue to rise. At the Nevada Desert FACE (free-air CO{sub 2} enrichment) facility in the northern Mojave Desert, the effects of elevated atmospheric C02 (550 vs. ambient {approx}360 {micro}mol mol{sup -1}) on plant interactions were examined during two years of high and low rainfall. Results suggest that CO{sub 2} effects on the interaction between native species and their understory herbs are dependent on the strength of competition when rainfall is plentiful, but are unimportant during annual drought. Seasonal rainfall for 1999 was 23% the long-term average for the area, and neither elevated CO{sub 2} nor the low production of herbaceous neighbors had an effect on relative growth rate (RGR, d{sup -1}) and reproductive effort (RE, number of flowers g{sup -1}) for Achnatherum hymenoides (early season perennial C{sub 3} grass), Pleuraphis rigida (late season perennial C{sub 4} grass), and Larrea tridentata (evergreen C{sub 3} shrub). In contrast, 1998 received 213% the average rainfall. Consequently, the decrease in RGR and increase in RE for Achnatherum, whose period of growth overlaps directly with that of its neighbors, was exaggerated at elevated CO{sub 2}. However, competitive effects of neighbors on Eriogonum trichopes (a winter annual growing in shrub interspaces), Pleuraphis and Larrea were not affected by elevated CO{sub 2}, and possible explanations are discussed. Contrary to expectations, the invasive annual neighbor Bromus madritensis ssp. rubens had little influence on target plant responses because densities in 1998 and 1999 at this site were well below those found in other studies where it has negatively affected perennial plant growth. The extent that elevated CO{sub 2} reduces the performance of Achnatherum in successive years to cause its loss from the plant community depends more on future pressure

  16. Effect of removal of hesperis matronalis (Dame's rocket) on species cover of forest understory vegetation in NW indiana

    Science.gov (United States)

    Pavlovic, N.B.; Leicht-Young, S. A.; Frohnapple, K.J.; Grundel, R.

    2009-01-01

    Exotic invasive plant species differ in their effects on indigenous vegetation as evidenced by research evaluating community response to their removal. We used a removal approach to quantify the response of a mesic woodland to the removal versus retention of an invasive plant, Hesperis matronalis (dame's rocket) from paired treatment plots over 3 y. Cover of H. matronalis did not differ between control and treatment plots prior to removal, declined in the removal plots and remained significantly lower in cover compared to the control plots. Removal did not significantly affect species richness and species diversity (evenness, Shannon and Simpson) at the plot scale, but did result in increased species richness overall in the removal plots in the last sampling year when compared to control plots. Non-metric multidimensional scaling ordination analysis indicated a significant compositional change in the spring plant composition of plots over the 3 y, reflecting an increase in exotic woody species. Exotic woody plants, especially Rosa multiflora and Euonymus alatus, increased in cover in response to H. matronalis removal. In the 3 y, neither native nor exotic forbs, nor native woody plants responded to the removal of H. matronalis in a statistically significant manner. The increasing cover of woody invasive plants in response to the removal of H. matronalis has important management implications for restoration of degraded communities.

  17. Using forest inventory plot data and satellite imagery from MODIS and Landsat-TM to model spatial distribution patterns of honeysuckle and privet

    Science.gov (United States)

    Dumitru Salajanu; Dennis M. Jacobs

    2009-01-01

    Forest inventory and analysis data monitor the presence and extent of certain non-native invasive species. Onforestland, non-native species are considered part of the understory vegetation and can be found near canopyopenings as well as and...

  18. Exotic invasive plants

    Science.gov (United States)

    Carolyn Hull Sieg; Barbara G. Phillips; Laura P. Moser

    2003-01-01

    Ecosystems worldwide are threatened by nonnative plant invasions that can cause undesirable, irreversible changes. They can displace native plants and animals, out-cross with native flora, alter nutrient cycling and other ecosystem functions, and even change an ecosystem's flammability (Walker and Smith 1997). After habitat loss, the spread of exotic species is...

  19. Integrated coastal monitoring of a gas processing plant using native and caged mussels

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Steven, E-mail: sbr@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, NO-0349 Oslo (Norway); Harman, Christopher [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, NO-0349 Oslo (Norway); Soto, Manu; Cancio, Ibon [CBET Res Grp, R and D Centre for Experimental Marine Biology and Biotechnology (PIE), Univ Basque Country, Areatza Z/G, Plentzia-Bizkaia, E-48620 Basque Country (Spain); Glette, Tormod [Det Norske Veritas (DNV), Veritasveien 1, 1363 Hovik (Norway); Marigomez, Ionan [CBET Res Grp, R and D Centre for Experimental Marine Biology and Biotechnology (PIE), Univ Basque Country, Areatza Z/G, Plentzia-Bizkaia, E-48620 Basque Country (Spain)

    2012-06-01

    The biological effects of a coastal process water (PW) discharge on native and caged mussels (Mytilus edulis) were assessed. Chemical analyses of mussel tissues and semi permeable membrane devices, along with a suite of biomarkers of different levels of biological complexity were measured. These were lysosomal membrane stability in haemocytes and digestive cells; micronuclei formation in haemocytes; changes in cell-type composition in the digestive gland epithelium; integrity of digestive gland tissue; peroxisome proliferation; and oxidative stress. Additionally the Integrative Biological Response (IBR/n) index was calculated. This integrative biomarker approach distinguished mussels, both native and caged, exhibiting different stress conditions not identified from the contaminant exposure. Mussels exhibiting higher stress responses were found with increased proximity to the PW discharge outlet. However, the biological effects reported could not be entirely attributed to the PW discharge based on the chemicals measured, but were likely due to either other chemicals in the discharge that were not measured, the general impact of the processing plant and or other activities in the local vicinity. - Highlights: Black-Right-Pointing-Pointer Good agreement between biomarkers for the different mussel groups. Black-Right-Pointing-Pointer IBR/n was able to differentiate between exposed and reference mussels. Black-Right-Pointing-Pointer Mussels closest to the PW outlet were in poorest health. Black-Right-Pointing-Pointer Chemical concentrations were low or undetected in all SPMD and mussel samples. Black-Right-Pointing-Pointer Biomarker responses could not be entirely attributed to the PW discharge.

  20. Accelerated development in Johnsongrass seedlings (Sorghum halepense suppresses the growth of native grasses through size-asymmetric competition.

    Directory of Open Access Journals (Sweden)

    Susanne Schwinning

    Full Text Available Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense, big bluestem (Andropogon gerardii, little bluestem (Schizachyrium scoparius and switchgrass (Panicum virgatum. We predicted that a the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b competitive effect and response would be negatively correlated and c soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass < big bluestem < little bluestem/switchgrass, while Johnsongrass responded more strongly to competition from Johnsongrass than from native species. At final harvest, native plants growing with Johnsongrass attained between 2-5% of their single-plant non-root biomass, while Johnsongrass growing with native species attained 89% of single-plant non-root biomass. Fertilization enhanced Johnsongrass' competitive effects on native species, but added little to the already severe competitive suppression. Accelerated early growth of Johnsongrass seedlings relative to native seedlings appeared to enable subsequent resource pre-emption. Size-asymmetric competition and resource

  1. Species richness and soil properties in Pinus ponderosa forests: A structural equation modeling analysis

    Science.gov (United States)

    Laughlin, D.C.; Abella, S.R.; Covington, W.W.; Grace, J.B.

    2007-01-01

    Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North-central Arizona, USA. Methods: We sampled 75 0.05-ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non-linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests. ?? IAVS; Opulus Press.

  2. Grassland and forest understory biomass emissions from prescribed fires in the southeastern United States – RxCADRE 2012

    Science.gov (United States)

    Smoke measurements were made during grass and forest understory prescribed fires as part of a comprehensive program to understand fire and smoke behaviour. Instruments deployed on the ground, airplane and tethered aerostat platforms characterized the smoke plumes through measure...

  3. Native Seed Supply and the Restoration Species Pool.

    Science.gov (United States)

    Ladouceur, Emma; Jiménez-Alfaro, Borja; Marin, Maria; De Vitis, Marcello; Abbandonato, Holly; Iannetta, Pietro P M; Bonomi, Costantino; Pritchard, Hugh W

    2018-01-01

    Globally, annual expenditure on ecological restoration of degraded areas for habitat improvement and biodiversity conservation is approximately $18bn. Seed farming of native plant species is crucial to meet restoration goals, but may be stymied by the disconnection of academic research in seed science and the lack of effective policies that regulate native seed production/supply. To illustrate this problem, we identified 1,122 plant species important for European grasslands of conservation concern and found that only 32% have both fundamental seed germination data available and can be purchased as seed. The " restoration species pool," or set of species available in practice, acts as a significant biodiversity selection filter for species use in restoration projects. For improvement, we propose: (1) substantial expansion of research and development on native seed quality, viability, and production; (2) open-source knowledge transfer between sectors; and (3) creation of supportive policy intended to stimulate demand for biodiverse seed.

  4. Ecological disequilibrium drives insect pest and pathogen accumulation in non-native trees.

    Science.gov (United States)

    Crous, Casparus J; Burgess, Treena I; Le Roux, Johannes J; Richardson, David M; Slippers, Bernard; Wingfield, Michael J

    2016-12-23

    Non-native trees have become dominant components of many landscapes, including urban ecosystems, commercial forestry plantations, fruit orchards, and as invasives in natural ecosystems. Often, these trees have been separated from their natural enemies (i.e. insects and pathogens) leading to ecological disequilibrium, that is, the immediate breakdown of historically co-evolved interactions once introduced into novel environments. Long-established, non-native tree plantations provide useful experiments to explore the dimensions of such ecological disequilibria. We quantify the status quo of non-native insect pests and pathogens catching up with their tree hosts (planted Acacia, Eucalyptus and Pinus species) in South Africa, and examine which native South African enemy species utilise these trees as hosts. Interestingly, pines, with no confamilial relatives in South Africa and the longest residence time (almost two centuries), have acquired only one highly polyphagous native pathogen. This is in contrast to acacias and eucalypts, both with many native and confamilial relatives in South Africa that have acquired more native pathogens. These patterns support the known role of phylogenetic relatedness of non-native and native floras in influencing the likelihood of pathogen shifts between them. This relationship, however, does not seem to hold for native insects. Native insects appear far more likely to expand their feeding habits onto non-native tree hosts than are native pathogens, although they are generally less damaging. The ecological disequilibrium conditions of non-native trees are deeply rooted in the eco-evolutionary experience of the host plant, co-evolved natural enemies, and native organisms from the introduced range. We should expect considerable spatial and temporal variation in ecological disequilibrium conditions among non-native taxa, which can be significantly influenced by biosecurity and management practices. Published by Oxford University Press on

  5. Ethnobotanic study of medicinal plants in Urmia city: identification and traditional using of antiparasites plants

    Directory of Open Access Journals (Sweden)

    Mahmoud Bahmani

    2014-09-01

    Full Text Available Objective: To identify the native medicinal plants used in parasitic diseases treatment in Urmia. Methods: This study was conducted among 35 Urmia herbalists to identify medicinal plants used in parasitic diseases treatment. We used direct observation and interviews with collected herbarium specimens by native herbs commonly in the treatment of parasitic diseases. Questionnaires were included apothecary personal information and native plants list with information includes plant local name, plant parts used, method of their use and traditional therapies. Herbarium samples listed in the questionnaire collected from the area and were sent to agricultural research centers and Urmia University Faculty of Agriculture for genus and species determination. Results: Thirteen medicinal plants from six families for treatment of diabetes in Urmia were obtained from interviews. Most families have anti diabetic effect was included Asteraceae (36%. The most used was boiling (65%. Conclusions: In view of the findings of this study indicate that plants have the potential to be a parasitic infection so it is necessary ingredients of native plants be studied to demonstrate therapeutic effects and provide field work to evaluate the clinical effects of these herbs and ingredients they claim on parasitic diseases.

  6. Germination phenology of some Great Basin native annual forb species

    Science.gov (United States)

    Tara A. Forbis

    2010-01-01

    Great Basin native plant communities are being replaced by the annual invasive cheatgrass Bromus tectorum. Cheatgrass exhibits a germination syndrome that is characteristic of facultative winter annuals. Although perennials dominate these communities, native annuals are present at many sites. Germination timing is often an important predictor of competitive...

  7. Uptake of {sup 40}K and {sup 137}Cs in native plants of the Marshall Islands

    Energy Technology Data Exchange (ETDEWEB)

    Simon, S.L.; Graham, J.C.; Terp, S.D

    2002-07-01

    Uptake of {sup 137}Cs and {sup 40}K was studied in seven native plant species of the Marshall Islands. Plant and soil samples were obtained across a broad range of soil {sup 137}Cs concentrations (0.08-3900 Bq/kg) and a narrower range of {sup 40}K soil concentrations (2.3-55 Bq/kg), but with no systematic variation of {sup 40}K relative to {sup 137}Cs. Potassium-40 concentrations in plants varied little within the range of {sup 40}K soil concentrations observed. Unlike the case for {sup 40}K, {sup 137}Cs concentrations increased in plants with increasing {sup 137}Cs soil concentrations though not precisely in a proportionate manner. The best-fit relationship between soil and plant concentrations was P=aS{sup b} where a and b are regression coefficients and P and S are plant and soil concentrations, respectively. The exponent b for {sup 40}K was zero, implying plant concentrations were a single value, while b for {sup 137}Cs varied between 0.51 and 0.82, depending on the species. For both {sup 40}K and {sup 137}Cs, we observed a decreasing concentration ratio (where concentration ratio=plant concentration/soil concentration) with increasing soil concentrations. For the CR values, the best-fit relationship was of the form CR=aS{sup b}/S=aS{sup b-1}. For the {sup 40}K CR functions, the exponent b-1 was close to -1 for all species. For the {sup 137}Cs CR functions, the exponent b-1 varied from -0.19 to -0.48. The findings presented here, as well as those by other investigators, collectively argue against the usefulness of simplistic ratio models to accurately predict uptake of either {sup 40}K or {sup 137}Cs in plants over wide ranges of soil concentration.

  8. No difference in the competitive ability of introduced and native Trifolium provenances when grown with soil biota from their introduced and native ranges

    NARCIS (Netherlands)

    Shelby, Natasha; Hulme, P.E.; Putten, van der W.H.; McGinn, Kevin J.; Weser, Carolin; Duncan, R.P.

    2016-01-01

    The evolution of increased competitive ability (EICA) hypothesis could explain why some introduced plant species perform better outside their native ranges. EICA proposes that introduced plants escape specialist pathogens or herbivores leading to selection for resources to be reallocated away from

  9. The Target Plant Concept [Chapter 2

    Science.gov (United States)

    Thomas D. Landis

    2009-01-01

    The first native plant nurseries in North America were gardens of plants transplanted from the wild by indigenous people. Specific plants were irrigated and otherwise cultured in these gardens to produce seeds, leaves, roots, or other desirable products. As native people collected seeds from the largest or most productive plants, they were making the first genetic...

  10. Incorporation of an invasive plant into a native insect herbivore food web

    NARCIS (Netherlands)

    Schilthuizen, Menno; Santos Pimenta, Lúcia P; Lammers, Youri; Steenbergen, Peter J; Flohil, Marco; Beveridge, Nils G P; van Duijn, Pieter T; Meulblok, Marjolein M; Sosef, Nils; van de Ven, Robin; Werring, Ralf; Beentjes, Kevin K; Meijer, Kim; Vos, Rutger A; Vrieling, Klaas; Gravendeel, Barbara; Choi, Young; Verpoorte, Robert; Smit, Chris; Beukeboom, Leo W

    2016-01-01

    The integration of invasive species into native food webs represent multifarious dynamics of ecological and evolutionary processes. We document incorporation of Prunus serotina (black cherry) into native insect food webs. We find that P. serotina harbours a herbivore community less dense but more

  11. Biofilm inhibition activity of traditional medicinal plants from Northwestern Argentina against native pathogen and environmental microorganisms

    Directory of Open Access Journals (Sweden)

    Cintia Mariana Romero

    Full Text Available Abstract: INTRODUCTION: Plants have been commonly used in popular medicine of most cultures for the treatment of disease. The in vitro antimicrobial activity of certain Argentine plants used in traditional medicine has been reported. The aim of this study was to investigate the antimicrobial, anti-biofilm, and anti-cell adherence activities of native plants (Larrea divaricata, Tagetes minuta, Tessaria absinthioides, Lycium chilense, and Schinus fasciculatus collected in northwestern Argentina. METHODS: The activities of the five plant species were evaluated in Bacillus strains and clinical strains of coagulase-negative Staphylococcus isolated from northwestern Argentina and identified by 16S rDNA. RESULT: Lycium chilense and Schinus fasciculatus were the most effective antimicrobial plant extracts (15.62µg/ml and 62.50µg/ml for Staphylococcus sp. Mcr1 and Bacillus sp. Mcn4, respectively. The highest (66% anti-biofilm activity against Bacillus sp. Mcn4 was observed with T. absinthioides and L. divaricate extracts. The highest (68% anti-biofilm activity against Staphylococcus sp. Mcr1 was observed with L. chilense extract. T. minuta, T. absinthioides, and L. divaricata showed percentages of anti-biofilm activity of between 55% and 62%. The anti-adherence effects of T. minuta and L. chilense observed in Bacillus sp. Mcn4 reflected a difference of only 22% and 10%, respectively, between anti-adherence and biofilm inhibition. Thus, the inhibition of biofilm could be related to cell adherence. In Staphylococcus sp. Mcr1, all plant extracts produced low anti-adherence percentages. CONCLUSION: These five species may represent a source of alternative drugs derived from plant extracts, based on ethnobotanical knowledge from northwest Argentina.

  12. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    Science.gov (United States)

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Northward invading non-native vascular plant species in and adjacent to Wood Buffalo National Park

    Energy Technology Data Exchange (ETDEWEB)

    Wein, R.W.; Wein, G.; Bahret, S.; Cody, W.J. (Alberta University, Edmonton, AB (Canada). Canadian Circumpolar Institute)

    A survey of the non-native vascular plant species in Wood Buffalo National Park, Canada's largest forested National Park, documented their presence and abundance in key locations. Most of the fifty-four species (nine new records) were found in disturbed sites including roadsides, settlements, farms, areas of altered hydrological regimes, recent bums, and intensive bison grazing. Species that have increased most in geographic area and abundance in recent years include [ital Agropyron repens], [ital Bromus inermis], [ital Chenopodium album], [ital Melilotus spp.], [ital Trifolium spp.], [ital Plantago major], [ital Achillea millefolium], [ital Crepis tectorum] and [ital Sonchus arvensis]. An additional 20 species, now common in the Peace River and Fort Vermilion areas, have the potential to invade the Park if plant communities are subjected to additional stress as northern climates are modified by the greenhouse effect and as other human-caused activities disturb the vegetation. It is recommended that permanent plots be located in key locations and monitored for species invasion and changing abundances as input to management plans.

  14. TRANSGENIC PLANTS EXPRESSING BACILLUS THURINGIENSIS DELTA-ENDOTOXINS

    Institute of Scientific and Technical Information of China (English)

    Hua-rong,Li; BrendaOppert; KunYanZhu; RandallA.Higgins; Fang-nengHuang; LawrentL.Buschman

    2003-01-01

    Commercial varieties of transgenic Bacillus thuringiensis (Bt) plants have been developed in many countries to control target pests. Initially, the expression of native Bt genes in plants was low due to mRNA instability, improper splicing, and post-translation modifications. Subsequently, modifications of the native Bt genes greatly enhanced expression levels. This is a review of the developments that made modem high-expression transgenic Bt plants possible, with an emphasis on the reasons for the low-level expression of native Bt genes in plant systems, and the techniques that have been used to improve plant expression of Bt toxin genes.

  15. Screening native botanicals for bioactivity: an interdisciplinary approach

    Science.gov (United States)

    Boudreau, Anik; Cheng, Diana M.; Ruiz, Carmen; Ribnicky, David; Allain, Larry K.; Brassieur, C. Ray; Turnipseed, D. Phil; Cefalu, William T.; Floyd, Z. Elizabeth

    2014-01-01

    Objective: Plant-based therapies have been used in medicine throughout recorded history. Information about the therapeutic properties of plants often can be found in local cultures as folk medicine is communicated from one generation to the next. The aim of this study was to identify native Louisiana plants from Creole folk medicine as a potential source of therapeutic compounds for the treatment of insulin resistance, type 2 diabetes, and related disorders.

  16. Restoring a disappearing ecosystem: the Longleaf Pine Savanna.

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Timothy B. [USFS; Miller, Karl V. [University of Georgia; Park, Noreen

    2013-05-01

    Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the worlds most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as logging, farming, and fire exclusion have reduced this once-widespread ecosystem to only 3 percent of its original range. At six longleaf pine plantations in South Carolina, Tim Harrington with the Pacific Northwest Research Station and collaborators with the Southern Research Station used various treatments (including prescribed burns, tree thinning, and herbicide applications) to alter the forest structure and tracked how successful each one was in advancing savanna restoration over a 14-year period. They found that typical planting densities for wood production in plantations create dense understory shade that excludes many native herbaceous species important to savannas and associated wildlife. The scientists found that although tree thinning alone did not result in sustained gains, a combination of controlled burning, thinning, and herbicide treatments to reduce woody plants was an effective strategy for recovering the savanna ecosystem. The scientists also found that these efforts must be repeated periodically for enduring benefits.

  17. Spectral contribution of understory to forest reflectance in a boreal site: an analysis of EO-1 Hyperion data

    Czech Academy of Sciences Publication Activity Database

    Rautianien, M.; Lukeš, Petr

    2015-01-01

    Roč. 171, dec (2015), s. 98-104 ISSN 0034-4257 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : forest reflectance model * hyperspectral * boreal * leaf area index * understory Subject RIV: EH - Ecology, Behaviour Impact factor: 5.881, year: 2015

  18. Cesium accumulation in native trees from the Brazilian Cerrado

    International Nuclear Information System (INIS)

    Franca, E.J.D.; Miranda, M.V.F.E.S.; Santos, T.O.; Cantinha, R.S.; Fernandes, E.A.D.N.

    2016-01-01

    Even considered not essential for plants, cesium may cycle within forest ecosystems. Taking into account the lack of knowledge on the distribution of this chemical element in Brazilian ecosystems, this work encompasses the unexpected cesium accumulation in native plant leaves from Cerradao, a Brazilian hotspot of world biodiversity. Some trees were Cs accumulators, achieving mass fractions in leaves 700 times higher (up to 12.7 mg kg -1 ) when compared to other Brazilian native tree leaves from the Atlantic Forest. In fact, such trace element accumulation in leaves was not previously noticed for Brazilian ecosystems despite the intra- and inter-species variability observed in Cerrado tree leaves. (author)

  19. Herbivory enhances the resistance of mangrove forest to cordgrass invasion.

    Science.gov (United States)

    Zhang, Yihui; Meng, Hanyu; Wang, Yi; He, Qiang

    2018-06-01

    The biotic resistance hypothesis proposes that biotic interactions, such as competition and herbivory, resist the establishment and spread of non-native species. The relative and interactive role of competition and herbivory in resisting plant invasions, however, remains poorly understood. We investigated the interactive role of competition and herbivory (by the native rodent Rattus losea) in resisting Spartina alterniflora (cordgrass) invasions into mangrove forests. In southern China, although exotic cordgrass numerically dominates intertidal mudflats and open gaps in mangrove forests, intact forests appear to be highly resistant to cordgrass invasion. A field transplant and rodent exclusion experiment showed that while the impact of rodent grazing on cordgrass was weak on mangrove forest edges and open mudflats, rodent grazing strongly suppressed cordgrass in mangrove understory habitats. A greenhouse experiment confirmed a synergistic interaction between grazing and light availability (a proxy for mangrove shading and light competition) in suppressing cordgrass establishment, with the strongest impacts of grazing in low light conditions that likely weakened cordgrass to survive and resprout. When both were present, as in mangrove understory habitats, grazing and low light acted in concert to eliminate cordgrass establishment, resulting in resistance of mangrove forests to cordgrass invasion. Our results reveal that grazing by native herbivores can enhance the resistance of mangrove forests to cordgrass invasion in southern China, and suggest that investigating multifactor interactions may be critical to understanding community resistance to exotic invasions. © 2018 by the Ecological Society of America.

  20. Non-Native & Native English Teachers

    Directory of Open Access Journals (Sweden)

    İrfan Tosuncuoglu

    2017-12-01

    Full Text Available In many countries the primary (mother tongue language is not English but there is a great demand for English language teachers all over the world. The demand in this field is try to be filled largely by non-native English speaking teachers who have learned English in the country or abroad, or from another non native English peaking teachers. In some countries, particularly those where English speaking is a a sign of status, the students prefer to learn English from a native English speaker. The perception is that a non-native English speaking teacher is a less authentic teacher than a native English speaker and their instruction is not satifactory in some ways. This paper will try to examine the literature to explore whether there is a difference in instructional effectiveness between NNESTs and native English teachers.

  1. Internal and External Dispersal of Plants by Animals: An Aquatic Perspective on Alien Interference

    Directory of Open Access Journals (Sweden)

    Casper H. A. van Leeuwen

    2018-02-01

    Full Text Available Many alien plants use animal vectors for dispersal of their diaspores (zoochory. If alien plants interact with native disperser animals, this can interfere with animal-mediated dispersal of native diaspores. Interference by alien species is known for frugivorous animals dispersing fruits of terrestrial plants by ingestion, transport and egestion (endozoochory. However, less attention has been paid to possible interference of alien plants with dispersal of diaspores via external attachment (ectozoochory, epizoochory or exozoochory, interference in aquatic ecosystems, or positive effects of alien plants on dispersal of native plants. This literature study addresses the following hypotheses: (1 alien plants may interfere with both internal and external animal-mediated dispersal of native diaspores; (2 interference also occurs in aquatic ecosystems; (3 interference of alien plants can have both negative and positive effects on native plants. The studied literature revealed that alien species can comprise large proportions of both internally and externally transported diaspores. Because animals have limited space for ingested and adhering diaspores, alien species affect both internal and external transport of native diaspores. Alien plant species also form large proportions of all dispersed diaspores in aquatic systems and interfere with dispersal of native aquatic plants. Alien interference can be either negative (e.g., through competition with native plants or positive (e.g., increased abundance of native dispersers, changed disperser behavior or attracting additional disperser species. I propose many future research directions, because understanding whether alien plant species disrupt or facilitate animal-mediated dispersal of native plants is crucial for targeted conservation of invaded (aquatic plant communities.

  2. Baseline survey for rare plant species and native plant communities within the Kamehameha Schools 'Lupea Safe Harbor Planning Project Area, North Kona District, Island of Hawai'i

    Science.gov (United States)

    Jacobi, James; Warshauer, F. R.; Price, Jonathan

    2010-01-01

    Kamehameha Schools, in conjunction with several federal, state, and private organizations, has proposed to conduct conservation management on approximately 5,340 ha (~13,200 acres) of land they own in the vicinity of Kīpukalupea in the North Kona District on the island of Hawai'i. The goal of this program is to restore and enhance the habitat to benefit native plant and animal populations that are currently, or were formerly, found in this site. The initial phase of this project has been focused on various activities including conducting baseline surveys for bird and plant species so Kamehameha Schools could develop a Safe Harbor Agreement (SHA) for the proposed project lands relative to the habitat management and species reintroduction efforts they would like to conduct in the Lupea Project area. This report summarizes methods that were used to collect field data on plant species and communities within the project area, and the results of that initial survey. The information was used to calculate baseline values for all listed threatened or endangered plant species found, or expected to be found, within the project area, and to design a monitoring program to assess changes in plant communities and rare plant species relative to management activities over the duration of the SHA.

  3. Anesthetic activity of Brazilian native plants in silver catfish (Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    Lenise de Lima Silva

    Full Text Available There is an increasing demand for inexpensive and safe anesthetics that can reduce fish stress caused by some procedures such as capture and handling. In this context, the present study evaluated the potential of essential oils (EO of three Brazilian native plants (Hesperozygis ringens, Lippia sidoides and Ocotea acutifolia as anesthetics for the silver catfish - Rhamdia quelen. Moreover, an analysis was made of the chemical composition of these oils and their influence on stress parameter. EO of H. ringens and O. acutifolia were effective as anesthetics, without behavioral side effects. EO of O. acutifolia (150 µL L-1 promoted an increase in blood glucose level. Regarding to the composition, pulegone accounts for 96.63% of the EO of H. ringens, and caryophyllene oxide amounts to 56.90% of the EO of O. acutifolia. Two chemotypes, thymol and carvacrol (68.40% and 67.89%, respectively were verified for EO of L. sidoides. Both samples of EO of L. sidoides showed anesthetic activity in silver catfish, but exposure also caused loss of mucus and mortality. Thus, only the EO of H. ringens and O. acutifolia are advised for anesthetic use

  4. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Science.gov (United States)

    Frouz, Jan; Hedenec, Petr

    2016-04-01

    Biofuel crops are an accepted alternative to fossil fuels, but little is known about the ecological impact of their production. The aim of this contribution is to study the effect of native (Salix viminalis and Phalaris arundinacea) and introduced (Helianthus tuberosus, Reynoutria sachalinensis and Silphium perfoliatum) biofuel crop plantations on the soil biota in comparison with cultural meadow vegetation used as control. The study was performed as part of a split plot field experiment of the Crop Research Institute in the city of Chomutov (Czech Republic). The composition of the soil meso- and macrofauna community, composition of the cultivable fraction of the soil fungal community, cellulose decomposition (using litter bags), microbial biomass, basal soil respiration and PLFA composition (incl. F/B ratio) were studied in each site. The C:N ratio and content of polyphenols differed among plant species, but these results could not be considered significant between introduced and native plant species. Abundance of the soil meso- and macrofauna was higher in field sites planted with S. viminalis and P. arundinacea than those planted with S. perfoliatum, H. tuberosus and R. sachalinensis. RDA and Monte Carlo Permutation Test showed that the composition of the faunal community differed significantly between various native and introduced plants. Significantly different basal soil respiration was found in sites planted with various energy crops; however, this difference was not significant between native and introduced species. Microbial biomass carbon and cellulose decomposition did not exhibit any statistical differences among the biofuel crops. The largest statistically significant difference we found was in the content of actinobacterial and bacterial (bacteria, G+ bacteria and G- bacteria) PLFA in sites overgrown by P. arundinacea compared to introduced as well as native biofuel crops. In conclusion, certain parameters significantly differ between various native

  5. Understory fuel variation at the Carolina Sandhills National Wildlife Refuge: a description of chemical and physical properties

    Science.gov (United States)

    Evelyn S. Wenk; G. Geoff Wang; Joan L. Walker

    2013-01-01

    Upland forest in the Carolina Sandhills National Wildlife Refuge is characterized by a longleaf pine (Pinus palustris) canopy with a variable understory and ground-layer species composition. The system was historically maintained by fire and has been managed with prescribed fire in recent decades. A management goal is to reduce turkey oak (...

  6. Estimating individual tree mid- and understory rank-size distributions from airborne laser scanning in semi-arid forests

    Science.gov (United States)

    Tyson L. Swetnam; Donald A. Falk; Ann M. Lynch; Stephen R. Yool

    2014-01-01

    Limitations inherent to airborne laser scanning (ALS) technology and the complex sorting and packing relationships of forests complicate accurate remote sensing of mid- and understory trees, especially in denser forest stands. Self-similarities in rank-sized individual tree distributions (ITD), e.g. bole diameter or height, are a well-understood property of natural,...

  7. Family richness and biomass of understory invertebrates in early and late successional habitats of northern New Hampshire

    Science.gov (United States)

    Matthew K. Wilson; Winsor H. Lowe; Keith Nislow

    2014-01-01

    In the northeastern United States, many vertebrate species rely on early successional forest habitats (ESHs). ESHs may also support higher invertebrate diversity and abundance than late successional habitats (LSHs). We assessed the differences in family-level richness and biomass of understory terrestrial invertebrates during the summer season in paired ESH (3-7 years...

  8. Pollination ecology of the invasive tree tobacco Nicotiana glauca: comparisons across native and non-native ranges

    Directory of Open Access Journals (Sweden)

    Jeff Ollerton

    2012-10-01

    Full Text Available Interactions with pollinators are thought to play a significant role in determining whether plant species become invasive, and ecologically generalised species are predicted to be more likely to invade than more specialised species. Using published and unpublished data we assessed the floral biology and pollination ecology of the South American native Nicotiana glauca (Solanaceae which has become a significant invasive of semi-arid parts of the world. In regions where specialised bird pollinators are available, for example hummingbirds in California and sunbirds in South Africa and Israel, N. glauca interacts with these local pollinators and sets seed by both out-crossing and selfing. In areas where there are no such birds, such as the Canary Islands and Greece, abundant viable seed is set by selfing, facilitated by the shorter stigma-anther distance compared to plants in native populations. Surprisingly, in these areas without pollinating birds, the considerable nectar resources are only rarely exploited by other flower visitors such as bees or butterflies, either legitimately or by nectar robbing. We conclude that Nicotiana glauca is a successful invasive species outside of its native range, despite its functionally specialised hummingbird pollination system, because it has evolved to become more frequently self pollinating in areas where it is introduced. Its invasion success is not predictable from what is known of its interactions with pollinators in its home range.

  9. Faster N Release, but Not C Loss, From Leaf Litter of Invasives Compared to Native Species in Mediterranean Ecosystems

    Directory of Open Access Journals (Sweden)

    Guido Incerti

    2018-04-01

    Full Text Available Plant invasions can have relevant impacts on biogeochemical cycles, whose extent, in Mediterranean ecosystems, have not yet been systematically assessed comparing litter carbon (C and nitrogen (N dynamics between invasive plants and native communities. We carried out a 1-year litterbag experiment in 4 different plant communities (grassland, sand dune, riparian and mixed forests on 8 invasives and 24 autochthonous plant species, used as control. Plant litter was characterized for mass loss, N release, proximate lignin and litter chemistry by 13C CPMAS NMR. Native and invasive species showed significant differences in litter chemical traits, with invaders generally showing higher N concentration and lower lignin/N ratio. Mass loss data revealed no consistent differences between native and invasive species, although some woody and vine invaders showed exceptionally high decomposition rate. In contrast, N release rate from litter was faster for invasive plants compared to native species. N concentration, lignin content and relative abundance of methoxyl and N-alkyl C region from 13C CPMAS NMR spectra were the parameters that better explained mass loss and N mineralization rates. Our findings demonstrate that during litter decomposition invasive species litter has no different decomposition rates but greater N release rate compared to natives. Accordingly, invasives are expected to affect N cycle in Mediterranean plant communities, possibly promoting a shift of plant assemblages.

  10. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion.

    Science.gov (United States)

    Zhang, Qian; Yang, Ruyi; Tang, Jianjun; Yang, Haishui; Hu, Shuijin; Chen, Xin

    2010-08-24

    Negative or positive feedback between arbuscular mycorrhizal fungi (AMF) and host plants can contribute to plant species interactions, but how this feedback affects plant invasion or resistance to invasion is not well known. Here we tested how alterations in AMF community induced by an invasive plant species generate feedback to the invasive plant itself and affect subsequent interactions between the invasive species and its native neighbors. We first examined the effects of the invasive forb Solidago canadensis L. on AMF communities comprising five different AMF species. We then examined the effects of the altered AMF community on mutualisms formed with the native legume forb species Kummerowia striata (Thunb.) Schindl. and on the interaction between the invasive and native plants. The host preferences of the five AMF were also assessed to test whether the AMF form preferred mutualistic relations with the invasive and/or the native species. We found that S. canadensis altered AMF spore composition by increasing one AMF species (Glomus geosporum) while reducing Glomus mosseae, which is the dominant species in the field. The host preference test showed that S. canadensis had promoted the abundance of AMF species (G. geosporum) that most promoted its own growth. As a consequence, the altered AMF community enhanced the competitiveness of invasive S. canadensis at the expense of K. striata. Our results demonstrate that the invasive S. canadensis alters soil AMF community composition because of fungal-host preference. This change in the composition of the AMF community generates positive feedback to the invasive S. canadensis itself and decreases AM associations with native K. striata, thereby making the native K. striata less dominant.

  11. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion.

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2010-08-01

    Full Text Available Negative or positive feedback between arbuscular mycorrhizal fungi (AMF and host plants can contribute to plant species interactions, but how this feedback affects plant invasion or resistance to invasion is not well known. Here we tested how alterations in AMF community induced by an invasive plant species generate feedback to the invasive plant itself and affect subsequent interactions between the invasive species and its native neighbors. We first examined the effects of the invasive forb Solidago canadensis L. on AMF communities comprising five different AMF species. We then examined the effects of the altered AMF community on mutualisms formed with the native legume forb species Kummerowia striata (Thunb. Schindl. and on the interaction between the invasive and native plants. The host preferences of the five AMF were also assessed to test whether the AMF form preferred mutualistic relations with the invasive and/or the native species. We found that S. canadensis altered AMF spore composition by increasing one AMF species (Glomus geosporum while reducing Glomus mosseae, which is the dominant species in the field. The host preference test showed that S. canadensis had promoted the abundance of AMF species (G. geosporum that most promoted its own growth. As a consequence, the altered AMF community enhanced the competitiveness of invasive S. canadensis at the expense of K. striata. Our results demonstrate that the invasive S. canadensis alters soil AMF community composition because of fungal-host preference. This change in the composition of the AMF community generates positive feedback to the invasive S. canadensis itself and decreases AM associations with native K. striata, thereby making the native K. striata less dominant.

  12. Influence of tree species on the herbaceous understory and soil chemical characteristics in a silvopastoral system in semi-arid northeastern Brazil

    Directory of Open Access Journals (Sweden)

    R. S. C. Menezes

    1999-12-01

    Full Text Available Studies from some semi-arid regions of the world have shown the beneficial effect of trees in silvopastoral systems, by promoting the formation of resource islands and increasing the sustainability of the system. No data are available in this respect for tree species of common occurrence in semi-arid Northeastern Brazil. In the present study, conducted in the summer of 1996, three tree species (Zyziphus joazeiro, Spondias tuberosa and Prosopis juliflora: found within Cenchrus ciliaris pastures were selected to evaluate differences on herbaceous understory and soil chemical characteristics between samples taken under the tree canopy and in open grass areas. Transects extending from the tree trunk to open grass areas were established, and soil (0-15 cm and herbaceous understory (standing live biomass in 1 m² plots samples were taken at 0, 25, 50, 100, 150 and 200% of the average canopy radius (average radius was 6.6 ± 0.5, 4.5 ± 0.5, and 5.3 ± 0.8 m for Z. joazeiro, P. juliflora, and S. tuberosa , respectively. Higher levels of soil C, N, P, Ca, Mg, K, and Na were found under the canopies of Z. joazeiro and P. juliflora: trees, as compared to open grass areas. Only soil Mg organic P were higher under the canopies of S. tuberosa trees, as compared to open grass areas. Herbaceous understory biomass was significantly lower under the canopy of S. tuberosa and P. juliflora trees (107 and 96 g m-2, respectively relatively to open grass areas (145 and 194 g m-2. No herbaceous biomass differences were found between Z. joazeiro canopies and open grass areas (107 and 87 g m-2, respectively. Among the three tree species studied, Z. joazeiro was the one that presented the greatest potential for use in a silvopastoral system at the study site, since it had a larger nutrient stock in the soil without negatively affecting herbaceous understory biomass, relatively to open grass areas.

  13. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    DEFF Research Database (Denmark)

    Naeem, S.; Prager, Case; Weeks, Brian

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity...... on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional...

  14. The ghosts of trees past: savanna trees create enduring legacies in plant species composition.

    Science.gov (United States)

    Stahlheber, Karen A; Crispin, Kimberly L; Anton, Cassidy; D'Antonio, Carla M

    2015-09-01

    Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.

  15. Screening plant species native to Taiwan for remediation of 137Cs-contaminated soil and the effects of K addition and soil amendment on the transfer of 137Cs from soil to plants

    International Nuclear Information System (INIS)

    Chou, F.-I.; Chung, H.-P.; Teng, S.-P.; Sheu, S.-T.

    2005-01-01

    This study aims to screen plant species native to Taiwan that could be used to eliminate 137 Cs radionuclides from contaminated soil. Four kinds of vegetables and two kinds of plants known as green manures were used for the screening. The test plants were cultivated in 137 Cs-contaminated soil and amended soil which is a mixture of the contaminated one with a horticultural soil. The plant with the highest 137 Cs transfer factor was used for further examination on the effects of K addition on the transfer of 137 Cs from the soils to the plant. Experimental results revealed that plants cultivated in the amended soil produced more biomass than those in the contaminated soil. Rape exhibited the highest production of aboveground parts, and had the highest 137 Cs transfer factor among all the tested plants. The transfer of 137 Cs to the rape grown in the soil to which 100 ppm KCl commonly used in local fertilizers had been added, were restrained. Results of this study indicated that rape, a popular green manure in Taiwan, could remedy 137 Cs-contaminated soil

  16. In the right place at the right time: habitat representation in protected areas of South American Nothofagus-dominated plants after a dispersal constrained climate change scenario.

    Directory of Open Access Journals (Sweden)

    Diego Alarcón

    Full Text Available In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions.

  17. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity.

    Science.gov (United States)

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M; El-Arabi, Tarek F; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2016-02-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. © FEMS 2015.

  18. Production of native-starch-degrading enzymes by a Bacillus firmus/lentus strain

    NARCIS (Netherlands)

    Wijbenga, Dirk-Jan; Beldman, Gerrit; Veen, Anko; Binnema, Doede

    1991-01-01

    A bacterium belonging to the Bacillus firmus/lentus-complex and capable of growth on native potato starch was isolated from sludge of a pilot plant unit for potato-starch production. Utilization of a crude enzyme preparation obtained from the culture fluid after growth of the microorganism on native

  19. Understory vegetation response after 30 years of interval prescribed burning in two ponderosa pine sites in northern Arizona, USA

    Science.gov (United States)

    Catherine A. Scudieri; Carolyn Hull Sieg; Sally M. Haase; Andrea E. Thode; Stephen S. Sackett

    2010-01-01

    Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We...

  20. Demonstration of pollinator-mediated competition between two native Impatiens species, Impatiens noli-tangere and I. textori (Balsaminaceae)

    OpenAIRE

    Tokuda, Nanako; Hattori, Mitsuru; Abe, Kota; Shinohara, Yoshinori; Nagano, Yusuke; Itino, Takao

    2015-01-01

    Plant?plant interspecific competition via pollinators occurs when the flowering seasons of two or more plant species overlap and the pollinator fauna is shared. Negative sexual interactions between species (reproductive interference) through improper heterospecific pollen transfer have recently been reported between native and invasive species demonstrating pollination-driven competition. We focused on two native Impatiens species (I.?noli-tangere and I.?textori) found in Japan and examined w...

  1. Enhanced shoot investment makes invasive plants exhibit growth advantages in high nitrogen conditions.

    Science.gov (United States)

    Liu, X A; Peng, Y; Li, J J; Peng, P H

    2018-03-12

    Resource amendments commonly promote plant invasions, raising concerns over the potential consequences of nitrogen (N) deposition; however, it is unclear whether invaders will benefit from N deposition more than natives. Growth is among the most fundamental inherent traits of plants and thus good invaders may have superior growth advantages in response to resource amendments. We compared the growth and allocation between invasive and native plants in different N regimes including controls (ambient N concentrations). We found that invasive plants always grew much larger than native plants in varying N conditions, regardless of growth- or phylogeny-based analyses, and that the former allocated more biomass to shoots than the latter. Although N addition enhanced the growth of invasive plants, this enhancement did not increase with increasing N addition. Across invasive and native species, changes in shoot biomass allocation were positively correlated with changes in whole-plant biomass; and the slope of this relationship was greater in invasive plants than native plants. These findings suggest that enhanced shoot investment makes invasive plants retain a growth advantage in high N conditions relative to natives, and also highlight that future N deposition may increase the risks of plant invasions.

  2. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    DEFF Research Database (Denmark)

    Naeem, S.; Prager, Case; Weeks, Brian

    2016-01-01

    on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional...... approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we...

  3. Guanaco’s diet and forage preferences in Nothofagus forest environments of Tierra del Fuego, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Quinteros, C.P.; Bava, J.; Gobbi, M.E.; Defossé, G.E.

    2017-11-01

    Aim of study: Guanaco (Lama guanicoe Müller), is a South American native ungulate widely distributed in Patagonia, which in the island of Tierra del Fuego (TF), extends its habitat into Nothofagus spp. forests. Within these forests, guanacos consume lenga (Nothofagus pumilio) leaves and twigs, and other understory species. The aim of this work was to determine: 1) the spring and summer diet of free ranging guanacos, and 2) which plants, grown in the forest understory, guanacos do prefer, or avoid, in these seasons of great forage abundance. Area of study: Tierra del Fuego (Argentina), on three representative areas which combined Nothofagus forests and adjacent meadows (vegas). Material and Methods: uanacos’ diet was determined by comparing epidermal and non-epidermal plant fragments with micro-histological analyses of feces. The analysis was made from composite samples of fresh feces, collected at the seasons of maximum forage productivity (spring and summer). Main results: During spring, 48% of guanacos’ diet was composed of lenga leaves, 30% of grass-like species, 15% of grasses, and less than 7% of herbs, shrubs, and lichens. In summer, 40% of the diet was composed of grasses, 30% of lenga leaves, 25% of grass-like species and the rest corresponded to herbs, shrubs, and lichens. Within the forest understory, guanaco selected lenga leaves and twigs, grass species were consumed according to their availability (or sometimes rejected), while other herbs were not consumed at all. Research highlights: Guanacos’ consumption preference for lenga, even considering the high availability of other forages, could adversely affect forest regeneration.

  4. Guanaco’s diet and forage preferences in Nothofagus forest environments of Tierra del Fuego, Argentina

    International Nuclear Information System (INIS)

    Quinteros, C.P.; Bava, J.; Gobbi, M.E.; Defossé, G.E.

    2017-01-01

    Aim of study: Guanaco (Lama guanicoe Müller), is a South American native ungulate widely distributed in Patagonia, which in the island of Tierra del Fuego (TF), extends its habitat into Nothofagus spp. forests. Within these forests, guanacos consume lenga (Nothofagus pumilio) leaves and twigs, and other understory species. The aim of this work was to determine: 1) the spring and summer diet of free ranging guanacos, and 2) which plants, grown in the forest understory, guanacos do prefer, or avoid, in these seasons of great forage abundance. Area of study: Tierra del Fuego (Argentina), on three representative areas which combined Nothofagus forests and adjacent meadows (vegas). Material and Methods: uanacos’ diet was determined by comparing epidermal and non-epidermal plant fragments with micro-histological analyses of feces. The analysis was made from composite samples of fresh feces, collected at the seasons of maximum forage productivity (spring and summer). Main results: During spring, 48% of guanacos’ diet was composed of lenga leaves, 30% of grass-like species, 15% of grasses, and less than 7% of herbs, shrubs, and lichens. In summer, 40% of the diet was composed of grasses, 30% of lenga leaves, 25% of grass-like species and the rest corresponded to herbs, shrubs, and lichens. Within the forest understory, guanaco selected lenga leaves and twigs, grass species were consumed according to their availability (or sometimes rejected), while other herbs were not consumed at all. Research highlights: Guanacos’ consumption preference for lenga, even considering the high availability of other forages, could adversely affect forest regeneration.

  5. Evaluation of environmental impacts caused by hydroelectric power plants in native forest areas and mitigation measures

    International Nuclear Information System (INIS)

    Ramalho, Cyro Pinheiro

    1992-01-01

    The following work has the intention of demonstrating the importance of native forest to the human life, not only through its inherent qualities as something to preserve, but also as a source of great resources, and in particular hydroelectric resource that, by today's necessities are bounded to be explored. The negative effects caused by the implementation of a hydroelectric plant are shown together with the necessity of adoption of measures that would soften the environment impact of it. For the adoption of those measures, many forest studies were proposed in the search for its complete characterization. Each of these studies are duly defined and presented in their general and specific goals. The most adequate methodology is finally recommended. (author). 14 refs

  6. Invasive plants as potential food resource for native pollinators: A case study with two invasive species and a generalist bumble bee.

    Science.gov (United States)

    Drossart, Maxime; Michez, Denis; Vanderplanck, Maryse

    2017-11-24

    It is now well established that invasive plants may induce drifts in the quantity and/or quality of floral resources. They are then often pointed out as a potential driver of bee decline. However, their impact on bee population remains quite unclear and still controversial, as bee responses are highly variable among species. Here, we compared the amino acid composition of pollen from three native and two invasive plant species included in diets of common pollinators in NW Europe. Moreover, the nutritional intake (i.e., pollen and amino acid intakes) of Bombus terrestris colonies and the pollen foraging behaviour of workers (i.e., visiting rate, number of foraging trips, weight of pollen loads) were considered. We found significant differences in pollen nutrients among the studied species according to the plant invasive behaviour. We also found significant differences in pollen foraging behaviour according to the plant species, from few to several foraging trips carrying small or large pollen loads. Such behavioural differences directly impacted the pollen intake but depended more likely on plant morphology rather than on plant invasive behaviour. These results suggest that common generalist bumble bees might not always suffer from plant invasions, depending on their behavioural plasticity and nutritional requirements.

  7. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  8. Two sides of the same coin? Rare and pest plants native to the United States and Canada.

    Science.gov (United States)

    Schmidt, John Paul; Stephens, Patrick R; Drake, John M

    2012-07-01

    Plant biodiversity is at risk, with as many as 10% of native species in the United States being threatened with extinction. Habitat loss has led a growing number of plant species to become rare or threatened, while the introduction or expansion of pest species has led some habitats to be dominated by relatively few, mostly nonindigenous, species. As humans continue to alter many landscapes and vegetation types, understanding how biological traits determine the location of species along a spectrum from vulnerability to pest status is critical to designing risk assessment protocols, setting conservation priorities, and developing monitoring programs. We used boosted regression trees to predict rarity (based on The Nature Conservancy global rankings) and pest status (defined as legal pest status) from data on traits for the native vascular flora of the United States and Canada including Hawaii, Puerto Rico, and the Virgin Islands (n approximately = 15,000). Categories were moderately to highly predictable (AUCpest = 0.87 on 25% holdout test set, AUCrarity = 0.80 on 25% holdout test set). Key predictors were chromosome number, ploidy, seed mass, and a suite of traits suggestive of specialist vs. generalist adaptations (e.g., facultative wetland habitat association and phenotypic variability in growth form and life history). Specifically, pests were associated with high chromosome numbers, polyploidy, and seed masses ranging from 0.1 to 100 mg, whereas rare species were associated with low chromosome numbers, low ploidy, and large (>1000 mg) seed masses. In addition, pest species were disproportionately likely to be facultatively associated with wetlands, and variable in growth form and life history, whereas rare species exhibited an opposite pattern. These results suggest that rare and pest species contrast along trait axes related to dispersal and performance in disturbed or novel habitats.

  9. Photosynthetic adaptation to light intensity in plants native to shaded and exposed habitats. [Rumex acetosa; Geum rivale; Lamium galeobdolon; Plantago lanceolata

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, O; Holmgren, P

    1966-01-01

    Photosynthetic adaptation to light intensity has been studied in clones of populations from shaded and exposed habitats of Rumex acetosa and Geum rivale. Clones of the shade species Lamium galeobdolon and the sun species Plantago lanceolata were also included for comparison. The plants were grown under controlled conditions at a high and a low light intensity. The capacity of photosynthetic carbon dioxide uptake at low as well as at saturating light intensities was determined on single attached leaves. As was previously demonstrated in Solidago virgaurea, clones of populations native to shaded and to exposed environments show differences in the photosynthetic response to light intensity during growth. The data provide evidence that populations of the same species native to habitats with contrasting light intensities differ in their photosynthetic properties in an adaptive manner in a similar mode as sun and shade species. 1 reference, 1 figure, 2 tables.

  10. A mesocosm study using four native Hawaiian plants to assess nitrogen accumulation under varying surface water nitrogen concentrations.

    Science.gov (United States)

    Unser, C U; Bruland, G L; Hood, A; Duin, K

    2010-01-01

    Accumulation of nitrogen (N) by native Hawaiian riparian plants from surface water was measured under a controlled experimental mesocosm setting. Four species, Cladium jamaicense, Cyperus javanicus, Cyperus laevigatus, and Cyperus polystachyos were tested for their ability to survive in coconut fiber coir log media with exposure to differing N concentrations. It was hypothesized that the selected species would have significantly different tissue total nitrogen (TN) concentrations, aboveground biomass, and TN accumulation rates because of habitat preference and physiological growth differences. A general linear model (GLM) analysis of variance (ANOVA) determined that species differences accounted for the greatest proportion of variance in tissue TN concentration, aboveground biomass growth, and accumulation rates, when compared with the other main effects (i.e. N concentration, time) and their interactions. A post hoc test of means demonstrated that C. jamaicense had significantly higher tissue TN concentration, aboveground biomass growth, and accumulation rates than the other species under all N concentrations. It was also hypothesized that tissue TN concentrations and biomass growth would increase in plants exposed to elevated N concentrations, however data did not support this hypothesis. Nitrogen accumulation rates by species were controlled by differences in plant biomass growth.

  11. Mislabeling of an invasive vine (Celastrus orbiculatus) as a native congener (C. scandens) in horticulture

    Science.gov (United States)

    Zaya, David N.; Leicht-Young, Stacey A.; Pavlovic, N.B.; Hetrea, Christopher S.; Ashley, Mary V.; Leicht-Young, Stacey A.; Pavlovic, Noel; Hetrea, Christopher S.; Ashley, Mary V.

    2018-01-01

    The horticultural industry is an important source of invasive ornamental plant species, which is part of the motivation for an increased emphasis on using native alternatives. We were interested in the possibility that plants marketed in the midwestern United States as the native Celastrus scandens, or American bittersweet, were actually the difficult-to-distinguish invasive Celastrus orbiculatus (oriental bittersweet) or hybrids of the two species. We used nuclear microsatellite DNA loci to compare the genetic identities of 34 plants from 11 vendors with reference plants from wild populations of known species identity. We found that 18 samples (53%) were mislabeled, and 7 of the 11 vendors sold mislabeled plants. Mislabeled plants were more likely to be purchased through Internet or phone order shipments and were significantly less expensive than accurately labeled plants. Vendors marketed mislabeled plants under five different cultivar names, as well as unnamed strains. Additionally, the most common native cultivar, ‘Autumn Revolution,’ displays reproductive characteristics that diverge from the typical C. scandens, which could be of some concern. The lower price and abundance of mislabeled invasive plants introduces incentives for consumers to unknowingly contribute to the spread of C. orbiculatus. Revealing the potential sources of C. orbiculatus is critical for controlling further spread of the invasive vine and limiting its impact on C. scandens populations.

  12. Uptake of strontium by chamisa (Chrysothamnus nauseosus) shrub plants growing over a former liquid waste disposal site at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Foxx, T.S.; Naranjo, L. Jr.

    1996-01-01

    A major concern of managers at low-level waste burial site facilities is that plant roots may translocate contaminants up to the soil surface. This study investigates the uptake of strontium ( 90 Sr), a biologically mobile element, by chamisa (Chrysothamnus nauseosus), a deep-rooted shrub plant, growing in a former liquid waste disposal site (Solid Waste Management Unit [SWMU] 10-003[c]) at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Surface soil samples were also collected from below (understory) and between (interspace) shrub canopies. Both chamisa plants growing over SWMU 10-003(c) contained significantly higher concentrations of 90 Sr than a control plant--one plant, in particular, contained 3.35 x 10 6 Bq kg -1 ash (9.05 x 10 4 pCi g -1 ash) in top-growth material. Similarly, soil surface samples collected underneath and between plants contained 90 Sr concentrations above background and LANL screening action levels (> 218 Bq kg -1 dry [5.90 pCi g -1 dry]); this probably occurred as a result of chamisa plant leaf fall contaminating the soil understory area followed by water and/or winds moving 90 Sr to the soil interspace areas. Although some soil surface migration of 90 Sr from SWMU 10-003(c) has occurred, the level of 90 Sr in sediments collected downstream of SWMU 10-003(c) at the LANL boundary was still within regional (background) concentrations

  13. State of the science and challenges of breeding landscape plants with ecological function

    Science.gov (United States)

    Wilde, H Dayton; Gandhi, Kamal J K; Colson, Gregory

    2015-01-01

    Exotic plants dominate esthetically-managed landscapes, which cover 30–40 million hectares in the United States alone. Recent ecological studies have found that landscaping with exotic plant species can reduce biodiversity on multiple trophic levels. To support biodiversity in urbanized areas, the increased use of native landscaping plants has been advocated by conservation groups and US federal and state agencies. A major challenge to scaling up the use of native species in landscaping is providing ornamental plants that are both ecologically functional and economically viable. Depending on ecological and economic constraints, accelerated breeding approaches could be applied to ornamental trait development in native plants. This review examines the impact of landscaping choices on biodiversity, the current status of breeding and selection of native ornamental plants, and the interdisciplinary research needed to scale up landscaping plants that can support native biodiversity. PMID:26504560

  14. Traits and Resource Use of Co-Occurring Introduced and Native Trees in a Tropical Novel Forest

    Directory of Open Access Journals (Sweden)

    Jéssica Fonseca da Silva

    2017-09-01

    Full Text Available Novel forests are naturally regenerating forests that have established on degraded lands and have a species composition strongly influenced by introduced species. We studied ecophysiological traits of an introduced species (Castilla elastica Sessé and several native species growing side by side in novel forests dominated by C. elastica in Puerto Rico. We hypothesized that C. elastica has higher photosynthetic capacity and makes more efficient use of resources than co-occurring native species. Using light response curves, we found that the photosynthetic capacity of C. elastica is similar to that of native species, and that different parameters of the curves reflected mostly sun light variation across the forest strata. However, photosynthetic nitrogen use-efficiency as well as leaf area/mass ratios were higher for C. elastica, and both the amount of C and N per unit area were lower, highlighting the different ecological strategies of the introduced and native plants. Presumably, those traits support C. elastica’s dominance over native plants in the study area. We provide empirical data on the ecophysiology of co-occurring plants in a novel forest, and show evidence that different resource-investment strategies co-occur in this type of ecosystem.

  15. Review of OSmanthus fragrans,/i> planting and utilization in China ...

    African Journals Online (AJOL)

    Osmanthus fragrans, an horticulture plant, is one of the National plants in China. As China's native plants, they were usually utilized in seasoning, health protection, perfuming and dressing. Based on analyzing China history literature, this paper highlights native varieties of Osmanthus fragrans as well as their planting ...

  16. Diversity patterns and composition of native and exotic floras in central Chile

    Science.gov (United States)

    Figueroa, Javier A.; Teillier, Sebastián; Castro, Sergio A.

    2011-03-01

    Floristic changes in the Mediterranean region of central Chile brought about by human impact appear to be shared with other climatic regions, although there is a notable absence of empirical studies and available quantitative evidence for the central Chile region. This study examines the cover, richness and composition of native and exotic plant species in a representative area of central Chile. Through floristic characterization of 33 sites sampled using 40 × 40 m plots distributed along transect on which the two farthest sites were separated by 50 km, the floristic richness and cover patterns, as well as the general land use characteristics were evaluated (native matorral, espinal, abandoned farming field, forest plantations, periurban sites, road sites, river bank, and burnt site). We recorded 327 species of plants; 213 species were native and 114 were exotic. The average number of species was heterogeneous in all sites, showing a greater relative native frequency in those sites with a lower level of anthropic intervention. Except for the matorral, the cover of exotic species was greater than that of native species. No relation was found between richness and cover in relation to the different types of land use. The relationship between cover of native and exotic was negative, although for richness did not show relationship. Results show that the exotic species are limited by resources, although they have not completely displaced the native species. The native and exotic floras respond to different spatial distribution patterns, so their presence makes it possible to establish two facts rarely quantified in central Chile: first, that the exotic flora replaces (but does not necessarily displace) the native flora, and second, that at the same time, because of its greater geographic ubiquity and the abundance levels that it achieves, it contributes to the taxonomic and physiognomic homogenization of central Chile.

  17. Comparison of phenolic compounds and the effects of invasive and native species in East Asia: Support for the novel weapons hypothesis

    Science.gov (United States)

    Kim, Y.-O.; Lee, E.J.

    2011-01-01

    One prediction of the novel weapons hypothesis (NWH) for the dominance of exotic invasive plant species is that the allelopathic effects of successful invaders will, in general, be more biochemically inhibitory to native species and microbes in invaded regions than the native plants themselves. However, no study has compared biochemical concentrations, compositions, or effects of large numbers of native species to those of large numbers of invasive species. In this context we tested the allelopathic and antimicrobial potentials of nine native plant species and nine invasive species in East Asia by comparing their broad phenolic contents and the effects of extracts made from each of the species on target plants and soil fungi. Three of the invasive species, including Eupatorium rugosum, had higher concentrations of total phenolic compounds than any of the native species, and the mean concentration of total phenolics for invasive species was 2.6 times greater than the mean for native species. Only scopoletin was novel to the invasive species, being found in all of nine invasive species, but not in the native species. More importantly, the effects of the total suites of phenolic compounds produced by invasive species differed from the effects of phenolics produced by natives. Extracts of invasive species reduced radicle growth of the three test plant species by 60-80%, but extracts of native species reduced radicle growth by only 30-50%. Extracts of invasive species reduced shoot growth of the three test species by 20-40%, but the overall effect of native species' extract was to stimulate shoot growth. The antimicrobial activity of invasive species was also significantly higher than that of native species. It should be noted that phenolics are just one component of a plant's potential allelopathic arsenal and non-phenolic compounds are likely to play a role in the total extract effect. For example, extracts of P. americana contained the lowest levels of phenolic

  18. Changes in habitat use at rainforest edges through succession: A case study of understory birds in the Brazilian Amazon

    Science.gov (United States)

    Luke L. Powell; Gustavo Zurita; Jared D.  Wolfe; Erik I.  Johnson; Philip C  Stouffer

    2015-01-01

    Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio-tracked two...

  19. Characteristics of soil-to-plant transfer of elements relevant to radioactive waste in boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Roivainen, P.

    2011-07-01

    The use of nuclear energy generates large amounts of different types of radioactive wastes that can be accidentally released into the environment. Soil-to-plant transfer is a key process for the dispersion of radionuclides in the biosphere and is usually described by a concentration ratio (CR) between plant and soil concentrations in radioecological models. Our knowledge of the soil-to-plant transfer of many radionuclides is currently limited and concerns mainly agricultural species and temperate environments. The validity of radioecological modelling is affected by the accuracy of the assumptions and parameters used to describe soil-to-plant transfer. This study investigated the soil-to-plant transfer of six elements (cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), uranium (U) and zinc (Zn)) relevant to radioactive waste at two boreal forest sites and assessed the factors affecting the CR values. May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana) and blueberry (Vaccinium myrtillus) were selected as representatives of understory species, while rowan (Sorbus aucuparia) and Norway spruce (Picea abies) represented trees in this study. All the elements studied were found to accumulate in plant roots, indicating that separate CR values for root and aboveground plant parts are needed. The between-species variation in CR values was not clearly higher than the within-species variation, suggesting that the use of generic CR values for understory species and trees is justified. No linear relationship was found between soil and plant concentrations for the elements studied and a non-linear equation was found to be the best for describing the dependence of CR values on soil concentration. Thus, the commonly used assumption of a linear relationship between plant and soil concentrations may lead to underestimation of plant root uptake at low soil concentrations. Plant nutrients potassium, magnesium, manganese, phosphorus and sulphur were found to

  20. Characteristics of soil-to-plant transfer of elements relevant to radioactive waste in boreal forest

    International Nuclear Information System (INIS)

    Roivainen, P.

    2011-01-01

    The use of nuclear energy generates large amounts of different types of radioactive wastes that can be accidentally released into the environment. Soil-to-plant transfer is a key process for the dispersion of radionuclides in the biosphere and is usually described by a concentration ratio (CR) between plant and soil concentrations in radioecological models. Our knowledge of the soil-to-plant transfer of many radionuclides is currently limited and concerns mainly agricultural species and temperate environments. The validity of radioecological modelling is affected by the accuracy of the assumptions and parameters used to describe soil-to-plant transfer. This study investigated the soil-to-plant transfer of six elements (cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), uranium (U) and zinc (Zn)) relevant to radioactive waste at two boreal forest sites and assessed the factors affecting the CR values. May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana) and blueberry (Vaccinium myrtillus) were selected as representatives of understory species, while rowan (Sorbus aucuparia) and Norway spruce (Picea abies) represented trees in this study. All the elements studied were found to accumulate in plant roots, indicating that separate CR values for root and aboveground plant parts are needed. The between-species variation in CR values was not clearly higher than the within-species variation, suggesting that the use of generic CR values for understory species and trees is justified. No linear relationship was found between soil and plant concentrations for the elements studied and a non-linear equation was found to be the best for describing the dependence of CR values on soil concentration. Thus, the commonly used assumption of a linear relationship between plant and soil concentrations may lead to underestimation of plant root uptake at low soil concentrations. Plant nutrients potassium, magnesium, manganese, phosphorus and sulphur were found to