WorldWideScience

Sample records for national waste package

  1. Waste Package Lifting Calculation

    International Nuclear Information System (INIS)

    H. Marr

    2000-01-01

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation

  2. Informative document packaging waste

    NARCIS (Netherlands)

    Joosten JM; Nagelhout D; Duvoort GL; Weerd M de

    1989-01-01

    This "informative document packaging waste" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the instructions of the Direcotrate General for the Environment, Waste Materials Directorate, in behalf of the program of

  3. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  4. Waste package performance assessment

    International Nuclear Information System (INIS)

    Lester, D.H.

    1981-01-01

    This paper describes work undertaken to assess the life-expectancy and post-failure nuclide release behavior of high-level and waste packages in a geologic repository. The work involved integrating models of individual phenomena (such as heat transfer, corrosion, package deformation, and nuclide transport) and using existing data to make estimates of post-emplacement behavior of waste packages. A package performance assessment code was developed to predict time to package failure in a flooded repository and subsequent transport of nuclides out of the leaking package. The model has been used to evaluate preliminary package designs. The results indicate, that within the limitation of model assumptions and data base, packages lasting a few hundreds of years could be developed. Very long lived packages may be possible but more comprehensive data are needed to confirm this

  5. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  6. Waste package characterisation

    International Nuclear Information System (INIS)

    Sannen, L.; Bruggeman, M.; Wannijn, J.P.

    1998-09-01

    Radioactive wastes originating from the hot labs of the Belgian Nuclear Research Centre SCK-CEN contain a wide variety of radiotoxic substances. The accurate characterisation of the short- and long-term radiotoxic components is extremely difficult but required in view of geological disposal. This paper describes the methodology which was developed and adopted to characterise the high- and medium-level waste packages at the SCK-CEN hot laboratories. The proposed method is based on the estimation of the fuel inventory evacuated in a particular waste package; a calculation of the relative fission product contribution on the fuel fabrication and irradiation footing; a comparison of the calculated, as expected, dose rate and the real measured dose rate of the waste package. To cope with the daily practice an appropriate fuel inventory estimation route, a user friendly computer programme for fission product and corresponding dose rate calculation, and a simple dose rate measurement method have been developed and implemented

  7. Waste package characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Sannen, L.; Bruggeman, M.; Wannijn, J.P

    1998-09-01

    Radioactive wastes originating from the hot labs of the Belgian Nuclear Research Centre SCK-CEN contain a wide variety of radiotoxic substances. The accurate characterisation of the short- and long-term radiotoxic components is extremely difficult but required in view of geological disposal. This paper describes the methodology which was developed and adopted to characterise the high- and medium-level waste packages at the SCK-CEN hot laboratories. The proposed method is based on the estimation of the fuel inventory evacuated in a particular waste package; a calculation of the relative fission product contribution on the fuel fabrication and irradiation footing; a comparison of the calculated, as expected, dose rate and the real measured dose rate of the waste package. To cope with the daily practice an appropriate fuel inventory estimation route, a user friendly computer programme for fission product and corresponding dose rate calculation, and a simple dose rate measurement method have been developed and implemented.

  8. Isotope production potential at Sandia National Laboratories: Product, waste, packaging, and transportation

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1995-01-01

    The U.S. Congress directed the U.S. Department of Energy to establish a domestic source of molybdenum-99, an essential isotope used in nuclear medicine and radiopharmacology. An Environmental Impact Statement for production of 99 Mo at one of four candidate sites is being prepared. As one of the candidate sites, Sandia National Laboratories is developing the Isotope Production Project. Using federally approved processes and procedures now owned by the U.S. Department of Energy, and existing facilities that would be modified to meet the production requirements, the Sandia National Laboratories' Isotope Project would manufacture up to 30 percent of the U.S. market, with the capacity to meet 100 percent of the domestic need if necessary. This paper provides a brief overview of the facility, equipment, and processes required to produce isotopes. Packaging and transportation issues affecting both product and waste are addressed, and the storage and disposal of the four low-level radioactive waste types generated by the production program are considered. Recommendations for future development are provided

  9. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Herschel Smartt; Arthur Watkins; David Pace; Rodney Bitsoi; Eric Larsen; Timothy McJunkin; Charles Tolle

    2006-04-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  10. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    shelton-davis; Colleen Shelton-Davis; Greg Housley

    2005-10-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  11. Nuclear waste packaging facility

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Paladino, J.B.; Razor, J.E.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.

    1987-01-01

    A nuclear waste packaging facility comprising: (a) a first section substantially surrounded by radiation shielding, including means for remotely handling waste delivered to the first section and for placing the waste into a disposal module; (b) a second section substantially surrounded by radiation shielding, including means for handling a deformable container bearing waste delivered to the second section, the handling means including a compactor and means for placing the waste bearing deformable container into the compactor, the compactor capable of applying a compacting force to the waste bearing containers sufficient to inelastically deform the waste and container, and means for delivering the deformed waste bearing containers to a disposal module; (c) a module transportation and loading section disposed between the first and second sections including a means for handling empty modules delivered to the facility and for loading the empty modules on the transport means; the transport means moving empty disposal modules to the first section and empty disposal modules to the second section for locating empty modules in a position for loading with nuclear waste, and (d) a grouting station comprising means for pouring grout into the waste bearing disposal module, and a capping station comprising means for placing a lid onto the waste bearing grout-filled disposal module to completely encapsulate the waste

  12. Objectives for radioactive waste packaging

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1982-04-01

    The report falls under the headings: introduction; the nature of radioactive wastes; how to manage radioactive wastes; packaging of radioactive wastes (supervised storage; disposal); waste form evaluation and test requirements (supervised storage; disposal); conclusions. (U.K.)

  13. Improved practices for packaging transuranic waste at Los Alamos National Laboratory (LA-UR-09-03293) - 16280

    International Nuclear Information System (INIS)

    Goyal, Kapil K.; Carson, Peter H.

    2009-01-01

    Transuranic (TRU) waste leaving the Plutonium Facility at Los Alamos National Laboratory (LANL) is packaged using LANL's waste acceptance criteria for onsite storage. Before shipment to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, each payload container is subject to rigorous characterization to ensure compliance with WIPP waste acceptance criteria and Department of Transportation regulations. Techniques used for waste characterization include nondestructive examination by WIPP-certified real-time radiography (RTR) and nondestructive assay (NDA) of containers, as well as headspace gas sampling to ensure that hydrogen and other flammable gases remain at safe levels during transport. These techniques are performed under a rigorous quality assurance program to confirm that results are accurate and reproducible. If containers are deemed problematic, corrective action is implemented before they are shipped to WIPP. A defensive approach was used for many years to minimize the number of problematic drums. However, based on review of data associated with headspace gas sampling, NDA and RTR results, and enhanced coordination with the entities responsible for waste certification, many changes have been implemented to facilitate packaging of TRU waste drums with higher isotopic loading at the Plutonium Facility at an unprecedented rate while ensuring compliance with waste acceptance criteria. This paper summarizes the details of technical changes and related administrative coordination activities, such as information sharing among the certification entities, generators, waste packagers, and shippers. It discusses the results of all such cumulative changes that have been implemented at the Plutonium Facility and gives readers a preview of what LANL has accomplished to expeditiously certify and dispose of newly generated TRU waste. (authors)

  14. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  15. Nuclear waste package thermal performance

    International Nuclear Information System (INIS)

    Lundberg, W.

    1985-01-01

    Given the geology, the corrosion of deep geologic nuclear waste packages depends largely on the package temperature history. Factors affecting package temperature are described, and predictions of package temperatures and resulting corrosion vs time relationships are presented and discussed for candidate geologies

  16. Naval Waste Package Design Report

    International Nuclear Information System (INIS)

    M.M. Lewis

    2004-01-01

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository

  17. Tritium waste package

    Science.gov (United States)

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  18. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  19. Naval Waste Package Design Sensitivity

    International Nuclear Information System (INIS)

    T. Schmitt

    2006-01-01

    The purpose of this calculation is to determine the sensitivity of the structural response of the Naval waste packages to varying inner cavity dimensions when subjected to a comer drop and tip-over from elevated surface. This calculation will also determine the sensitivity of the structural response of the Naval waste packages to the upper bound of the naval canister masses. The scope of this document is limited to reporting the calculation results in terms of through-wall stress intensities in the outer corrosion barrier. This calculation is intended for use in support of the preliminary design activities for the license application design of the Naval waste package. It examines the effects of small changes between the naval canister and the inner vessel, and in these dimensions, the Naval Long waste package and Naval Short waste package are similar. Therefore, only the Naval Long waste package is used in this calculation and is based on the proposed potential designs presented by the drawings and sketches in References 2.1.10 to 2.1.17 and 2.1.20. All conclusions are valid for both the Naval Long and Naval Short waste packages

  20. Safety evaluation report for packaging (onsite) concrete-lined waste packaging

    International Nuclear Information System (INIS)

    Romano, T.

    1997-01-01

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site

  1. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  2. CERAMIC WASTE FORM DATA PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  3. Packaged low-level waste verification system

    International Nuclear Information System (INIS)

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-01-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL)

  4. Packages for radiactive waste disposal

    International Nuclear Information System (INIS)

    Oliveira, R. de.

    1983-01-01

    The development of multi-stage type package for sea disposal of compactable nuclear wastes, is presented. The basic requirements for the project followed the NEA and IAEA recommendations and observations of the solutions adopted by others countries. The packages of preliminary design was analysed, by computer, under several conditions arising out of its nature, as well as their conditions descent, dumping and durability in the deep of sea. The designed pressure equalization mechanic and the effect compacting on the package, by prototypes and specific tests, were studied. These prototypes were also submitted to the transport tests of the 'Regulament for the Safe Transport of Radioactive Materials'. Based on results of the testes and the re-evaluation of the preliminary design, final indications and specifications for excuting the package design, are presented. (M.C.K.) [pt

  5. Remote Handling Equipment for a High-Level Waste Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Kevin M. Croft; Scott M. Allen; Mark W. Borland

    2006-04-01

    High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

  6. Safety Analysis Report for packaging (onsite) steel waste package

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  7. Legal Regulation of the Disposal of Packaging and Package Waste

    OpenAIRE

    Havlíčková, Dagmar

    2007-01-01

    9. Resumé Legal regulation of the disposal of packaging and package waste Key words: Waste Byproduct of each human activity, according to the Waste act any movable thing which person intends to dispose of or has a duty to dispose of and which is a defined in Schedule Packaging Any product regardless of used material that is intended for the containment, protection, manipulation, supply or presentation Directive Type of secondary European legislation, which contains the binding objectives for ...

  8. Safety Analysis Report for packaging (onsite) steel waste package

    International Nuclear Information System (INIS)

    BOEHNKE, W.M.

    2000-01-01

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A 2 s) and is a type B packaging

  9. Waste Package Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  10. Drift emplaced waste package thermal response

    International Nuclear Information System (INIS)

    Ruffner, D.J.; Johnson, G.L.; Platt, E.A.; Blink, J.A.; Doering, T.W.

    1993-01-01

    Thermal calculations of the effects of radioactive waste decay heat on the I repository at Yucca Mountain, Nevada have been conducted by the Yucca Mountain Site Characterization Project (YMP) at Lawrence Livermore National Laboratory (LLNL) in conjunction with the B ampersand W Fuel Company. For a number of waste package spacings, these 3D transient calculations use the TOPAZ3D code to predict drift wall temperatures to 10,000 years following emplacement. Systematic tcniperature variation occurs as a function of fuel age at emplacement and Areal Mass Loading (AML) during the first few centuries after emplacement. After about 1000 years, emplacement age is not a strong driver on rock temperature; AML has a larger impact. High AMLs occur when large waste packages are emplaced end-tocnd in drifts. Drift emplacement of equivalent packages results in lower rock teniperatures than borehole emplacement. For an emplacement scheme with 50% of the drift length occupied by packages, an AML of 138 MTU/acre is about three times higher than the Site Characterization Plan-Conceptual Design (SCP-CD) value. With this higher AML (requiring only 1/3 of the SCP-CD repository footprint), peak drift wall temperatures do not exceed 160*C, but rock temperatures excetd the boiling point of water for about 3000 years. These TOPAZ3D results Iiive been compared with reasonable agreement with two other computer codes

  11. Cleanup Verification Package for the 600-259 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-02-09

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste.

  12. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  13. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  14. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes

  15. Waste package performance allocation system study report

    International Nuclear Information System (INIS)

    Memory, R.D.

    1994-01-01

    The Waste Package Performance Allocation system study was performed in order to provide a technical basis for the selection of the waste package period of substantially complete containment and its resultant contribution to the overall total system performance. This study began with a reference case based on the current Mined Geologic Disposal System (MGDS) baseline design and added a number of alternative designs. The waste package designs were selected from the designs being considered in detail during Advanced Conceptual Design (ACD). The waste packages considered were multi-barrier packages with a 0.95 cm Alloy 825 inner barrier and a 10, 20, or 45 cm thick carbon steel outer barrier. The waste package capacities varied from 6 to 12 to 21 Pressurized Water Reactor (PWR) fuel assemblies. The vertical borehole and in-drift emplacement modes were also considered, as were thermal loadings of 25, 57, and 114 kW/acre. The repository cost analysis indicated that the 21 PWR in-drift emplacement mode option with the 10 cm and 20 cm outer barrier thicknesses are the least expensive and that the 12 PWR in-drift case has approximately the same cost as the 6 PWR vertical borehole. It was also found that the cost increase from the 10 cm outer barrier waste package to the 20 cm waste package was less per centimeter than the increase from the 20 cm outer barrier waste package to the 45 cm outer barrier waste package. However, the repository cost was nearly linear with the outer barrier thickness for the 21 PWR in-drift case. Finally, corrosion rate estimates are provided and the relationship of repository cost versus waste package lifetime is discussed as is cumulative radionuclide release from the waste package and to the accessible environment for time periods of 10,000 years and 100,000 years

  16. Development of Specifications for Radioactive Waste Packages

    International Nuclear Information System (INIS)

    2006-10-01

    The main objective of this publication is to provide guidelines for the development of waste package specifications that comply with waste acceptance requirements for storage and disposal of radioactive waste. It will assist waste generators and waste package producers in selecting the most significant parameters and in developing and implementing specifications for each individual type of waste and waste package. This publication also identifies and reviews the activities and technical provisions that are necessary to meet safety requirements; in particular, selection of the significant safety parameters and preparation of specifications for waste forms, waste containers and waste packages using proven approaches, methods and technologies. This report provides guidance using a systematic, stepwise approach, integrating the technical, organizational and administrative factors that need to be considered at each step of planning and implementing waste package design, fabrication, approval, quality assurance and control. The report reflects the considerable experience and knowledge that has been accumulated in the IAEA Member States and is consistent with the current international requirements, principles, standards and guidance for the safe management of radioactive waste

  17. Engineered waste-package-system design specification

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity.

  18. Engineered waste-package-system design specification

    International Nuclear Information System (INIS)

    1983-05-01

    This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity

  19. Waste Package Component Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety

  20. Prevention policies addressing packaging and packaging waste: Some emerging trends.

    Science.gov (United States)

    Tencati, Antonio; Pogutz, Stefano; Moda, Beatrice; Brambilla, Matteo; Cacia, Claudia

    2016-10-01

    Packaging waste is a major issue in several countries. Representing in industrialized countries around 30-35% of municipal solid waste yearly generated, this waste stream has steadily grown over the years even if, especially in Europe, specific recycling and recovery targets have been fixed. Therefore, an increasing attention starts to be devoted to prevention measures and interventions. Filling a gap in the current literature, this explorative paper is a first attempt to map the increasingly important phenomenon of prevention policies in the packaging sector. Through a theoretical sampling, 11 countries/states (7 in and 4 outside Europe) have been selected and analyzed by gathering and studying primary and secondary data. Results show evidence of three specific trends in packaging waste prevention policies: fostering the adoption of measures directed at improving packaging design and production through an extensive use of the life cycle assessment; raising the awareness of final consumers by increasing the accountability of firms; promoting collaborative efforts along the packaging supply chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A waste package strategy for regulatory compliance

    International Nuclear Information System (INIS)

    Stahl, D.; Cloninger, M.O.

    1990-01-01

    This paper summarizes the strategy given in the Site Characterization Plan for demonstrating compliance with the post closure performance objectives for the waste package and the Engineered Barrier System contained in the Code of Federal Regulations. The strategy consists of the development of a conservative waste package design that will meet the regulatory requirements with sufficient margin for uncertainty using a multi-barrier approach that takes advantage of the unsaturated nature of the Yucca Mountain site. 7 refs., 1 fig

  2. Thermal modeling of nuclear waste package designs for disposal in tuff

    International Nuclear Information System (INIS)

    Hockman, J.N.; O'Neal, W.C.

    1983-09-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This paper discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 6 references, 6 figures, 3 tables

  3. Remote Handling Equipment for a High-Level Waste Package Closure System

    International Nuclear Information System (INIS)

    Kevin M. Croft; Scott M. Allen; Mark W. Borland

    2006-01-01

    High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL

  4. Status of ERDA TRU waste packaging study

    International Nuclear Information System (INIS)

    Doty, J.W. Jr.

    1977-01-01

    This paper discusses the status of Task 3 of the TRU Waste Cyclone Drum Incinerator and Treatment System program. This task covers acceptable TRU packaging for interim storage and terminal isolation. The kind of TRU wastes generated by contractors and its transport are discussed. Both drum and box systems are desirable

  5. ERG review of waste package corrosion mechanisms

    International Nuclear Information System (INIS)

    Geisert, R.E.

    1988-01-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The ERG reviewed the waste package corrosion mechanisms. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG. 1 ref

  6. Large transport packages for decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1988-03-01

    The main tasks performed during the period related to the influence of manufacture, transport and disposal on the design of such packages. It is deduced that decommissioning wastes will be transported under the IAEA Transport Regulations under either the Type B or Low Specific Activity (LSA) categories. If the LSA packages are self-shielded, reinforced concrete is the preferred material of construction. But the high cost of disposal implies that there is a strong reason to investigate the use of returnable shields for LSA packages and in such cases they are likely to be made of ferrous metal. Economic considerations favour the use of spheroidal graphite cast iron for this purpose. Transport operating hazards have been investigated using a mixture of desk studies, routes surveys and operations data from the railway organisations. Reference routes were chosen in the Federal Republic of Germany, France and the United Kingdom. This work has led to a description of ten accident scenarios and an evaluation of the associated accident probabilities. The effect of disposal on design of packages has been assessed in terms of the radiological impact of decommissioning wastes, an in addition corrosion and gas evolution have been examined. The inventory of radionuclides in a decommissioning waste package has low environmental impact. If metal clad reinforced concrete packages are to be used, the amount of gas evolution is such that a vent would need to be included in the design. Similar unclad packages would be sufficiently permeable to gases to prevent a pressure build-up. (author)

  7. Evaluation and compilation of DOE waste package test data

    International Nuclear Information System (INIS)

    Interrante, C.G.; Escalante, E.; Fraker, A.C.

    1990-11-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period August 1988 through January 1989. Included are reviews of related materials research and plans, activities for the DOE Materials Characterization Center, information on the Yucca Mountain Project, and other information regarding supporting research and special assistance. NIST comments are given on the Yucca Mountain Consultation Draft Site Characterization Plan (CDSCP) and on the Waste Compliance Plan for the West Valley Demonstration Project (WVDP) High-Level Waste (HLW) Form. 3 figs

  8. Waste Disposal: R and D on Waste Forms and Packages

    International Nuclear Information System (INIS)

    Van Iseghem, P.

    2000-01-01

    The main objectives of SCK-CEN's programme on waste forms and waste packages are: (1) to determine or to verify various physical and chemical characteristics of radioactive waste forms relevant to the Belgian waste management programme; (2) to improve and to develop tools, methods and approaches for characterising radioactive waste; (3) to assess experimentally or to demonstrate in situ the long-term performance of radioactive waste forms with regard to geological disposal in clay; (4) to assess the performance of candidate overpack materials through in situ and laboratory experiments

  9. Cleanup Verification Package for the 300 VTS Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    S. W. Clark and T. H. Mitchell

    2006-03-13

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.

  10. Horizontal Drop of 21- PWR Waste Package

    International Nuclear Information System (INIS)

    A.K. Scheider

    2001-01-01

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 11) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design

  11. Large transport packages for decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1988-08-01

    This document reports progress on a study of large transport packages for decommissioning waste and is the semi-annual report for the period 1 January - 30 June 1988. The main tasks performed during the period related to the assembly of package design criteria ie those aspects of manufacture, handling, storage, transport and disposal which impose constraints on design. This work was synthesised into a design specification for packages which formed the conclusion of that task and was the entry into the final task - the development of package design concepts. The design specifications, which concentrated on the Industrial Package category of the IAEA Transport Regulations, has been interpreted for the two main concepts (a) a self-shielded package disposed of in its entirety and (b) a package with returnable shielding. Preliminary information has been prepared on the cost of providing the package as well as transport to a repository and disposal. There is considerable uncertainty about the cost of disposal and variations of over a factor of 10 are possible. Under these circumstances there is merit in choosing a design concept which is relatively insensitive to disposal cost variations. The initial results indicate that on these grounds the package with returnable shielding is preferred. (author)

  12. Groundwater removal near heat dissipating waste packages

    International Nuclear Information System (INIS)

    Manteufel, R.D.

    1996-01-01

    The thermohydrologic environment of heat-dissipating nuclear waste packages in a subsurface repository is affected by ventilation of the facility prior to permanent closure. Heat dissipated by the waste will raise the temperature of host rock and vaporize groundwater. Ventilation will remove some heat and water vapor from the subsurface, creating a desiccated region surrounding the waste packages. The resulting hot, dry environment will tend to favorably extend the containment time of the waste. This work evaluates the transient temperature field near emplacement drifts and predicts the extent of rock dryout and removal of groundwater. For two hypothetical ventilation schemes with 30-yr-old fuel and repository loading of 40 metric tons of uranium (MTU) per acre, about 4 to 5 m of rock surrounding the drifts are predicted to be dried during the preclosure period

  13. Effects of mixed waste simulants on transportation packaging plastic components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1994-01-01

    The purpose of hazardous and radioactive materials packaging is to, enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified. The design requirements for both hazardous and radioactive materials packaging specify packaging compatibility, i.e., that the materials of the packaging and any contents be chemically compatible with each other. Furthermore, Type A and Type B packaging design requirements stipulate that there be no significant chemical, galvanic, or other reaction between the materials and contents of the package. Based on these requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program, supported by the US Department of Energy's (DOE) Transportation Management Division, EM-261 provides the means to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. In this paper, we describe the general elements of the testing program and the experimental results of the screening tests. The implications of the results of this testing are discussed in the general context of packaging development. Additionally, we present the results of the first phase of this experimental program. This phase involved the screening of five candidate liner and six seal materials against four simulant mixed wastes

  14. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  15. Nuclear waste package fabricated from concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400 0 C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs

  16. Second Generation Waste Package Design Study

    International Nuclear Information System (INIS)

    Armijo, J.S.; Misra, M.; Kar, Piyush

    2007-01-01

    The following describes the objectives of Project Activity 023 ''Second Generation Waste Package Design Study'' under DOE Cooperative Agreement DE-FC28-04RW12232. The objectives of this activity are: to review the current YMP baseline environment and establish corrosion test environments representative of the range of dry to intermittently wet conditions expected in the drifts as a function of time; to demonstrate the oxidation and corrosion resistance of A588 weathering steel and reference Alloy 22 samples in the representative dry to intermittently dry conditions; and to evaluate backfill and design features to improve the thermal performance analyses of the proposed second-generation waste packages using existing models developed at the University of Nevada, Reno(UNR). The work plan for this project activity consists of three major tasks: Task 1. Definition of expected worst-case environments (humidity, liquid composition and temperature) at waste package outer surfaces as a function of time, and comparison with environments defined in the YMP baseline; Task 2. Oxidation and corrosion tests of proposed second-generation outer container material; and Task 3. Second Generation waste package thermal analyses. Full funding was not provided for this project activity

  17. 10 CFR 60.143 - Monitoring and testing waste packages.

    Science.gov (United States)

    2010-01-01

    ....143 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN... repository operations area, the environment of the waste packages selected for the waste package monitoring program shall be representative of the environment in which the wastes are to be emplaced. (c) The waste...

  18. Guidelines for sea dumping packages of radioactive waste. Revised version.

    International Nuclear Information System (INIS)

    Anon.

    1979-04-01

    The purpose of these Guidelines is to establish general requirements and provide practical information for the design and manufacture of packages for sea dumping of radioactive waste, in accordance with the terms of the OECD Council Decision establishing a Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste. These Guidelines are in compliance with the IAEA Revised Definition and Recommendations of 1978, for applying the London Dumping Convention to radioactive waste, and are intended for application under the responsibility of the appropriate national authorities of countries participating in the NEA Mechanism

  19. Characterization of radioactive waste forms and packages

    International Nuclear Information System (INIS)

    1997-01-01

    This publication provides a compendium of waste form, container and waste package properties which are potential importance for waste characterization to support approval for treatment/conditioning, storage and disposal methods and for predicting both short and long term waste behaviour in the repository environment. The properties to be characterized are defined in terms of the technical rationale for their control and characterization. Characterization methods for each property are described in general with reference to detailed discussions existing in the literature. Guidance as to the advantages and disadvantages of individual methods from a technical perspective is also provided where appropriate. This report deals with the characterization of all types of radioactive wastes except spent fuel intended for direct disposal. 115 refs, 17 figs, 12 tabs

  20. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-04-19

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  1. Research and Development Program for transportation packagings at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-01-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support

  2. Waste package emplacement borehole option study

    International Nuclear Information System (INIS)

    Streeter, W.S.

    1992-03-01

    This study evaluates the cost and thermal effects of various waste package emplacement configurations that differ in emplacement orientation, number of containers per borehole, and standoff distance at the potential Yucca Mountain nuclear waste repository. In this study, eight additional alternatives to the vertical and horizontal orientation options presented in the Site Characterization Plan Conceptual Design Report are considered. Typical panel layout configurations based on thermal analysis of the waste and cost estimates for design and construction, operations, and closure and decommissioning were made for each emplacement option. For the thermal analysis average waste 10 years out of reactor and the SIM code were used to determine whether the various configurations temperatures would exceed the design criteria for temperature. This study does not make a recommendation for emplacement configuration, but does provide information for comparison of alternatives

  3. Secondary Waste Form Down Selection Data Package – Ceramicrete

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete

  4. 10 CFR 63.134 - Monitoring and testing waste packages.

    Science.gov (United States)

    2010-01-01

    ....134 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A... geologic repository operations area, the environment of the waste packages selected for the waste package monitoring program must be representative of the environment in which the wastes are to be emplaced. (c) The...

  5. Mixed waste chemical compatibility with packaging components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Conroy, M.; Blalock, L.B.

    1994-01-01

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals

  6. Transportation packagings for high-level wastes and unprocessed transuranic wastes

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Romesberg, L.E.

    1982-01-01

    Packagings used for nuclear waste transport are varied in size, shape, and weight because they must accommodate a wide variety of waste forms and types. However, this paper will discuss the common characteristics among the packagings in order to provide a broad understanding of packaging designs. The paper then discusses, in some detail, a design that has been under development recently at Sandia National Laboratories (SNL) for handling unprocessed, contact-handled transuranic (CHTRU) wastes as well as a cask design for defense high-level wastes (HLW). As presently conceived, the design of the transuranic package transporter (TRUPACT) calls for inner and outer boxes that are separated by a rigid polyurethane foam. The inner box has a steel frame with stainless steel surfaces; the outer box is similarly constructed except that carbon steel is used for the outside surfaces. The access to each box is through hinged doors that are sealed after loading. To meet another waste management need, a cask is being developed to transport defense HLW. The cask, which is at the preliminary design stage, is being developed by General Atomic under the direction of the TTC. The cask design relies heavily on state-of-the-art spent-fuel cask designs though it can be much simpler due to the characteristics of the HLW. A primary purpose of this paper is to show that CHTRU waste and defense HLW currently are and will be transported in packagings designed to meet the hazards of transportation that are present in general commerce

  7. Industrial Waste Landfill IV upgrade package

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  8. Industrial Waste Landfill IV upgrade package

    International Nuclear Information System (INIS)

    1994-01-01

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE's Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit

  9. Acceptance criteria for waste packages at El Cabril Repository Waste Quality Verification Laboratory

    International Nuclear Information System (INIS)

    Morales, A.; Gravalos, J.M.

    1993-01-01

    Waste acceptance requirements or criteria (WAC) are the most important of the technical requirements to be met by the waste packages in order to qualify them for transport, long-term storage or disposal. These criteria will be drawn up by the national waste management agencies under guidance of and/or for approval by the licensing authorities. The WAC constitute the basis for detailed specifications by the waste conditioner of the product. Quality control is the main instrument for demonstration of compliance with these criteria. Acceptance criteria are either specific to a disposal facility or, where such facilities are not planned for the near future, for long-term storage. They may either cover a broad range of different products or be established for individual types of waste packages. In general terms, the requirements may concern the following, among other issues: clear identification and segregation of the waste category or class, normally distinguished by the waste form and the type and level of radioactivity; limitation of waste materials which may damage the package or surrounding barriers (e.g., liquids or gas-generating compounds). Certain materials are normally excluded (e.g., explosives), if radioactive waste also contains toxic chemical materials, disposal may comply with other relevant legislation; prevention/minimization of nuclide release; safe handling with limits on surface dose rates and loose contamination; mechanical strength and general durability; and handling operations such as stackability, dimensions, weight, etc

  10. Reasons for household food waste with special attention to packaging

    OpenAIRE

    Williams, Helén; Wikström, Fredrik; Otterbring, Tobias; Löfgren, Martin; Gustafsson, Anders

    2012-01-01

    This is the authors’ final, accepted and refereed manuscript to the article. The amount of food waste needs to be reduced in order to sustain the world’s limited resources and secure enough food to all humans. Packaging plays an important role in reducing food waste. The knowledge about how packaging affects food waste in households, however, is scarce. This exploratory study examines reasons for food waste in household and especially how and to what extent packaging influences the amount ...

  11. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  12. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  13. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2010-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  14. Packaging of radioactive wastes for sea disposal

    International Nuclear Information System (INIS)

    1981-02-01

    The Convention on the Prevention of Marine Pollution by the Dumping of Wastes and Other Matter, known as the London Dumping Convention was adopted by an inter-governmental conference in London in 1972 and came into force in 1975. In 1977, the IAEA Board of Governors agreed that there is a continuing responsibility for the IAEA to contribute to the effectiveness of the London Dumping Conventions by providing guidance relevant to the various aspects of dumping radioactive wastes at sea. In the light of the above responsibilities, the IAEA organized a Technical Committee Meeting from 3 to 7 December 1979 to assess the current situation concerning the requirements and the practices of packaging radioactive wastes for dumping at sea with a view to providing further guidance on this subject. The present report summarizes the results of this meeting

  15. Large packages for reactor decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1991-01-01

    This study was carried out jointly by the Atomic Energy Establishment at Winfrith (now called the Winfrith Technology Centre), Windscale Laboratory and Ove Arup and Partners. The work involved the investigation of the design of large transport containers for intermediate level reactor decommissioning waste, ie waste which requires shielding, and is aimed at European requirements (ie for both LWR and gas cooled reactors). It proposes a design methodology for such containers covering the whole lifetime of a waste disposal package. The design methodology presented takes account of various relevant constraints. Both large self shielded and returnable shielded concepts were developed. The work was generic, rather than specific; the results obtained, and the lessons learned, remain to be applied in practice

  16. Evaluation and compilation of DOE waste package test data

    International Nuclear Information System (INIS)

    Interrante, C.G.; Fraker, A.C.; Escalante, E.

    1993-06-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of some of the Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, August 1989--January 1990. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Short discussions are given relating to the publications reviewed and complete reviews and evaluations are included. Reports of other work are included in the Appendices

  17. Low-Level Radioactive Waste siting simulation information package

    International Nuclear Information System (INIS)

    1985-12-01

    The Department of Energy's National Low-Level Radioactive Waste Management Program has developed a simulation exercise designed to facilitate the process of siting and licensing disposal facilities for low-level radioactive waste. The siting simulation can be conducted at a workshop or conference, can involve 14-70 participants (or more), and requires approximately eight hours to complete. The exercise is available for use by states, regional compacts, or other organizations for use as part of the planning process for low-level waste disposal facilities. This information package describes the development, content, and use of the Low-Level Radioactive Waste Siting Simulation. Information is provided on how to organize a workshop for conducting the simulation. 1 ref., 1 fig

  18. DHLW Glass Waste Package Criticality Analysis (SCPB:N/A)

    International Nuclear Information System (INIS)

    Davis, J.W.

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the Defense High-Level Waste (DHLW) Glass waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan (Ref. 5.1) for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objective of this evaluation is to show to what extent the concept meets the regulatory requirements or indicate additional measures that are required for the intact waste package

  19. Transport concept of new waste management system (inner packaging system)

    International Nuclear Information System (INIS)

    Hakozaki, K.; Wada, R.

    2004-01-01

    Kobe Steel, Ltd. (KSL) and Transnuclear Tokyo (TNT) have jointly developed a new waste management system concept (called ''Inner packaging system'') for high dose rate wastes generated from nuclear power plants under cooperation with Tokyo Electric Power Company (TEPCO). The inner packaging system is designed as a total management system dedicated to the wastes from nuclear plants in Japan, covering from the wastes conditioning in power plants up to the disposal in final repository. This paper presents the new waste management system concept

  20. Insight into economies of scale for waste packaging sorting plants

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik; Maul, Anja

    2015-01-01

    This contribution presents the results of a techno-economic analysis performed for German Materials Recovery Facilities (MRFs) which sort commingled lightweight packaging waste (consisting of plastics, metals, beverage cartons and other composite packaging). The study addressed the importance...

  1. Performance implications of waste package emplacement orientation

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1991-05-01

    Emplacement borehole orientation directly impacts many aspects of the Engineered Barrier System (EBS) and interactions with the near field environment. This paper considers the impacts of orientation on the hydrologic portion of the environment and its interactions with the EBS. The hydrologic environment is considered from a conceptual standpoint, the numerical analyses are left for subsequent work. As reported in this paper, several aspects of the hydrological environment are more favorable for long term performance of vertically oriented rather than horizontally oriented Waste Packages. 19 refs., 15 figs

  2. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    International Nuclear Information System (INIS)

    J.K. Knudson

    2003-01-01

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M and O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis

  3. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    Energy Technology Data Exchange (ETDEWEB)

    A. Alsaed

    2005-07-28

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to

  4. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  5. Isotopic analysis of radioactive waste packages (an inexpensive approach)

    International Nuclear Information System (INIS)

    Padula, D.A.; Richmond, J.S.

    1983-01-01

    A computer printout of the isotopic analysis for all radioactive waste packages containing resins, or other aqueous filter media is now required at the disposal sites at Barnwell, South Carolina, and Beatty, Nevada. Richland, Washington requires an isotopic analysis for all radioactive waste packages. The NRC (Nuclear Regulatory Commission), through 10 CFR 61, will require shippers of radioactive waste to classify and label for disposal all radioactive waste forms. These forms include resins, filters, sludges, and dry active waste (trash). The waste classification is to be based upon 10 CFR 61 (Section 1-7). The isotopes upon which waste classification is to be based are tabulated. 7 references, 8 tables

  6. Containment barrier metals for high-level waste packages in a Tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.W.; McCright, R.D.; O`Neal, W.C.

    1983-10-12

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package project is part of the US Department of Energy`s Civilian Radioactive Waste Management (CRWM) Program. The NNWSI project is working towards the development of multibarriered packages for the disposal of spent fuel and high-level waste in tuff in the unsaturated zone at Yucca Mountain at the Nevada Test Site (NTS). The final engineered barrier system design may be composed of a waste form, canister, overpack, borehole liner, packing, and the near field host rock, or some combination thereof. Lawrence Livermore National Laboratory`s (LLNL) role is to design, model, and test the waste package subsystem for the tuff repository. At the present stage of development of the nuclear waste management program at LLNL, the detailed requirements for the waste package design are not yet firmly established. In spite of these uncertainties as to the detailed package requirements, we have begun the conceptual design stage. By conceptual design, we mean design based on our best assessment of present and future regulatory requirements. We anticipate that changes will occur as the detailed requirements for waste package design are finalized. 17 references, 4 figures, 10 tables.

  7. Radiaoctive waste packaging for transport and final disposal

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1989-01-01

    Prior and after the conditioning of radioactive wastes is the packaging design of uppermost importance since it will be the first barrier against water and human intrusion. The choice of the proper package according waste category as well criteria utilized for final disposal are shown. (author) [pt

  8. Mechanical Assessment of the Waste Package Subject to Vibratory Motion

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-14

    The purpose of this document is to provide an integrated overview of the calculation reports that define the response of the waste package and its internals to vibratory ground motion. The calculation reports for waste package response to vibratory ground motion are identified in Table 1-1. Three key calculation reports describe the potential for mechanical damage to the waste package, fuel assemblies, and cladding from a seismic event. Three supporting documents have also been published to investigate sensitivity of damage to various assumptions for the calculations. While these individual reports present information on a specific aspect of waste package and cladding response, they do not describe the interrelationship between the various calculations and the relationship of this information to the seismic scenario class for Total System Performance Assessment-License Application (TSPA-LA). This report is designed to fill this gap by providing an overview of the waste package structural response calculations.

  9. Mechanical Assessment of the Waste Package Subject to Vibratory Motion

    International Nuclear Information System (INIS)

    M. Gross

    2004-01-01

    The purpose of this document is to provide an integrated overview of the calculation reports that define the response of the waste package and its internals to vibratory ground motion. The calculation reports for waste package response to vibratory ground motion are identified in Table 1-1. Three key calculation reports describe the potential for mechanical damage to the waste package, fuel assemblies, and cladding from a seismic event. Three supporting documents have also been published to investigate sensitivity of damage to various assumptions for the calculations. While these individual reports present information on a specific aspect of waste package and cladding response, they do not describe the interrelationship between the various calculations and the relationship of this information to the seismic scenario class for Total System Performance Assessment-License Application (TSPA-LA). This report is designed to fill this gap by providing an overview of the waste package structural response calculations

  10. Evaluation of the Corrosivity of Dust Deposited on Waste Packages at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    C. Bryan; R. Jarek; T. Wolery; D. Shields; M. Sutton; E. Hardin; D. Barr

    2005-01-01

    Small amounts of dust will be deposited on the surfaces of waste packages in drifts at Yucca Mountain during the operational and the preclosure ventilation periods. Salts present in the dust will deliquesce as the waste packages cool and relative humidity in the drifts increases. In this paper, we evaluate the potential for brines formed by dust deliquescence to initiate and sustain localized corrosion that results in failure of the waste package outer barrier and early failure of the waste package. These arguments have been used to show that dust deliquescence-induced localized or crevice corrosion of the waste package outer barrier (Alloy 22) is of low consequence with respect to repository performance. Measured atmospheric and underground dust compositions are the basis of thermodynamic modeling and experimental studies to evaluate the likelihood of brine formation and persistence, the volume of brines that may form, and the relative corrosivity of the initial deliquescent brines and of brines modified by processes on the waste package surface. In addition, we evaluate several mechanisms that could inhibit or stifle localized corrosion should it initiate. The dust compositions considered include both tunnel dust samples from Yucca Mountain, National Airfall Deposition Program rainout data, and collected windblown dust samples. Also considered is sublimation of ammonium salts, a process that could affect dust composition prior to deliquescence. Ammonium chlorides, nitrates, and even sulfates sublimate readily into ammonia and acid gases, and will be lost from the surface of the waste package prior to deliquescence

  11. NWTS waste package program plan. Volume II. Program logic networks

    International Nuclear Information System (INIS)

    1981-10-01

    This document describes the work planned for developing the technology to design, test and produce packages used for the long-term isolation of nuclear waste in deep geologic repositories. Waste forms considered include spent fuel and high-level waste. The testing and selection effort for barrier materials for radionuclide containment is described. The NWTS waste package program is a design-driven effort; waste package conceptual designs are used as input for preliminary designs, which are upgraded to a final design as materials and testing data become available. Performance assessment models are developed and validated. Milestones and a detailed schedule are given for the waste package development effort. Program logic networks defining work flow, interfaces among the NWTS Projects, and interrelationships of specific activities are presented. Detailed work elements are provided for the Waste Package Program Plan subtasks - design and development, waste form, barrier materials, and performance evaluation - for salt and basalt, host rocks for which the state of waste package knowledge and the corresponding data base are advanced

  12. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  13. Evaluation and compilation of DOE waste package test data

    International Nuclear Information System (INIS)

    Interrante, C.G.; Fraker, A.C.; Escalante, E.

    1991-12-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, February through July 1989. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Outlines for planned interpretative reports on the topics of aqueous corrosion of copper, mechanisms of stress corrosion cracking and internal failure modes of Zircaloy cladding are included. For the publications reviewed during this reporting period, short discussions are given to supplement the completed reviews and evaluations. Included in this report is an overall review of a 1984 report on glass leaching mechanisms, as well as reviews for each of the seven chapters of this report

  14. A history of solid waste packaging at the Hanford Site

    International Nuclear Information System (INIS)

    Duncan, D.R.; Weyns-Rollosson, D.I.; Pottmeyer, J.A.; Stratton, T.J.

    1995-02-01

    Since the initiation of the defense materials product mission, a total of more than 600,000 m 3 of radioactive solid waste has been stored or disposed at the US Department of Energy's (DOE) Hanford Site, located in southeastern Washington State. As the DOE complex prepares for its increasing role in environmental restoration and waste remediation, the characterization of buried and retrievably stored waste will become increasingly important. Key to this characterization is an understanding of the standards and specifications to which waste was packaged; the regulations that mandated these standards and specifications; the practices used for handling and packaging different waste types; and the changes in these practices with time

  15. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  16. Nuclear waste package design for the Vadose zone in tuff

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Ballou, L.B.; Gregg, D.W.; Russell, E.W.

    1984-02-01

    This report presents an overview of the selection and analysis of conceptual waste package designs that will be used by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for disposal of high-level nuclear waste (HLW) at the proposed Yucca Mountain, Nevada Site. The design requirements that the waste packages are required to meet are listed. Concept drawings for the reference designs and one alternative package design are shown. Four metal alloys; 304L SS, 321 SS, 316L SS and Incoloy 825 have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and economic analysis supporting the selection of the conceptual waste package designs is included. Post-closure containment and release rates are not discussed in this paper. 17 references, 2 figures, 2 tables

  17. Cleanup Verification Package for the 300-18 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2005-01-01

    This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete

  18. Characterization of silicoaluminates for low and medium activity wastes packaging

    International Nuclear Information System (INIS)

    Rivoallan, A.; Berson, X.

    1996-01-01

    Studies are done in order to demonstrate many advantages (as an important volume reduction and a greater chemical stability) of packaging low and medium activity wastes in crystal structures compared with concrete and bitumen. In order to understand the consequences of hazardous chemical composition (especially anions) in the waste on the characteristics of the mineral packaging, a simulation study is developed with inactive concentrates. It leads to well crystallized structures which have not the same major crystallized phase. (authors)

  19. 21-PWR Waste Package Side and End Impacts

    International Nuclear Information System (INIS)

    T. Schmitt

    2005-01-01

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1

  20. STUDY ON PACKAGING WASTE PREVENTION IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Scortar Lucia-Monica

    2013-07-01

    It is very important to mention that individuals and businesses can often save a significant amount of money through waste prevention: waste that never gets created doesn't have management costs (handling, transporting, treating and disposing of waste. The rule is simple: the best waste is that which is not produced.

  1. Polyethylene liners in radioactive mixed waste packages: An engineering study

    International Nuclear Information System (INIS)

    Whitney, G.A.

    1991-05-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste treatment, storage, and disposal facilities for the US Department of Energy-Richland Operations Office under contract AC06-87RL10930. These facilities include solid waste disposal sites and radioactive solid waste storage areas. This document is 1 in a series of 25 reports or actions identified in a Solid Waste Management Event Fact Sheet and critique report (Appendix E) to address the problem of stored, leaking 183-H Solar Evaporation Basin waste drums. It specifically addresses the adequacy of polyethylene liners used as internal packaging of radioactive mixed waste. This document is to be used by solid waste generators preparing solid waste for storage at Hanford Site facilities. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of radioactive solid waste

  2. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    International Nuclear Information System (INIS)

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-01-01

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure

  3. CH Packaging Operations for High Wattage Waste at LANL

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2002-01-01

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal

  4. CH Packaging Operations for High Wattage Waste at LANL

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2003-01-01

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal

  5. DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE

    International Nuclear Information System (INIS)

    T.L. Mitchell

    2000-01-01

    The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS MandO [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS MandO 2000c). The objective of this analysis is to describe the naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS MandO 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS MandO 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS MandO 2000a)

  6. Methods for maintaining a record of waste packages during waste processing and storage

    International Nuclear Information System (INIS)

    2005-01-01

    During processing, radioactive waste is converted into waste packages, and then sent for storage and ultimately for disposal. A principal condition for acceptance of a waste package is its full compliance with waste acceptance criteria for disposal or storage. These criteria define the radiological, mechanical, physical, chemical and biological properties of radioactive waste that can, in principle, be changed during waste processing. To declare compliance of a waste package with waste acceptance criteria, a system for generating and maintaining records should be established to record and track all relevant information, from raw waste characteristics, through changes related to waste processing, to final checking and verification of waste package parameters. In parallel, records on processing technology and the operational parameters of technological facilities should adhere to established and approved quality assurance systems. A records system for waste management should be in place, defining the data to be collected and stored at each step of waste processing and using a reliable selection process carried over into the individual steps of the waste processing flow stream. The waste management records system must at the same time ensure selection and maintenance of all the main information, not only providing evidence of compliance of waste package parameters with waste acceptance criteria but also serving as an information source in the case of any future operations involving the stored or disposed waste. Records generated during waste processing are a constituent part of the more complex system of waste management record keeping, covering the entire life cycle of radioactive waste from generation to disposal and even the post-closure period of a disposal facility. The IAEA is systematically working on the preparation of a set of publications to assist its Member States in the development and implementation of such a system. This report covers all the principal

  7. Waste package environment studies. FY 1984 annual report

    International Nuclear Information System (INIS)

    Pederson, L.R.; Gray, W.J.; Hodges, F.N.; McVay, G.L.; Moore, D.A.; Rai, D.; Schramke, J.A.

    1986-03-01

    Tests were conducted by Pacific Northwest Laboratory in FY 1984 to examine the influence of heat and radiation on the chemical environment of a high-level nuclear waste package in a repository in salt and to determine the solubility of key radionuclides in site-specific brines. These tests are part of an ongoing effort by the Waste Package Program, whose objective is to help develop a data base on package components and system interactions necessary to qualify a nuclear waste package for geologic disposal. Specifically, tests performed in FY 1984 involved alpha and gamma radiolysis of brines, americium solubility in brines, the influence of heat and radiation on rock salt, and the influence of temperature on brine chemistry

  8. Quality assurance requirements and methods for high level waste package acceptability

    International Nuclear Information System (INIS)

    1992-12-01

    This document should serve as guidance for assigning the necessary items to control the conditioning process in such a way that waste packages are produced in compliance with the waste acceptance requirements. It is also provided to promote the exchange of information on quality assurance requirements and on the application of quality assurance methods associated with the production of high level waste packages, to ensure that these waste packages comply with the requirements for transportation, interim storage and waste disposal in deep geological formations. The document is intended to assist both the operators of conditioning facilities and repositories as well as national authorities and regulatory bodies, involved in the licensing of the conditioning of high level radioactive wastes or in the development of deep underground disposal systems. The document recommends the quality assurance requirements and methods which are necessary to generate data for these parameters identified in IAEA-TECDOC-560 on qualitative acceptance criteria, and indicates where and when the control methods can be applied, e.g. in the operation or commissioning of a process or in the development of a waste package design. Emphasis is on the control of the process and little reliance is placed on non-destructive or destructive testing. Qualitative criteria, relevant to disposal of high level waste, are repository dependent and are not addressed here. 37 refs, 3 figs, 2 tabs

  9. ERG review of waste package container materials selection and corrosion

    International Nuclear Information System (INIS)

    Moak, D.P.; Perrin, J.S.

    1986-07-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The October 1984 meeting of the ERG reviewed the waste package container materials selection and corrosion. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG

  10. Nanotechnology for the Solid Waste Reduction of Military Food Packaging

    Science.gov (United States)

    2016-06-01

    controls. The reduction of solid waste was contributed to by the decrease in resin used to manufacture the Meal Bag. The reduction of solid waste for...transmission rate through plastic film and sheeting using a coulometric sensor 13. ASTM International E96/E 96M-05 Standard Test Methods for water...WP-200816) Nanotechnology for the Solid Waste Reduction of Military Food Packaging June 2016 This document has been cleared for public release

  11. Control of environmental conditions during storage of ILW waste packages

    International Nuclear Information System (INIS)

    Wood, P.; Wise, M.

    2003-01-01

    The paper describes how the choice of materials, manufacturing controls and correct storage conditions are used to manage the integrity of waste packages in the UK, by (i) summarizing knowledge of atmospheric localised corrosion mechanisms; (ii) identifying environmental conditions which are reported as capable of avoiding deleterious localised corrosion; (iii) discussing how this knowledge is being reflected in the designs of some UKAEA intermediate level waste (ILW) stores, together with the issues waste packagers need to consider to prevent the initiation of corrosion; and (iv) presenting information from a survey of environmental parameters and contaminants in a non-active storage building, and relating this to corrosion monitoring results from non-active waste packages. (authors)

  12. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  13. Repository documentation rethought. A comprehensive approach from untreated waste to waste packages for final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton Philipp; Schubert, Johannes [VPC GmbH, Dresden (Germany)

    2017-11-15

    The German Act on Reorganization of Responsibility for Nuclear Disposal (Entsorgungsuebergangsgesetz (EntsorgUebG)) adopted in June 2017 provides the energy utilities with the new option of transferring responsibility for their waste packages to the Federal Government. This is conditional on the waste packages being approved for delivery to the Konrad final repository. A comprehensive approach starts with the dismantling of nuclear facilities and extends from waste disposal and packaging planning to final repository documentation. Waste package quality control measures are planned and implemented as early as in the process qualification stage so that the production of waste packages that are suitable for final deposition can be ensured. Optimization of cask and loading configuration can save container and repository volume. Workflow planning also saves time, expenditure and exposure time for personnel at the facilities. VPC has evaluated this experience and developed it into a comprehensive approach.

  14. Waste Package and Material Testing for the Proposed Yucca Mountain High Level Waste Repository

    International Nuclear Information System (INIS)

    Doering, Thomas; Pasupathi, V.

    2002-01-01

    Over the repository lifetime, the waste package containment barriers will perform various functions that will change with time. During the operational period, the barriers will function as vessels for handling, emplacement, and waste retrieval (if necessary). During the years following repository closure, the containment barriers will be relied upon to provide substantially complete containment, through 10,000 years and beyond. Following the substantially complete containment phase, the barriers and the waste package internal structures help minimize release of radionuclides by aqueous- and gaseous-phase transport. These requirements have lead to a defense-in-depth design philosophy. A multi-barrier design will result in a lower breach rate distributed over a longer period of time, thereby ensuring the regulatory requirements are met. The design of the Engineered Barrier System (EBS) has evolved. The initial waste package design was a thin walled package, 3/8 inch of stainless steel 304, that had very limited capacity, (3 PWR and 4 BWR assemblies) and performance characteristics, 300 to 1,000 years. This design required over 35,000 waste packages compared to today's design of just over 10,000 waste packages. The waste package designs are now based on a defense-in-depth/multi-barrier philosophy and have a capacity similar to the standard storage and rail transported spent nuclear fuel casks. Concurrent with the development of the design of the waste packages, a comprehensive waste package materials testing program has been undertaken to support the selection of containment barrier materials and to develop predictive models for the long-term behavior of these materials under expected repository conditions. The testing program includes both long-term and short-term tests and the results from these tests combination with the data published in the open literature are being used to develop models for predicting performance of the waste packages

  15. Recovery and distribution of incinerated aluminum packaging waste.

    Science.gov (United States)

    Hu, Y; Bakker, M C M; de Heij, P G

    2011-12-01

    A study was performed into relations between physical properties of aluminum packaging waste and the corresponding aluminum scraps in bottom ash from three typical incineration processes. First, Dutch municipal solid waste incineration (MSWI) bottom ash was analyzed for the identifiable beverage can alloy scraps in the +2mm size ranges using chemical detection and X-ray fluorescence. Second, laboratory-scale pot furnace tests were conducted to investigate the relations between aluminum packaging in base household waste and the corresponding metal recovery rates. The representative packaging wastes include beverage cans, foil containers and thin foils. Third, small samples of aluminum packaging waste were incinerated in a high-temperature oven to determine leading factors influencing metal recovery rates. Packaging properties, combustion conditions, presence of magnesium and some specific contaminants commonly found in household waste were investigated independently in the high-temperature oven. In 2007, the bottom ash (+2mm fraction) from the AEB MSWI plant was estimated to be enriched by 0.1 wt.% of aluminum beverage cans scrap. Extrapolating from this number, the recovery potential of all eleven MSWI plants in the Netherlands is estimated at 720 ton of aluminum cans scrap. More than 85 wt.% of this estimate would end up in +6mm size fractions and were amenable for efficient recycling. The pot furnace tests showed that the average recovery rate of metallic aluminum typically decreases from beverage cans (93 wt.%) to foil containers (85 wt.%) to thin foils (77 wt.%). The oven tests showed that in order of decreasing impact the main factors promoting metallic aluminum losses are the packaging type, combustion temperature, residence time and salt contamination. To a lesser degree magnesium as alloying element, smaller packaging size and basic contaminations may also promote losses. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  16. Salt Repository Project Waste Package Program Plan: Draft

    International Nuclear Information System (INIS)

    Carr, J.A.; Cunnane, J.C.

    1986-01-01

    Under the direction of the Office of Civilian Radioactive Waste Management (OCRWM) created within the DOE by direction of the Nuclear Waste Policy Act of 1982 (NWPA), the mission of the Salt Repository Project (SRP) is to provide for the development of a candidate salt repository for disposal of high-level radioactive waste (HLW) and spent reactor fuel in a manner that fully protects the health and safety of the public and the quality of the environment. In consideration of the program needs and requirements discussed above, the SRP has decided to develop and issue this SRP Waste Package Program Plan. This document is intended to outline how the SRP plans to develop the waste package design and to show, with reasonable assurance, that the developed design will satisfy applicable requirements/performance objectives. 44 refs., 16 figs., 16 tabs

  17. Initial specifications for nuclear waste package external dimensions and materials

    International Nuclear Information System (INIS)

    Gregg, D.W.; O'Neal, W.C.

    1983-09-01

    Initial specifications of external dimensions and materials for waste package conceptual designs are given for Defense High Level Waste (DHLW), Commercial High Level Waste (CHLW) and Spent Fuel (SF). The designs have been developed for use in a high-level waste repository sited in a tuff media in the unsaturated zone. Drawings for reference and alternative package conceptual designs are presented for each waste form for both vertical and horizontal emplacement configurations. Four metal alloys: 304L SS, 321 SS, 316L SS and Incoloy 825 are considered for the canister or overpack; 1020 carbon steel was selected for horizontal borehole liners, and a preliminary packing material selection is either compressed tuff or compressed tuff containing iron bearing smectite clay as a binder

  18. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  19. Mass Transfer Model for a Breached Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    C. Hsu; J. McClure

    2004-07-26

    The degradation of waste packages, which are used for the disposal of spent nuclear fuel in the repository, can result in configurations that may increase the probability of criticality. A mass transfer model is developed for a breached waste package to account for the entrainment of insoluble particles. In combination with radionuclide decay, soluble advection, and colloidal transport, a complete mass balance of nuclides in the waste package becomes available. The entrainment equations are derived from dimensionless parameters such as drag coefficient and Reynolds number and based on the assumption that insoluble particles are subjected to buoyant force, gravitational force, and drag force only. Particle size distributions are utilized to calculate entrainment concentration along with geochemistry model abstraction to calculate soluble concentration, and colloid model abstraction to calculate colloid concentration and radionuclide sorption. Results are compared with base case geochemistry model, which only considers soluble advection loss.

  20. Mass Transfer Model for a Breached Waste Package

    International Nuclear Information System (INIS)

    Hsu, C.; McClure, J.

    2004-01-01

    The degradation of waste packages, which are used for the disposal of spent nuclear fuel in the repository, can result in configurations that may increase the probability of criticality. A mass transfer model is developed for a breached waste package to account for the entrainment of insoluble particles. In combination with radionuclide decay, soluble advection, and colloidal transport, a complete mass balance of nuclides in the waste package becomes available. The entrainment equations are derived from dimensionless parameters such as drag coefficient and Reynolds number and based on the assumption that insoluble particles are subjected to buoyant force, gravitational force, and drag force only. Particle size distributions are utilized to calculate entrainment concentration along with geochemistry model abstraction to calculate soluble concentration, and colloid model abstraction to calculate colloid concentration and radionuclide sorption. Results are compared with base case geochemistry model, which only considers soluble advection loss

  1. Swing-Down of 21-PWR Waste Package

    International Nuclear Information System (INIS)

    A.K. Scheider

    2001-01-01

    The objective of this calculation is to determine the structural response of the waste package (WP) swinging down from a horizontally suspended height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 13). AP-3.12Q, ''Calculations'' (Ref. 18) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 21-PWR WP design considered in this calculation and provides the potential dimensions and materials for the 21-PWR WP design

  2. Quality assurance for radioactive waste packages -- A general approach

    International Nuclear Information System (INIS)

    Martens, B.R.

    1993-01-01

    Radioactive waste packages must fulfill the requirements resulting from regulations concerning handling, treatment, conditioning, transportation, storage and disposal so that the goal of radioactive waste management can be achieved. Usually in different parts of waste management different quality systems are used, and different quality assurance measures are performed. In the paper, these problems ar elucidated and it is explained by means of the quality assurance performed for the disposal of radioactive waste in Germany how the fulfillment of the requirements of the repository can be ensured

  3. Phosphates as packaging materials for separated nuclear wastes

    International Nuclear Information System (INIS)

    Audubert, F.

    2006-10-01

    The author gives an overview of fifteen years of research activities performed within the context of the so-called Bataille bill which recommended in 1991 new investigations on the management of nuclear wastes. She presents studies aimed at the elaboration of phosphates with an apatite structure, and outlines the determination of compositions adapted to iodine, caesium and tri- or tetravalent actinide incorporation. She reports the synthesis of phosphates with a monazite structure for caesium and actinide confinement. Finally, she reports studies dealing with the waste packaging issue (elaboration of packaging matrices, properties)

  4. A comprehensive waste collection cost model applied to post-consumer plastic packaging waste

    NARCIS (Netherlands)

    Groot, J.J.; Bing, X.; Bos-Brouwers, H.E.J.; Bloemhof, J.M.

    2014-01-01

    Post-consumer plastic packaging waste (PPW) can be collected for recycling via source separation or post-separation. In source separation, households separate plastics from other waste before collection, whereas in post-separation waste is separated at a treatment centre after collection. There are

  5. Optimization of an impact limiter for radioactive waste packaging

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta; Mattar Neto, Miguel

    1999-01-01

    A certain class of packages for the transportation of radioactive wastes - type B packages in the transport jargon - is supposed to resist to a series of postulated tests, the most severe for the majority of the packages being the 9 m height drop test. To improve the performance of the packages under this test, impact limiters are added to them, normally as a removable overpack, with the primary goal of reducing the deceleration loads transmitted to the packages and their contents. The first impact limiter concept, developed during the '70s, used a shell-type impact limiter attached to both ends of the package. Later on, wood was tested as impact limiter filling, which improved the package's mechanical performance, but not its thermal resistance. The popularization of the polymeric materials and their growing use in engineer applications have led to the use of these materials in impact limiters, with the extra advantage of the polymers good thermal properties. This paper proposes a methodology for the optimization of an impact limiter for a package for the conditioning of spent sealed sources. Two simplified methods for the design of impact limiters are presented. Finally, a brief discussion is presented on the methodology usually employed in the design of accident-resisting packages. (author)

  6. WASTE PACKAGE OPERATIONS FY-99 CLOSURE METHODS REPORT

    International Nuclear Information System (INIS)

    M. C. Knapp

    1999-01-01

    The waste package (WP) closure weld development task is part of a larger engineering development program to develop waste package designs. The purpose of the larger waste package engineering development program is to develop nuclear waste package fabrication and closure methods that the Nuclear Regulatory Commission will find acceptable and will license for disposal of spent nuclear fuel (SNF), non-fuel components, and vitrified high-level waste within a Monitored Geologic Repository (MGR). Within the WP closure development program are several major development tasks, which, in turn, are divided into subtasks. The major tasks include: WP fabrication development, WP closure weld development, nondestructive examination (NDE) development, and remote in-service inspection development. The purpose of this report is to present the objectives, technical information, and work scope relating to the WP closure weld development.and NDE tasks and subtasks and to report results of the closure weld and NDE development programs for fiscal year 1999 (FY-99). The objective of the FY-99 WP closure weld development task was to develop requirements for closure weld surface and volumetric NDE performance demonstrations, investigate alternative NDE inspection techniques, and develop specifications for welding, NDE, and handling system integration. In addition, objectives included fabricating several flat plate mock-ups that could be used for NDE development, stress relief peening, corrosion testing, and residual stress testing

  7. Containers for packaging of solid and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    1993-01-01

    Low and intermediate level radioactive wastes are generated at all stages in the nuclear fuel cycle and also from the medical, industrial and research applications of radiation. These wastes can potentially present risks to health and the environment if they are not managed adequately. Their effective management will require the wastes to be safely stored, transported and ultimately disposed of. The waste container, which may be defined as any vessel, drum or box, made from metals, concrete, polymers or composite materials, in which the waste form is placed for interim storage, for transport and/or for final disposal, is an integral part of the whole package for the management of low and intermediate level wastes. It has key roles to play in several stages of the waste management process, starting from the storage of raw wastes and ending with the disposal of conditioned wastes. This report provides an overview of the various roles that a container may play and the factors that are important in each of these roles. This report has two main objectives. The first is to review the main requirements for the design of waste containers. The second is to provide advice on the design, fabrication and handling of different types of containers used in the management of low and intermediate level radioactive solid wastes. Recommendations for design and testing are given, based on the extensive experience available worldwide in waste management. This report is not intended to have any regulatory status or objectives. 56 refs, 16 figs, 10 tabs

  8. WAPDEG Analysis of Waste Package and Drip shield Degradation

    International Nuclear Information System (INIS)

    K. Mon

    2004-01-01

    As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of scale in Section 6.3.4). The weld flaw portion of this report takes input from an engineering calculation (BSC 2004

  9. Industrial Waste Landfill IV upgrade package

    International Nuclear Information System (INIS)

    1994-01-01

    This document consists of page replacements for the Y-12 industrial waste landfill. The cover page is to replace the old page, and a new set of text pages are to replace the old ones. A replacement design drawing is also included

  10. Recent package testing successes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Singley, P.T.; Michelhaugh, R.D.; Hawk, M.B.; Shappert, L.B.

    2004-01-01

    Oak Ridge National Laboratory (ORNL)'s history of testing of radioactive material packages dates back to the early 1960s, and includes the testing of hundreds of different packages of all shapes and sizes. This paper provides an overview of ORNL's new Packaging Research Facility (PRF) at the National Transportation Research Center (NTRC), and describes recent package testing successes conducted at the NTRC from September 2002 to September 2003

  11. Generic Degraded Configuration Probability Analysis for the Codisposal Waste Package

    International Nuclear Information System (INIS)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-01-01

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M and O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k eff in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package

  12. Data Packages for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment: 2001 Version

    International Nuclear Information System (INIS)

    MANN, F.M.

    2000-01-01

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided

  13. National inventory of radioactive wastes

    International Nuclear Information System (INIS)

    1997-01-01

    There are in France 1064 sites corresponding to radioactive waste holders that appear in this radioactive waste inventory. We find the eighteen sites of E.D.F. nuclear power plants, The Cogema mine sites, the Cogema reprocessing plants, The Cea storages, the different factories and enterprises of nuclear industry, the sites of non nuclear industry, the Andra centers, decommissioned installations, disposals with low level radioactive wastes, sealed sources distributors, national defence. (N.C.)

  14. Operational considerations in drift emplacement of waste packages

    International Nuclear Information System (INIS)

    Benton, H.A.

    1993-01-01

    This paper discusses the operational considerations as well as the advantages and disadvantages of emplacing waste packages in drifts in a repository. The considerations apply particularly to the potential repository for spent nuclear fuel and high-level waste glass at Yucca Mountain, although most of the considerations and the advantages and disadvantages discussed in this paper do not necessarily represent the official views of the DOE or of the Management and Operations Contractor, since most of these considerations are still under active discussion and the final decisions will not be made for some time - perhaps years. This paper describes the issues, suggests some principles upon which decisions should be based, and states some of the most significant advantages and disadvantages of the emplacement modes, and the associated waste package types and thermal loadings

  15. Effects of sorption hysteresis on radionuclide releases from waste packages

    International Nuclear Information System (INIS)

    Barney, G.S.; Reed, D.T.

    1985-01-01

    A one-dimensional, numerical transport model was used to calculate radionuclide releases from waste packages emplaced in a nuclear waste repository in basalt. The model incorporates both sorption and desorption isotherm parameters measured previously for sorption of key radionuclides on the packing material component of the waste package. Sorption hysteresis as described by these isotherms lowered releases of some radionuclides by as much as two orders of magnitude. Radionuclides that have low molar inventories (relative to uranium), high solubility, and strongly sorbed, are most affected by sorption hysteresis. In these cases, almost the entire radionuclide inventory is sorbed on the packing material. The model can be used to help optimize the thickness of the packing material layer by comparing release rate versus packing material thickness curves with Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA) release limits

  16. Interim performance specifications for conceptual waste-package designs for geologic isolation in salt repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The interim performance specifications and data requirements presented apply to conceptual waste package designs for all waste forms which will be isolated in salt geologic repositories. The waste package performance specifications and data requirements respond to the waste package performance criteria. Subject areas treated include: containment and controlled release, operational period safety, criticality control, identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  17. Preclosure analysis of conceptual waste package designs for a nuclear waste repository in tuff

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Gregg, D.W.; Hockman, J.N.; Russell, E.W.; Stein, W.

    1984-01-01

    This report discusses the selection and analysis of conceptual waste package developed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for possible disposal of high-level nuclear waste at a candidate site at Yucca Mountain, Nevada. The design requirements that the waste package must conform to are listed, as are several desirable design considerations. Illustrations of the reference and alternative designs are shown. Four austenitic stainless steels (316L SS, 321 SS, 304L SS and Incoloy 825 high nickel alloy) have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and ecnonmic analyses supporting the selection of the conceptual waste package designs is included. Postclosure containment and release rates are not analyzed in this report

  18. Overview of hydrothermal testing of waste-package barrier materials at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1982-01-01

    The current Waste Package Department (WPD) hydrothermal testing program for the Basalt Waste Isolation Project (BWIP) has followed a systematic approach for the testing of waste-barrier-basalt interactions based on sequential penetration of barriers by intruding groundwaters. Present test activities in the WPD program have focused on determining radionuclide solubility limits (or steady-state conditions) of simulated waste forms and the long-term stability of waste package barriers under site-specific hydrothermal conditions. The resulting data on solution compositions and solid alteration products have been used to evaluate waste form degradation under conditions specific to a nuclear waste repository located in basalt (NWRB). Isothermal, time-invariant compositional data on sampled solutions have been coupled with realistic hydrologic flow data for near-field and far-field modeling for the calculation of meaningful radionuclide release rates. Radionuclides that are not strongly sorbed or precipitated from solution and that, therefore, may require special attention to ensure their isolation within the waste package have been identified. Taken together, these hydrothermal test data have been used to establish design requirements for waste packages located in basalt

  19. The Los Alamos National Laboratory Transuranic Waste Retireval Project

    International Nuclear Information System (INIS)

    Montoya, G.M.; Christensen, D.V.; Stanford, A.R.

    1997-01-01

    This paper presents the status of the Los Alamos National Laboratory (LANL) project for remediation of transuranic (TRU) and TRU mixed waste from Pads 1, 2, and 4. Some of the TRU waste packages retrieved from Pad I are anticipated to be part of LANL's initial inventory to be shipped to the Waste Isolation Pilot Plant (WIPP) in April 1998. The TRU Waste Inspectable Storage Project (TWISP) was initiated in February 1993 in response to the New Mexico Environment Department's (NMED's) Consent Agreement for Compliance Order, ''New Mexico Hazardous Waste Agreement (NMHWA) 93-03.'' The TWISP involves the recovery of approximately 16,865 TRU and TRU-mixed waste containers currently under earthen cover on Pads 1, 2, and 4 at Technical Area 54, Area G, and placement of that waste into inspectable storage. All waste will be moved into inspectable storage by September 30, 2003. Waste recovery and storage operations emphasize protection of worker safety, public health, and the environment

  20. Evaluation and compilation of DOE waste package test data: Biannual report, August 1986-January 1987

    International Nuclear Information System (INIS)

    Interrante, C.; Escalante, E.; Fraker, A.; Harrison, S.; Shull, R.; Linzer, M.; Ricker, R.; Ruspi, J.

    1987-10-01

    This report summarizes results of the National Bureau of Standards (NBS) evaluations of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Technical discussions are given for the corrosion of metals proposed for the canister, particularly carbon and stainless steels, and copper. In the section on tuff, the current level of understanding of several canister materials is questioned. Within the Basalt Waste Isolation Project (BWIP) section, discussions are given on problems concerning groundwater, materials for use in the metallic overpack, and diffusion through the packing. For the proposed salt site, questions are raised on the work on both ASTM A216 Steel and Ti-Code 12. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) is covered. NBS reviews of selected DOE technical reports and a summary of current waste-package activities of the Materials Characterization Center (MCC) is presented. Using a database management system, a computerized database for storage and retrieval of reviews and evaluations of HLW data has been developed and is described. 17 refs., 2 figs., 2 tabs

  1. Evaluation and compilation of DOE waste package test data: Biannual report, August 1986-January 1987

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.; Escalante, E.; Fraker, A.; Harrison, S.; Shull, R.; Linzer, M.; Ricker, R.; Ruspi, J.

    1987-10-01

    This report summarizes results of the National Bureau of Standards (NBS) evaluations of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Technical discussions are given for the corrosion of metals proposed for the canister, particularly carbon and stainless steels, and copper. In the section on tuff, the current level of understanding of several canister materials is questioned. Within the Basalt Waste Isolation Project (BWIP) section, discussions are given on problems concerning groundwater, materials for use in the metallic overpack, and diffusion through the packing. For the proposed salt site, questions are raised on the work on both ASTM A216 Steel and Ti-Code 12. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) is covered. NBS reviews of selected DOE technical reports and a summary of current waste-package activities of the Materials Characterization Center (MCC) is presented. Using a database management system, a computerized database for storage and retrieval of reviews and evaluations of HLW data has been developed and is described. 17 refs., 2 figs., 2 tabs.

  2. NNWSI waste form testing at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.; Abrajano, T.A. Jr.; Ebert, W.L.; Mazer, J.J.

    1988-11-01

    The Nevada Nuclear Waste Storage Investigation (NNWSI) Project is investigating the tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. As part of the waste package development portion of this project, experiments are being performed by the Chemical Technology Division of Argonne National Laboratory to study the behavior of the waste form under anticipated repository conditions. These experiments include the development and performance of a test to measure waste form behavior in unsaturated conditions and the performance of experiments designed to study the behavior of waste package components in an irradiated environment. Previous reports document developments in these areas through 1986. This report summarizes progress during the period January--June 1987, 19 refs., 17 figs., 20 tabs

  3. Development of package systems for miscellaneous Low Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Miyamoto, Keiji; Ishibashi, Hirohito; Tanaka, Toshiaki; Hirabayashi, Kiyoteru; Takeda, Tsuneo.

    1992-01-01

    The package system for miscellaneous Low Level Radioactive Waste (LLW) has been developed. This system is the combination of the steel drum with resin mortar linear and the fills with admixture. Resin mortars have better mechanical properties and water permeability resistance than other cement mortars. The high flowabilities and nonshrinkage of this fills give the very low gross void fraction of the system. Then, this combination gives strong containment ability of radionuclides. Consequently, this package system is promising candidate barrier for the containment of radionuclides from miscellaneous LLW. (author)

  4. Development of waste packages for TRU-disposal. 5. Development of cylindrical metal package for TRU wastes

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mizubayashi, Hiroshi; Asano, Hidekazu; Owada, Hitoshi; Otsuki, Akiyoshi

    2005-01-01

    Development of the TRU waste package for hulls and endpieces compression canisters, which include long-lived and low sorption nuclides like C-14 is essential and will contribute a lot to a reasonable enhancement of safety and economy of the TRU-disposal system. The cylindrical metal package made of carbon steel for canisters to enhance the efficiency of the TRU-disposal system and to economically improve their stacking conditions was developed. The package is a welded cylindrical construction with a deep drawn upper cover and a disc plate for a bottom cover. Since the welding is mainly made only for an upper cover and a bottom disc plate, this package has a better containment performance for radioactive nuclide and can reduce the cost for construction and manufacturing including its welding control. Furthermore, this package can be laid down in pile for stacking in the circular cross section disposal tunnel for the sedimentary rock, which can drastically minimize the space for disposal tunnel as mentioned previously in TRU report. This paper reports the results of the study for application of newly developed metal package into the previous TRU-disposal system and for the stacking equipment for the package. (author)

  5. Number of Waste Package Hit by Igneous Intrusion

    International Nuclear Information System (INIS)

    M. Wallace

    2004-01-01

    The purpose of this scientific analysis report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application (TSPA-LA) for the Yucca Mountain Project (YMP). Igneous activity is a disruptive event that is included in the TSPA-LA analyses. Two igneous activity scenarios are considered: (1) The igneous intrusion groundwater release scenario (also called the igneous intrusion scenario) considers the in situ damage to waste packages or failure of waste packages that occurs if they are engulfed or otherwise affected by magma as a result of an igneous intrusion. (2) The volcanic eruption scenario depicts the direct release of radioactive waste due to an intrusion that intersects the repository followed by a volcanic eruption at the surface. An igneous intrusion is defined as the ascent of a basaltic dike or dike system (i.e., a set or swarm of multiple dikes comprising a single intrusive event) to repository level, where it intersects drifts. Magma that does reach the surface from igneous activity is an eruption (or extrusive activity) (Jackson 1997 [DIRS 109119], pp. 224, 333). The objective of this analysis is to develop a probabilistic measure of the number of waste packages that could be affected by each of the two scenarios

  6. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    Science.gov (United States)

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Impacts of cathodic protection on waste package performance

    International Nuclear Information System (INIS)

    Atkins, J.E.; Lee, J.H.; Andrews, R.W.

    1996-01-01

    The current design concept for a multi-barrier waste container for the potential repository at Yucca Mountain, Nevada, calls for an outer barrier of 100 mm thick corrosion-allowance material (CAM) (carbon steel) and an inner barrier of 20 mm thick corrosion-resistant material (CRM) (Alloy 825). Fulfillment of the NRC subsystem requirements (10 CFR 60.113) of substantially complete containment and controlled release of radionuclides from the engineered barrier system (EBS) will rely mostly upon the robust waste container design, among other EBS components. In the current waste container design, some degree of cathodic protection of CRM will be provided by CAM. This paper discusses a sensitivity case study for the impacts of cathodic protection of the inner barrier by the outer barrier on the performance of waste package

  8. Waste Package Project quarterly report, July 1, 1995--September 30, 1995

    International Nuclear Information System (INIS)

    Ladkany, S.G.

    1995-01-01

    The following tasks are reported: overview and progress of nuclear waste package project and container design; nuclear waste container design considerations; structural investigation of multi purpose nuclear waste package canister; and design requirements of rock tunnel drift for long-term storage of high-level waste (faulted tunnel model study by photoelasticity/finite element analysis)

  9. Technical considerations for evaluating substantially complete containment of high-level waste within the waste package

    International Nuclear Information System (INIS)

    Manaktala, H.K.; Interrante, C.G.

    1990-12-01

    This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide ''substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig

  10. Behaviour face to packaging waste and drugs out of use

    OpenAIRE

    Nascimento, Luís; Taboada, Xavier; Cardoso, Marisa; Figueiredo, Laura; Lopes, Ivo; Torres, Rui

    2014-01-01

    According to Directive No. 2004/12/EC of 11 February, up to the present calendar year (2011 ), Portugal should meet established with respect to the recycling of packaging waste and discarded drug targets . For this, it is essential that the population has acquired over the past few years, the necessary information. So, for that it is important the active participation of everyone in this delivery, in places due to the effect . The objectives of this research consisted in knowing what they...

  11. EXTERNAL CRITICALITY CALCULATION FOR DOE SNF CODISPOSAL WASTE PACKAGES

    International Nuclear Information System (INIS)

    Radulescu, H.

    2002-01-01

    The purpose of this document is to evaluate the potential for criticality for the fissile material that could accumulate in the near-field (invert) and in the far-field (host rock) beneath the U.S. Department of Energy (DOE) spent nuclear fuel (SNF) codisposal waste packages (WPs) as they degrade in the proposed monitored geologic repository at Yucca Mountain. The scope of this calculation is limited to the following DOE SNF types: Shippingport Pressurized Water Reactor (PWR), Enrico Fermi, Fast Flux Test Facility (FFTF), Fort St. Vrain, Melt and Dilute, Shippingport Light Water Breeder Reactor (LWBR), N-Reactor, and Training, Research, Isotope, General Atomics reactor (TRIGA). The results of this calculation are intended to be used for estimating the probability of criticality in the near-field and in the far-field. There are no limitations on use of the results of this calculation. The calculation is associated with the waste package design and was developed in accordance with the technical work plan, ''Technical Work Plan for: Department of Energy Spent Nuclear Fuel and Plutonium Disposition Work Packages'' (Bechtel SAIC Company, LLC [BSC], 2002a). This calculation is subject to the Quality Assurance Requirements and Description (QARD) per the activity evaluation under work package number P6212310Ml in the technical work plan TWP-MGR-MD-0000 101 (BSC 2002a)

  12. Role of statistics in characterizing nuclear waste package behavior

    International Nuclear Information System (INIS)

    Bowen, W.M.

    1984-01-01

    The characterization of nuclear waste package behavior is primarily based on the outcome of laboratory tests, where components of a proposed waste package are either individually or simultaneously subjected to simulated repository conditions. At each step of a testing method, both controllable and uncontrollable factors contribute to the overall uncertainty in the final outcome of the test. If not dealt with correctly, these sources of uncertainty could obscure or distort important information that might otherwise be gleaned form the test data. This could result in misleading or erroneous conclusions about the behavior characteristic being studied. It could also preclude estimation of the individual contributions of the major sources of uncertainty to the overall uncertainty. Statistically designed experiments and sampling plans, followed by correctly applied statistical analysis and estimation methods will yield the most information possible for the time and resources spent on experimentation, and they can eliminate the above concerns. Conclusions reached on the basis of such information will be sound and defensible. This presentation is intended to emphasize the importance of correctly applied, theoretically sound statistical methodology in characterizing nuclear waste package behavior

  13. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  14. Radioactive waste package assay facility. Volume 3. Data processing

    International Nuclear Information System (INIS)

    Creamer, S.C.; Lalies, A.A.; Wise, M.O.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd, and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd, on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. Volume 3, describes the work carried out by Siemens Plessey Controls Ltd on the data-processing aspects of an integrated waste assay facility. It introduces the need for a mathematical model of the assay process and develops a deterministic model which could be tested using Harwell experimental data. Relevant nuclear reactions are identified. Full implementation of the model was not possible within the scope of the Harwell experimental work, although calculations suggested that the model behaved as predicted by theory. 34 figs., 52 refs., 5 tabs

  15. The Role of Packaging in Solid Waste Management 1966 to 1976.

    Science.gov (United States)

    Darnay, Arsen; Franklin, William E.

    The goals of waste processors and packagers obviously differ: the packaging industry seeks durable container material that will be unimpaired by external factors. Until recently, no systematic analysis of the relationship between packaging and solid waste disposal had been undertaken. This three-part document defines these interactions, and the…

  16. Shielding Calculations on Waste Packages – The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    OpenAIRE

    Adams Mike; Smalian Silva

    2017-01-01

    For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like “Monte-Carlo N-Particle Transport Code System” (MCNP®) on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The prob...

  17. National index of radioactive wastes

    International Nuclear Information System (INIS)

    1995-01-01

    According to the 30 th december 1991 law, ANDRA is the public authority in charge of indexing the state and localisation of all the nuclear wastes existing on national territory. This index is the third edition of the resulting file. (D.L.)

  18. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Tang

    2001-05-03

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated.

  19. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    International Nuclear Information System (INIS)

    J.S. Tang

    2001-01-01

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated

  20. Solvent extraction as additional purification method for postconsumer plastic packaging waste

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Jansen, M.

    2011-01-01

    An existing solvent extraction process currently used to convert lightly polluted post-industrial packaging waste into high quality re-granulates was tested under laboratory conditions with highly polluted post-consumer packaging waste originating from municipal solid refuse waste. The objective was

  1. National perspective on waste management

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1980-01-01

    Sources of nuclear wastes are listed and the quantities of these wastes per year are given. Methods of processing and disposing of mining and milling wastes, low-level wastes, decommissioning wastes, high-level wastes, reprocessing wastes, spent fuels, and transuranic wastes are discussed. The costs and safeguards involved in the management of this radioactive wastes are briefly covered in this presentation

  2. Vertical Drop Of 21-PWR Waste Package On Unyielding Surface

    International Nuclear Information System (INIS)

    S. Mastilovic; A. Scheider; S.M. Bennett

    2001-01-01

    The objective of this calculation is to determine the structural response of a 21-PWR (pressurized-water reactor) Waste Package (WP) subjected to the 2-m vertical drop on an unyielding surface at three different temperatures. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities in two different WP components. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only

  3. Thermomechanical scoping calculations for the waste package environment tests

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Yow, J.L. Jr.

    1986-03-01

    During the site characterization phase of the Nevada Nuclear Waste Storage Investigation Project, tests are planned to provide field information on the hydrological and thermomechanical environment. These results are needed for assessing performance of stored waste packages emplaced at depth in excavations in a rock mass. Scoping calculations were performed to provide information on displacements and stress levels attained around excavations in the rock mass from imposing a thermal load designed to simulate the heat produced by radioactive decay. In this way, approximate levels of stresses and displacements are available for choosing instrumentation type and sensitivity as well as providing indications for optimizing instrument emplacement during the test. 7 refs., 9 figs., 1 tab

  4. Estimation of waste package performance requirements for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Wood, B.J.

    1980-07-01

    A method of developing waste package performance requirements for specific nuclides is described, and based on federal regulations concerning permissible concentrations in solution at the point of discharge to the accessible environment, a simple and conservative transport model, and baseline and potential worst-case release scenarios

  5. Evaluation and compilation of DOE waste package test data: Biannual report, August 1987--January 1988

    International Nuclear Information System (INIS)

    Interrante, C.; Escalante, E.; Fraker, A.; Ondik, H.; Plante, E.; Ricker, R.; Ruspi, J.

    1988-08-01

    This report summarizes results of the National Bureau of Standards (NBS) evaluations on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Since enactment of the Budget Reconciliation Act for Fiscal Year 1988, the Yucca Mountain, Nevada, site (in which tuff is the geologic medium) is the only site that will be characterized for use as high-level nuclear waste repository. During the reporting period of August 1987 to January 1988, five reviews were completed for tuff, and these were grouped into the categories: ferrous alloys, copper, groundwater chemistry, and glass. Two issues are identified for the Yucca Mountain site: the approach used to calculate corrosion rates for ferrous alloys, and crevice corrosion was observed in a copper-nickel alloy. Plutonium can form pseudo-colloids that may facilitate transport. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) and activities of the DOE Materials Characterization Center (MCC) for the 6-month reporting period are also included. 27 refs., 3 figs

  6. Behaviour Test with the Leaching of a Waste package

    International Nuclear Information System (INIS)

    Fischer, G.R

    1999-01-01

    bibliographic data.With the whole coefficients it was made a prediction about the time involved until the total release of the radionuclides. This work is being developed by the Radioactive Waste Management Division of Cnea and it has been included in a contract with the IAEA, which also studies the changes on the mechanical resistance of the waste package,so as the release of gases from organic wastes and the container corrosion

  7. Proceedings of the 1981 National Waste Terminal Storage Program information meeting

    International Nuclear Information System (INIS)

    1981-11-01

    Separate abstracts have been prepared for each of the following sixteen sections: Overview of the National Waste Terminal Storage Program; Site Characterization; Repository Development; Regulatory Framework; Systems; Socioeconomic Evaluation; Site Screening/Characterization Support Activities; Repository Data Base Development; Regulatory Implementation; Systems Performance Assessment; Sociopolitical Initiatives; Earth Sciences; International Waste Management; Waste Package Development; Quality Assurance; and Overviews of NWTS Projects

  8. Thermal Response of the 21-PWR Waste Package to a Fire Accident

    International Nuclear Information System (INIS)

    F.P. Faucher; H. Marr; M.J. Anderson

    2000-01-01

    The objective of this calculation is to evaluate the thermal response of the 21-PWR WP (pressurized water reactor waste package) to the regulatory fire event. The scope of this calculation is limited to the two-dimensional waste package temperature calculations to support the waste package design. The information provided by the sketches attached to this calculation (Attachment IV) is that of the potential design of the type of waste package considered in this calculation. The procedure AP-3.12Q.Calculations (Reference 1), and the Development Plan (Reference 24) are used to develop this calculation

  9. Thermal Response of the 21-PWR Waste Package to a Fire Accident

    Energy Technology Data Exchange (ETDEWEB)

    F.P. Faucher; H. Marr; M.J. Anderson

    2000-10-03

    The objective of this calculation is to evaluate the thermal response of the 21-PWR WP (pressurized water reactor waste package) to the regulatory fire event. The scope of this calculation is limited to the two-dimensional waste package temperature calculations to support the waste package design. The information provided by the sketches attached to this calculation (Attachment IV) is that of the potential design of the type of waste package considered in this calculation. The procedure AP-3.12Q.Calculations (Reference 1), and the Development Plan (Reference 24) are used to develop this calculation.

  10. Analysis of Ecodesign Implementation and Solutions for Packaging Waste System by Using System Dynamics Modeling

    Science.gov (United States)

    Berzina, Alise; Dace, Elina; Bazbauers, Gatis

    2010-01-01

    This paper discusses the findings of a research project which explored the packaging waste management system in Latvia. The paper focuses on identifying how the policy mechanisms can promote ecodesign implementation and material efficiency improvement and therefore reduce the rate of packaging waste accumulation in landfill. The method used for analyzing the packaging waste management policies is system dynamics modeling. The main conclusion is that the existing legislative instruments can be used to create an effective policy for ecodesign implementation but substantially higher tax rates on packaging materials and waste disposal than the existing have to be applied.

  11. Hanford high-level waste melter system evaluation data packages

    International Nuclear Information System (INIS)

    Elliott, M.L.; Shafer, P.J.; Lamar, D.A.; Merrill, R.A.; Grunewald, W.; Roth, G.; Tobie, W.

    1996-03-01

    The Tank Waste Remediation System is selecting a reference melter system for the Hanford High-Level Waste vitrification plant. A melter evaluation was conducted in FY 1994 to narrow down the long list of potential melter technologies to a few for testing. A formal evaluation was performed by a Melter Selection Working Group (MSWG), which met in June and August 1994. At the June meeting, MSWG evaluated 15 technologies and selected six for more thorough evaluation at the Aug. meeting. All 6 were variations of joule-heated or induction-heated melters. Between the June and August meetings, Hanford site staff and consultants compiled data packages for each of the six melter technologies as well as variants of the baseline technologies. Information was solicited from melter candidate vendors to supplement existing information. This document contains the data packages compiled to provide background information to MSWG in support of the evaluation of the six technologies. (A separate evaluation was performed by Fluor Daniel, Inc. to identify balance of plant impacts if a given melter system was selected.)

  12. Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package

    International Nuclear Information System (INIS)

    Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

    1985-10-01

    This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document

  13. Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package

    Energy Technology Data Exchange (ETDEWEB)

    Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

    1985-10-01

    This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document.

  14. Radioactive material package testing capabilities at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-01-01

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia's facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns

  15. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.; Capron, J.M.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes

  16. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel and J. M. Capron

    2007-07-25

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  17. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    Energy Technology Data Exchange (ETDEWEB)

    González Pericot, N., E-mail: natalia.gpericot@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Villoria Sáez, P., E-mail: paola.villoria@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Del Río Merino, M., E-mail: mercedes.delrio@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Liébana Carrasco, O., E-mail: oscar.liebana@uem.es [Escuela de Arquitectura, Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón (Spain)

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  18. Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris

  19. Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview

    International Nuclear Information System (INIS)

    Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

    1982-02-01

    In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified

  20. Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

    1982-02-01

    In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified.

  1. Depleted uranium oxides as spent-nuclear-fuel waste-package fill materials

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1997-01-01

    Depleted uranium dioxide fill inside the waste package creates the potential for significant improvements in package performance based on uranium geochemistry, reduces the potential for criticality in a repository, and consumes DU inventory. As a new concept, significant uncertainties exist: fill properties, impacts on package design, post- closure performance

  2. Safety evaluation for packaging (onsite) for the Pacific Northwest National Laboratory HEPA filter box

    International Nuclear Information System (INIS)

    McCoy, J.C.

    1998-01-01

    This safety evaluation for packaging (SEP) evaluates and documents the safe onsite transport of eight high-efficiency particulate air (HEPA) filters in the Pacific Northwest National Laboratory HEPA Filter Box from the 300 Area of the Hanford Site to the Central Waste Complex and on to burial in the 200 West Area. Use of this SEP is authorized for 1 year from the date of release

  3. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  4. UCF WASTE PACKAGE SHIELDING ANALYSIS/2-D DORT (SCPB: N/A)

    International Nuclear Information System (INIS)

    Skulina, D.J.

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the dose rates from the UCF waste packages to be used by the EBS and other repository systems to incorporate ALARA practices in the overall repository design in compliance with the goals of the Waste Package Implementation Plan for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objectives of this evaluation are (1) to show the dose rate as a function of distance from the waste package surface and (2) to provide the shielding thicknesses required for the waste package transporter to meet a 10 mr/hr target dose rate at 2 meters from the transporter surface

  5. The ATB-8K packaging for transport of radioactive waste in Sweden

    International Nuclear Information System (INIS)

    Michels, L.; Dybeck, P.

    1998-01-01

    The ATB-8K container has been developed on behalf of SKB, the Swedish nuclear fuel and waste management organization, to transport large volumes of radioactive waste conditioned in moulds and drums, or large size scrap components, from nuclear facilities to the Swedish Final Repository for radioactive waste (SFR). In most cases the waste is under LSA form, but when the dose rate at 3 meters from the unshielded object exceeds 10 mSv/h, the transport packaging must been the regulatory requirements applicable to type B(U) packages, with no fissile content. Considering the dose rate around the package, it will be transported under exclusive use. The ATB-8k packaging is therefore a type B(U) packaging, specially designed for the transportation of high activity conditioned waste. (authors)

  6. Safety analysis report for packaging (onsite) for the Waste Encapsulation and Storage Facility ion exchange module

    International Nuclear Information System (INIS)

    Romano, T.

    1997-01-01

    The Waste Encapsulation and Storage Facility (WESF) is in need of providing an emergency ion exchange system to remove cesium or strontium from the pool cell in the event of a capsule failure. The emergency system is call the WESF Emergency Ion Exchange System and the packaging is called the WESF ion exchange module (WIXM). The packaging system will meet the onsite transportation requirements for a Type B, highway route controlled quantity package as well as disposal requirements for Category 3 waste

  7. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  8. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  9. Data Packages for the Hanford Immobilized Low Activity Tank Waste Performance Assessment 2001 Version [SEC 1 THRU 5

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-03-02

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided.

  10. Ceramic package fabrication for YMP nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Wilfinger, K.

    1994-08-01

    The purpose of this work is to develop alternate materials/design concepts to metal barriers for the Nevada Nuclear Waste Storage Investigations Project. There is some potential that site conditions may prove to be too aggressive for successful employment of the metal alloys under current consideration or that performance assessment models will predict metal container degradation rates that are inconsistent with the goal of substantially complete containment included in the NRC regulations. In the event that the anticipated lifetimes of metal containers are considered inadequate, alternate materials (i.e. ceramics or ceramic/metal composites) will be chosen due to superior corrosion resistance. This document was prepared using information taken from the open literature, conversations and correspondence with vendors, news releases and data presented at conferences to determine what form such a package might take. This discussion presents some ceramic material selection criteria, alternatives for the materials which might be used and alternatives for potential fabrication routes. This includes {open_quotes}stand alone{close_quotes} ceramic components and ceramic coatings/linings for metallic structures. A list of companies providing verbal or written information concerning the production of ceramic or ceramic lined waste containers appears at the end of this discussion.

  11. Application of systems engineering to determine performance requirements for repository waste packages

    International Nuclear Information System (INIS)

    Aitken, E.A.; Stimmell, G.L.

    1987-01-01

    The waste package for a nuclear waste repository in salt must contribute substantially to the performance objectives defined by the Salt Repository Project (SRP) general requirements document governing disposal of high-level waste. The waste package is one of the engineered barriers providing containment. In establishing the performance requirements for a project focused on design and fabrication of the waste package, the systems engineering methodology has been used to translate the hierarchy requirements for the repository system to specific performance requirements for design and fabrication of the waste package, a subsystem of the repository. This activity is ongoing and requires a methodology that provides traceability and is capable of iteration as baseline requirements are refined or changed. The purpose of this summary is to describe the methodology being used and the way it can be applied to similar activities in the nuclear industry

  12. Aging and Phase Stability of Waste Package Outer Barrier

    International Nuclear Information System (INIS)

    F. Wong

    2004-01-01

    This report was prepared in accordance with ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 22, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate. The aging and phase stability model, which is based on fundamental thermodynamic and kinetic concepts and principles, will be used to provide predictive insight into the long-term metallurgical stability of Alloy 22 under relevant repository conditions. The results of this model are used by ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' as reference-only information. These phase stability studies are currently divided into three general areas: Tetrahedrally close-packed (TCP) phase and carbide precipitation in the base metal; TCP and carbide precipitation in welded samples; and Long-range ordering reactions. TCP-phase and carbide precipitates that form in Alloy 22 are generally rich in chromium (Cr) and/or molybdenum (Mo) (Raghavan et al. 1984 [DIRS 154707]). Because these elements are responsible for the high corrosion resistance of Alloy 22, precipitation of TCP phases and carbides, especially at grain boundaries, can lead to an increased susceptibility to localized corrosion in the alloy. These phases are brittle and also tend to embrittle the alloy (Summers et al. 1999 [DIRS 146915]). They are known to form in Alloy 22 at temperatures greater than approximately 600 C. Whether these phases also form at the lower temperatures expected in the repository during the 10,000-year regulatory period must be determined. The kinetics of this precipitation will be determined for both the base metal and the weld heat-affected zone (HAZ). The TCP phases (P, μ, and σ) are present in

  13. Development of characterization methods applied to radioactive wastes and waste packages

    International Nuclear Information System (INIS)

    Guy, C.; Bienvenu, Ph.; Comte, J.; Excoffier, E.; Dodi, A.; Gal, O.; Gmar, M.; Jeanneau, F.; Poumarede, B.; Tola, F.; Moulin, V.; Jallu, F.; Lyoussi, A.; Ma, J.L.; Oriol, L.; Passard, Ch.; Perot, B.; Pettier, J.L.; Raoux, A.C.; Thierry, R.

    2004-01-01

    This document is a compilation of R and D studies carried out in the framework of the axis 3 of the December 1991 law about the conditioning and storage of high-level and long lived radioactive wastes and waste packages, and relative to the methods of characterization of these wastes. This R and D work has permitted to implement and qualify new methods (characterization of long-lived radioelements, high energy imaging..) and also to improve the existing methods by lowering detection limits and reducing uncertainties of measured data. This document is the result of the scientific production of several CEA laboratories that use complementary techniques: destructive methods and radiochemical analyses, photo-fission and active photonic interrogation, high energy imaging systems, neutron interrogation, gamma spectroscopy and active and passive imaging techniques. (J.S.)

  14. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages

    Science.gov (United States)

    Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  15. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    International Nuclear Information System (INIS)

    Calmus, D.B.

    1994-01-01

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length

  16. 10 CFR 60.135 - Criteria for the waste package and its components.

    Science.gov (United States)

    2010-01-01

    ... Section 60.135 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste package and its interactions with the emplacement environment do not compromise the function of the waste...

  17. ECONOMIC AND ENVIRONMENTAL EFFECTS OF COLLECTION AND PRIMARY RECYCLING OF PACKAGING WASTE FROM HYGIENE AND CLEANING PRODUCTS IN SERBIA

    OpenAIRE

    Žarko Vranjanac; Dragan Spasić

    2017-01-01

    Collection and primary recycling of packaging waste from hygiene and cleaning products occupy an important place in an integral waste management system. It is a fact that management of such waste helps reduce negative economic and environmental impact on one hand and helps bring direct and indirect benefits from collection and primary recycling of the packaging waste on the other hand. In order to obtain more comprehensive data on the economic effects of management of packaging waste fr...

  18. Life cycle assessment of a packaging waste recycling system in Portugal.

    Science.gov (United States)

    Ferreira, S; Cabral, M; da Cruz, N F; Simões, P; Marques, R C

    2014-09-01

    Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called "Baseline" scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called "Incineration" scenario) or to landfill ("Landfill" scenario). Overall, the results show that the "Baseline" scenario is more environmentally sound than the hypothetical scenarios. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. National Syrian Program for Radioactive Waste Management

    International Nuclear Information System (INIS)

    Othman, I.; Takriti, S.

    2009-06-01

    A national plan for radioactive waste management has been presented. It includes identifying, transport, recording, classifying, processing and disposal. It is an important reference for radioactive waste management for those dealing with radioactive waste, and presents a complete protection to environemnt and people. (author)

  20. Criticality Potential of Waste Packages Containing DOE SNF Affected by Igneous Intrusion

    International Nuclear Information System (INIS)

    D.S. Kimball; C.E. Sanders

    2006-01-01

    The Department of Energy (DOE) is currently preparing an application to submit to the U.S. Nuclear Regulatory Commission for a construction authorization for a monitored geologic repository. The repository will contain spent nuclear fuel (SNF) and defense high-level waste (DHLW) in waste packages placed in underground tunnels, or drifts. The primary objective of this paper is to perform a criticality analysis for waste packages containing DOE SNF affected by a disruptive igneous intrusion event in the emplacement drifts. The waste packages feature one DOE SNF canister placed in the center and surrounded by five High-Level Waste (HLW) glass canisters. The effective neutron multiplication factor (k eff ) is determined for potential configurations of the waste package during and after an intrusive igneous event. Due to the complexity of the potential scenarios following an igneous intrusion, finding conservative and bounding configurations with respect to criticality requires some additional considerations. In particular, the geometry of a slumped and damaged waste package must be examined, drift conditions must be modeled over a range of parameters, and the chemical degradation of DOE SNF and waste package materials must be considered for the expected high temperatures. The secondary intent of this calculation is to present a method for selecting conservative and bounding configurations for a wide range of end conditions

  1. Draft Technical Position Subtask 1.1: waste package performance after repository closure. Volume 1

    International Nuclear Information System (INIS)

    Davis, M.S.; Schweitzer, D.G.

    1983-08-01

    This document provides guidance to the DOE on the issues and information necessary for the NRC to evaluate waste package performance after repository closure. Minimal performance objectives of the waste package are required by proposed 10 CFR 60. This Draft Technical Position describes the various options available to the DOE for compliance and discusses advantages and disadvantages of various choices. Examples are discussed dealing with demonstrability, predictability and reasonable assurance. The types of performance are considered. The document summarizes presently identified high priority issues needed to evaluate waste package performance after repository closure. 20 references, 7 tables

  2. The treatment and packaging of waste plutonium and waste actinides for disposal

    International Nuclear Information System (INIS)

    Taylor, R.F.

    1988-07-01

    The objectives of this work have been to review the current state of knowledge on the treatment and packaging of unusable or surplus plutonium and other waste actinides for disposal and to identify any gaps in data essential for the development of a preferred route. The exercise was based on published data which said the quantity currently to be disposed of was 50 tonnes in oxide form. A literature review over the period 1978 to 1988 was carried out and a computerised database specific to the exercise was created. From this it is concluded that there are no insuperable problems to the formulation of a disposal route although there is none currently proven. The preferred wasteform would be a glass or synthetic rock. The major complication lies in the fissile nature of plutonium which dictates limits to the package size and places restrictions on the production and disposal routes. Additional work necessary to permit a final decision is listed. (author)

  3. Radioactive waste package assay facility. Final report - V. A

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Strachan, N.R.; Findlay, D.J.S.; Wise, M.O.; Forrest, K.R.; Rogers, J.D.

    1993-01-01

    This report provides a summary of research work carried out in support of the development of an integrated assay system for the quality checking of Intermediate Level Waste encapsulated in cement. Four non-destructive techniques were originally identified as being viable methods for obtaining radiometric inventory data from a cemented 500 litre ILW package. The major part of the programme was devoted to the development of two interrogation techniques; active neutron for measuring the total fissile content and active gamma for measuring the total actinide content. An electron linear accelerator was used to supply the interrogating beam for these two methods. In addition the linear accelerator beam could be used for high energy radiography. The results of this work are described and the performances and limitations of the non-destructive methods are summarised. The main engineering and operational features which influence the design of an integrated assay facility are outlined and a conceptual layout for a facility to inspect 750 ILW drums a year is described. Details of the detection methods, data processing and potential application of the assay facility are given in three associated HMIP reports. (Author)

  4. FABRICATION AND DEPLOYMENT OF THE 9979 TYPE AF RADIOACTIVE WASTE PACKAGING FOR THE DEPARTMENT OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.; Eberl, K.

    2013-10-10

    This paper summarizes the development, testing, and certification of the 9979 Type A Fissile Packaging that replaces the UN1A2 Specification Shipping Package eliminated from Department of Transportation (DOT) 49 CFR 173. The DOT Specification Package was used for many decades by the U.S. nuclear industry as a fissile waste container until its removal as an authorized container by DOT. This paper will discuss stream lining procurement of high volume radioactive material packaging manufacturing, such as the 9979, to minimize packaging production costs without sacrificing Quality Assurance. The authorized content envelope (combustible and non-combustible) as well as planned content envelope expansion will be discussed.

  5. HORIZONTAL LIFTING OF 5 DHLW/DOE LONG, 12-PWR LONG AND 24-BWR WASTE PACKAGES

    International Nuclear Information System (INIS)

    V. de la Brosse

    2001-01-01

    The objective of this calculation was to determine the structural response of a 12-Pressurized Water Reactor (PWR) Long, a 24-Boiling Water Reactor (BWR) and a 5-Defense High Level Waste/Department of Energy (DHLW/DOE)--Long spent nuclear fuel waste packages lifted in a horizontal position. The scope of this calculation was limited to reporting the calculation results in terms of maximum stress intensities in the trunnion collar sleeves. In addition, the maximum stress intensities in the inner and outer shells of the waste packages were presented for illustrative purposes. The information provided by the sketches (Attachments I, II and III) is that of the potential design of the types of waste packages considered in this calculation, and all obtained results are valid for these designs only. This calculation is associated with the waste package design and was performed by the Waste Package Design Section in accordance with the ''Technical work plan for: Waste Package Design Description for LA'' (Ref. 7). AP-3.12Q, Calculations (Ref. 13), was used to perform the calculation and develop the document

  6. Scientific investigation plan for NNWSI WBS element 1.2.2.5.L: NNWSI waste package performance assessment: Revision 1

    International Nuclear Information System (INIS)

    Eggert, K.G.; O'Connell, W.J.; Lappa, D.A.

    1986-01-01

    Waste package performance assessment contains three broad categories of activities. These activities are: (1) development of a hydrothermal flow and transport model to test concepts to be used in establishing boundary conditions for performance calculations, and to interface EBS release calculations with total system performance calculations; (2) development of a waste package systems model to provide integrated deterministic assessments of performance and analyses of waste package designs; and (3) development of an uncertainty methodology for combination with the system model to perform probabilistic reliability and performance analysis waste package designs. The first category contains activities that aid in determining the scope of a separate, simplified set of hydrologic calculations needed to characterize the waste package environment for performance assessment calculations. The last two activity categories are directly concerned with waste package performance calculations. A rationale for each activity under these groups is presented. All of the activities of performance assessment are either code development or analyses of waste package problems

  7. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  8. Model for the separate collection of packaging waste in Portuguese low-performing recycling regions.

    Science.gov (United States)

    Oliveira, V; Sousa, V; Vaz, J M; Dias-Ferreira, C

    2017-04-30

    Separate collection of packaging waste (glass; plastic/metals; paper/cardboard), is currently a widespread practice throughout Europe. It enables the recovery of good quality recyclable materials. However, separate collection performance are quite heterogeneous, with some countries reaching higher levels than others. In the present work, separate collection of packaging waste has been evaluated in a low-performance recycling region in Portugal in order to investigate which factors are most affecting the performance in bring-bank collection system. The variability of separate collection yields (kg per inhabitant per year) among 42 municipalities was scrutinized for the year 2015 against possible explanatory factors. A total of 14 possible explanatory factors were analysed, falling into two groups: socio-economic/demographic and waste collection service related. Regression models were built in an attempt to evaluate the individual effect of each factor on separate collection yields and predict changes on the collection yields by acting on those factors. The best model obtained is capable to explain 73% of the variation found in the separate collection yields. The model includes the following statistically significant indicators affecting the success of separate collection yields: i) inhabitants per bring-bank; ii) relative accessibility to bring-banks; iii) degree of urbanization; iv) number of school years attended; and v) area. The model presented in this work was developed specifically for the bring-bank system, has an explanatory power and quantifies the impact of each factor on separate collection yields. It can therefore be used as a support tool by local and regional waste management authorities in the definition of future strategies to increase collection of recyclables of good quality and to achieve national and regional targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    International Nuclear Information System (INIS)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs

  10. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs.

  11. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  12. Integrated performance assessment model for waste policy package behavior and radionuclide release

    International Nuclear Information System (INIS)

    Kossik, R.; Miller, I.; Cunnane, M.

    1992-01-01

    Golder Associates Inc. (GAI) has developed a probabilistic total system performance assessment and strategy evaluation model (RIP) which can be applied in an iterative manner to evaluate repository site suitability and guide site characterization. This paper describes one component of the RIP software, the waste package behavior and radionuclide release model. The waste package component model considers waste package failure by various modes, matrix alteration/dissolution, and radionuclide mass transfer. Model parameters can be described as functions of local environmental conditions. The waste package component model is coupled to component models for far-field radionuclide transport and disruptive events. The model has recently been applied to the proposed repository at Yucca Mountain

  13. Integrated performance assessment model for waste package behavior and radionuclide release

    International Nuclear Information System (INIS)

    Kossik, R.; Miller, I.; Cunnane, M.

    1992-01-01

    Golder Associates Inc. (GAI) has developed a probabilistic total system performance assessment and strategy evaluation model (RIP) which can be applied in an iterative manner to evaluate repository site suitability and guide site characterization. This paper describes one component of the RIP software, the waste package behavior and radionuclide release model. The waste package component model considers waste package failure by various modes, matrix alteration/dissolution, and radionuclide mass transfer. Model parameters can be described as functions of local environmental conditions. The waste package component model is coupled to component models for far-field radionuclide transport and disruptive events. The model has recently been applied to the proposed repository at Yucca Mountain

  14. 78 FR 1881 - Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's...

    Science.gov (United States)

    2013-01-09

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-838] Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's Determination Not To Review Initial Determinations Granting Complainant's Motions To Partially Terminate the Investigation and To Withdraw the...

  15. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  16. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  17. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  18. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  19. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    International Nuclear Information System (INIS)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ''unpackaged'' volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste

  20. Yucca Mountain Project waste package design for MRS [Monitored Retrievable Storage] system studies

    International Nuclear Information System (INIS)

    Nelson, T.; Russell, E.; Johnson, G.L.; Morissette, R.; Stahl, D.; LaMonica, L.; Hertel, G.

    1989-04-01

    This report, prepared by the Yucca Mountain Project, is the report for Task E of the MRS System Study. A number of assumptions were necessary prior to initiation of this system study. These assumptions have been defined in Section 2 for the packaging scenarios, the waste forms, and the waste package concepts and materials. Existing concepts were utilized because of schedule constraints. Section 3 provides a discussion of sensitivity considerations regarding the impact of different assumptions on the overall result of the system study. With the exception of rod consolidation considerations, the system study should not be sensitive to the parameters assumed for the waste package. The current reference waste package materials and concepts are presented in Section 4. Although stainless steel is assumed for this study, a container material has not yet been selected for Advanced Conceptual Design (ACD) from the six candidates currently under study. Section 5 discusses the current thinking for possible alternate waste package materials and concepts. These concepts are being considered in the event that the waste package emplacement environment is more severe than is currently anticipated. Task E also provides a concept in Section 6 for an MRS canister to contain consolidated fuel for storage at the MRS and eventual shipment to the repository. 5 refs., 14 figs., 10 tabs

  1. The packaging and transport of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Grover, J.R.; Price, M.S.T.

    1985-01-01

    Up to the present time, the majority of the radioactive waste which has been transported in the United Kingdom has been low level waste for disposal in the trenches of the shallow burial site operated by British Nuclear Fuels plc at Drigg and also the packaged waste destined for sea disposal in the annual operation. However, the main bulk of the low and intermediate level wastes which have been generated over the last quarter century remain in store at the various nuclear sites where it originated. Before significant packaging and transport of intermediate level wastes takes place it is desirable to examine the sources and types of wastes, the immobilisation and packaging processes and plants, the transport, and the problems of handling of packages at future land repositories. Optimisation of the packaging and transport must take account of both the upstream and downstream con=straints as well as the implications of complying with both the IAEA Transport Regulations and radiological protection guidelines. Packages for sea disposal must in addition comply with the requirements of the London Dumping Convention and the NEA guidelines. (author)

  2. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  3. Evaluation and compilation of DOE waste package test data; Volume 8: Biannual report, August 1989--January 1990

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.G. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Fraker, A.C.; Escalante, E. [National Inst. of Standards and Technology (MSEL), Gaithersburg, MD (United States). Metallurgy Div.

    1993-06-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of some of the Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, August 1989--January 1990. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Short discussions are given relating to the publications reviewed and complete reviews and evaluations are included. Reports of other work are included in the Appendices.

  4. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  5. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  6. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  7. Options for reducing food waste by ‘Quality Controlled Logistics’ using intelligent packaging along the supply chain

    NARCIS (Netherlands)

    Heising, J.K.; Claassen, G.D.H.; Dekker, M.

    2017-01-01

    Optimizing supply chain management can help to reduce food waste. This article describes how intelligent packaging can be used to reduce food waste when used in supply chain management based on Quality Controlled Logistics (QCL). Intelligent packaging senses compounds in the package that correlate

  8. ''We crash, burn, and crush'': A history of packaging at Sandia National Laboratories, 1978 -1997

    International Nuclear Information System (INIS)

    Mora, C.J.; McConnell, P.

    1997-11-01

    Even prior to the beginning of the nuclear age, the packaging and transportation of nuclear materials was a prime national concern. Nuclear materials such as uranium and plutonium had to be transported safely (and secretly) to the Manhattan Engineer District Laboratory in Los Alamos, New Mexico. The subsequent post war use of nuclear power for the generation of electricity and accelerated weapons development programs resulted in radioactive waste byproducts, such as spent fuel and plutonium, that were stored on site at utilities and federal weapons sites. While projected repositories for long term storage of radioactive waste are being planned, both low and high level radioactive materials on occasion must be moved safely. Movement to interim storage and, for low level waste, repository sites, is accomplished by a combination of truck, rail, ship, and air. The US Department of Energy (DOE) directs transportation activities including cask development technology for use in single or multimodal (a combination of land, water, and air) transport. In 1978, Sandia National Laboratories was selected as the lead contractor for basic transportation technology. This report is divided into the following topics: (1) early research and development (1936--1978); (2) radioactive material package test (1975--1977); (3) the SNL Transportation Technology Center; (4) TRUPACT-II; (5) beneficial uses of shipping system casks; (6) C-141B drop tests; (7) MIDAS; (8) MOSAIK; (9) SEARAM; (10) PATRAM; and (11) a chronology of transportation activities

  9. Dual Use Packaging, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA calculation that over a kg of packaging waste are generated per day for a 6 member crew. This represents over 1.5 metric tons of waste during a Mars mission....

  10. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Proctor, M.L.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the 'metal line' of the P-10 Tritium Separation Project.

  11. Radioactivity evaluation method for pre-packed concrete packages of low-level dry active wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Toshiaki [Tokyo Electric Power Co., Inc. (Japan); Funahashi, Tetsuo; Watabe, Kiyomi; Ozawa, Yukitoshi; Kashiwagi, Makoto

    1998-09-01

    Low-level dry active wastes of nuclear power plants are grouted with cement mortal in a container and planned to disposed into the shallow land disposal site. The characteristics of radionuclides contained in dry active wastes are same as homogeneous solidified wastes. In the previous report, we reported the applicability of the radioactivity evaluation methods established for homogeneous solidified wastes to pre-packed concrete packages. This report outlines the developed radioactivity evaluation methods for pre-packed concrete packages based upon recent data. Since the characteristics of dry active wastes depend upon the plant system in which dry active wastes originate and the types of contamination, sampling of wastes and activity measurement were executed to derive scaling factors. The radioactivity measurement methods were also verified. The applicability of non-destructive methods to measure radioactivity concentration of pre-packed concrete packages was examined by computer simulation. It is concluded that those methods are accurate enough to measure actual waste packages. (author)

  12. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. L. Proctor

    2006-06-13

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the "metal line" of the P-10 Tritium Separation Project.

  13. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  14. Understanding the National Domestic Waste Collection Standards

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2011-05-01

    Full Text Available The Department of Environmental Affairs with the assistance of the CSIR, developed the National Domestic Waste Collection Standards, which contain a range of service standards appropriate to different contexts. The standards, which came into effect...

  15. Synthesis of knowledge on the long-term behaviour of concretes. Applications to cemented waste packages

    International Nuclear Information System (INIS)

    Richet, C.; Galle, C.; Le Bescop, P.; Peycelon, H.; Bejaoui, S.; Tovena, I.; Pointeau, I.; L'Hostis, V.; Levera, P.

    2004-03-01

    As stipulated in the former law of December 91 relating to 'concrete waste package', a progress report (phenomenological reference document) was first provided in 1999. The objective was to make an assessment of the knowledge acquired on the long-term behaviour of cement-based waste packages in the context of deep disposal and/or interim storage. The present document is an updated summary report. It takes into account a new knowledge assessment, considers coupled mechanisms and should contribute to the first performance studies (operational calculations). Handling and radio-nuclides (RN) confinement are the two major functional properties requested from the concrete used for the waste packages. In unsaturated environment (interim storage/disposal prior to closing), the main problem is the generation of cracks in the material. This aspect is a key parameter from the mechanical point of view (retrievability). It can have a major impact on the disposal phase (confinement). In saturated environment (disposal post-closing phase), the main concern is the chemical degradation of the waste package concrete submitted to underground waters leaching. In this context, the major thema are: the durability of the concretes under water (chemical degradation) and in unsaturated medium (corrosion of reinforcement), matter transport, RN retention, chemistry / transport / mechanical couplings. On the other hand, laboratory data on the behaviour of concretes are used to evaluate the RN source term of waste packages in function of time (concrete waste package OPerational Model, i.e. 'Concrete MOP'). The 'MOP' provides the physico-chemical description of the RN release in relationship with the waste package degradation itself. This description is based on simplified phenomenology for which only dimensioning mechanisms are taken into account. The use of Diffu-Ca code (basic module for the MOP) on the CASTEM numerical plate-form, already allows operational predictions. (authors)

  16. Tabulation of thermodynamic data for chemical reactions involving 58 elements common to radioactive waste package systems

    Energy Technology Data Exchange (ETDEWEB)

    Benson, L.V.; Teague, L.S.

    1980-08-01

    The rate of release and migration of radionuclides from a nuclear waste repository to the biosphere is dependent on chemical interactions between groundwater, the geologic host rock, and the radioactive waste package. For the purpose of this report, the waste package includes the wasteform, canister, overpack, and repository backfill. Chemical processes of interest include sorption (ion exchange), dissolution, complexation, and precipitation. Thermochemical data for complexation and precipitation calculations for 58 elements common to the radioactive waste package are presented. Standard free energies of formation of free ions, complexes, and solids are listed. Common logarithms of equilibrium constants (log K's) for speciation and precipitation reactions are listed. Unless noted otherwise, all data are for 298.15/sup 0/K and one atmosphere.

  17. Specification of safety requirements for waste packages with respect to practicable quality control measures

    International Nuclear Information System (INIS)

    Gruendler, D.; Wurtinger, W.

    1987-01-01

    Waste packages for disposal in a repository in the Federal Republic of Germany have to meet safety requirements derived from site specific safety analyses. The examination of the waste packages with regard to compliance with these requirements is the main objective of quality control measures. With respect to quality control the requirements have to be specified in a way that practicable control measures can be applied. This is dealt with for the quality control of the activity inventory and the quality control of the waste form. The paper discusses the determination of the activity of hard-to-measure radionuclides and the specification of safety related requirements for the waste form and the packaging using typical examples

  18. Tabulation of thermodynamic data for chemical reactions involving 58 elements common to radioactive waste package systems

    International Nuclear Information System (INIS)

    Benson, L.V.; Teague, L.S.

    1980-08-01

    The rate of release and migration of radionuclides from a nuclear waste repository to the biosphere is dependent on chemical interactions between groundwater, the geologic host rock, and the radioactive waste package. For the purpose of this report, the waste package includes the wasteform, canister, overpack, and repository backfill. Chemical processes of interest include sorption (ion exchange), dissolution, complexation, and precipitation. Thermochemical data for complexation and precipitation calculations for 58 elements common to the radioactive waste package are presented. Standard free energies of formation of free ions, complexes, and solids are listed. Common logarithms of equilibrium constants (log K's) for speciation and precipitation reactions are listed. Unless noted otherwise, all data are for 298.15 0 K and one atmosphere

  19. National radioactive waste management strategy

    International Nuclear Information System (INIS)

    Syed Abd Malik Syed Zain

    1985-01-01

    This article briefs out the strategic management of radioactive wastes in Malaysia. The criteria and methods discussed are those promoted by UTN (Nuclear Energy Unit) which has been given the authority to carry out local research programs in nuclear energy

  20. National Waste Terminal Storage program

    International Nuclear Information System (INIS)

    Boch, A.L.

    1976-01-01

    The plans of the Energy Research and Development Administration for the safe and rational terminal storage in deep geologic formations of radioactive wastes from the commercial light-water reactor nuclear fuel cycle are presented briefly

  1. National inventory of radioactive wastes; Inventaire national des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    There are in France 1064 sites corresponding to radioactive waste holders that appear in this radioactive waste inventory. We find the eighteen sites of E.D.F. nuclear power plants, The Cogema mine sites, the Cogema reprocessing plants, The Cea storages, the different factories and enterprises of nuclear industry, the sites of non nuclear industry, the Andra centers, decommissioned installations, disposals with low level radioactive wastes, sealed sources distributors, national defence. (N.C.). 16 refs.

  2. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlement agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.

  3. NNWSI waste form testing at Argonne National Laboratory; Semiannual report: January-June 1987

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Gerding, T.J.; Abrajano, T.A. Jr.; Ebert, W.L.; Mazer, J.J. [Argonne National Lab., IL (USA)

    1988-11-01

    The Nevada Nuclear Waste Storage Investigation (NNWSI) Project is investigating the tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. As part of the waste package development portion of this project, experiments are being performed by the Chemical Technology Division of Argonne National Laboratory to study the behavior of the waste form under anticipated repository conditions. These experiments include the development and performance of a test to measure waste form behavior in unsaturated conditions and the performance of experiments designed to study the behavior of waste package components in an irradiated environment. Previous reports document developments in these areas through 1986. This report summarizes progress during the period January--June 1987, 19 refs., 17 figs., 20 tabs.

  4. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation.

    Science.gov (United States)

    Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Waste transport and storage: Packaging refused due to failure in fulfilling QC/QA requirements

    International Nuclear Information System (INIS)

    Bruno, N.C.; Brandao, R.O.; Cavalcante, V.L.

    2001-01-01

    The Brazilian Nuclear Programme comprises several nuclear and radioactive facilities including Angra I Nuclear Power Plant, in operation since 1981, and Angra II, scheduled to start its operation by the end of 1999. Among the other ones there are uranium mining and milling facilities, four research reactors and one industrial facility of monazite sands processing. The already existing waste generation and near future ones claim to a solution regarding waste disposal. Although site selection criteria for waste repository in Brazil has already been defined, political and psychosocial aspects have strong impact. Trauma generated by Goiania's radiological accident has led to difficulties when decisions about this matter have to be taken. As a consequence, the waste generated by Angra I is still in a provisional facility at the plant's site. Wastes from the medical sources are stored in research institutes while waste generated from monazite sands is kept in a dam system. In order to overpack non-qualified packages containing waste of Angra I NPP, 70 lost concrete shielding packagings had to be provided. Based on successfully designed and tested prototype, packagings and respective lids specifications were written, approved and released for serial production. As part of packaging certification process, Brazilian Competent Authority performed a regulatory inspection and audit. Various findings, such as weaknesses in quality control and quality assurance records, unacceptable test results as well as failure in modify the concrete composition during a testified packaging manufacturing, led Competent Authority to refuse the packagings as containers until complementary tests could be performed. Further tests and evaluations led the Competent Authority to conclude that the manufacturer failed to both comply with requirements established in packaging specification and fulfill quality control/quality assurance requirements. As responsible by federal law for the reception and

  6. Estimation of packaged water consumption and associated plastic waste production from household budget surveys

    Science.gov (United States)

    Wardrop, Nicola A.; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Hill, Allan G.; Bain, Robert E. S.; Wright, Jim

    2017-08-01

    Packaged water consumption is growing in low- and middle-income countries, but the magnitude of this phenomenon and its environmental consequences remain unclear. This study aims to quantify both the volumes of packaged water consumed relative to household water requirements and associated plastic waste generated for three West African case study countries. Data from household expenditure surveys for Ghana, Nigeria and Liberia were used to estimate the volumes of packaged water consumed and thereby quantify plastic waste generated in households with and without solid waste disposal facilities. In Ghana, Nigeria and Liberia respectively, 11.3 (95% confidence interval: 10.3-12.4), 10.1 (7.5-12.5), and 0.38 (0.31-0.45) Ml day-1 of sachet water were consumed. This generated over 28 000 tonnes yr-1 of plastic waste, of which 20%, 63% and 57% was among households lacking formal waste disposal facilities in Ghana, Nigeria and Liberia respectively. Reported packaged water consumption provided sufficient water to meet daily household drinking-water requirements for 8.4%, less than 1% and 1.6% of households in Ghana, Nigeria and Liberia respectively. These findings quantify packaged water’s contribution to household water needs in our study countries, particularly Ghana, but indicate significant subsequent environmental repercussions.

  7. The Reduction of Solid Waste Associated with Military Ration Packaging

    National Research Council Canada - National Science Library

    Ratto, Jo Ann; Lucciarini, Jeanne; Thellen, Christopher; Froio, Danielle; D'Souza, Nandika A

    2006-01-01

    ... decrease the amount of solid waste generated by the military. These nanocomposites formulations were melt processed into films and characterized for barrier, mechanical, thermal, and biodegradation properties...

  8. Greater-than-Class C low-level radioactive waste characterization. Appendix H: Packaging factors for greater-than-Class C low-level radioactive waste

    International Nuclear Information System (INIS)

    Quinn, G.; Grant, P.

    1991-08-01

    This report develops and presents estimates for a set of three values that represent a reasonable range for the packaging factors for several waste streams that are potential greater-than-Class C low-level radioactive waste. The packaging factor is defined as the volume of a greater-than-Class C low-level waste disposal container divided by the original, as-generated or ''unpackaged,'' volume of the wastes loaded into the disposal container. Packaging factors take into account any processes that reduce or increase an original unpackaged volume of a greater-than-Class C low-level radioactive waste, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. The three values developed represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated volume of waste for disposal, and (c) a low case packaging factor for the smallest volume expected. Three categories of greater-than-Class C low-level waste are evaluated in this report: activated metals, sealed sources, and all other wastes. Estimates of reasonable packaging factors for the low, base, and high cases for the specific waste streams in each category are shown in Table H-1

  9. Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources

    Directory of Open Access Journals (Sweden)

    Songyan Yin

    2018-01-01

    Full Text Available In recent years, the research regarding waste conversion to resources technology has attracted growing attention with the continued increase of waste accumulation issues and rapid depletion of natural resources. However, the study, with respect to utilizing plastics waste as carbon resources in the metals industry, is still limited. In this work, an environmentally friendly approach to utilize snack packaging plastic waste as a valuable carbon resources for steel carburization is investigated. At high temperature, plastic waste could be subject to pyrolytic gasification and decompose into small molecular hydrocarbon gaseous products which have the potential to be used as carburization agents for steel. When heating some snack packaging plastic waste and a steel sample together at the carburization temperature, a considerable amount of carbon-rich reducing gases, like methane, could be liberated from the plastic waste and absorbed by the steel sample as a carbon precursor for carburization. The resulting carburization effect on steel was investigated by optical microscopy, scanning electron microscopy, electron probe microanalyzer, and X-ray photoelectron spectrometer techniques. These investigation results all showed that snack packaging plastic waste could work effectively as a valuable carbon resource for steel carburization leading to a significant increase of surface carbon content and the corresponding microstructure evolution in steel.

  10. PACCOM: A nuclear waste packaging facility cost model: Draft technical report

    International Nuclear Information System (INIS)

    Dippold, D.G.; Tzemos, S.; Smith, D.J.

    1985-05-01

    PACCOM is a computerized, parametric model used to estimate the capital, operating, and decommissioning costs of a variety of nuclear waste packaging facility configurations. The model is based upon a modular waste packaging facility concept from which functional components of the overall facility have been identified and their design and costs related to various parameters such as waste type, waste throughput, and the number of operational shifts employed. The model may be used to either estimate the cost of a particular waste packaging facility configuration or to explore the cost tradeoff between plant capital and labor. That is, one may use the model to search for the particular facility sizes and associated cost which when coupled with a particular number of shifts, and thus staffing level, leads to the lowest overall total cost. The functional components which the model considers include hot cells and their supporting facilities, transportation, cask handling facilities, transuranic waste handling facilities, and administrative facilities such as warehouses, security buildings, maintenance buildings, etc. The cost of each of these functional components is related either directly or indirectly to the various independent design parameters. Staffing by shift is reported into direct and indirect support labor. These staffing levels are in turn related to the waste type, waste throughput, etc. 2 refs., 11 figs., 3 tabs

  11. Analysis of near-field thermal and psychometric waste package environment using ventilation

    International Nuclear Information System (INIS)

    Danko, G.

    1995-03-01

    The ultimate objective of the Civilian Radioactive Waste Management System (CRWMS) Program is to safely emplace and isolate the nations' spent nuclear fuel (SNF) and radioactive wastes in a geologic repository. Radioactive waste emplaced in a geologic repository will generate heat, increasing the temperature in the repository. The magnitude of this temperature increase depends upon (1) the heat source, i.e. the thermal loading of the repository, and (2) the geologic and engineered heat transport characteristics of the repository. Thermal management techniques currently under investigation include ventilation of the emplacement drifts during the preclosure period which could last as long as 100 years. Understanding the amount of heat and moisture removed from the emplacement drifts and near-field rock by ventilation, are important in determining performance of the engineered barrier system (EBS), as well as the corrosive environment of the waste packages, and the interaction of the EBS with the near-field host rock. Since radionuclide releases and repository system performance are significantly affected by the corrosion rate related to the psychometric environment, it is necessary to predict the amount of heat and moisture that are removed from the repository horizon using a realistic model for a wide range of thermal loading. This can be realized by coupling the hydrothermal model of the rock mass to a ventilation/climate model which includes the heat and moisture transport on the rock-air interface and the dilution of water vapor in the drift. This paper deals with the development of the coupled model concept, and determination of the boundary conditions for the calculations

  12. Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    PD Meyer; RJ Serne

    1999-12-21

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package.

  13. Evaluation of low and intermediate level radioactive solidified waste forms and packages

    International Nuclear Information System (INIS)

    1990-10-01

    Evaluation of low and intermediate level radioactive waste forms and packages with respect to compliance with quality and safety requirements for transport, interim storage and disposal has become a very important part of the radioactive waste management strategy in many countries. The evaluation of waste forms and packages provides precise basic data for regulatory bodies to establish safety requirements, and implement quality control and quality assurance procedures for radioactive waste management programmes. The requirements depend very much upon the disposal option selected, treatment technology used, waste form characteristics, package quality and other factors. The regulatory requirements can also influence the methodology of waste form/package evaluation together with selection and analysis of data for quality control and safety assurance. A coordinated research programme started at the end of 1985 and brought together 12 participants from 11 countries. The results of the programme and each particular project were discussed at three Research Coordination Meetings held in Cairo, Egypt, in May, 1986; in Beijing, China, in April, 1998; and at Harwell Laboratory, United Kingdom, in November, 1989. This document summarises the salient features and results achieved during the four year investigation and a recommendation for future work in this area. Refs, figs and tabs

  14. Packaging waste recycling in Europe: Is the industry paying for it?

    International Nuclear Information System (INIS)

    Ferreira da Cruz, Nuno; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-01-01

    Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste

  15. Packaging waste recycling in Europe: is the industry paying for it?

    Science.gov (United States)

    da Cruz, Nuno Ferreira; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-01

    This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the "recycling system" are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and

  16. Survey of waste package designs for disposal of high-level waste/spent fuel in selected foreign countries

    International Nuclear Information System (INIS)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1989-09-01

    This report presents the results of a survey of the waste package strategies for seven western countries with active nuclear power programs that are pursuing disposal of spent nuclear fuel or high-level wastes in deep geologic rock formations. Information, current as of January 1989, is given on the leading waste package concepts for Belgium, Canada, France, Federal Republic of Germany, Sweden, Switzerland, and the United Kingdom. All but two of the countries surveyed (France and the UK) have developed design concepts for their repositories, but none of the countries has developed its final waste repository or package concept. Waste package concepts are under study in all the countries surveyed, except the UK. Most of the countries have not yet developed a reference concept and are considering several concepts. Most of the information presented in this report is for the current reference or leading concepts. All canisters for the wastes are cylindrical, and are made of metal (stainless steel, mild steel, titanium, or copper). The canister concepts have relatively thin walls, except those for spent fuel in Sweden and Germany. Diagrams are presented for the reference or leading concepts for canisters for the countries surveyed. The expected lifetimes of the conceptual canisters in their respective disposal environment are typically 500 to 1,000 years, with Sweden's copper canister expected to last as long as one million years. Overpack containers that would contain the canisters are being considered in some of the countries. All of the countries surveyed, except one (Germany) are currently planning to utilize a buffer material (typically bentonite) surrounding the disposal package in the repository. Most of the countries surveyed plan to limit the maximum temperature in the buffer material to about 100 degree C. 52 refs., 9 figs

  17. Vertical Drop of the Naval SNF Long Waste Package On Unyielding Surface

    International Nuclear Information System (INIS)

    S. Mastilovic

    2006-01-01

    The purpose of this calculation is to determine the structural response of a Naval SNF (Spent Nuclear Fuel) Long Waste Package (WP) subjected to 2 m-vertical drop on unyielding surface (US). The scope of this document is limited to reporting the calculation results in terms of maximum stress intensities. This calculation is associated with the waste package design; calculation is performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element calculation is performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The result of this calculation is provided in terms of maximum stress intensities

  18. Long term governance for radioactive waste management. Final report of Cowan2 - work package 4

    International Nuclear Information System (INIS)

    Schneider, Th.; Schieber, C.; Lavele, S.

    2006-12-01

    This report aims at identifying key features for the long term governance of radioactive waste. It is proposed by the COWAN2 Work Package 4 the purpose of which was to identify, discuss and analyse the institutional, ethical, economic and legal considerations raised by long term radioactive waste storage or disposal on the three interrelated issues of: responsibility and ownership of radioactive waste on the long term, continuity of local dialogue between stakeholders and monitoring of radioactive waste management facilities, and compensation and sustainable development. The aim is also to propose guidelines in order to better address long term issues in decision-making processes and start long term governance

  19. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    were addressed by a resin type-based sorting analysis and a washing test for plastic packaging material from Danish household waste. Preliminary results show that, for a quarter of the hand sorted material, no resin type could be identified and that Polypropylene and Polyethylene terephthalate were...... the dominating resin types in plastic packaging. The suggested washing procedure caused a decrease of 70% of the ash content of the plastic material. The analysed metals and nutrients were reduced by up to 24%...

  20. National policy on radioactive waste management

    International Nuclear Information System (INIS)

    Jova, Luis; Metcalfa, Phil; Rowata, John; Louvata, Didier; Linsley, Gordon

    2008-01-01

    Every country should have some form of policy and strategy for managing its spent fuel and radioactive waste. Such policies and strategies are important; they set out the nationally agreed position and plans for managing spent fuel and radioactive waste and are visible evidence of the concern and intent of the government and the relevant national organisations to ensure that spent fuel and radioactive waste are properly taken care of in the country. There is a large diversity in the types and amounts of radioactive waste in the countries of the world and, as a result of this diversity, the strategies for implementing the policies may be different, although the main elements of policy are likely to be similar from country to country. In some countries, the national policy and strategy is well established and documented, while in others there is no explicit policy and strategy statement and, instead, it has to be inferred from the contents of the laws, regulations and guidelines. The present paper describes the work undertaken by the International Atomic Energy Agency (IAEA) related to identifying the main elements of national policies for spent fuel and radioactive waste management, recognising that policies and strategies vary considerably depending on, among other things, the nature and scale of applications of radioactive material in a country. An indication is provided of what might be contained in national policies recognizing that national policy and strategy has to be decided at the national level taking into account national priorities and circumstances. The paper is concerned with the contents of policies and strategies and does not address the development of national laws, regulations and guidelines - although these are clearly related to the contents of the national policy and strategy. (author)

  1. Scale-up considerations relevant to experimental studies of nuclear waste-package behavior

    International Nuclear Information System (INIS)

    Coles, D.G.; Peters, R.D.

    1986-04-01

    Results from a study that investigated whether testing large-scale nuclear waste-package assemblages was technically warranted are reported. It was recognized that the majority of the investigations for predicting waste-package performance to date have relied primarily on laboratory-scale experimentation. However, methods for the successful extrapolation of the results from such experiments, both geometrically and over time, to actual repository conditions have not been well defined. Because a well-developed scaling technology exists in the chemical-engineering discipline, it was presupposed that much of this technology could be applicable to the prediction of waste-package performance. A review of existing literature documented numerous examples where a consideration of scaling technology was important. It was concluded that much of the existing scale-up technology is applicable to the prediction of waste-package performance for both size and time extrapolations and that conducting scale-up studies may be technically merited. However, the applicability for investigating the complex chemical interactions needs further development. It was recognized that the complexity of the system, and the long time periods involved, renders a completely theoretical approach to performance prediction almost hopeless. However, a theoretical and experimental study was defined for investigating heat and fluid flow. It was concluded that conducting scale-up modeling and experimentation for waste-package performance predictions is possible using existing technology. A sequential series of scaling studies, both theoretical and experimental, will be required to formulate size and time extrapolations of waste-package performance

  2. Scale-up considerations relevant to experimental studies of nuclear waste-package behavior

    Energy Technology Data Exchange (ETDEWEB)

    Coles, D.G.; Peters, R.D.

    1986-04-01

    Results from a study that investigated whether testing large-scale nuclear waste-package assemblages was technically warranted are reported. It was recognized that the majority of the investigations for predicting waste-package performance to date have relied primarily on laboratory-scale experimentation. However, methods for the successful extrapolation of the results from such experiments, both geometrically and over time, to actual repository conditions have not been well defined. Because a well-developed scaling technology exists in the chemical-engineering discipline, it was presupposed that much of this technology could be applicable to the prediction of waste-package performance. A review of existing literature documented numerous examples where a consideration of scaling technology was important. It was concluded that much of the existing scale-up technology is applicable to the prediction of waste-package performance for both size and time extrapolations and that conducting scale-up studies may be technically merited. However, the applicability for investigating the complex chemical interactions needs further development. It was recognized that the complexity of the system, and the long time periods involved, renders a completely theoretical approach to performance prediction almost hopeless. However, a theoretical and experimental study was defined for investigating heat and fluid flow. It was concluded that conducting scale-up modeling and experimentation for waste-package performance predictions is possible using existing technology. A sequential series of scaling studies, both theoretical and experimental, will be required to formulate size and time extrapolations of waste-package performance.

  3. Recycling potential of post-consumer plastic packaging waste in Finland.

    Science.gov (United States)

    Dahlbo, Helena; Poliakova, Valeria; Mylläri, Ville; Sahimaa, Olli; Anderson, Reetta

    2018-01-01

    Recycling of plastics is urged by the need for closing material loops to maintain our natural resources when striving towards circular economy, but also by the concern raced by observations of plastic scrap in oceans and lakes. Packaging industry is the sector using the largest share of plastics, hence packaging dominates in the plastic waste flow. The aim of this paper was to sum up the recycling potential of post-consumer plastic packaging waste in Finland. This potential was evaluated based on the quantity, composition and mechanical quality of the plastic packaging waste generated by consumers and collected as a source-separated fraction, within the mixed municipal solid waste (MSW) or within energy waste. Based on the assessment 86,000-117,000 tons (18 kg/person/a) of post-consumer plastic packaging waste was generated in Finland in 2014. The majority, 84% of the waste was in the mixed MSW flow in 2014. Due to the launching of new sorting facilities and separate collections for post-consumer plastic packaging in 2016, almost 40% of the post-consumer plastic packaging could become available for recycling. However, a 50% recycling rate for post-consumer plastic packaging (other than PET bottles) would be needed to increase the overall MSW recycling rate from the current 41% by around two percentage points. The share of monotype plastics in the overall MSW plastics fraction was 80%, hence by volume the recycling potential of MSW plastics is high. Polypropylene (PP) and low density polyethylene (LDPE) were the most common plastic types present in mixed MSW, followed by polyethylene terephthalate (PET), polystyrene (PS) and high density polyethylene (HDPE). If all the Finnish plastic packaging waste collected through the three collection types would be available for recycling, then 19,000-25,000 tons of recycled PP and 6000-8000 tons of recycled HDPE would be available on the local market. However, this assessment includes uncertainties due to performing the

  4. Evaluation of alternative spent fuel waste package concepts for a repository in Basalt

    International Nuclear Information System (INIS)

    Hall, G.V.B.; Nair, B.R.

    1986-01-01

    The United States government has established a program for the disposal of spent nuclear fuel and high-level radioactive waste. The Nuclear Waste Policy Act (NWPA) of 1982 requires the first nuclear waste repository to begin receiving high-level radioactive waste in 1998. One of the potentially acceptable sites currently being evaluated is the Hanford Site in the Pasco Basin in the state of Washington where the host rock is basalt. Under the direction of the United States Department of Energy (DOE), Rockwell International's Rockwell Hanford Operations (RHO) has initiated the Basalt Waste Isolation Project (BWIP). The BWIP must design waste packages for emplacement in the repository. As part of the BWIP waste package development program, several alternative designs were considered for the disposal of spent nuclear fuel. This paper describes the concepts that were evaluated, the criteria that was developed for judging their relative merits, and the methodology that was employed. The results of the evaluation show that a Pipe-In-Tunnel design, which uses a long carbon steel pipe for the containment barrier for multiple packages of consolidated spent fuel, has the highest rating. Other designs which had high ratings are also discussed

  5. Full scale tests on remote handled FFTF fuel assembly waste handling and packaging

    International Nuclear Information System (INIS)

    Allen, C.R.; Cash, R.J.; Dawson, S.A.; Strode, J.N.

    1986-01-01

    Handling and packaging of remote handled, high activity solid waste fuel assembly hardware components from spent FFTF reactor fuel assemblies have been evaluated using full scale components. The demonstration was performed using FFTF fuel assembly components and simulated components which were handled remotely using electromechanical manipulators, shielding walls, master slave manipulators, specially designed grapples, and remote TV viewing. The testing and evaluation included handling, packaging for current and conceptual shipping containers, and the effects of volume reduction on packing efficiency and shielding requirements. Effects of waste segregation into transuranic (TRU) and non-transuranic fractions also are discussed

  6. SECOND WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: GENERATION AND EVALUATION OF INTERNAL CRITICIALITY CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    P. Gottlieb, J.R. Massari, J.K. McCoy

    1996-03-27

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having sonic or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment. The ultimate objective of this analysis is to augment the information gained from the Initial Waste Package Probabilistic Criticality Analyses (Ref. 5.8 and 5.9, hereafter referred to as IPA) to a degree which will support preliminary waste package design recommendations intended to reduce the risk of waste package criticality and the risk to total repository system performance posed by the consequences of any criticality. The IPA evaluated the criticality potential under the assumption that the waste package basket retained its structural integrity, so that the assemblies retained their initial separation, even when the neutron absorbers had been leached from the basket. This analysis is based on the more realistic condition that removal of the neutron absorbers is a consequence of the corrosion of the steel in which they are contained, which has the additional consequence of reducing the structural support between assemblies. The result is a set of more reactive configurations having a smaller spacing between assemblies, or no inter-assembly spacing at all. Another difference from the IPA is the minimal attention to probabilistic evaluation given in this study. Although the IPA covered a time horizon to 100,000 years, the lack of consideration of basket degradation modes made it primarily applicable to the first 10,000 years. In contrast, this study, by focusing on the degraded modes of the basket, is primarily

  7. PROBABILISTIC ANALYSES OF WASTE PACKAGE QUANTITIES IMPACTED BY POTENTIAL IGNEOUS DISRUPTION AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    M.G. Wallace

    2005-01-01

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift were intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km 2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in

  8. Post-closure performance assessment of waste packages for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    O'Connell, W.J.; Ueng, T.S.; Lewis, L.C.

    1993-10-01

    This report details a system model of some core features of the performance of waste packages for the permanent disposal of spent nuclear fuel at the Yucca Mountain Site. The model is realized in the prototype computer program PANDORA-1.1. The PANDORA system model links processes leading to possible release of radionuclides from the waste package. The PANDORA submodels are being developed for processes and conditions specific to this potential repository site, notably the comparatively dry location in an arid area and well above the groundwater table, and the rock medium of porous partially welded tuff

  9. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Directory of Open Access Journals (Sweden)

    Arantzazu eValdés

    2014-02-01

    Full Text Available The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  10. Natural additives and agricultural wastes in biopolymer formulations for food packaging.

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  11. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  12. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted

  13. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

  14. Consumption and recovery of packaging waste in Germany in 2009; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2009

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [GVM Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2012-04-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 15.05 million tons of packaging were consumed and became waste. Compared to the reference year 2008, packaging consumption decreased by 6.2 %. A total of 12.73 million tons was recovered in terms of material or energy, of which a total of 2.45 million tons outside Germany. In addition, 1.42 million tons of imported packaging waste were recovered in Germany. In 2009, 1.55 million tons were incinerated at waste incineration plants with energy recovery.

  15. National Waste Terminal Storage Program prospective participants conference, May 11, 1976, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1976-01-01

    This national program is being undertaken to find technical and environmental approaches for the storage of commercial power reactor radioactive wastes in geologic formations. Purpose of this conference was to inform prospective participants and organizations about the program plan. Included in this document are numerous viewgraph slides on ERDA fuel cycle programs and national waste management programs, interrelations between ORO and OWI, OWI plans and programs, geologic and other studies, environmental impact baseline studies, subcontract/audit requirements, and procurement packages. Subcontracting documents, ERDA news releases, ERDA-76-43 introduction and executive summary, a Federal Energy Resources Council report on waste management, and a bidder's mailing list application are included in appendices

  16. Waste-paper recyling in the packaging industry. January 1982-August 1989 (a Bibliography from Packaging Science and Technology Abstracts data base). Report for January 1982-August 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This bibliography contains citations concerning the reclamation and re-use of waste paper in the packaging industry. Uses of recycled papers include containers, paper manufacture, paperboard products, and other packaging applications. Economics, environmental impacts, legislation, and feasibility studies are included. Problems associated with recycling paper products, and comparisons with plastic products are also considered. Biodegradation of packaging materials is considered in separate bibliographies. (Contains 142 citations fully indexed and including a title list.)

  17. Nanotechnology for the Solid Waste Reduction of Military Food Packaging

    Science.gov (United States)

    2015-02-01

    with vegetables sausage crumb in spicy tomato sauce, packaged in a flexible pouch, shelf stable. Polymer - Note polymer is a plastic and/or resin...approximately half the 3 Figure 4. Conventional Composites vs. Nanocomposites Layer ed Clay M o n o m er In Intercalated Na noc om pos ite...Nanoparticles Monomer Conventional composite Exfoliated composite Intercalated composite thickness of the current polyethylene material, and a

  18. Safety evaluation for packaging (onsite) depleted uranium waste boxes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, W.A.

    1997-08-27

    This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

  19. Safety evaluation for packaging (onsite) depleted uranium waste boxes

    International Nuclear Information System (INIS)

    McCormick, W.A.

    1997-01-01

    This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public

  20. Stress Corrosion Cracking Model for High Level Radioactive-Waste Packages

    International Nuclear Information System (INIS)

    Andresen, P.; Gordon, G.; Lu, S.

    2004-01-01

    A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain repository. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is the highly corrosion-resistant Alloy UNS-N06022 (Alloy 22), the environment is represented by aqueous brine films present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the tensile stress is principally from weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding); or that develop from corrosion processes such as pitting or dissolution of inclusions. To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulae for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, it can be used by the performance assessment to determine the time to through-wall penetration for the waste package. This paper presents the development of the SDFR crack growth rate model based on technical information in the literature as well as experimentally determined crack growth rates developed specifically for Alloy UNS-N06022 in environments relevant to high level radioactive-waste packages of the proposed Yucca Mountain radioactive-waste repository. In addition, a seismic damage related SCC crack opening area density model is briefly described

  1. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1995-01-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to ∼3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of ∼1 g/m 2 /hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals

  2. Recommendations on national radioactive waste management policies

    International Nuclear Information System (INIS)

    1981-01-01

    As a nation, we have learned that sound technical solutions to the problems of waste disposal cannot be carried out without public acceptance. The key to gaining the public's confidence is a process of decision making which is open and accessible to elected officials from all levels of government. The Council believes that such a process can be put in place through a renewal of the traditional principles of our federal system of government. State, local, and tribal officials must become working partners with the federal government in making the crucial decisions about how radioactive wastes will be handled, transported, and ultimately disposed. A workable and effective partnership must include, first the full sharing of information and plans regarding waste disposal activities among all levels of government and, second, the opportunity for state, local, and tribal governments to participate effectively in waste management decisions which affect their jurisdictions. Finally, althougcome this difficulty

  3. Sizing of the overpacks containing high-level radioactive waste packages from French nuclear facilities

    International Nuclear Information System (INIS)

    Codau, Claudia; Fernandes, Roméo

    2017-01-01

    This work is a contribution to the project Cigeo (Geological Storage Industrial Center: www.cigeo.com) which aims to store in a deep geological layer, intermediate, high-level and long-lived radioactive waste from all French nuclear facilities. The project is led by ANDRA (French National Radioactive Waste Management Agency). EDF (Electricity of France), as the nuclear electricity producer, will be a beneficiary of the facility and follows it for reasons of consistency with the rest of the nuclear cycle. Packages of the most radioactive vitrified waste from the processing of spent fuel will be placed in steel overpacks (storage containers) whose main function will be to protect the waste from water during the so-called thermal phase of the glass (t° glass < 50°C - 70°C). In addition to the waterproof criterion, the challenges associated with the design of the overpacks are: To limit the production of hydrogen due to corrosion (∼50.000 overpacks). To increase glass life: a decrease in steel thickness reduces the amount of corrosion products and improves the longevity of the glass. To reduce production costs. The objective of this work is to implement the radiological dimensioning methodology based on neutron modeling. As an illustration of what this method allows to do, a sizing of the steel overpack is proposed in order to achieve these technical and economic specifications. The overpack is mainly designed by taking into account the mechanical load that will be applied and degradation due to corrosion, particularly the corrosion by radiolysis. According to ANDRA, the most important criterion is to maintain the dose rate below 10 Gy/h at a distance of 5 cm from the overpack interface. The dose rates were calculated with the TRIPOLI4 code using as input data the temporal radiological evolution of waste obtained with DARWIN/PEPIN2. This work has shown that, in the most penalizing case among the studied configurations, a steel thickness of 4.6 cm for the overpack

  4. Effect of aged waste package and basalt on radioelement release

    International Nuclear Information System (INIS)

    Seitz, M.G.; Vandegrift, G.F.; Bowers, D.L.; Gerding, T.J.

    1983-01-01

    Results of experiments are described that combine backfill, radioactive waste, and repository host rock in a single flowing groundwater stream in a manner analogous to a hydraulic breach of a waste repository. The experimental design is used to identify the chemical interactions that would occur if repository components were breached by flowing water. The results indicate that of three parameters studied, the alteration of the repository components as might occur upon aging had the most substantial influence on the migration of radioactive elements dissolved from the solid radioactive waste. The other two parameters, the metal alloy used in the apparatus and an ionizing radiation field imposed on the experimental apparatus, had little or no measurable effect on radioactive element transport by flowing water. Inasmuch as the alteration of the repository materials represent aging in an actual repository, it is concluded that changes with age may detrimentally affect the ability of a repository to isolate plutonium and neptunium, and possibly other radioactive elements in nuclear waste. 37 references, 2 figures, 2 tables

  5. Role of waste packages in the safety of a high level waste repository in a deep geological formation

    International Nuclear Information System (INIS)

    Bretheau, F.; Lewi, J.

    1990-06-01

    The safety of a radioactive waste disposal facility lays on the three following barriers placed between the radioactive materials and the biosphere: the waste package; the engineered barriers; the geological barrier. The function assigned to each of these barriers in the performance assessment is an option taken by the organization responsible for waste disposal management (ANDRA in France), which must show that: expected performances of each barrier (confinement ability, life-time, etc.) are at least equal to those required to fulfill the assigned function; radiation protection requirements are met in all situations considered as credible, whether they be the normal situation or random event situations. The French waste management strategy is based upon two types of disposal depending on the nature and activity of waste packages: - surface disposal intended for low and medium level wastes having half-lives of about 30 years or less and alpha activity less than 3.7 MBq/kg (0.1 Ci/t), for individual packages and less than 0.37 MBq/kg (0.01 Ci/t) in the average. Deep geological disposal intended for TRU and high level wastes. The conditions of acceptance of packages in a surface disposal site are subject to the two fundamental safety rules no. I.2 and III.2.e. The present paper is only dealing with deep geological disposal. For deep geological repositories, three stages are involved: stage preceding definitive disposal (intermediate storage, transportation, handling, setting up in the disposal cavities); stage subsequent to definitive sealing of the disposal cavities but prior to the end of operation of the repository; stage subsequent to closure of the repository. The role of the geological barrier has been determined as the essential part of long term radioactivity confinement, by a working group, set up by the French safety authorities. Essential technical criteria relating to the choice of a site so defined by this group, are the following: very low permeability

  6. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

    2004-09-01

    This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

  7. The market-incentive recycling system for waste packaging containers in Taiwan

    International Nuclear Information System (INIS)

    Bor Yunchang, Jeffrey; Chien, Y.-L.; Hsu, Esher

    2004-01-01

    This paper presents a new market-incentive (MI) system to recycle waste-packaging containers in Taiwan. Since most used packaging containers have no or insufficient market value, the government imposes a combined product charge and subsidy policy to provide enough economic incentive for recycling various kinds of packaging containers, such as iron, aluminum, paper, glass and plastic. Empirical results show that the new MI approach has stimulated and established the recycling market for waste-packaging containers. The new recycling system has provided 18,356 employment opportunities and generated NT$ 6.97 billion in real-production value and NT$ 3.18 billion in real GDP during the 1998 survey year. Cost-effectiveness analysis constitutes the theoretical foundation of the new scheme, whereas data used to compute empirical product charge are from two sources: marketing surveys of internal conventional costs of solid-waste collection, disposal and recycling in Taiwan, and benefit transfer of external environmental costs in the United States. The new recycling policy designed by the authors provides a reasonable solution for solid-waste management in a country with limited land resources such as Taiwan

  8. The market-incentive recycling system for waste packaging containers in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Bor Yunchang, Jeffrey [Chung-Hua Institution for Economic Research, 75 Chang-Hsing Street, Taipei 106, Taiwan (China)]. E-mail: bony@mail.cier.edu.tw; Chien, Y.-L. [Institute of Natural Resource Management, National Taipei University, Taipei 104, Taiwan (China); Hsu, Esher [Department of Statistics, National Taipei University, Taipei 104, Taiwan (China)

    2004-12-01

    This paper presents a new market-incentive (MI) system to recycle waste-packaging containers in Taiwan. Since most used packaging containers have no or insufficient market value, the government imposes a combined product charge and subsidy policy to provide enough economic incentive for recycling various kinds of packaging containers, such as iron, aluminum, paper, glass and plastic. Empirical results show that the new MI approach has stimulated and established the recycling market for waste-packaging containers. The new recycling system has provided 18,356 employment opportunities and generated NT$ 6.97 billion in real-production value and NT$ 3.18 billion in real GDP during the 1998 survey year. Cost-effectiveness analysis constitutes the theoretical foundation of the new scheme, whereas data used to compute empirical product charge are from two sources: marketing surveys of internal conventional costs of solid-waste collection, disposal and recycling in Taiwan, and benefit transfer of external environmental costs in the United States. The new recycling policy designed by the authors provides a reasonable solution for solid-waste management in a country with limited land resources such as Taiwan.

  9. 77 FR 50716 - Certain Food Waste Disposers and Components and Packaging Thereof; Notice of Commission...

    Science.gov (United States)

    2012-08-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-838] Certain Food Waste Disposers and Components and Packaging Thereof; Notice of Commission Determination Not to Review an Initial Determination Granting Complainant's Motions To Amend the Notice of Investigation and Complaint AGENCY: U.S...

  10. Design of a nuclear-waste package for emplacement in tuff

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Rothman, A.J.; Gregg, D.W.; Hockman, J.N.; Revelli, M.A.; Russell, E.W.; Schornhorst, J.R.

    1983-01-01

    Design, modeling, and testing activities are under way at LLNL in the development of high level nuclear waste package designs. We discuss the geological characteristics affecting design, the 10CFR60 design requirements, conceptual designs, metals for containment barriers, economic analysis, thermal modeling, and performance modeling

  11. Protecting the Investment: Guidance on the Storage of Packaged Wastes in the UK

    International Nuclear Information System (INIS)

    Naish, Chris; Skelton, Paul; Wisbey, Simon

    2016-01-01

    This presentation will cover: • Introduction to the UK guidance on interim storage; • Waste stores in the UK and the Store Operations Forum; • Example Approach 1 – Operational limits and conditions; • Example Approach 2 – Monitoring the evolution of package performance; • IAEA Independent peer review

  12. Impact of rinsing in pesticide packaging waste management: Economic and environmental benefits

    Directory of Open Access Journals (Sweden)

    Marčeta Una

    2015-01-01

    Full Text Available Pesticides have become dailiness due to inevitable application of these preparations in agricultural activities, with the consequence of generation of large amounts of waste packaging. Impact on the environment and expenses of management of packaging waste can be minimized if the packaging is immediately rinsed after the application of devices and if identified as non-hazardous. Besides, financial losses may be reduced by maximum utilization of the preparation. Considering these two financial aspects this work shows evaluation of quantitative losses of preparations if the triple rising method is not applied. The research was conducted in two phases. Phase I included the examination of the impact of different formulations of the same volume on quantitative and financial losses. Based on the results of the first phase of the research, it was noted that the SC formulation is the most interesting to study because this type of formulation has the highest percentage of residue, as well as the fact that the highest annual consumption is noted percisely in this preparation group. This paper presents the results which indicate the impact of packaging volume of SC formulation (ALVERDE 240 SC, INTERMEZZO and ANTRE PLUS on percentage of preparation residue in packaging if there was no rinsing. The results have shown that the quantitative loss is inversely proportional to the volume of packaging, while financial losses do not only depend on the percentage of residue but also on price and quantity of utilization of preparations.

  13. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2003-01-01

    The Australian Government is committed to establishing two purpose-built facilities for the management of Australia's radioactive waste; the national repository for disposal of low level and short-lived intermediate level ('low level') waste, and the national store for storage of long-lived intermediate level ('intermediate level') waste. It is strongly in the interests of public security and safety to secure radioactive waste by disposal or storage in facilities specially designed for this purpose. The current arrangements where waste is stored under ad hoc arrangements at hundreds of sites around Australia does not represent international best practice in radioactive waste management. Environmental approval has been obtained for the national repository to be located at Site 40a, 20 km east of Woomera in South Australia, and licences are currently being sought from the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) to site, construct and operate the facility. The national repository may be operating in 2004 subject to obtaining the required licences. The national store will be located on Australian Government land and house intermediate level waste produced by Australian Government departments and agencies. The national store will not be located in South Australia. Short-listing of potentially suitable sites is expected to be completed soon

  14. Shielding Calculations on Waste Packages – The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    Directory of Open Access Journals (Sweden)

    Adams Mike

    2017-01-01

    Full Text Available For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like “Monte-Carlo N-Particle Transport Code System” (MCNP® on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The problem here is to choose an appropriate program for a specific geometry. Therefore we compared the results of deterministic programs like MicroShield® and stochastic programs like MCNP®. These comparisons enable us to make a statement about the applicability of the various programs for chosen types of containers. As a conclusion we found that for thin-walled geometries deterministic programs like MicroShield® are well suited to calculate the dose rate. For cylindrical containers with inner shielding however, deterministic programs hit their limits. Furthermore we investigate the effect of an inhomogeneous material and activity distribution on the results. The calculations are still ongoing. Results will be presented in the final abstract.

  15. Shielding Calculations on Waste Packages - The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    Science.gov (United States)

    Adams, Mike; Smalian, Silva

    2017-09-01

    For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like "Monte-Carlo N-Particle Transport Code System" (MCNP®) on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The problem here is to choose an appropriate program for a specific geometry. Therefore we compared the results of deterministic programs like MicroShield® and stochastic programs like MCNP®. These comparisons enable us to make a statement about the applicability of the various programs for chosen types of containers. As a conclusion we found that for thin-walled geometries deterministic programs like MicroShield® are well suited to calculate the dose rate. For cylindrical containers with inner shielding however, deterministic programs hit their limits. Furthermore we investigate the effect of an inhomogeneous material and activity distribution on the results. The calculations are still ongoing. Results will be presented in the final abstract.

  16. Package

    Directory of Open Access Journals (Sweden)

    Arsić Zoran

    2013-01-01

    Full Text Available It is duty of the seller to pack the goods in a manner which assures their safe arrival and enables their handling in transit and at the place of destination. The problem of packing is relevant in two main respects. First of all the buyer is in certain circumstances entitled to refuse acceptance of the goods if they are not properly packed. Second, the package is relevant to calculation of price and freight based on weight. In the case of export trade, the package should conform to the legislation in the country of destination. The impact of package on environment is regulated by environment protection regulation of Republic if Serbia.

  17. Tritiated waste management - tritiated oil packaging and decontamination

    International Nuclear Information System (INIS)

    Krasznai, J.P.; Mullins, D.F.; Mowat, R.A.

    1995-01-01

    Tritium Handling facilities often have oil lubricated vacuum pumps in active portions of tritium systems. The interaction of tritium with the oil can lead to the formation of various classes of tritiated species, both volatile and non-volatile. These tritiated species can cause problems in terms of handling, dosimetry and ultimate waste disposal. Knowledge of these species and their relative concentrations will allow the safe and cost effective use of oil-filled pumps in tritium environments. In order to understand more accurately the specific dosimetry hazards, improve handling procedures and minimize waste volumes, the distribution of tritium amongst the several classes of tritiated species was determined. The change in tritium content and distribution over time was also determined. 7 refs., 3 figs., 2 tabs

  18. Effects of Hanford tank simulant waste on plastic packaging to components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1995-01-01

    We have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. Consistent with the methodology outlined in this paper, we have performed the second phase of this experimental program to determine the effects of simulant Hanford Tank mixed wastes on packaging materials. This effort involved the comprehensive testing of five plastic liner materials in the aqueous mixed waste simulant. The testing protocol involved exposing the respective materials to ∼1, 3, 6, and 40 kGy of gamma radiation followed by 7, 14, 28, 180 day exposures to the waste simulant at 18, 50, and 60 degree C. From the limited data analyses performed to date in this study, we have identified the fluorocarbon Kel-F trademark as having the greatest chemical compatibility after having been exposed to 40 kGy gamma radiation followed by exposure to the Hanford Tank simulant mixed waste at 60 degree C. The most stricking observation from this study was the poor performance of Teflon under these conditions

  19. PACKAGING WASTE MANAGEMENT ON EXAMPLE OF CITY ZIELONA GÓRA

    Directory of Open Access Journals (Sweden)

    Joanna ZARĘBSKA

    2012-01-01

    Full Text Available The article presents the legal requirements of the European Union's packaging waste, and their most recent transposition into Polish law. The author has attempted to describe selected achievements of the Department of Public Utilities and Housing (DPUaH in Zielona Góra, which for many years on behalf of the city, in a systematic way it’s developing municipal waste management system (including packaging, consistent with EU policies and objectives of sustainable development. The deficiencies and weaknesses in the system are taken into consideration, whose liquidation is a priority for future investment of DPUaH consistent with the Waste Management Plan for the City of Zielona Góra.

  20. Demands placed on waste package performance testing and modeling by some general results on reliability analysis

    International Nuclear Information System (INIS)

    Chesnut, D.A.

    1991-09-01

    Waste packages for a US nuclear waste repository are required to provide reasonable assurance of maintaining substantially complete containment of radionuclides for 300 to 1000 years after closure. The waiting time to failure for complex failure processes affecting engineered or manufactured systems is often found to be an exponentially-distributed random variable. Assuming that this simple distribution can be used to describe the behavior of a hypothetical single barrier waste package, calculations presented in this paper show that the mean time to failure (the only parameter needed to completely specify an exponential distribution) would have to be more than 10 7 years in order to provide reasonable assurance of meeting this requirement. With two independent barriers, each would need to have a mean time to failure of only 10 5 years to provide the same reliability. Other examples illustrate how multiple barriers can provide a strategy for not only achieving but demonstrating regulatory compliance

  1. STRUCTURAL CALCULATION OF AN EMPLACEMENT PALLET STATICALLY LOADED BY A WASTE PACKAGE

    International Nuclear Information System (INIS)

    S. Mastilovic

    2000-01-01

    The purpose of this calculation is to determine the structural response of the emplacement pallet (EP) subjected to static load from the mounted waste package (WP). The scope of this document is limited to reporting the calculation results in terms of stress intensity magnitudes. This calculation is associated with the waste emplacement systems design; calculations are performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element solutions are performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The results of these calculations are provided in terms of maximum stress intensity magnitudes

  2. Petrologic and geochemical characterization of the Bullfrog Member of the Crater Flat Tuff: outcrop samples used in waste package experiments

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1983-09-01

    In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), experiments on hydrothermal rock/water interaction, corrosion, thermomechanics, and geochemical modeling calculations are being conducted. All of these activities require characterization of the initial bulk composition, mineralogy, and individual phase geochemistry of the potential repository host rock. This report summarizes the characterization done on samples of the Bullfrog Member of the Crater Flat Tuff (Tcfb) used for Waste Package experimental programs. 11 references, 17 figures, 3 tables

  3. Use of ceramic materials in waste-package systems for geologic disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1980-12-01

    A study to investigate the potential use of ceramic materials as components in the waste package systems was conducted. The initial objective of the study was to screen and compare a large number of ceramic materials and identify the best materials for the proposed application. The principal method used to screen the candidates was to subject samples of each material to a series of leaching tests and to determine their relative resistance to attack by the leach solutions. A total of 14 ceramic materials, plus graphite and basalt were evaluated using three different leach solutions: demineralized water, a synthetic Hanford ground water, and a synthetic WIPP brine solution. The ceramic materials screened were Al 2 O 3 (99%), Al 2 O 3 (99.8%), mullite (2Al 2 O 3 .SiO 2 ), vitreous silica (SiO 2 ), BaTiO 3 , CaTiO 3 , CaTiSiO 5 , TiO 2 , ZrO 2 , ZrSiO 4 , Pyroceram 9617, and Marcor Code 9658 machinable glass-ceramic. Average leach rates for the materials tested were determined from analyses of the leach solutions and/or sample weight loss measurements. Because of the limited scope of the present study, evaluation of the specimens was limited to ceramographic examination. Based on an overall evaluation of the leach rate data, five of the materials tested, namely graphite, TiO 2 , ZrO 2 , and the two grades of alumina, exhibited much greater resistance to leaching than did the other materials tested. Based on all the experimental data obtained, and considering other factors such as cost, availability, fabrication technology, and mechanical and physical properties, graphite and alumina are the preferred candidates for the barrier application. The secondary choices are TiO 2 and ZrO 2

  4. The effects of gamma radiation on the corrosion of candidate materials for the fabrication of nuclear waste packages

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; King, F.

    1999-07-01

    The influence of gamma radiation on the corrosion of candidate materials for the fabrication of nuclear waste packages has been comprehensively reviewed. The comparison of corrosion of the various materials was compared in three distinct environments: Environment A; Mg 2+ -enriched brines in which hydrolysis of the cation produces acidic environments and the Mg 2+ interferes with the formation of protective films; Environment B; saline environments with a low Mg 2+ content which remain neutral; Environment C; moist aerated conditions.The reference design of nuclear waste package for emplacement in the proposed waste repository in Yucca Mountain, Nevada, employs a dual wall arrangement, in which a 2 cm thick nickel alloy inner barrier is encapsulated within a 10 cm thick mild steel outer barrier. It is felt that this arrangement will give considerable containment lifetimes, since no common mode failure exists for the two barriers. The corrosion performance of this waste package will be determined by the exposure environment established within the emplacement drifts. Key features of the Yucca Mountain repository in controlling waste package degradation are expected to be the permanent availability of oxygen and the limited presence of water. When water contacts the surface of the waste package, its gamma radiolysis could produce an additional supply of corrosive agents. the gamma field will be produced by the radioactive decay of radionuclides within the waste form, and its magnitude will depend on the nature and age of the waste form as well as the material and wall thickness of the waste package

  5. Application of nondestructive assay technology in Oak Ridge National Laboratory's waste management program

    International Nuclear Information System (INIS)

    Schultz, F.J.; Smith, M.A.; Brandenburg, R.W.; Caylor, B.A.; Coffey, D.E.; Hensley, D.C.; Phoenix, L.B.

    1990-01-01

    Waste characterization is the process whereby physical properties and chemical composition of waste are determined. Waste characterization is an important element of a waste certification program in that it provides information which is necessary to certify that waste meets the acceptance criteria for storage, treatment, or disposal. Department of Energy (DOE) Order 5820.2A and WIPP-DOE-069 list and describe the germane waste form, package, and container criteria for the storage of both solid low-level waste (SLLW) and transuranic (TRU) waste, including chemical composition and compatibility, hazardous material content, fissile material content, equivalent alpha activity, thermal heat output, and absence of free liquids, explosives, and compressed gases. At the Oak Ridge National Laboratory (ORNL), the responsibility for waste characterization begins with the individual(s) who generate the waste. The generator must be able to document the type and estimate the quantity of various materials which have been placed into the waste container. Analyses of process flow sheets and a statistically valid sampling program can provide much of the required information as well as a documented level of confidence in the acquired data. A program is being instituted in which the major generator facilities perform radionuclide assay of small packets of waste prior to being placed into a waste drum. 10 refs., 1 fig., 1 tab

  6. Effect of ionizing radiation on the waste package environment

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D.T. [Argonne National Lab., IL (USA); Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA)

    1991-05-01

    The radiolytic production of nitrogen oxides, nitrogen acids and ammonia are discussed in relation to the expected environment in a high-level waste repository that may be constructed at the Yucca Mountain site if it is found to be suitable. Both literature data and repository-relevant data are summarized for air-water vapor systems. The limiting cases of a dry air and a pure water vapor gas phase are also discussed. Design guidelines and recommendations, based solely on the potential consequence of radiation enhancement of corrosion, are given. 13 refs., 5 figs., 1 tab.

  7. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    International Nuclear Information System (INIS)

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-01

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and

  8. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-18

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and

  9. Equilibrium moisture content of waste mixtures from post-consumer carton packaging.

    Science.gov (United States)

    Bacelos, M S; Freire, J T

    2012-01-01

    The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound.

  10. Options for reducing food waste by quality-controlled logistics using intelligent packaging along the supply chain.

    Science.gov (United States)

    Heising, Jenneke K; Claassen, G D H; Dekker, Matthijs

    2017-10-01

    Optimising supply chain management can help to reduce food waste. This paper describes how intelligent packaging can be used to reduce food waste when used in supply chain management based on quality-controlled logistics (QCL). Intelligent packaging senses compounds in the package that correlate with the critical quality attribute of a food product. The information on the quality of each individual packaged food item that is provided by the intelligent packaging can be used for QCL. In a conceptual approach it is explained that monitoring food quality by intelligent packaging sensors makes it possible to obtain information about the variation in the quality of foods and to use a dynamic expiration date (IP-DED) on a food package. The conceptual approach is supported by quantitative data from simulations on the effect of using the information of intelligent packaging in supply chain management with the goal to reduce food waste. This simulation shows that by using the information on the quality of products that is provided by intelligent packaging, QCL can substantially reduce food waste. When QCL is combined with dynamic pricing based on the predicted expiry dates, a further waste reduction is envisaged.

  11. The role of multiple barriers in assuring waste package reliability

    International Nuclear Information System (INIS)

    Bradford, R.M.

    1993-08-01

    Yucca Mountain in southwestern Nevada is being studied as a potential repository site for the permanent storage of high-level nuclear waste. Regulators have set performance standards that the potential repository must meet in order to obtain regulatory approval. Nuclear Regulatory Commission (NRC) regulations state that containment of radioactivity must be ''substantially complete'' for the first 1000 years after closure of the facility. Thereafter, the acceptable annual limit on releases is 1/100,000 of each radionuclide remaining in the inventory after 1000 years. To demonstrate that the potential facility is in compliance with the regulations, it is necessary to obtain some understanding of the probability distribution of the cumulative quantity of releases by certain time points. This paper will discuss the probability distribution of waste container lifetimes and how the understanding of this distribution will play a role in finding the distribution of the release quantities over time. It will be shown that, for reasonable assumptions about the process of barrier failure, the reliability of a multiple-barrier container can be achieved and demonstrated much more readily than a container consisting of a single barrier. The discussion will focus primarily on the requirement of substantially complete containment for the first 1000 years

  12. Application of digital radiography for the non-destructive characterization of radioactive waste packages

    International Nuclear Information System (INIS)

    Lierse, C.; Goebel, H.; Kaciniel, E.; Buecherl, T.; Krebs, K.

    1995-01-01

    Digital radiography (DR) using gamma-rays is a powerful tool for the non-destructive determination of various parameters which are relevant within the quality control procedure of radioactive waste packages prior to an interim storage or a final disposal. DR provides information about the waste form and the extent of filling in a typical container. It can identify internal structures and defects, gives their geometric dimensions and helps to detect non-declared inner containers, shielding materials etc. From a digital radiographic image the waste matrix homogeneity may be determined and mean attenuation coefficients as well as density values for selected regions of interest can be calculated. This data provides the basis for an appropriate attenuation correction of gamma emission measurements (gamma scanning) and makes a reliable quantification of gamma emitters in waste containers possible. Information from DR measurements are also used for the selection of interesting height positions of the object which are subsequently inspected in more detail by other non-destructive methods, e. g. by transmission computerized tomography (TCT). The present paper gives important technical specifications of an integrated tomography system (ITS) which is used to perform digital radiography as well as transmission/emission computerized tomography (TCT/ECT) on radioactive waste packages. It describes the DR mode and some of its main applications and shows typical examples of radiographs of real radioactive waste drums

  13. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste

    International Nuclear Information System (INIS)

    Adrados, A.; Marco, I. de; Caballero, B.M.; López, A.; Laresgoiti, M.F.; Torres, A.

    2012-01-01

    Highlights: ► Pyrolysis of plastic waste. ► Comparison of different samples: real waste, simulated and real waste + catalyst. ► Study of the effects of inorganic components in the pyrolysis products. - Abstract: Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  14. Development and evaluation of a tracer-injection hydrothermal technique for studies of waste package interactions

    International Nuclear Information System (INIS)

    Jones, T.E.; Coles, D.G.; Britton, R.C.; Burnell, J.R.

    1986-11-01

    A tracer-injection system has been developed for use in characterizing reactions of waste package materials under hydrothermal conditions. High-pressure liquid chromatographic instrumentation has been coupled with Dickson-type rocking autoclaves to allow injection of selected components into the hydrothermal fluid while maintaining run temperature and pressure. Hydrothermal experiments conducted using this system included the interactions of depleted uranium oxide and Zircaloy-4 metal alloy discs with trace levels of 99 Tc and non-radioactive Cs and I in a simulated groundwater matrix. After waste-package components and simulated waste forms were pre-conditioned in the autoclave systems (usually 4 to 6 weeks), known quantities of tracer-doped fluids were injected into the autoclaves' gold reaction bag at run conditions. Time-sequenced sampling of the hydrothermal fluid providing kinetic data on the reactions of tracers with waste package materials. The injection system facilitates the design of experiments that will better define ''steady-state'' fluid compositions in hydrothermal reactions. The injection system will also allow for the formation of tracer-bearing solid phases in detectable quantities

  15. Corrosion test on candidate waste package basket materials for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Curtis, P.G.

    1996-01-01

    A scoping corrosion test was performed on candidate waste package basket materials in order to assist in selecting materials for package design and to help in designing longer-term corrosion tests. The corrosion solution was buffered near pH4, was in contact with air, and contained chemical species expected to be produced by radiolysis. The test was conducted at 90 C for 96 hours. Samples included aluminum-, copper-, stainless steel-, and zirconium-based metallic materials and several ceramics, incorporating neutron absorber elements. Sample weight losses and solution chemical changes were measured. Both corrosion of the host materials and dissolution of the neutron absorber elements were studied

  16. Low-level waste incineration at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Gillins, R.L.; Davis, J.N.; Maughan, R.Y.; Logan, J.A.

    1985-01-01

    A facility for the incineration of low-level beta/gamma contaminated combustible waste has been constructed at the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL). The incineration facility was established to: (1) reduce the volume of currently generated contaminated combustible waste being disposed at the INEL's radioactive waste disposal site and thereby prolong the site's useful life; and (2) develop waste processing technology by providing a facility where full-size processes and equipment can be demonstrated and proven during production-scale operations. Cold systems testing has been completed, and contaminated operations began in September of 1984. Currently the facility is processing waste packaged in 2 x 2 x 2 ft cardboard boxes and measuring <10mR/h at contact. 3 figs

  17. Application of fluidization to separate packaging waste plastics.

    Science.gov (United States)

    Carvalho, M Teresa; Ferreira, Célia; Portela, Antía; Santos, João Tiago

    2009-03-01

    The objective of the experimental work described in this paper is the study of the separation of PS (polystyrene) from PET (polyethylene terephthalate) and PVC (polyvinyl chloride) from drop-off points using a fluidized bed separator. This is a low-cost process commonly used in the hydro-classification of mineral ores. Firstly, experimental tests were carried out with artificial granulated samples with different grain sizes, types and sources of plastic ("separability tests"). The particle settling velocities were determined under different operating conditions. Then, based on the results, the laboratory tests continued with real mixtures of waste plastics ("separation tests") and the efficiency of the process was evaluated. From a PET-rich mixture, a concentrate of PS with a 75% grade in PS was produced while the underflow was quite clear from PS (grade less than 0.5% in PS).

  18. Candidate container materials for Yucca Mountain waste package designs

    International Nuclear Information System (INIS)

    McCright, R.D.; Halsey, W.G.; Gdowski, G.E.; Clarke, W.L.

    1991-09-01

    Materials considered as candidates for fabricating nuclear waste containers are reviewed in the context of the Conceptual Design phase of a potential repository located at Yucca Mountain. A selection criteria has been written for evaluation of candidate materials for the next phase -- Advanced Conceptual Design. The selection criteria is based on the conceptual design of a thin-walled container fabricated from a single metal or alloy; the criteria consider the performance requirements on the container and the service environment in which the containers will be emplaced. A long list of candidate materials is evaluated against the criteria, and a short list of materials is proposed for advanced characterization in the next design phase

  19. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    International Nuclear Information System (INIS)

    O'Leary, Gerald A.

    2007-01-01

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of

  20. Extended producer responsibility for packaging wastes and WEEE - a comparison of implementation and the role of local authorities across Europe.

    Science.gov (United States)

    Cahill, Rachel; Grimes, Sue M; Wilson, David C

    2011-05-01

    A comparison of the implementation of extended producer responsibility (EPR) to packaging waste and waste electrical and electronic equipment (WEEE) is presented for a representative sample of eleven European Union countries based on five indicators: stakeholders and responsibilities; compliance mechanisms; role of local authorities; financing mechanisms and merits and limitations, with four countries selected for more detailed case study analysis. Similarities, trends and differences in national systems are highlighted with particular focus on the role of local authorities and their relationship with obligated producers and the effect on the operation and success of each system. The national systems vary considerably in design, in terms of influence of pre-existing policy and systems, methods of achieving producer compliance (multiple or single collective schemes), fee structures, targets, waste stream prioritization and local authority involvement. Differing approaches are evident across all member states with respect to the role played by local authorities, responsibility apportioned to them, and the evolution of working relationships between obligated producers and municipalities. On the whole, EPR for packaging and WEEE has been successfully implemented throughout Europe in terms of Directive targets. It is, however, clear that the EPR systems currently in application across Europe differ primarily due to contrasting opinion on the legitimacy of local authorities as stakeholders and, in some cases, a fear on the part of industry of associated costs. Where local authorities have been engaged in the design and implementation of national systems, existing infrastructure used and defined roles established for producers and local authorities, results have been significantly more positive than in the cases where local authorities have had limited engagement.

  1. Modeling of Stress Corrosion Cracking for High Level Radioactive-Waste Packages

    International Nuclear Information System (INIS)

    Lu, S C; Gordon, G M; Andresen, P L; Herrera, M L

    2003-01-01

    A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain radioactive-waste repository. SCC is one form of environmentally assisted cracking due to three factors, which must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is Alloy 22, a highly corrosion resistant alloy, the environment is represented by the water film present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the stress is principally the weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding). To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulas for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, the time to through-wall penetration for the waste package can be calculated. The SDFR model relates the advance (or propagation) of cracks, subsequent to the crack initiation from bare metal surface, to the metal oxidation transients that occur when the protective film at the crack tip is continually ruptured and repassivated. A crack, however, may reach the ''arrest'' state before it enters the ''propagation'' phase. There exists a threshold stress intensity factor, which provides a criterion for determining if an initiated crack or pre-existing manufacturing flaw will reach the ''arrest'' state. This paper presents the research

  2. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Safety Analysis Report for Packaging, Y-12 National Security Complex, Model ES-3100 Package with Bulk HEU Contents

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, James [Y-12 National Security Complex, Oak Ridge, TN (United States); Goins, Monty [Y-12 National Security Complex, Oak Ridge, TN (United States); Paul, Pran [Y-12 National Security Complex, Oak Ridge, TN (United States); Wilkinson, Alan [Y-12 National Security Complex, Oak Ridge, TN (United States); Wilson, David [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2015-09-03

    This safety analysis report for packaging (SARP) presents the results of the safety analysis prepared in support of the Consolidated Nuclear Security, LLC (CNS) request for licensing of the Model ES-3100 package with bulk highly enriched uranium (HEU) contents and issuance of a Type B(U) Fissile Material Certificate of Compliance. This SARP, published in the format specified in the Nuclear Regulatory Commission (NRC) Regulatory Guide 7.9 and using information provided in UCID-21218 and NRC Regulatory Guide 7.10, demonstrates that the Y-12 National Security Complex (Y-12) ES-3100 package with bulk HEU contents meets the established NRC regulations for packaging, preparation for shipment, and transportation of radioactive materials given in Title 10, Part 71, of the Code of Federal Regulations (CFR) [10 CFR 71] as well as U.S. Department of Transportation (DOT) regulations for packaging and shipment of hazardous materials given in Title 49 CFR. To protect the health and safety of the public, shipments of adioactive materials are made in packaging that is designed, fabricated, assembled, tested, procured, used, maintained, and repaired in accordance with the provisions cited above. Safety requirements addressed by the regulations that must be met when transporting radioactive materials are containment of radioactive materials, radiation shielding, and assurance of nuclear subcriticality.

  4. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    Energy Technology Data Exchange (ETDEWEB)

    DI Kaplan; RJ Serne

    2000-02-24

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct

  5. ECONOMIC AND ENVIRONMENTAL EFFECTS OF COLLECTION AND PRIMARY RECYCLING OF PACKAGING WASTE FROM HYGIENE AND CLEANING PRODUCTS IN SERBIA

    Directory of Open Access Journals (Sweden)

    Žarko Vranjanac

    2017-11-01

    Full Text Available Collection and primary recycling of packaging waste from hygiene and cleaning products occupy an important place in an integral waste management system. It is a fact that management of such waste helps reduce negative economic and environmental impact on one hand and helps bring direct and indirect benefits from collection and primary recycling of the packaging waste on the other hand. In order to obtain more comprehensive data on the economic effects of management of packaging waste from hygiene and cleaning products, this paper presents a methodology for calculating the relevant values associated with the waste. The paper also provides data on the amount, type, and market value of packaging waste from hygiene and cleaning products. Using the data on economic and environmental impact of the packaging waste from hygiene and cleaning products, as well as the data on economic benefits from this type of waste, it is possible to analyse the profitability of its collection and primary recycling in Serbia.

  6. Hanford low-level waste process chemistry testing data package

    International Nuclear Information System (INIS)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a open-quotes proof of principleclose quotes test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock ampersand Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM)

  7. Hanford low-level waste process chemistry testing data package

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock & Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM).

  8. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the

  9. Development of bio based plastic materials for packaging from soybeans waste

    Science.gov (United States)

    Muhammad, A.; Rashidi, A. R.; Roslan, A.; Idris, S. A.

    2017-09-01

    Demands of plastic material which increase with the increasing of human population encourage researchers to find alternative solution to replace petro based plastic. Thus, in the present study, a novel "green bioplastic" packaging was developed using soybean waste which is a major waste in soy sauce food industry. The evaluation of the effect of ratio of starch, soy waste and plasticizer in this bioplastic production was studied and their characteristics were compared with available bioplastics. Characteristics study was done in terms of burning test, water absorption capacity, thermal and tensile strength measurement and the result obtained were analyzed. The glass transition temperature (Tg) for soy waste bioplastic is 117˚C. The water absorption test shows that an increase in mass up to 114.17% which show large amount of water uptake capacity of this bioplastics. And about 38% of percentage loss was observed when compared with other novel bioplastics. The results clearly show that the amount of glycerol as a plasticizer had an inversely proportional relationship with the Glass Transition Temperature (Tg). The average maximum force value for tensile strength test is 6.71 N. The burning test show that the soy wastes bioplastic release a very faint smell of soy and glue-like substance. The flame ignited a Yellowish-Orange colour and released some sparks. Based on the overall results, soy-based have been proven to become an excellent bio-based packaging materials.

  10. A PC-based software package for modeling DOE mixed-waste management options

    International Nuclear Information System (INIS)

    Abashian, M.S.; Carney, C.; Schum, K.

    1995-02-01

    The U.S. Department of Energy (DOE) Headquarters and associated contractors have developed an IBM PC-based software package that estimates costs, schedules, and public and occupational health risks for a range of mixed-waste management options. A key application of the software package is the comparison of various waste-treatment options documented in the draft Site Treatment Plans prepared in accordance with the requirements of the Federal Facility Compliance Act of 1992. This automated Systems Analysis Methodology consists of a user interface for configuring complexwide or site-specific waste-management options; calculational algorithms for cost, schedule and risk; and user-selected graphical or tabular output of results. The mixed-waste management activities modeled in the automated Systems Analysis Methodology include waste storage, characterization, handling, transportation, treatment, and disposal. Analyses of treatment options identified in the draft Site Treatment Plans suggest potential cost and schedule savings from consolidation of proposed treatment facilities. This paper presents an overview of the automated Systems Analysis Methodology

  11. Regulatory authority of the Rocky Mountain states for low-level radioactive waste packaging and transportation

    International Nuclear Information System (INIS)

    Whitman, M.; Tate, P.

    1983-07-01

    The newly-formed Rocky Mountain Low-Level Radioactive Waste Compact is an interstate agreement for the management of low-level radioactive waste (LLW). Eligible members of the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Each state must ratify the compact within its legislature for the compact to become effective in that state and to make that state a full-fledged member of the compact. By so adopting the compact, each state agrees to the terms and conditions specified therein. Among those terms and conditions are provisions requiring each member state to adopt and enforce procedures requiring low-level waste shipments originating within its borders and destined for a regional facility to conform to packaging and transportation requirements and regulations. These procedures are to include periodic inspections of packaging and shipping practices, periodic inspections of waste containers while in the custody of carriers and appropriate enforcement actions for violations. To carry out this responsibility, each state must have an adequate statutory and regulatory inspection and enforcement authority to ensure the safe transportation of low-level radioactive waste. Three states in the compact region, Arizona, Utah and Wyoming, have incorporated the Department of Transportation regulations in their entirety, and have no published rules and regulations of their own. The other states in the compact, Colorado, Nevada and New Mexico all have separate rules and regulations that incorporate the DOT regulations. A brief description of the regulatory requirements of each state is presented

  12. Conceptual waste package interim product specifications and data requirements for disposal of glass commercial high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-10-01

    The conceptual waste package interim product specifications and data requirements presented are applicable to the reference glass composition described in PNL-3838 and carbon steel canister described in ONWI-438. They provide preliminary numerical values for the commercial high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses and regulatory requirements become available. 13 references, 1 figure

  13. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  14. Review of DOE Waste Package Program. Semiannual report, October 1984-March 1985. Volume 8

    International Nuclear Information System (INIS)

    Davis, M.S.

    1985-12-01

    A large number of technical reports on waste package component performance were reviewed over the last year in support of the NRC's review of the Department of Energy's (DOE's) Environmental Assessment reports. The intent was to assess in some detail the quantity and quality of the DOE data and their relevance to the high-level waste repository site selection process. A representative selection of the reviews is presented for the salt, basalt, and tuff repository projects. Areas for future research have been outlined. 141 refs

  15. Effect of chloride concentration and pH on pitting corrosion of waste package container materials

    International Nuclear Information System (INIS)

    Roy, A.K.; Fleming, D.L.; Gordon, S.R.

    1996-12-01

    Electrochemical cyclic potentiodynamic polarization experiments were performed on several candidate waste package container materials to evaluate their susceptibility to pitting corrosion at 90 degrees C in aqueous environments relevant to the potential underground high-level nuclear waste repository. Results indicate that of all the materials tested, Alloy C-22 and Ti Grade-12 exhibited the maximum corrosion resistance, showing no pitting or observable corrosion in any environment tested. Efforts were also made to study the effect of chloride ion concentration and pH on the measured corrosion potential (Ecorr), critical pitting and protection potential values

  16. Review of DOE Waste Package Program. Semiannual report, October 1984-March 1985. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.S. (ed.)

    1985-12-01

    A large number of technical reports on waste package component performance were reviewed over the last year in support of the NRC`s review of the Department of Energy`s (DOE`s) Environmental Assessment reports. The intent was to assess in some detail the quantity and quality of the DOE data and their relevance to the high-level waste repository site selection process. A representative selection of the reviews is presented for the salt, basalt, and tuff repository projects. Areas for future research have been outlined. 141 refs.

  17. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses

  18. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses.

  19. Development of waste package designs for disposal in a salt repository

    International Nuclear Information System (INIS)

    Balmert, M.E.

    1983-01-01

    Three package design concepts were developed for CHLW and DHLW forms and spent fuel rods: (1) carbon steel overpack, borehole emplacement, (2) titanium clad, carbon steel reinforced overpack, borehole emplacement, and (3) carbon steel (self-shield) overpack, tunnel emplacement. For a DHLW canister with titanium clad overpack, the concept features a 9.5-cm-thick carbon steel overpack reinforcement supporting a 0.25-cm-thick titanium shell. The overall package dimensions are 84 cm diameter x 340 cm long weighing about 8.8 mtons. By contrast, a monolithic DHLW borehole package has a carbon steel overpack that is 10.4 cm thick, weighing about 9.3 mtons. The titanium clad/carbon steel reinforced borehole package is intended for remote emplacement in a vertical borehole in salt. The carbon steel overpack reinforcement provides structural integrity, primarily to resist external pressure, while the titanium overpack provides the necessary corrosion resistance to meet containment requirements. The carbon steel borehole package concept provides containment integrity for both external pressure and corrosion environments with a thicker carbon steel overpack in place of the titanium/carbon steel concept. A third concept utilizes an even greater thickness of cast steel or iron to resist external pressure and corrosion as well as reduce external shielding requirements. For example, a cast steel DHLW package would have overall dimensions of 125 cm diameter x 390 cm long, weighing 31 mtons. The purpose of this self-shield concept is to minimize handling and emplacement operations by reducing the package surface radiation dose to about 100 mrem/hr. In addition, it may serve as a shipping cask, thereby eliminating the need for a shielded hot cell at the repository for waste package assembly operations. 7 figures

  20. Definition of the waste package environment for a repository located in salt

    International Nuclear Information System (INIS)

    Clark, D.E.; Bradley, D.J.

    1983-01-01

    The expected environmental conditions for emplaced waste packages in a salt repository are simulated in the materials testing program to evaluate performance. Synthetic brines, based on the analyses of actual brines (both intrusion and inclusion), are used for corrosion and leach testing. Elevated temperatures (to 150 0 C) and radiation fields of up to 10 3 rad/h are employed as conservative conditions to bracket expected performance and provide data for worst case scenarios. Obtaining a precise definition of the waste package environment in a salt repository and its change with time is closely tied to detailed site characterization of the candidate salt repository horizon. It is expected that field testing can augment some of the materials testing currently under way and can provide increased confidence in the predicted site-specific near-field conditions. 17 references, 5 figures, 1 table

  1. The importance of thermal loading conditions to waste package performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-10-01

    Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period

  2. Effect of alpha and gamma radiation on the near-field chemistry and geochemistry of high-level waste packages

    International Nuclear Information System (INIS)

    Reed, D.T.

    1985-12-01

    Ionizing radiation can potentially alter geochemical and chemical processes in a geologic system. These effects can either enhance or reduce the performance of the waste package in a deep geologic repository. Current indications are that, in a repository located in basalt, ionizing radiation significantly affects geochemical/chemical processes but does not appear to significantly affect factors important to the long-term performance of the repository. The experimental results presented in this paper were obtained as part of an ongoing effort by the Basalt Waste Isolation Project to determine the effect of ionizing radiation on chemical and geochemical processes in the environment of the waste package. Gamma radiolysis experiments were done by subjecting samples of synthetic basalt groundwater in the presence of various waste package components (basalt/packing/low-carbon steel) to high levels of gamma radiation from a 60 Co source. Post-irradiation analysis was done on the gas, liquid, and solid components of the basalt system. The results obtained are important in evaluating waste package performance during the containment period. The effect of alpha radiation on the basalt groundwater system in the presence of waste package components is important in evaluating waste package performance during the isolation period. The experimental work in this area is in a very preliminary stage. Results from two experiments are reported. 9 refs., 4 figs., 7 tabs

  3. REPOSITORY LAYOUT SUPPORTING DESIGN FEATURE NO.13 - WASTE PACKAGE SELF SHIELDING

    International Nuclear Information System (INIS)

    Owen, J.

    1999-01-01

    The objective of this analysis is to develop a repository layout, for Feature No. 13, that will accommodate self-shielding waste packages (WP) with an areal mass loading of 25 metric tons of uranium per acre (MTU/acre). The scope of this analysis includes determination of the number of emplacement drifts, amount of emplacement drift excavation required, and a preliminary layout for illustrative purposes

  4. Experiences of storage of radioactive waste packages in the Nordic countries

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.; Ruokola, E.; Ramsoey, T.

    2001-04-01

    The present report includes results from a study on intermediate storage of radioactive waste packages in the Nordic countries. Principles for intermediate storage in Denmark, Finland, Norway and Sweden are presented. Recommendations are given regarding different intermediate storage options and also regarding control and supervision. The disposal of drums at Kjeller in Norway has also been included in the report. This is an example of an intended (and correctly licensed) disposal facility turned into what in practice has become a storage system. (au)

  5. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon

    2004-10-11

    The purpose of this report is to evaluate and document the inclusion or exclusion of features, events and processes (FEPs) with respect to drip shield and waste package modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). Thirty-three FEPs associated with the waste package and drip shield performance have been identified (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). A screening decision, either ''included'' or ''excluded,'' has been assigned to each FEP, with the technical bases for screening decisions, as required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs analyses in this report address issues related to the degradation and potential failure of the drip shield and waste package over the post closure regulatory period of 10,000 years after permanent closure. For included FEPs, this report summarizes the disposition of the FEP in TSPA-LA. For excluded FEPs, this report provides the technical bases for the screening arguments for exclusion from TSPA-LA. The analyses are for the TSPA-LA base-case design (BSC 2004 [DIRS 168489]), where a drip shield is placed over the waste package without backfill over the drip shield (BSC 2004 [DIRS 168489]). Each FEP includes one or more specific issues, collectively described by a FEP name and description. The FEP description encompasses a single feature, event, or process, or a few closely related or coupled processes, provided the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs were assigned to associated Project reports, so the screening decisions reside with the relevant subject-matter experts.

  6. International co-ordinated research project on low and intermediate level waste package performance

    International Nuclear Information System (INIS)

    Dayal, R.

    2001-01-01

    As part of IAEA's mandate to facilitate the transfer and exchange of information amongst Member States, the Agency is currently coordinating an international R and D project, involving 12 developed and developing countries, on Performance of Low and Intermediate Level Waste Packages under Disposal Conditions. This paper will review the current status of the Coordinated Research Project (CRP) and summarize the key findings of the work completed to date within the context of the CRP in the participating Member States. (author)

  7. Evaluation on the structural soundness of the transport package for low-level radioactive waste for subsurface disposal against aircraft impact by finite element method

    International Nuclear Information System (INIS)

    Itoh, Chihiro

    2009-01-01

    The structural analysis of aircraft crush on the transport package for low-level radioactive waste was performed using the impact force which was already used for the evaluation of the high-level waste transport package by LSDYNA code. The transport package was deformed, and stresses due to the crush exceeded elastic range. However, plastic strains yieled in the package were far than the elongation of the materials and the body of the package did not contact the disposal packages due to the deformation of the package. Therefore, it was confirmed that the package keeps its integrity against aircraft crush. (author)

  8. Determination of activation energy of pyrolysis of carton packaging wastes and its pure components using thermogravimetry.

    Science.gov (United States)

    Alvarenga, Larissa M; Xavier, Thiago P; Barrozo, Marcos Antonio S; Bacelos, Marcelo S; Lira, Taisa S

    2016-07-01

    Many processes have been used for recycling of carton packaging wastes. The pyrolysis highlights as a promising technology to be used for recovering the aluminum from polyethylene and generating products with high heating value. In this paper, a study on pyrolysis reactions of carton packaging wastes and its pure components was performed in order to estimate the kinetic parameters of these reactions. For this, dynamic thermogravimetric analyses were carried out and two different kinds of kinetic models were used: the isoconversional and Independent Parallel Reactions. Isoconversional models allowed to calculate the overall activation energy of the pyrolysis reaction, in according to their conversions. The IPR model, in turn, allowed the calculation of kinetic parameters of each one of the carton packaging and paperboard subcomponents. The carton packaging pyrolysis follows three separated stages of devolatilization. The first step is moisture loss. The second stage is perfectly correlated to devolatilization of cardboard. The third step is correlated to devolatilization of polyethylene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Abstraction of Models for Pitting and Crevice Corrosion of Drip Shield and Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon

    2001-08-29

    This analyses and models report (AMR) was conducted in response to written work direction (CRWMS M and O 1999a). ICN 01 of this AMR was developed following guidelines provided in TWP-MGR-MD-000004 REV 01, ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001, Addendum B). The purpose and scope of this AMR is to review and analyze upstream process-level models (CRWMS M and O 2000a and CRWMS M and O 2000b) and information relevant to pitting and crevice corrosion degradation of waste package outer barrier (Alloy 22) and drip shield (Titanium Grade 7) materials, and to develop abstractions of the important processes in a form that is suitable for input to the WAPDEG analysis for long-term degradation of waste package outer barrier and drip shield in the repository. The abstraction is developed in a manner that ensures consistency with the process-level models and information and captures the essential behavior of the processes represented. Also considered in the model abstraction are the probably range of exposure conditions in emplacement drifts and local exposure conditions on drip shield and waste package surfaces. The approach, method, and assumptions that are employed in the model abstraction are documented and justified.

  10. Review of waste package verification tests. Semiannual report, April 1985-September 1985

    International Nuclear Information System (INIS)

    Soo, P.

    1986-01-01

    Several studies were completed this period to evaluate experimental and analytical methodologies being used in the DOE waste package program. The first involves a determination of the relevance of the test conditions being used by DOE to characterize waste package component behavior in a salt repository system. Another study focuses on the testing conditions and procedures used to measure radionuclide solubility and colloid formation in repository groundwaters. An attempt was also made to evaluate the adequacy of selected waste package performance codes. However, the latter work was limited by an inability to obtain several codes from DOE. Nevertheless, it was possible to comment briefly on the structures and intents of the codes based on publications in the open literature. The final study involved an experimental program to determine the likelihood of stress-corrosion cracking of austenitic stainless steels and Incoloy 825 in simulated tuff repository environments. Tests for six-month exposure periods in water and air-steam conditions are described. 52 figs., 48 tabs

  11. Petrologic and geochemical characterization of the Topopah Spring Member of the Paintbrush Tuff: outcrop samples used in waste package experiments

    Energy Technology Data Exchange (ETDEWEB)

    Knauss, K.G.

    1984-06-01

    This report summarizes characterization studies conducted with outcrop samples of Topopah Spring Member of the Paintbrush Tuff (Tpt). In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), Tpt is being studied both as a primary object and as a constituent used to condition water that will be reacted with waste form, canister, or packing material. These studies directly or indirectly support NNWSI subtasks concerned with waste package design and geochemical modeling. To interpret the results of subtask experiments, it is necessary to know the exact nature of the starting material in terms of the intial bulk composition, mineralogy, and individual phase geochemistry. 31 figures, 5 tables.

  12. Petrologic and geochemical characterization of the Topopah Spring Member of the Paintbrush Tuff: outcrop samples used in waste package experiments

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1984-06-01

    This report summarizes characterization studies conducted with outcrop samples of Topopah Spring Member of the Paintbrush Tuff (Tpt). In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), Tpt is being studied both as a primary object and as a constituent used to condition water that will be reacted with waste form, canister, or packing material. These studies directly or indirectly support NNWSI subtasks concerned with waste package design and geochemical modeling. To interpret the results of subtask experiments, it is necessary to know the exact nature of the starting material in terms of the intial bulk composition, mineralogy, and individual phase geochemistry. 31 figures, 5 tables

  13. An econometric analysis of regional differences in household waste collection: the case of plastic packaging waste in Sweden.

    Science.gov (United States)

    Hage, Olle; Söderholm, Patrik

    2008-01-01

    The Swedish producer responsibility ordinance mandates producers to collect and recycle packaging materials. This paper investigates the main determinants of collection rates of household plastic packaging waste in Swedish municipalities. This is done by the use of a regression analysis based on cross-sectional data for 252 Swedish municipalities. The results suggest that local policies, geographic/demographic variables, socio-economic factors and environmental preferences all help explain inter-municipality collection rates. For instance, the collection rate appears to be positively affected by increases in the unemployment rate, the share of private houses, and the presence of immigrants (unless newly arrived) in the municipality. The impacts of distance to recycling industry, urbanization rate and population density on collection outcomes turn out, though, to be both statistically and economically insignificant. A reasonable explanation for this is that the monetary compensation from the material companies to the collection entrepreneurs vary depending on region and is typically higher in high-cost regions. This implies that the plastic packaging collection in Sweden may be cost ineffective. Finally, the analysis also shows that municipalities that employ weight-based waste management fees generally experience higher collection rates than those municipalities in which flat and/or volume-based fees are used.

  14. An econometric analysis of regional differences in household waste collection: The case of plastic packaging waste in Sweden

    International Nuclear Information System (INIS)

    Hage, Olle; Soederholm, Patrik

    2008-01-01

    The Swedish producer responsibility ordinance mandates producers to collect and recycle packaging materials. This paper investigates the main determinants of collection rates of household plastic packaging waste in Swedish municipalities. This is done by the use of a regression analysis based on cross-sectional data for 252 Swedish municipalities. The results suggest that local policies, geographic/demographic variables, socio-economic factors and environmental preferences all help explain inter-municipality collection rates. For instance, the collection rate appears to be positively affected by increases in the unemployment rate, the share of private houses, and the presence of immigrants (unless newly arrived) in the municipality. The impacts of distance to recycling industry, urbanization rate and population density on collection outcomes turn out, though, to be both statistically and economically insignificant. A reasonable explanation for this is that the monetary compensation from the material companies to the collection entrepreneurs vary depending on region and is typically higher in high-cost regions. This implies that the plastic packaging collection in Sweden may be cost ineffective. Finally, the analysis also shows that municipalities that employ weight-based waste management fees generally experience higher collection rates than those municipalities in which flat and/or volume-based fees are used

  15. National Institutes of Health: Mixed waste minimization and treatment

    International Nuclear Information System (INIS)

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy's National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified

  16. National Institutes of Health: Mixed waste minimization and treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  17. Waste management study: Process development at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1984-12-01

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes

  18. Development of backfill material as an engineered barrier in the waste package system. Interim topical report

    International Nuclear Information System (INIS)

    Wheelwright, E.J.; Hodges, F.N.; Bray, L.A.; Westsik, J.H. Jr.; Lester, D.H.; Nakai, T.L.; Spaeth, M.E.; Stula, R.T.

    1981-09-01

    A backfill barrier, emplaced between the containerized waste and the host rock, can both protect the other engineered barriers and act as a primary barrier to the release of radionuclides from the waste package. Attributes that a backfill should provide in order to carry out its required function have been identified. Primary attributes are those that have a direct effect upon the release and transport of radionuclides from the waste package. Supportive attributes do not directly affect radionuclide release but are necessary to support the primary attributes. The primary attributes, in order of importance, are: minimize (retard or exclude) the migration of ground water between the host rock and the waste canister system; retard the migration of selected chemical species (corrosive species and radionuclides) in the ground water; control the Eh and pH of the ground water within the waste-package environment. The supportive attributes are: self-seal any cracks or discontinuities in the backfill or interfacing host geology; retain performance properties at all repository temperatures; retain peformance properties during and after receiving repository levels of gamma radiation; conduct heat from the canister system to the host geology; retain mechanical properties and provide resistance to applied mechanical forces; retain morphological stability and compatibility with structural barriers and with the host geology for required period of time. Screening and selection of candidate backfill materials has resulted in a preliminary list of materials for testing. Primary emphasis has been placed on sodium and calcium bentonites and zeolites used in conjunction with quartz sand or crushed host rock. Preliminary laboratory studies have concentrated on permeability, sorption, swelling pressure, and compaction properties of candidate backfill materials

  19. DCFPAK: Dose coefficient data file package for Sandia National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eckerman, K.F.; Leggett, R.W.

    1996-07-31

    The FORTRAN-based computer package DCFPAK (Dose Coefficient File Package) has been developed to provide electronic access to the dose coefficient data files summarized in Federal Guidance Reports 11 and 12. DCFPAK also provides access to standard information regarding decay chains and assembles dose coefficients for all dosimetrically significant radioactive progeny of a specified radionuclide. DCFPAK was designed for application on a PC but, with minor modifications, may be implemented on a UNIX workstation.

  20. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    International Nuclear Information System (INIS)

    K.G. Mon; L.A. Rottinghaus

    2004-01-01

    As directed by a written development plan (BSC 2002 [DIRS 161132]), the primary purpose of this scientific analysis is to identify and document the analyses and resolution of the features, events, and processes (FEPs) affecting the waste package and drip shield performance in the repository. Thirty-three FEPs were identified that are associated with the waste package and drip shield performance. This scientific analysis has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The scope of this scientific analysis is to identify the treatment of the FEPs affecting postclosure waste package and drip shield performance. It should be noted that seismic effects are not treated within this report. A full discussion of seismic effects is contained in the ''Engineered Barrier System Features, Events, and Processes'' report (BSC 2004 [DIRS 167253]). The FEPs that are deemed potentially important to repository postclosure performance are evaluated, either as components of the total system performance assessment (TSPA) or as a separate discussion in a scientific analysis report. The scope for this activity involves two tasks, namely: Task 1: Identify which FEPs are to be considered explicitly in the TSPA (called included FEPs) and in which scientific analyses these FEPs are addressed. Task 2: Identify FEPs not to be included in the TSPA (called excluded FEPs) and provide justification for why these FEPs do not need to be a part of the TSPA model. The analyses documented in this scientific analysis are for the license application (LA) base case design (BSC 2004 [DIRS 167040]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 167040]). Each FEP may include one or more specific issues that are collectively described by a FEP name, a FEP description, and descriptor phrases. The FEP Description may encompass a single feature, process or event, or a few

  1. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; L.A. Rottinghaus

    2004-03-26

    As directed by a written development plan (BSC 2002 [DIRS 161132]), the primary purpose of this scientific analysis is to identify and document the analyses and resolution of the features, events, and processes (FEPs) affecting the waste package and drip shield performance in the repository. Thirty-three FEPs were identified that are associated with the waste package and drip shield performance. This scientific analysis has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The scope of this scientific analysis is to identify the treatment of the FEPs affecting postclosure waste package and drip shield performance. It should be noted that seismic effects are not treated within this report. A full discussion of seismic effects is contained in the ''Engineered Barrier System Features, Events, and Processes'' report (BSC 2004 [DIRS 167253]). The FEPs that are deemed potentially important to repository postclosure performance are evaluated, either as components of the total system performance assessment (TSPA) or as a separate discussion in a scientific analysis report. The scope for this activity involves two tasks, namely: Task 1: Identify which FEPs are to be considered explicitly in the TSPA (called included FEPs) and in which scientific analyses these FEPs are addressed. Task 2: Identify FEPs not to be included in the TSPA (called excluded FEPs) and provide justification for why these FEPs do not need to be a part of the TSPA model. The analyses documented in this scientific analysis are for the license application (LA) base case design (BSC 2004 [DIRS 167040]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 167040]). Each FEP may include one or more specific issues that are collectively described by a FEP name, a FEP description, and descriptor phrases. The FEP Description may encompass a single feature, process

  2. Directory of national competent authorities' approval certificates for package design and shipment of radioactive material

    International Nuclear Information System (INIS)

    1990-04-01

    The authorization of packages and shipments of radioactive materials are issued in the form of certificates by the national competent authority of the IAEA Member State in which the package is designed or from which a shipment originates, and may be validated or endorsed by the corresponding authority of other Member States as the need arises. This directory summarizes in tabular form the key information on existing package approval certificates contained in PACKTRAM database. 5 tabs

  3. On the road to WIPP: Or remote packaging of transuranic waste

    International Nuclear Information System (INIS)

    Ledbetter, J.M.; Field, L.R.

    1994-01-01

    At the Los Alamos National Laboratory (LANL) Hot Cell facility, highly productive programs in reactor research spanning three decades have generated appreciable quantities of legacy waste. Hot cell capability had become virtually useless due to the storage of this waste. As a result of concentrated efforts by LANL staff, in cooperation with Westinghouse Waste Isolation Pilot Plant (WIPP), a solution was arrived at that allowed the facility to become productive once again. Equipment has been designed and fabricated to remotely handle 55-gal. waste drums, load waste canisters, perform canister weld closure, leak test welds, grapple the waste canister and transport the canister to an interim storage site. It is our contention that the technology and acquired equipment produced from this effort should be used to further benefit other DOE sites

  4. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.

  5. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  6. Current status of waste package designs for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Ballou, L.B.

    1989-07-01

    Conceptual designs for waste packages containing spent fuel or high-level waste glass have been developed for use in a repository at Yucca Mountain. The basis for these designs reflects the unique nature of the expected service environment associated with disposal in welded tuff in the unsaturated zone. In addition to a set of reference designs, alternative design concepts are being considered that would contain and isolate the waste radionuclides in a more aggressive service environment. Consideration is also being given to the feasibility of a concept known as ''heat tailoring'' that employs the thermal energy released by the wasteforms to enhance and extend the performance of the containers. 5 refs., 3 figs

  7. Aspiration requirements for the transportation of retrievably stored waste in the TRUPACT-2 package

    International Nuclear Information System (INIS)

    Djordjevic, S.; Drez, P.; Murthy, D.; Temus, C.

    1990-01-01

    The Transuranic Package Transporter-II (TRUPACT-II) is the shipping package to be used for the transportation of contact-handled transuranic (CH TRU) waste between the various US Department of Energy (DOE) sites, and to the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. Waste (payload) containers to be transported in the TRUPACT-II package are required to be vented prior to being shipped. ''Venting'' refers to the installation of one or more carbon composite filters in the lid of the container, and the puncturing of a rigid liner (if present). This ensures that there is no buildup of pressure or potentially flammable gas concentrations in the container prior to transport. Payload containers in retrievable storage that have been stored in an unvented condition at the DOE sites, may have generated and accumulated potentially flammable concentrations of gases (primarily due to generation of hydrogen by radiolysis) during the unvented storage period. Such payload containers need to be aspirated for a sufficient period of time until safe pre-transport conditions (acceptably low hydrogen concentrations) are achieved. The period of time for which a payload container needs to be in a vented condition before qualifying for transport in a TRUPACT-II package is defined as the ''aspiration time.'' This paper presents the basis for evaluating the minimum aspiration time for a payload container that has been in unvented storage. Three different options available to the DOE sites for meeting the aspiration requirements are described in this paper. 4 refs., 2 figs

  8. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  9. Vendor Assessment for the Waste Package Closure System (Yucca Mountain Project)

    International Nuclear Information System (INIS)

    Shelton-Davis, C.V.

    2003-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has been tasked with developing, designing, constructing, and operating a full-scale prototype of the work package closure system. As a precursor to developing the conceptual design, all commercially available equipment was assessed to identify any existing technology gaps. This report presents the results of that assessment for all major equipment

  10. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  11. Waste Reduction plan for Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R&D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R&D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R&D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

  12. Waste Reduction plan for Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

  13. Identification and Differentiation of Actinides Inside Nuclear Waste Packages by Measurement of Delayed Gammas

    International Nuclear Information System (INIS)

    Carrel, F.; Agelou, M.; Gmar, M.; Laine, F.; Poumarede, B.; Loridon, J.; Ma, J. L.; Passard, Ch.

    2010-01-01

    The Alpha-activity resulting from the presence of actinides inside nuclear waste packages must be characterized, in order to select the most appropriate means of storage. Non-destructive active methods, based on the fission process, allow the global mass of actinides to be quantified. However, in most cases, these measurements provide no information on the nature of the isotopes. We are currently developing a method dedicated to the identification of the actinides contained inside nuclear waste packages. This technique is based on the detection of delayed gammas emitted by fission products, the latter being created by irradiation with a neutron or photon beam. The delayed gamma spectrum can be thought of as a 'fingerprint' of the irradiated sample. Qualitative and quantitative analysis of the peaks allows the actinides to be identified. In this paper, we firstly explain the theoretical principle of our method. We then present experimental results obtained on sample mixtures for both types of interrogation ( 235 U/ 239 Pu in fission, 235 U/ 238 U). Finally, we describe the experiments carried out on different mock-up packages, dedicated to the assessment of the performance and limitations of our technique. (authors)

  14. Nuclear safety requirements for upgrading the National Repository for Radioactive Wastes-Baita Bihor

    International Nuclear Information System (INIS)

    Vladescu, Gabriela; Necula, Daniela

    2000-01-01

    The upgrading project of National Repository for Radioactive Wastes-Baita Bihor is based on the integrated concept of nuclear safety. Its ingredients are the following: A. The principles of nuclear safety regarding the management of radioactive wastes and radioprotection; B. Safety objectives for final disposal of low- and intermediate-level radioactive wastes; C. Safety criteria for final disposal of low- and intermediate-level radioactive wastes; D. Assessment of safety criteria fulfillment for final disposal of low- and intermediate-level radioactive wastes. Concerning the nuclear safety in radioactive waste management the following issues are considered: population health protection, preventing transfrontier contamination, future generation radiation protection, national legislation, control of radioactive waste production, interplay between radioactive waste production and management, radioactive waste repository safety. The safety criteria of final disposal of low- and intermediate-level radioactive wastes are discussed by taking into account the geological and hydrogeological configuration, the physico-chemical and geochemical characteristics, the tectonics and seismicity conditions, extreme climatic potential events at the mine location. Concerning the requirements upon the repository, the following aspects are analyzed: the impact on environment, the safety system reliability, the criticality control, the filling composition to prevent radioactive leakage, the repository final sealing, the surveillance. Concerning the radioactive waste, specific criteria taken into account are the radionuclide content, the chemical composition and stability, waste material endurance to heat and radiation. The waste packaging criteria discussed are the mechanical endurance, materials toughness and types as related to deterioration caused by handling, transportation, storing or accidents. Fulfillment of safety criteria is assessed by scenarios analyses and analyses of

  15. A model for a national low level waste program

    International Nuclear Information System (INIS)

    Blankenhorn, James A.

    2009-01-01

    A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site

  16. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A Robust Power Remote Manipulator for Use in Waste Sorting, Processing, and Packaging - 12158

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Matt; Martin, Scott [S.A. Technology, Loveland, Colorado 80537, Transuranic Waste Processing Center, Lenoir City, TN 37771 (United States)

    2012-07-01

    Disposition of radioactive waste is one of the Department of Energy's (DOE's) highest priorities. A critical component of the waste disposition strategy is shipment of Transuranic (TRU) waste from DOE's Oak Ridge Reservation to the Waste Isolation Plant Project (WIPP) in Carlsbad, New Mexico. This is the mission of the DOE TRU Waste Processing Center (TWPC). The remote-handled TRU waste at the Oak Ridge Reservation is currently in a mixed waste form that must be repackaged in to meet WIPP Waste Acceptance Criteria (WAC). Because this remote-handled legacy waste is very diverse, sorting, size reducing, and packaging will require equipment flexibility and strength that is not possible with standard master-slave manipulators. To perform the wide range of tasks necessary with such diverse, highly contaminated material, TWPC worked with S.A. Technology (SAT) to modify SAT's Power Remote Manipulator (PRM) technology to provide the processing center with an added degree of dexterity and high load handling capability inside its shielded cells. TWPC and SAT incorporated innovative technologies into the PRM design to better suit the operations required at TWPC, and to increase the overall capability of the PRM system. Improving on an already proven PRM system will ensure that TWPC gains the capabilities necessary to efficiently complete its TRU waste disposition mission. The collaborative effort between TWPC and S.A. Technology has yielded an extremely capable and robust solution to perform the wide range of tasks necessary to repackage TRU waste containers at TWPC. Incorporating innovative technologies into a proven manipulator system, these PRMs are expected to be an important addition to the capabilities available to shielded cell operators. The PRMs provide operators with the ability to reach anywhere in the cell, lift heavy objects, perform size reduction associated with the disposition of noncompliant waste. Factory acceptance testing of the TWPC

  18. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair

  19. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-10-25

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair.

  20. Use of bremsstrahlung information for the nondestructive characterization of radioactive waste packages; Nutzung von Bremsstrahlungsinformation zur zerstoerungsfreien Charakterisierung radioaktiver Abfallgebinde

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmoser, Benjamin Paul

    2016-11-10

    In order to minimize pseudo activity whilst storage of radioactive waste packages it is required to determine the nuclide inventory as precisely as possible. The in Gamma spectra contained parts of bremsstrahlung can be used to identify and quantify certain beta nuclides. For this an analytical method has been developed. This was mainly tested with beta-emitter Sr-90 and Tm-170, as well as commonly present gamma-emitters in laboratory scale and actual 200 liter waste packages. As a result, non-destructive determination of radioactive wastes can be conducted more precisely.

  1. Feasibility study of fissile mass quantification by photofission delayed gamma rays in radioactive waste packages using MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Eric, E-mail: eric.simon@cea.fr [CEA, DEN, Cadarache F-13108 Saint Paul Lez Durance cedex (France); Jallu, Fanny; Pérot, Bertrand [CEA, DEN, Cadarache F-13108 Saint Paul Lez Durance cedex (France); Plumeri, Stéphane [Andra, 1-7 rue Jean Monnet, F-92298 Chatenay-Malabry (France)

    2016-12-21

    The feasibility of fissile mass quantification in large, long-lived medium activity radioactive waste packages using photofission delayed gamma rays has been assessed with MCNPX. The detection limit achievable is lower than the expected uranium mass in these waste packages, but the important sensibility to the waste matrix density and sample localization imposes to get an accurate measurement of these parameters. An isotope discrimination method based on gamma-ray ratios has been evaluated showing that photofission delayed gamma rays can be used to measure the fissile mass as well as the total uranium mass.

  2. Design and testing of Spec 7A containers for packaging radioactive wastes

    International Nuclear Information System (INIS)

    Roberts, R.S.; Perkins, C.L.

    1982-01-01

    For a variety of reasons, the containers that have or currently are being used for packaging radioactive waste have drawbacks which has motivated LLNL to investigate, design and destructively test different Type A containers. The result of this work is manifested in the TX-4, which is comparatively lightweight, increases the net payload, and the simplicity of the design and ease in handling have proved to be timesaving. The TX-4 is readily available, relatively inexpensive and practical to use. It easily meets Type A packaging specifications with a gross payload of 7000 pounds. Although no tests were performed at a higher weight, we feel that the TX-4 could pass the tests at higher gross weights if the need arises. 20 figures

  3. Design and testing of the TX-4 Type A container for packaging radioactive waste

    International Nuclear Information System (INIS)

    Roberts, R.S.; Perkins, C.L.

    1983-01-01

    The Toxic Waste Control Group at the Lawrence Livermore National Laboratory has designed and tested the TX-4, a Type A steel container for shipping and storing radioactive waste. We designed the TX-4 to eliminate the safety, maneuverability, weight, and cost problems experienced by other hazards waste containers. Our design meets the test criteria set by the Department of Transportation (49 CFR 173.398). The TX-4 container passed all tests when loaded to 7000 lb gross weight and effectively solved the above problems. Its simplicity of design, low weight, and ease in handling have proved to be timesaving and cost-effective. This report summarizes our testing of the TX-4 and past and present radioactive waste containers used by defense-related operations. Based on our results, we believe the TX-4 is a superior container for the hazardous waste industry. 10 figures, 1 table

  4. Expected very-near-field thermal environments for advanced spent-fuel and defense high-level waste packages

    International Nuclear Information System (INIS)

    Rickertsen, L.D.; Misplon, M.A.; Claiborne, H.C.

    1982-03-01

    The very-near-field thermal environments expected in a nuclear waste repository in a salt formation have been evaluated for the Westinghouse Form I advanced waste package concepts. The repository descriptions used to supplement the waste package designs in these analyses are realistic and take into account design constraints to assure conservatism. As a result, areal loadings are well below the acceptable values established for salt repositories. Predicted temperatures are generally well below any temperature limits which have been discussed for waste packages in a salt formation. These low temperatures result from the conservative repository designs. Investigations are also made of the sensitivity of these temperatures to areal loading, canister separation, and other design features

  5. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    International Nuclear Information System (INIS)

    Gordon, G.

    2004-01-01

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22

  6. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the

  7. Use of simple transport equations to estimate waste package performance requirements

    International Nuclear Information System (INIS)

    Wood, B.J.

    1982-01-01

    A method of developing waste package performance requirements for specific nuclides is described. The method is based on: Federal regulations concerning permissible concentrations in solution at the point of discharge to the accessible environment; a simple and conservative transport model; baseline and potential worst-case release scenarios. Use of the transport model enables calculation of maximum permissible release rates within a repository in basalt for each of the scenarios. The maximum permissible release rates correspond to performance requirements for the engineered barrier system. The repository was assumed to be constructed in a basalt layer. For the cases considered, including a well drilled into an aquifer 1750 m from the repository center, little significant advantage is obtained from a 1000-yr as opposed to a 100-yr waste package. A 1000-yr waste package is of importance only for nuclides with half-lives much less than 100 yr which travel to the accessible environment in much less than 1000 yr. Such short travel times are extremely unlikely for a mined repository. Among the actinides, the most stringent maximum permissible release rates are for 236 U and 234 U. A simple solubility calculation suggests, however, that these performance requirements can be readily met by the engineered barrier system. Under the reducing conditions likely to occur in a repository located in basalt, uranium would be sufficiently insoluble that no solution could contain more than about 0.01% of the maximum permissible concentration at saturation. The performance requirements derived from the one-dimensional modeling approach are conservative by at least one to two orders of magnitude. More quantitative three-dimensional modeling at specific sites should enable relaxation of the performance criteria derived in this study. 12 references, 8 figures, 8 tables

  8. Design and testing of Type A containers for packaging radioactive waste. Revision 1

    International Nuclear Information System (INIS)

    Perkins, C.L.

    1983-08-01

    The Toxic Waste Control Group at the Lawrence Livermore National Laboratory tested numerous Type A containers for use in the shipping of retrievable and disposable radioactive waste, specifically Transuranic waste, to identify and adopt a container that meets test criteria established by the Department of Transportation (49 CFR 173.398). This report summarizes the test results. Several containers passed DOT tests, but were unacceptable for use because of cost, maneuverability, size or shape, weight, or potential fire hazard during closure. The TX-4 passed all DOT tests and met LLNL requirements for handling, safety, and cost

  9. Modeling for speciation of radionuclides in waste packages with high-level radioactive wastes

    International Nuclear Information System (INIS)

    Weyand, Torben; Bracke, Guido; Seher, Holger

    2016-10-01

    Based on a literature search on radioactive waste inventories adequate thermodynamic data for model inventories were derived for geochemical model calculations using PHREEQC in order to determine the solid phase composition of high-level radioactive wastes in different containers. The calculations were performed for different model inventories (PWR-MOX, PWR-UO2, BWR-MOX, BMR-UO2) assuming intact containers under reduction conditions. The effect of a defect in the container on the solid phase composition was considered in variation calculations assuming air contact induced oxidation.

  10. Investigations on cement/polymer Waste packages containing intermediate level waste and organic exchange resins

    International Nuclear Information System (INIS)

    ELsourougy, M.R.; Zaki, A.A.; Aly, H.F.; Khalil, M.Y.

    1995-01-01

    Polymers can be added to cements to improve its nuclear waste immobilization properties. This trend in cementation processes is attracting attention and requiring through investigations. In this work, polymers of different kinds were added to ordinary portland cement for the purpose of solidifying intermediate level liquid wastes and organic ion exchange resins. Epoxy polymer such as Kemapoxy-150 reduced the leaching rate of cesium compared to cement alone. Latex to cement ratio less than 4% caused an increase in leaching rate of cesium. When cesium was absorbed to an organic resin its leachability was improved. 5 figs., 4 tabs

  11. Examining Design Factors for Safe and Effective Hydrogen Vents for Waste Packages

    International Nuclear Information System (INIS)

    Herrmann, R.C.

    2009-01-01

    The possibility of a nuclear renaissance, and the possibility of large scale new build to meet both the concerns of the environmental lobby and the economic imperatives created by the political hostage taking of unreliable fossil fuel markets throughout the world, coupled with the need to resolve issues still outstanding from a previous generation of wastes create the need for a widely accepted understanding of the needs for venting waste packages which are being prepared for term storage. In the US the technologies to immobilising the legacy wastes are being developed, in the UK the NDA is gearing up to decommission a range of sites and throughout Europe facilities are being demolished and the wastes taken to term storage. In several cases, the waste containers require venting, both to allow the thermal relief of the container during climatic variation and to allow the venting of generated gases from radiolysis, decomposition and corrosion of the contents, including Hydrogen and Hydrocarbons. The paper will examine the disparate demands of the market place, and propose strategies to rationalise the specification of filter breathers so that both producers and users have a common framework from which to determine their individual venting needs. Examining the mutually exclusive demands of permeability (affecting both pressure differential and Hydrogen diffusion) and filtration efficiency, the paper will explore economic solutions in an attempt to provide a framework against which the large number of waste containers requiring venting in the future can have their vent filters designed to meet both the best possible combination of efficiency and permeability, as well as exploring the limits of knowledge of corrosion of the filter media and suggesting strategies to tackle the possibility of the filter media failing before the waste container, and the consequences of such an event. (authors)

  12. Preparing an over-pack waste package at the reprocessor: feasibility study

    International Nuclear Information System (INIS)

    Evans, T.A.

    1983-01-01

    The purpose of this study is to investigate the feasibility and cost if the waste containers are placed in the over-pack at the reprocessor instead of being placed in the over-pack at the repository. The increased weight from over-packing waste changes the entire shipping scenario. Fifty-five and 80-gallon drums could not be consolidated in the existing six pack containerization plan. The 40,000 to 50,000 pound weight per six pack would prevent using standard loading equipment and end-loading casks (TRUPACT) for contact handled waste. The Type B containers used to transport remote handled waste are limited to a maximum number of containers from: 36 fifty-five gallon drums to 18 fifty-five gallon drums (3 six packs); 28 eighty-gallon drums to 12 eighty gallon drums (2 six packs); 5 six-hundred gallon drums to 3 six-hundred gallon drums; and 2 - 4 HLW canisters (CNSI Cask Information Data). Based on these data which indicate an increased transportation cost of over two times, it is recommended that the over-packs not be placed on the waste packages at the reprocessor, but placed after shipment to the repository before burial. The cost of commercial reprocessing waste handling that is attributed to transportation is 0.196 mills/KWH, as determined by the AGNS Waste Management Economic Model. If the over-packs were added at the reprocessing plant, the transportation costs would exceed 0.4 mills/KWH. 3 references, 1 figure, 5 tables

  13. Long-term corrosion behaviour of low-/medium-level waste packages

    International Nuclear Information System (INIS)

    Jendras, M.; Bach, F.W.; Behrens, S.; Birr, Ch.; Hassel, Th.

    2009-01-01

    Full text of publication follows: Storage of low- and medium-level radioactive waste requires safe packages. This means that all materials used for the manufacturing of such packages have to show a sufficient resistance especially against corrosive attacks. Since these packages are generally made from carbon steel an additional coating for corrosion protection - mainly solvent-based polymers - is necessary. However, it is not enough to consider the selection and combination of the materials. Regarding the construction and manufacturing of corrosion-resistant drums for low- and medium-level radioactive waste there also has to be paid closer attention to the joining technologies such as welding. For lifetime prediction of low-/medium-level waste packages reliable experimental data concerning the long-term corrosion behaviour of each material as well as of the components is needed. Therefore sheet metals from carbon steel were galvanized or coated with different solvent-based and water-based corrosion protection materials (epoxy as well as silicone resins). After damaging the anti-corrosion coating of some of these sheets with predefined scratches sets of these samples were stored at higher temperatures in climatic chamber, in simulated waste or aged according to standard DIN EN ISO 9227. All corrosion damages were analyzed by means of metallography (light microscopy as well as scanning electron microscopy of micro-sections). The quantitative influence of the corrosive attacks on the mechanical properties of the materials was examined by mechanical testing according to DIN EN 10002. Besides reduction of tensile strength drastic reduction of percentage of elongation after fracture (from 30 % to 10 %) was found. Further experiments were carried out using components or scaled-down drums joined by means of innovative welding techniques such as Cold Arc or Force Arc. The relevant welding parameters (e.g. welding current, proper volume of shielding gas or wire feed) were

  14. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements

  15. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  16. Guidance document for the preparation of waste management plans for the Environmental Restoration Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Clark, C. Jr.

    1993-07-01

    A project waste management (WM) plan is required for all Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program remedial investigation, decommission and decontamination (D ampersand D), and remedial action (RA) activities. The project WM plan describes the strategy for handling, packaging, treating, transporting, characterizing, storing, and/or disposing of waste produced as part of ORNL ER Program activities. The project WM plan also contains a strategy for ensuring worker and environmental protection during WM activities

  17. Radioactive waste package assay facility. Volume 1. Application of assay technology

    International Nuclear Information System (INIS)

    Findlay, D.J.S.; Green, T.H.; Molesworth, T.V.; Staniforth, D.; Strachan, N.R.; Rogers, J.D.; Wise, M.O.; Forrest, K.R.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd., and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd., on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. In volume 1, the reasons for assay are considered together with the various techniques that can be used, and the information that can be obtained. The practical problems associated with the use of the various techniques in an integrated assay facility are identified, and the key parameters defined. Engineering and operational features are examined and provisional designs proposed for facilities at three throughput levels: 15,000, 750 and 30 drums per year respectively. The capital and operating costs for such facilities have been estimated. A number of recommendations are made for further work. 16 refs., 14 figs., 13 tabs

  18. Dose Rate Calculations for the 2-MCO/2-DHLW Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulescu

    2000-10-03

    The objective of this calculation is to determine the dose rates on the external surfaces of the waste package (WP) containing two Hanford defense high-level waste (DHLW) glass canisters and two Hanford multi-canister overpacks (MCO). Each MCO is loaded with the N Reactor spent nuclear fuel (SNF). The information provided by the sketches attached to this calculation is that of the potential design for the WP type considered in this calculation. The scope of this calculation is limited to reporting dose rates averaged over segments of the WP radial and axial surfaces and of surfaces 1 m and 2 m from the WP. The results of this calculation will be used to assess the shielding performance of the 2-MC012-DHLW WP engineering design.

  19. National Low-Level Waste Management Program Radionuclide Report Series

    International Nuclear Information System (INIS)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 4 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics about iodine-129. This report also includes discussions about waste streams that contain iodine-129, waste forms that contain iodine-129, and iodine-129's behavior in the environment, as well as in the human body

  20. National Low-Level Waste Management Program Radionuclide Report Series

    International Nuclear Information System (INIS)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 3 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of carbon-14. The report also discusses waste streams that contain carbon-14, waste forms that contain carbon-14, and carbon-14 behavior in the environment and in the human body

  1. National Low-Level Waste Management Program Radionuclide Report Series

    International Nuclear Information System (INIS)

    Rudin, M.J.; Stanton, C.; Patterson, R.G.; Garcia, R.S.

    1992-02-01

    This report, Volume 2 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics of technetium-99. This report also includes discussions about waste streams in which technetium-99 can be found, waste forms that contain technetium-99, and technetium-99's behavior in the environment and in the human body

  2. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste.

    Science.gov (United States)

    Mastellone, Maria Laura; Cremiato, Raffaele; Zaccariello, Lucio; Lotito, Roberta

    2017-06-01

    Most of the integrated systems for municipal solid waste management aim to increase the recycling of secondary materials by means of physical processes including sorting, shredding and reprocessing. Several restrictions prevent from reaching a very high material recycling efficiency: the variability of the composition of new-marketed materials used for packaging production and its shape and complexity are critical issues. The packaging goods are in fact made of different materials (aluminium, polymers, paper, etc.), possibly assembled, having different shape (flat, cylindrical, one-dimensional, etc.), density, colours, optical properties and so on. These aspects limit the effectiveness and efficiency of the sorting and reprocessing plants. The scope of this study was to evaluate the performance of a large scale Material Recovery Facility (MRF) by utilizing data collected during a long period of monitoring. The database resulted from the measured data has been organized in four sections: (1) data related to the amount and type of inlet waste; (2) amount and composition of output products and waste; (3) operating data (such as worked hours for shift, planned and unscheduled maintenance time, setting parameters of the equipment, and energy consumption for shift); (4) economic data (value of each product, disposal price for the produced waste, penalty for non-compliance of products and waste, etc.). A part of this database has been utilized to build an executive dashboard composed by a set of performance indicators suitable to measure the effectiveness and the efficiency of the MRF operations. The dashboard revealed itself as a powerful tool to support managers and engineers in their decisions in respect to the market demand or compliance regulation variation as well as in the designing of the lay-out improvements. The results indicated that the 40% of the input waste was recovered as valuable products and that a large part of these (88%) complied with the standards of

  3. Waste reduction plan for The Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Schultz, R.M.

    1990-04-01

    The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R ampersand D) facility. These R ampersand D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associated with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs

  4. Waste reduction plan for The Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.M.

    1990-04-01

    The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R D) facility. These R D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associated with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs.

  5. Research strategies and programs related to the National Plan of Management of Radioactive Materials and Wastes. Issue 2008

    International Nuclear Information System (INIS)

    2008-01-01

    After having recalled the legal context defining the requirements of the PNGMDR (Plan national de gestion des matieres et dechets radioactifs, national plan of management of radioactive materials and wastes), this report presents several research programs which address various domains: waste packaging and behaviour (decontamination, waste characterization, waste processing, the storage sizing inventory model, parcel behaviour, used fuel evolution, future wastes), warehousing and storage in deep geological formation (characterization of the Meuse/Haute-Marne site, scientific program, simulation programs, measurement means for storage monitoring, knowledge base, security and reversibility options for storage design, security studies, warehousing options), storage of radiferous and graphite wastes, investigation of separation/transmutation scenarios, investigations related to separation, investigations related to fuel fabrication, investigations related to the transmutation of minor actinides, researches in social and human sciences

  6. Waste Cellulose from Tetra Pak Packages as Reinforcement of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Gonzalo Martínez-Barrera

    2015-01-01

    Full Text Available The development of the packaging industry has promoted indiscriminately the use of disposable packing as Tetra Pak, which after a very short useful life turns into garbage, helping to spoil the environment. One of the known processes that can be used for achievement of the compatibility between waste materials and the environment is the gamma radiation, which had proved to be a good tool for modification of physicochemical properties of materials. The aim of this work is to study the effects of waste cellulose from Tetra Pak packing and gamma radiation on the mechanical properties of cement concrete. Concrete specimens were elaborated with waste cellulose at concentrations of 3, 5, and 7 wt% and irradiated at 200, 250, and 300 kGy of gamma dose. The results show highest improvement on the mechanical properties for concrete with 3 wt% of waste cellulose and irradiated at 300 kGy; such improvements were related with the surface morphology of fracture zones of cement concrete observed by SEM microscopy.

  7. Sampling methods and non-destructive examination techniques for large radioactive waste packages

    International Nuclear Information System (INIS)

    Green, T.H.; Smith, D.L.; Burgoyne, K.E.; Maxwell, D.J.; Norris, G.H.; Billington, D.M.; Pipe, R.G.; Smith, J.E.; Inman, C.M.

    1992-01-01

    Progress is reported on work undertaken to evaluate quality checking methods for radioactive wastes. A sampling rig was designed, fabricated and used to develop techniques for the destructive sampling of cemented simulant waste using remotely operated equipment. An engineered system for the containment of cooling water was designed and manufactured and successfully demonstrated with the drum and coring equipment mounted in both vertical and horizontal orientations. The preferred in-cell orientation was found to be with the drum and coring machinery mounted in a horizontal position. Small powdered samples can be taken from cemented homogeneous waste cores using a hollow drill/vacuum section technique with the preferred subsampling technique being to discard the outer 10 mm layer to obtain a representative sample of the cement core. Cement blends can be dissolved using fusion techniques and the resulting solutions are stable to gelling for periods in excess of one year. Although hydrochloric acid and nitric acid are promising solvents for dissolution of cement blends, the resultant solutions tend to form silicic acid gels. An estimate of the beta-emitter content of cemented waste packages can be obtained by a combination of non-destructive and destructive techniques. The errors will probably be in excess of +/-60 % at the 95 % confidence level. Real-time X-ray video-imaging techniques have been used to analyse drums of uncompressed, hand-compressed, in-drum compacted and high-force compacted (i.e. supercompacted) simulant waste. The results have confirmed the applicability of this technique for NDT of low-level waste. 8 refs., 12 figs., 3 tabs

  8. Waste certification program plan for Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kornegay, F.C.

    1996-09-01

    This document defines the waste certification program being developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in U.S. Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls) waste. Program activities will be conducted according to ORNL Level 1 document requirements

  9. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    International Nuclear Information System (INIS)

    T. Wolery

    2005-01-01

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks

  10. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    T. Wolery

    2005-02-22

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks.

  11. Method to determine the radioactivity of radioactive waste packages. Basic procedure of the method used to determine the radioactivity of low-level radioactive waste packages generated at nuclear power plants: 2007

    International Nuclear Information System (INIS)

    2008-03-01

    This document describes the procedures adopted in order to determine the radioactivity of low-level radioactive waste packages generated at nuclear power plants in Japan. The standards applied have been approved by the Atomic Energy Society of Japan after deliberations by the Subcommittee on the Radioactivity Verification Method for Waste Packages, the Nuclear Cycle Technical Committee, and the Standards Committee. The method for determining the radioactivity of the low-level radioactive waste packages was based on procedures approved by the Nuclear Safety Commission in 1992. The scaling factor method and other methods of determining radioactivity were then developed on the basis of various investigations conducted, drawing on extensive accumulated knowledge. Moreover, the international standards applied as common guidelines for the scaling factor method were developed by Technical Committee ISO/TC 85, Nuclear Energy, Subcommittee SC 5, Nuclear Fuel Technology. Since the application of accumulated knowledge to future radioactive waste disposal is considered to be rational and justified, such body of knowledge has been documented in a standardized form. The background to this standardization effort, the reasoning behind the determination method as applied to the measurement of radioactivity, as well as other related information, are given in the Annexes hereto. This document includes the following Annexes. Annex 1: (reference) Recorded items related to the determination of the scaling factor. Annex 2 (reference): Principles applied to the determining the radioactivity of waste packages. (author)

  12. Facilitating the improved management of waste in South Africa through a national waste information system

    International Nuclear Information System (INIS)

    Godfrey, Linda

    2008-01-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such as South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste

  13. Safety analysis report for packaging (SARP) of the Oak Ridge National Laboratory Garden Carrier No. 2

    International Nuclear Information System (INIS)

    Klima, B.B.; Shappert, L.B.; Seagren, R.D.; Box, W.D.

    1978-04-01

    An analytical evaluation of the Oak Ridge National Laboratory Garden Carrier No. 2 was made to demonstrate its compliance with the regulations governing off-site radioactive material shipping packages. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the cask complies with the applicable regulations. The package is designed to ship large quantities of fissile and radioactive materials as solids

  14. Low level transuranic wastes assay by photon interrogation and neutron counting: application to the concrete packages

    International Nuclear Information System (INIS)

    Lyoussi, A.

    1994-03-01

    A comprehensive programme is currently in progress at several laboratories for the development of sensitive, practical and non destructive assay techniques for the quantification of low-level transuranics (TRU) in bulk solid wastes. The present document presents an active detection method for radioactive wastes embedded in high-density matrices, mainly concrete packages. The high density of the packages, as well as their high water content (up to 25%), means only high-energy neutrons or gamma particles have a high enough range to activate the enclosed actinides. Our aims were to evaluate the feasibility of dosing transuranians by induced photofission, and to optimize an experimental system with a view to improving detection limits. The system uses a pulsed electron beam from a linear accelerator (LINAC) to produce high-energy photon bursts from a metallic converter. The photons induce fissions in TRU. When a fission is induced in trace amounts of TRU contaminants in waste material, it provides ''signatures'' from fission products that can be used to assay the material before disposal. We give here the results from counting photofission-induced delayed neutrons from 239 Pu, 235 U and 238 U in three sample matrices: glass, polyethylene and concrete. We counted delayed neutrons emitted after each pulse of the LINAC using the ''Sequential PHoton Interrogation and Neutron Counting Signatures'' (SPHINCS) technique. The electron linear accelerator operates at 15 MeV, 140 mA and 2.5 μs wide pulse at a 50 Hz rate. Finally, use of an electron linear accelerator as a particle source, experimental and electronics details, measurements results and their interpretation and future experimental works are discussed. (author). 53 refs., 101 figs., 21 tabs

  15. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher P., E-mail: cj0810@bristol.ac.uk [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brenner, Ceri M. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Stitt, Camilla A. [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Armstrong, Chris; Rusby, Dean R. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mirfayzi, Seyed R. [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wilson, Lucy A. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Alejo, Aarón; Ahmed, Hamad [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Allott, Ric [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Butler, Nicholas M.H. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Higginson, Adam [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Murphy, Christopher [Department of Physics, University of York, York YO10 5DD (United Kingdom); Notley, Margaret [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Paraskevoulakos, Charilaos [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Jowsey, John [Ground Floor North B582, Sellafield Ltd, Seascale, Cumbria CA20 1PG (United Kingdom); and others

    2016-11-15

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10{sup 7}–10{sup 9} neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm{sup 2} scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  16. Using Aspen simulation package to determine solubility of mixed salts in TRU waste evaporator bottoms

    Energy Technology Data Exchange (ETDEWEB)

    Hatchell, J.L.

    1998-03-01

    Nitric acid from plutonium process waste is a candidate for waste minimization by recycling. Process simulation software packages, such as Aspen, are valuable tools to estimate how effective recovery processes can be, however, constants in equations of state for many ionic components are not in their data libraries. One option is to combine single salt solubility`s in the Aspen model for mixed salt system. Single salt solubilities were regressed in Aspen within 0.82 weight percent of literature values. These were combined into a single Aspen model and used in the mixed salt studies. A simulated nitric acid waste containing mixed aluminum, calcium, iron, magnesium and sodium nitrate was tested to determine points of solubility between 25 and 100 C. Only four of the modeled experimental conditions, at 50 C and 75 C, produced a saturated solution. While experimental results indicate that sodium nitrate is the first salt to crystallize out, the Aspen computer model shows that the most insoluble salt, magnesium nitrate, the first salt to crystallize. Possible double salt formation is actually taking place under experimental conditions, which is not captured by the Aspen model.

  17. Summary of national and international fuel cycle and radioactive waste management programs, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-07-01

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

  18. Proceedings of Fifth National Seminar of Waste Management Technology

    International Nuclear Information System (INIS)

    Aisyah; Zainus Salimin; Lubis, Erwansyah; Herlan Martono; Sucipta; Syahrir; Erini Yuwatini; Thamzil Las; Kusnanto

    2007-06-01

    The fifth proceedings of the seminar on technology of waste management held by National Nuclear Energy Agency on 26 th June 2007. The aim of seminar is to increase public understanding on waste management and also as information exchange media between researcher and user. Therefore, its important that environment and safety aspect is to increase public acceptance for the agenda of plan development of first Nuclear Power Plant in Indonesia. The proceedings consist of articles from researcher of BATAN and outside BATAN of research result concerning radioactive waste management, industry, and nuclear power plant. These articles are divided into several group, there are radioactive waste, industry waste, safety, and environment. (PPIN)

  19. 2009 National inventory of radioactive material and wastes. Synthesis report

    International Nuclear Information System (INIS)

    2009-01-01

    Third edition of the ANDRA's national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). After a brief historical review of the national inventory and the way it is constructed, the report gives the basics on radioactive wastes, their classification, origins and management processes, followed by a general presentation and discussion of the inventory results (radioactive wastes and materials). Results are then detailed for the different activity sectors using radioactive materials (nuclear industry, medical domain, scientific research, conventional industry, Defense...). Information is also given concerning radioactive polluted areas (characterization and site management) and radioactive waste inventories in various foreign countries

  20. Geochemistry Model Abstraction and Sensitivity Studies for the 21 PWR CSNF Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot; S. LeStrange; E. Thomas; K. Zarrabi; S. Arthur

    2002-10-29

    The CSNF geochemistry model abstraction, as directed by the TWP (BSC 2002b), was developed to provide regression analysis of EQ6 cases to obtain abstracted values of pH (and in some cases HCO{sub 3}{sup -} concentration) for use in the Configuration Generator Model. The pH of the system is the controlling factor over U mineralization, CSNF degradation rate, and HCO{sub 3}{sup -} concentration in solution. The abstraction encompasses a large variety of combinations for the degradation rates of materials. The ''base case'' used EQ6 simulations looking at differing steel/alloy corrosion rates, drip rates, and percent fuel exposure. Other values such as the pH/HCO{sub 3}{sup -} dependent fuel corrosion rate and the corrosion rate of A516 were kept constant. Relationships were developed for pH as a function of these differing rates to be used in the calculation of total C and subsequently, the fuel rate. An additional refinement to the abstraction was the addition of abstracted pH values for cases where there was limited O{sub 2} for waste package corrosion and a flushing fluid other than J-13, which has been used in all EQ6 calculation up to this point. These abstractions also used EQ6 simulations with varying combinations of corrosion rates of materials to abstract the pH (and HCO{sub 3}{sup -} in the case of the limiting O{sub 2} cases) as a function of WP materials corrosion rates. The goodness of fit for most of the abstracted values was above an R{sup 2} of 0.9. Those below this value occurred during the time at the very beginning of WP corrosion when large variations in the system pH are observed. However, the significance of F-statistic for all the abstractions showed that the variable relationships are significant. For the abstraction, an analysis of the minerals that may form the ''sludge'' in the waste package was also presented. This analysis indicates that a number a different iron and aluminum minerals may form in

  1. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  2. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  3. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  4. Transuranic waste management at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Betty [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bland, Jesse John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    This paper documents the history of the TRU program at Sandia, previous and current activities associated with TRU material and waste, interfaces with other TRU waste generator sites and the Waste Isolation Pilot Plan (WIPP), and paths forward for TRU material and waste. This document is a snapshot in time of the TRU program and should be updated as necessary, or when significant changes have occurred in the Sandia TRU program or in the TRU regulatory environment. This paper should serve as a roadmap to capture past TRU work so that efforts are not repeated and ground is not lost due to future inactivity and personnel changes.

  5. Prototype heater test of the environment around a simulated waste package

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Buscheck, T.A.; Carlson, R.; Daily, W.; Latorre, V.R.; Lee, K; Lin, Wunan; Mao, Nai-hsien; Towse, D.; Ueng, Tzou-Shin; Watwood, D.

    1991-01-01

    This paper presents selected results obtained during the 301 day duration of the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT) planned for the Exploratory Shaft Facility in Yucca Mountain. The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures and gas-phase humidity in the heater borehole

  6. Preliminary Criticality Analysis of Degraded SNF Accumulations to a Waste Package (SCPB: N/A) 

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Davis

    2005-12-15

    This study is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probability of criticality in the far-field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses. The objective of this evaluation is to provide input to a risk analysis which will show that criticalities involving commercial spent nuclear fuel (SNF) are not credible, or indicate additional measures that are required for the Engineered Barrier Segment (EBS) to make such events incredible. Minimum critical volumes and masses of UO{sub 2}/H{sub 2}O/tuff mixtures are determined without application of regulatory safety limits. This study does not address or demonstrate compliance with regulatory limits.

  7. Evaluation and compilation of DOE waste package test data: Biannual report, February 1987--July 1987

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.; Escalante, E.; Fraker, A.; Hall, D.; Harrison, S.; Liggett, W.; Linzer, M.; Ricker, R.; Ruspi, J.; Shull, R.

    1988-05-01

    The waste package is a proposed engineering barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Technical discussions are given for the corrosion of metals proposed for the canister, particularly carbon steels, stainless steels, and copper. The current level of understanding of several canister materials is questioned for the candidate repository in tuff. Three issues are addressed, the possibility of the stress-induced failure of Zircaloy, the possible corrosion of copper and copper alloys, and the lack of site-specific characterization data. Discussions are given on problems concerning localized corrosion and environmentally assisted cracking of AISI 1020 steel at elevated temperatures (150{degree}C). For the proposed salt site, the importance of the duration of corrosion tests and some of the conditions that may preclude prompt initiation of needed long-term testing are two issues that are discussed. 31 refs., 5 figs.

  8. Above and below boiling thermal loading strategies for large waste packages

    International Nuclear Information System (INIS)

    Smith, M.L.

    1994-01-01

    A simplified repository thermal model was developed with the Mathcad computer code which indicates that large waste packages may be compatible with both above and below boiling repository thermal loading strategies. Minimum spent fuel decay time of at least 20 to 30 years was shown to be important for both thermal loading strategies. Constant isothermal boundary conditions are assumed at the ground surface (296 K) and 305 meters below the water table (309.7 K) with a uniform temperature change of 1.55 10 -2 K/meter. Homogeneous tuff properties are assumed: conductivity (2.1 watt/m-k); density (2.22 gm/cm 3 ); and thermal capacitance (2.17 joule/cm 3 K). Based on these properties, the tuff thermal diffusion coefficient is 9.68 x 10 -7 m 2 /sec

  9. Evaluation and compilation of DOE waste package test data: Biannual report, February 1987--July 1987

    International Nuclear Information System (INIS)

    Interrante, C.; Escalante, E.; Fraker, A.

    1988-05-01

    The waste package is a proposed engineering barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Technical discussions are given for the corrosion of metals proposed for the canister, particularly carbon steels, stainless steels, and copper. The current level of understanding of several canister materials is questioned for the candidate repository in tuff. Three issues are addressed, the possibility of the stress-induced failure of Zircaloy, the possible corrosion of copper and copper alloys, and the lack of site-specific characterization data. Discussions are given on problems concerning localized corrosion and environmentally assisted cracking of AISI 1020 steel at elevated temperatures (150/degree/C). For the proposed salt site, the importance of the duration of corrosion tests and some of the conditions that may preclude prompt initiation of needed long-term testing are two issues that are discussed. 31 refs., 5 figs

  10. The best solution to our Nation's waste management problem: Education

    International Nuclear Information System (INIS)

    Mikel, C.J.

    1992-01-01

    In addition to the Waste Isolation Pilot Plant (WIPP) being the best solution today to the Nation's problem of permanent storage of transuranic radioactive waste produced by the defense industry, WIPP is also involved in finding the solution for another national problem: the education of our youth. The youth of America have grown up thinking that science and math are too hard, or not interesting. We, the parents of our Nation's leaders of tomorrow, must find a solution to this dilemma. It is the mission of the Waste Isolation Division Educational Programs to create programs to promote quality education in the classroom and to enhance each student's interest in mathematics and the sciences

  11. Low level transuranic wastes assay by photon interrogation and neutron counting: application to the concrete packages

    International Nuclear Information System (INIS)

    Lyoussi, A.

    1994-02-01

    The present document presents an active detection method for radioactive wastes embedded in high-density matrices, mainly concrete packages. The high density of the packages, as well as their high water content (up to 25%), means only high-energy neutrons or gamma particles have a high enough range to activate the enclosed actinides. Our aims were to evaluate the feasibility of dosing transuranians by induced photofission, and to optimize an experimental system with a view to improving detection limits. The system uses a pulsed electron beam from a linear accelerator (LINAC) to produce high-energy photon bursts from a metallic converter. The photons induce fissions in TRU. When a fission is induced in trace amounts of TRU contaminants in waste material, it provides 'signatures' from fission products that can be used to assay the material before disposal. We give here the results from counting photofission-induced delayed neutrons from 239 Pu, 235 U and 238 U in three sample matrices: glass, polyethylene and concrete. We counted delayed neutrons emitted after each pulse of the LINAC using the 'Sequential PHoton Interrogation and Neutron Counting Signatures' (SPHINCS) technique which had been developed in this thesis work. The experimental process described below (SPHINCS) is one of the first to use a LINAC assay method combined with sequential detection using delayed neutrons. The SPHINCS process enhances the available counts by a factor about 20 compared with the counting of delayed neutrons only after the irradiation period. The electron linear accelerator operates at 15 MeV, 140 mA, and 2.5 μs wide pulse at a 50 Hz rate. Finally, use of an electron linear accelerator as a particle source, experimental and electronics details, measurements results and their interpretation and the future experimental works are discussed. (author)

  12. Selected charts: National Waste Terminal Storage Program

    International Nuclear Information System (INIS)

    1977-01-01

    Staff members of the Office of Waste Isolation on October 21, 1977 reviewed the status of the OWI Waste Management Program for Commissioner E.E. Varanini III, State of California Energy Resources Conservation and Development Commission, and members of his staff. Copies of the viewgraphs and 35-mm slides shown at the briefing are compiled

  13. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994

    International Nuclear Information System (INIS)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, open-quotes Waste Management Plan Outline.close quotes These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES ampersand H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are

  14. Proceedings of Sixth National Seminar of Waste Management Technology

    International Nuclear Information System (INIS)

    Sucipta; Zainus Salimin; Lubis, Erwansyah; Herlan Martono; Aisyah; Syahrir; Erini Yuwatini; Thamzil Las; Kusnanto

    2008-06-01

    The sixth proceedings of the seminar on technology of waste management held by National Nuclear Energy Agency on June 24, 2007. The aim of seminar is to increase strengthening of radioactive waste management infrastructure to support a success in nuclear energy program in Indonesia. The proceedings consist of 32 articles from researcher of BATAN and outside BATAN. (PPIKSN)

  15. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    Energy Technology Data Exchange (ETDEWEB)

    Marusich, Robert M.

    2012-01-25

    A set of steady state diffusion flow equations, for the hydrogen diffusion from one bag to the next bag (or one plastic waste container to another), within a set of nested waste bags (or nested waste containers), are developed and presented. The input data is then presented and justified. Inputting the data for each volume and solving these equations yields the steady state hydrogen concentration in each volume. The input data (permeability of the bag surface and closure, dimensions and hydrogen generation rate) and equations are analyzed to obtain the hydrogen concentrations in the innermost container for a set of containers which are analyzed for the TRUCON code for the general waste containers and the TRUCON code for the Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB).

  16. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    International Nuclear Information System (INIS)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives

  17. Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates

    Science.gov (United States)

    Garofalo, E.; Claro, M.; Scarfato, P.; Di Maio, L.; Incarnato, L.

    2015-12-01

    Currently, the growing consumption of polymer products creates large quantities of waste materials resulting in public concern in the environment and people life. The efficient treatment of polymer wastes is still a difficult challenge and the recycling process represents the best way to manage them. Recently, many researchers have tried to develop nanotechnology for polymer recycling. The products prepared through the addition of nanoparticles to post-used plastics could offer the combination of improved properties, low weight, easy of processing and low cost which is not easily and concurrently found by other methods of plastic recycling. In this study materials, obtained by the separation and mechanical recycling of post-consumer packaging films of small size (polyethylene (PE) and of a small fraction of polypropylene (PP). PE/PP incompatibility has been proved and explained in many studies reported in the literature and it represents the main reason for the unsatisfactory mechanical properties of these recycled plastics. The aim of this work was to improve the mechanical properties of these recycled polymeric mixtures by the addition of two different types of organo-modified silicates, also taking advantage of the function of nanofillers as potential blend compatibilizers. In particular, three organoclays (Dellite 67G, sepiolite PM15 and sepiolite UNISA1), differing for the morphology (lamellar or acicular) and/or the type of organic modifier, were melt compounded with the recycled materials in a twin-screw extruder. The morphological, thermal, rheological and mechanical properties of the prepared nanocomposites were extensively discussed.

  18. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    Science.gov (United States)

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Safety analysis report for packaging (SARP) of the Oak Ridge National Laboratory. TRU curium shipping container

    International Nuclear Information System (INIS)

    Box, W.D.; Klima, B.B.; Seagren, R.D.; Shappert, L.B.; Aramayo, G.A.

    1980-06-01

    An analytical evaluation of the Oak Ridge National Laboratory Transuranium (TRU) Curium Shipping Container was made to demonstrate its compliance with the regulations governing offsite shipment of packages containing radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the container complies with the applicable regulations

  20. Safety analysis report for packaging (SARP) of the Oak Ridge National Laboratory. TRU curium shipping container

    Energy Technology Data Exchange (ETDEWEB)

    Box, W.D.; Klima, B.B.; Seagren, R.D.; Shappert, L.B.; Aramayo, G.A.

    1980-06-01

    An analytical evaluation of the Oak Ridge National Laboratory Transuranium (TRU) Curium Shipping Container was made to demonstrate its compliance with the regulations governing offsite shipment of packages containing radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the container complies with the applicable regulations.

  1. STRUCTURAL CALCULATIONS FOR THE LIFTING IN VERTICAL ORIENTATION OF 5-DHLW/DOE SNF SINGLE CRM WASTE PACKAGES

    International Nuclear Information System (INIS)

    S. Mastilovic

    1999-01-01

    The purpose of this activity is to determine the structural response of the extension of outer shell (which is referred to as skirt throughout this document) designs of both long and short design concepts of 5-Defense High-Level Waste (DHLW) Department of Energy (DOE) spent nuclear fuel (SNF) single corrosion resistant material (CRM) waste packages (WP), subjected to a gravitational load in the course of lifting in vertical orientation. The scope of this document is limited to reporting the calculation results in terms of stress intensity magnitudes. This activity is associated with the WP design; calculations are performed by the Waste Package Design group. AP-3.124, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document

  2. Nuclear waste transportation package testing: A review of selected programs in the United States and abroad

    International Nuclear Information System (INIS)

    Snedeker, D.F.

    1990-12-01

    This report provides an overview of some recent nuclear waste transportation package development programs. This information is intended to aid the State of Nevada in its review of US Department of Energy (DOE) nuclear waste transportation programs. This report addresses cask testing programs in the United Kingdom and selected 1/4 and full scale testing in the US. Facilities that can provide cask testing services, both in the US and to a limited extent abroad, are identified. The costs for different type test programs are identified as a means to estimate costs for future test programs. Not addressed is the public impact such testing might have in providing an increased sense of safety or confidence. The British test program was apparently quite successful in demonstrating safety to the public at the time. There is no US test effort that is similar in scope for direct comparison. Also addressed are lessons learned from testing programs and areas that may merit possible future integrated examination. Areas that may require further examination are both technical and institutional. This report provides information which, when combined with other sources of information will enable the State of Nevada to assess the following areas: feasibility of full scale testing; costs of full scale tests; potential benefits of testing; limits that full scale testing impose; and disadvantages of emphasis on testing vs analytical solutions. This assessment will then allow the state to comment on DOE Office of Civilian Radioactive Waste Management (OCRWM) plans for the development and licensing of new shipping cask designs. These plans currently expect contractors to perform engineering testing for materials development, quarter scale model testing to validate analytical assessments and full scale prototype testing of operational features. DOE currently plans no full scale or extra-regulatory destructive testing to aid in cask licensing. 1 tab

  3. Mixed waste study, Lawrence Livermore National Laboratory Hazardous Waste Management facilities

    International Nuclear Information System (INIS)

    1990-11-01

    This document addresses the generation and storage of mixed waste at Lawrence Livermore National Laboratory (LLNL) from 1984 to 1990. Additionally, an estimate of remaining storage capacity based on the current inventory of low-level mixed waste and an approximation of current generation rates is provided. Section 2 of this study presents a narrative description of Environmental Protection Agency (EPA) and Department of Energy (DOE) requirements as they apply to mixed waste in storage at LLNL's Hazardous Waste Management (HWM) facilities. Based on information collected from the HWM non-TRU radioactive waste database, Section 3 presents a data consolidation -- by year of storage, location, LLNL generator, EPA code, and DHS code -- of the quantities of low-level mixed waste in storage. Related figures provide the distribution of mixed waste according to each of these variables. A historical review follows in Section 4. The trends in type and quantity of mixed waste managed by HWM during the past five years are delineated and graphically illustrated. Section 5 provides an estimate of remaining low-level mixed waste storage capacity at HWM. The estimate of remaining mixed waste storage capacity is based on operational storage capacity of HWM facilities and the volume of all waste currently in storage. An estimate of the time remaining to reach maximum storage capacity is based on waste generation rates inferred from the HWM database and recent HWM documents. 14 refs., 18 figs., 9 tabs

  4. National inventory of radioactive wastes and recoverable materials 2006. Descriptive catalogue of radioactive waste families

    International Nuclear Information System (INIS)

    2006-01-01

    Real comprehensive overview of radioactive wastes, the national inventory of radioactive wastes and recoverable materials describes the situation in France of the wastes that can be conditioned (in their definitive form) or not. It presents also the waste production quantities foreseen for 2010, 2020 and beyond. This document is a complement to the synthesis report and to the geographic inventory of radioactive wastes in France and details the classification of wastes by families (wastes with similar characteristics). For each family of wastes, the description comprises a general presentation and some photos. It comprises also some data such as the position of the family in the French classification, the industrial activity at the origin of the waste, the production situation of the waste in concern (finished, in progress, not started). Some information about the raw waste are given and the conditioning process used is described. Some figures complete the description, like: the past and future production quantities, the evaluation of the radioactivity of the waste family in 2004 and 2020, and the evaluation of the thermal power when available. Finally, some information are given about the presence of compounds with a specific risk of toxicity. (J.S.)

  5. National high-level waste systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy.

  6. Oak Ridge National Laboratory Transuranic Waste Certification Program

    International Nuclear Information System (INIS)

    Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

    1988-08-01

    The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs

  7. Buried waste program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bonzon, C.J.; Fogdall, S.P.

    1989-01-01

    Recent findings from current environmental monitoring activities have determined that migration of transuranic (TRU) radionuclides to the 34-meter sedimentary interbed has occurred beneath the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex. Halogenated hydrocarbons have also been detected in the Snake River Plain Aquifer, which is 177 meters below the Radioactive Waste Management Complex. A Buried Waste Program has been established to determine sources, characterize the extent of contamination, mitigate further migration of TRU and nonradioactive hazardous materials from the Radioactive Waste Management Complex, and provide the mechanism for selecting a permanent solution to migration. This paper discusses cleanup of a federal facility, specifically the Subsurface Disposal Area within the INEL's Radioactive Waste Management Complex. The paper also discusses remediation of the radioactive site, which is co-contaminated with hazardous materials. Corrective measures to be recommended for remediation of the radioactive waste management complex are scheduled to be announced in September 1990

  8. Packaging waste prevention in the distribution of fruit and vegetables: An assessment based on the life cycle perspective.

    Science.gov (United States)

    Tua, Camilla; Nessi, Simone; Rigamonti, Lucia; Dolci, Giovanni; Grosso, Mario

    2017-04-01

    In recent years, alternative food supply chains based on short distance production and delivery have been promoted as being more environmentally friendly than those applied by the traditional retailing system. An example is the supply of seasonal and possibly locally grown fruit and vegetables directly to customers inside a returnable crate (the so-called 'box scheme'). In addition to other claimed environmental and economic advantages, the box scheme is often listed among the packaging waste prevention measures. To check whether such a claim is soundly based, a life cycle assessment was carried out to verify the real environmental effectiveness of the box scheme in comparison to the Italian traditional distribution. The study focused on two reference products, carrots and apples, which are available in the crate all year round. An experience of a box scheme carried out in Italy was compared with some traditional scenarios where the product is distributed loose or packaged at the large-scale retail trade. The packaging waste generation, 13 impact indicators on environment and human health and energy consumptions were calculated. Results show that the analysed experience of the box scheme, as currently managed, cannot be considered a packaging waste prevention measure when compared with the traditional distribution of fruit and vegetables. The weaknesses of the alternative system were identified and some recommendations were given to improve its environmental performance.

  9. Argonne National Laboratory, east hazardous waste shipment data validation

    International Nuclear Information System (INIS)

    Casey, C.; Graden, C.; Coveleskie, A.

    1995-09-01

    At the request of EM-331, the Radioactive Waste Technical Support Program (TSP) is conducting an evaluation of data regarding past hazardous waste shipments from DOE sites to commercial TSDFs. The intent of the evaluation is to find out if, from 1984 to 1991, DOE sites could have shipped hazardous waste contaminated with DOE-added radioactivity to commercial TSDFs not licensed to receive radioactive material. A team visited Argonne National Laboratory, East (ANL-E) to find out if any data existed that would help to make such a determination at ANL-E. The team was unable to find any relevant data. The team interviewed personnel who worked in waste management at the time. All stated that ANL-E did not sample and analyze hazardous waste shipments for radioactivity. Waste generators at ANL-E relied on process knowledge to decide that their waste was not radioactive. Also, any item leaving a building where radioisotopes were used was surveyed using hand-held instrumentation. If radioactivity above the criteria in DOE Order 5400.5 was found, the item was considered radioactive. The only documentation still available is the paperwork filled out by the waste generator and initialed by a health physics technician to show no contamination was found. The team concludes that, since all waste shipped offsite was subjected at least once to health physics instrumentation scans, the waste shipped from ANL-E from 1984 to 1991 may be considered clean

  10. Calculation of keff for plutonium in high-level waste packages

    International Nuclear Information System (INIS)

    Zielinski, P.R.; Culbreth, W.G.

    1994-01-01

    The proposed national high-level nuclear waste repository will be designed to store approximately 70,000 tons of commercial spent fuel, but other forms of waste will also be considered for ultimate storage at this site. Plutonium in the form of PuO 2 may be added to borosilicate glass for ultimate disposal in the repository. The maximum amount of this fissile that may be added to a glass ''log'' will be limited by its ability to sustain a chain reaction. In this study, the removal of neutron absorbers from a glass log and the subsequent possibility of water infiltration were studied to find corresponding neutron multiplication factors. Weight fractions of 1%, 2%, and 3% PuO 2 were analyzed in the study. The results show the maximum amount of plutonium fissile that may be safely added to a glass log under conditions that lead to leaching of the principal neutron absorbers from the glass

  11. Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Voegele, Michael D.

    2014-01-01

    This paper summarizes the evolution of the engineered barrier design for the proposed Yucca Mountain disposal system. Initially, the underground facility used a fairly standard panel and drift layout excavated mostly by drilling and blasting. By 1993, the layout of the underground facility was changed to accommodate construction by a tunnel boring machine. Placement of the repository in unsaturated zone permitted an extended period without backfilling; placement of the waste package in an open drift permitted use of much larger, and thus hotter packages. Hence in 1994, the underground facility design switched from floor emplacement of waste in small, single walled stainless steel or nickel alloy containers to in-drift emplacement of waste in large, double-walled containers. By 2000, the outer layer was a high nickel alloy for corrosion resistance and the inner layer was stainless steel for structural strength. Use of large packages facilitated receipt and disposal of high volumes of spent nuclear fuel. In addition, in-drift package placement saved excavation costs. Options considered for in-drift emplacement included different heat loads and use of backfill. To avoid dripping on the package during the thermal period and the possibility of localized corrosion, titanium drip shields were added for the disposal drifts by 2000. In addition, a handling canister, sealed at the reactor to eliminate further handling of bare fuel assemblies, was evaluated and eventually adopted in 2006. Finally, staged development of the underground layout was adopted to more readily adjust to changes in waste forms and Congressional funding. - Highlights: • Progression of events associated with repository design to accommodate tunnel boring machine and in-drift waste package emplacement are discussed. • Change in container design from small, single-layered stainless steel vessel to large, two-layered nickel alloy vessel is discussed. • The addition of drip shield to limit the

  12. Brazil's new national policy on solid waste

    DEFF Research Database (Denmark)

    Jabbour, A.B.L.d.S.; Jabbour, C.J.C.; Sarkis, J.

    2014-01-01

    Brazil, one of the world's largest developing countries, has recently introduced a new solid waste management regulatory policy. This new regulatory policy will have implications for a wide variety of stakeholders and sets the stage for opportunities and lessons to be learned. These issues...

  13. Low level waste management at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rodgers, A.D.; Truitt, D.J.; Logan, J.A.; Brown, R.M.

    1986-02-01

    EG and G Idaho, Inc. is the lead contractor for the Department of Energy (DOE) National Low Level Waste Management Program, established in 1979. In this role, the company uses its waste management expertise to provide management and technical direction to support the disposal of low-level waste (LLW) in a manner that protects the environment and the public health and safety while improving efficiency and cost-effectiveness. Program activities are divided into two areas: defense-related and commercial nuclear reactor programs. The defense program was established to develop technology improvements, provide technology transfer, and to ensure a more efficient and uniform system for low level waste disposal. To achieve the program's goals, it is necessary to improve, document, and, where necessary, develop new methods for waste generation reduction, waste treatment, shallow-land burial, greater confinement disposal, and measures to correct existing site deficiencies. The commercial low level waste management program provides support to assist the states in developing an effective national low level waste management system and provides technical assistance for siting of regional commercial LLW disposal sites. The program provides technical and informational support to state officials, low level waste generators, managers, and facility operators to resolve low level waste problems and to improve the systems' overall effectiveness. Procedures are developed and documented and made available to commercial users through this program. Additional work is being conducted to demonstrate the stabilization and closure of low level radioactive waste disposal sites and develop the criteria and procedures for acceptance of such sites by the Department of Energy after closure has been completed. 7 refs., 6 figs., 1 tab

  14. The nation's first consortium to address waste management issues

    International Nuclear Information System (INIS)

    Mikel, C.J.

    1991-01-01

    On July 26, 1989, the secretary of the Department of Energy (DOE), Admiral James Watkins, announced approval of the Waste-Management Education and Research Consortium (WERC). The consortium is composed of New Mexico State University (NMSU), the University of New Mexico, the New Mexico Institute of Mining and Technology, Los Alamos National Laboratory, and Sandia National Laboratories. This pilot program is expected to form a model for other regional and national programs. The WERC mission is to expand the national capability to address issues associated with the management of hazardous, radioactive, and solid waste. Research, technology transfer, and education/training are the three areas that have been identified to accomplish the objectives set by the consortium. The members of the consortium will reach out to the DOE facilities, other government agencies and facilities, and private institutions across the country. Their goal is to provide resources for solutions to waste management problems

  15. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits, Area 5 Waste Management Division, Nevada National Security Site, Final CQA Report

    International Nuclear Information System (INIS)

    2012-01-01

    The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.

  16. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits, Area 5 Waste Management Division, Nevada National Security Site, Final CQA Report

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management; The Delphi Groupe, Inc.; J. A. Cesare and Associates, Inc.

    2012-01-31

    The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.

  17. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    Energy Technology Data Exchange (ETDEWEB)

    Marusich, Robert M.

    2013-08-15

    The purpose of this report is to evaluate hydrogen generation within Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB), to establish plutonium (Pu) limits for PTOs based on hydrogen concentration in the inner-most container and to establish required configurations or validate existing or proposed configurations for PTOs. The methodology and requirements are provided in this report.

  18. A user's guide to the GoldSim/BLT-MS integrated software package:a low-level radioactive waste disposal performance assessment model.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Arnold, Bill Walter; Mattie, Patrick D.

    2007-03-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In countries with small radioactive waste programs, international technology transfer program efforts are often hampered by small budgets, schedule constraints, and a lack of experienced personnel. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available software codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission (NRC) and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, revitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a credible and solid computational platform for constructing probabilistic safety assessment models. This document is a reference users guide for the GoldSim/BLT-MS integrated modeling software package developed as part of a cooperative technology transfer project between Sandia National Laboratories and the Institute of Nuclear Energy Research (INER) in Taiwan for the preliminary assessment of several candidate low

  19. A user's guide to the GoldSim/BLT-MS integrated software package:a low-level radioactive waste disposal performance assessment model

    International Nuclear Information System (INIS)

    Knowlton, Robert G.; Arnold, Bill Walter; Mattie, Patrick D.

    2007-01-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In countries with small radioactive waste programs, international technology transfer program efforts are often hampered by small budgets, schedule constraints, and a lack of experienced personnel. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available software codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission (NRC) and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, revitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a credible and solid computational platform for constructing probabilistic safety assessment models. This document is a reference users guide for the GoldSim/BLT-MS integrated modeling software package developed as part of a cooperative technology transfer project between Sandia National Laboratories and the Institute of Nuclear Energy Research (INER) in Taiwan for the preliminary assessment of several candidate low

  20. EQ6 Calculation for Chemical Degradation of Shippingport LWBR (TH/U Oxide) Spent Nuclear Fuel Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2000-09-14

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site. Because of the high content of fissile material in the SNF, the waste package (WP) design requires special consideration of the amount and placement of neutron absorbers and the possible loss of absorbers and SNF materials over geologic time. For some WPs, the outer shell corrosion-resistant material (CRM) and the corrosion-allowance inner shell may breach (Refs. 2 and 3), allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components and neutron absorbers from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing a Shippingport LWBR SNF seed assembly, and high-level waste (HLW) glass canisters arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial WP configuration (such that it can be effective in preventing criticality); (2) The extent to which fissile uranium and fertile thorium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this

  1. The national approach to radioactive waste management: the Philippine experience

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Alamares, A.L.; Salom, D.S.

    1996-01-01

    The Philippine Nuclear Research Institute (PNRI), under the Department of Science and Technology (DOST) is tasked, among others, with the legally-mandated twin function of advancing and regulating the beneficial uses of nuclear energy and radiation technology. The PNRI is also responsible, among others, for the safe management of radioactive wastes generated by all licensed users of radioisotopes, including about 100 medical and industrial users. This papers describes the efforts taken by the PNRI, with technical assistance provided by the International Atomic Energy Agency to establish a low level radioactive waste management facility in the country and the subsequent upgrading of its waste management infrastructure. The conceptual approach and sebsequent implementation of the work programme is presented. Problems attendant to these efforts are briefly outlined including treatment methodologies for specific wastes. The commissioning and operational experiences using a batch type chemical precipitation plant appropriate for the volume of liquid wastes generated in the country is also presented. Data on radioactive waste arisings from 1980 are also presented including anticipated or projected wastes arisings should the repair of the PRR-1 (Philippine Research Reactor-1) research reactor be completed. The government initiatives towards the organizational development of a centralized waste management facility for low level wastes are also discussed. The formulation and adoption of a waste acceptance criteria and the R and D activities on various treatment procedures are also described. The current activities of the PNRI, as the lead agency in two important areas, one of which is in radioactive waste management, will be reported. National, regional and international cooperation in radioactive waste management will also be presented

  2. Feasibility study of the separation of chlorinated films from plastic packaging wastes

    International Nuclear Information System (INIS)

    Reddy, Mallampati Srinivasa; Yamaguchi, Takefumi; Okuda, Tetsuji; Tsai, Tsung-Yueh; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2010-01-01

    This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0 g/cm 3 and floated in water even though the true density was more than 1.0 g/cm 3 . However, the apparent density of the PS and the PET films increased with agitation to more than 1.0 g/cm 3 , whereas that of chlorinated plastic films was kept less than 1.0 g/cm 3 . The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10 wt.% of the chlorinated films and real PPW films with 9 wt.% of the chlorinated films. About 76 wt.% of the artificial PPW films and 75 wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7 wt.% and 3.0 wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films.

  3. Feasibility study of the separation of chlorinated films from plastic packaging wastes.

    Science.gov (United States)

    Reddy, Mallampati Srinivasa; Yamaguchi, Takefumi; Okuda, Tetsuji; Tsai, Tsung-Yueh; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2010-04-01

    This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0g/cm(3) and floated in water even though the true density was more than 1.0g/cm(3). However, the apparent density of the PS and the PET films increased with agitation to more than 1.0g/cm(3), whereas that of chlorinated plastic films was kept less than 1.0g/cm(3). The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10wt.% of the chlorinated films and real PPW films with 9wt.% of the chlorinated films. About 76wt.% of the artificial PPW films and 75wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7wt.% and 3.0wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Scoping corrosion tests on candidate waste package basket materials for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Konynenburg, R.A. van; Curtis, P.G.; Summers, T.S.E.

    1998-03-01

    A scoping corrosion test was performed on candidate waste package basket materials. The corrosion medium was a pH-buffered solution of chemical species expected to be produced by radiolysis. The test was conducted at 90 C for 96 hours. Samples included aluminum-, copper-, stainless steel- and zirconium-based metallic materials and several ceramics, incorporating neutron-absorbing elements. Sample weight losses and solution chemical changes were measured. Both corrosion of the host materials and dissolution of the neutron-absorbing elements were studied. The ceramics and the zirconium-based materials underwent only minor corrosion. The stainless steel-based materials performed well except for a welded sample. The aluminum- and copper-based materials exhibited the highest corrosion rates. Boron dissolution depends on its chemical form. Boron oxide and many metal borides dissolve readily in acidic solutions while high-chromium borides and boron carbide, though thermodynamically unstable, exhibit little dissolution in short times. The results of solution chemical analyses were consistent with this. Gadolinium did not dissolve significantly from monazite, and hafnium showed little dissolution from a variety of host materials, in keeping with its low solubility

  5. Waste Characterization Facility at the Idaho National Engineering Laboratory. Environmental Assessment

    International Nuclear Information System (INIS)

    1995-02-01

    DOE has prepared an Environmental Assessment (EA) on the proposed construction and operation of a Waste Characterization Facility (WCF) at INEL. This facility is needed to examine and characterize containers of transuranic (TRU) waste to certify compliance with transport and disposal criteria; to obtain information on waste constituents to support proper packaging, labeling, and storage; and to support development of treatment and disposal plans for waste that cannot be certified. The proposed WCF would be constructed at the Radioactive Waste Management Complex (RWMC). In accordance with the Council on Environmental Quality (CEQ) requirements in 40 CFR Parts 1500-1508, the EA examined the potential environmental impacts of the proposed WCF and discussed potential alternatives. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, and CEQ regulations at 40 CFR 1508.18 and 1508.27. Therefore, an Environmental Impact Statement is not required, and DOE is issuing this Finding of No Significant Impact

  6. Active waste disposal monitoring at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-10-01

    This report describes an active waste disposal monitoring system proposed to be installed beneath the low-level radioactive disposal site at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory, Idaho. The monitoring instruments will be installed while the waste is being disposed. Instruments will be located adjacent to and immediately beneath the disposal area within the unsaturated zone to provide early warning of contaminant movement before contaminants reach the Snake River Plain Aquifer. This study determined the optimum sampling techniques using existing monitoring equipment. Monitoring devices were chosen that provide long-term data for moisture content, movement of gamma-emitting nuclides, and gas concentrations in the waste. The devices will allow leachate collection, pore-water collection, collection of gasses, and access for drilling through and beneath the waste at a later time. The optimum monitoring design includes gas sampling devices above, within, and below the waste. Samples will be collected for methane, tritium, carbon dioxide, oxygen, and volatile organic compounds. Access tubes will be utilized to define the redistribution of radionuclides within, above, and below the waste over time and to define moisture content changes within the waste using spectral and neutron logging, respectively. Tracers will be placed within the cover material and within waste containers to estimate transport times by conservative chemical tracers. Monitoring the vadose zone below, within, and adjacent to waste while it is being buried is a viable monitoring option. 12 refs., 16 figs., 1 tab

  7. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency's (EPA's) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created

  8. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.

  9. Experimental study on the properties of drum-packed, cement solidified waste package of pre and after sea dumping test of sea depth 30m and 100m

    International Nuclear Information System (INIS)

    Maki, Yasuro; Abe, Hirotoshi; Hattori, Seiichi

    1976-01-01

    Japan Marine Science and Technology Center has been tackling with the development of the monitoring system to confirm the soundness of drum-packed, cement-solidified low level radioactive waste (the package) during falling and after reaching at sea bed when it is dumped into sea. The test was carried out at Sagami Bay of 30 m and 100 m sea depth using non-radioactive packages. The observation of the falling behaviour of packages in sea was carried out by taking photographs of the motion of packages with an underwater 16 mm movie camera and an underwater industrial TV (ITV), and the observation of the soundness and the area of packages scattered on sea bed was carried out with an underwater ITV and an underwater 70 mm snap camera which were set up on the frame. The proportion of cement-solidified waste was decided so that the uni-axial compressive strength of the cement-solidified waste satisfies the condition of ''The tentative guideline''. Prior to tests at sea, hydrostatic pressure test of packages are carried out on land. After that, core specimens were sampled to obtain the uniaxial compressive strength from packages and were tested. After sea dumping tests, 6 packages were recovered from sea bed, and the soundness were tested. As the results, the deformation and damage of drums and cement solidified waste packages did not occur at all. (Kako, I.)

  10. Development of an improved compact package plant for small community waste-water treatment

    CSIR Research Space (South Africa)

    Hulsman, A

    1993-01-01

    Full Text Available The challenges facing the design and operation of small community wastewater treatment plants are discussed. The package plant concept is considered and the consequent development of a compact intermittently aerated activated sludge package plant...

  11. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr.; Gdowski, G.E.

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices

  12. Assessment of management alternatives for LWR wastes. Volume 6. Cost determination of the LWR waste management routes (treatment/conditioning/packaging/transport operations)

    International Nuclear Information System (INIS)

    Thiels, G.M.; Kowa, S.

    1993-01-01

    This report deals with the cost determination of a number of schemes for the treatment, conditioning, packaging, interim storage and transport operations of LWR wastes drawn up on the basis of Belgian, French and German practices in this particular area. In addition to the general procedure elaborated for determining, actualizing and scaling of plant and transport costs associated with the various schemes, in-depth calculations of each intermediate management stage are included in this report. This study is part of an overall theoretical exercise aimed at evaluating a selection of management routes for LWR waste based on economical and radiological criteria

  13. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  14. Comparative study on the use of self-shielded packages or returnable shielding for the land disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Fitzpatrick, J.; Verrall, S.M.

    1985-01-01

    A comparative study has been carried out on the two philosophies for providing the radiological protection necessary for the transport and handling of packaged intermediate level wastes from their sites of origin to disposal. The two philosophies are self shielding and returnable shielding. The approach taken was to assess the cost and radiological impact differentials of two respective representative waste management procedures. The comparison indicated the merits of each procedure. As a consequence, a hybrid procedure was identified which combines the advantages of each philosophy. This hybrid procedure was used for further comparison. The results of the study indicate that the use of self shielded packages throughout will incur considerable extra expense and give only a small saving in radiological impact. (author)

  15. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2001-02-27

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited

  16. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    International Nuclear Information System (INIS)

    P. Bernot

    2001-01-01

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% 235 U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited to

  17. United States National Waste Terminal Storage argillaceous rock studies

    International Nuclear Information System (INIS)

    Brunton, G.D.

    1979-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in-situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock

  18. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  19. United States National Waste Terminal Storage argillaceous rock studies

    International Nuclear Information System (INIS)

    Brunton, G.D.

    1981-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock

  20. The challenge of packaging and transporting mixed waste samples and residues arising from the Department of Energy's Analytical Services Program

    International Nuclear Information System (INIS)

    Pope, R.B.; Blalock, L.G.; Conroy, M.J.

    1993-01-01

    This paper discusses the background and magnitude of challenges that the US Department of Energy (DOE) faces in accomplishing its task to characterize and remediate wastes at its sites. The analytical-sample-shipment needs are discussed, anticipated packaging and transport problems are assessed, and the way in which DOE's Transportation Management Division is preparing to support other DOE organizations in addressing these challenges is summarized. Many challenges arising from the need to ship analytical samples are centered upon resolving packaging issues. Resolution of these challenges will require further efforts to define and quantify packaging requirements better and to develop methods for addressing resultant issues in a timely, an efficient, and a safe manner

  1. FINITE-ELEMENT ANALYSIS OF ROCK FALL ON UNCANISTERED FUEL WASTE PACKAGE DESIGNS (SCPB: N/A)

    Energy Technology Data Exchange (ETDEWEB)

    Z. Ceylan

    1996-10-18

    The objective of this analysis is to explore the Uncanistered Fuel (UCF) Tube Design waste package (WP) resistance to rock falls. This analysis will also be used to determine the size of rock that can strike the WP without causing failure in the containment barriers from a height based on the starter tunnel dimensions. The purpose of this analysis is to document the models and methods used in the calculations.

  2. Method for activity measurement in large packages of radioactive wastes. Is the overall activity stored inside a final repository systematically under-estimated?

    International Nuclear Information System (INIS)

    Rottner, B.

    2005-01-01

    The activity of a rad waste package is usually evaluated from gamma spectrometry measurements or dose rates emitted by the package, associated with transfer functions. These functions are calculated assuming that both activity and mass distributions are homogeneous. The proposed method, OPROF-STAT (patented) evaluates the error arising from this homogeneous assumption. This error has a systematic part, leading to an over or underestimation of the overall activity in a family of similar waste packages, and a stochastic part, whose mean effect on the overall activity of the family is null. The method consists in building a virtual family of packages, by numeric simulation of the filling of each package of the family. The simulated filling has a stochastic part, so that the mass and activity distributions inside a package are different from one package to another. The virtual packages are wholly known, which is not the case for the real family, and it is then possible to compute the result of a measurement, and the associated error, for each package of the virtual family. A way to fit and demonstrate the representativeness of the virtual is described. The main trends and parameters modifying the error are explored: a systematic underestimation of the activity in a large family of rad waste packages is possible. (author)

  3. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    International Nuclear Information System (INIS)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Klima, B.B.; Jurgensen, M.C.; Hammond, C.R.; Watson, C.D.

    1980-01-01

    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations

  4. Semi-empirical model to determine pure β--emitters in closed waste packages using Bremsstrahlung radiation

    International Nuclear Information System (INIS)

    Takacs, S.; Hermanne, A.

    2001-01-01

    Medical establishments and research laboratories use many different type of radionuclides for diagnostic, therapeutic and research purposes. As a final by product large amount of medical waste are produced. This waste represents both biological and radiation hazards, therefore it requires special treatments in both point of view. Biomedical waste is usually best managed on site by decay storage, with minimal transport risk and ALARA (as low as reasonably achieved) exposure levels. The nuclear medical waste has characteristics fundamentally different from the nuclear fuel cycle waste. In medical practice radioactive material is used both in sealed and unsealed form, but major part of the medical waste is produced by using unsealed isotopes of relatively short half-life in most cases less than 100 days and of low specific activity. There are gamma-emitter, position-emitter and pure beta-knitter among these isotopes. The positron-emitter isotopes have usually less than 2 hours half-life; therefore they do not contribute too much to the volume of the radioactive waste since they decay rapidly. Among the γ- and pure β - - emitters there are isotopes with half-life from seconds to several hundred days. Waste containing isotopes with longer half-life contributes mainly to that large volume of waste produced regularly at biomedical sites. On site decay storage requires accurate determination of activity levels. Since quantitative estimation of isotope activity can be difficult where waste packages contain a mixed combination of β - -γ-emitters, segregation at the time of waste production is essential. Accurate identification and quantitative measurement of γ-emitter isotopes is possible with a large volume, reverse electrode, high purity germanium detector even those cases when the isotope emits only low energy gamma photons. However, there is problem with the pure β - emitting isotopes to measure. In biological health care and pharmaceutical research a range of

  5. Characterization of odorous contaminants in post-consumer plastic packaging waste using multidimensional gas chromatographic separation coupled with olfactometric resolution.

    Science.gov (United States)

    Strangl, Miriam; Fell, Tanja; Schlummer, Martin; Maeurer, Andreas; Buettner, Andrea

    2017-04-01

    The increasing world population with their growing consumption of goods escalates the issue of sustainability concepts with increasing demands in recycling technologies. Recovery of post-consumer packaging waste is a major topic in this respect. However, contamination with odorous constituents currently curtails the production of recycling products that meet the high expectations of both consumers and industry. To guarantee odor-free recyclates, the main prerequisite is to characterize the molecular composition of the causative odorants in post-consumer plastic packaging waste. However, targeted characterization of odorous trace contaminants among an abundance of volatiles is a major challenge and requires specialized and high-resolution analytical approaches. For this aim, post-consumer packaging waste was characterized by sensory analysis and two-dimensional high resolution gas chromatography coupled with mass spectrometry and olfactometry. The 33 identified odorants represent various structural classes as well as a great diversity of smell impressions with some of the compounds being identified in plastics for the first time. Substances unraveled within this study provide insights into sources of odorous contamination that will require specific attention in the future in terms of screening and prevention in recycling products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Post-consumer plastic packaging waste in England: Assessing the yield of multiple collection-recycling schemes.

    Science.gov (United States)

    Hahladakis, John N; Purnell, Phil; Iacovidou, Eleni; Velis, Costas A; Atseyinku, Maryann

    2018-02-10

    The European Commission (EC) recently introduced a 'Circular Economy Package', setting ambitious recycling targets and identifying waste plastics as a priority sector where major improvements are necessary. Here, the authors explain how different collection modalities affect the quantity and quality of recycling, using recent empirical data on household (HH) post-consumer plastic packaging waste (PCPP) collected for recycling in the devolved administration of England over the quarterly period July-September 2014. Three main collection schemes, as currently implemented in England, were taken into account: (i) kerbside collection (KS), (ii) household waste recycling centres (HWRCs) (also known as 'civic amenity sites'), and (iii) bring sites/banks (BSs). The results indicated that: (a) the contribution of KS collection scheme in recovering packaging plastics is higher than HWRCs and BBs, with respective percentages by weight (wt%) 90%, 9% and 1%; (b) alternate weekly collection (AWC) of plastic recyclables in wheeled bins, when collected commingled, demonstrated higher yield in KS collection; (c) only a small percentage (16%) of the total amount of post-consumer plastics collected in the examined period (141 kt) was finally sent to reprocessors (22 kt); (c) nearly a third of Local Authorities (LAs) reported insufficient or poor data; and (d) the most abundant fractions of plastics that finally reached the reprocessors were mixed plastic bottles and mixed plastics. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  7. National facilities for the management of institutional radioactive waste in Romania: 25 years of operation for radioactive waste treatment plant, Bucharest-Magurele, 15 years of operation for national radioactive repository, Baita-Bihor

    International Nuclear Information System (INIS)

    Rotarescu, Gh.; Turcanu, C.; Dragolici, F.; Lungu, L.; Nicu, M.; Cazan, L.; Matei, G.; Guran, V.

    1999-01-01

    The management of the non-fuel cycle radioactive wastes in Romania is centralized at IFIN-HH in the Radioactive Waste Treatment Plant (STDR) Bucharest-Magurele and the National Repository of Radioactive Waste (DNDR) Baita-Bihor. From November 1974 to November 1999 there were treated at STDR nearly 26,000 m 3 LLAW, 2,100 m 3 LLSW and 4,000 spent sources resulting over 5,500 conditioned packages disposed at DNDR. After 25 years of operation for STDR and 15 years of operation for DNDR an updating programme started in 1991. The R and D programme will improve the basic knowledge and waste management practices for the increasing of nuclear safety in the field. (authors)

  8. Considerations on the activity concentration determination method for low-level waste packages and nuclide data comparison between different countries

    International Nuclear Information System (INIS)

    Kashiwagi, M.; Mueller, W.

    2000-01-01

    In low-level waste disposal, acceptable activity concentration limits are regulated for individual nuclides and groups of nuclides according to the conditions of each disposal site. Such regulated limits principally concern total alpha and beta /gamma activity as well as nuclides such as C-14, Ni-63, and Pu-238 which are long-lived and difficult to measure (hereinafter referred to as difficult-to-measure nuclides). Before waste packages are transported to the disposal site, the activities or activity concentrations of the regulated nuclides and groups of nuclides in the waste packages must be assessed and declared. A generally applicable theoretical method to determine these activities is lacking at present. Therefore, to meet this requirement, for NPP waste each country independently samples actual waste and carries out radiochemical analyses on these samples. The activity concentrations of difficult-to-measure nuclides are then determined by statistical correlation of the measured data between difficult-to-measure nuclides and Co-60 and Cs-137 which are measurable from outside the waste packages (hereinafter referred to as key nuclides). This method is called 'Scaling Factor Method'. It is widely adopted as a method for determining the activity concentrations of the limited nuclides in low-level waste packages from NPP, and it is also approved by responsible authorities in the respective country. In the past, each country independently determined scaling factors based on measurements on samples from the local NPPs. In the first part of this study, the possibility of an international scaling factor assessment using a database integrating data from different countries was studied by comparing radiochemical analysis data between Germany, Japan, and the United States. These countries have accumulated a large number of those nuclide data required to determine scaling factors. Statistical values such as correlation coefficients change with an accumulation of data. In

  9. Swedish national plan for the management of all radioactive waste

    International Nuclear Information System (INIS)

    2011-01-01

    The Swedish Radiation Safety Authority has been assigned by the government to develop a national plan for the management of all radioactive waste. This report was presented to the government 30 June 2009. The report has been developed in coordination with representatives from other authorities, trade and industry organizations, operators and other parties interested, forming a joint action group. The action proposals in this report are focused on bringing waste management outside the nuclear field, where requirements are essentially regulated by the Act on Radiation Protection, to a level comparable with the management of nuclear waste (including the management of spent nuclear fuel). The Swedish Radiation Safety Authority believes that the objective of the national waste plan is that Sweden, by 2020, will have a comprehensive waste management system whereby all types of radioactive waste will be disposed of in a safe manner. The plan will make it easier to ensure that waste sub-systems for nuclear and non-nuclear waste - which could otherwise easily be regarded as being separated from each other - do not need to be distinguished to any great extent. To ensure continuity in the work in the future, with regard to the follow-up of plans for all radioactive waste, the Swedish Radiation Safety Authority propose that the national waste plan is updated every three years. The plan can then function as the strategy document or the action plan it is intended to be, ensuring that the focus remains on the various problems associated with waste management at different times, so that the set objective can be reached by 2020. A survey was carried out to identify the problems and shortcomings that were found in the waste-management system and what measures are required to resolve them within the near future. The joint action group has contributed by describing various problems as well as by offering points of view on the action proposals which the Swedish Radiation Safety

  10. Reuse of waste cutting sand at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Mathews, S.; Wilson, K.

    1998-01-01

    Lawrence Livermore National Laboratory (LLNL) examined the waste stream from a water jet cutting operation, to evaluate the possible reuse of waste garnet sand. The sand is a cutting agent used to shape a variety of materials, including metals. Nearly 70,000 pounds of waste sand is generated annually by the cutting operation. The Environmental Protection Department evaluated two potential reuses for the spent garnet sand: backfill in utility trenches; and as a concrete constituent. In both applications, garnet waste would replace the sand formerly purchased by LLNL for these purposes. Findings supported the reuse of waste garnet sand in concrete, but disqualified its proposed application as trench backfill. Waste sand stabilized in a concrete matrix appeared to present no metals-leaching hazard; however, unconsolidated sand in trenches could potentially leach metals in concentrations high enough to threaten ground water quality. A technical report submitted to the San Francisco Bay Regional Water Quality Control Board was reviewed and accepted by that body. Reuse of waste garnet cutting sand as a constituent in concrete poured to form walkways and patios at LLNL was approved

  11. Lawrence Livermore National Laboratory (LLNL) Waste Minimization Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A. (Lawrence Livermore National Lab., CA (USA)); Tang, W.R. (Bechtel National, Inc., San Francisco, CA (USA))

    1989-08-04

    This Program Plan document describes the background of the Waste Minimization field at Lawrence Livermore National Laboratory (LLNL) and refers to the significant studies that have impacted on legislative efforts, both at the federal and state levels. A short history of formal LLNL waste minimization efforts is provided. Also included are general findings from analysis of work to date, with emphasis on source reduction findings. A short summary is provided on current regulations and probable future legislation which may impact on waste minimization methodology. The LLN Waste Minimization Program Plan is designed to be dynamic and flexible so as to meet current regulations, and yet is able to respond to an everchanging regulatory environment. 19 refs., 12 figs., 8 tabs.

  12. Lawrence Livermore National Laboratory (LLNL) Waste Minimization Program Plan

    International Nuclear Information System (INIS)

    Heckman, R.A.; Tang, W.R.

    1989-01-01

    This Program Plan document describes the background of the Waste Minimization field at Lawrence Livermore National Laboratory (LLNL) and refers to the significant studies that have impacted on legislative efforts, both at the federal and state levels. A short history of formal LLNL waste minimization efforts is provided. Also included are general findings from analysis of work to date, with emphasis on source reduction findings. A short summary is provided on current regulations and probable future legislation which may impact on waste minimization methodology. The LLN Waste Minimization Program Plan is designed to be dynamic and flexible so as to meet current regulations, and yet is able to respond to an everchanging regulatory environment. 19 refs., 12 figs., 8 tabs

  13. Evaluation of the data available for estimating release rates from commercial low-level waste packages

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Cowgill, M.G.

    1991-01-01

    In this paper, an overview of our findings concerning the distribution of activity within low-level radioactive wastes will be presented. This will begin in a general fashion and consider the distribution of the total activity by each of the following: waste class, waste stream, wasteform, and waste container. A radionuclide specific breakdown by waste class and wasteform follows. The findings are reviewed in terms of performance assessment modeling needs. Finally, we present our conclusions

  14. National briefing summaries: Nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy

  15. National briefing summaries: Nuclear fuel cycle and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  16. Introduction to Radcalc: A computer program to calculate the radiolytic production of hydrogen gas from radioactive wastes in packages

    International Nuclear Information System (INIS)

    Green, J.R.; Hillesland, K.E.; Field, J.G.

    1995-04-01

    A calculational technique for quantifying the concentration of hydrogen generated by radiolysis in sealed radioactive waste containers was developed in a U.S. Department of Energy (DOE) study conducted by EG ampersand G Idaho, Inc., and the Electric Power Research Institute (EPRI) TMI-2 Technology Transfer Office. The study resulted in report GEND-041, entitled open-quotes A Calculational Technique to Predict Combustible Gas Generation in Sealed Radioactive Waste Containersclose quotes. The study also resulted in a presentation to the U.S. Nuclear Regulatory Commission (NRC) which gained acceptance of the methodology for use in ensuring compliance with NRC IE Information Notice No. 84-72 (NRC 1984) concerning the generation of hydrogen within packages. NRC IE Information Notice No. 84-72: open-quotes Clarification of Conditions for Waste Shipments Subject to Hydrogen Gas Generationclose quotes applies to any package containing water and/or organic substances that could radiolytically generate combustible gases. EPRI developed a simple computer program in a spreadsheet format utilizing GEND-041 calculational methodology to predict hydrogen gas concentrations in low-level radioactive wastes containers termed Radcalc. The computer code was extensively benchmarked against TMI-2 (Three Mile Island) EPICOR II resin bed measurements. The benchmarking showed that the model developed predicted hydrogen gas concentrations within 20% of the measured concentrations. Radcalc for Windows was developed using the same calculational methodology. The code is written in Microsoft Visual C++ 2.0 and includes a Microsoft Windows compatible menu-driven front end. In addition to hydrogen gas concentration calculations, Radcalc for Windows also provides transportation and packaging information such as pressure buildup, total activity, decay heat, fissile activity, TRU activity, and transportation classifications

  17. Long term behaviour of low and intermediate level waste packages under repository conditions. Results of a co-ordinated research project 1997-2002

    International Nuclear Information System (INIS)

    2004-06-01

    The development and application of approaches and technologies that provide long term safety is an essential issue in the disposal of radioactive waste. For low and intermediate level radioactive waste, engineered barriers play an important role in the overall safety and performance of near surface repositories. Thus, developing a strong technical basis for understanding the behaviour and performance of engineered barriers is an important consideration in the development and establishment of near surface repositories for radioactive waste. In 1993, a Co-ordinated Research Project (CRP) on Performance of Engineered Barrier Materials in Near Surface Disposal Facilities for Radioactive Waste was initiated by the IAEA with the twin goals of addressing some of the gaps in the database on radionuclide isolation and long term performance of a wide variety of materials and components that constitute the engineered barriers system (IAEA-TECDOC-1255 (2001)). However, during the course of the CRP, it was realized that that the scope of the CRP did not include studies of the behaviour of waste packages over time. Given that a waste package represents an important component of the overall near surface disposal system and the fact that many Member States have active R and D programmes related to waste package testing and evaluation, a new CRP was launched, in 1997, on Long Term Behaviour of Low and Intermediate Level Waste Packages Under Repository Conditions. The CRP was intended to promote research activities on the subject area in Member States, share information on the topic among the participating countries, and contribute to advancing technologies for near surface disposal of radioactive waste. Thus, this CRP complements the afore mentioned CRP on studies of engineered barriers. With the active participation and valuable contributions from twenty scientists and engineers from Argentina, Canada, Czech Republic, Egypt, Finland, India, Republic of Korea, Norway, Romania

  18. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project. As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.

  19. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    Science.gov (United States)

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  20. Sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of advective release from waste packages under dripping fractures

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; McNeish, J.A.; Vallikat, V.

    1996-01-01

    Simulations were conducted to analyze the sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of the advective release from waste packages under dripping fractures. The first conceptual model assumed that dripping water directly contacts the waste form inside the 'failed' waste package, and radionuclides are released from the EBS by advection. The second conceptual model assumed that dripping water is diverted around the 'failed' waste package (because of the presence of corrosion products plugging the perforations) and dripping water is prevented from directly contacting the waste form. In the second model, radionuclides were assumed to transport through the perforations by diffusion, and, once outside the waste package, to be released from the EBS by advection. The second model was to incorporate more realism into the EBS release calculations. For the case with the second EBS release model, most radionuclides had significantly lower peak EBS release rates (from at least one to several orders of magnitude) than with the first EBS release model. The impacts of the alternative EBS release models were greater for the radionuclides with a low solubility (or solubility-limited radionuclides) than for the radionuclides with a high solubility (or waste form dissolution-limited radionuclides). The analyses indicated that the EBS release model representing advection through a 'failed' waste package (the first EBS release model) may be too conservative in predicting the EBS performance. One major implication from this sensitivity study was that a 'failed' waste package container with multiple perforations may still be able to perform effectively as an important barrier to radionuclide release. (author)