WorldWideScience

Sample records for national solar observatory

  1. Solar Imagery - Photosphere - Sunspot Drawings - McMath-Hulbert Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The McMath-Hulbert Observatory is a decommissioned solar observatory in Lake Angelus, Michigan, USA. It was established in 1929 as a private observatory by father...

  2. Solar activity monitoring and forecasting capabilities at Big Bear Solar Observatory

    Directory of Open Access Journals (Sweden)

    P. T. Gallagher

    2002-07-01

    Full Text Available The availability of full-disk, high-resolution Ha images from Big Bear Solar Observatory (USA, Kanzelhöhe Solar Observatory (Austria, and Yunnan Astronomical Observatory (China allows for the continual monitoring of solar activity with unprecedented spatial and temporal resolution. Typically, this Global Ha Network (GHN provides almost uninterrupted Ha images with a cadence of 1 min and an image scale of 1'' per pixel.  Every hour, GHN images are transferred to the web-based BBSO Active Region Monitor (ARM; www.bbso.njit.edu/arm, which includes the most recent EUV, continuum, and magnetogram data from the Solar and Heliospheric Observatory, together with magnetograms from the Global Oscillation Network Group. ARM also includes a variety of active region properties from the National Oceanic and Atmospheric Administration’s Space Environment Center, such as up-to-date active region positions, GOES 5-min X-ray data, and flare identification. Stokes I, V, Q, and U images are available from the recently operational BBSO Digital Vector Magnetograph and the Vector Magnetograph at the Huairou Solar Observing Station of Beijing Observatory. Vector magnetograms provide complete information on the photospheric magnetic field, and allow for magnetic flux gradients, electric currents, and shear forces to be calculated: these measurements are extremely sensitive to conditions resulting in flaring activity. Furthermore, we have developed a Flare Prediction System which estimates the probability for each region to produce C-, M-, or X-class flares based on nearly eight years of NOAA data from cycle 22. This, in addition to BBSO’s daily solar activity reports, has proven a useful resource for activity forecasting.Key words. Solar physics, astronomy and astrophysics (flares and mass ejections; instruments and techniques; photosphere and chromosphere

  3. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    Science.gov (United States)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  4. The Carl Sagan solar and stellar observatories as remote observatories

    Science.gov (United States)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  5. A Solar Station for Education and Research on Solar Activity at a National University in Peru

    Science.gov (United States)

    Ishitsuka, J. K.

    2006-11-01

    pepe@geo.igp.gob.pe Beginning in 1937, the Carnegie Institution of Washington made active regional observations with a spectro-helioscope at the Huancayo Observatory. In 1957, during the celebration of the International Geophysical Year Mutsumi Ishitsuka arrived at the Geophysical Institute of Peru and restarted solar observations from the Huancayo Observatory. Almost 69 years have passed and many contributions for the geophysical and solar sciences have been made. Now the Instituto Geofisico del Peru (IGP), in cooperation with the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA), and with the support of the National Astronomical Observatory of Japan, are planning to construct a solar station refurbishing a coelostat that worked for many years at the Huancayo Observatory. A 15 cm refractor telescope is already installed at the university, for the observation of sunspots. A solar Flare Monitor Telescope (FMT) from Hida Observatory of Kyoto University could be sent to Peru and installed at the solar station at UNICA. As the refurbished coelostat, FMT will become a good tool to improve education and research in sciences.

  6. Graphics interfaces and numerical simulations: Mexican Virtual Solar Observatory

    Science.gov (United States)

    Hernández, L.; González, A.; Salas, G.; Santillán, A.

    2007-08-01

    Preliminary results associated to the computational development and creation of the Mexican Virtual Solar Observatory (MVSO) are presented. Basically, the MVSO prototype consists of two parts: the first, related to observations that have been made during the past ten years at the Solar Observation Station (EOS) and at the Carl Sagan Observatory (OCS) of the Universidad de Sonora in Mexico. The second part is associated to the creation and manipulation of a database produced by numerical simulations related to solar phenomena, we are using the MHD ZEUS-3D code. The development of this prototype was made using mysql, apache, java and VSO 1.2. based GNU and `open source philosophy'. A graphic user interface (GUI) was created in order to make web-based, remote numerical simulations. For this purpose, Mono was used, because it is provides the necessary software to develop and run .NET client and server applications on Linux. Although this project is still under development, we hope to have access, by means of this portal, to other virtual solar observatories and to be able to count on a database created through numerical simulations or, given the case, perform simulations associated to solar phenomena.

  7. Lockheed Solar Observatory and the Discovery of Moreton-Ramsey Waves

    Science.gov (United States)

    Tarbell, Theodore D.

    2014-06-01

    Moreton Waves are high-speed disturbances seen traveling away from large solar flares in H-alpha movies of the solar chromosphere. They were discovered by the observer Harry Ramsey in the late 1950s, and then published and publicized by the director Gail Moreton, both of the Lockheed Solar Observatory in the Hollywood Hills of Southern California. These efforts established the scientific reputation and secured continuing funding of the observatory, whose present-day successor is the Lockheed Martin Solar and Astrophysics Lab in Palo Alto. Moreton waves are rare, and there was limited interest in them until the EIT instrument on SOHO began seeing large numbers of similar waves in the corona in the late 1990s. The exact relation between the two observations is still a research topic today. This talk will describe some of the history of the observatory and the discovery and early interpretation of the waves.

  8. The Malaysian Robotic Solar Observatory (P29)

    Science.gov (United States)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  9. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  10. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  11. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  12. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  13. The Solar Connections Observatory for Planetary Environments

    Science.gov (United States)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  14. The Virtual Solar Observatory: Still a Small Box

    Science.gov (United States)

    Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Dimitoglou, G.; Hill, F.; Hourcle, J. A.; Martens, P. C.; Surez-Sola, I.; Tian, K. Q.; Wampler, S.

    2005-01-01

    Two and a half years after a design study began, and a year and a half after development commenced, version 1.0 of the Virtual Solar Observatory (VSO) was released at the 2004 Fall AGU meeting. Although internal elements of the VSO have changed, the basic design has remained the same, reflecting the team's belief in the importance of a simple, robust mechanism for registering data provider holdings, initiating queries at the appropriate provider sites, aggregating the responses, allowing the user to iterate before making a final selection, and enabling the delivery of data directly from the providers. In order to make the VSO transparent, lightweight, and portable, the developers employed XML for the registry, SOAP for communication between a VSO instance and data services, and HTML for the graphic user interface (GUI's). We discuss the internal data model, the API, and user responses to various trial GUI's as typical design issues for any virtual observatory. We also discuss the role of the "small box" of data search, identification, and delivery services provided by the VSO in the larger, Sun-Solar System Connection virtual observatory (VxO) scheme.

  15. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  16. The Virtual Solar Observatory at Eight and a Bit!

    Science.gov (United States)

    Davey, Alisdair R.; VSO Team

    2011-05-01

    The Virtual Solar Observatory (VSO) was the first virtual observatory in the solar and heliophysics data space. It first saw the light of day in 2003 with a mission to serve the solar physics community by enabling homogenous access to heterogeneous data, and hiding the gory details of doing so from the user. The VSO pioneered what was to become the "Small Box" methodology, setting out to provide only the services required to navigate the user to the data and then letting them directly transferred the data from the data providers. After eight and a bit years the VSO now serves data from 72 different instruments covering a multitude of space and ground based observatories, including data from SDO. Dealing with the volume of data from SDO has proved to be our most difficult challenge, forcing us from the small box approach to one where the various VSO sites not only serve SDO data, but are central to the distribution of the data within the US and to Europe and other parts of the world. With SDO data serving mostly in place we are now working on integration with the Heliophysics Event Knowledgebase (HEK) and including a number of new solar data sets in the VSO family. We have a complete VSO search interface in IDL now, enabling searching, downloading and processing solar data, all be done without leaving the IDL command line, and will be releasing a brand new web interface providing users and data providers, with the ability to create far more detailed and instrument specific searches. Eight years on and the VSO has plenty of work in front of it.

  17. The Virtual Solar Observatory: Progress and Diversions

    Science.gov (United States)

    Gurman, Joseph B.; Bogart, R. S.; Amezcua, A.; Hill, Frank; Oien, Niles; Davey, Alisdair R.; Hourcle, Joseph; Mansky, E.; Spencer, Jennifer L.

    2017-08-01

    The Virtual Solar Observatory (VSO) is a known and useful method for identifying and accessing solar physics data online. We review current "behind the scenes" work on the VSO, including the addition of new data providers and the return of access to data sets to which service was temporarily interrupted. We also report on the effect on software development efforts when government IT “security” initiatives impinge on finite resoruces. As always, we invite SPD members to identify data sets, services, and interfaces they would like to see implemented in the VSO.

  18. Chromospheric Variability: Analysis of 36 years of Time Series from the National Solar Observatory/Sacramento Peak Ca II K-line Monitoring Program

    Science.gov (United States)

    Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.

    2014-01-01

    Analysis of more than 36 years of time series of seven parameters measured in the NSO/AFRL/Sac Peak K-line monitoring program elucidates five elucidates five components of the variation: (1) the solar cycle (period approx. 11 years), (2) quasi-periodic variations (periods approx 100 days), (3) a broad band stochastic process (wide range of periods), (4) rotational modulation, and (5) random observational errors. Correlation and power spectrum analyses elucidate periodic and aperiodic variation of the chromospheric parameters. Time-frequency analysis illuminates periodic and quasi periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (1) and (2) at time scales in the range approx 0.1 - 10 years. These results using only full-disk data further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced by NASA's Kepler observatory. Component (3) consists of variations over a range of timescales, in the manner of a 1/f random noise process. A timedependent Wilson-Bappu effect appears to be present in the solar cycle variations (1), but not in the stochastic process (3). Component (4) characterizes differential rotation of the active regions, and (5) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The recent data suggest that the current cycle is starting late and may be relatively weak. The data analyzed in this paper can be found at the National Solar Observatory web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  19. The Virtual Solar Observatory: What Are We Up To Now?

    Science.gov (United States)

    Gurman, J. B.; Hill, F.; Suarez-Sola, F.; Bogart, R.; Amezcua, A.; Martens, P.; Hourcle, J.; Hughitt, K.; Davey, A.

    2012-01-01

    In the nearly ten years of a functional Virtual Solar Observatory (VSO), http://virtualsolar.org/ we have made it possible to query and access sixty-seven distinct solar data products and several event lists from nine spacecraft and fifteen observatories or observing networks. We have used existing VSO technology, and developed new software, for a distributed network of sites caching and serving SDO HMI and/ or AlA data. We have also developed an application programming interface (API) that has enabled VSO search and data access capabilities in IDL, Python, and Java. We also have quite a bit of work yet to do, including completion of the implementation of access to SDO EVE data, and access to some nineteen other data sets from space- and ground-based observatories. In addition, we have been developing a new graphic user interface that will enable the saving of user interface and search preferences. We solicit advice from the community input prioritizing our task list, and adding to it

  20. Computer Vision for the Solar Dynamics Observatory (SDO)

    Science.gov (United States)

    Martens, P. C. H.; Attrill, G. D. R.; Davey, A. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Savcheva, A.; Su, Y.; Testa, P.; Wills-Davey, M.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F.; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgoulis, M. K.; McAteer, R. T. J.; Timmons, R. P.

    2012-01-01

    In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/ Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre- Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic

  1. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  2. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  3. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Observatories and Telescopes of Modern Times

    Science.gov (United States)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  5. The Solar Dynamics Observatory, Studying the Sun and Its Influence on Other Bodies in the Solar System

    Science.gov (United States)

    Chamberlin, P. C.

    2011-01-01

    The solar photon output, which was once thought to be constant, varies over all time scales from seconds during solar flares to years due to the solar cycle. These solar variations cause significant deviations in the Earth and space environments on similar time scales, such as affecting the atmospheric densities and composition of particular atoms, molecules, and ions in the atmospheres of the Earth and other planets. Presented and discussed will be examples of unprecedented observations from NASA's new solar observatory, the Solar Dynamics Observatory (SDO). Using three specialized instruments, SDO measures the origins of solar activity from inside the Sun, though its atmosphere, then accurately measuring the Sun's radiative output in X-ray and EUV wavelengths (0.1-121 nm). Along with the visually appealing observations will be discussions of what these measurements can tell us about how the plasma motions in all layers of the Sun modifies and strengthens the weak solar dipole magnetic field to drive large energy releases in solar eruptions. Also presented will be examples of how the release of the Sun's energy, in the form of photons and high energy particles, physically influence other bodies in the solar system such as Earth, Mars, and the Moon, and how these changes drive changes in the technology that we are becoming dependent upon. The presentation will continuously emphasize how SDO, the first satellite in NASA's Living with a Star program, improving our understanding of the variable Sun and its Heliospheric influence.

  6. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    Science.gov (United States)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  7. Social Media Programs at the National Optical Astronomy Observatory

    Science.gov (United States)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  8. The National Solar Observatory Digital Library

    Science.gov (United States)

    Hill, F.; Branston, D.; Erdwurm, W.

    1997-05-01

    NSO provides several important data sets to the solar physics community, such as full-disk daily magnetograms, He 10380 spectroheliograms, and solar spectral atlases from Kitt Peak; as well as H-alpha and Ca K spectroheliograms, and coronal scans from Sacramento Peak. The usage of these data sets has rapidly increased over the last 3 years as indicated in the logs of NSO/KP anonymous FTP activity which show increases of 400% in the number of logins, and 100% in the number of files transferred. In order to provide better access to these data for the solar physics community, NSO is developing a digital library. A robotic jukebox that holds 300 CD ROMs (about 210 GB) on-line has been installed at NSO, and the migration of data into this system is substantially underway. At the present time, the entire set of spectra from the Fourier Transform Spectrometer is on-line, as well as about 15% of the Kitt Peak magnetograms and He 10830 images. The Sacramento Peak H-alpha and Ca K spectroheliograms are now being digitized and transferred to CDs. A web-based user interface and search tool is also in development. Oracle has been selected and installed as the RDBMS search engine. Software to populate the database tables using FITS header parameters has been developed. Issues of file name conventions, user request tracking, and download strategies are under study. We expect to have a simple prototype interface and search tool for the Kitt Peak magnetograms available for testing by the user community by Summer 1997. This will provide a foundation that can be easily extended to include additional data sets.

  9. Solar Indices - Sunspot Numbers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  10. Solar Indices - Plage Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  11. Solar Imagery - Chromosphere - H-Alpha

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of H-alpha photographic datasets contributed by a number of national and private solar observatories located worldwide. Solar...

  12. Preliminary trajectory design for a solar polar observatory using SEP and multiple gravity assists

    NARCIS (Netherlands)

    Corpaccioli, L.; Noomen, R.; De Smet, S.; Parker, J.S.; Herman, J.F.C.

    2015-01-01

    Satellite solar observatories have always been of central importance to heliophysics; while there have been numerous such missions, the solar poles have been extremely under-observed. This paper proposes to use low-thrust as well as multiple gravity assists to reach the enormous energies required

  13. Still Virtual After All These Years: Recent Developments in the Virtual Solar Observatory

    Science.gov (United States)

    Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Hill, F.; Martens, P. C.; Zarro, D. M.; Team, T. v.

    2008-05-01

    While continuing to add access to data from new missions, including Hinode and STEREO, the Virtual Solar Observatory is also being enhanced as a research tool by the addition of new features such as the unified representation of catalogs and event lists (to allow joined searches in two or more catalogs) and workable representation and manipulation of large numbers of search results (as are expected from the Solar Dynamics Observatory database). Working with our RHESSI colleagues, we have also been able to improve the performance of IDL-callable vso_search and vso_get functions, to the point that use of those routines is a practical alternative to reproducing large subsets of mission data on one's own LAN.

  14. Still Virtual After All These Years: Recent Developments in the Virtual Solar Observatory

    Science.gov (United States)

    Gurman, Joseph B.; Bogart; Davey; Hill; Masters; Zarro

    2008-01-01

    While continuing to add access to data from new missions, including Hinode and STEREO, the Virtual Solar Observatory is also being enhanced as a research tool by the addition of new features such as the unified representation of catalogs and event lists (to allow joined searches in two or more catalogs) and workable representation and manipulation of large numbers of search results (as are expected from the Solar Dynamics Observatory database). Working with our RHESSI colleagues, we have also been able to improve the performance of IDL-callable vso_search and vso_get functions, to the point that use of those routines is a practical alternative to reproducing large subsets of mission data on one's own LAN.

  15. Education and public outreach at the Carl Sagan Solar Observatory of the University of Sonora

    Science.gov (United States)

    Saucedo-Morales Julio; Loera-González, Pablo

    2013-05-01

    We discuss the importance of small solar observatories for EPO (Education and Public Outreach), mentioning why they are relevant and what kind of equipment and software require. We stress the fact that technological advances have made them affordable and that they should be widely available. This work is a result of our experience with one: The Carl Sagan Solar Observatory (CSSO). We briefly describe its status and the solar data obtained daily with students participation. We present examples of the data obtained in the visible, Ca II and two in Hα. Data which is widely used for education. Finally we talk about the capability for remote operation as an open invitation for collaboration in educational and scientific projects.

  16. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the technical...

  17. Education and public outreach at the Carl Sagan Solar Observatory of the University of Sonora

    Directory of Open Access Journals (Sweden)

    Julio Saucedo-Morales

    2013-05-01

    Full Text Available We discuss the importance of small solar observatories for EPO (Education and Public Outreach, mentioning why they are relevant and what kind of equipment and software require. We stress the fact that technological advances have made them affordable and that they should be widely available. This work is a result of our experience with one: The Carl Sagan Solar Observatory (CSSO. We briefly describe its status and the solar data obtained daily with students participation. We present examples of the data obtained in the visible, Ca II and two in Hα. Data which is widely used for education. Finally we talk about the capability for remote operation as an open invitation for collaboration in educational and scientific projects.

  18. Public relations for a national observatory

    Science.gov (United States)

    Finley, David G.

    The National Radio Astronomy Observatory (NRAO) is a government-funded organization providing state-of-the art observational facilities to the astronomical community on a peer-reviewed basis. In this role, the NRAO must address three principal constituencies with its public-relations efforts. These are: the astronomical community; the funding and legislative bodies of the Federal Government; and the general public. To serve each of these constituencies, the Observatory has developed a set of public-relations initiatives supported by public-relations and outreach professionals as well as by management and scientific staff members. The techniques applied and the results achieved in each of these areas are described.

  19. Fe IX CALCULATIONS FOR THE SOLAR DYNAMICS OBSERVATORY

    International Nuclear Information System (INIS)

    Foster, Adam R.; Testa, Paola

    2011-01-01

    New calculations of the energy levels, radiative transition rates, and collisional excitation rates of Fe IX have been carried out using the Flexible Atomic Code, paying close attention to experimentally identified levels and extending existing calculations to higher energy levels. For lower levels, R-matrix collisional excitation rates from earlier work have been used. Significant emission is predicted by these calculations in the 5f-3d transitions, which will impact analysis of Solar Dynamics Observatory Atmospheric Imaging Assembly observations using the 94 A filter.

  20. Solar Features - Solar Flares - Patrol

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  1. First ten years of Hinode solar on-orbit observatory

    CERN Document Server

    Imada, Shinsuke; Kubo, Masahito

    2018-01-01

    This book provides the latest scientific understanding of the Sun, sharing insights gleaned from the international solar physics project Hinode. The authors (who are the main project contributors) review, from the various viewpoints, the discoveries and advances made by the on-orbit operations of the Hinode spacecraft in its first decade. Further, they present a wealth of scientifically important photographs and data from Hinode. Launched in September 2006, Hinode is the third Japanese solar observatory on orbit, and employs three highly advanced telescopes jointly developed and operated with international partners. The book describes the background of these research topics, how the Hinode telescopes have tackled various challenges, and the scientific achievements and impacts in the first 10 years. Furthermore, it explores future perspective of researches in Japan. The book will benefit undergraduate students interested in recent advance in the solar research, as well as graduate students and researchers work...

  2. Calibration of Solar Radio Spectrometer of the Purple Mountain Observatory

    Science.gov (United States)

    Lei, LU; Si-ming, LIU; Qi-wu, SONG; Zong-jun, NING

    2015-10-01

    Calibration is a basic and important job in solar radio spectral observations. It not only deduces the solar radio flux as an important physical quantity for solar observations, but also deducts the flat field of the radio spectrometer to display the radio spectrogram clearly. In this paper, we first introduce the basic method of calibration based on the data of the solar radio spectrometer of Purple Mountain Observatory. We then analyze the variation of the calibration coefficients, and give the calibrated results for a few flares. These results are compared with those of the Nobeyama solar radio polarimeter and the hard X-ray observations of the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite, it is shown that these results are consistent with the characteristics of typical solar flare light curves. In particular, the analysis on the correlation between the variation of radio flux and the variation of hard X-ray flux in the pulsing phase of a flare indicates that these observations can be used to study the relevant radiation mechanism, as well as the related energy release and particle acceleration processes.

  3. Adaptive optics system for the IRSOL solar observatory

    Science.gov (United States)

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  4. Communicating Solar Astronomy to the public

    Science.gov (United States)

    Yaji, Kentaro; Solar Observatory NAOJ, The

    2015-08-01

    The Sun is the nearest star to us, so that the public is greatly interested in the Sun itself and in solar activity. The Solar Observatory, National Astronomical Observatory of Japan is one of the solar research divisions. Various data of the Sun obtained with our instruments, systematically accumulated more than one hundred years since 1910s, are open to not only researchers but also the public as online database. So, we have many chances that the public request solar images for the education and the media. In addition, we release daily solar observation informations on the web and with social media and guide visitors to our observation facilities. It is reviewed about the public relations and outreach activities of the Solar Observatory, including recent solar observation topics.

  5. The Baksan Neutrino Observatory Soviet-American Gallium Solar Neutrino Experiment

    International Nuclear Information System (INIS)

    Abazov, A.I.; Abdurashitov, D.N.; Anosov, O.V.

    1988-01-01

    A radiochemical 71 Ga- 71 Ge experiment to determine the integral flux of neutrinos from the sun is currently under preparation at the Baksan Neutrino Observatory in the USSR. Measurements are scheduled to commence by late 1988 with 30 tonnes of metallic gallium. A fractional statistical accuracy of 18% is expected to be obtained after one year of operation if the solar signal obtained after one year of operation if the solar signal is 70 SNU, the flux expected from p-p neutrinos alone. While initial measurements are in progress, 30 additional tonnes of gallium will be installed in order to perform the full experiment with a 60-tonne target. 28 refs

  6. X-ray observations of solar flares with the Einstein Observatory

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Fink, H.; Harnden, F.R. Jr.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1987-01-01

    The first Einstein Observatory Imaging Proportional Counter (IPC) observations of solar flares are presented. These flares were detected in scattered X-ray light when the X-ray telescope was pointed at the sunlit earth. The propagation and scattering of solar X-rays in the earth's atmosphere are discussed in order to be able to deduce the solar X-ray flux incident on top of the atmosphere from scattered X-ray intensity measurements. After this correction, the scattered X-ray data are interpreted as full-disk observations of the sun obtained with the same instrumentation used for observations of flares on other stars. Employing the same data analysis and interpretation techniques, extremely good agreement is found between the physical flare parameters deduced from IPC observations and known properties of compact loop flares. This agreement demonstrates that flare observations with the IPC can reveal physical parameters such as temperature and density quite accurately in the solar case and therefore suggests that the interpretations of stellar X-ray flare observations are on a physically sound basis. 26 references

  7. The stellar and solar tracking system of the Geneva Observatory gondola

    Science.gov (United States)

    Huguenin, D.

    1974-01-01

    Sun and star trackers have been added to the latest version of the Geneva Observatory gondola. They perform an image motion compensation with an accuracy of plus or minus 1 minute of arc. The structure is held in the vertical position by gravity; the azimuth is controlled by a torque motor in the suspension bearing using solar or geomagnetic references. The image motion compensation is performed by a flat mirror, located in front of the telescope, controlled by pitch and yaw servo-loops. Offset pointing is possible within the solar disc and in a 3 degree by 3 degree stellar field. A T.V. camera facilitates the star identification and acquisition.

  8. Solar origins of space weather and space climate

    CERN Document Server

    Komm, Rudolf; Pevtsov, Alexei; Leibacher, John

    2014-01-01

    This topical issue is based on the presentations given at the 26th National Solar Observatory (NSO) Summer Workshop held at the National Solar Observatory/Sacramento Peak, New Mexico, USA from 30 April to 4 May 2012. This unique forum brought together experts in different areas of solar and space physics to help in developing a full picture of the origin of solar phenomena that affect Earth’s technological systems.  The articles include theory, model, and observation research on the origin of the solar activity and its cycle, as well as a discussion on how to incorporate the research into space-weather forecasting tools.  This volume is aimed at graduate students and researchers active in solar physics and space science.  Previously published in Solar Physics, Vol. 289/2, 2014.

  9. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    Science.gov (United States)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  10. Earth-Affecting Solar Causes Observatory (EASCO): a mission at the Sun-Earth L5

    DEFF Research Database (Denmark)

    Gopalswamy, Nat; Davila, Joseph M.; Auchère, Frédéric

    2011-01-01

    Observatory (STEREO) missions, but these missions lacked some key measurements: STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer. SOHO and other imagers such as the Solar Mass Ejection Imager (SMEI) located on the Sun-Earth line are also not well-suited to measure Earth-directed CMEs....... The Earth-Affecting Solar Causes Observatory (EASCO) is a proposed mission to be located at the Sun-Earth L5 that overcomes these deficiencies. The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center, to see how the mission can be implemented....... The study found that the scientific payload (seven remote-sensing and three in-situ instruments) can be readily accommodated and can be launched using an intermediate size vehicle; a hybrid propulsion system consisting of a Xenon ion thruster and hydrazine has been found to be adequate to place the payload...

  11. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    Science.gov (United States)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize

  12. Integration of space geodesy: a US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth

    2003-01-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the U.S., in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO).

  13. Solar Imagery - GONG

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  14. The SOAR Telescope Project Southern Observatory for Astronomical Research (SOAR)

    Science.gov (United States)

    2003-03-21

    completed SOAR dome and facility. 2. Dome The preliminary design of the dome was handled by M3 (US). A Brazilian firm, Equatorial Sistemas led the...for the Gemini Telescope during construction, now Project Manager at the National Solar Observatory • Robert Shelton, Provost of the University on

  15. National Astronomical Observatory of Japan

    CERN Document Server

    Haubold, Hans J; UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan

    2010-01-01

    This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.

  16. Solar Imagery - GONG (Magnetogram)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  17. Sunwatchers Across Time: Sun-Earth Day from Ancient and Modern Solar Observatories

    Science.gov (United States)

    Hawkins, I.; Vondrak, R.

    Humans across all cultures have venerated, observed, and studied the Sun for thousands of years. The Sun, our nearest star, provides heat and energy, is the cause of the seasons, and causes space weather effects that influence our technology-dependent society. The Sun is also part of indigenous tradition and culture. The Inca believed that the Sun had the power to make things grow, and it does, providing us with the heat and energy that are essential to our survival. From a NASA perspective, Sun-Earth Connection research investigates the effects of our active Sun on the Earth and other planets, namely, the interaction of the solar wind and other dynamic space weather phenomena with the solar system. We present plans for Sun-Earth Day 2005, a yearly celebration of the Sun-Earth Connection sponsored by the NASA Sun-Earth Connection Education Forum (SECEF). SECEF is one of four national centers of space science education and public outreach funded by NASA Office of Space Science. Sun-Earth Day involves an international audience of schools, science museums, and the general public in activities and events related to learning about the Sun-Earth Connection. During the year 2005, the program will highlight cultural and historical perspectives, as well as NASA science, through educational and public outreach events intended to involve diverse communities. Sun-Earth Day 2005 will include a series of webcasts from solar observatories produced by SECEF in partnership with the San Francisco Exploratorium. Webcasts from Chaco Culture National Historical Park in New Mexico, USA, and from Chichen Itza, Mexico, will be accessed by schools and the public. Sun-Earth Day will also feature NASA Sun-Earth Connection research, missions, and the people who make it possible. One of the goals of this talk is to inform and engage COSPAR participants in these upcoming public events sponsored by NASA. Another goal is to share best practices in public event programming, and present impact

  18. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    Science.gov (United States)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic

  19. A new regard about Surlari National Geomagnetic Observatory

    Science.gov (United States)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Pestina, Agata-Monica

    2010-05-01

    Geomagnetic field study in Romanian stations has started with irregular measurements in late XIXth century. In 1943, the foundation of Surlari National Geomagnetic Observatory (SNGO) marks the beginning of a new era in the systematic study of geomagnetic field by a continuous registration of its variations and by carrying out standard absolute measurements in a fundamental station. The location of the observatory meets the highest exigencies, being situated in physical-geological conditions of a uniform local field, at a reasonably long distance from human activities. Its laboratories observe strict conditions of non-magnetism, ensuring the possibility of absolute standard measurements (national magnetic standards) for all the units in the country, civil or military, which are endowed with equipment based on geomagnetic metrology. These basic conditions have allowed the observatory to become by developing its initial preoccupations a centre of complex geomagnetic research, constantly involved in national and international issues, promoting new themes in our country and bringing significant contributions. During the last two decades, infrastructure and equipment used in monitoring geomagnetic field at European and planetary level have experienced a remarkable development. New registering techniques have allowed a complete to automate of data acquisition, and sampling step and their precision increased by two classes of size. Systems of transmitting these data in real time to world collecting centres have resulted in the possibility of approaching globalize studies, suitable for following some phenomena at planetary scale. At the same time, a significant development in the procedures of processing primary data has been registered, based on standardized programmes. The new stage of this fundamental research, largely applicable in various fields, is also marked by the simultaneous observation of space-time distribution of terrestrial electromagnetic field by means of

  20. Solar Imagery - GONG (H-alpha)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  1. The BOOTES-5 telescope at San Pedro Martir National Astronomical Observatory, Mexico

    Science.gov (United States)

    Hiriart, D.; Valdez, J.; Martínez, B.; García, B.; Cordova, A.; Colorado, E.; Guisa, G.; Ochoa, J. L.; Nuñez, J. M.; Ceseña, U.; Cunniffe, R.; Murphy, D.; Lee, W.; Park, Il H.; Castro-Tirado, A. J.

    2016-12-01

    BOOTES-5 is the fifth robotic observatory of the international network of robotic telescopes BOOTES (Burst Observer and Optical Transient Exploring Optical System). It is located at the National Astronomical Observatory at Sierra San Pedro Martir, Baja California, Mexico. It was dedicated on November 26, 2015 and it is in the process of testing. Its main scientific objective is the observation and monitoring of the optic counterparts of gamma-ray bursts as quickly as possible once they have been detected from space or other ground-based observatories. BOOTES-5 fue nombrado Telescopio Javier Gorosabel en memoria del astrónomo español Javier Gorosabel Urkia.

  2. A solar observing station for education and research in Peru

    Science.gov (United States)

    Kaname, José Iba, Ishitsuka; Ishitsuka, Mutsumi; Trigoso Avilés, Hugo; Takashi, Sakurai; Yohei, Nishino; Miyazaki, Hideaki; Shibata, Kazunari; Ueno, Satoru; Yumoto, Kiyohumi; Maeda, George

    2007-12-01

    Since 1937 Carnegie Institution of Washington made observations of active regions of the Sun with a Hale type spectro-helioscope in Huancayo observatory of the Instituto Geofísico del Perú (IGP). IGP has contributed significantly to geophysical and solar sciences in the last 69 years. Now IGP and the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA) are planning to refurbish the coelostat at the observatory with the support of National Astronomical Observatory of Japan. It is also planned to install a solar Flare Monitor Telescope (FMT) at UNICA, from Hida observatory of Kyoto University. Along with the coelostat, the FMT will be useful to improve scientific research and education.

  3. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    DEFF Research Database (Denmark)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow

    2015-01-01

    advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun......Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D...... structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant...

  4. Tuning the Solar Dynamics Observatory Onboard Kalman Filter

    Science.gov (United States)

    Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin

    2017-01-01

    The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.

  5. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  6. Solar Integration National Dataset Toolkit | Grid Modernization | NREL

    Science.gov (United States)

    Solar Integration National Dataset Toolkit Solar Integration National Dataset Toolkit NREL is working on a Solar Integration National Dataset (SIND) Toolkit to enable researchers to perform U.S . regional solar generation integration studies. It will provide modeled, coherent subhourly solar power data

  7. Solar Cycle Variation of Interplanetary Coronal Mass Ejection ...

    Indian Academy of Sciences (India)

    2010-08-25

    Aug 25, 2010 ... 3Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences ... ICME-associated CME latitudes during solar cycle 23 using Song et al.'s method. ..... latitudes during the three phases of cycle 23 separately for the northern (left panel) and southern. (right panel) ...

  8. Calibration and Validation of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    Science.gov (United States)

    Leisso, N.

    2015-12-01

    The National Ecological Observatory Network (NEON) is being constructed by the National Science Foundation and is slated for completion in 2017. NEON is designed to collect data to improve the understanding of changes in observed ecosystems. The observatory will produce data products on a variety of spatial and temporal scales collected from individual sites strategically located across the U.S. including Alaska, Hawaii, and Puerto Rico. Data sources include standardized terrestrial, instrumental, and aquatic observation systems in addition to three airborne remote sensing observation systems installed into leased Twin Otter aircraft. The Airborne Observation Platforms (AOP) are designed to collect 3-band aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopy data over the NEON sites annually at or near peak-greenness. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) sensor designed by NASA JPL for ecological applications. Spectroscopic data is collected at 5-nm intervals across the solar-reflective spectral region (380-nm to 2500-nm) in a 34-degree FOV swath. A key uncertainty driver to the derived remote sensing NEON data products is the calibration of the imaging spectrometers. In addition, the calibration and accuracy of the higher-level data product algorithms is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The typical calibration workflow of the NIS consists of the characterizing the focal plane, spectral calibration, and radiometric calibration. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. The radiometric calibration is NIST traceable and transferred to the NIS with an integrating sphere calibrated through the use of transfer radiometers. The laboratory calibration is monitored and maintained through

  9. Current Status of Carl Sagan Observatory in Mexico

    Science.gov (United States)

    Sanchez-Ibarra, A.

    The current status of Observatory "Carl Sagan" (OCS) of University of Sonora is presented. This project was born in 1996 focused to build a small solar-stellar observatory completely operated by remote control. The observatory will be at "Cerro Azul", a 2480 m peak in one of the best regions in the world for astronomical observation, at the Sonora-Arizona desert. The OCS, with three 16 cm solar telescopes and a 55 cm stellar telescope is one of the cheapest observatories, valuated in US200,000 Added to its scientific goals to study solar coronal holes and Supernovae Type 1A, the OCS has a strong educative and cultural program in Astronomy to all levels. At the end of 2001, we started the Program "Constelacion", to build small planetariums through all the countries with a cost of only US80,000. Also, the webcast system for transmission of the solar observations from the prototype OCS at the campus, was expanded to webcast educational programs in Astronomy since July of this year, including courses and diplomats for Latin American people. All of these advances are exposed here.

  10. A Simple and Customizable Web Interface to the Virtual Solar Observatory

    Science.gov (United States)

    Hughitt, V. Keith; Hourcle, J.; Suarez-Sola, I.; Davey, A.

    2010-05-01

    As the variety and number of solar data sources continue to increase at a rapid rate, the importance of providing methods to search through these sources becomes increasingly important. By taking advantage of the power of modern JavaScript libraries, a new version of the Virtual Solar Observatory's web interface aims to provide a significantly faster and simpler way to explore the multitude of data repositories available. Querying asynchroniously serves not only to eliminates bottlenecks resulting from slow or unresponsive data providers, but also allows for displaying of results as soon as they are returned. Implicit pagination and post-query filtering enables users to work with large result-sets, while a more modular and customizable UI provides a mechanism for customizing both the look-and-feel and behavior of the VSO web interface. Finally, the new web interface features a custom widget system capable of displaying additional tools and information along-side of the standard VSO search form. Interested users can also write their own widgets and submit them for future incorporation into VSO.

  11. Close Binary Star Speckle Interferometry on the McMath-Pierce 0.8-Meter Solar Telescope

    Science.gov (United States)

    Wiley, Edward; Harshaw, Richard; Jones, Gregory; Branston, Detrick; Boyce, Patrick; Rowe, David; Ridgely, John; Estrada, Reed; Genet, Russell

    2015-09-01

    Observations were made in April 2014 to assess the utility of the 0.8-meter solar telescope at the McMath-Pierce Solar Observatory at Kitt Peak National Observatory for performing speckle interferometry observations of close binary stars. Several configurations using science cameras, acquisition cameras, eyepieces, and flip mirrors were evaluated. Speckle images were obtained and recommendations for further improvement of the acquisition system are presented.

  12. Solar Observations on Magneto-Convection

    Science.gov (United States)

    1989-05-31

    Technical Library National Solar Observatory Sunspot, NM 88349 Karl - Schwarzschild -Strasse 1 8046 Garching bei Mundhen Solar Observations On Magneto...Schmidt, Hermann-Ulrich Schmidt, Hans-Christoph Thomas (eds.) Max-Planck-Institut fir Physik und Astrophysik Institut fiur Astrophysik Karl ... Schwarzschild -St-. 1 D-8046 Garching, FklG 14TIS CRiA.&l DTIC TA. U~Jar,iou8:ed B ......... ... Distribution I -- Availability COcý----- Avail and or Dist special

  13. Barriers and facilitators to establishing a national public health observatory

    Directory of Open Access Journals (Sweden)

    Shalini Pooransingh

    Full Text Available OBJECTIVE: To determine what stakeholders perceive as barriers and facilitators to creating a national public health observatory (PHO in Trinidad and Tobago. METHODS: A descriptive study was conducted based on 15 key informant interviews carried out from April to September 2013. The key informants worked within the health care sector in Trinidad and Tobago. Using a semi-structured interview guide, information was collected on knowledge, attitudes, and beliefs about creating a PHO; barriers and facilitators to creating and sustaining a PHO; legal considerations; and human resource and information technology requirements. Common themes of the responses were identified. RESULTS: The majority of participants supported the development of a national PHO, recognized its value in informing their work, and indicated that a national PHO could 1 provide information to support evidence-informed decision-making for health policy and strategic planning; 2 facilitate data management by establishing data policies, procedures, and standards; 3 increase the use of data by synthesizing and disseminating information; and 4 provide data for benchmarking. However, a number of barriers were identified, including 1 the perception that data collection is not valued; 2 untimely availability of data; 3 limited data synthesis, dissemination, and utilization to inform decision-making; and 4 challenges related to the allocation of human resources and existing information technology. CONCLUSIONS: Key informants support the development of a national PHO in Trinidad and Tobago. The findings align well within the components of the conceptual framework for establishing national health observatories. A stepwise approach to establishing a national PHO in Trinidad and Tobago, beginning with structural components and followed by functional components, is recommended. A national PHO in Trinidad and Tobago could serve as a model for other countries in the Caribbean.

  14. Barriers and facilitators to establishing a national public health observatory.

    Science.gov (United States)

    Pooransingh, Shalini; Misir, Akenath; Ramdath, Dan; Ramsewak, Samuel; Jaglal, Susan; Cameron, Cathy; Goel, Vivek

    2015-11-01

    To determine what stakeholders perceive as barriers and facilitators to creating a national public health observatory (PHO) in Trinidad and Tobago. A descriptive study was conducted based on 15 key informant interviews carried out from April to September 2013. The key informants worked within the health care sector in Trinidad and Tobago. Using a semi-structured interview guide, information was collected on knowledge, attitudes, and beliefs about creating a PHO; barriers and facilitators to creating and sustaining a PHO; legal considerations; and human resource and information technology requirements. Common themes of the responses were identified. The majority of participants supported the development of a national PHO, recognized its value in informing their work, and indicated that a national PHO could 1) provide information to support evidence-informed decision-making for health policy and strategic planning; 2) facilitate data management by establishing data policies, procedures, and standards; 3) increase the use of data by synthesizing and disseminating information; and 4) provide data for benchmarking. However, a number of barriers were identified, including 1) the perception that data collection is not valued; 2) untimely availability of data; 3) limited data synthesis, dissemination, and utilization to inform decision-making; and 4) challenges related to the allocation of human resources and existing information technology. Key informants support the development of a national PHO in Trinidad and Tobago. The findings align well within the components of the conceptual framework for establishing national health observatories. A stepwise approach to establishing a national PHO in Trinidad and Tobago, beginning with structural components and followed by functional components, is recommended. A national PHO in Trinidad and Tobago could serve as a model for other countries in the Caribbean.

  15. A Dedicated Space Observatory For Time-domain Solar System Science

    Science.gov (United States)

    Wong, Michael H.; Ádámkovics, M.; Benecchi, S.; Bjoraker, G.; Clarke, J. T.; de Pater, I.; Hendrix, A. R.; Marchis, F.; McGrath, M.; Noll, K.; Rages, K. A.; Retherford, K.; Smith, E. H.; Strange, N. J.

    2009-09-01

    Time-variable phenomena with scales ranging from minutes to decades have led to a large fraction of recent advances in many aspects of solar system science. We present the scientific motivation for a dedicated space observatory for solar system science. This facility will ideally conduct repeated imaging and spectroscopic observations over a period of 10 years or more. It will execute a selection of long-term projects with interleaved scheduling, resulting in the acquisition of data sets with consistent calibration, long baselines, and optimized sampling intervals. A sparse aperture telescope would be an ideal configuration for the mission, trading decreased sensitivity for reduced payload mass, while preserving spatial resolution. Ultraviolet capability is essential, especially once the Hubble Space Telescope retires. Specific investigations will include volcanism and cryovolcanism (on targets including Io, Titan, Venus, Mars, and Enceladus); zonal flow, vortices, and storm evolution on the giant planets; seasonal cycles in planetary atmospheres; mutual events and orbit determination of multiple small solar system bodies; auroral activity and solar wind interactions; and cometary evolution. The mission will produce a wealth of data products--such as multi-year time-lapse movies of planetary atmospheres--with significant education and public outreach potential. Existing and planned ground- and space-based facilities are not suitable for these time-domain optimized planetary dynamics studies for numerous reasons, including: oversubscription by astrophysical users, field-of-regard limitations, sensitive detector saturation limits that preclude bright planetary targets, and limited mission duration. The abstract author list is a preliminary group of scientists who have shown interest in prior presentations on this topic; interested parties may contact the lead author by 1 September to sign the associated Planetary Science Decadal Survey white paper or by 1 October to

  16. More than a solar cycle of synoptic solar and coronal data - a video presentation

    International Nuclear Information System (INIS)

    Hoeksema, J.T.; Scherrer, P.H.; Herant, M.; Title, A.M.

    1988-01-01

    Color video movies of synoptic observations of the sun and corona can now be created. Individual analog frames on laser disks can be referenced digitally and played back at any speed. We have brought together photospheric magnetic field data from the Wilcox Solar Observatory at Stanford and the National Solar Observatory, model computations of the coronal magnetic field, and coronal data from the Sacramento Peak coronagraph and the Mauna Loa K-coronameter and made a series of movies presenting the data sets individually and in comparison with one another. This paper presents a description of each of the data sets and movies developed thus far and briefly outlines some of the more interesting and obvious features observed when viewing the movies

  17. Astroinformation resource of the Ukrainian virtual observatory: Joint observational data archive, scientific tasks, and software

    Science.gov (United States)

    Vavilova, I. B.; Pakulyak, L. K.; Shlyapnikov, A. A.; Protsyuk, Yu. I.; Savanevich, V. E.; Andronov, I. L.; Andruk, V. N.; Kondrashova, N. N.; Baklanov, A. V.; Golovin, A. V.; Fedorov, P. N.; Akhmetov, V. S.; Isak, I. I.; Mazhaev, A. E.; Golovnya, V. V.; Virun, N. V.; Zolotukhina, A. V.; Kazantseva, L. V.; Virnina, N. A.; Breus, V. V.; Kashuba, S. G.; Chinarova, L. L.; Kudashkina, L. S.; Epishev, V. P.

    2012-04-01

    The overview of the most important components of the national project - Ukrainian Virtual Observatory (UkrVO) - is presented.Among these components, there is the establishment of a Joint Digital Archive (JDA) of observational data obtained at Ukrainian observatories since 1890, including astronegative's JDA (more than 200 thousand plates). Because of this task requires a VO-oriented software, such issues as software verification of content integrity and JDA administration; compliance of image for mats to IVOA standards; photometric and astrometry calibration of images. Among other developments of local UkrVO software the means of automatic registration of moving celestial objects at the starry sky followed by visual inspection of the results as well as stellar fields image processing software are considered. Research projects that use local UkrVO data archives, namely, an analysis of long observational series of active galactic nuclei, the study of solar flares and solar active regions based on spectral observational archives, research and discovery of variable stars, the study of stellar fields in vicinity gamma-ray bursts are discussed. Particular attention is paid to the CoLiTec program, which allows to increase significantly the number of registered small solar system bodies, and to dis cover new ones, in particular, with the help of this program the comets C/2010 X1 (Elenin) and P/2011 N 01 were discovered in ISON-NM observatory. Development of the UkrVO JDA pro to type is noted which provides access to data bases of MAO NAS of Ukraine, Nikolaev Astronomical Observatory and L'viv Astronomical Observatory.

  18. Multiple-etalon systems for the Advanced Technology Solar Telescope

    Science.gov (United States)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael

    2003-01-01

    Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these

  19. US earthquake observatories: recommendations for a new national network

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report is the first attempt by the seismological community to rationalize and optimize the distribution of earthquake observatories across the United States. The main aim is to increase significantly our knowledge of earthquakes and the earth's dynamics by providing access to scientifically more valuable data. Other objectives are to provide a more efficient and cost-effective system of recording and distributing earthquake data and to make as uniform as possible the recording of earthquakes in all states. The central recommendation of the Panel is that the guiding concept be established of a rationalized and integrated seismograph system consisting of regional seismograph networks run for crucial regional research and monitoring purposes in tandem with a carefully designed, but sparser, nationwide network of technologically advanced observatories. Such a national system must be thought of not only in terms of instrumentation but equally in terms of data storage, computer processing, and record availability.

  20. Improvements to science operations at Kitt Peak National Observatory

    Science.gov (United States)

    Bohannan, Bruce

    1998-07-01

    In recent years Kitt Peak National Observatory has undertaken a number of innovative projects to optimize science operations with the suite of telescopes we operate on Kitt Peak, Arizona. Changing scientific requirements and expectations of our users, evolving technology and declining budgets have motivated the changes. The operations improvements have included telescope performance enhancements--with the focus on the Mayall 4-m--modes of observing and scheduling, telescope control and observing systems, planning and communication, and data archiving.

  1. US Naval Observatory Hourly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations journal from the National Observatory in Washington DC. The observatory is the first station in the United States to produce hourly observations...

  2. A solar station in Ica - Mutsumi Ishitsuka: a research center to improve education at the university and schools

    Science.gov (United States)

    Terrazas-Ramos, Raúl

    2012-07-01

    The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.

  3. Extrasolar Planet Transits Observed at Kitt Peak National Observatory

    Science.gov (United States)

    Sada, Pedro V.; Jennings, Donald E.; Deming, Drake; Jennings, Donald E.; Jackson, Brian; Hamilton, Catrina M.; Fraine, Jonathan; Peterson, Steven W.; Haase, Flynn; Bays, Kevin; hide

    2012-01-01

    We obtained J-, H-, and JH-band photometry of known extrasolar planet transiting systems at the 2.1 m Kitt Peak National Observatory Telescope using the FLAMINGOS infrared camera between 2008 October and 2011 October. From the derived light curves we have extracted the midtransit times, transit depths and transit durations for these events. The precise midtransit times obtained help improve the orbital periods and also constrain transit-time variations of the systems. For most cases the published system parameters successfully accounted for our observed light curves, but in some instances we derive improved planetary radii and orbital periods. We complemented our 2.1 m infrared observations using CCD z0-band and B-band photometry (plus two H(alpha) filter observations) obtained with the Kitt Peak Visitor Center Telescope, and with four H-band transits observed in 2007 October with the NSO's 1.6 m McMath-Pierce Solar Telescope. The principal highlights of our results are (1) Our ensemble of J-band planetary radii agree with optical radii, with the best-fit relation being RpRJ0:0017 0:979RpRvis. (2) We observe starspot crossings during the transit of WASP-11HAT-P-10. (3) We detect starspot crossings by HAT-P-11b (Kepler-3b), thus confirming that the magnetic evolution of the stellar active regions can be monitored even after the Kepler mission has ended. (4) We confirm a grazing transit for HAT-P-27WASP-40. In total, we present 57 individual transits of 32 known exoplanet systems.

  4. 195-Year History of Mykolayiv Observatory: Events and People

    Directory of Open Access Journals (Sweden)

    Shulga, O.V.

    2017-01-01

    Full Text Available The basic stages of the history of the Mykolaiv Astronomical Observatory are shown. The main results of the Observatory activities are presented by the catalogs of star positions, major and minor planets in the Solar system, space objects in the Earth orbit. The information on the qualitative and quantitative structure of the Observatory, cooperation with the observatories of Ukraine and foreign countries as well as major projects carried out in the Observatory is provided.

  5. Use of Statistical Estimators as Virtual Observatory Search ParametersEnabling Access to Solar and Planetary Resources through the Virtual Observatory

    Science.gov (United States)

    Merka, J.; Dolan, C. F.

    2015-12-01

    Finding and retrieving space physics data is often a complicated taskeven for publicly available data sets: Thousands of relativelysmall and many large data sets are stored in various formats and, inthe better case, accompanied by at least some documentation. VirtualHeliospheric and Magnetospheric Observatories (VHO and VMO) help researches by creating a single point of uniformdiscovery, access, and use of heliospheric (VHO) and magnetospheric(VMO) data.The VMO and VHO functionality relies on metadata expressed using theSPASE data model. This data model is developed by the SPASE WorkingGroup which is currently the only international group supporting globaldata management for Solar and Space Physics. The two Virtual Observatories(VxOs) have initiated and lead a development of a SPASE-related standardnamed SPASE Query Language for provided a standard way of submittingqueries and receiving results.The VMO and VHO use SPASE and SPASEQL for searches based on various criteria such as, for example, spatial location, time of observation, measurement type, parameter values, etc. The parameter values are represented by their statisticalestimators calculated typically over 10-minute intervals: mean, median, standard deviation, minimum, and maximum. The use of statistical estimatorsenables science driven data queries that simplify and shorten the effort tofind where and/or how often the sought phenomenon is observed, as we will present.

  6. Solar magnetic field - 1976 through 1985: an atlas of photospheric magnetic field observations and computed coronal magnetic fields from the John M. Wilcox Solar Observatory at Stanford, 1976-1985

    International Nuclear Information System (INIS)

    Hoeksema, J.T.; Scherrer, P.H.

    1986-01-01

    Daily magnetogram observations of the large-scale photospheric magnetic field have been made at the John M. Wilcox Solar Observatory at Stanford since May of 1976. These measurements provide a homogeneous record of the changing solar field through most of Solar Cycle 21. Using the photospheric data, the configuration of the coronal and heliospheric fields can be calculated using a Potential Field -- Source Surface model. This provides a 3-dimensional picture of the heliospheric field-evolution during the solar cycle. In this report the authors present the complete set of synoptic charts of the measured photospheric magnetic field, the computed field at the source surface, and the coefficients of the multipole expansion of the coronal field. The general underlying structure of the solar and heliospheric fields, which determine the environment for solar - terrestrial relations and provide the context within which solar-activity-related events occur, can be approximated from these data

  7. My Teacher got a Trip to Kitt Peak Observatory, but all I got was This Lousy Data CD: Lessons Learned in Optimizing a Teacher Professional Development Program for Solar Research

    Science.gov (United States)

    Walker, C. E.; Hill, F.; Plymate, C.

    2005-12-01

    The solar project in "Teacher Leaders in Research-Based Science Education" program provides the opportunity for teachers to study the Sun with the world's largest solar telescope. This exciting program is designed for middle and high school science teachers with more than 5 years experience teaching science. Funded by a National Science Foundation (NSF) Teacher Retention and Renewal grant, teachers learn how to acquire astronomy data and support their students in conducting authentic astronomy research projects. In addition, the program enhances their skills as leaders and mentors for those science teachers new to the profession. The TLRBSE program includes: 1) A 14-week online distance learning program with an emphasis on spectroscopy and data imaging; 2) A 2-week in-residence workshop at the National Optical Astronomy Observatory in Tucson, including several nights of research observing at a world-class observatory; 3) A program of ongoing mentoring support for beginning teachers; and 4) Partial funding to attend a national NSTA meeting with the mentees; 5) A journal to publish student and teacher research results and 6) Access to ongoing research, via further observing runs or archival data. Various factors have played a part in the evolution of the solar project. It began as an activity that used sunspots to measure the solar rotation rate. Then it progressed to a comparison of active regions (e.g., the areas of sunspots) at various wavelengths, to measuring the splitting of infrared spectral lines due to strong magnetic fields in active regions, and to measuring the amount of polarization due to weak magnetic fields. Challenges were presented as the project evolved from an activity to a hands-on observing experience fully reflecting the scientific research process. Some of the issues and trade-offs we will discuss are hands-on observing experience vs. remote observing, archival data retrieval vs. talking data, and more vs. less scientific assistance in the

  8. Data Collection, Access and Presentation Technologies in the National Ecological Observatory (NEON) Design (Invited)

    Science.gov (United States)

    Aulenbach, S. M.; Berukoff, S. J.

    2010-12-01

    The National Ecological Observatory Network (NEON) will collect data across the United States on the impacts of climate change, land use change and invasive species on ecosystem functions and biodiversity. In-situ sampling and distributed sensor networks, linked by an advanced cyberinfrastructure, will collect site-based data on a variety of organisms, soils, aquatic systems, atmosphere and climate. Targeted airborne remote sensing observations made by NEON as well as geographical data sets and satellite resources produced by Federal agencies will provide data at regional and national scales. The resulting data streams, collected over a 30-year period, will be synthesized into fully traceable information products that are freely and openly accessible to all users. We provide an overview of several collection, access and presentation technologies evaluated for use by observatory systems throughout the data product life cycle. Specifically, we discuss smart phone applications for citizen scientists as well as the use of handheld devices for sample collection and reporting from the field. Protocols for storing, queuing, and retrieving data from observatory sites located throughout the nation are highlighted as are the application of standards throughout the pipelined production of data products. We discuss the automated incorporation of provenance information and digital object identifiers for published data products. The use of widgets and personalized user portals for the discovery and dissemination of NEON data products are also presented.

  9. Localization of the solar flare SF900610 in X-rays with the WATCH instrument of the GRANAT observatory

    DEFF Research Database (Denmark)

    Terekhov, O.V.; Kuzmin, A.G.; Shevchenko, A.V.

    2002-01-01

    -ray source do not coincide with the coordinates of the Ha-line flare. The X-ray source moved over the solar disk during the flare. This probably implies that, as the X-ray emission was generated, different parts of one loop or a system of magnetic loops dominated at different flare times.......During the solar flare of June 10, 1990, the WATCH instrument of the GRANAT space observatory obtained 110 localizations of the X-ray source in the X-ray range 8-20 keV. Its coordinates were measured with an accuracy of similar to2 arcmin at a 3sigma confidence level. The coordinates of the X...

  10. National Community Solar Platform

    Energy Technology Data Exchange (ETDEWEB)

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  11. Solar '95: Proceedings of the 20. national passive solar conference. Volume 20

    International Nuclear Information System (INIS)

    Campbell-Howe, R.; Wilkins-Crowder, B.

    1995-01-01

    This book contains the proceedings of the 20th National Passive Solar Conference, 1995, of the American Solar Energy Society. The topics of the papers include historical aspects of solar energy, daylighting, examination of passive system designs, sustainability concepts, building components, building design, application of solar architecture, case studies, education, and design tools

  12. Attitude Control System Design for the Solar Dynamics Observatory

    Science.gov (United States)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  13. Advance on solar instrumentation in China

    Science.gov (United States)

    Yan, Yihua

    2015-08-01

    The solar observing facilities in China are introduced with the emphasis on the development in recent years and future plans for both ground and space-based solar instrumentations. The recent solar instruments are as follows: A new generation Chinese Spectral Radioreliograph (CSRH) has been constructed at Mingantu Observing Station in Zhengxiangbaiqi, inner Mongolia of China since 2013 and is in test observations now. CSRH has two arrays with 40 × 4.5 m and 60 × 2 m parabolic antennas covering 0.4-2 GHz and 2-15 GHz frequency range. CSRH is renamed as MUSER (Mingantu Ultrawide Spectral Radiheliograph) after its accomplishment. A new 1 m vacuum solar telescope (NVST) has been installed in 2010 at Fuxian lake, 60 km away from Kunming, Yunana. At present it is the best seeing place in China. A new telescope called ONSET (Optical and NIR Solar Eruption Tracer) has been established at the same site as NVST in 2011. ONSET has been put into operation since 2013. For future ground-based plans, Chinese Giant Solar Telescope (CGST) with spatial resolution equivalent to 8m and effective area of 5m full-aperture telescope has been proposed and was formally listed into the National Plans of Major Science & Technology Infrastructures in China. The pre-study and site survey for CGST have been pursued. A 1-meter mid-infrared telescope for precise measurement of the solar magnetic field has been funded by NSFC in 2014 as a national major scientific instrument development project. This project will develop the first mid-infrared solar magnetic observation instrument in the world aiming at increasing the precision of the transverse magnetic field measurement by one order of magnitude. For future ground-based plans, we promote the Deep-space Solar Observatory (DSO) with 1-m aperture telescope to be formally funded. The ASO-S (an Advanced Space-based Solar Observatory) has been supported in background phase by Space Science Program as a small mission. Other related space solar

  14. Report of the solar astronomy task force to the ad hoc interagency coordinating committee on astronomy. Final report

    International Nuclear Information System (INIS)

    1975-06-01

    The report surveys United States solar astronomy activities, compiling agency program objectives and mission requirements, identifying activities in support of the program, and assessing money and manpower expenditures. The scope of solar astrophysics is defined, and the present state of knowledge is outlined. Federally supported solar research is described in detail, by major institution and by program category. The report also discusses a coordinated national program of solar astrophysics in terms of objectives and resources and the particular importance of the Sacramento Peak Observatory and the Solar Maximum Mission to this national program

  15. The National Astronomical Observatory of Japan and Post-war Japanese Optical Astronomy

    Science.gov (United States)

    Tajima, Toshiyuki

    This paper depicts some aspects of the formative process of the Japanese optical and infrared astronomical community in the post-war period, featuring the transition of the National Astronomical Observatory of Japan(NAOJ). We take up three cases of telescope construction, examining their background and their contribution to the Japanese astronomical community. Through these cases, the characteristics of traditions and cultures of optical and infrared astronomy in Japan are considered. Although the Tokyo Astronomical Observatory (TAO) of the University of Tokyo, the predecessor of NAOJ, was originally founded as an agency for practical astronomical observation such as time and almanac service, it has become an international centre for all types of astrophysical research. Research and development of telescopes and observational instruments have become an important part of the astronomers' practice. Now, however, a number of Japanese universities are planning to have their own large to middle-sized telescopes, and a new style of astronomical research is emerging involving astrophysical studies utilising data acquired from the Virtual Observatory, so there is a distinct possibility that the status of the NAOJ will change even further in the future.

  16. Compatibility of different measurement techniques. Long-term global solar radiation observations at Izaña Observatory [Discussion paper

    OpenAIRE

    García Cabrera, Rosa Delia; Cuevas Agulló, Emilio; García Rodríguez, Omaira Elena; Ramos López, Ramón; Romero Campos, Pedro Miguel; Ory Ajamil, Fernando de; Cachorro, Victoria E.; Frutos, Ángel M. de

    2016-01-01

    A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.

  17. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    Science.gov (United States)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  18. Preliminary systems engineering evaluations for the National Ecological Observatory Network.

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Perry J.; Kottenstette, Richard Joseph; Crouch, Shannon M.; Brocato, Robert Wesley; Zak, Bernard Daniel; Osborn, Thor D.; Ivey, Mark D.; Gass, Karl Leslie; Heller, Edwin J.; Dishman, James Larry; Schubert, William Kent; Zirzow, Jeffrey A.

    2008-11-01

    The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.

  19. The National Virtual Observatory Science Definintion Team: Report and Status

    Science.gov (United States)

    Djorgovski, S. G.; NVO SDT Team

    2002-05-01

    Astronomy has become an enormously data-rich science, with numerous multi-Terabyte sky surveys and archives over the full range of wavelengths, and Petabyte-scale data sets already on the horizon. The amount of the available information is growing exponentially, largely driven by the progress in detector and information technology, and the quality and complexity of the data are unprecedented. This great quantitative advance will result in qualitative changes in the way astronomy is done. The Virtual Observatory concept is the astronomy community's organized response to the challenges posed by efficient handling and scientific exploration of new, massive data sets. The NAS Decadal Survey, Astronomy and Astrophysics in the New Millennium, recommends as the first priority in the ``small'' projects category creation of the National Virtual Observatory (NVO). In response to this, the NSF and NASA formed in June 2001 the NVO Science Definition Team (SDT), with a mandate to: (1) Define and formulate a joint NASA/NSF initiative to pursue the NVO goals; (2) Solicit input from the U.S. astronomy community, and incorporate it in the NVO definition documents and recommendations for further actions; and (3) Serve as liaison to broader space science, computer science, and statistics communities for the NVO initiative, and as liaison with the similar efforts in Europe, looking forward towards a truly Global Virtual Observatory. The Team has delivered its report to the agencies and made it publicly available on its website (http://nvosdt.org), where many other relevant links can be found. We will summarize the report, its conclusions, and recommendations.

  20. Ellerman bombs observed with the new vacuum solar telescope and the atmospheric imaging assembly onboard the solar dynamics observatory

    Science.gov (United States)

    Chen, Yajie; Tian, Hui; Xu, Zhi; Xiang, Yongyuan; Fang, Yuliang; Yang, Zihao

    2017-12-01

    Ellerman bombs (EBs) are believed to be small-scale reconnection events occurring around the temperature minimum region in the solar atmosphere. They are often identified as significant enhancements in the extended Hα wings without obvious signatures in the Hα core. Here we explore the possibility of using the 1700 Å images taken by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) to study EBs. From the Hα wing images obtained with the New Vacuum Solar Telescope (NVST) on 2015 May 2, we have identified 145 EBs and 51% of them clearly correspond to the bright points (BPs) in the AIA 1700 Å images. If we resize the NVST images using a linear interpolation to make the pixel sizes of the AIA and NVST images the same, some previously identified EBs disappear and about 71% of the remaining EBs are associated with BPs. Meanwhile, 66% of the compact brightenings in the AIA 1700 Å images can be identified as EBs in the Hα wings. The intensity enhancements of the EBs in the Hα wing images reveal a linear correlation with those of the BPs in the AIA 1700 Å images. Our study suggests that a significant fraction of EBs can be observed with the AIA 1700 Å filter, which is promising for large-sample statistical study of EBs as the seeing-free and full-disk SDO/AIA data are routinely available.

  1. Flying-spot analysis of solar images

    International Nuclear Information System (INIS)

    Azzarelli, L.; Carlesi, C.; Panicucci, R.; Falciani, R.; Giordano, M.; Rigutti, M.; Roberti, G.

    1975-01-01

    This work has been performed to test the new results obtained previously with a photographic isodensitometric method about the photometric evolution of solar flares and to study the degree of utility and reliability and the general performances of high speed, computer controlled devices in the photometric analysis of extended sources. Some series of good Hα solar filter grams, obtained during 1969 (May 15-16-17-25 and Oct 25-27), at the Athens National Observatory, with time resolution of about 30 sec, with uniform exposure and high photometric accuracy (approximately 5000 filtergrams) are studied. (Auth.)

  2. Solar energy in Germany: a national commitment

    International Nuclear Information System (INIS)

    Persem, Melanie

    2012-01-01

    This document presents some key information and figures about the development of solar energy in Germany: national energy plan and share of solar energy in the German energy mix, the photovoltaic industry: a dynamic industry which creates jobs, 2006-2012 evolution of photovoltaic power plant costs, solar thermal resource potentialities and effective exploitation

  3. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    Science.gov (United States)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and

  4. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory.

    Science.gov (United States)

    Möstl, C; Isavnin, A; Boakes, P D; Kilpua, E K J; Davies, J A; Harrison, R A; Barnes, D; Krupar, V; Eastwood, J P; Good, S W; Forsyth, R J; Bothmer, V; Reiss, M A; Amerstorfer, T; Winslow, R M; Anderson, B J; Philpott, L C; Rodriguez, L; Rouillard, A P; Gallagher, P; Nieves-Chinchilla, T; Zhang, T L

    2017-07-01

    We present an advance toward accurately predicting the arrivals of coronal mass ejections (CMEs) at the terrestrial planets, including Earth. For the first time, we are able to assess a CME prediction model using data over two thirds of a solar cycle of observations with the Heliophysics System Observatory. We validate modeling results of 1337 CMEs observed with the Solar Terrestrial Relations Observatory (STEREO) heliospheric imagers (HI) (science data) from 8 years of observations by five in situ observing spacecraft. We use the self-similar expansion model for CME fronts assuming 60° longitudinal width, constant speed, and constant propagation direction. With these assumptions we find that 23%-35% of all CMEs that were predicted to hit a certain spacecraft lead to clear in situ signatures, so that for one correct prediction, two to three false alarms would have been issued. In addition, we find that the prediction accuracy does not degrade with the HI longitudinal separation from Earth. Predicted arrival times are on average within 2.6 ± 16.6 h difference of the in situ arrival time, similar to analytical and numerical modeling, and a true skill statistic of 0.21. We also discuss various factors that may improve the accuracy of space weather forecasting using wide-angle heliospheric imager observations. These results form a first-order approximated baseline of the prediction accuracy that is possible with HI and other methods used for data by an operational space weather mission at the Sun-Earth L5 point.

  5. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  6. Geomagnetic Observatory Database February 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) maintains an active database of worldwide geomagnetic observatory...

  7. High resolution solar observations from first principles to applications

    Science.gov (United States)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the

  8. The National Solar Permitting Database

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-31

    "The soft costs of solar — costs not associated with hardware — remain stubbornly high. Among the biggest soft costs are those associated with inefficiencies in local permitting and inspection. A study by the National Renewable Energy Laboratory and Lawrence Berkeley National Laboratory estimates that these costs add an average of $0.22/W per residential installation. This project helps reduce non-hardware/balance of system (BOS) costs by creating and maintaining a free and available site of permitting requirements and solar system verification software that installers can use to reduce time, capital, and resource investments in tracking permitting requirements. Software tools to identify best permitting practices can enable government stakeholders to optimize their permitting process and remove superfluous costs and requirements. Like ""a Wikipedia for solar permitting"", users can add, edit, delete, and update information for a given jurisdiction. We incentivize this crowdsourcing approach by recognizing users for their contributions in the form of SEO benefits to their company or organization by linking back to users' websites."

  9. Automatic detection of solar features in HSOS full-disk solar images using guided filter

    Science.gov (United States)

    Yuan, Fei; Lin, Jiaben; Guo, Jingjing; Wang, Gang; Tong, Liyue; Zhang, Xinwei; Wang, Bingxiang

    2018-02-01

    A procedure is introduced for the automatic detection of solar features using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. Guided filter is adopted to enhance the edges of solar features and restrain the solar limb darkening, which is first introduced into the astronomical target detection. Then specific features are detected by Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedures, our procedure has some advantages such as real time and reliability as well as no need of local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result shows that the number of features detected by our procedure is well consistent with the manual one.

  10. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO)

    Science.gov (United States)

    Schou, J.; Scherrer, P. H.; Bush, R. I.; Wachter, R.; Couvidat, S.; Rabello-Soares, M. C.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; hide

    2012-01-01

    The Helioseismic and Magnetic Imager (HMI) investigation will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 Fe I absorption line. The instrument consists of a front-window filter, a telescope, a set of wave plates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 4096(exo 2) pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.

  11. The French Jesuit Mission to Thailand in the 1680s and the Establishment of a Major Astronomical Observatory

    Science.gov (United States)

    Soonthornthum, Boonrucksar; Orchiston, Wayne; Komonjinda, Siramas

    2012-09-01

    The first great Thai ruler to encourage the adoption of Western culture and technology was King Narai, and his enlightened attitude led to the rapid development of Thailand. King Narai also had a passion for astronomy, and he pursued this interest by allowing French Jesuit missionaries to set up a large modern well-equipped astronomical observatory in Lopburi Province between AD 1685 and 1687. This was known as the Wat San Paolo Observatory, and King Narai and the missionaries observed a total lunar eclipse on 10 December 1685 and a partial solar eclipse on 30 April 1688. These observations and others made at Wat San Paolo Observatory during the 1680s marked the start of modern scientific astronomy in Thailand. In this paper we discuss King Narai's scientific and other interests, the founding of the Wat San Paolo Observatory, the missionaries who conducted the astronomical programs, their instruments and their observations. We also describe the surviving ruins of the Observatory and their interpretation as a site of national scientific importance in Thailand.

  12. Data Distribution System (DDS) and Solar Dynamic Observatory Ground Station (SDOGS) Integration Manager

    Science.gov (United States)

    Pham, Kim; Bialas, Thomas

    2012-01-01

    The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.

  13. Meteorological monitoring system of TÜBİTAK National Observatory

    Science.gov (United States)

    Koçak, M.; Selam, S. O.; Keskn, V.

    2004-10-01

    A custom meteorological monitoring system was constructed to reliably monitor the meteorological parameters of the site of TÜBİTAK National Observatory (TÜBİTAK: The Scientific and Technical Research Council of Turkey). The site is located on a mountain top known as Bakırlıtepe about 50 km west of the Antalya City at a height of 2547m. The system has software (C-based data acquisition/archiving structure and PHP based WEB monitoring support) and micro-controller based control electronics, fiber based custom designed encoder sensors (for wind speed and direction) and transmission lines using fiberoptic to RS232 transcievers. The constructed system can be used in any robotic telescope project for data monitoring and alert system creation.

  14. COR1 Engineering Test Unit Measurements at the Mauna Loa Solar Observatory, September 2003

    Science.gov (United States)

    Thompson, William; Reginald, Nelson; Streander, Kim

    2003-01-01

    The COR1 Engineering Test Unit (ETU), which had been previously tested at the NCAR/HAO and NRL test facilities, was modified into an instrument capable of observing the Sun. It was then taken to the Mauna Loa Solar Observatory to observe the corona. The changes made to observe the Sun were as follows: 1. The plate scale was changed to accommodate the smaller Apogee camera. This change had already been made for the NRL tests. 2. The previous Oriel polarizer was replaced with a commercial Polarcor polarizer from Newport to be more flight-like. However, because of cost and availability considerations, this polarizer was smaller than those which will be used for flight. 3. A structure was placed around the back section of the instrument, to protect it from stray light. 4. A pointing spar borrowed from HAO was used to track the Sun. A few days into the test, it became evident that some artifacts were appearing in the data, and these artifacts were changing as the polarizer was rotated. It was decided to test two other polarizers, the Oriel polarizer which had been used in the previous tests at HAO and NRL, and a Nikon polarizer which was borrowed from a camera belonging to one of the observatory staff members. These three polarizers had much different qualities are shown.

  15. South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1987-01-01

    Work at the South African Astronomical Observatory (SAAO) in recent years, by both staff and visitors, has made major contributions to the fields of astrophysics and astronomy. During 1986 the SAAO has been involved in studies of the following: galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galactic structure; binary star phenomena; nebulae and interstellar matter; stellar astrophysics; open clusters; globular clusters, and solar systems

  16. First ONPE report - French national observatory of fuel poverty. Definitions, indicators, first results and recommendations

    International Nuclear Information System (INIS)

    Cherel, Didier; Nolay, Pierre; Devaliere, Isolde; Teissier, Olivier; Maresca, Bruno; Guimard, Sebastien; Moisan, Marie; Rousseau, Nicolas; Jouffe, Yves; Poutrel, Severin; Buresi, Sandrine

    2014-09-01

    This first report from the French national observatory of fuel poverty (ONPE) aims at defining fuel poverty and at characterizing and measuring this phenomenon through indicators and inquiries. An additional dimension concerns the vulnerability linked with everyday mobility which is presented in a separate chapter. The national and local policies against fuel poverty are presented with their results, efficiency and possible improvements. A short glimpse on fuel poverty in Europe is given before the conclusion and recommendations

  17. The Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Norman, E.B.; Chan, Y.D.; Garcia, A.; Lesko, K.T.; Smith, A.R.; Stokstad, R.G.; Zlimen, I.; Evans, H.C.; Ewan, G.T.; Hallin, A.; Lee, H.W.; Leslie, J.R.; MacArthur, J.D.; Mak, H.B.; McDonald, A.B.; McLatchie, W.; Robertson, B.C.; Skensved, P.; Sur, B.; Jagam, P.; Law, J.; Ollerhead, R.W.; Simpson, J.J.; Wang, J.X.; Tanner, N.W.; Jelley, N.A.; Barton, J.C.; Doucas, G.; Hooper, E.W.; Knox, A.B.; Moorhead, M.E.; Omori, M.; Trent, P.T.; Wark, D.L.

    1992-11-01

    Two experiments now in progress have reported measurements of the flux of high energy neutrinos from the Sun. Since about 1970, Davis and his co-workers have been using a 37 Cl-based detector to measure the 7 Be and 8 B solar neutrino flux and have found it to be at least a factor of three lower than that predicted by the Standard Solar Model (SSM). The Kamiokande collaborations has been taking data since 1986 using a large light-water Cerenkov detector and have confirmed that the flux is about two times lower than predicted. Recent results from the SAGE and GALLEX gallium-based detectors show that there is also a deficit of the low energy pp solar neutrinos. These discrepancies between experiment and theory could arise because of inadequacies in the theoretical models of solar energy generation or because of previously unobserved properties of neutrinos. The Sudbury Neutrino Observatory (SNO) will provide the information necessary to decide which of these solutions to the ''solar neutrino problem'' is correct

  18. A VBA Desktop Database for Proposal Processing at National Optical Astronomy Observatories

    Science.gov (United States)

    Brown, Christa L.

    National Optical Astronomy Observatories (NOAO) has developed a relational Microsoft Windows desktop database using Microsoft Access and the Microsoft Office programming language, Visual Basic for Applications (VBA). The database is used to track data relating to observing proposals from original receipt through the review process, scheduling, observing, and final statistical reporting. The database has automated proposal processing and distribution of information. It allows NOAO to collect and archive data so as to query and analyze information about our science programs in new ways.

  19. Astronomy and astrophysics communication in the UCM Observatory

    Science.gov (United States)

    Crespo-Chacón, I.; de Castro, E.; Díaz, C.; Gallego, J.; Gálvez, M. C.; Hernán-Obispo, M.; López-Santiago, J.; Montes, D.; Pascual, S.; Verdet, A.; Villar, V.; Zamorano, J.

    We present a summary of the last activities of science communication that have taken place in the Observatorio de la Universidad Complutense de Madrid (UCM Observatory) on the occasion of the Third Science Week of the Comunidad Autónoma de Madrid (3-16 November 2003), including guided tours through the observatory facilities, solar observations, and several talks. Moreover the current telescopes, instruments and tools of the UCM Observatory have allowed us to organize other communicating activities such as the live observation, together with its internet broadcast, of total lunar eclipses and other exceptional astronomical events as the Venus transit that took place in 8 June 2004.

  20. SPASE and the Heliophysics Virtual Observatories

    Directory of Open Access Journals (Sweden)

    J R Thieman

    2010-02-01

    Full Text Available The Space Physics Archive Search and Extract (SPASE project has developed an information model for interoperable access and retrieval of data within the Heliophysics (also known as space and solar physics science community. The diversity of science data archives within this community has led to the establishment of many virtual observatories to coordinate the data pathways within Heliophysics subdisciplines, such as magnetospheres, waves, radiation belts, etc. The SPASE information model provides a semantic layer and common language for data descriptions so that searches might be made across the whole of the heliophysics data environment, especially through the virtual observatories.

  1. The Solar Dynamics Observatory (SDO) Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    Science.gov (United States)

    Drobnes, Emilie; Littleton, A.; Pesnell, William D.; Beck, K.; Buhr, S.; Durscher, R.; Hill, S.; McCaffrey, M.; McKenzie, D. E.; Myers, D.; hide

    2013-01-01

    We outline the context and overall philosophy for the combined Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program, present a brief overview of all SDO E/PO programs along with more detailed highlights of a few key programs, followed by a review of our results to date, conclude a summary of the successes, failures, and lessons learned, which future missions can use as a guide, while incorporating their own content to enhance the public's knowledge and appreciation of science and technology as well as its benefit to society.

  2. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    Science.gov (United States)

    2001-08-01

    Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an

  3. Early German plans for southern observatories

    Science.gov (United States)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  4. The National Solar Radiation Database (NSRDB)

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit; Habte, Aron; Lopez, Anthony; Xie, Yu; Molling, Christine; Gueymard, Christian

    2017-03-13

    This presentation provides a high-level overview of the National Solar Radiation Database (NSRDB), including sensing, measurement and forecasting, and discusses observations that are needed for research and product development.

  5. Do Solar Coronal Holes Affect the Properties of Solar Energetic Particle Events?

    Science.gov (United States)

    Kahler, S. W.; Arge, C. N.; Akiyama, S.; Gopalswamy, N.

    2013-01-01

    The intensities and timescales of gradual solar energetic particle (SEP) events at 1 AU may depend not only on the characteristics of shocks driven by coronal mass ejections (CMEs), but also on large-scale coronal and interplanetary structures. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1-AU magnetic footpoints may be an important factor in SEP events. We used a group of 41 E (is) approx. 20 MeV SEP events with origins near the solar central meridian to search for such effects. First we investigated whether the presence of a CH directly between the sources of the CME and of the magnetic connection at 1 AU is an important factor. Then we searched for variations of the SEP events among different solar wind (SW) stream types: slow, fast, and transient. Finally, we considered the separations between CME sources and CH footpoint connections from 1 AU determined from four-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang-Sheeley-Arge model of SW propagation. The observed in-situ magnetic-field polarities and SW speeds at SEP event onsets tested the forecast accuracies employed to select the best SEP/CH connection events for that analysis. Within our limited sample and the three analytical treatments, we found no statistical evidence for an effect of CHs on SEP event peak intensities, onset times, or rise times. The only exception is a possible enhancement of SEP peak intensities in magnetic clouds.

  6. The Descent of the Serpent: Using a Successful Ancient Solar Observatories Webcast from Chichen Itza to Highlight Space Weather Research

    Science.gov (United States)

    Hawkins, I.; Higdon, R.; Cline, T.

    2006-12-01

    Over the past seven years, NASA's Sun-Earth Connection Education Forum has sponsored and coordinated education and public outreach events to highlight NASA's heliophysics research and discoveries. Our strategy involves using celestial events, such as total solar eclipses and the Transit of Venus, as well as Sun-Earth Day during the March Equinox, to engage K-12 schools and the general public in space science activities, demonstrations, and interactions with space scientists. In collaboration with partners that include the Exploratorium and other museums, Ideum, NASA TV, NASA heliophysics missions, and others, we produce webcasts, other multi-media, and print resources for use by school and informal educators nation-wide and internationally. We provide training and professional development to K-12 educators, museum personnel, amateur astronomers, Girl Scout leaders, etc., so they can implement their own outreach programs taking advantage of our resources. A coordinated approach promotes multiple programs occurring each year under a common theme. As part of an Ancient Observatories theme in 2005, we have successfully featured solar alignments with ancient structures made by indigenous cultures that mark the equinoxes and/or solstices in cultural and historical parks in the Americas. In partnership with the Exploratorium, we produced broadcast-quality and webcast programming during the March equinox that shared heliophysics within a broad cultural context with formal and informal education audiences internationally. The program: "Descent of the Serpent" featured the light and shadow effect at sunset that takes place during the spring equinox at the Pyramid of El Castillo, in Chichén Itzá (México). This program made unique and authentic cultural connections to the knowledge of solar astronomy of the Maya, the living Mayan culture of today, and the importance of the Sun across the ages. We involved Sun-Earth Connection scientists, their missions, and research

  7. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, LIFEP /Lisbon, IST; Aglietta, M.; /Turin Observ. /Turin U. /INFN, Turin; Ahn, E.J.; /Fermilab; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche /Balseiro Inst., San Carlos de Bariloche; Allen, J.; /New York U.; Alvarez Castillo, J.; /Mexico U.; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U. /INFN, Naples; Aminaei, A.; /Nijmegen U., IMAPP; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, LIFEP /Lisbon, IST

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

  8. A New Observatory for Eastern College: A Dream Realized

    Science.gov (United States)

    Bradstreet, D. H.

    1996-12-01

    The Eastern College Observatory began as a rooftop observing deck with one Celestron 8 telescope in 1976 as the workhorse instrument of the observational astronomy lab within the core curriculum. For 20 years the observing deck served as the crude observatory, being augmented through the years by other computerized Celestron 8's and a 17.5" diameter Dobsonian with computerized setting circles. The lab consisted primarily of visual observations and astrophotography. In 1987 plans were set into motion to raise money to build a permanent Observatory on the roof of the main classroom building. Fundraising efforts included three Jog-A-Thons (raising more than $40,000) and many donations from individuals and foundations. The fundraising was completed in 1996 and a two telescope observatory was constructed in the summer of 1996 complete with warm room, CCD cameras, computers, spectrograph, video network, and computerized single channel photometer. The telescopes are computerized 16" diameter Meade LX200 Schmidt-Cassegrains, each coupled to Gateway Pentium Pro 200 MHz computers. SBIG ST-8 CCD cameras were also secured for each telescope and an Optec SSP-7 photometer and Optomechanics Research 10C Spectrograph were also purchased. A Daystar H-alpha solar filter and Thousand Oaks visual light solar filter have expanded the Observatory's functionality to daytime observing as well. This is especially useful for the thousands of school children who frequent the Planetarium each year. The Observatory primarily serves the core astronomy lab where students must observe and photograph a prescribed number of celestial objects in a semester. Advanced students can take directed studies where they conduct photometry on eclipsing binaries or other variable stars or search for new asteroids. In addition, the Observatory and Planetarium are open to the public. Interested members of the community can reserve time on the telescopes and receive training and supervision from lab assistants

  9. SOLAR SOURCES OF 3He-RICH SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Nitta, Nariaki V.; Mason, Glenn M.; Wang, Linghua; Cohen, Christina M. S.; Wiedenbeck, Mark E.

    2015-01-01

    Using high-cadence EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 3 He-rich solar energetic particle events at ≲1 MeV nucleon −1 that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of 3 He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, 3 He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the 3 He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous studies, the magnetic connection between the source region and the observer is not always reproduced adequately by the simple potential field source surface model combined with the Parker spiral. Instead, we find a broad longitudinal distribution of the source regions extending well beyond the west limb, with the longitude deviating significantly from that expected from the observed solar wind speed

  10. Configuration of and Motions in the Solar Corona at the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.; Rusin, Vojtech; Vanur, Roman; Economou, Thanasis; Voulgaris, Aristeidis; Seiradakis, John H.; Seaton, Daniel; Dantowitz, Ronald; Lockwood, Christian A.; Nagle-McNaughton, Timothy; Perez, Cielo; Meadors, Erin N.; Marti, Connor J.; Yu, Ross; Rosseau, Brendan; Ide, Charles A.; Daly, Declan M.; Davis, Allen Bradford; Lu, Muzhou; Steele, Amy; Lee, Duane; Freeman, Marcus J.; Sliski, David; Rousseva, Ana; Greek Salem (Oregon) Team; Voulgaris, Aristeidis; Seiradakis, John Hugh; Koukioglou, Stavros; Kyriakou, Nikos; Vasileiadou, Anna; Greek Carbondale (Illinois) Team; Economou, Thanasis; Kanouras, Spyros; Irakleous, Christina; Golemis, Adrianos; Tsioumpanika, Nikoleta; Plexidas, Nikos; Tzimkas, Nikos; Kokkinidou, Ourania

    2018-06-01

    We report on high-contrast data reduction of white-light images from the August 21, 2017, total solar eclipse. We show the configuration of the solar corona at this declining phase of the solar-activity cycle, with the projection onto the plane of the sky of the three-dimensional coronal streamers plus extensive polar plumes. We discuss the relation of the white-light coronal loops visible in our observations with extreme-ultraviolet observations from NASA’s Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and NOAA’s GOES-16 Solar Ultraviolet Imager (SUVI). We show differences and motions over a 65-minute interval between observations from our main site at Willamette University in Salem, Oregon, and a subsidiary site in Carbondale, Illinois. We discuss, in particular, a giant demarcation about 1 solar radius outward in the southwest that crosses the radial streamers.Our observations of the eclipse were sponsored in large part by the Committee for Research and Exploration of the National Geographic Society and by the Solar Terrestrial Program of the National Geographic Society. Additional support was received from the NASA Massachusetts Space Grant Consortium, the Sigma Xi honorary scientific society, the University of Pennsylvania (for DS), the Slovak Academy of Sciences VEGA project 2/0003/16, and the Freeman Foote Expeditionary and Brandi funds at Williams College. We thank Stephen Thorsett, Rick Watkins, and Honey Wilson of Willamette University for their hospitality. See http://totalsolareclipse.org or http://sites.williams.edu/eclipse/2017-usa/.

  11. Observing proposals on the Web at the National Optical Astronomy Observatories

    Science.gov (United States)

    Pilachowski, Catherine A.; Barnes, Jeannette; Bell, David J.

    1998-07-01

    Proposals for telescope time at facilities available through the National Optical Astronomy Observatories can now be prepared and submitted via the WWW. Investigators submit proposal information through a series of HTML forms to the NOAO server, where the information is processed by Perl CGI scripts. PostScript figures and ASCII files may be attached by investigators for inclusion in their proposals using their browser's upload feature. Proposal information is saved on the server so that investigators can return in later sessions to continue work on a proposal and so that collaborators can participate in writing the proposal if they have access to the proposal account name and password. The system provides on-line verification of LATEX syntax and a spellchecker, and confirms that all sections of the proposal are filled out. Users can request a LATEX or PostScript copy of their proposal by e-mail, or view the proposal on line. The advantages of the Web-based process for our users are convenience, access to on-line documentation, and the simple interface which avoids direct confrontation with LATEX. From the NOAO point of view, the advantage is the use of standardized formats and syntax, particularly as we begin to receive proposals for the Gemini telescopes and some independent observatories.

  12. Byurakan Astrophysical Observatory as Cultural Centre

    Science.gov (United States)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  13. The Legacy of the Georgetown College Observatory (D.C.)

    Science.gov (United States)

    Caron, Laura; Maglieri, Grace; Seitzer, Patrick

    2018-01-01

    Founded in 1841 as part of a nascent worldwide network of Jesuit-run astronomical observatories, the Georgetown College Observatory of Georgetown University in Washington, D.C. has been home to more than 125 years of astronomical research, from Father Curley’s calculations of the latitude and longitude of D.C. to Father McNally’s award-winning solar eclipse photography. But the impact of the Georgetown astronomy program was not limited to the observatory itself: it reached much further, into the local community and schools, and into the lives of everyone involved. This was never more apparent than under the directorship of Father Francis J Heyden, S.J., who arrived at Georgetown after World War II and stayed for almost three decades. He started a graduate program with over 90 graduates, hosting student researchers from local high schools and colleges, teaching graduate and undergraduate astronomy courses, and speaking at schools in the area, all while simultaneously managing Georgetown’s student radio station and hosting astronomical conferences on campus. Father Heyden’s research focused mainly on solar eclipses for geodetic purposes and planetary spectroscopy. But perhaps even more than research, Father Heyden dedicated his time and energy to the astronomy students, the notable of which include Vera Rubin, John P. Hagen of Project Vanguard, and a generation of Jesuit astronomers including Martin McCarthy, George Coyne, and Richard Boyle. Following the closure of the astronomy department in 1972, Father Heyden returned to Manila, where he had begun his astronomical career, to become Chief of the Solar Division at the Manila Observatory. His dedication to his work and to students serves as an inspiration for academic researchers across fields, and for the Georgetown University Astronomical Society, which, even in the absence of a formal astronomy program at Georgetown, continues his work in education and outreach today. In 1987, almost 150 years after its

  14. National Solar Radiation Database (NSRDB) SolarAnywhere 10 km Model Output for 1989 to 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Solar Radiation Database (NSRDB) was produced by the National Renewable Energy Laboratory under the U.S. Department of Energy's Office of Energy...

  15. Ten years of the Spanish Virtual Observatory

    Science.gov (United States)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  16. Solar Dynamics Observatory Guidance, Navigation, and Control System Overview

    Science.gov (United States)

    Morgenstern, Wendy M.; Bourkland, Kristin L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; O'Donnell, James R., Jr.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was designed and built at the Goddard Space Flight Center, launched from Cape Canaveral on February 11, 2010, and reached its final geosynchronous science orbit on March 16, 2010. The purpose of SDO is to observe the Sun and continuously relay data to a dedicated ground station. SDO remains Sun-pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system (ACS) is a single-fault tolerant design. Its fully redundant attitude sensor complement includes sixteen coarse Sun sensors (CSSs), a digital Sun sensor (DSS), three two-axis inertial reference units (IRUs), and two star trackers (STs). The ACS also makes use of the four guide telescopes included as a part of one of the science instruments. Attitude actuation is performed using four reaction wheels assemblies (RWAs) and eight thrusters, with a single main engine used to provide velocity-change thrust for orbit raising. The attitude control software has five nominal control modes, three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. This paper details the final overall design of the SDO guidance, navigation, and control (GN&C) system and how it was used in practice during SDO launch, commissioning, and nominal operations. This overview will include the ACS control modes, attitude determination and sensor calibration, the high gain antenna (HGA) calibration, and jitter mitigation operation. The Solar Dynamics Observatory mission is part of the NASA Living With a Star program, which seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft carries three Sun

  17. Solar and wind energy utilization at Sarawak Southern national parks

    International Nuclear Information System (INIS)

    Abdul Rahman, N.; Kolot, A.

    2006-01-01

    The intentions of renewable energy utilization in Sarawak national parks were to reduce the environmental impacts to the protected surrounding and to overcome fuel transportation problem, as most national parks in Sarawak are not viable for the state electricity grid connection. The study was conducted at three national parks in southern Sarawak; viz. Samusan, Tanjung Datu and Pulau Talang-Talang Besar National Park. The study focused on the effectiveness of the system implementation, energy load and associated problems. Both Samusan and Tanjung Datu National systems are hybrids, which consist of solar photovoltaic panels, wind turbine and diesel generators, whereas, Pulau Talang-Talang Besar National Park is a stand alone system of solar photovoltaic panels only. In addition, the inefficient energy usage was observed at Samusan National Park. The study have identified that lack of local expertise, spare parts availability, transportation and inefficient energy management as the major problems associated to the solar and wind energy system in all national parks studied. Albeit the problems mentioned, the study discovered that the systems were acceptably reliable and satisfactorily supply fraction of the energy requirements to the national parks communities

  18. An Observatory to Enhance the Preparation of Future California Teachers

    Science.gov (United States)

    Connolly, L.; Lederer, S.

    2004-12-01

    With a major grant from the W. M. Keck Foundation, California State University, San Bernardino is establishing a state-of-the-art teaching astronomical observatory. The Observatory will be fundamental to an innovative undergraduate physics and astronomy curriculum for Physics and Liberal Studies majors and will be integrated into our General Education program. The critical need for a research and educational observatory is linked to changes in California's Science Competencies for teacher certification. Development of the Observatory will also complement a new infusion of NASA funding and equipment support for our growing astronomy education programs and the University's established Strategic Plan for excellence in education and teacher preparation. The Observatory will consist of two domed towers. One tower will house a 20" Ritchey-Chretien telescope equipped with a CCD camera in conjunction with either UBVRI broadband filters or a spectrometer for evening laboratories and student research projects. The second tower will house the university's existing 12" Schmidt-Cassegrain optical telescope coupled with a CCD camera and an array of filters. A small aperture solar telescope will be attached to the 12" for observing solar prominences while a milar filter can be attached to the 12" for sunspot viewing. We have been very fortunate to receive a challenge grant of \\600,000 from the W. M. Keck Foundation to equip the two domed towers; we continue to seek a further \\800,000 to meet our construction needs. Funding also provided by the California State University, San Bernardino.

  19. BVR Standardization of the CCD Photometric System of Chungbuk National University Observatory

    Directory of Open Access Journals (Sweden)

    Jang-Hae Jeong

    2009-06-01

    Full Text Available BVR observations for 52 standard stars were performed using the 1-m reflecter with 2K CCD System of Chungbuk National University Observatory(CBNUO in 2008. We obtained 1,322 CCD images to establish a correlation between our bvr system and the standard Johnson-Cousins BVR system. We derived the tentative equations of transformation between then as follows; V = v-0.0303(B-V+0.0466 B-V = 1.3475(b-v-0.0251 V-R = 1.0641(v-r-0.0125 Using these equations the magnitudes in V, B-V, and V-R for 197 stars were obtained.

  20. The Lowell Observatory Predoctoral Fellowship Program

    Science.gov (United States)

    Prato, Lisa A.; Shkolnik, E.

    2014-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Fellowship Program. Now beginning its seventh year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope has successfully begun science operations and we anticipate the commissioning of several new instruments in 2014, making this a particularly exciting time to do research at Lowell. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2014 are due by May 1, 2014.

  1. Prediction of transits of Solar system objects in Kepler/K2 images: an extension of the Virtual Observatory service SkyBoT

    Science.gov (United States)

    Berthier, J.; Carry, B.; Vachier, F.; Eggl, S.; Santerne, A.

    2016-05-01

    All the fields of the extended space mission Kepler/K2 are located within the ecliptic. Many Solar system objects thus cross the K2 stellar masks on a regular basis. We aim at providing to the entire community a simple tool to search and identify Solar system objects serendipitously observed by Kepler. The sky body tracker (SkyBoT) service hosted at Institut de mécanique céleste et de calcul des éphémérides provides a Virtual Observatory compliant cone search that lists all Solar system objects present within a field of view at a given epoch. To generate such a list in a timely manner, ephemerides are pre-computed, updated weekly, and stored in a relational data base to ensure a fast access. The SkyBoT web service can now be used with Kepler. Solar system objects within a small (few arcminutes) field of view are identified and listed in less than 10 s. Generating object data for the entire K2 field of view (14°) takes about a minute. This extension of the SkyBoT service opens new possibilities with respect to mining K2 data for Solar system science, as well as removing Solar system objects from stellar photometric time series.

  2. DASL-Data and Activities for Solar Learning

    Science.gov (United States)

    Jones, Harrison P.; Henney, Carl; Hill, Frank; Gearen, Michael; Pompca, Stephen; Stagg, Travis; Stefaniak, Linda; Walker, Connie

    2004-01-01

    DASL-Data and Activities for Solar Learning Data and Activities for Solar Learning (DASL) provides a classroom learning environment based on a twenty-five year record of solar magnetograms from the National Solar Observatory (NSO) at Kitt Peak, AZ. The data, together with image processing software for Macs or PCs, can be used to learn basic facts about the Sun and astronomy at the middle school level. At the high school level, students can study properties of the Sun's magnetic cycle with classroom exercises emphasizing data and error analysis and can participate in a new scientific study, Research in Active Solar Longitudes (RASL), in collaboration with classrooms throughout the country and scientists at NSO and NASA. We present a half-day course to train teachers in the scientific content of the project and its classroom use. We will provide a compact disc with the data and software and will demonstrate software installation and use, classroom exercises, and participation in RASL with computer projection.

  3. Solar weather monitoring

    Directory of Open Access Journals (Sweden)

    J.-F. Hochedez

    2005-11-01

    Full Text Available Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs, flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  4. The 2016 Transit of Mercury Observed from Major Solar Telescopes and Satellites

    Science.gov (United States)

    Pasachoff, Jay M.; Schneider, Glenn; Gary, Dale; Chen, Bin; Sterling, Alphonse C.; Reardon, Kevin P.; Dantowitz, Ronald; Kopp, Greg A.

    2016-10-01

    We report observations from the ground and space of the 9 May 2016 transit of Mercury. We build on our explanation of the black-drop effect in transits of Venus based on spacecraft observations of the 1999 transit of Mercury (Schneider, Pasachoff, and Golub, Icarus 168, 249, 2004). In 2016, we used the 1.6-m New Solar Telescope at the Big Bear Solar Observatory with active optics to observe Mercury's transit at high spatial resolution. We again saw a small black-drop effect as 3rd contact neared, confirming the data that led to our earlier explanation as a confluence of the point-spread function and the extreme solar limb darkening (Pasachoff, Schneider, and Golub, in IAU Colloq. 196, 2004). We again used IBIS on the Dunn Solar Telescope of the Sacramento Peak Observatory, as A. Potter continued his observations, previously made at the 2006 transit of Mercury, at both telescopes of the sodium exosphere of Mercury (Potter, Killen, Reardon, and Bida, Icarus 226, 172, 2013). We imaged the transit with IBIS as well as with two RED Epic IMAX-quality cameras alongside it, one with a narrow passband. We show animations of our high-resolution ground-based observations along with observations from XRT on JAXA's Hinode and from NASA's Solar Dynamics Observatory. Further, we report on the limit of the transit change in the Total Solar Irradiance, continuing our interest from the transit of Venus TSI (Schneider, Pasachoff, and Willson, ApJ 641, 565, 2006; Pasachoff, Schneider, and Willson, AAS 2005), using NASA's SORCE/TIM and the Air Force's TCTE/TIM. See http://transitofvenus.info and http://nicmosis.as.arizona.edu.Acknowledgments: We were glad for the collaboration at Big Bear of Claude Plymate and his colleagues of the staff of the Big Bear Solar Observatory. We also appreciate the collaboration on the transit studies of Robert Lucas (Sydney, Australia) and Evan Zucker (San Diego, California). JMP appreciates the sabbatical hospitality of the Division of Geosciences and

  5. SPASE, Metadata, and the Heliophysics Virtual Observatories

    Science.gov (United States)

    Thieman, James; King, Todd; Roberts, Aaron

    2010-01-01

    To provide data search and access capability in the field of Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) a number of Virtual Observatories (VO) have been established both via direct funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Virtual Observatories in the Heliophysics community, 9 of them funded by NASA. The problem is that different metadata and data search approaches are used by these VO's and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's. The SPASE Data Model has been developed through the common efforts of the Heliophysics Data and Model Consortium (HDMC) representatives over a number of years. We currently have released Version 2.1 of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.

  6. The National Solar Radiation Database (NSRDB): A Brief Overview

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-25

    This poster presents a high-level overview of the National Solar Radiation Database (NSRDB). The NSRDB uses the physics-based model (PSM), which was developed using: adapted PATMOS-X model for cloud identification and properties, REST-2 model for clear-sky conditions, and NREL's Fast All-sky Radiation Model for Solar Applications (FARMS) for cloudy-sky Global Horizontal Irradiance (GHI) solar irradiance calculations.

  7. The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory

    Science.gov (United States)

    Mason, Paul; Starin, Scott R.

    2011-01-01

    The Solar Dynamics Observatory (SDO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SDO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. A significant portion of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this level of propellant, a slosh analysis was performed. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned. SDO is a three-axis controlled, single fault tolerant spacecraft. The attitude sensor complement includes sixteen coarse Sun sensors, a digital Sun sensor, three two-axis inertial reference units, two star trackers, and four guide telescopes. Attitude actuation is performed either using four reaction wheels or eight thrusters, depending on the control mode, along with single main engine which nominally provides velocity-change thrust. The attitude control software has five nominal control modes: three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the Attitude Control Electronics (ACE) box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. To achieve and maintain a geosynchronous orbit for a 2974-kilogram spacecraft in a cost effective manner, the SDO team designed a high-efficiency propulsive system. This bi-propellant design includes a 100-pound-force main engine and eight 5-pound-force attitude control thrusters. The main engine provides high specific impulse for

  8. First solar radio spectrometer deployed in Scotland, UK

    Science.gov (United States)

    Monstein, Christian

    2012-10-01

    A new Callisto solar radio spectrometer system has recently been installed and set into operation at Acre Road Observatory, a facility of University of Glasgow, Scotland UK. There has been an Observatory associated with Glasgow University since 1757, and they presently occupy two different sites. The main observatory ('Acre Road') is close to the Garscube Estate on the outskirts of the city of Glasgow. The outstation ('Cochno', housing the big 20 inch Grubb Parsons telescope) is located farther out at a darker site in the Kilpatrick Hills. The Acre Road Observatory comprises teaching and research labs, a workshop, the main dome housing the 16 inch Meade, the solar dome, presently housing the 12 inch Meade, a transit house containing the transit telescope, a 3m HI radio telescope and a 408 MHz pulsar telescope. They also have 10 and 8 inch Meade telescopes and several 5 inch Celestron instruments. There is a small planetarium beneath the solar dome. The new Callisto instrument is mainly foreseen for scientific solar burst observations as well as for student projects and for 'bad-weather' outreach activities.

  9. The Aula Espazio Gela Observatory: A tool for Solar System Education and Outreach

    Science.gov (United States)

    Rojas, J. F.; Perez-Hoyos, S.; Hueso, R.; Mendikoa, I.; Sanchez-Lavega, A.

    2011-10-01

    We present a summary of the activities undertaken over the first year of operations of the "Aula Espazio Gela Observatory", with teaching and astronomy outreach purposes. The observatory belongs to the Universidad del País Vasco and is a fundamental part of the "Master en Ciencia y Tecnología Espacial" (Space Science and Technology master). It is an urban observatory with the dome located on the roof of the School of Engineering at the Universidad del Pais Vasco in Bilbao (Spain).

  10. Conceptual design of the International Axion Observatory (IAXO)

    DEFF Research Database (Denmark)

    Armengaud, E.; Avignone, F. T.; Betz, M.

    2014-01-01

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO wi...

  11. Atmospheric Extinction Coefficients in the Ic Band for Several Major International Observatories: Results from the BiSON Telescopes, 1984-2016

    Science.gov (United States)

    Hale, S. J.; Chaplin, W. J.; Davies, G. R.; Elsworth, Y. P.; Howe, R.; Lund, M. N.; Moxon, E. Z.; Thomas, A.; Pallé, P. L.; Rhodes, E. J., Jr.

    2017-09-01

    Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory, Chile; Observatorio del Teide, Izaña, Tenerife, Canary Islands; the South African Astronomical Observatory, Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the {{{I}}}{{c}} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984-2016.

  12. Rotation of the Solar Equator

    Science.gov (United States)

    Kotov, V. A.

    2017-06-01

    Regular measurements of the general magnetic field of the Sun, performed over about half a century at the Crimean Astrophysical Observatory, the J. Wilcox Solar Observatory, and five other observatories, are considered in detail for the time 1968 - 2016. They include more than twenty-six thousand daily values of the mean line-of-sight field strength of the visible solar hemisphere. On the basis of these values, the equatorial rotation period of the Sun is found to be 26.926(9) d (synodic). It is shown that its half-value coincides within error limits with both the main period of the magnetic four-sector structure, 13.4577(25) d, and the best-commensurate period of the slow motions of the major solar system bodies, 13.479(22) d (sidereal). The probability that the two periods coincide by chance is estimated to be about 10^{-7}. The true origin of this odd resonance is unknown.

  13. Sudbury neutrino observatory proposal

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1987-10-01

    This report is a proposal by the Sudbury Neutrino Observatory (SNO) collaboration to develop a world class laboratory for neutrino astrophysics. This observatory would contain a large volume heavy water detector which would have the potential to measure both the electron-neutrino flux from the sun and the total solar neutrino flux independent of neutrino type. It will therefore be possible to test models of solar energy generation and, independently, to search for neutrino oscillations with a sensitivity many orders of magnitude greater than that of terrestrial experiments. It will also be possible to search for spectral distortion produced by neutrino oscillations in the dense matter of the sun. Finally the proposed detector would be sensitive to neutrinos from a stellar collapse and would detect neutrinos of all types thus providing detailed information on the masses of muon- and tau-neutrinos. The neutrino detector would contain 1000 tons of D20 and would be located more than 2000 m below ground in the Creighton mine near Sudbury. The operation and performance of the proposed detector are described and the laboratory design is presented. Construction schedules and responsibilities and the planned program of technical studies by the SNO collaboration are outlined. Finally, the total capital cost is estimated to be $35M Canadian and the annual operating cost, after construction, would be $1.8 M Canadian, including the insurance costs of the heavy water

  14. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    Science.gov (United States)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  15. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  16. SOLAR ENERGETIC PARTICLE EVENT ASSOCIATED WITH THE 2012 JULY 23 EXTREME SOLAR STORM

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bei; Liu, Ying D.; Hu, Huidong; Wang, Rui; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G., E-mail: liuxying@spaceweather.ac.cn [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2016-08-20

    We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which Solar Terrestrial Relations Observatory (STEREO) and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 au at STEREO A , was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as the Advanced Composition Explorer and SOlar and Heliospheric Observatory , suggesting a wide longitudinal spread of the particles at 1 au. Combining the SEP observations with in situ plasma and magnetic field measurements, we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. Examination of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity, and spectra also gives important clues for particle acceleration, transport, and distribution.

  17. Early German Plans for a Southern Observatory

    Science.gov (United States)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  18. A Green Robotic Observatory for Astronomy Education

    Science.gov (United States)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  19. A continued program of planetary study at the University of Texas McDonald Observatory

    Science.gov (United States)

    Trafton, L.

    1991-01-01

    The program conducts solar system research in support of NASA missions and of general astronomical interest. Investigations of composition, physical characteristics and changes in solar system bodies are conducted primarily using the facilities of McDonald Observatory. Progress, accomplishments, and projected accomplishments are discussed.

  20. Space astrophysical observatory 'Orion-2'

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.; Jarakyan, A.L.; Krmoyan, M.N.; Kashin, A.L.; Loretsyan, G.M.; Ohanesyan, J.B.

    1976-01-01

    Ultraviolet spectrograms of a large number of faint stars up to 13sup(m) were obtained in the wavelengths 2000-5000 A by means of the space observatory 'Orion-2' installed in the spaceship 'Soyuz-13' with two spacemen on board. The paper deals with a description of the operation modes of this observatory, the designs and basic schemes of the scientific and auxiliary device and the method of combining the work of the flight engineer and the automation system of the observatory itself. It also treats of the combination of the particular parts of 'Orion-2' observatory on board the spaceship and the measures taken to provide for its normal functioning in terms of the space flight. A detailed description is given of the optical, electrical and mechanical schemes of the devices - meniscus telescope with an objective prism, stellar diffraction spectrographs, single-coordinate and two-coordinate stellar and solar transducers, control panel, control systems, etc. The paper also provides the functional scheme of astronavigation, six-wheel stabilization, the design of mounting (assembling) the stabilized platform carrying the telescopes and the drives used in it. Problems relating to the observation program in orbit, the ballistic provision of initial data, and control of the operation of the observatory are also dealt with. In addition, the paper carries information of the photomaterials used, the methods of their energy calibration, standardization and the like. Matters of pre-start tests of apparatus, the preparation of the spacemen for conducting astronomical observations with the given devices, etc. are likewise dwelt on. The paper ends with a brief survey of the results obtained and the elaboration of the observed material. (Auth.)

  1. The Final Results from the Sudbury Neutrino Observatory

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

  2. Utilization of Solar Dynamics Observatory space weather digital image data for comparative analysis with application to Baryon Oscillation Spectroscopic Survey

    Science.gov (United States)

    Shekoyan, V.; Dehipawala, S.; Liu, Ernest; Tulsee, Vivek; Armendariz, R.; Tremberger, G.; Holden, T.; Marchese, P.; Cheung, T.

    2012-10-01

    Digital solar image data is available to users with access to standard, mass-market software. Many scientific projects utilize the Flexible Image Transport System (FITS) format, which requires specialized software typically used in astrophysical research. Data in the FITS format includes photometric and spatial calibration information, which may not be useful to researchers working with self-calibrated, comparative approaches. This project examines the advantages of using mass-market software with readily downloadable image data from the Solar Dynamics Observatory for comparative analysis over with the use of specialized software capable of reading data in the FITS format. Comparative analyses of brightness statistics that describe the solar disk in the study of magnetic energy using algorithms included in mass-market software have been shown to give results similar to analyses using FITS data. The entanglement of magnetic energy associated with solar eruptions, as well as the development of such eruptions, has been characterized successfully using mass-market software. The proposed algorithm would help to establish a publicly accessible, computing network that could assist in exploratory studies of all FITS data. The advances in computer, cell phone and tablet technology could incorporate such an approach readily for the enhancement of high school and first-year college space weather education on a global scale. Application to ground based data such as that contained in the Baryon Oscillation Spectroscopic Survey is discussed.

  3. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    Science.gov (United States)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  4. Clear-Sky Probability for the August 21, 2017, Total Solar Eclipse Using the NREL National Solar Radiation Database

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Roberts, Billy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kutchenreiter, Mark C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Steve [Solar Resource Solutions, LLC, Lakewood, CO (United States); Stoffel, Tom [Solar Resource Solutions, LLC, Lakewood, CO (United States)

    2017-07-21

    The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of the path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.

  5. Design for mosquito abundance, diversity, and phenology sampling within the National Ecological Observatory Network

    Science.gov (United States)

    Hoekman, D.; Springer, Yuri P.; Barker, C.M.; Barrera, R.; Blackmore, M.S.; Bradshaw, W.E.; Foley, D. H.; Ginsberg, Howard; Hayden, M. H.; Holzapfel, C. M.; Juliano, S. A.; Kramer, L. D.; LaDeau, S. L.; Livdahl, T. P.; Moore, C. G.; Nasci, R.S.; Reisen, W.K.; Savage, H. M.

    2016-01-01

    The National Ecological Observatory Network (NEON) intends to monitor mosquito populations across its broad geographical range of sites because of their prevalence in food webs, sensitivity to abiotic factors and relevance for human health. We describe the design of mosquito population sampling in the context of NEON’s long term continental scale monitoring program, emphasizing the sampling design schedule, priorities and collection methods. Freely available NEON data and associated field and laboratory samples, will increase our understanding of how mosquito abundance, demography, diversity and phenology are responding to land use and climate change.

  6. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    Science.gov (United States)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  7. Solar India - 82: national solar energy convention

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This document is the proceedings of the Solar India - 82 conference, which was held 17-19 December 1982. The papers are organized into functional groupings which include: (1) solar radiation, (2) flat plate solar collectors and solar water heaters, (3) solar concentrators, (4) solar air heaters and dryers, (5) solar ponds and energy storage, (6) solar cookers, (7) solar stills, (8) selective coatings, (9) photovoltaics, (10) space heating and cooling, (11) bio-energy, and (12) miscellaneous papers. The vast majority of the papers describe work carried out in India, the vast majority of the papers also contain relatively readable abstracts.

  8. The plant phenology monitoring design for the National Ecological Observatory Network

    Science.gov (United States)

    Elmendorf, Sarah C; Jones, Katherine D; Cook, Benjamin I.; Diez, Jeffrey M.; Enquist, Carolyn A.F.; Hufft, Rebecca A.; Jones, Matthew O.; Mazer, Susan J.; Miller-Rushing, Abraham J.; Moore, David J. P.; Schwartz, Mark D.; Weltzin, Jake F.

    2016-01-01

    Phenology is an integrative science that comprises the study of recurring biological activities or events. In an era of rapidly changing climate, the relationship between the timing of those events and environmental cues such as temperature, snowmelt, water availability or day length are of particular interest. This article provides an overview of the plant phenology sampling which will be conducted by the U.S. National Ecological Observatory Network NEON, the resulting data, and the rationale behind the design. Trained technicians will conduct regular in situ observations of plant phenology at all terrestrial NEON sites for the 30-year life of the observatory. Standardized and coordinated data across the network of sites can be used to quantify the direction and magnitude of the relationships between phenology and environmental forcings, as well as the degree to which these relationships vary among sites, among species, among phenophases, and through time. Vegetation at NEON sites will also be monitored with tower-based cameras, satellite remote sensing and annual high-resolution airborne remote sensing. Ground-based measurements can be used to calibrate and improve satellite-derived phenometrics. NEON’s phenology monitoring design is complementary to existing phenology research efforts and citizen science initiatives throughout the world and will produce interoperable data. By collocating plant phenology observations with a suite of additional meteorological, biophysical and ecological measurements (e.g., climate, carbon flux, plant productivity, population dynamics of consumers) at 47 terrestrial sites, the NEON design will enable continentalscale inference about the status, trends, causes and ecological consequences of phenological change.

  9. Ascension and Port Stanley geomagnetic observatories and monitoring the South Atlantic Anomaly

    International Nuclear Information System (INIS)

    Macmillan, S.; Turbitt, C.; Thomson, A.

    2009-01-01

    Our 15-year experience of operating two remote observatories, Ascension and Port Stanley, in the south Atlantic is described. These observatories help monitor the South Atlantic Anomaly (SAA), a region of weak magnetic field which causes considerable problems for spacecraft operators. One-minute and one-second values from these observatories, and other observatories both inside and outside the SAA, are analysed. We investigate whether the SAA, and its growth over time, are having any tangible effect on the observed external field variations. Whilst only able to illustrate the long-term characteristics of the irregular external field related to the solar cycle and not due to any long-term changes in the internal field, we do isolate micro pulsation signals at sites inside the SAA which contain more power than at sites outside.

  10. Probing the Solar Interior

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 3. Probing the Solar Interior Hearing the Heartbeats of the Sun. Ashok Ambastha. General ... Author Affiliations. Ashok Ambastha1. Joint In-Charge Udaipur Solar Observatory Physical Research laboratory P.O. Box No. 198 Udaipur 313 001, India ...

  11. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

    2007-02-01

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

  12. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    Science.gov (United States)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)

    2002-01-01

    Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.

  13. The Greek National Observatory of Forest Fires (NOFFi)

    Science.gov (United States)

    Tompoulidou, Maria; Stefanidou, Alexandra; Grigoriadis, Dionysios; Dragozi, Eleni; Stavrakoudis, Dimitris; Gitas, Ioannis Z.

    2016-08-01

    Efficient forest fire management is a key element for alleviating the catastrophic impacts of wildfires. Overall, the effective response to fire events necessitates adequate planning and preparedness before the start of the fire season, as well as quantifying the environmental impacts in case of wildfires. Moreover, the estimation of fire danger provides crucial information required for the optimal allocation and distribution of the available resources. The Greek National Observatory of Forest Fires (NOFFi)—established by the Greek Forestry Service in collaboration with the Laboratory of Forest Management and Remote Sensing of the Aristotle University of Thessaloniki and the International Balkan Center—aims to develop a series of modern products and services for supporting the efficient forest fire prevention management in Greece and the Balkan region, as well as to stimulate the development of transnational fire prevention and impacts mitigation policies. More specifically, NOFFi provides three main fire-related products and services: a) a remote sensing-based fuel type mapping methodology, b) a semi-automatic burned area mapping service, and c) a dynamically updatable fire danger index providing mid- to long-term predictions. The fuel type mapping methodology was developed and applied across the country, following an object-oriented approach and using Landsat 8 OLI satellite imagery. The results showcase the effectiveness of the generated methodology in obtaining highly accurate fuel type maps on a national level. The burned area mapping methodology was developed as a semi-automatic object-based classification process, carefully crafted to minimize user interaction and, hence, be easily applicable on a near real-time operational level as well as for mapping historical events. NOFFi's products can be visualized through the interactive Fire Forest portal, which allows the involvement and awareness of the relevant stakeholders via the Public Participation GIS

  14. Astronomical virtual observatory and the place and role of Bulgarian one

    Science.gov (United States)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports

  15. Solar Energy and the United Nations

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    Some applications of solar power have an easy technology, and are a matter for the present or immediate future. The methods for the large-scale production of electricity, however, cannot mature before the end of the century, even if determined efforts are begun now. May it be recalled that some 30 years also elapsed between the discovery of nuclear fission and the start of the first economic nuclear power stations. Investments into R and D were thus needed for decades. In nuclear science, it was relatively easy to find the finance because the military was interested. But in view of its tremendous importance for the welfare of mankind it should be at least equally easy to bridge the gap in respect to solar power. May it be underlined that far more money has indeed been found, and is being found, for CERN in Geneva, which is of purely scientific-academic interest and cannot promise much valuable practical 'spin-off'. The United Nations, the countries of the First, Second and Third World, ought to shoulder their responsibility in respect to solar energy. Energetic steps towards the founding of the International Solar Power Institute should be taken right now. (author)

  16. Statistical analysis of geomagnetic field variations during solar eclipses

    Science.gov (United States)

    Kim, Jung-Hee; Chang, Heon-Young

    2018-04-01

    We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.

  17. Deep Space Climate Observatory (DSCOVR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Deep Space Climate ObserVatoRy (DSCOVR) satellite is a NOAA operated asset at the first Lagrange (L1) point. The primary space weather instrument is the PlasMag...

  18. The Virtual Space Physics Observatory: Quick Access to Data and Tools

    Science.gov (United States)

    Cornwell, Carl; Roberts, D. Aaron; McGuire, Robert E.

    2006-01-01

    The Virtual Space Physics Observatory (VSPO; see http://vspo.gsfc.nasa.gov) has grown to provide a way to find and access about 375 data products and services from over 100 spacecraft/observatories in space and solar physics. The datasets are mainly chosen to be the most requested, and include most of the publicly available data products from operating NASA Heliophysics spacecraft as well as from solar observatories measuring across the frequency spectrum. Service links include a "quick orbits" page that uses SSCWeb Web Services to provide a rapid answer to questions such as "What spacecraft were in orbit in July 1992?" and "Where were Geotail, Cluster, and Polar on 2 June 2001?" These queries are linked back to the data search page. The VSPO interface provides many ways of looking for data based on terms used in a registry of resources using the SPASE Data Model that will be the standard for Heliophysics Virtual Observatories. VSPO itself is accessible via an API that allows other applications to use it as a Web Service; this has been implemented in one instance using the ViSBARD visualization program. The VSPO will become part of the Space Physics Data Facility, and will continue to expand its access to data. A challenge for all VOs will be to provide uniform access to data at the variable level, and we will be addressing this question in a number of ways.

  19. The Importance of Marine Observatories and of RAIA in Particular

    Directory of Open Access Journals (Sweden)

    Luísa Bastos

    2016-08-01

    Full Text Available Coastal and Oceanic Observatories are important tools to provide information on ocean state, phenomena and processes. They meet the need for a better understanding of coastal and ocean dynamics, revealing regional characteristics and vulnerabilities. These observatories are extremely useful to guide human actions in response to natural events and potential climate change impacts, anticipating the occurrence of extreme weather and oceanic events and helping to minimize consequent personal and material damages and costs.International organizations and local governments have shown an increasing interest in operational oceanography and coastal, marine and oceanic observations, which resulted in substantial investments in these areas. A variety of physical, chemical and biological data have been collected to better understand the specific characteristics of each ocean area and its importance in the global context. Also the general public’s interest in marine issues and observatories has been raised, mainly in relation to vulnerability, sustainability and climate change issues. Data and products obtained by an observatory are hence useful to a broad range of stakeholders, from national and local authorities to the population in general.An introduction to Ocean Observatories, including their national and regional importance, and a brief analysis of the societal interest in these observatories and related issues are presented. The potential of a Coastal and Ocean Observatory is then demonstrated using the RAIA observatory as example. This modern and comprehensive observatory is dedicated to improve operational oceanography, technology and marine science for the North Western Iberian coast, and to provide services to a large range of stakeholders.

  20. NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN

    International Nuclear Information System (INIS)

    Landi, E.; Young, P. R.

    2009-01-01

    In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s 2 3p 5 4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve the accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.

  1. Proceedings of the 18th national passive solar conference. Volume 18

    International Nuclear Information System (INIS)

    Burley, S.; Arden, M.E.

    1993-01-01

    The American Solar Energy Society conducts the National Solar Energy Conference as an annual forum for exchange of information about advances in solar energy technologies, programs, and concepts. The SOLAR 93 conference presented papers on the following topics: passive design tools; passive performance; building case studies; passive components, construction and glazing; daylighting; passive cooling; sustainability theory; sustainability projects; vernacular architecture; emerging architecture; and education. A total of forty-nine papers were indexed separately for the data base

  2. Frontier of solar observation. Solar activity observed by 'HINODE' mission

    International Nuclear Information System (INIS)

    Watanabe, Tetsuya

    2008-01-01

    After launched in September 2006, solar observation satellite 'HINODE' has been a solar observatory on orbit with the scientific instruments well operated and its continuous observation was conducted steadily on almost all solar atmospheres from photosphere to corona. 'HINODE' was equipped with the solar optical telescope, extreme-ultraviolet imaging spectrometer and x-ray telescope and aimed at clarifying the mystery of solar physics related with coronal heating and magnetic reconnection. Present state of 'HINODE' was described from observations made in initial observation results, which have made several discoveries, such as Alfven waves in the corona, unexpected dynamics in the chromosphere and photosphere, continuous outflowing plasma as a possible source of solar wind, and fine structures of magnetic field in sunspots and solar surface. (T. Tanaka)

  3. Estimating hourly direct and diffuse solar radiation for the compilation of solar radiation distribution maps

    International Nuclear Information System (INIS)

    Ueyama, H.

    2005-01-01

    This paper presents a new method for estimating hourly direct and diffuse solar radiation. The essence of the method is the estimation of two important factors related to solar radiation, atmospheric transmittance and a dimensionless parameter, using empirical and physical equations and data from general meteorological observation stations. An equation for atmospheric transmittance of direct solar radiation and a dimensionless parameter representing diffuse solar radiation are developed. The equation is based on multiple regression analysis and uses three parameters as explanatory variates: calculated hourly extraterrestrial solar radiation on a horizontal plane, observed hourly sunshine duration and hourly precipitation as observed at a local meteorological observatory. The dimensionless parameter for estimating a diffuse solar radiation is then determined by linear least squares using observed hourly solar radiation at a local meteorological observatory. The estimated root mean square error (RMSE) of hourly direct and diffuse solar radiation is about 0.0-0.2 MJ¥m(-2)¥h(-1) in each mean period. The RMSE of the ten-day and monthly means of these quantities is about 0.0-0.2 MJ¥m(-2)¥h(-1), based on comparisons with AMeDAS station data, located at a distance of 6 km

  4. Evaluation of the National Solar Radiation Database (NSRDB): 1998-2015

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for

  5. NASA's search for the solar connection. I. [OSO Skylab, Solar Maximum Mission

    Science.gov (United States)

    Chapman, R. W.

    1979-01-01

    NASA's solar research, which leans toward the study of the sun as a star, is surveyed. The Orbiting Solar Observatory (OSO) program is covered, which yielded data such as spectras of 140-400 A wavelength of the entire solar disk. Attention is also given to the results obtained by Skylab, such as data showing that whenever a large coronal hole exists near the sun's equator, a stream of high-speed solar wind will be observed at the earth. Finally areas of future research, such as a concerted study of flare phenomenon, are discussed.

  6. THERMAL DIAGNOSTICS WITH THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY: A VALIDATED METHOD FOR DIFFERENTIAL EMISSION MEASURE INVERSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Mark C. M.; Boerner, P.; Schrijver, C. J.; Malanushenko, A. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street Bldg. 252, Palo Alto, CA 94304 (United States); Testa, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chen, F.; Peter, H., E-mail: cheung@lmsal.com [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2015-07-10

    We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized Gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a nonlinear force-free field, and (3) thermodynamic models from a fully compressible, 3D MHD simulation of active region (AR) corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and Hinode X-ray Telescope data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.

  7. HES and T'Sou-ke Nation awarded CanSIA solar project of the year

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-01-15

    Home Energy Solutions (HES) has installed the largest solar photovoltaic solar array in British Columbia. In 2009, the Sum-SHA-Thut installation won the award for the Solar Project of the Year by the Canadian Solar Industries Association (CanSIA). It was built for Vancouver Island's T'Sou-ke Nation and its success shows great promise for solar electric generation in Canada. Energy consumption has decreased 30 per cent since the installation in July 2009, making the T'Sou-ke First Nation the most solar-intensive nation per capita in the world. The solar community project demonstrates that as a clean, renewable source of energy, solar electricity is a real solution for climate change, both internationally and at a local level. The timing of the CanSIA award is significant for the Canadian solar industry, falling in the midst of the Copenhagen Climate Change Conference and just shortly after Ontario introduced its micro feed-in-tariff program for renewable energy technologies. The project also demonstrates British Columbia's leadership in the alternative energy sector, and how solar can play a significant role in the future energy supply. 1 fig.

  8. OBSERVATIONS OF FIVE-MINUTE SOLAR OSCILLATIONS IN THE CORONA USING THE EXTREME ULTRAVIOLET SPECTROPHOTOMETER (ESP) ON BOARD THE SOLAR DYNAMICS OBSERVATORY EXTREME ULTRAVIOLET VARIABILITY EXPERIMENT (SDO/EVE)

    International Nuclear Information System (INIS)

    Didkovsky, L.; Judge, D.; Wieman, S.; Kosovichev, A. G.; Woods, T.

    2011-01-01

    We report on the detection of oscillations in the corona in the frequency range corresponding to five-minute acoustic modes of the Sun. The oscillations have been observed using soft X-ray measurements from the Extreme Ultraviolet Spectrophotometer (ESP) of the Extreme Ultraviolet Variability Experiment on board the Solar Dynamics Observatory. The ESP zeroth-order channel observes the Sun as a star without spatial resolution in the wavelength range of 0.1-7.0 nm (the energy range is 0.18-12.4 keV). The amplitude spectrum of the oscillations calculated from six-day time series shows a significant increase in the frequency range of 2-4 mHz. We interpret this increase as a response of the corona to solar acoustic (p) modes and attempt to identify p-mode frequencies among the strongest peaks. Due to strong variability of the amplitudes and frequencies of the five-minute oscillations in the corona, we study how the spectrum from two adjacent six-day time series combined together affects the number of peaks associated with the p-mode frequencies and their amplitudes. This study shows that five-minute oscillations of the Sun can be observed in the corona in variations of the soft X-ray emission. Further investigations of these oscillations may improve our understanding of the interaction of the oscillation modes with the solar atmosphere, and the interior-corona coupling, in general.

  9. Recent results from the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Michelson, P.F.; Hansen, W.W. [Stanford Univ., CA (United States)

    1994-12-01

    The Compton Observatory is an orbiting astronomical observatory for gamma-ray astronomy that covers the energy range from about 30 keV to 30 GeV. The Energetic Gamma Ray Experiment Telescope (EGRET), one of four instruments on-board, is capable of detecting and imaging gamma radiation from cosmic sources in the energy range from approximately 20 MeV to 30 GeV. After about one month of tests and calibration following the April 1991 launch, a 15-month all sky survey was begun. This survey is now complete and the Compton Observatory is well into Phase II of its observing program which includes guest investigator observations. Among the highlights from the all-sky survey discussed in this presentation are the following: detection of five pulsars with emission above 100 MeV; detection of more than 24 active galaxies, the most distant at redshift greater than two; detection of many high latitude, unidentified gamma-ray sources, some showing significant time variability; detection of at least two high energy gamma-ray bursts, with emission in one case extending to at least 1 GeV. EGRET has also detected gamma-ray emission from solar flares up to energies of at least 2 GeV and has observed gamma-rays from the Large Magellanic Cloud.

  10. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    Science.gov (United States)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2010-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among

  11. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Akioka, Maki; Kubo, Yuki; Nagatsuma, Tsutomu; Ohtaka, Kazuhiro

    2009-01-01

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  12. National Solar Radiation Database (NSRDB) Station Data Output for 1991 to 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Solar Radiation Database (NSRDB) was produced by the National Renewable Energy Laboratory under the U.S. Department of Energy's Office of Energy...

  13. The solar energetic particle event on 2013 April 11: an investigation of its solar origin and longitudinal spread

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Raouafi, N. E. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Kwon, R.-Y.; Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 6A2, Fairfax, VA 22030 (United States); Gómez-Herrero, R. [Space Research Group, Physics and Mathematics Department, University of Alcalá, Alcalá de Henares, E-28871 Spain (Spain); Dresing, N. [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel D-24118 (Germany); Riley, P. [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2014-12-10

    We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2013 April 11 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. We use extreme ultraviolet (EUV) and white-light coronagraph observations from the Solar Dynamics Observatory (SDO), the SOlar and Heliospheric Observatory, and the twin Solar TErrestrial RElations Observatory spacecraft (STEREO-A and STEREO-B) to determine the angular extent of the EUV wave and coronal mass ejection (CME) associated with the origin of the SEP event. We compare the estimated release time of SEPs observed at each spacecraft with the arrival time of the structures associated with the CME at the footpoints of the field lines connecting each spacecraft with the Sun. Whereas the arrival of the EUV wave and CME-driven shock at the footpoint of STEREO-B is consistent, within uncertainties, with the release time of the particles observed by this spacecraft, the EUV wave never reached the footpoint of the field lines connecting near-Earth observers with the Sun, even though an intense SEP event was observed there. We show that the west flank of the CME-driven shock propagating at high altitudes above the solar surface was most likely the source of the particles observed near Earth, but it did not leave any EUV trace on the solar disk. We conclude that the angular extent of the EUV wave on the solar surface did not agree with the longitudinal extent of the SEP event in the heliosphere. Hence EUV waves cannot be used reliably as a proxy for the solar phenomenon that accelerates and injects energetic particles over broad ranges of longitudes.

  14. Metrology of the Solar Spectral Irradiance at the Top Of Atmosphere in the Near Infrared using Ground Based Instruments. Final results of the PYR-ILIOS campaign (Mauna Loa Observatory, June-July 2016).

    Science.gov (United States)

    Cessateur, G.; Bolsée, D.; Pereira, N.; Sperfeld, P.; Pape, S.

    2017-12-01

    The availability of reference spectra for the Solar Spectral Irradiance (SSI) is important for the solar physics, the studies of planetary atmospheres and climatology. The near infrared (NIR) part of these spectra is of great interest for its main role for example, in the Earth's radiative budget. Until recently, some large and unsolved discrepancies (up to 10 %) were observed in the 1.6 μm region between space instruments, models and ground-based measurements. We designed a ground-based instrumentation for SSI measurements at the Top Of Atmosphere (TOA) through atmospheric NIR windows using the Bouguer-Langley technique. The main instrument is a double NIR spectroradiometer designed by Bentham (UK), radiometrically characterized at the Royal Belgian Institute for Space Aeronomy. It was absolute calibrated against a high-temperature blackbody as primary standard for spectral irradiance at the Physikalisch-Technische Bundesanstalt (Germany). The PYR-ILIOS campaign was carried out in June to July 2016 at the Mauna Loa Observatory (Hawaii, USA, 3396 m a.s.l.) follows the four-month IRESPERAD campaign which was carried out in the summer 2011 at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). We present here the results of the 3'week PYR-ILIOS campaign and compare them with the ATLAS 3 spectrum as well as from recently reprocessed NIR solar spectra obtained with SOLAR/SOLSPEC on ISS and SCIAMACHY on ENVISAT. The uncertainty budget of the PYR-ILIOS results will be discussed.

  15. Report on activity and measurements of surveillance carried out by the national observatory

    International Nuclear Information System (INIS)

    Ariete, M.G.; Belvisi, M.; Calicchia, R.; Fiorenza, R.; Onori, L.; Tamarchio, L.

    1989-01-01

    As a consequence of the Chernobyl accident a general radiometric survey of Italian territory was established. To this scope a very extensive program of environmental sampling, measurements, data collection, processing and management of this was carried out. All laboratories of nuclear centers, universities and local public health units, involved in this survey, had a unique aim: the radiological analysis to determine environmental contamination levels or to estimate preliminary population doses, finalized on short term, urgent protective mesures, and on long term, in addition to protective measures and for environmental studies. ENEA DISP, which is equipped by hardware and software instrumentation of its Emergency Center, was responsable for technical preparedness of the program. A National Observatory has been created for determing Cs134, Cs137 and Sr90 level on environmental and food samples on defined locality. The first part of this report presents the type, the frequency and localities where sample was collected. The second part presents the trend of the radioactive contamination on all foodstaffs, as data collected by each laboratory and in term of National mean concentration level

  16. VESPA: A community-driven Virtual Observatory in Planetary Science

    Czech Academy of Sciences Publication Activity Database

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Rossi, A. P.; Capria, M.T.; Schmitt, B.; Génot, V.; André, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Määttänen, A.; Thuillot, W.; Carry, B.; Achilleos, N.; Marmo, C.; Santolík, Ondřej; Benson, K.; Fernique, P.; Beigbeder, L.; Millour, E.; Rousseau, B.; Andrieu, F.; Chauvin, C.; Minin, M.; Ivanoski, S.; Longobardo, A.; Bollard, P.; Albert, D.; Gangloff, M.; Jourdane, N.; Bouchemit, M.; Glorian, J. M.; Trompet, L.; Al-Ubaidi, T.; Juaristi, J.; Desmars, J.; Guio, P.; Delaa, O.; Lagain, A.; Souček, Jan; Píša, David

    2018-01-01

    Roč. 150, SI (2018), s. 65-85 ISSN 0032-0633 EU Projects: European Commission(XE) 654208 - EPN2020-RI Institutional support: RVO:68378289 Keywords : Virtual Observatory * Solar System * GIS Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 1.892, year: 2016 https://www.sciencedirect.com/science/article/pii/S0032063316304937#gs1

  17. The Heliophysics Data Environment, Virtual Observatories, NSSDC, and SPASE

    Science.gov (United States)

    Thieman, James; Grayzeck, Edwin; Roberts, Aaron; King, Todd

    2010-01-01

    Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) has an interesting data environment in that the data are often to be found in relatively small data sets widely scattered in archives around the world. Within the last decade there have been more concentrated efforts to organize the data access methods and create a Heliophysics Data and Model Consortium (HDMC). To provide data search and access capability a number of Virtual Observatories (VO's) have been established both via funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Heliophysics Virtual Observatories, 9 of them funded by NASA. Other parts of this data environment include Resident Archives, and the final, or "deep" archive at the National Space Science Data Center (NSSDC). The problem is that different data search and access approaches are used by all of these elements of the HDMC and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's and other data environment elements. The SPASE Data Model has been developed through the common efforts of the HDMC representatives over a number of years. We currently have released Version 2.1. of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.

  18. Solar cells. Proposal for a national strategy for research, development and demonstration; Solceller. Oplaeg til en national strategi for forskning, udvikling og demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The Danish Energy Authority, Elkraft System and Eltra have initiated collaboration on the development of national R and D strategies for a number of energy technologies including solar cells. The aim is to ensure a coordinated national effort as regards research, development and demonstration within societal and energy political frames, and, furthermore, to ensure coordination with similar international initiatives, especially within the European Union. The overall aim is for the Danish solar cell strategy to contribute to support Danish national energy policy and to ensure and improve Danish competence, which can manifest itself internationally. The efforts within solar cell technology must aim at increasing solar cell systems' efficiency and service life, and furthermore, aim at reducing production costs. Hereby the efforts can contribute to an improvement of solar cell systems' competitive power in relation to other power production technologies with a view to make installation of solar cell systems attractive, both in Denmark and internationally. (BA)

  19. Recent Progress of Solar Weather Forecasting at Naoc

    Science.gov (United States)

    He, Han; Wang, Huaning; Du, Zhanle; Zhang, Liyun; Huang, Xin; Yan, Yan; Fan, Yuliang; Zhu, Xiaoshuai; Guo, Xiaobo; Dai, Xinghua

    The history of solar weather forecasting services at National Astronomical Observatories, Chinese Academy of Sciences (NAOC) can be traced back to 1960s. Nowadays, NAOC is the headquarters of the Regional Warning Center of China (RWC-China), which is one of the members of the International Space Environment Service (ISES). NAOC is responsible for exchanging data, information and space weather forecasts of RWC-China with other RWCs. The solar weather forecasting services at NAOC cover short-term prediction (within two or three days), medium-term prediction (within several weeks), and long-term prediction (in time scale of solar cycle) of solar activities. Most efforts of the short-term prediction research are concentrated on the solar eruptive phenomena, such as flares, coronal mass ejections (CMEs) and solar proton events, which are the key driving sources of strong space weather disturbances. Based on the high quality observation data of the latest space-based and ground-based solar telescopes and with the help of artificial intelligence techniques, new numerical models with quantitative analyses and physical consideration are being developed for the predictions of solar eruptive events. The 3-D computer simulation technology is being introduced for the operational solar weather service platform to visualize the monitoring of solar activities, the running of the prediction models, as well as the presenting of the forecasting results. A new generation operational solar weather monitoring and forecasting system is expected to be constructed in the near future at NAOC.

  20. 3D Visualization of Solar Data: Preparing for Solar Orbiter and Parker Solar Probe

    Science.gov (United States)

    Mueller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; Ireland, J.; Fleck, B.

    2017-12-01

    Solar Orbiter and Parker Solar Probe will focus on exploring the linkage between the Sun and the heliosphere. These new missions will collect unique data that will allow us to study, e.g., the coupling between macroscopic physical processes to those on kinetic scales, the generation of solar energetic particles and their propagation into the heliosphere and the origin and acceleration of solar wind plasma. Combined with the several petabytes of data from NASA's Solar Dynamics Observatory, the scientific community will soon have access to multi­dimensional remote-sensing and complex in-situ observations from different vantage points, complemented by petabytes of simulation data. Answering overarching science questions like "How do solar transients drive heliospheric variability and space weather?" will only be possible if the community has the necessary tools at hand. In this contribution, we will present recent progress in visualizing the Sun and its magnetic field in 3D using the open-source JHelioviewer framework, which is part of the ESA/NASA Helioviewer Project.

  1. Construction Status and Early Science with the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark; Martinez Pillet, Valentin; Craig, Simon; Woeger, Friedrich; Tritschler, Alexandra; Berukoff, Steven J.; Casini, Roberto; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Lin, Haosheng; Mathioudakis, Mihalis; Reardon, Kevin P.; Rosner, Robert; Schmidt, Wolfgang

    2016-05-01

    The 4-m Daniel K. Inouye Solar Telescope (DKIST) is in its seventh year of overall development and its fourth year of site construction on the summit of Haleakala, Maui. The Site Facilities (Utility Building and Support & Operations Building) are in place with ongoing construction of the Telescope Mount Assembly within. Off-site the fabrication of the component systems is completing with early integration testing and verification starting.Once complete this facility will provide the highest sensitivity and resolution for study of solar magnetism and the drivers of key processes impacting Earth (solar wind, flares, coronal mass ejections, and variability in solar output). The DKIST will be equipped initially with a battery of first light instruments which cover a spectral range from the UV (380 nm) to the near IR (5000 nm), and capable of providing both imaging and spectro-polarimetric measurements throughout the solar atmosphere (photosphere, chromosphere, and corona); these instruments are being developed by the National Solar Observatory (Visible Broadband Imager), High Altitude Observatory (Visible Spectro-Polarimeter), Kiepenheuer Institute (Visible Tunable Filter) and the University of Hawaii (Cryogenic Near-Infrared Spectro-Polarimeter and the Diffraction-Limited Near-Infrared Spectro-Polarimeter). Further, a United Kingdom consortium led by Queen's University Belfast is driving the development of high speed cameras essential for capturing the highly dynamic processes measured by these instruments. Finally, a state-of-the-art adaptive optics system will support diffraction limited imaging capable of resolving features approximately 20 km in scale on the Sun.We present the overall status of the construction phase along with the current challenges as well as a review of the planned science testing and the transition into early science operations.

  2. Neutrino observations from the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O' Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  3. Neutrino Observations from the Sudbury Neutrino Observatory

    Science.gov (United States)

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. B?hler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  4. Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry

    Science.gov (United States)

    Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell

    2015-09-01

    We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.

  5. Contributions of the "Great" X-Ray Observatories (XMM-Newton and Chandra) to Astronomy and Astrophysics

    Science.gov (United States)

    Weisskopf, Martin

    2011-01-01

    NASA s Chandra X-ray Observatory and ESA s XMM-Newton made their first observations over a decade ago. The unprecedented and complementary capabilities of these observatories to detect, image, and measure the energy of cosmic X-rays, achieved less than 50 years after the first detection of an extra-solar X-ray source, represent an increase in sensitivity comparable in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. In this presentation we highlight some of the many discoveries made using these powerful X-ray observatories that have transformed 21st century astronomy. We briefly discuss future prospects for this truly exciting field.

  6. Solar Wind Earth Exchange Project (SWEEP)

    Science.gov (United States)

    2016-10-28

    highly charged ions of the solar wind. The main challenge in predicting the resultant photon flux in the X-ray energy bands is due to the...Newton, an X-ray astronomical observatory. We use OMNI solar wind conditions, heavy ion composition data from ACE, the Hodges neutral hydrogen model...of SWEEP was to compare theoretical models of X-ray emission in the terrestrial magnetosphere caused by the Solar Wind Charge Exchange

  7. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  8. Integrated Access to Solar Observations With EGSO

    Science.gov (United States)

    Csillaghy, A.

    2003-12-01

    {\\b Co-Authors}: J.Aboudarham (2), E.Antonucci (3), R.D.Bentely (4), L.Ciminiera (5), A.Finkelstein (4), J.B.Gurman(6), F.Hill (7), D.Pike (8), I.Scholl (9), V.Zharkova and the EGSO development team {\\b Institutions}: (2) Observatoire de Paris-Meudon (France); (3) INAF - Istituto Nazionale di Astrofisica (Italy); (4) University College London (U.K.); (5) Politecnico di Torino (Italy), (6) NASA Goddard Space Flight Center (USA); (7) National Solar Observatory (USA); (8) Rutherford Appleton Lab. (U.K.); (9) Institut d'Astrophysique Spatial, Universite de Paris-Sud (France) ; (10) University of Bradford (U.K) {\\b Abstract}: The European Grid of Solar Observations is the European contribution to the deployment of a virtual solar observatory. The project is funded under the Information Society Technologies (IST) thematic programme of the European Commission's Fifth Framework. EGSO started in March 2002 and will last until March 2005. The project is categorized as a computer science effort. Evidently, a fair amount of issues it addresses are general to grid projects. Nevertheless, EGSO is also of benefit to the application domains, including solar physics, space weather, climate physics and astrophysics. With EGSO, researchers as well as the general public can access and combine solar data from distributed archives in an integrated virtual solar resource. Users express queries based on various search parameters. The search possibilities of EGSO extend the search possibilities of traditional data access systems. For instance, users can formulate a query to search for simultaneous observations of a specific solar event in a given number of wavelengths. In other words, users can search for observations on the basis of events and phenomena, rather than just time and location. The software architecture consists of three collaborating components: a consumer, a broker and a provider. The first component, the consumer, organizes the end user interaction and controls requests

  9. A pilot Virtual Observatory (pVO) for integrated catchment science - Demonstration of national scale modelling of hydrology and biogeochemistry (Invited)

    Science.gov (United States)

    Freer, J. E.; Bloomfield, J. P.; Johnes, P. J.; MacLeod, C.; Reaney, S.

    2010-12-01

    There are many challenges in developing effective and integrated catchment management solutions for hydrology and water quality issues. Such solutions should ideally build on current scientific evidence to inform policy makers and regulators and additionally allow stakeholders to take ownership of local and/or national issues, in effect bringing together ‘communities of practice’. A strategy being piloted in the UK as the Pilot Virtual Observatory (pVO), funded by NERC, is to demonstrate the use of cyber-infrastructure and cloud computing resources to investigate better methods of linking data and models and to demonstrate scenario analysis for research, policy and operational needs. The research will provide new ways the scientific and stakeholder communities come together to exploit current environmental information, knowledge and experience in an open framework. This poster presents the project scope and methodologies for the pVO work dealing with national modelling of hydrology and macro-nutrient biogeochemistry. We evaluate the strategies needed to robustly benchmark our current predictive capability of these resources through ensemble modelling. We explore the use of catchment similarity concepts to understand if national monitoring programs can inform us about the behaviour of catchments. We discuss the challenges to applying these strategies in an open access and integrated framework and finally we consider the future for such virtual observatory platforms for improving the way we iteratively improve our understanding of catchment science.

  10. Geomagnetic secular variation at the African observatories

    International Nuclear Information System (INIS)

    Haile, T.

    2002-10-01

    Geomagnetic data from ten observatories in the African continent with time series data length of more than three decades have been analysed. All-day annual mean values of the D, H and Z components were used to study secular variations in the African region. The residuals in D, H and Z components obtained after removing polynomial fits have been examined in relation to the sunspot cycle. The occurrence of the 1969-1970 worldwide geomagnetic impulse in each observatory is studied. It is found that the secular variation in the field can be represented for most of the observatories with polynomials of second or third degree. Departures from these trends are observed over the Southern African region where strong local magnetic anomalies have been observed. The residuals in the geomagnetic field components have been shown to exhibit parallelism with the periods corresponding to double solar cycle for some of the stations. A clear latitudinal distribution in the geomagnetic component that exhibits the 1969-70 jerk is shown. The jerk appears in the plots of the first differences in H for the southern most observatories of Hermanus, Hartebeesthoek, and Tsuemb, while the Z plots show the jerk for near equatorial and equatorial stations of Antananarivo, Luanda Belas, Bangui and Addis Ababa. There is some indication for this jerk in the first difference plots of D for the northern stations of M'Bour and Tamanrasset. The plots of D rather strongly suggest the presence of a jerk around 1980 at most of the stations. (author)

  11. Multinational History of Strasbourg Astronomical Observatory

    CERN Document Server

    Heck, André

    2005-01-01

    Strasbourg Astronomical Observatory is quite an interesting place for historians: several changes of nationality between France and Germany, high-profile scientists having been based there, big projects born or installed in its walls, and so on. Most of the documents circulating on the history of the Observatory and on related matters have however been so far poorly referenced, if at all. This made necessary the compilation of a volume such as this one, offering fully-documented historical facts and references on the first decades of the Observatory history, authored by both French and German specialists. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in the details of European history. After an introductory chapter by the Editor, contributions by Wolfschmidt and by Duerbeck respectively deal extensively with the German periods and review people and instrumentation, while another paper by Duerbeck is more...

  12. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  13. Potential Visual Impacts of Utility-Scale Solar Energy Development within Solar Energy Zones on Selected Viewpoints in Death Valley and Joshua Tree National Parks, and El Camino Real De Tierra Adentro National Historic Trail

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Robert G. [Argonne National Lab. (ANL), Argonne, IL (United States); Abplanalp, Jennifer M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cantwell, Brian L. [Argonne National Lab. (ANL), Argonne, IL (United States); Beckman, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-06-01

    In connection with the Bureau of Land Management’s (BLM’s) Solar Programmatic Environmental Impact Statement (Solar PEIS), Argonne National Laboratory (Argonne) has conducted an extended visual impact analysis for selected key observation points (KOPs) within three National Park Service (NPS) units located within the 25-mi (40-km) viewshed of four solar energy zones (SEZs) identified in the Solar PEIS. The analysis includes only those NPS units that the Solar PEIS identified as potentially subject to moderate or strong visual contrasts associated with solar development within the SEZs. The NPS units included in the analysis are Death Valley and Joshua Tree National Parks and El Camino Real De Tierra Adentro National Historic Trail. The analysis showed that certain KOPs in each of these NPS units could potentially be subject to major visual contrast and impacts from solar development within the SEZs, but many of the KOPs would likely be subject to moderate, minor, or negligible contrasts and impacts, generally because they were relatively distant from the relevant SEZ, had views of the SEZ partially blocked by intervening terrain, and/or had very low vertical angles of view toward the SEZ. For all three NPS units, power tower facilities were found to be major contributors to potential visual contrasts, primarily because of the long-distance visibility of intensely bright reflection of light from the receivers on the central towers, but also because of the height and strong vertical line of the tower structures and the potential for night-sky impacts from FAA-mandated hazard navigation lighting.

  14. National Solar Radiation Data Base, Vol. 2 - Final Technical Report (1961-1990)

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, E. L.; Marion, W.; Myers, D.; Rymes, M.; Wilcox, S.

    1995-01-01

    This technical report explains the procedures used during the 4-year production of the National Solar Radiation Data Base (NSRDB) (1961-1990). It is the second volume in a two-volume report on the NSRDB. The first volume, User's Guide-National Solar Radiation Data Base, provides the information needed to use the data base products. Volume 2 concentrates on results from the R&D required to producea solar radiation data base that would represent a significant update of a previous data base (SOLMET). More than 90% of the data in the NSRDB were estimated using a model--the Meteorological/Statistical (METSTAT) model. Much of Volume 2 concerns the METSTAT model and the sources of its input data. In addition, it contains results of comparisons of the NSRBD with the previous SOLMET data base.Results of the model evaluations and data base comparisons favor the use of NSRDB data over SOLMET data to select optimum sites and estimate performance for solar energy systems. The report noted that to improve data on solar radiation, 'measured' data need to become the mainstav of future data bases.

  15. Automatic Detect and Trace of Solar Filaments

    Science.gov (United States)

    Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang

    We developed a series of methods to automatically detect and trace solar filaments in solar Hα images. The programs are able to not only recognize filaments and determine their properties, such as the position, the area and other relevant parameters, but also to trace the daily evolution of the filaments. For solar full disk Hα images, the method consists of three parts: first, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect the filaments; third, filament properties are recognized through the morphological operators. For each Hα filament and its barb features, we introduced the unweighted undirected graph concept and adopted Dijkstra shortest-path algorithm to recognize the filament spine; then, using polarity inversion line shift method for measuring the polarities in both sides of the filament to determine the filament axis chirality; finally, employing connected components labeling method to identify the barbs and calculating the angle between each barb and spine to indicate the barb chirality. Our algorithms are applied to the observations from varied observatories, including the Optical & Near Infrared Solar Eruption Tracer (ONSET) in Nanjing University, Mauna Loa Solar Observatory (MLSO) and Big Bear Solar Observatory (BBSO). The programs are demonstrated to be effective and efficient. We used our method to automatically process and analyze 3470 images obtained by MLSO from January 1998 to December 2009, and a butterfly diagram of filaments is obtained. It shows that the latitudinal migration of solar filaments has three trends in the Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum; after the solar maximum, it became relatively slow and after 2006, the migration became divergent, signifying the solar minimum. About 60% filaments with the latitudes larger than 50 degree migrate towards the Polar Regions with relatively high velocities, and the latitudinal migrating

  16. Invited Review Article: The Chandra X-ray Observatory

    Science.gov (United States)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  17. Status And Performance Of The Virgin Islands Robotic Telescope at Etelman Observatory

    Science.gov (United States)

    Morris, David C.; Gendre, Bruce; Neff, James E.; Giblin, Timothy W.

    2016-01-01

    The Virgin Islands Robotic Telescope is an 0.5m robotic telescope located at the easternmost and southernmost optical observatory in the United States at a latitude of 18.5N and longitude of 65W. The observatory is located on the island of St Thomas in the USVI. Astronomers from the College of Charleston, the US Air Force Academy, and the University of the Virgin Islands collaborate to maintain and operate the facility. The primary scientific focus of the facility is the optical follow-up of high-energy transients though a variety of other science interests are also being pursued including follow-up of candidate extra-solar planets, rotation studies of cool stars, and near-Earth asteroid and space situational awareness studies. The facility also supports a wide-reaching education and outreach program dedicated to raising the level of STEAM engagement and enrichment in the USVI. We detail the characteristics, capabilities, and early results from the observatory. The observatory is growing its staff and science activities and potential topics for collaboration will be discussed.

  18. SunPy—Python for solar physics

    International Nuclear Information System (INIS)

    Community, The SunPy; Mumford, Stuart J; Freij, Nabil; Bennett, Samuel M; Christe, Steven; Ireland, Jack; Shih, Albert Y; Inglis, Andrew R; Pérez-Suárez, David; Liedtke, Simon; Hewett, Russell J; Mayer, Florian; Hughitt, Keith; Meszaros, Tomas; Malocha, Michael; Evans, John; Agrawal, Ankit; Leonard, Andrew J; Robitaille, Thomas P; Mampaey, Benjamin

    2015-01-01

    This paper presents SunPy (version 0.5), a community-developed Python package for solar physics. Python, a free, cross-platform, general-purpose, high-level programming language, has seen widespread adoption among the scientific community, resulting in the availability of a large number of software packages, from numerical computation (NumPy, SciPy) and machine learning (scikit-learn) to visualization and plotting (matplotlib). SunPy is a data-analysis environment specializing in providing the software necessary to analyse solar and heliospheric data in Python. SunPy is open-source software (BSD licence) and has an open and transparent development workflow that anyone can contribute to. SunPy provides access to solar data through integration with the Virtual Solar Observatory (VSO), the Heliophysics Event Knowledgebase (HEK), and the HELiophysics Integrated Observatory (HELIO) webservices. It currently supports image data from major solar missions (e.g., SDO, SOHO, STEREO, and IRIS), time-series data from missions such as GOES, SDO/EVE, and PROBA2/LYRA, and radio spectra from e-Callisto and STEREO/SWAVES. We describe SunPy's functionality, provide examples of solar data analysis in SunPy, and show how Python-based solar data-analysis can leverage the many existing tools already available in Python. We discuss the future goals of the project and encourage interested users to become involved in the planning and development of SunPy. (paper)

  19. Toward a global multi-scale heliophysics observatory

    Science.gov (United States)

    Semeter, J. L.

    2017-12-01

    We live within the only known stellar-planetary system that supports life. What we learn about this system is not only relevant to human society and its expanding reach beyond Earth's surface, but also to our understanding of the origins and evolution of life in the universe. Heliophysics is focused on solar-terrestrial interactions mediated by the magnetic and plasma environment surrounding the planet. A defining feature of energy flow through this environment is interaction across physical scales. A solar disturbance aimed at Earth can excite geospace variability on scales ranging from thousands of kilometers (e.g., global convection, region 1 and 2 currents, electrojet intensifications) to 10's of meters (e.g., equatorial spread-F, dispersive Alfven waves, plasma instabilities). Most "geospace observatory" concepts are focused on a single modality (e.g., HF/UHF radar, magnetometer, optical) providing a limited parameter set over a particular spatiotemporal resolution. Data assimilation methods have been developed to couple heterogeneous and distributed observations, but resolution has typically been prescribed a-priori and according to physical assumptions. This paper develops a conceptual framework for the next generation multi-scale heliophysics observatory, capable of revealing and quantifying the complete spectrum of cross-scale interactions occurring globally within the geospace system. The envisioned concept leverages existing assets, enlists citizen scientists, and exploits low-cost access to the geospace environment. Examples are presented where distributed multi-scale observations have resulted in substantial new insight into the inner workings of our stellar-planetary system.

  20. Latitudinal variation of the solar photospheric intensity

    OpenAIRE

    Rast, Mark P.; Ortiz, Ada; Meisner, Randle W.

    2007-01-01

    We have examined images from the Precision Solar Photometric Telescope (PSPT) at the Mauna Loa Solar Observatory (MLSO) in search of latitudinal variation in the solar photospheric intensity. Along with the expected brightening of the solar activity belts, we have found a weak enhancement of the mean continuum intensity at polar latitudes (continuum intensity enhancement $\\sim0.1 - 0.2%$ corresponding to a brightness temperature enhancement of $\\sim2.5{\\rm K}$). This appears to be thermal in ...

  1. The Observatory Health Report

    Directory of Open Access Journals (Sweden)

    Laura Murianni

    2008-06-01

    Full Text Available

    Background: The number of indicators aiming to provide a clear picture of healthcare needs and the quality and efficiency of healthcare systems and services has proliferated in recent years. The activity of the National Observatory on Health Status in the Italian Regions is multidisciplinary, involving around 280 public health care experts, clinicians, demographers, epidemiologists, mathematicians, statisticians and economists who with their different competencies, and scientific interests aim to improve the collective health of individuals and their conditions through the use of “core indicators”. The main outcome of the National Observatory on Health Status in the Italian Regions is the “Osservasalute Report – a report on health status and the quality of healthcare assistance in the Italian Regions”.

    Methods: The Report adopts a comparative analysis, methodology and internationally validated indicators.

    Results: The results of Observatory Report show it is necessary:

    • to improve the monitoring of primary health care services (where the chronic disease could be cared through implementation of clinical path;

     • to improve in certain areas of hospital care such as caesarean deliveries, as well as the average length of stay in the pre-intervention phase, etc.;

    • to try to be more focused on the patients/citizens in our health care services; • to practice more geographical interventions to reduce the North-South divide as well as reduce gender inequity.

    Conclusions: The health status of Italian people is good with positive results and outcomes, but in the meantime some further efforts should be done especially in the South that still has to improve the quality and the organization of health care services. There are huge differences in accuracy and therefore usefulness of the reported data, both between diseases and between

  2. The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)

    DEFF Research Database (Denmark)

    Vogel, J.K.; Armengaud, E.; Avignone, F.T.

    2015-01-01

    The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 – 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-ph...... low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12hours each day. This contribution is a summary of our papers [1–3] and we refer to these for further details....

  3. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi

    2010-03-01

    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance (http://www.ivoa.net/ to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  4. Best Practices of Uncertainty Estimation for the National Solar Radiation Database (NSRDB 1998-2015): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    It is essential to apply a traceable and standard approach to determine the uncertainty of solar resource data. Solar resource data are used for all phases of solar energy conversion projects, from the conceptual phase to routine solar power plant operation, and to determine performance guarantees of solar energy conversion systems. These guarantees are based on the available solar resource derived from a measurement station or modeled data set such as the National Solar Radiation Database (NSRDB). Therefore, quantifying the uncertainty of these data sets provides confidence to financiers, developers, and site operators of solar energy conversion systems and ultimately reduces deployment costs. In this study, we implemented the Guide to the Expression of Uncertainty in Measurement (GUM) 1 to quantify the overall uncertainty of the NSRDB data. First, we start with quantifying measurement uncertainty, then we determine each uncertainty statistic of the NSRDB data, and we combine them using the root-sum-of-the-squares method. The statistics were derived by comparing the NSRDB data to the seven measurement stations from the National Oceanic and Atmospheric Administration's Surface Radiation Budget Network, National Renewable Energy Laboratory's Solar Radiation Research Laboratory, and the Atmospheric Radiation Measurement program's Southern Great Plains Central Facility, in Billings, Oklahoma. The evaluation was conducted for hourly values, daily totals, monthly mean daily totals, and annual mean monthly mean daily totals. Varying time averages assist to capture the temporal uncertainty of the specific modeled solar resource data required for each phase of a solar energy project; some phases require higher temporal resolution than others. Overall, by including the uncertainty of measurements of solar radiation made at ground stations, bias, and root mean square error, the NSRDB data demonstrated expanded uncertainty of 17 percent - 29 percent on hourly

  5. Private Observatories in South Africa

    Science.gov (United States)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  6. Observatory Sponsoring Astronomical Image Contest

    Science.gov (United States)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  7. A New Revision of the Solar Irradiance Climate Data Record Incorporates Recent Research into Proxies of Sunspot Darkening and the Sunspot Number Record

    Science.gov (United States)

    Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.

    2017-12-01

    An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using

  8. Retrospective Conversion of Solar Data Printed in "Synoptic Maps of the Solar Chromosphere": A Scientific and Librarianship Project

    Science.gov (United States)

    Laurenceau, A.; Aboudarham, J.; Renié, C.

    2015-04-01

    Between 1928 and 2003, the Observatoire de Paris published solar activity maps and their corresponding data tables, first in the Annals of the Meudon Observatory, then in the Synoptic Maps of the Solar Chromosphere. These maps represent the main solar structures in a single view and spread out on a complete Carrington rotation as well as tables of associated data, containing various information on these structures such as positions, length, morphological characteristics, and behavior. Since 2003, these maps and data tables have not been released in print, as they are only published on the online BASS2000 database, the solar database maintained by LESIA (Laboratory for space studies and astrophysical instruments). In order to make the first 80 years of observations which were available only in paper accessible and usable, the LESIA and the Library of the Observatory have started a project to digitize the publications, enter the data with the assistance of a specialized company, and then migrate the files obtained in BASS2000 and in the Heliophysics Features Catalog created in the framework of the European project HELIO.

  9. Evaluation of the National Solar Radiation Database (NSRDB) Using Ground-Based Measurements

    Science.gov (United States)

    Xie, Y.; Sengupta, M.; Habte, A.; Lopez, A.

    2017-12-01

    Solar resource is essential for a wide spectrum of applications including renewable energy, climate studies, and solar forecasting. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. While measurements provide data for the development and validation of solar resource models and other applications modeled data expands the ability to address the needs for increased accuracy and spatial and temporal resolution. The National Renewable Energy Laboratory (NREL) has developed and regular updates modeled solar resource through the National Solar Radiation Database (NSRDB). The recent NSRDB dataset was developed using the physics-based Physical Solar Model (PSM) and provides gridded solar irradiance (global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance) at a 4-km by 4-km spatial and half-hourly temporal resolution covering 18 years from 1998-2015. A comprehensive validation of the performance of the NSRDB (1998-2015) was conducted to quantify the accuracy of the spatial and temporal variability of the solar radiation data. Further, the study assessed the ability of NSRDB (1998-2015) to accurately capture inter-annual variability, which is essential information for solar energy conversion projects and grid integration studies. Comparisons of the NSRDB (1998-2015) with nine selected ground-measured data were conducted under both clear- and cloudy-sky conditions. These locations provide a high quality data covering a variety of geographical locations and climates. The comparison of the NSRDB to the ground-based data demonstrated that biases were within +/- 5% for GHI and +/-10% for DNI. A comprehensive uncertainty estimation methodology was established to analyze the performance of the gridded NSRDB and includes all sources of uncertainty at various time-averaged periods, a method that is not often used in model evaluation. Further, the study analyzed the inter

  10. The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access

    Science.gov (United States)

    Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.

    2011-12-01

    The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.

  11. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    Science.gov (United States)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  12. Development of Armenian-Georgian Virtual Observatory

    Science.gov (United States)

    Mickaelian, Areg; Kochiashvili, Nino; Astsatryan, Hrach; Harutyunian, Haik; Magakyan, Tigran; Chargeishvili, Ketevan; Natsvlishvili, Rezo; Kukhianidze, Vasil; Ramishvili, Giorgi; Sargsyan, Lusine; Sinamyan, Parandzem; Kochiashvili, Ia; Mikayelyan, Gor

    2009-10-01

    The Armenian-Georgian Virtual Observatory (ArGVO) project is the first initiative in the world to create a regional VO infrastructure based on national VO projects and regional Grid. The Byurakan and Abastumani Astrophysical Observatories are scientific partners since 1946, after establishment of the Byurakan observatory . The Armenian VO project (ArVO) is being developed since 2005 and is a part of the International Virtual Observatory Alliance (IVOA). It is based on the Digitized First Byurakan Survey (DFBS, the digitized version of famous Markarian survey) and other Armenian archival data. Similarly, the Georgian VO will be created to serve as a research environment to utilize the digitized Georgian plate archives. Therefore, one of the main goals for creation of the regional VO is the digitization of large amounts of plates preserved at the plate stacks of these two observatories. The total amount of plates is more than 100,000 units. Observational programs of high importance have been selected and some 3000 plates will be digitized during the next two years; the priority is being defined by the usefulness of the material for future science projects, like search for new objects, optical identifications of radio, IR, and X-ray sources, study of variability and proper motions, etc. Having the digitized material in VO standards, a VO database through the regional Grid infrastructure will be active. This partnership is being carried out in the framework of the ISTC project A-1606 "Development of Armenian-Georgian Grid Infrastructure and Applications in the Fields of High Energy Physics, Astrophysics and Quantum Physics".

  13. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    Science.gov (United States)

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  14. National Solar Radiation Database 1991-2010 Update: User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S. M.

    2012-08-01

    This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

  15. Utilization of space technology for terrestrial solar power applications

    Science.gov (United States)

    Yasui, R. K.; Patterson, R. E.

    1974-01-01

    A description is given of the evolution of photovoltaic power systems designed and built for terrestrial applications, giving attention to problem areas which are currently impeding the further development of such systems. The rooftop testing of surplus solar panels is considered along with solar powered seismic observatories, solar powered portable radio sets, and design considerations identified from past experience. Present activities discussed are related to a solar powered on-shore beacon flasher system, a solar powered buoy, and a solar powered beacon flasher buoy.

  16. ESO's Two Observatories Merge

    Science.gov (United States)

    2005-02-01

    , a unique instrument capable of measuring stellar radial velocities with an unsurpassed accuracy better than 1 m/s, making it a very powerful tool for the discovery of extra-solar planets. In addition, astronomers have also access to the 2.2-m ESO/MPG telescope with its Wide Field Imager camera. A new control room, the RITZ (Remote Integrated Telescope Zentrum), allows operating all three ESO telescopes at La Silla from a single place. The La Silla Observatory is also the first world-class observatory to have been granted certification for the International Organization for Standardization (ISO) 9001 Quality Management System. Moreover, the infrastructure of La Silla is still used by many of the ESO member states for targeted projects such as the Swiss 1.2-m Euler telescope and the robotic telescope specialized in the follow-up of gamma-ray bursts detected by satellites, the Italian REM (Rapid Eye Mount). In addition, La Silla is in charge of the APEX (Atacama Pathfinder Experiment) 12-m sub-millimetre telescope which will soon start routine observations at Chajnantor, the site of the future Atacama Large Millimeter Array (ALMA). The APEX project is a collaboration between the Max Planck Society in Germany, Onsala Observatory in Sweden and ESO. ESO also operates Paranal, home of the Very Large Telescope (VLT) and the VLT Interferometer (VLTI). Antu, the first 8.2-m Unit Telescope of the VLT, saw First Light in May 1998, starting what has become a revolution in European astronomy. Since then, the three other Unit Telescopes - Kueyen, Melipal and Yepun - have been successfully put into operation with an impressive suite of the most advanced astronomical instruments. The interferometric mode of the VLT (VLTI) is also operational and fully integrated in the VLT data flow system. In the VLTI mode, one state-of-the-art instrument is already available and another will follow soon. With its remarkable resolution and unsurpassed surface area, the VLT is at the forefront of

  17. The Lowell Observatory Predoctoral Scholar Program

    Science.gov (United States)

    Prato, Lisa; Nofi, Larissa

    2018-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its tenth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. Strong collaborations, the new Ph.D. program at Northern Arizona University, and cooperative links across the greater Flagstaff astronomical community create a powerful multi-institutional locus in northern Arizona. Lowell Observatory's new 4.3 meter Discovery Channel Telescope is operating at full science capacity and boasts some of the most cutting-edge and exciting capabilities available in optical/infrared astronomy. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2018 are due by May 1, 2018; alternate application dates will be considered on an individual basis.

  18. On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis

    Science.gov (United States)

    Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa

    2011-01-01

    This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker

  19. Statistical Feature Recognition for Multidimensional Solar Imagery

    Science.gov (United States)

    Turmon, Michael; Jones, Harrison P.; Malanushenko, Olena V.; Pap, Judit M.

    2010-04-01

    A maximum a posteriori (MAP) technique is developed to identify solar features in cotemporal and cospatial images of line-of-sight magnetic flux, continuum intensity, and equivalent width observed with the NASA/National Solar Observatory (NSO) Spectromagnetograph (SPM). The technique facilitates human understanding of patterns in large data sets and enables systematic studies of feature characteristics for comparison with models and observations of long-term solar activity and variability. The method uses Bayes’ rule to compute the posterior probability of any feature segmentation of a trio of observed images from per-pixel, class-conditional probabilities derived from independently-segmented training images. Simulated annealing is used to find the most likely segmentation. New algorithms for computing class-conditional probabilities from three-dimensional Gaussian mixture models and interpolated histogram densities are described and compared. A new extension to the spatial smoothing in the Bayesian prior model is introduced, which can incorporate a spatial dependence such as center-to-limb variation. How the spatial scale of training segmentations affects the results is discussed, and a new method for statistical separation of quiet Sun and quiet network is presented.

  20. VESPA: developing the planetary science Virtual Observatory in H2020

    Science.gov (United States)

    Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Capria, Teresa; Rossi, Angelo Pio

    2016-04-01

    The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.

  1. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  2. Digging up the Earliest Astronomical Observatory in China

    Science.gov (United States)

    Li, Wei-Boa; Chen, Jiu-Jin

    2007-09-01

    At the town of Taosi, county of Xiangfen, Shanxi province the earliest (up to date about 4000 years ago) astronomical observatory and sacrificial altar relic was dug up, which consists of an observing site, some tamped soil columniations and slits between those columniations. This construction was used to observe the variations of the sunrise azimuth and determine the tropical year length in order to constitute the calendar. It is indicated from the simulated observations that the two slits located in the southeast and the northwest could be precisely used to determine the dates of the Winter Solstice and the Summer Solstice. Between those two slits there are 10 columniations which could indicate that the visual Sun moving from one columniation to another is a solar term. It implies that in the Emperor Yao time the calendar was the solar calendar in which one year was divided into 20 solar terms. The Yin-Yang five-element calendar, a 10-month calendar, in the very ancient time was based on this calendar.

  3. Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data

    Science.gov (United States)

    KIM, J. H.; Chang, H. Y.

    2017-12-01

    We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.

  4. Integration of space geodesy: A US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth E.

    2005-11-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the US, in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO). To launch this effort an international team will conduct a multi-year program of research into the technical issues of integrating SLR, VLBI, and GPS geodesy to produce a unified set of global geodetic products. The goal is to improve measurement accuracy by up to an order of magnitude while lowering the cost to current sponsors. A secondary goal is to expand and diversify international sponsorship of space geodesy. Principal benefits will be to open new vistas of research in geodynamics and surface change while freeing scarce NASA funds for scientific studies. NGO will proceed in partnership with, and under the auspices of, the International Association of Geodesy (IAG) as an element of the Integrated Global Geodetic Observation System project. The collaboration will be conducted within, and will make full use of, the IAG's existing international services: the IGS, IVS, ILRS, and IERS. Seed funding for organizational activities and technical analysis will come from NASA's Solid Earth and Natural Hazards Program. Additional funds to develop an integrated geodetic data system known as Inter-service Data Integration for Geodetic Operations (INDIGO), will come from a separate NASA program in Earth science information technology. INDIGO will offer ready access to the full variety of NASA's space geodetic data and will extend the GPS Seamless Archive (GSAC) philosophy to all space geodetic data types.

  5. Results of Spectral Corona Observations in Solar Activity Cycles 17-24

    Science.gov (United States)

    Aliev, A. Kh.; Guseva, S. A.; Tlatov, A. G.

    2017-12-01

    The results of the work of the global observation network are considered, and a comparative analysis of the data of various coronal observatories is performed. The coronal activity index has been reconstructed for the period 1939-2016 based on the data of various observatories in Kislovodsk system. For this purpose, the corona daily intensity maps from the Sacramento Peak and Lomnický Štít observatories according to the Solar-Geophysical Data journal have been digitized; they supplement the data of other observatories. The homogeneity and continuity of the corona observations at the Kislovodsk station, including activity cycle 24, is confirmed. Unfortunately, the only observatory at present that continues observation of the spectral corona in Fe XIV 5303 Å and Fe XIV 6374 Å lines is the Kislovodsk astronomical station Mountain Astronomical Station (MAS) of the Central Astronomical Observatory, Russian Academy of Sciences (Pulkovo). The data on the combined corona in 5303 Å line are analyzed. It is shown that there is a high correlation of the intensity index of green corona with solar radiation measurements in the vacuum UV region. Data on the beginning of the new 25th activity cycle in the corona at high latitudes are presented.

  6. A Survey of Nanoflare Properties in Active Regions Observed with the Solar Dynamics Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Viall, Nicholeen M.; Klimchuk, James A. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD 20771 (United States)

    2017-06-20

    In this paper, we examine 15 different active regions (ARs) observed with the Solar Dynamics Observatory and analyze their nanoflare properties. We have recently developed a technique that systematically identifies and measures plasma temperature dynamics by computing time lags between light curves. The time lag method tests whether the plasma is maintained at a steady temperature, or if it is dynamic, undergoing heating and cooling cycles. An important aspect of our technique is that it analyzes both observationally distinct coronal loops as well as the much more prevalent diffuse emission between them. We find that the widespread cooling reported previously for NOAA AR 11082 is a generic property of all ARs. The results are consistent with impulsive nanoflare heating followed by slower cooling. Only occasionally, however, is there full cooling from above 7 MK to well below 1 MK. More often, the plasma cools to approximately 1–2 MK before being reheated by another nanoflare. These same 15 ARs were first studied by Warren et al. We find that the degree of cooling is not well correlated with the reported slopes of the emission measure distribution. We also conclude that the Fe xviii emitting plasma that they measured is mostly in a state of cooling. These results support the idea that nanoflares have a distribution of energies and frequencies, with the average delay between successive events on an individual flux tube being comparable to the plasma cooling timescale.

  7. Autonomous Infrastructure for Observatory Operations

    Science.gov (United States)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  8. JHelioviewer. Time-dependent 3D visualisation of solar and heliospheric data

    Science.gov (United States)

    Müller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; García-Ortiz, J. P.; Ireland, J.; Zahniy, S.; Fleck, B.

    2017-09-01

    Context. Solar observatories are providing the world-wide community with a wealth of data, covering wide time ranges (e.g. Solar and Heliospheric Observatory, SOHO), multiple viewpoints (Solar TErrestrial RElations Observatory, STEREO), and returning large amounts of data (Solar Dynamics Observatory, SDO). In particular, the large volume of SDO data presents challenges; the data are available only from a few repositories, and full-disk, full-cadence data for reasonable durations of scientific interest are difficult to download, due to their size and the download rates available to most users. From a scientist's perspective this poses three problems: accessing, browsing, and finding interesting data as efficiently as possible. Aims: To address these challenges, we have developed JHelioviewer, a visualisation tool for solar data based on the JPEG 2000 compression standard and part of the open source ESA/NASA Helioviewer Project. Since the first release of JHelioviewer in 2009, the scientific functionality of the software has been extended significantly, and the objective of this paper is to highlight these improvements. Methods: The JPEG 2000 standard offers useful new features that facilitate the dissemination and analysis of high-resolution image data and offers a solution to the challenge of efficiently browsing petabyte-scale image archives. The JHelioviewer software is open source, platform independent, and extendable via a plug-in architecture. Results: With JHelioviewer, users can visualise the Sun for any time period between September 1991 and today; they can perform basic image processing in real time, track features on the Sun, and interactively overlay magnetic field extrapolations. The software integrates solar event data and a timeline display. Once an interesting event has been identified, science quality data can be accessed for in-depth analysis. As a first step towards supporting science planning of the upcoming Solar Orbiter mission, JHelioviewer

  9. Taurus Hill Observatory Scientific Observations for Pulkova Observatory during the 2016-2017 Season

    Science.gov (United States)

    Hentunen, V.-P.; Haukka, H.; Heikkinen, E.; Salmi, T.; Juutilainen, J.

    2017-09-01

    Taurus Hill Observatory (THO), observatory code A95, is an amateur observatory located in Varkaus, Finland. The observatory is maintained by the local astronomical association Warkauden Kassiopeia. THO research team has observed and measured various stellar objects and phenomena. Observatory has mainly focused on exoplanet light curve measurements, observing the gamma rays burst, supernova discoveries and monitoring. We also do long term monitoring projects.

  10. National Solar Radiation Database 1991-2005 Update: User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S.

    2007-04-01

    This manual describes how to obtain and interpret the data products from the updated 1991-2005 National Solar Radiation Database (NSRDB). This is an update of the original 1961-1990 NSRDB released in 1992.

  11. Signature of open magnetic field lines in the extended solar corona and of solar wind acceleration

    Science.gov (United States)

    Antonucci, E.; Giordano, S.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.

    1997-01-01

    The observations carried out with the ultraviolet coronagraph spectrometer onboard the Solar and Heliospheric Observatory (SOHO) are discussed. The purpose of the observations was to determine the line of sight and radial velocity fields in coronal regions with different magnetic topology. The results showed that the regions where the high speed solar wind flows along open field lines are characterized by O VI 1032 and HI Lyman alpha 1216 lines. The global coronal maps of the line of sight velocity were reconstructed. The corona height, where the solar wind reaches 100 km/s, was determined.

  12. Astronomy in Research-Based Science Education (A-RBSE): A Review of a Decade of Professional Development Programs in Support of Teacher and Student Research at the National Optical Astronomy Observatory

    Science.gov (United States)

    Pompea, S. M.; Garmany, C. D.; Walker, C. E.; Croft, S. K.

    2006-12-01

    We will review the evolution of the Research Based Science Education (RBSE) and Teacher Leaders in Research Based Science (TLRBSE) programs at the National Optical Astronomy Observatory over the last eleven years. The program has evolved from an NSF-funded program in teacher enhancement to an observatory-supported core education initiative. The present manifestation of our program is an umbrella of programs designed to aid teachers in doing research with astronomical data archives, small telescopes, large research-grade telescopes, and the Spitzer Space Telescope. The professional development program has addressed basic questions on the nature of research, best techniques to bring it into the classroom, the value of authentic research, and the mix of on-line versus in- person professional development. The current program is used to test new models of teacher professional development that for outreach programs for the Large Synoptic Survey Telescope program, the Thirty-Meter Telescope program, and the National Virtual Observatory program. We will describe a variety of lessons learned (and relearned) and try to describe best practices in promoting teacher and student research. The TLRBSE Program has been funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  13. Boosting disability research in the engineering sciences. The recommendations of the National Observatory for Training, Research and Innovation on Disability (ONFRIH).

    Science.gov (United States)

    Ravaud, J-F; Boissonnat, V

    2011-02-01

    In 2005, the National Observatory for Training, Research and Innovation on Disability (ONFRIH) was established by French law (Law 2005-102). The mission of ONFRIH is to provide an overview and recommendations for research, training and prevention in the field of disability. In this paper, the authors, respectively the Chairman and Rapporteur of the ONFRIH Working Group "Research and Innovation", present the Observatory's conclusions reached in its 2009 report about engineering sciences research and innovation. After introducing the ONFRIH and recalling the stakes and working methods, they highlight the current state of French research in this area and their thoughts about innovation chain. They evoke the broad outlines of their working group's analysis of this inventory. They conclude by identifying four action plans that express the Observatory's recommendations and were submitted to the responsible ministers. The four main objectives proposed are: (1) to consolidate disability as a major challenge for engineering sciences applications; (2) to reinforce the cooperation between operators at all levels of research and innovation; (3) to encourage the expression of needs within the research and innovation process, and (4) to facilitate the access of disabled people to technological innovations that promote their autonomy and social inclusion. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  14. Status of solar neutrino experiments

    International Nuclear Information System (INIS)

    Beier, E.W.; Davis, R. Jr.; Kim, S.B.; Jelley, N.

    1990-01-01

    A summary of the status of four solar neutrino experiments is presented. The Homestake 37 Cl data are presented and the possible time dependence of the data is addressed. Data from 1040 days of operation of the Kamiokande II detector are presented next. The status of the 71 Ga experiment in the Baksan Neutrino Observatory, which has operated for a short time, is discussed. The summary concludes with a discussion of the status of the Sudbury Neutrino Observatory, which has been under construction since the beginning of 1990. 7 refs., 6 figs

  15. An international campaign of the 19th century to determine the solar parallax. The US Naval expedition to the southern hemisphere 1849-1852

    Science.gov (United States)

    Schrimpf, Andreas

    2014-04-01

    In 1847 Christian Ludwig Gerling, Marburg (Germany), suggested the solar parallax to be determined by measuring the position of Venus close to its inferior conjunction, especially at the stationary points, from observatories on nearly the same meridian but widely differing in latitude. James M. Gilliss, astronomer at the newly founded U.S. Naval Observatory, enthusiastically adopted this idea and procured a grant for the young astronomical community of the United States for an expedition to Chile. There they were to observe several conjunctions of Venus and oppositions of Mars, while the accompanying measurements were to be taken at the US Naval Observatory in Washington D.C. and the Harvard College Observatory at Cambridge, USA. This expedition was supported by A.V. Humboldt, C.F. Gauß, J.F. Encke, S.C. Walker, A.D. Bache, B. Peirce and others. From 1849 to 1852 not only were astronomical, but also meteorological and magnetic observations and measurements recorded, mainly in Santa Lucia close to Santiago, Chile. By comparing these measurements with those taken simultaneously at other observatories around the world the solar parallax could be calculated, although incomplete data from the corresponding northern observatories threatened the project's success. In retrospect this expedition can be recognized as the foundation of the Chilean astronomy. The first director of the new National Astronomical Observatory of Chile was Dr. C.W. Moesta, a Hessian student of Christian Ludwig Gerling's. The exchange of data between German, American and other astronomers during this expedition was well mediated by J.G. Flügel, consul of the United States of America and representative of the Smithsonian Institution in Europe, who altogether played a major role in nurturing the relationship between the growing scientific community in the U.S. and the well established one in Europe at that time.

  16. Data standards for the international virtual observatory

    Directory of Open Access Journals (Sweden)

    R J Hanisch

    2006-11-01

    Full Text Available A primary goal of the International Virtual Observatory Alliance, which brings together Virtual Observatory Projects from 16 national and international development projects, is to develop, evaluate, test, and agree upon standards for astronomical data formatting, data discovery, and data delivery. In the three years that the IVOA has been in existence, substantial progress has been made on standards for tabular data, imaging data, spectroscopic data, and large-scale databases and on managing the metadata that describe data collections and data access services. In this paper, I describe how the IVOA operates and give my views as to why such a broadly based international collaboration has been able to make such rapid progress.

  17. Eclipse Soundscapes Project: Making the August 21, 2017 Total Solar Eclipse Accessible to Everyone

    Science.gov (United States)

    Winter, H. D., III

    2017-12-01

    The Eclipse Soundscapes Project delivered a multisensory experience that allowed the blind and visually impaired to engage with the August 21, 2017 total solar eclipse along with their sighted peers in a way that would not have been possible otherwise. The project, from the Smithsonian Astrophysical Observatory and NASA's Heliophysics Education Consortium, includes illustrative audio descriptions of the eclipse in real time, recordings of the changing environmental sounds during the eclipse, and an interactive "rumble map" app that allows users to experience the eclipse through touch and sound. The Eclipse Soundscapes Project is working with organizations such as the National Parks Service (NPS), Science Friday, and Brigham Young University and by WGBH's National Center for Accessible Media (NCAM) to bring the awe and wonder of the total solar eclipse and other astronomical phenomena to a segment of the population that has been excluded from and astronomy and astrophysics for far too long, while engaging all learners in new and exciting ways.

  18. Solar Hα and white light telescope at Hvar Observatory

    Czech Academy of Sciences Publication Activity Database

    Čalogovic, J.; Dumbovic, M.; Novak, S.; Vršnak, B.; Brajša, R.; Pötzi, W.; Hirtenfellner-Polanec, W.; Veronig, A.; Hanslmeier, A.; Klvaňa, Miroslav; Ambrož, Pavel

    2012-01-01

    Roč. 36, č. 2012 (2012), s. 83-88 ISSN 1845-8319 Institutional support: RVO:67985815 Keywords : solar observations * telescope * photosphere Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  19. Modelling the quiet-time geomagnetic daily variations using observatory data

    OpenAIRE

    Hamilton, Brian; Macmillan, Susan

    2008-01-01

    We present on-going work towards building a global model of the quiet-time geomagnetic daily variation using bservatory data. We select hourly mean data during June 2006 (solar minimum). We fit Fourier series in time, with a fundamental period of 24 hours, to the data at each observatory. We then use global spherical harmonic expansions to separate the daily variation signal, as characterised by the Fourier coefficients in time, into external and induced internal contributions. The mode...

  20. Solar Adaptive Optics.

    Science.gov (United States)

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given. Supplementary material is available for this article at 10.12942/lrsp-2011-2.

  1. Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical 37 Cl and 71 Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun

  2. Solar energy prediction and verification using operational model forecasts and ground-based solar measurements

    International Nuclear Information System (INIS)

    Kosmopoulos, P.G.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Bais, A.

    2015-01-01

    The present study focuses on the predictions and verification of these predictions of solar energy using ground-based solar measurements from the Hellenic Network for Solar Energy and the National Observatory of Athens network, as well as solar radiation operational forecasts provided by the MM5 mesoscale model. The evaluation was carried out independently for the different networks, for two forecast horizons (1 and 2 days ahead), for the seasons of the year, for varying solar elevation, for the indicative energy potential of the area, and for four classes of cloud cover based on the calculated clearness index (k_t): CS (clear sky), SC (scattered clouds), BC (broken clouds) and OC (overcast). The seasonal dependence presented relative rRMSE (Root Mean Square Error) values ranging from 15% (summer) to 60% (winter), while the solar elevation dependence revealed a high effectiveness and reliability near local noon (rRMSE ∼30%). An increment of the errors with cloudiness was also observed. For CS with mean GHI (global horizontal irradiance) ∼ 650 W/m"2 the errors are 8%, for SC 20% and for BC and OC the errors were greater (>40%) but correspond to much lower radiation levels (<120 W/m"2) of consequently lower energy potential impact. The total energy potential for each ground station ranges from 1.5 to 1.9 MWh/m"2, while the mean monthly forecast error was found to be consistently below 10%. - Highlights: • Long term measurements at different atmospheric cases are needed for energy forecasting model evaluations. • The total energy potential at the Greek sites presented ranges from 1.5 to 1.9 MWh/m"2. • Mean monthly energy forecast errors are within 10% for all cases analyzed. • Cloud presence results of an additional forecast error that varies with the cloud cover.

  3. Solar Radio Observation using Callisto Spectrometer at Sumedang West Java Indonesia: Current Status and Future Development Plan in Indonesia

    Science.gov (United States)

    Manik, T.; Sitompul, P.; Batubara, M.; Harjana, T.; Yatini, C. Y.; Monstein, C.

    2016-04-01

    Sumedang Observatory (6.91°S, 107,84°E) was established in 1975 and is one of the solar observation facilities of the Space Science Center of Indonesian National Institute of Aeronautics and Space (LAPAN), located around 40 km, east part of Bandung City, West Java, Indonesia. Several instrumentations for solar and space observation such as optical telescopes, radio solar spectrograph, flux gate magnetometer, etc. are operated there, together with an ionosphere sounding system (ionosonde) that was set up later. In July 2014, a standard Callisto (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) spectrometer was installed at Sumedang Observatory for solar radio activity monitoring. Callisto has been developed in the framework of IHY2007 and ISWI, supported by UN and NASA. Callisto spectrometer has observation capability in the frequency range of 45-870 MHz. The Callisto spectrometer receives signal by using a set of 21 elements log-periodic antenna, model CLP5130-1N, pointed to the Sun and equipped with a low noise pre-amplifier. With respect to the Radio Frequency Interferences (RFI) measurements, the Callisto spectrometer is operated individually in frequency ranges of 45-80 MHz and 180-450 MHz. Observation status and data flow are monitored in on-line from center office located in Bandung. The data was transferred to central database at FHNW (Fachhochschule Nordwestschweiz) server every 15 minutes to appear on e-Callisto network subsequently. A real time data transfer and data processing based on Python software also has been developed successfully to be used as an input for Space Weather Information and Forecasting Services (SWIFtS) provided by LAPAN. On 5th November 2014, Callisto spectrometer at Sumedang observed the first clear solar radio event, a solar radio burst type II corresponding to a coronal mass ejection (CME), indicated by a strong X-ray event of M7.9 that was informed on by Space Weather

  4. An Experimentalist's Overview of Solar Neutrinos

    Science.gov (United States)

    Oser, Scott M.

    2012-02-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  5. An Experimentalist's Overview of Solar Neutrinos

    International Nuclear Information System (INIS)

    Oser, Scott M

    2012-01-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  6. NASA's Great Observatories Celebrate the International Year of Astronomy With a National Unveiling of Spectacular Images

    Science.gov (United States)

    2009-02-01

    provides an in-depth view of the galaxy for both astronomers and the public. People Who Read This Also Read... Cosmic Heavyweights in Free-for-all Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Chandra Data Reveal Rapidly Whirling Black Holes Jet Power and Black Hole Assortment Revealed in New Chandra Image "The amazing scientific discoveries made by Galileo four centuries ago are continued today by scientists using NASA's space observatories," says Dr. Denise Smith, the unveiling Project Manager at the Space Telescope Science Institute in Baltimore, Md. "NASA's Great Observatories are distributing huge prints of spectacular images so that the public can share in the exploration and wonder of the universe." The unveilings will take place between February 14 and 28 at 76 museums and 40 schools and universities in 39 states, reaching both big cities and small towns. Sites are planning celebrations involving the public, schools, and the local media. A complete listing of the national unveiling sites accompanies this press release. The International Year of Astronomy Great Observatories Image Unveiling is supported by the NASA Science Mission Directorate Astrophysics Division. The project is a collaboration between the Space Telescope Science Institute, the Spitzer Science Center, and the Chandra X-ray Center.

  7. Solar active region display system

    Science.gov (United States)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  8. NASA's Parker Solar Probe and Solar Orbiter Missions: Discovering the Secrets of our Star

    Science.gov (United States)

    Zurbuchen, T.

    2017-12-01

    This session will explore the importance of the Parker Solar Probe and Solar Orbiter missions to NASA Science, and the preparations for discoveries from these missions. NASA's Parker Solar Probe and Solar Orbiter Missions have complementary missions and will provide unique and unprecedented contributions to heliophysics and astrophysics overall. These inner heliospheric missions will also be part of the Heliophysics System Observatory which includes an increasing amount of innovative new technology and architectures to address science and data in an integrated fashion and advance models through assimilation and system-level tests. During this talk, we will briefly explore how NASA Heliophysics research efforts not only increase our understanding and predictive capability of space weather phenomena, but also provide key insights on fundamental processes important throughout the universe.

  9. DISTRIBUTION OF MAGNETIC BIPOLES ON THE SUN OVER THREE SOLAR CYCLES

    International Nuclear Information System (INIS)

    Tlatov, Andrey G.; Vasil'eva, Valerya V.; Pevtsov, Alexei A.

    2010-01-01

    We employ synoptic full disk longitudinal magnetograms to study latitudinal distribution and orientation (tilt) of magnetic bipoles in the course of sunspot activity during cycles 21, 22, and 23. The data set includes daily observations from the National Solar Observatory at Kitt Peak (1975-2002) and Michelson Doppler Imager on board the Solar and Heliospheric Observatory (MDI/SOHO, 1996-2009). Bipole pairs were selected on the basis of proximity and flux balance of two neighboring flux elements of opposite polarity. Using the area of the bipoles, we have separated them into small quiet-Sun bipoles (QSBs), ephemeral regions (ERs), and active regions (ARs). We find that in their orientation, ERs and ARs follow Hale-Nicholson polarity rule. As expected, AR tilts follow Joy's law. ERs, however, show significantly larger tilts of opposite sign for a given hemisphere. QSBs are randomly oriented. Unlike ARs, ERs also show a preference in their orientation depending on the polarity of the large-scale magnetic field. These orientation properties may indicate that some ERs may form at or near the photosphere via the random encounter of opposite polarity elements, while others may originate in the convection zone at about the same location as ARs. The combined latitudinal distribution of ERs and ARs exhibits a clear presence of Spoerer's butterfly diagram (equatorward drift in the course of a solar cycle). ERs extend the ARs' 'wing' of the butterfly diagram to higher latitudes. This high latitude extension of ERs suggests an extended solar cycle with the first magnetic elements of the next cycle developing shortly after the maximum of the previous cycle. The polarity orientation and tilt of ERs may suggest the presence of poloidal fields of two configurations (new cycle and old cycle) in the convection zone at the declining phase of the sunspot cycle.

  10. Construction of a century solar chromosphere data set for solar activity related research

    Science.gov (United States)

    Lin, Ganghua; Wang, Xiao Fan; Yang, Xiao; Liu, Suo; Zhang, Mei; Wang, Haimin; Liu, Chang; Xu, Yan; Tlatov, Andrey; Demidov, Mihail; Borovik, Aleksandr; Golovko, Aleksey

    2017-06-01

    This article introduces our ongoing project "Construction of a Century Solar Chromosphere Data Set for Solar Activity Related Research". Solar activities are the major sources of space weather that affects human lives. Some of the serious space weather consequences, for instance, include interruption of space communication and navigation, compromising the safety of astronauts and satellites, and damaging power grids. Therefore, the solar activity research has both scientific and social impacts. The major database is built up from digitized and standardized film data obtained by several observatories around the world and covers a time span of more than 100 years. After careful calibration, we will develop feature extraction and data mining tools and provide them together with the comprehensive database for the astronomical community. Our final goal is to address several physical issues: filament behavior in solar cycles, abnormal behavior of solar cycle 24, large-scale solar eruptions, and sympathetic remote brightenings. Significant signs of progress are expected in data mining algorithms and software development, which will benefit the scientific analysis and eventually advance our understanding of solar cycles.

  11. Construction of a century solar chromosphere data set for solar activity related research

    Directory of Open Access Journals (Sweden)

    Ganghua Lin

    2017-06-01

    Full Text Available This article introduces our ongoing project “Construction of a Century Solar Chromosphere Data Set for Solar Activity Related Research”. Solar activities are the major sources of space weather that affects human lives. Some of the serious space weather consequences, for instance, include interruption of space communication and navigation, compromising the safety of astronauts and satellites, and damaging power grids. Therefore, the solar activity research has both scientific and social impacts. The major database is built up from digitized and standardized film data obtained by several observatories around the world and covers a timespan more than 100 years. After careful calibration, we will develop feature extraction and data mining tools and provide them together with the comprehensive database for the astronomical community. Our final goal is to address several physical issues: filament behavior in solar cycles, abnormal behavior of solar cycle 24, large-scale solar eruptions, and sympathetic remote brightenings. Significant progresses are expected in data mining algorithms and software development, which will benefit the scientific analysis and eventually advance our understanding of solar cycles.

  12. Semi-annual Sq-variation in solar activity cycle

    Science.gov (United States)

    Pogrebnoy, V.; Malosiev, T.

    The peculiarities of semi-annual variation in solar activity cycle have been studied. The data from observatories having long observational series and located in different latitude zones were used. The following observatories were selected: Huancayo (magnetic equator), from 1922 to 1959; Apia (low latitudes), from 1912 to 1961; Moscow (middle latitudes), from 1947 to 1965. Based on the hourly values of H-components, the average monthly diurnal amplitudes (a difference between midday and midnight values), according to five international quiet days, were computed. Obtained results were compared with R (relative sunspot numbers) in the ranges of 0-30R, 40-100R, and 140-190R. It was shown, that the amplitude of semi-annual variation increases with R, from minimum to maximum values, on average by 45%. At equatorial Huancayo observatory, the semi-annual Sq(H)-variation appears especially clearly: its maximums take place at periods of equinoxes (March-April, September-October), and minimums -- at periods of solstices (June-July, December-January). At low (Apia observatory) and middle (Moscow observatory) latitudes, the character of semi-annual variation is somewhat different: it appears during the periods of equinoxes, but considerably less than at equator. Besides, with the growth of R, semi-annual variation appears against a background of annual variation, in the form of second peaks (maximum in June). At observatories located in low and middle latitudes, second peaks become more appreciable with an increase of R (March-April and September-October). During the periods of low solar activity, they are insignificant. This work has been carried out with the support from International Scientific and Technology Center (Project #KR-214).

  13. PROBING THE SOLAR ATMOSPHERE USING OSCILLATIONS OF INFRARED CO SPECTRAL LINES

    International Nuclear Information System (INIS)

    Penn, M. J.; Schad, T.; Cox, E.

    2011-01-01

    Oscillations were observed across the whole solar disk using the Doppler shift and line center intensity of spectral lines from the CO molecule near 4666 nm with the National Solar Observatory's McMath/Pierce solar telescope. Power, coherence, and phase spectra were examined, and diagnostic diagrams reveal power ridges at the solar global mode frequencies to show that these oscillations are solar p-modes. The phase was used to determine the height of formation of the CO lines by comparison with the IR continuum intensity phase shifts as measured in Kopp et al.; we find that the CO line formation height varies from 425 km μ > 0.5. The velocity power spectra show that while the sum of the background and p-mode power increases with height in the solar atmosphere as seen in previous work, the power in the p-modes only (background subtracted) decreases with height. The CO line center intensity weakens in regions of stronger magnetic fields, as does the p-mode oscillation power. Across most of the solar surface the phase shift is larger than the expected value of 90 0 for an adiabatic atmosphere. We fit the phase spectra at different disk positions with a simple atmospheric model to determine that the acoustic cutoff frequency is about 4.5 mHz with only small variations, but that the thermal relaxation frequency drops significantly from 2.7 to 0 mHz at these heights in the solar atmosphere.

  14. Pro-Amateur Observatories as a Significant Resource for Professional Astronomers - Taurus Hill Observatory

    Science.gov (United States)

    Haukka, H.; Hentunen, V.-P.; Nissinen, M.; Salmi, T.; Aartolahti, H.; Juutilainen, J.; Vilokki, H.

    2013-09-01

    Taurus Hill Observatory (THO), observatory code A95, is an amateur observatory located in Varkaus, Finland. The observatory is maintained by the local astronomical association of Warkauden Kassiopeia [8]. THO research team has observed and measured various stellar objects and phenomena. Observatory has mainly focuse d on asteroid [1] and exoplanet light curve measurements, observing the gamma rays burst, supernova discoveries and monitoring [2]. We also do long term monitoring projects [3]. THO research team has presented its research work on previous EPSC meetings ([4], [5],[6], [7]) and got very supportive reactions from the European planetary science community. The results and publications that pro-amateur based observatories, like THO, have contributed, clearly demonstrates that pro-amateurs area significant resource for the professional astronomers now and even more in the future.

  15. Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα Images

    Science.gov (United States)

    Yang, Meng; Tian, Yu; Liu, Yangyi; Rao, Changhui

    2018-05-01

    In this article, an automated solar flare detection method applied to both full-disk and local high-resolution Hα images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of Hα solar flares.

  16. Flare Ribbons Approach Observed by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ting; Zhang, Jun; Hou, Yijun, E-mail: liting@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-10-10

    We report flare ribbons approach (FRA) during a multiple-ribbon M-class flare on 2015 November 4 in NOAA AR 12443, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory. The flare consisted of a pair of main ribbons and two pairs of secondary ribbons. The two pairs of secondary ribbons were formed later than the appearance of the main ribbons, with respective time delays of 15 and 19 minutes. The negative-polarity main ribbon spread outward faster than the first secondary ribbon with the same polarity in front of it, and thus the FRA was generated. Just before their encounter, the main ribbon was darkening drastically and its intensity decreased by about 70% in 2 minutes, implying the suppression of main-phase reconnection that produced two main ribbons. The FRA caused the deflection of the main ribbon to the direction of secondary ribbon with a deflection angle of about 60°. A post-approach arcade was formed about 2 minutes later and the downflows were detected along the new arcade with velocities of 35–40 km s{sup −1}, indicative of the magnetic restructuring during the process of FRA. We suggest that there are three topological domains with footpoints outlined by the three pairs of ribbons. Close proximity of these domains leads to deflection of the ribbons, which is in agreement with the magnetic field topology.

  17. ALOHA Cabled Observatory (ACO): Acoustic Doppler Current Profiler (ADCP): Velocity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii's ALOHA ("A Long-term Oligotrophic Habitat Assessment") Cabled Observatory (ACO) is located 100 km north of the island of Oahu, Hawaii (22...

  18. MMT OBSERVATORY 6.5M CLIO CALIBRATED OBSERVATIONS OF LCROSS

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains calibrated observations of the 2009-10-09 impact of the LCROSS spacecraft on the moon by the CLIO instrument on the MMT Observatory 6.5m...

  19. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    Science.gov (United States)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  20. New solar telescope in Big Bear: evidence for super-diffusivity and small-scale solar dynamos?

    International Nuclear Information System (INIS)

    Goode, Philip R; Abramenko, Valentyna; Yurchyshyn, Vasyl

    2012-01-01

    The 1.6 m clear aperture New Solar Telescope (NST) in Big Bear Solar Observatory (BBSO) is now providing the highest resolution solar data ever. These data have revealed surprises about the Sun on small-scales including the observation that bright points (BPs), which can be used as proxies for the intense, compact magnetic elements that are apparent in photospheric intergranular lanes. The BPs are ever more numerous on ever smaller spatial scales as though there were no limit to how small the BPs can be. Here we discuss high resolution NST data on BPs that provide support for the ideas that a turbulent regime of super-diffusivity dominates in the quiet Sun, and there are local dynamos operating near the solar surface. (comment)

  1. Site Protection Program and Progress Report of Ali Observatory, Tibet

    Science.gov (United States)

    Yao, Yongqiang; Zhou, Yunhe; Wang, Xiaohua; He, Jun; Zhou, Shu

    2015-08-01

    The Ali observatory, Tibet, is a promising new site identified through ten year site survey over west China, and it is of significance to establish rules of site protection during site development. The site protection program is described with five aspects: site monitoring, technical support, local government support, specific organization, and public education. The long-term sky brightness monitoring is ready with site testing instruments and basic for light pollution measurement; the monitoring also includes directions of main light sources, providing periodical reports and suggestions for coordinating meetings. The technical supports with institutes and manufacturers help to publish lighting standards and replace light fixtures; the research pays special attention to the blue-rich sources, which impact the important application of high altitude sites. An official leading group towards development and protection of astronomical resources has been established by Ali government; one of its tasks is to issue regulations against light pollution, including special restrictions of airport, mine, and winter heating, and to supervise lighting inspection and rectification. A site protection office under the official group and local astronomical society are organized by Ali observatory; the office can coordinate in government levels and promote related activities. A specific website operated by the protection office releases activity propaganda, evaluation results, and technical comparison with other observatories. Both the site protection office and Ali observatory take responsibility for public education, including popular science lectures, light pollution and energy conservation education. Ali Night Sky Park has been constructed and opens in 2014, and provides a popular place and observational experience. The establishment of Ali Observatory and Night Sky Park brings unexpected social influence, and the starry sky trip to Ali becomes a new format of culture

  2. The Solar Physics Observatory at Kodaikanal and John Evershed

    Indian Academy of Sciences (India)

    Admin

    principal institutions devoted to work on the fundamental posi- .... All major astronomical equipment and the library were shifted from Madras to Kodaikanal .... eclipses, Evershed carried his own home-made instruments, prismatic ... scientifically fruitful time organised by Hale's main solar collaborator Ellerman and the staff of.

  3. Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse

    Science.gov (United States)

    Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.

    2018-05-01

    The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.

  4. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    Science.gov (United States)

    2001-12-01

    need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded $10 million (EUR 11.4 m) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on each other's committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first-class international astronomical archives. AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich. The other partner organisations are the European Space Agency (ESA), the United Kingdom's ASTROGRID consortium, the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS) at the University Louis Pasteur in Strasbourg, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris and the Jodrell Bank Observatory at the University of Manchester. Note for editors A 13-minute background video (broadcast PAL) is available from ESO PR and the Hubble European Space Agency Information Centre (addresses below). It will also be transmitted via satellite on Wednesday 12 December 2001 from 12:00 to 12:15 CET on the ESA TV Service: http://television.esa.int

  5. A virtual radiation belt observatory: Looking forward to the electronic geophysical year

    Science.gov (United States)

    Baker, D. N.; Green, J. C.; Kroehl, H. W.; Kihn, E.; Virbo Team

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We are developing the concept of a Virtual Radiation Belt Observatory (ViRBO) that will bring together near-earth particle and field measurements acquired by NASA, NOAA, DoD, DOE, and other spacecraft. We discuss plans to aggregate these measurements into a readily accessible database along with analysis, visualization, and display tools that will make radiation belt information available and useful both to the scientific community and to the user community. We envision that data from the various agencies along with models being developed under the auspices of the National Science Foundation Center for Integrated Space Weather Modeling (CISM) will help us to provide an excellent `climatology' of the radiation belts over the past several decades. In particular, we would plan to use these data to drive physical models of the radiation belts to form a gridded database which would characterize particle and field properties on solar-cycle (11-year) time scales. ViRBO will also provide up-to-date specification of conditions for event analysis and anomaly resolution. We are even examining the possibilities for near-realtime acquisition of

  6. Astronomical publications of Melbourne Observatory

    Science.gov (United States)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  7. Solar activity and transformer failures in the Greek national electric grid

    Directory of Open Access Journals (Sweden)

    Zois Ioannis Panayiotis

    2013-11-01

    Full Text Available Aims: We study both the short term and long term effects of solar activity on the large transformers (150 kV and 400 kV of the Greek national electric grid. Methods: We use data analysis and various statistical methods and models. Results: Contrary to common belief in PPC Greece, we see that there are considerable both short term (immediate and long term effects of solar activity onto large transformers in a mid-latitude country like Greece. Our results can be summarised as follows: For the short term effects: During 1989–2010 there were 43 “stormy days” (namely days with for example Ap ≥ 100 and we had 19 failures occurring during a stormy day plus or minus 3 days and 51 failures occurring during a stormy day plus or minus 7 days. All these failures can be directly related to Geomagnetically Induced Currents (GICs. Explicit cases are briefly presented. For the long term effects, again for the same period 1989–2010, we have two main results: The annual number of transformer failures seems to follow the solar activity pattern. Yet the maximum number of transformer failures occurs about half a solar cycle after the maximum of solar activity. There is statistical correlation between solar activity expressed using various newly defined long term solar activity indices and the annual number of transformer failures. These new long term solar activity indices were defined using both local (from the geomagnetic station in Greece and global (planetary averages geomagnetic data. Applying both linear and non-linear statistical regression we compute the regression equations and the corresponding coefficients of determination.

  8. The Superconducting Toroid for the New International AXion Observatory (IAXO)

    CERN Document Server

    Shilon, I.; Silva, H.; Wagner, U.; ten Kate, H.H.J.

    2013-01-01

    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....

  9. Progressive Research and Outreach at the WestRock Observatory

    Science.gov (United States)

    Brown, Johnny Eugene; Lantz Caughey, Austin; O'Keeffe, Brendon; Johnson, Michael; Murphy Williams, Rosa Nina

    2016-01-01

    The WestRock Observatory (WRO), located in Columbus State University's Coca-Cola Space Science Center (CCSSC), is dedicated to education and research in astronomy through hands-on engagement and public participation. The WRO has recently received funding to upgrade the PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. Recent additions to the telescope include an all-new Apogee Alta F16 CCD camera complete with a filter wheel (with narrowband and broadband filters) and a Minor Planet Center Observatory Code (W22). These new upgrades have allowed Astrophysics students to conduct unique research ranging from high precision minor planet astrometry, to broad- and narrow-band imaging of nebulae, to light curve analysis for variable star photometry. These new endeavours, in conjunction with an existing suite of Solar telescopes, gives the WRO the ability to live-stream solar and night-time observing. These streams are available both online and through interactive displays at the CCSSC making the WRO an educational outreach program for a worldwide public audience and a growing astronomical community.Current funding is allowing students to get even more research experience than previously attainable further enabling the expansion of our publicly available gallery of nebula and galaxy images. Support and funding for the acquirement,installation, and upgrading of the new PlaneWave CDK24 has been provided by the International Museum and Library Services via the Museums for America Award Additionally, individual NASA Space Grant Scholarships have helped to secure a number of student interns partially responsible for recent improvements.

  10. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  11. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  12. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-01-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible

  13. Proton solar flares

    International Nuclear Information System (INIS)

    Shaposhnikova, E.F.

    1979-01-01

    The observations of proton solar flares have been carried out in 1950-1958 using the extrablackout coronograph of the Crimea astrophysical observatory. The experiments permit to determine two characteristic features of flares: the directed motion of plasma injection flux from the solar depths and the appearance of a shock wave moving from the place of the injection along the solar surface. The appearance of the shock wave is accompanied by some phenomena occuring both in the sunspot zone and out of it. The consistent flash of proton flares in the other groups of spots, the disappearance of fibres and the appearance of eruptive prominences is accomplished in the sunspot zone. Beyond the sunspot zone the flares occur above spots, the fibres disintegrate partially or completely and the eruptive prominences appear in the regions close to the pole

  14. National plan for the accelerated commercialization of solar energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    After a brief profile of the Mid-American region and characterization of the residential and commercial markets and the industry of the region, a short description is given of a regional planning meeting held for the purpose of preparing input for the Mid-American section of the National Program for the Accelerated Commercialization of Solar Energy (NPAC) Implementation plans. For each of thirty-eight programs, the objective, rationale, task statement/description, evaluation measures, and implementor are given. The programs are in these areas: public education/awareness; education/training; legislative/regulatory; performance/analysis; design/planning;demonstrations; state interface; technology; information dissemination; legal and regulatory; analysis and assessment; and regional coordination. Two policy statements are included - one on cratering a solar society and the other recommending the expansion of the commercialization to encompass and include the concepts of utilization and popularization in the plan for the advancement of solar energy. (LEW)

  15. European Southern Observatory

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    Professor A. Blaauw, Director general of the European Southern Observatory, with George Hampton on his right, signs the Agreement covering collaboration with CERN in the construction of the large telescope to be installed at the ESO Observatory in Chile.

  16. Chromospheric telescope of Baikal Astrophysical Observatory. New light

    Directory of Open Access Journals (Sweden)

    Skomorovsky V.I.

    2016-06-01

    Full Text Available A chromospheric telescope is an important instrument for synoptic observations and solar research. After several decades of observations with the chromospheric telescope at the Baikal Astrophysical Observatory, a need arose to improve the characteristics of this telescope and filter. A new reimaging lens to produce full-disk solar images 18 mm in diameter at the CCD camera Hamamatsu C-124 with a 36×24 mm detector (4000×2672 pixels was designed and manufactured to replace the out-of-operation 50×50 mm Princeton Instruments camera. A contrast interference blocking filter and new calcite and quartz crystal plates were made and installed instead of damaged ones in the Hα birefringent filter (BF, manufactured by Bernhard Hallе Nachfl. The optical immersion in the filter was changed. All telescope optics was cleaned and adjusted. We describe for the first time the design features and their related BF passband tuning. The wavefront interferograms of optical elements and telescope as a whole show that the wavefront distortion of the optical path is within 0.25 λ. The BF and prefilter spectral parameters provide high-contrast monochromatic images. Besides, we give examples of solar chromospheric images in the Hα line core and wing.

  17. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  18. Compatibility of different measurement techniques of global solar radiation and application for long-term observations at Izaña Observatory

    Science.gov (United States)

    Delia García, Rosa; Cuevas, Emilio; García, Omaira Elena; Ramos, Ramón; Romero-Campos, Pedro Miguel; de Ory, Fernado; Cachorro, Victoria Eugenia; de Frutos, Angel

    2017-03-01

    A 1-year inter-comparison of classical and modern radiation and sunshine duration (SD) instruments has been performed at Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain) starting on 17 July 2014. We compare daily global solar radiation (GSRH) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer (MFRSR), a bimetallic pyranometer (PYR) and GSRH estimated from sunshine duration performed by a Campbell-Stokes sunshine recorder (CS) and a Kipp & Zonen sunshine duration sensor (CSD). Given that the BSRN GSRH records passed strict quality controls (based on principles of physical limits and comparison with the LibRadtran model), they have been used as reference in the inter-comparison study. We obtain an overall root mean square error (RMSE) of ˜ 0.9 MJm-2 (4 %) for PYR and MFRSR GSRH, 1.9 (7 %) and 1.2 MJm-2 (5 %) for CS and CSD GSRH, respectively. Factors such as temperature, relative humidity (RH) and the solar zenith angle (SZA) have been shown to moderately affect the GSRH observations. As an application of the methodology developed in this work, we have re-evaluated the GSRH data time series obtained at IZO with two PYRs between 1977 and 1991. Their high consistency and temporal stability have been proved by comparing with GSRH estimates obtained from SD observations. These results demonstrate that (1) the continuous-basis inter-comparison of different GSRH techniques offers important diagnostics for identifying inconsistencies between GSRH data records, and (2) the GSRH measurements performed with classical and more simple instruments are consistent with more modern techniques and, thus, valid to recover GSRH data time series and complete worldwide distributed GSRH data. The inter-comparison and quality assessment of these different techniques have allowed us to obtain a complete and consistent

  19. Improving National Capability in Biogeochemical Flux Modelling: the UK Environmental Virtual Observatory (EVOp)

    Science.gov (United States)

    Johnes, P.; Greene, S.; Freer, J. E.; Bloomfield, J.; Macleod, K.; Reaney, S. M.; Odoni, N. A.

    2012-12-01

    The best outcomes from watershed management arise where policy and mitigation efforts are underpinned by strong science evidence, but there are major resourcing problems associated with the scale of monitoring needed to effectively characterise the sources rates and impacts of nutrient enrichment nationally. The challenge is to increase national capability in predictive modelling of nutrient flux to waters, securing an effective mechanism for transferring knowledge and management tools from data-rich to data-poor regions. The inadequacy of existing tools and approaches to address these challenges provided the motivation for the Environmental Virtual Observatory programme (EVOp), an innovation from the UK Natural Environment Research Council (NERC). EVOp is exploring the use of a cloud-based infrastructure in catchment science, developing an exemplar to explore N and P fluxes to inland and coastal waters in the UK from grid to catchment and national scale. EVOp is bringing together for the first time national data sets, models and uncertainty analysis into cloud computing environments to explore and benchmark current predictive capability for national scale biogeochemical modelling. The objective is to develop national biogeochemical modelling capability, capitalising on extensive national investment in the development of science understanding and modelling tools to support integrated catchment management, and supporting knowledge transfer from data rich to data poor regions, The AERC export coefficient model (Johnes et al., 2007) has been adapted to function within the EVOp cloud environment, and on a geoclimatic basis, using a range of high resolution, geo-referenced digital datasets as an initial demonstration of the enhanced national capacity for N and P flux modelling using cloud computing infrastructure. Geoclimatic regions are landscape units displaying homogenous or quasi-homogenous functional behaviour in terms of process controls on N and P cycling

  20. Polar Motion Studies and NOAA's Legacy of International Scientific Cooperation: Ukiah and Gaithersburg Latitude Observatories

    Science.gov (United States)

    Caccamise, D. J., II; Stone, W. A.

    2017-12-01

    In 1895, the International Geodetic Association invited the United States Coast and Geodetic Survey (USC&GS) to join in an unprecedented international effort to observe and measure the earth's polar motion. This effort was in response to the American astronomer Seth C. Chandler Jr. announcing his 1891 discovery that the earth's axis of rotation—and hence the direction of true north—wobbles within the earth with a period of about 14 months, varying latitude everywhere on the globe. In 1899, two astro-geodetic observatories were built in Gaithersburg, Maryland and Ukiah, California with three others in Caloforte, Italy; Kitab, Russia (now Uzbekistan); and Mizusawa, Japan. (A sixth station was located and operated at an astronomical observatory in Cincinnati, Ohio until 1916 using instruments loaned by USC&GS). All five observatories were located along the same parallel - approximately 35 degrees - 8 minutes. The observatories were decommissioned in 1982, and subsequently, NOAA deeded the two remaining U.S. observatories to the cities of Gaithersburg and Ukiah. The observatories and adjacent property were to be used as parkland. Both cities have restored the observatories and opened public parks. Recently, Gaithersburg (Ukiah in progress) has had its latitude observatory dedicated as a National Historic Landmark. In 2014-15, the National Geodetic Survey (NGS, the present-day NOAA successor to the USC&GS) loaned the original zenith telescopes to the communities, returning the observatories to their original configuration. The contribution of NOAA observers and the data collected is still important to astronomers and geophysicists and has practical applications in spacecraft navigation and geospatial positioning. This poster will bring to fruition this multiyear effort among partners by providing examples of NOAA's mission and contribution to science, service, and stewardship at both geodetic observatories, through programs and historic exhibits for students and the

  1. MMT OBSERVATORY 6.5M CLIO RAW DATA OBSERVATIONS OF LCROSS

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains raw observations of the 2009-10-09 impact of the LCROSS spacecraft on the moon by the CLIO instrument on the MMT Observatory 6.5m telescope....

  2. Solar Flare Aimed at Earth

    Science.gov (United States)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  3. Low-noise magnetic observatory variometer with race-track sensors

    International Nuclear Information System (INIS)

    Janošek, M; Petrucha, V; Vlk, M

    2016-01-01

    We present a low-noise, high-stability observatory magnetometer with race-track sensors, as developed by the Czech Technical University in Prague for National Observatory of Athens. As opposed to the standard instruments, we used our novel race-track fluxgate sensors with planar oval core which were cut by state-of-the art pico-second UV-laser. The noise performance of the complete electronics and sensor chain is below 6 pT/√Hz @ 1 Hz. The electronics uses 24-bit 200-Hz A/D converter with simultaneous sampling and all digital processing is done in FPGA. The variometer with the sensors mounted on a MACOR cube has been successfully calibrated by scalar method. (paper)

  4. Reengineering observatory operations for the time domain

    Science.gov (United States)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  5. Improvements in geomagnetic observatory data quality

    DEFF Research Database (Denmark)

    Reda, Jan; Fouassier, Danielle; Isac, Anca

    2011-01-01

    between observatories and the establishment of observatory networks has harmonized standards and practices across the world; improving the quality of the data product available to the user. Nonetheless, operating a highquality geomagnetic observatory is non-trivial. This article gives a record...... of the current state of observatory instrumentation and methods, citing some of the general problems in the complex operation of geomagnetic observatories. It further gives an overview of recent improvements of observatory data quality based on presentation during 11th IAGA Assembly at Sopron and INTERMAGNET...

  6. Taking Charge: Walter Sydney Adams and the Mount Wilson Observatory

    Science.gov (United States)

    Brashear, R.

    2004-12-01

    The growing preeminence of American observational astronomy in the first half of the 20th century is a well-known story and much credit is given to George Ellery Hale and his skill as an observatory-building entrepreneur. But a key figure who has yet to be discussed in great detail is Walter Sydney Adams (1876-1956), Hale's Assistant Director at Mount Wilson Observatory. Due to Hale's illnesses, Adams was Acting Director for much of Hale's tenure, and he became the second Director of Mount Wilson from 1923 to 1946. Behind his New England reserve Adams was instrumental in the growth of Mount Wilson and thus American astronomy in general. Adams was hand-picked by Hale to take charge of stellar spectroscopy work at Yerkes and Mount Wilson and the younger astronomer showed tremendous loyalty to Hale and Hale's vision throughout his career. As Adams assumed the leadership role at Mount Wilson he concentrated on making the observatory a place where researchers worked with great freedom but maintain a high level of cooperation. This paper will concentrate on Adams's early years and look at his growing relationship with Hale and how he came to be the central figure in the early history of Mount Wilson as both a solar and stellar observatory. His education, his years at Dartmouth and Yerkes (including his unfortunate encounter with epsilon Leonis), and his formative years on Mount Wilson are all important in learning how he shaped the direction of Mount Wilson and the development of American astronomy in the first half of the 20th century. This latter history cannot be complete until we bring Adams into better focus.

  7. Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission

    Science.gov (United States)

    Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually

  8. The European Drought Observatory (EDO): Current State and Future Directions

    Science.gov (United States)

    Vogt, Jürgen; Sepulcre, Guadalupe; Magni, Diego; Valentini, Luana; Singleton, Andrew; Micale, Fabio; Barbosa, Paulo

    2013-04-01

    Europe has repeatedly been affected by droughts, resulting in considerable ecological and economic damage and climate change studies indicate a trend towards increasing climate variability most likely resulting in more frequent drought occurrences also in Europe. Against this background, the European Commission's Joint Research Centre (JRC) is developing methods and tools for assessing, monitoring and forecasting droughts in Europe and develops a European Drought Observatory (EDO) to complement and integrate national activities with a European view. At the core of the European Drought Observatory (EDO) is a portal, including a map server, a metadata catalogue, a media-monitor and analysis tools. The map server presents Europe-wide up-to-date information on the occurrence and severity of droughts, which is complemented by more detailed information provided by regional, national and local observatories through OGC compliant web mapping and web coverage services. In addition, time series of historical maps as well as graphs of the temporal evolution of drought indices for individual grid cells and administrative regions in Europe can be retrieved and analysed. Current work is focusing on validating the available products, developing combined indicators, improving the functionalities, extending the linkage to additional national and regional drought information systems and testing options for medium-range probabilistic drought forecasting across Europe. Longer-term goals include the development of long-range drought forecasting products, the analysis of drought hazard and risk, the monitoring of drought impact and the integration of EDO in a global drought information system. The talk will provide an overview on the development and state of EDO, the different products, and the ways to include a wide range of stakeholders (i.e. European, national river basin, and local authorities) in the development of the system as well as an outlook on the future developments.

  9. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    Science.gov (United States)

    2005-08-01

    In August 1999, NASA's Chandra X-ray Observatory opened for business. Six years later, it continues to achieve scientific firsts. "When Chandra opened its sunshade doors for the first time, it opened the possibility of studying the X-ray emission of the universe with unprecedented clarity," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "Already surpassing its goal of a five-year life, Chandra continues to rewrite textbooks with discoveries about our own solar system and images of celestial objects as far as billions of light years away." Based on the observatory's outstanding results, NASA Headquarters in Washington decided in 2001 to extend Chandra s mission from five years to ten. During the observatory s sixth year of operation, auroras from Jupiter, X-rays from Saturn, and the early days of our solar system were the focus of Chandra discoveries close to home -- discoveries with the potential to better understand the dynamics of life on Earth. Jupiter's auroras are the most spectacular and active auroras in the solar system. Extended Chandra observations revealed that Jupiter s auroral X-rays are caused by highly charged particles crashing into the atmosphere above Jupiter's poles. These results gave scientists information needed to compare Jupiter's auroras with those from Earth, and determine if they are triggered by different cosmic and planetary events. Mysterious X-rays from Saturn also received attention, as Chandra completed the first observation of a solar X-ray flare reflected from Saturn's low-latitudes, the region that correlates to Earth's equator and tropics. This observation led scientists to conclude the ringed planet may act as a mirror, reflecting explosive activity from the sun. Solar-storm watchers on Earth might see a surprising benefit. The results imply scientists could use giant planets like Saturn as remote-sensing tools to help monitor X-ray flaring on portions of the sun

  10. Conceptual Design of the International Axion Observatory (IAXO)

    CERN Document Server

    Armengaud, E; Betz, M; Brax, P; Brun, P; Cantatore, G; Carmona, J M; Carosi, G P; Caspers, F; Caspi, S; Cetin, S A; Chelouche, D; Christensen, F E; Dael, A; Dafni, T; Davenport, M; Derbin, A V; Desch, K; Diago, A; Döbrich, B; Dratchnev, I; Dudarev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Galán, J; García, J A; Garza, J G; Geralis, T; Gimeno, B; Giomataris, I; Gninenko, S; Gómez, H; González-Díaz, D; Guendelman, E; Hailey, C J; Hiramatsu, T; Hoffmann, D H H; Horns, D; Iguaz, F J; Irastorza, I G; Isern, J; Imai, K; Jakobsen, A C; Jaeckel, J; Jakovčić, K; Kaminski, J; Kawasaki, M; Karuza, M; Krčmar, M; Kousouris, K; Krieger, C; Lakić, B; Limousin, O; Lindner, A; Liolios, A; Luzón, G; Matsuki, S; Muratova, V N; Nones, C; Ortega, I; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Redondo, J; Ringwald, A; Russenschuck, S; Ruz, J; Saikawa, K; Savvidis, I; Sekiguchi, T; Semertzidis, Y K; Shilon, I; Sikivie, P; Silva, H; Kate, H ten; Tomas, A; Troitsky, S; Vafeiadis, T; Bibber, K van; Vedrine, P; Villar, J A; Vogel, J K; Walckiers, L; Weltman, A; Wester, W; Yildiz, S C; Zioutas, K

    2014-01-01

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{ae}$ with sensitivity $-$for the first time$-$ to values of $g_{ae}$ not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, w...

  11. Outreach to Scientists and to the Public about the Scientific Value of Solar Eclipses

    Science.gov (United States)

    Pasachoff, J.

    2017-12-01

    The Great American Eclipse of August 21, 2017, provided an unprecedented opportunity for outreach among American audiences on a giant scale in the age of social media. Professonal scientists and other educators, however, were not exempt from ignorance of the remaining scientific value of observing solar eclipses, often mistakenly thinking that space satellites or mountaintop observatories could make artificial eclipses as good as natural ones, which they can't. Further, as Chair of the Working Group on Eclipses of the International Astronomical Union and as a frequent observer of solar eclipses in other countries, I felt an obligation to provide at-least-equal hospitality in our country. Here I discuss our welcome to and interaction with eclipse scientists from Greece, Slovakia, Australia, Bulgaria, Iran, China, and Japan and their participation in the eclipse observations. I describe my own outreach about the still-vital solar-eclipse observations through my August 2017 articles in Nature Astronomy and Scientific American as well as through book reviews in Nature and Phi Beta Kappa's Key Reporter and co-authorship of a Resource Letter on Observing Solar Eclipses in the July issue og the American Journal of Physics. I describe my eclipse-day Academic Minute on National Public Radio via WAMC and on http://365daysofastronomy.org, a website started during the International Year of Astronomy. I discuss my blog post on lecturing to pre-school through elementary-school students for the National Geographic Society's Education Blog. I show my Op-Ed pre-eclipse in the Washington Post. I discuss our eclipse-night broadcast of an eclipse program on PBS's NOVA, and its preparation over many months, back as far and farther than the February 26, 2017, annular solar eclipse observed from Argentinian Patagonia, with images from prior eclipses including 2013 in Gabon and 2015 in Svalbard. My work at the 2017 total solar eclipse was supported in large part with grants from the

  12. Searches for high frequency variations in the 8-B neutrino flux at the Sudbury neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Rielage, Keith [Los Alamos National Laboratory; Seibert, Stanley R [Los Alamos National Laboratory; Hime, Andrew [Los Alamos National Laboratory; Elliott, Steven R [Los Alamos National Laboratory; Stonehill, L C [Los Alamos National Laboratory; Wouters, J M [Los Alamos National Laboratory; Aharmim, B [LAURENTIAN UNIV; Ahmed, S N [QUEEN' S UNIV; Anthony, A E [UNIV OF TEXAS; Barros, N [PORTUGAL; Beier, E W [UNIV OF PA; Bellerive, A [CARLETON UNIV; Belttran, B [UNIV OF ALBERTA; Bergevin, M [LBNL; Biller, S D [UNIV OF OXFORD; Boudjemline, K [CARLETON UNIV; Burritt, T H [UNIV OF WASHINGTON; Cai, B [QUEEN' S UNIV; Chan, Y D [LBNL; Chauhan, D [LAURENTIAN UNIV; Chen, M [QUEEN' S UNIV; Cleveland, B T [UNIV OF OXFORD; Cox - Mobrand, G A [UNIV OF WASHINGTON; Dai, X [QUEEN' S UNIV; Deng, H [UNIV OF PA; Detwiler, J [LBNL; Dimarco, M [QUEEN' S UNIV; Doe, P J [UNIV OF WASHINGTON; Drouin, P - L [CARLTON UNIV; Duba, C A [UNIV OF WASHINGTON; Duncan, F A [SNOLAB, SUDBURY; Dunford, M [UNIV OF PA; Earle, E D [QUEEN' S UNIV; Evans, H C [QUEEN' S UNIV; Ewan, G T [QUEEN' S UNIV; Farine, J [LAURENTTIAN UNIV; Fergani, H [UNIV OF OXFORD; Fleurot, F [LAURENTIAN UNIV; Ford, R J [SNOLAB, SUDBURY; Formaggilo, J A [MASSACHUSETTS INST. OF TECH.; Gagnon, N [UNIV OF WASHINGTON; Goon, J Tm [LOUISIANA STATE UNIV; Guillian, E [QUEEN' S UNIV; Habib, S [UNIV OF ALBERTA; Hahn, R L [BNL; Hallin, A L [UNIV OF ALBERTA; Hallman, E D [LAURENTIAN UNIV; Harvey, P J [QUEEN' S UNIV; Hazama, R [UNIV OF WASHINGTON; Heintzelman, W J [UNIV OF PA; Heise, J [SNOLAB, SUDBURY; Helmer, R L [TRIUMF; Howard, C [UNIV OF ALBERTA; Howe, M A [UNIV OF WASHINGTON; Huang, M [UNIV OF TEXAS; Jamieson, B [UNIV OF BRITISH COLUMBIA; Jelley, N A [UNIV OF OXFORD; Keeter, K J [SNOLAB, SUDBURY; Klein, J R [UNIV OF TEXAS; Kos, M [QUEEN' S UNIV; Kraus, C [QUEEN' S UNIV; Krauss, C B [UNIV OF ALBERTA; Kutter, T [LOUISIANA STATE UNIV; Kyba, C C M [UNIV OF PA; Law, J [UNIV OF GUELPH; Lawson, I T [SNOLAB, SUDBURY; Lesko, K T [LBNL; Leslie, J R [QUEEN' S UNIV; Loach, J C [UNIV OF OXFORD; Maclellan, R [QUEEN' S UNIV; Majerus, S [UNIV OF OXFORD; Mak, H B [QUEEN' S UNIV; Maneira, J [PORTUGAL; Martin, R [QUEEN' S UNIV; Mccauley, N [UNIV OF PA; Mc Donald, A B [QUEEN' S UNIV; Mcgee, S [UNIV OF WASHINGTON; Miffin, C [CARLETON UNIV; Miller, M L [MASSACHUSETTS INST. OF TECH.; Monreal, B [MASSACHUSETTS INST. OF TECH.; Monroe, J [MASSACHUSETTS INST. OF TECH; Morissette, B [SNOLAB, SUDBURY; Nickel, B G [UNIV OF GUELPH; Noble, A J [QUEEN' S UNIV; O' Keeffe, H M [UNIV OF OXFORD; Oblath, N S [UNIV OF WASHINGTON; Orebi Gann, G D [UNIV OF OXFORD; Oser, S M [UNIV OF BRITISH COLUMBIA; Ott, R A [MASSACHUSETTS INST. OF TECH.; Peeters, S J M [UNIV OF OXFORD; Poon, A W P [LBNL; Prior, G [LBNL; Reitzner, S D [UNIV OF GUELPH; Robertson, B C [QUEEN' S UNIV; Robertson, R G H [UNIV OF WASHINGTON; Rollin, E [CARLETON UNIV; Schwendener, M H [LAURENTIAN UNIV; Secrest, J A [UNIV OF PA; Seibert, S R [UNIV OF TEXAS; Simard, O [CARLETON UNIV; Sinclair, D [CARLETON UNIV; Sinclair, L [CARLETON UNIV; Skensved, P [QUEEN' S UNIV; Sonley, T J [MASSACHUSETTS INST. OF TECH.; Tesic, G [CARLETON UNIV; Tolich, N [UNIV OF WASHINGTON; Tsui, T [UNIV OF BRITISH COLUMBIA; Tunnell, C D [UNIV OF TEXAS; Van Berg, R [UNIV OF PA; Van Devender, B A [UNIV OF WASHINGTON; Virtue, C J [LAURENTIAN UNIV; Wall, B L [UNIV OF WASHINGTON; Waller, D [CARLETON UNIV; Wan Chan Tseung, H [UNIV OF OXFORD; West, N [UNIV OF OXFORD; Wilkerson, J F [UNIV OF WASHINGTON; Wilson, J R [UNIV OF OXFORD; Wright, A [QUEEN' S UNIV; Yeh, M [BNL; Zhang, F [CARLETON UNIV; Zuber, K [UNIV OF OXFORD

    2009-01-01

    We have peformed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar {sup 8}B neutrinos. The first search looked for any significant peak in the frequency range l/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  13. Correlation of total, diffuse, and direct solar radiation

    Science.gov (United States)

    Buyco, E. H.; Namkoong, D.

    1977-01-01

    Present requirements for realistic solar energy system evaluations necessitate a comprehensive body of solar-radition data. The data should include both diffuse and direct solar radiation as well as their total on an hourly (or shorter) basis. In general, however, only the total solar radiation values were recorded. This report presents a correlation that relates the diffuse component of an hourly total solar radiation value to the total radiation ratio of the maximum value attainable. The data used were taken at the Blue Hill Observatory in Milton, Massachusetts, for the period 1952. The relation - in the form of the data plots - can be used in situations in which only the hourly total radiation data are available but the diffuse component is desired.

  14. Use of MERRA-2 in the National Solar Radiation Database and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit; Lopez, Anthony; Habte, Aron

    2017-07-06

    The National Solar Radiation Database (NSRDB) is a flagship product of NREL that provides solar radiation and ancillary meteorological information through a GIS based portal. This data is provided at a 4kmx4km spatial and 30 minute temporal resolution covering the period between 1998-2015. The gridded data that is distributed by the NSRDB is derived from satellite measurements using the Physical Solar Model (PSM) that contains a 2-stage approach. This 2-stage approach consists of first retrieving cloud properties using measurement from the GOES series of satellites and using that information in a radiative transfer model to estimate solar radiation at the surface. In addition to the satellite data the model requires ancillary meteorological information that is provided mainly by NASA's Modern Era Retrospecitve Analysis for Research and Applications (MERRA-2) 2 model output. This presentation provides an insight into how the NSRDB is developed using the PSM and how the various sources of data including the MERRA-2 data is used during the process.

  15. Comparación de los datos de áreas de manchas solares de los telescopios de la red SOON (``Solar Optical Observing Network'')

    Science.gov (United States)

    Leuzzi, L.; Balmaceda, L.; Francile, C.

    2017-10-01

    At present different studies reveal that the observations of the size of sunspots made by the network of telescopes SOON (Solar Optical Observing Network), differ from those obtained by other observatories although there is still no consensus as to the magnitude of that difference . In order to have a better understanding of the causes that give rise to these discrepancies, we present a detailed study of the sunspot series from each of the observatories that belong to the SOON network, covering the period 1982 - present and whose importance lies in the fact that they serve as a link between the historical record of the Greenwich Royal Observatory (1874-1976) and the most recent observations (as of 1976).

  16. Lessons Learned to Date in Developing the Virtual Space Physics Observatory

    Science.gov (United States)

    Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.

    2005-12-01

    We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.

  17. Thermospheric response observed over Fritz peak, Colorado, during two large geomagnetic storms near solar cycle maximum

    International Nuclear Information System (INIS)

    Hernandez, G.; Roble, R.G.; Ridley, E.C.; Allen, J.H.

    1982-01-01

    Nightime thermospheric winds and temperatures have been measured over Fritz Peak Observatory, Colorado (39.9 0 N, 105.5 0 W), with a high resolution Fabry-Perot spectrometer. The winds and temperatures are obtained from the Doppler shifts and line profiles of the (O 1) 15,867K (630 nm) line emission. Measurements made during two large geomagnetic storm periods near solar cycle maximum reveal a thermospheric response to the heat and momentum sources associated with these storms that is more complex than the ones measured near solar cycle minimum. In the earlier measurements made during solar cycle minimum, the winds to the north of Fritz Peak Observatory had an enhanced equatorward component and the winds to the south were also equatorward, usually with smaller velocities. The winds measured to the east and west of the observatory both had an enhanced westward wind component. For the two large storms near the present solar cycle maximum period converging winds are observed in each of the cardinal directions from Fritz Peak Observatory. These converging winds with speeds of hundreds of meters per second last for several hours. The measured neutral gas temperature in each of the directions also increases several hundred degrees Kelvin. Numerical experiments done with the NCAR thermospheric general circulation model (TGCM) suggest that the winds to the east and north of the station are driven by high-latitude heating and enhanced westward ion drag associated with magnetospheric convection. The cause of the enhanced poleward and eastward winds measured to the south and west of Fritz Peak Observatory, respectively, is not known. During geomagnetic quiet conditions the circulation is typically from the soutwest toward the northeast in the evening hours

  18. Education in Science Centers: Evaluating School Visits to an Astronomical Observatory in Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Donizete Colombo Junior

    2009-03-01

    Full Text Available The present article analyzes the activity “Guided Visit of School Groups” carried out at Astronomical Observatory of the Center for Scientific and Cultural Diffusion (CDCC of University of Sao Paulo (USP with K4 and K5 pupils. The objectives of this research were to identify influences of such activity on learning of astronomical concepts and on pupils’ motivation. The results demonstrate that pupils have difficulties to understand Solar System concepts and the distances involved, on the other hand, the activity motivates the pupils to return with their parents and friends to the Observatory. At last, the success of visits to science centers aiming at the learning of basic concepts and motivation comprises at least three moments: the one that precedes the visit, the visit itself and the return to the classroom.

  19. Citizen CATE: Evaluating Outcomes of a Solar Eclipse Citizen Science Project

    Science.gov (United States)

    Penn, M. J.; Haden, C.

    2017-12-01

    On August 21, 2017, a total solar eclipse will be visible along a path of totality from Oregon to South Carolina. The Citizen Continental-America Telescopic Eclipse Experiment (CATE) will use scientists, students and volunteers to take images of the solar corona using 68 identical telescopes, software and instrument packages along the 2,500-mile path of totality. CATE partners include National Solar Observatory scientists, university faculty and students, high school students, and professional and amateur astronomers. NASA funded CATE educational components including training undergraduates and volunteers on solar imaging software and equipment. The National Science Foundation and corporations including DayStar, MathWorks, Celestron and ColorMaker funded equipment. Undergraduates participated in summer research experiences to build their capacity for gathering eclipse data, and subsequently trained volunteers across the U.S. Aligned to NASA education goals, CATE goals range from providing an authentic research experience for students and lifelong learners, to making state-of-the-art solar coronal observations, to increasing scientific literacy of the public. While project investigators are examining the wealth of scientific data that will come from CATE, evaluators are examining impacts on participants. Through mixed methods, evaluators are examining outcomes related to changes in volunteers' knowledge, skills and attitudes. Additionally, the study will examine how citizen science astronomy using CATE equipment will continue after the eclipse to sustain project impacts. Preliminary findings for undergraduates indicate that they are gaining knowledge and skills related to studying solar coronal phenomena, conducting rigorous scientific research, and interfacing with the public to conduct outreach. Preliminary findings for citizen scientists indicate a high level of engagement in the research, and that they are gaining new knowledge and skills related to solar

  20. Urban observatories opportunities for environmental monitoring: solid wastes.

    Science.gov (United States)

    Rojas-Caldelas, R I; Corona Zambrano, E A

    2008-01-01

    Towns concentrate around 50% of world-wide population and the trend is oriented to underscore an urban profile of population. In addition, towns have become important for their economic contribution to the Gross Internal Product. The negative side of towns is the environmental and social impacts as a result of productive and domestic activities, besides the lack of available data. In order to overcome these shortcomings, the United Nations has established a project of urban monitoring throughout the Global Network of Urban Observatories; Mexico joined the project in 2005. The Local Urban Observatory of Mexicali has the task to produce information about cities that is useful to design public policies. Some of this information deals with a set of environmental indicators in the United Nations Habitat Agenda, which includes solid wastes. Therefore, this paper deals with two main topics; firstly, from the Habitat Agenda, a comparative urban analysis of waste production and coverage of domestic waste collection services; secondly, from the Local Agenda, the identification and ranking of environmental problems according to public perception coming from people involved in the municipal planning and decision making process. Results will be used to develop local indicators and public environmental policies.

  1. Challenges and Approach for Making the Top End Optical Assembly for the 4-meter Advanced Technology Solar Telescope

    Science.gov (United States)

    Canzian, Blaise; Barentine, J.; Hull, T.

    2012-01-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy

  2. Investigations on physics of planetary atmospheres and small bodies of the Solar system, extrasolar planets and disk structures around the stars

    Science.gov (United States)

    Vidmachenko, A. P.; Delets, O. S.; Dlugach, J. M.; Zakhozhay, O. V.; Kostogryz, N. M.; Krushevska, V. M.; Kuznyetsova, Y. G.; Morozhenko, O. V.; Nevodovskyi, P. V.; Ovsak, O. S.; Rozenbush, O. E.; Romanyuk, Ya. O.; Shavlovskiy, V. I.; Yanovitskij, E. G.

    2015-12-01

    The history and main becoming stages of Planetary system physics Department of the Main astronomical observatory of National academy of Sciences of Ukraine are considered. Fundamental subjects of department researches and science achievements of employees are presented. Fields of theoretical and experimental researches are Solar system planets and their satellites; vertical structures of planet atmospheres; radiative transfer in planet atmospheres; exoplanet systems of Milky Way; stars having disc structures; astronomical engineering. Employees of the department carry out spectral, photometrical and polarimetrical observations of Solar system planets, exoplanet systems and stars with disc structures. 1. From the history of department 2. The main directions of department research 3. Scientific instrumentation 4. Telescopes and observation stations 5. Theoretical studies 6. The results of observations of planets and small Solar system bodies and their interpretation 7. The study of exoplanets around the stars of our galaxy 8. Spectral energy distribution of fragmenting protostellar disks 9. Cooperation with the National Technical University of Ukraine (KPI) and National University of Ukraine "Lviv Polytechnic" to study the impact of stratospheric aerosol changes on weather and climate of the Earth 10. International relations. Scientific and organizational work. Scientific conferences, congresses, symposia 11. The main achievements of the department 12. Current researches 13. Anniversaries and awards

  3. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    Energy Technology Data Exchange (ETDEWEB)

    Scargle, Jeffrey D.; Worden, Simon P. [NASA Ames Research Center, Moffett Field, CA, 94035 (United States); Keil, Stephen L. [National Solar Observatory, P.O. Box 57, Sunspot, NM 88349 (United States)

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  4. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  5. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  6. Contamination control requirements implementation for the James Webb Space Telescope (JWST), part 2: spacecraft, sunshield, observatory, and launch

    Science.gov (United States)

    Wooldridge, Eve M.; Schweiss, Andrea; Henderson-Nelson, Kelly; Woronowicz, Michael; Patel, Jignasha; Macias, Matthew; McGregor, R. Daniel; Farmer, Greg; Schmeitzky, Olivier; Jensen, Peter; Rumler, Peter; Romero, Beatriz; Breton, Jacques

    2014-09-01

    This paper will continue from Part 1 of JWST contamination control implementation. In addition to optics, instruments, and thermal vacuum testing, JWST also requires contamination control for a spacecraft that must be vented carefully in order to maintain solar array and thermal radiator thermal properties; a tennis court-sized sunshield made with 1-2 mil Kapton™ layers that must be manufactured and maintained clean; an observatory that must be integrated, stowed and transported to South America; and a rocket that typically launches commercial payloads without contamination sensitivity. An overview of plans developed to implement contamination control for the JWST spacecraft, sunshield, observatory and launch vehicle will be presented.

  7. Solar physics in Potsdam. (German Title: Sonnenphysik in Potsdam)

    Science.gov (United States)

    Staude, Jürgen

    Solar research initiated the establishment of the Astrophysical Observatory Potsdam (AOP) in 1874. The present contribution outlines the development of solar physics in Potsdam from the early history of the AOP to this day. The main topics are the work of Karl Schwarzschild, the investigations related to the general theory of relativity, the foundation of the Einstein tower, Walter Grotrian's founding of modern coronal physics, and the investigations of sunspot magnetic fields.

  8. Max '91: Flare research at the next solar maximum

    Science.gov (United States)

    Dennis, Brian; Canfield, Richard; Bruner, Marilyn; Emslie, Gordon; Hildner, Ernest; Hudson, Hugh; Hurford, Gordon; Lin, Robert; Novick, Robert; Tarbell, Ted

    1988-01-01

    To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories. A program to enhance capabilities in these areas in preparation for the next solar maximum in 1991 is recommended. The major scientific issues are described, and required observations and coordination of observations and analyses are detailed. A program plan and conceptual budgets are provided.

  9. Max '91: flare research at the next solar maximum

    International Nuclear Information System (INIS)

    Dennis, B.; Canfield, R.; Bruner, M.

    1988-01-01

    To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories. A program to enhance capabilities in these areas in preparation for the next solar maximum in 1991 is recommended. The major scientific issues are described, and required observations and coordination of observations and analyses are detailed. A program plan and conceptual budgets are provided

  10. National Pyranometers comparison of solar thermal labs in Mexico

    Science.gov (United States)

    Castillo-Matadamas, H. A.; Molina-Vazquez, J. C.; Moreno-Quintanar, G.; Fuentes-Toledo, A.; Ortega-Avila, N.; Rodríguez-González, J. M.; Barrón-Mancilla, J. A.; Navarrete-Gonzalez, J. J.

    2017-01-01

    The results of the first national comparison of pyranometers used in testing laboratories of solar water heating are reported. In the comparison carried out at the facilities of Centro Nacional de Metrología (CENAM-México) participated three testing laboratories, a university and CENAM with seven secondary standards and first class pyranometers. The measurement results for all instruments were adequate, considering that the deviations found in all cases for global irradiance measurements greater than 500 W / m2 were in a band of +/- 2.5%, even though pyranometers have different dates of calibration.

  11. National Pyranometers comparison of solar thermal labs in Mexico

    International Nuclear Information System (INIS)

    Castillo-Matadamas, H A; Molina-Vazquez, J C; Moreno-Quintanar, G; Fuentes-Toledo, A; Ortega-Avila, N; Rodríguez-González, J M; Barrón-Mancilla, J A; Navarrete-Gonzalez, J J

    2017-01-01

    The results of the first national comparison of pyranometers used in testing laboratories of solar water heating are reported. In the comparison carried out at the facilities of Centro Nacional de Metrología (CENAM-México) participated three testing laboratories, a university and CENAM with seven secondary standards and first class pyranometers. The measurement results for all instruments were adequate, considering that the deviations found in all cases for global irradiance measurements greater than 500 W / m 2 were in a band of +/- 2.5%, even though pyranometers have different dates of calibration. (paper)

  12. Astronomia solare e ottica con il foro stenopeico

    Science.gov (United States)

    Sigismondi, Costantino

    The observation of the Sun with pinholes was started in Florence's Cathedral in 1475, and in Ulugh Beg observatory in Samarcand in 1424-29, well before the invention of the telescope, for measuring the solar position and the variation of the obliquity of the Earth's axis. Later, with Kepler, pinholes' telescopes were used to follow the solar spots when the telescopes made by Galileo were not available. The use of pinholes in positional solar astrometry continued successfully up to 1800 in some great Italian and French Churches. Nowadays by using pinholes it is possible to show the principles of positional astronomy and imaging to students with instruments very easy to be built at almost no cost. The concepts of focal length, best focus, angular resolution, atmospheric seeing and atmospheric transmittance can be verified with such simple devices. Such pinhole telescopes have been built by primary-school students at the Astronomical Observatory dedicated to the Pope astronomer Sylvester II, located in Bukowiec, Poland, which is at its third year of activity. The largest solar spots have been observed clearly with these instruments, demonstrating the principles discussed in this presentation. The light cast by one of this devices with 70 m of focal length and 1 cm of diameter has permitted to repeat the experiences on the diffraction of the light, made in 1648 by the Jesuits Riccioli and Grimaldi.

  13. The sunspot databases of the Debrecen Observatory

    Science.gov (United States)

    Baranyi, Tünde; Gyori, Lajos; Ludmány, András

    2015-08-01

    We present the sunspot data bases and online tools available in the Debrecen Heliophysical Observatory: the DPD (Debrecen Photoheliographic Data, 1974 -), the SDD (SOHO/MDI-Debrecen Data, 1996-2010), the HMIDD (SDO/HMI-Debrecen Data, HMIDD, 2010-), the revised version of Greenwich Photoheliographic Data (GPR, 1874-1976) presented together with the Hungarian Historical Solar Drawings (HHSD, 1872-1919). These are the most detailed and reliable documentations of the sunspot activity in the relevant time intervals. They are very useful for studying sunspot group evolution on various time scales from hours to weeks. Time-dependent differences between the available long-term sunspot databases are investigated and cross-calibration factors are determined between them. This work has received funding from the European Community's Seventh Framework Programme (FP7/2012-2015) under grant agreement No. 284461 (eHEROES).

  14. Ad-hoc Content-based Queries and Data Analysis for Virtual Observatories, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Aquilent, Inc. proposes to support ad-hoc, content-based query and data retrieval from virtual observatories (VxO) by developing 1) Higher Order Query Services that...

  15. Computing Infrastructure and Remote, Parallel Data Mining Engine for Virtual Observatories, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a state-of-the-art data mining engine that extends the functionality of Virtual Observatories (VO) from data portal to science analysis...

  16. NEMO-SN-1 the first 'real-time' seafloor observatory of ESONET

    International Nuclear Information System (INIS)

    Favali, Paolo; Beranzoli, Laura; D'Anna, Giuseppe; Gasparoni, Francesco; Gerber, Hans W.

    2006-01-01

    The fruitful collaboration between Italian Research Institutions, particularly Istituto Nazionale di Fisica Nucleare (INFN) and Istituto Nazionale di Geofisica e Vulcanologia (INGV) together with Marine Engineering Companies, led to the development of NEMO-SN-1, the first European cabled seafloor multiparameter observatory. This observatory, deployed at 2060 m w.d. about 12 miles off-shore the Eastern coasts of Sicily (Southern Italy), is in real-time acquisition since January 2005 and addressed to different set of measurements: geophysical and oceanographic. In particular the SN-1 seismological data are integrated in the INGV land-based national seismic network, and they arrive in real-time to the Operative Centre in Rome. In the European Commission (EC) European Seafloor Observatory NETwork (ESONET) project, in connection to the Global Monitoring for Environment and Security (GMES) action plan, the NEMO-SN-1 site has been proposed as an European key area, both for its intrinsic importance for geo-hazards and for the availability of infrastructure as a stepwise development in GMES program. Presently, NEMO-SN-1 is the only ESONET site operative. The paper gives a description of SN-1 observatory with examples of data

  17. 8 years of Solar Spectral Irradiance Variability Observed from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, Luc; Bolsée, David; Meftah, Mustapha; Irbah, Abdenour; Hauchecorne, Alain; Bekki, Slimane; Pereira, Nuno; Cessateur, Marchand; Gäel; , Marion; et al.

    2016-10-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its variability in the UV, as measured by SOLAR/SOLSPEC for 8 years. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  18. Building a pipeline of talent for operating radio observatories

    Science.gov (United States)

    Wingate, Lory M.

    2016-07-01

    The National Radio Astronomy Observatory's (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering in a focused, nine-week, continuous effort that includes a hands-on build project with the objective of constructing and verifying the performance of a student-level basic radio instrument. The combination of using a project management (PM)/systems engineering (SE) methodical approach based on internationally recognized standards in completing this build is to demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal results. It also exposes the learner to basic radio science theory. An additional simple research project is used to impress upon the learner both the methodical approach, and to provide a basic understanding of the functional area of interest to the learner. This program is designed to teach sustainable skills throughout the full spectrum of activities associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners thereby return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented1 groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  19. Computing Infrastructure and Remote, Parallel Data Mining Engine for Virtual Observatories, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SciberQuest, Inc. proposes to develop a state-of-the-art data mining engine that extends the functionality of Virtual Observatories (VO) from data portal to science...

  20. Using the Critical Zone Observatory Network to Put Geology into Environmental Science

    Science.gov (United States)

    Brantley, S. L.

    2017-12-01

    The use of observatories to study the environment in the U.S.A. arguably began in 1910. Since then, many environmental observatories were set up to study impacts of land use change. At that time, observatories did not emphasize geological structure. Around 2004, scientists in the U.S.A. began to emphasize the need to study the Earth's surface as one integrated system that includes the geological underpinnings. In 2007, the Geosciences Directorate within the U.S. National Science Foundation established the Critical Zone Observatory (CZO) program. Today the CZO network has grown to 9 observatories, and 45 countries now host such observatories. A CZO is an observatory that promotes the study of the entire layer of Earth's surface from vegetation canopy to groundwater as one entity. The observatories are somewhat similar to other NSF-funded observatories such as Long Term Ecological Research (LTER) sites but they differ in that they emphasize the history of the landscape and how it mediates today's fluxes. LTERs largely focus on ecological science. The concepts of CZ science and CZOs - developed by the Geosciences Directorate - have been extraordinarily impactful: we now have deeper understanding of how surficial processes respond to tectonic, climatic, and anthropogenic drivers. One reason CZOs succeed is that they host scientists who make measurements in one place that cross timescales from that of the meteorologist to the geologist. The NSF Geosciences Directorate has thus promoted insights showing that many of the unexplained mysteries of "catchment science" or "ecosystem science" can be explained by the underlying geological story of a site. The scientific challenges of this endeavor are dwarfed, however, by cultural challenges. Specifically, while both CZOs and observatories such as LTERs struggle to publish many types of data from different disciplines in a continually changing cyber-world, only CZO scientists find they must repeatedly explain why such

  1. Local helioseismology: three-dimensional imaging of the solar interior

    NARCIS (Netherlands)

    Gizon, L.; Birch, A.C.; Spruit, H.C.

    2010-01-01

    The Sun supports a rich spectrum of internal waves that are continuously excited by turbulent convection. The Global Oscillation Network Group (GONG) network and the SOHO/MDI (Solar and Heliospheric Observatory/Michelson Doppler Imager) space instrument provide an exceptional database of spatially

  2. National solar energy education directory. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Corcoleotes, G; Cronin, S; Kramer, K; O& #x27; Connor, K

    1980-01-01

    The information contained in this directory is derived from responses to a national survey of educational institutions and organizations involved in solar energy educational activities beyond the secondary school level. Phone calls and follow-up mail requests were used to gather additional information when necessary. Every survey instrument was read, coded, and edited before entry into the data base from which this directory was produced. The Directory is organized alphabetically by state. Institutions and organizations within each state are categorized according to type (Colleges and Universities, Junior/Community Colleges, Vocational/Technical Schools, and Other Educational Institutions and Organizations) and listed alphabetically within these categories. Within each institutional listing the amount of information provided will vary according to the completeness of the survey response received from that institution. (MHR)

  3. ONERC Observatoire National sur les Effets du Rechauffement Climatique (National Observatory of Climate warming effects). Report to the Prime Minister and to Parliament. Climate changes and public health risks in France

    International Nuclear Information System (INIS)

    2010-01-01

    After having recalled the climate change context and the activities of the ONERC (the French National Observatory of Climate Warming Effects) since its previous report, this report gathers several contributions by as many scientists. They propose analysis, comments and discussions on various topics: human diseases which might be influenced by climate change in France (heat waves and allergies, emergence of animal and human diseases, potential impacts of climate change on vector-borne diseases, infectious diseases in overseas territories, public health consequences), surveillance and health alert systems (infectious disease national surveillance and monitoring network, emergency response, satellite imagery, public health and risk management, lessons learned from the chikungunya pandemic), public health and risk management (overview of international works on the relationship between climate change and public health, public health consequences of climate change)

  4. Solar Filament Extraction and Characterizing

    Science.gov (United States)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  5. Augmentation of Virtual Space Physics Observatory Services to Expand Data Access Capabilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aquilent, Inc. proposes to support the effort of Virtual Space Physics Observatory (VSPO) by developing services to expand the VSPO search capabilities, developing...

  6. The variations of oxygen emissions in corresponding to Earth's aurora in low latitude region under influence of solar wind dynamics

    Science.gov (United States)

    Jamlongkul, P.; Wannawichian, S.

    2017-12-01

    Earth's aurora in low latitude region was studied via time variations of oxygen emission spectra, simultaneously with solar wind data. The behavior of spectrum intensity, in corresponding with solar wind condition, could be a trace of aurora in low latitude region including some effects of high energetic auroral particles. Oxygen emission spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) at 2.4-m diameter telescope at Thai National Observatory, Inthanon Mountain, Chiang Mai, Thailand, during 1-5 LT on 5 and 6 February 2017. The observed spectral lines were calibrated via Dech95 - 2D image processing program and Dech-Fits spectra processing program for spectrum image processing and spectrum wavelength calibration, respectively. The variations of observed intensities each day were compared with solar wind parameters, which are magnitude of IMF (|BIMF|) including IMF in RTN coordinate (BR, BT, BN), ion density (ρ), plasma flow pressure (P), and speed (v). The correlation coefficients between oxygen spectral emissions and different solar wind parameters were found to vary in both positive and negative behaviors.

  7. The Pulkovo Observatory in the last 50 years through the eyes of its Learned Secretary Yu. I. Vitinsky.

    Science.gov (United States)

    Zhukov, V. Yu.; Soboleva, T. V.

    A solar physicist, a Pulkovo astronomer, Yury Ivanovich Vitinsky (1926-2003) was the author of 210 scientific papers known in both Russia and abroad. He worked in the Observatory for about half a century (1953-2002) and held the office of the Learned Secretary of the Russian Academy of Sciences Main Astronomical Observatory for 35 years (1965-2000). In the last years of his life, Vitinsky brought his recollections that he titled "My Pulkovo" to the Main Astronomical Observatory Archive. His memoirs narrate about problems of the astronomical science, staff members and deeds of Pulkovo, things he thought of an events he was through. This is the half-a-century history of the Pulkovo Observatory in biographies of persons. The writer of the Recollections mentions the names of fifty persons most of whom are the Main Astronomical Observatory staff members that he worked with side by side. The memoirs provide accurate descriptions that are brief yet rather capacious of the author's Pulkovo colleagues, as well as other astronomers. The language of Vitinsky's recollection is good and clear. His memoirs contain moderate balanced views of people and events and provide objective and trustworthy data. "My Pulkovo" is an indispensable biographical source for the historian of the astronomical science, the Pulkovo Observatory and its scholarly staff members of the most recent decades. It is also just an interesting human document. In 2006, Yury Ivanovich would have been eighty.

  8. Statistical Studies of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars

    Science.gov (United States)

    Namekata, Kosuke; Sakaue, Takahito; Watanabe, Kyoko; Asai, Ayumi; Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Honda, Satoshi; Ishii, Takako T.; Ikuta, Kai; Nogami, Daisaku; Shibata, Kazunari

    2017-12-01

    Recently, many superflares on solar-type stars have been discovered as white-light flares (WLFs). The statistical study found a correlation between their energies (E) and durations (τ): τ \\propto {E}0.39, similar to those of solar hard/soft X-ray flares, τ \\propto {E}0.2{--0.33}. This indicates a universal mechanism of energy release on solar and stellar flares, i.e., magnetic reconnection. We here carried out statistical research on 50 solar WLFs observed with Solar Dynamics Observatory/HMI and examined the correlation between the energies and durations. As a result, the E–τ relation on solar WLFs (τ \\propto {E}0.38) is quite similar to that on stellar superflares (τ \\propto {E}0.39). However, the durations of stellar superflares are one order of magnitude shorter than those expected from solar WLFs. We present the following two interpretations for the discrepancy: (1) in solar flares, the cooling timescale of WLFs may be longer than the reconnection one, and the decay time of solar WLFs can be elongated by the cooling effect; (2) the distribution can be understood by applying a scaling law (τ \\propto {E}1/3{B}-5/3) derived from the magnetic reconnection theory. In the latter case, the observed superflares are expected to have 2–4 times stronger magnetic field strength than solar flares.

  9. National radiotherapy observatory. Survey report: status at the end of 2007

    International Nuclear Information System (INIS)

    2009-01-01

    After a presentation of the observatory, of its organisation, and of its statistical database, this report presents and comments data for 2007. It presents the French radiotherapy centres, and data about their equipment (stock, age, distribution among public and private centres), about the time distribution between treatment, quality control and maintenance, about treatment preparation, about equipment for treatment quality control, about curie-therapy. It presents and comments data about oncological radiotherapy and curie-therapy activity in 2007, about medical and paramedical personnel, about patients in terms of professional category, about sessions per patient, etc

  10. National radiotherapy observatory. Survey report: status at the end of 2006

    International Nuclear Information System (INIS)

    2008-01-01

    After a presentation of the observatory, of its organisation, and of its statistical database, this report presents and comments data for 2006. It presents the French radiotherapy centres, and data about their equipment (stock, age, distribution among public and private centres), about the time distribution between treatment, quality control and maintenance, about treatment preparation, about equipment for treatment quality control, about curie-therapy. It presents and comments data about oncological radiotherapy and curie-therapy activity in 2006, about medical and paramedical personnel, about patients in terms of professional category, about sessions per patient, etc

  11. Morro Azul Observatory: A New Center for Teaching and Popularization of Astronomy.

    Science.gov (United States)

    Bretones, Paulo Sergio; Cardoso de Oliveira, Vladimir

    2002-08-01

    In 1999, the Instituto Superior de Ciências Aplicadas (ISCA Faculdades de Limeira) started a project to build an observatory and initiate several astronomy related activities in the city of Limeira and region (São Paulo state) with the aim of teaching and popularizing astronomy. After contracting teachers, a technician and an intern, the Morro Azul Observatory was inaugurated in March 2000 as a part of the geosciences department of ISCA Faculdades. This poster describes the development phases of the Observatory, the activities initiated by the Observatory, and assesses the impact of the project. Several issues will be discussed such as the criteria for choosing the site, buildings, instruments, group visits, and particularly the goals that were reached. The Observatory, as described here, serves as a model for other centers with the same purpose in the country. The achievements of this project include the creation of two astronomical disciplines for the geography course and liaisons with other courses such as tourism, pedagogy, social communication and engineering. New activities were initiated, educational materials created, and the Observatory is now part of the regions teaching network and is in contact with other Brazilian and foreign centers. This poster presents the results from report analyses, visitor records, the local media, goal strategy assessment, and the current state of the project. It concludes with an evaluation of the social commitment of the Observatory, its initiatives for the constant renewal and growth of the project, its policy of maintaining the activities and interchange with other national and international astronomy centers, and the future perspectives in terms of its contribution for the research in science education.

  12. Statistical Investigation and Modeling of Sungrazing Comets Discovered with the Solar and Heliospheric Observatory

    Science.gov (United States)

    Sekanina, Zdenek

    2002-02-01

    More than 300 sungrazing comets, most of them discovered with the Solar and Heliospheric Observatory (SOHO) coronagraphs since the beginning of 1996, are known to belong to the Kreutz group or system. Moving about the Sun in similar orbits, they are of indisputably common parentage and represent by far the most extensive data set in the history of investigations of cometary splitting. This study compares the SOHO sungrazers, which always disappear during their approach to the Sun, with the sungrazers detected earlier with the other space-borne coronagraphs (Solwind and Solar Maximum Mission [SMM]) as well as with the bright members of the Kreutz system, discovered from the ground between 1843 and 1970. Collected, summarized, and reviewed information on the sungrazers' light curves indicates that there is a difference of 20 mag (a factor of 108 in brightness) between the brightest sungrazer, C/1882 R1, and the faintest objects detectable with the SOHO instruments. The headless comet C/1887 B1 is suggested to be a transition object between the bright sungrazers and the coronagraphically discovered ones: its physical behavior was similar to that of the latter comets, but it survived the perihelion passage. This study also (1) examines temporal and spatial distributions of the SOHO sungrazers; (2) depicts correlations among their orbital elements; (3) distinguishes among tidally triggered, post-tidal, and terminal fragmentation; (4) reiterates the conclusion made in an earlier paper that post-tidal, secondary fragmentation events are occurring throughout the orbit, including the region of aphelion; (5) determines the relationship between a breakup's location in the orbit and the perturbations of the orbital elements of a fragment caused by the momentum it acquires during the separation from the parent; (6) shows that collisions of the Kreutz system comets with the Sun are clearly possible; (7) finds that minor fragments acquire enough extra momentum during each of the

  13. An extreme ultraviolet wave associated with a failed eruption observed by the Solar Dynamics Observatory

    Science.gov (United States)

    Zheng, R.; Jiang, Y.; Yang, J.; Bi, Y.; Hong, J.; Yang, B.; Yang, D.

    2012-05-01

    Aims: Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory (SDO) observations, we present an extreme ultraviolet (EUV) wave associated with a failed filament eruption that generated no coronal mass ejection (CME) on 2011 March 1. We aim at understanding the nature and origin of this EUV wave. Methods: Combining the high-quality observations in the photosphere, the chromosphere, and the corona, we studied the characteristics of the wave and its relations to the associated eruption. Results: The event occurred at an ephemeral region near a small active region. The continuous magnetic flux cancelation in the ephemeral region produced pre-eruption brightenings and two EUV jets, and excited the filament eruption, accompanying it with a microflare. After the eruption, the filament material appeared far from the eruption center, and the ambient loops seemed to be intact. It was evident that the filament eruption had failed and was not associated with a CME. The wave happened just after the north jet arrived, and apparently emanated ahead of the north jet, far from the eruption center. The wave propagated at nearly constant velocities in the range of 260-350 km s-1, with a slight negative acceleration in the last phase. Remarkably, the wave continued to propagate, and a loop in its passage was intact when wave and loop met. Conclusions: Our analysis confirms that the EUV wave is a true wave, which we interpret as a fast-mode wave. In addition, the close temporal and spatial relationship between the wave and the jet provides evidence that the wave was likely triggered by the jet when the CME failed to happen. Three movies are available in electronic form at http://www.aanda.org

  14. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    Science.gov (United States)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  15. End-to-end operations at the National Radio Astronomy Observatory

    Science.gov (United States)

    Radziwill, Nicole M.

    2008-07-01

    In 2006 NRAO launched a formal organization, the Office of End to End Operations (OEO), to broaden access to its instruments (VLA/EVLA, VLBA, GBT and ALMA) in the most cost-effective ways possible. The VLA, VLBA and GBT are mature instruments, and the EVLA and ALMA are currently under construction, which presents unique challenges for integrating software across the Observatory. This article 1) provides a survey of the new developments over the past year, and those planned for the next year, 2) describes the business model used to deliver many of these services, and 3) discusses the management models being applied to ensure continuous innovation in operations, while preserving the flexibility and autonomy of telescope software development groups.

  16. Image of the Quasar 3C 273 Taken by the High Energy Astronomy Observatory (HEAO)-2

    Science.gov (United States)

    1979-01-01

    This image is an observation of Quasar 3C 273 by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. It reveals the presence of a new source (upper left) with a red shift that indicates that it is about 10 billion light years away. Quasars are mysterious, bright, star-like objects apparently located at the very edge of the visible universe. Although no bigger than our solar system, they radiate as much visible light as a thousand galaxies. Quasars also emit radio signals and were previously recognized as x-ray sources. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2 was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  17. Solar Newsletter | Solar Research | NREL

    Science.gov (United States)

    more about work by this consortium, which crosses national laboratories, on new materials and designs information on NREL's research and development of solar technologies. To receive new issues by email prize, focused on solar energy technologies, and will release the prize rules and open registration

  18. Griffith Observatory: Hollywood's Celestial Theater

    Science.gov (United States)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  19. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  20. Triggers for the Pierre Auger Observatory, the current status and plans for the future

    CERN Document Server

    Szadkowski, Z

    2009-01-01

    The Pierre Auger Observatory is a multi-national organization for research on ultra-high energy cosmic rays. The Southern Auger Observatory (Auger-South) in the province of Mendoza, Argentina, has been completed in 2008. First results on the energy spectrum, mass composition and distribution of arrival directions on the southern sky are really impressive. The planned Northern Auger Observatory in Colorado, USA, (Auger-North) will open a new window into the universe and establish charged particle astronomy to determine the origin and nature of ultra-high energy cosmic rays. These cosmic particles carry information complementary to neutrinos and photons and to gravitational waves. They also provide an extremely energetic beam for the study of particle interactions at energies that thirty times higher than those reached in terrestrial accelerators. The Auger Observatory is a hybrid detector consisting of a Surface Detector (SD) and an atmospheric Fluorescence Detector (FD). The hybrid data set obtained when both...

  1. A Barnard's Star Perturbation Search Using McCormick Observatory Photographic Plate Material

    Science.gov (United States)

    Bartlett, J.; Ianna, P.

    2001-05-01

    Barnard's Star is of particular interest due to its high proper motion, nearness to the Solar System, and previous claims of planetary companions. Based upon observations made at the Sproul Observatory between 1916 and 1962, Peter van de Kamp claimed the star had a 24-year period and a planetary companion of about 1.6 Jupiter masses (Van de Kamp, AJ, 68, 515, 1963). Later, based on Sproul observations from 1938 to 1974, Van de Kamp found that the perturbation was better fit by two companions with 11.5- and 20 or 25-year orbits and corresponding masses of 1 and 0.5 Jupiter masses (Van de Kamp, ARA&A, 13, 295, 1975). Searches by other observers over shorter periods of time or with fewer exposures failed to find clear indications of planetary companions (Gatewood and Eichhorn, AJ, 78, 769, 1973). However, the McCormick Observatory has more than 900 exposures made on photographic plates between 1969 and 1998. In view of the continuing controversy, reviewing these data to identify any perturbations indicative of a companion is worthwhile. Therefore, we scanned the plates on the microdensitometer (PDS) at the McCormick Observatory. We present the results of a time-series analysis to search these observations for one or more perturbations. We acknowledge support from NSF grant AST 98-20711 and from Litton Marine Systems, Incorporated.

  2. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    Science.gov (United States)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  3. Responses of Solar Irradiance and the Ionosphere to an Intense Activity Region

    Science.gov (United States)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing

    2018-03-01

    Solar rotation (SR) variation dominates solar extremely ultraviolet (EUV) changes on the timescale of days. The F10.7 index is usually used as an indicator for solar EUV. The SR variation of F10.7 significantly enhanced during the 2008th-2009th Carrington rotations (CRs) owing to an intense active region; F10.7 increased about 180 units during that SR period. That was the most prominent SR variation of F10.7 during solar cycle 23. In this paper, global electron content (GEC) is used to investigate ionospheric response to that strong variation of solar irradiance indicated by F10.7. The variation of GEC with F10.7 was anomalous (GEC-F10.7 slope significantly decreased) during the 2008th-2009th CRs; however, GEC versus EUV variation during that period was consistent with that during adjacent time intervals when using Solar Heliospheric Observatory/Solar EUV Monitor 26-34 nm EUV measurements. The reason is that F10.7 response to that intense active region was much stronger than EUV response; thus, the EUV-F10.7 slope decreased. We confirmed decreased EUV-F10.7 slope during the 2008th-2009th CRs for different wavelengths within 27-120 nm using Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Solar EUV Experiment high spectral resolution EUV measurements. And on the basis of Solar Heliospheric Observatory/Solar EUV Monitor EUV measurements during solar cycle 23, we further presented that EUV-F10.7 slope statistically tends to decrease when the SR variation of F10.7 significantly enhances. Moreover, we found that ionospheric time lag effect to EUV is exaggerated when using F10.7, owing to the time lag effect of EUV to F10.7.

  4. McDonald Observatory Planetary Search - A high precision stellar radial velocity survey for other planetary systems

    Science.gov (United States)

    Cochran, William D.; Hatzes, Artie P.

    1993-01-01

    The McDonald Observatory Planetary Search program surveyed a sample of 33 nearby F, G, and K stars since September 1987 to search for substellar companion objects. Measurements of stellar radial velocity variations to a precision of better than 10 m/s were performed as routine observations to detect Jovian planets in orbit around solar type stars. Results confirm the detection of a companion object to HD114762.

  5. Solar Flare Studies

    Science.gov (United States)

    1982-03-20

    Feldman, U., and Dere, K. P.:ý 1978, Astophys. /. 224, 1017. Underwood, J. H., Milligan, !. C., dc Loach , A. C. and Hoover, R. B.:, 1977, Applied... Loach , A. C., Hoose~r, R. B., and MlcGuire, J. P.: 19 75,Solar Phys. 45, 377. N , Sheridan, K. V.. Jackson, B. V., hict-can, EX. I , and Sulk, G. A...Sacramento Peak Observatory, Ken Nicolas at NRL and Dean Jacobs at UCSD. This research was sponsored by the Air Force Office of Scientific Research, Air Force

  6. CSU's MWV Observatory: A Facility for Research, Education and Outreach

    Science.gov (United States)

    Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

    2014-01-01

    The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

  7. New Life for Astronomical Instruments of the Past at the Astronomical Observatory of Taras Shevchenko

    Science.gov (United States)

    Kazantseva, Liliya

    2012-09-01

    Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.

  8. Deep ocean CTD data 2011-2013 from the Aloha Cabled Observatory (NODC Accession 0123115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ALOHA Cabled Observatory (ACO) is a system of hardware and software that extends electric power and the Internet offshore, supporting sustained real-time...

  9. Elemental abundance analyses with coadded Dominion Astrophysical Observatory spectrograms: Pt. 3

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1988-01-01

    Elemental abundance analyses were performed for three superficially normal main-sequence stars θ Leonis (A2V), τ Herculus (B5IV) and ο Pegasi (AlIV). These studies used coadded spectrograms produced from at least 12 2.4 A mm -1 IIaO Dominion Astrophysical Observatory spectrograms and show a greater degree of internal consistency and smaller microturbulent velocities than previous studies of these stars which used lower signal-to-noise data. Many lines not previously seen were identified including some of new atomic species whose analysis provide a more complete picture of the elemental abundances. The identification and analysis of La II lines in ο Peg link this star more closely with the classical metallic-lined (Am) stars, although there are considerable differences in abundances. Some of θ Leo's elemental abundances, particularly those of vanadium, strontium, and zirconium, are significantly different from solar in confirmation of previous analyses. τ Her's elemental abundances are typically a factor of 2 less than solar. (author)

  10. Observation of the Kelvin–Helmholtz Instability in a Solar Prominence

    Science.gov (United States)

    Yang, Heesu; Xu, Zhi; Lim, Eun-Kyung; Kim, Sujin; Cho, Kyung-Suk; Kim, Yeon-Han; Chae, Jongchul; Cho, Kyuhyoun; Ji, Kaifan

    2018-04-01

    Many solar prominences end their lives in eruptions or abrupt disappearances that are associated with dynamical or thermal instabilities. Such instabilities are important because they may be responsible for energy transport and conversion. We present a clear observation of a streaming kink-mode Kelvin–Helmholtz Instability (KHI) taking place in a solar prominence using the Hα Lyot filter installed at the New Vacuum Solar Telescope, Fuxian-lake Solar Observatory in Yunnan, China. On one side of the prominence, a series of plasma blobs floated up from the chromosphere and streamed parallel to the limb. The plasma stream was accelerated to about 20–60 km s‑1 and then undulated. We found that 2″- and 5″-size vortices formed, floated along the stream, and then broke up. After the 5″-size vortex, a plasma ejection out of the stream was detected in the Solar Dynamics Observatory/Atmospheric Imaging Assembly images. Just before the formation of the 5″-size vortex, the stream displayed an oscillatory transverse motion with a period of 255 s with the amplitude growing at the rate of 0.001 s‑1. We attribute this oscillation of the stream and the subsequent formation of the vortex to the KHI triggered by velocity shear between the stream, guided by the magnetic field and the surrounding media. The plasma ejection suggests the transport of prominence material into the upper layer by the KHI in its nonlinear stage.

  11. Preliminary results from the Orbiting Solar Observatory 8 - Observations of optically thin lines

    Science.gov (United States)

    Shine, R. A.; Roussel-Dupre, D.; Bruner, E. C., Jr.; Chipman, E. G.; Lites, B. W.; Rottman, G. J.; Athay, R. G.; White, O. R.

    1976-01-01

    The University of Colorado spectrometer aboard OSO 8 has measured the high temperature C IV resonance lines (at 1548 and 1551 A) and the Si IV resonance lines (at 1393 and 1402 A) formed in the solar chromosphere-corona transition region. Preliminary results include studies of mean profiles, a comparison of cell and network profiles, and the behavior of the lines at the extreme solar limb.

  12. Teaching solar physics in an informal educational space

    Science.gov (United States)

    Aroca, S. C.

    2009-02-01

    Observatories and planetariums offer the possibility of developing contextualized astronomy teaching by fostering educational activities that provide access to a more authentic school science. Thus, this research consisted in developing, applying and evaluating courses about the Sun for middle, junior high school students and solar physics for high school students in an informal educational space, the CDCC/USP Astronomical Observatory. Topics of chemical composition, temperature and stellar evolution were taught in a room totally dedicated to the study of the Sun, a Solar Room, designed with simple and inexpensive equipment. The course strongly emphasized practical, observational and inquirybased activities, such as estimation of the solar surface temperature, observation of the visible solar spectrum, identication of solar absorption lines, understanding how they are produced, and what kind of information can be extracted from the observed spectral lines. Some of the course goals were to foster the comprehension of the key role played by spectroscopy in astrophysics, to contextualize contents with practical activities, and to allow interdisciplinary approaches including modern physics and chemistry in physics teaching. The research methodology consisted of a qualitative approach by fillming the whole course and performing written questionnaires and semi-structured interviews. Before the courses were applied most students conceived the Sun as a hot sphere composed of fire, sunspots as holes in the Sun and solar prominences as magma expelled by volcanoes. After the courses students presented ideas about the Sun and solar physics more closely related to the ones accepted by contemporary science. This research was not restricted to students' cognitive gains after concluding the courses, since it considered the interaction of different contexts responsible for learning in science museums. This was possible due to the theoretical framework adopted: The Contextual Model

  13. Microbial Observatory (ISS-MO): Study of BSL-2 bacterial isolates from the International Space Station

    Data.gov (United States)

    National Aeronautics and Space Administration — In an on-going Microbial Observatory experimental investigation on the International Space Station (ISS) multiple bacterial isolates of Biosafety Level 2 (BSL-2)...

  14. The GONG Farside Project

    Science.gov (United States)

    Leibacher, J. W.; Braun, D.; González Hernández, I.; Goodrich, J.; Kholikov, S.; Lindsey, C.; Malanushenko, A.; Scherrer, P.

    2005-05-01

    The GONG program is currently providing near-real-time helioseismic images of the farside of the Sun. The continuous stream of low resolution images, obtained from the 6 earth based GONG stations, are merged into a single data series that are the input to the farside pipeline. In order to validate the farside images, it is crucial to compare the results obtained from different instruments. We show comparisons between the farside images provided by the MDI instrument and the GONG ones. New aditions to the pipeline will allow us to create full-hemisphere farside images, examples of the latest are shown in this poster. Our efforts are now concentrated in calibrating the farside signal so it became a reliable solar activity forecasting tool. We are also testing single-skip acoustic power holography at 5-7 mHz as a prospective means of reinforcing the signatures of active regions crossing the the east and west limb and monitoring acoustic emission in the neighborhoods of Sun's the poles. This work utilizes data obtained by the Global Oscillation Network Group (GONG) Program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofisico de Canarias, and Cerro Tololo Interamerican Observatory, as well as the Michaelson Doppler Imager on SoHO, a mission of international cooperation between ESA and NASA. This work has been supported by the NASA Living with a Star - Targeted Research and Technology program.

  15. The Perennial Environment Observatory by A.N.D.R.A. (the French National Radioactive Waste Management Agency)

    International Nuclear Information System (INIS)

    Leclerc, E.

    2010-01-01

    The Perennial Environment Observatory [Observatoire Perenne de l'Environnement - OPE] is a unique approach and infrastructure developed and implemented by ANDRA, the French National Radioactive Waste Management Agency, as part of its overall project of deep geological disposal for radioactive waste. Its current mission is to assess the initial state of the rural (forest, pasture, open-field and aquatic) environment, prior to repository construction. This will be followed in 2017 (pending construction authorizations) and for a period exceeding a century, by monitoring of any impact the repository may have on the environment. In addition to serving its own industrial purpose of environmental monitoring, ANDRA also opens the OPE approach, infrastructure and acquired knowledge (database...) to the scientific community to support further research on long term evolution of the environment subjected to natural and anthropogenic stresses, and to contribute to a better understanding of the interaction between the various compartments of the environment. (author)

  16. The 1-kW solar Stirling experiment

    Science.gov (United States)

    Giandomenico, A.

    1981-01-01

    The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.

  17. Structure and dynamics of solar atmosphere: the reign of SOHO

    International Nuclear Information System (INIS)

    Bocchialini, Karine

    2004-01-01

    In this report for Accreditation to Supervise Research (HDR), the author proposes an overview of his research works which particularly addressed the study of the solar atmosphere, notably based on observations made by the SOHO (Solar and Heliospheric Observatory) satellite. After a recall of his curriculum, he presents and comments results obtained in various areas: Corona heating and origin of solar wind, heating by waves, heating by quasi-steady mechanisms, regions which are sources of fast solar wind, sources of Coronal matter ejections. He also presents the different adopted approaches and methods (multi-wavelength analysis, oscillation measurement, statistical analysis) and the various observed structures (chromospheric network, shiny points, Coronal holes, and protuberances)

  18. Time variations of oxygen emission lines and solar wind dynamic parameters in low latitude region

    Science.gov (United States)

    Jamlongkul, P.; Wannawichian, S.; Mkrtichian, D.; Sawangwit, U.; A-thano, N.

    2017-09-01

    Aurora phenomenon is an effect of collision between precipitating particles with gyromotion along Earth’s magnetic field and Earth’s ionospheric atoms or molecules. The particles’ precipitation occurs normally around polar regions. However, some auroral particles can reach lower latitude regions when they are highly energetic. A clear emission from Earth’s aurora is mostly from atomic oxygen. Moreover, the sun’s activities can influence the occurrence of the aurora as well. This work studies time variations of oxygen emission lines and solar wind parameters, simultaneously. The emission’s spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) along with 2.4 meters diameter telescope at Thai National Observatory, Intanon Mountain, Chiang Mai, Thailand. Oxygen (OI) emission lines were calibrated by Dech-Fits spectra processing program and Dech95 2D image processing program. The correlations between oxygen emission lines and solar wind dynamics will be analyzed. This result could be an evidence of the aurora in low latitude region.

  19. Solar Energy Evolution and Diffusion Studies Webinars | Solar Research |

    Science.gov (United States)

    NREL Studies Webinars Solar Energy Evolution and Diffusion Studies Webinars These webinars . Department of Energy's Solar Energy Evolution and Diffusion Studies (SEEDS) program. SEEDS 2017-2019 Study Residential Solar July 20, 2017 Presenters: Kiran Lakkaraju, Sandia National Laboratories Yevgeniy Vorobeychik

  20. Asteroseismology of solar-type stars: particular physical effects

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, F [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Eggenberger, P; Leyder, J-C [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 aout, 4000 Liege (Belgium)], E-mail: fabien@ster.kuleuven.be

    2008-10-15

    Since the success of helioseismology, numerous efforts have been made to detect solar-like oscillations on other stars. The measurement of the frequencies of p-mode oscillations provides an insight into the internal structure and is nowadays the most powerful constraint on the theory of stellar evolution. The existing asteroseismic observations were mainly motivated by the need to explore the seismological properties of stars with various global parameters, i.e. various locations in the HR diagram. With the aim of testing different physical effects on solar-like oscillations, we report here detection of acoustic modes on solar-like targets achieved with the spectrograph HARPS installed on the 3.6-m telescope at ESO La Silla Observatory.

  1. Time-Series Analysis of Supergranule Characterstics at Solar Minimum

    Science.gov (United States)

    Williams, Peter E.; Pesnell, W. Dean

    2013-01-01

    Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three to five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.

  2. Spectroscopic Studies of Solar Corona VI: Trend in Line-width ...

    Indian Academy of Sciences (India)

    cm coronagraph at the Norikura Solar Observatory on several days during the years 1997–2004. The Coude type .... Top-most panel shows the variation of FWHM of the 6374 Е and 5303 Е emission lines with height above the limb when all ...

  3. Science Initiatives of the US Virtual Astronomical Observatory

    Science.gov (United States)

    Hanisch, R. J.

    2012-09-01

    The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (Fabbiano et al. 2011), we have focused on five science initiatives in the first two years of VAO operations: 1) scalable cross-comparisons between astronomical source catalogs, 2) dynamic spectral energy distribution construction, visualization, and model fitting, 3) integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, 4) integration of VO data discovery and access tools into the IRAF data analysis environment, and 5) a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  4. Science Initiatives of the US Virtual Astronomical Observatory

    Directory of Open Access Journals (Sweden)

    Hanisch Robert J.

    2012-09-01

    Full Text Available The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (advisory committee, we are focusing on five science initiatives in the first two years of VAO operations: (1 scalable cross-comparisons between astronomical source catalogs, (2 dynamic spectral energy distribution construction, visualization, and model fitting, (3 integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, (4 integration of VO data discovery and access tools into the IR AF data analysis environment, and (5 a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  5. Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    OpenAIRE

    G. L. FogliU. of Bari and INFN, Bari; E. Lisi(U. of Bari and INFN, Bari); A. Marrone(U. of Bari and INFN, Bari); A Palazzo(U. of Bari and INFN, Bari)

    2015-01-01

    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained...

  6. Guidebook for the Development of a Nationally Appropriate Mitigation Action for Solar Water Heaters

    DEFF Research Database (Denmark)

    Haselip, James Arthur; Lütken, Søren E.; Sharma, Sudhir

    This guidebook provides an introduction to designing government-led interventions to scale up investment in solar water heater (SWH) markets, showing how these interventions can be packaged as Nationally Appropriate Mitigation Actions (NAMAS). Reflecting the changing balance in global greenhouse...... gas emissions, NAMAs embody the principle of common but differentiated responsibilities. In addition to developed countries’ commitments to make quantitative reductions of greenhouse gas emissions, developing countries are invited to contribute with voluntary actions that are ‘nationally appropriate...

  7. SolarSoft Web Services

    Science.gov (United States)

    Freeland, S.; Hurlburt, N.

    2005-12-01

    The SolarSoft system (SSW) is a set of integrated software libraries, databases, and system utilities which provide a common programming and data analysis environment for solar physics. The system includes contributions from a large community base, representing the efforts of many NASA PI team MO&DA teams,spanning many years and multiple NASA and international orbital and ground based missions. The SSW general use libraries include Many hundreds of utilities which are instrument and mission independent. A large subset are also SOLAR independent, such as time conversions, digital detector cleanup, time series analysis, mathematics, image display, WWW server communications and the like. PI teams may draw on these general purpose libraries for analysis and application development while concentrating efforts on instrument specific calibration issues rather than reinvention of general use software. By the same token, PI teams are encouraged to contribute new applications or enhancements to existing utilities which may have more general interest. Recent areas of intense evolution include space weather applications, automated distributed data access and analysis, interfaces with the ongoing Virtual Solar Observatory efforts, and externalization of SolarSoft power through Web Services. We will discuss the current status of SSW web services and demonstrate how this facilitates accessing the underlying power of SolarSoft in more abstract terms. In this context, we will describe the use of SSW services within the Collaborative Sun Earth Connector environment.

  8. Solar action: solar hot water in The Netherlands

    International Nuclear Information System (INIS)

    Van de Water, Adrie

    2001-01-01

    This paper focuses on the use of solar hot water systems in the Netherlands, and reports on the Dutch Solar Domestic Hot Water System agreement signed in 1999 and set up to enhance the development of the market for solar domestic hot water (SDHW) systems and their application as a sustainable energy source. The Dutch Thermal Solar Energy Programme's objectives and goals, the subsidy schemes for thermal solar energy administered by Senter - an agency of the Ministry of Economic Affairs (MEA), and the project-based and individual approaches to boosting the sales of SDHW systems are examined. Large system sales, the targeting of consumers via a national campaign, and national publicity using the slogan 'Sustainable energy. Goes without saying' commissioned by the MEA are discussed along with the support shown by the Dutch power distribution companies for SDHW systems, marketing aspects, and the outlook for sales of SDHW systems

  9. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  10. Solar Radiation and Climate Experiment (SORCE) Satellite

    Science.gov (United States)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  11. Observatory data and the Swarm mission

    DEFF Research Database (Denmark)

    Macmillan, S.; Olsen, Nils

    2013-01-01

    products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those......The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface...... of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data...

  12. High Resolutions Studies of the Structure of the Solar Atmosphere

    Science.gov (United States)

    1992-06-30

    Regions", manuscript in preparation. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of the Solar Limb in a Coronal Hole", manuscript in...Astrophysical Observatory RIPORr MUMUR Smithsonian Institution AFOSR-TR- 2 0 9 1 MS 15 - 60 Garden Street Cambridge, 1; A 02138 SD. U sC,, i~ro AGENCY NAMI(S...visited the Solar and Stellar Physics Division for three months, and with Dr. Ruth Esser who has recently joined the Division as a physicist. 92

  13. Suppression of Astronomical Sources Using Starshades and the McMath-Pierce Solar Telescope

    Science.gov (United States)

    Novicki, Megan; Warwick, Steve; Smith, Daniel; Richards, Michael; Harness, Anthony

    2016-01-01

    The external starshade is a method for the direct detection and spectral characterization of terrestrial planets around other stars, a key goal identified in ASTRO2010. Tests of this approach have been and continue to be conducted in the lab and in the field (Samuele et al., 2010, Glassman et al., 2014) using non-collimated light sources with a spherical wavefront. We extend the current approach to performing night-time observations of astronomical objects using small-scale (approximately 1/300th) starshades and the McMath-Pierce Solar Telescope at Kitt Peak National Observatory. We placed a starshade directly in the path of the beam from an astronomical object in front of the main heliostat. Using only flat mirrors, we then directed the light through the observatory path and reflected it off the West heliostat to an external telescope located approximately 270m away, for an effective baseline of 420m.This configuration allowed us to make measurements of flat wavefront sources with a Fresnel number close to those expected in proposed full-scale space configurations. We present the results of our engineering runs conducted in 2015.

  14. Systems approach to the design of the CCD sensors and camera electronics for the AIA and HMI instruments on solar dynamics observatory

    Science.gov (United States)

    Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.

    2017-11-01

    Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.

  15. The [Y/Mg] clock works for evolved solar metallicity stars

    Science.gov (United States)

    Slumstrup, D.; Grundahl, F.; Brogaard, K.; Thygesen, A. O.; Nissen, P. E.; Jessen-Hansen, J.; Van Eylen, V.; Pedersen, M. G.

    2017-08-01

    Aims: Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. Methods: High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56 m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M 67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log g is determined to much higher precision than what is possible with spectroscopy. Results: It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. Conclusions: The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs. Based on spectroscopic observations made with two telescopes: the Nordic Optical Telescope operated by NOTSA at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias and the Keck I Telescope at the W.M. Keck Observatory (Mauna Kea, Hawaii, USA) operated by the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.

  16. NASA Names Premier X-Ray Observatory and Schedules Launch

    Science.gov (United States)

    1998-12-01

    Chicago until his death in 1995. The Chandra X-ray Observatory will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of X rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-radiation is an invisible form of light produced by multimillion degree gas. Chandra will provide X-ray images that are fifty times more detailed than previous missions. At more than 45 feet in length and weighing more than five tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. Tyrel Johnson, a student at Priest River Lamanna High School in Priest River, Idaho, and Jatila van der Veen, a physics and astronomy teacher at Adolfo Camarillo High School in Camarillo, California, who submitted the winning name and essays, will receive a trip to the Kennedy Space Center in Florida to view the launch of the Chandra X-ray Observatory, a prize donated by TRW. Members of the contest's selection committee were Timothy Hannemann, executive vice president and general manager, TRW Space & Electronics Group; the late CNN correspondent John Holliman; former Secretary of the Air Force Sheila Widnall, professor of aeronautics at MIT; Charles Petit, senior writer for U.S. News & World Report; Sidney Wolff, Director, National Optical Astronomy Observatories; Martin Weisskopf, Advanced X-ray Astrophysics Facility project scientist, Marshall Space Flight Center, Huntsville, AL.; and Harvey Tananbaum, director of the Advanced X-ray Astrophysics Facility Science Center, Smithsonian Astrophysical Observatory, Cambridge, MA. The Chandra X-ray Observatory program is managed by the Marshall Center for the Office of Space Science, NASA Headquarters, Washington, DC. TRW Space and Electronics Group, Redondo Beach, CA, is NASA's prime contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations of the observatory for NASA

  17. In Brief: Deep-sea observatory

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  18. An astronomical observatory for Peru

    Science.gov (United States)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  19. Perennial Environment Observatory

    International Nuclear Information System (INIS)

    Plas, Frederic

    2014-07-01

    The Perennial Environment Observatory [Observatoire Perenne de l'Environnement - OPE] is a unique approach and infrastructure developed and implemented by ANDRA, the French National Radioactive Waste Management Agency, as part of its overall project of deep geological disposal for radioactive waste. Its current mission is to assess the initial state of the rural (forest, pasture, open-field and aquatic) environment, prior to repository construction. This will be followed in 2017 (pending construction authorizations) and for a period exceeding a century, by monitoring of any impact the repository may have on the environment. In addition to serving its own industrial purpose of environmental monitoring, ANDRA also opens the OPE approach, infrastructure and acquired knowledge (database...) to the scientific community to support further research on long term evolution of the environment subjected to natural and anthropogenic stresses, and to contribute to a better understanding of the interaction between the various compartments of the environment

  20. Solar neutrino and 51Cr results from SAGE

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Abdurashitov, J.N.; Girin, S.V.

    1997-01-01

    The Russian-American solar neutrino Experiment (SAGE) has carried out measurements of the capture rate of solar neutrinos on metallic gallium in a radiochemical experiment at the Baksan Neutrino Observatory during the period January 1990 to December 1994. The measured capture rate on 71 Ga is 72+12/-10 (stat) +5/-7 (syst) SNU. This represents only 53-59 % of the predicted Standard Solar Model (SSM) rates. Taken together with the measurements of the other solar neutrino experiments, this deficit would appear to be best interpreted as due to Mikheyev-Smirnov-Wolfenstein neutrino oscillations. A measurement of the production rate of 71 Ge by an intense 51 Cr source to test the overall operation of the experiment showed the extraction efficiency was 0.95 ± 0.11 (stat) +0.05/-0.08 (syst), indicating that the experiment is operating as expected. (orig.)

  1. Solar adaptive optics: specificities, lessons learned, and open alternatives

    Science.gov (United States)

    Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.

    2016-07-01

    First on sky adaptive optics experiments were performed on the Dunn Solar Telescope on 1979, with a shearing interferometer and limited success. Those early solar adaptive optics efforts forced to custom-develop many components, such as Deformable Mirrors and WaveFront Sensors, which were not available at that time. Later on, the development of the correlation Shack-Hartmann marked a breakthrough in solar adaptive optics. Since then, successful Single Conjugate Adaptive Optics instruments have been developed for many solar telescopes, i.e. the National Solar Observatory, the Vacuum Tower Telescope and the Swedish Solar Telescope. Success with the Multi Conjugate Adaptive Optics systems for GREGOR and the New Solar Telescope has proved to be more difficult to attain. Such systems have a complexity not only related to the number of degrees of freedom, but also related to the specificities of the Sun, used as reference, and the sensing method. The wavefront sensing is performed using correlations on images with a field of view of 10", averaging wavefront information from different sky directions, affecting the sensing and sampling of high altitude turbulence. Also due to the low elevation at which solar observations are performed we have to include generalized fitting error and anisoplanatism, as described by Ragazzoni and Rigaut, as non-negligible error sources in the Multi Conjugate Adaptive Optics error budget. For the development of the next generation Multi Conjugate Adaptive Optics systems for the Daniel K. Inouye Solar Telescope and the European Solar Telescope we still need to study and understand these issues, to predict realistically the quality of the achievable reconstruction. To improve their designs other open issues have to be assessed, i.e. possible alternative sensing methods to avoid the intrinsic anisoplanatism of the wide field correlation Shack-Hartmann, new parameters to estimate the performance of an adaptive optics solar system, alternatives to

  2. Solar flare effect in equatorial magnetic field during morning counter electrojet

    International Nuclear Information System (INIS)

    Rangarajan, G.K.; Rastogi, R.G.

    1981-01-01

    Surface geomagnetic signatures of intense solar radio noise bursts are studied from the magnetograms of several equatorial and low latitude observatories. It is shown that for the even on 21 June 1980, the solar flare effect recorded was during a period of counter electrojet currents in the morning hours in the Indian region, and hence it reverses direction between Alibag and Trivandrum. The longitudinal extent of this event has been estimated to be less than three hours (45). (author)

  3. Simultaneous control of multiple instruments at the Advanced Technology Solar Telescope

    Science.gov (United States)

    Johansson, Erik M.; Goodrich, Bret

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) is a 4-meter solar observatory under construction at Haleakala, Hawaii. The simultaneous use of multiple instruments is one of the unique capabilities that makes the ATST a premier ground based solar observatory. Control of the instrument suite is accomplished by the Instrument Control System (ICS), a layer of software between the Observatory Control System (OCS) and the instruments. The ICS presents a single narrow interface to the OCS and provides a standard interface for the instruments to be controlled. It is built upon the ATST Common Services Framework (CSF), an infrastructure for the implementation of a distributed control system. The ICS responds to OCS commands and events, coordinating and distributing them to the various instruments while monitoring their progress and reporting the status back to the OCS. The ICS requires no specific knowledge about the instruments. All information about the instruments used in an experiment is passed by the OCS to the ICS, which extracts and forwards the parameters to the appropriate instrument controllers. The instruments participating in an experiment define the active instrument set. A subset of those instruments must complete their observing activities in order for the experiment to be considered complete and are referred to as the must-complete instrument set. In addition, instruments may participate in eavesdrop mode, outside of the control of the ICS. All instrument controllers use the same standard narrow interface, which allows new instruments to be added without having to modify the interface or any existing instrument controllers.

  4. Daily variation characteristics at polar geomagnetic observatories

    Science.gov (United States)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  5. Observatories of Sawai Jai Singh II

    Science.gov (United States)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  6. The Heating of the Solar Atmosphere: from the Bottom Up?

    Science.gov (United States)

    Winebarger, Amy

    2014-01-01

    The heating of the solar atmosphere remains a mystery. Over the past several decades, scientists have examined the observational properties of structures in the solar atmosphere, notably their temperature, density, lifetime, and geometry, to determine the location, frequency, and duration of heating. In this talk, I will review these observational results, focusing on the wealth of information stored in the light curve of structures in different spectral lines or channels available in the Solar Dynamic Observatory's Atmospheric Imaging Assembly, Hinode's X-ray Telescope and Extreme-ultraviolet Imaging Spectrometer, and the Interface Region Imaging Spectrograph. I will discuss some recent results from combined data sets that support the heating of the solar atmosphere may be dominated by low, near-constant heating events.

  7. Student artistry sparks eclipse excitement on Maui: NSO/DKIST EPO for the 2016 Partial Solar Eclipse

    Science.gov (United States)

    Schad, Thomas A.; Penn, Matthew J.; Armstrong, James

    2016-05-01

    Local creativity and artistry is a powerful resource that enhances education programs and helps us generate excitement for science within our communities. In celebration of the 2016 Solar Eclipse, the National Solar Observatory (NSO) and its Daniel K Inouye Solar Telescope (DKIST) project were pleased to engage with students across Maui County, Hawai`i, via the 2016 Maui Eclipse Art Contest. With the help of the Maui Economic Development Board and the University of Hawai'is Institute for Astronomy, we solicited art entries from all K-12 schools in Maui County approximately 6 months prior to the eclipse. Along with divisional prizes, a grand prize was selected by a panel of local judges, which was subsequently printed on 25,000 solar eclipse viewing glasses and distributed to all Maui students. We found that the impact of a locally-sourced glasses design cannot be understated. Overall, the success of this program relied upon reaching out to individual teachers, supplying educational flyers to all schools, and visiting classrooms. On the day of the eclipse, all of the art entries were prominently displayed during a community eclipse viewing event at Kalama Beach Park in Kihei, HI, that was co-hosted by NSO and the Maui Science Center. This eclipse art contest was integral to making local connections to help promote science education on Maui, and we suggest that it could be adapted to the solar community's EPO activities for the upcoming 2017 Great American Solar Eclipse.

  8. The UNH Earth Systems Observatory: A Regional Application in Support of GEOSS Global-Scale Objectives

    Science.gov (United States)

    Vorosmarty, C. J.; Braswell, B.; Fekete, B.; Glidden, S.; Hartmann, H.; Magill, A.; Prusevich, A.; Wollheim, W.; Blaha, D.; Justice, D.; Hurtt, G.; Jacobs, J.; Ollinger, S.; McDowell, W.; Rock, B.; Rubin, F.; Schloss, A.

    2006-12-01

    The Northeast corridor of the US is emblematic of the many changes taking place across the nation's and indeed the world's watersheds. Because ecosystem and watershed change occurs over many scales and is so multifaceted, transferring scientific knowledge to applications as diverse as remediation of local ground water pollution, setting State-wide best practices for non-point source pollution control, enforcing regional carbon sequestration treaties, or creating public/private partnerships for protecting ecosystem services requires a new generation of integrative environmental surveillance systems, information technology, and information transfer to the user community. Geographically complex ecosystem interactions justify moving toward more integrative, regionally-based management strategies to deal with issues affecting land, inland waterways, and coastal waterways. A unified perspective that considers the full continuum of processes which link atmospheric forcings, terrestrial responses, watershed exports along drainage networks, and the final delivery to the coastal zone, nearshore, and off shore waters is required to adequately support the management challenge. A recent inventory of NOAA-supported environmental surveillance systems, IT resources, new sensor technologies, and management-relevant decision support systems shows the community poised to formulate an integrated and operational picture of the environment of New England. This paper presents the conceptual framework and early products of the newly-created UNH Earth Systems Observatory. The goal of the UNH Observatory is to serve as a regionally-focused yet nationally-prominent platform for observation-based, integrative science and management of the New England/Gulf of Maine's land, air, and ocean environmental systems. Development of the UNH Observatory is being guided by the principles set forth under the Global Earth Observation System of Systems and is cast as an end-to-end prototype for GEOSS

  9. Searching for solar siblings among the HARPS data

    Science.gov (United States)

    Batista, S. F. A.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; Delgado Mena, E.; Hakobyan, A. A.

    2014-04-01

    The search for solar siblings has been particularly fruitful in the past few years. At present, there are four plausible candidates reported in the literature: HIP21158, HIP87382, HIP47399, and HIP92831. In this study we conduct a search for solar siblings among the HARPS high-resolution FGK dwarfs sample, which includes precise chemical abundances and kinematics for 1111 stars. Using a new approach based on chemical abundance trends with condensation temperature, kinematics, and ages we found one (additional) potential solar sibling candidate: HIP97507. Based on observations collected at the La Silla Paranal Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6-m telescope (ESO runs ID 72.C-0488, 082.C-0212, and 085.C-0063).

  10. The Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10 19 eV and with equal exposures for the northern and southern skies

  11. SSALMON - The Solar Simulations for the Atacama Large Millimeter Observatory Network

    Czech Academy of Sciences Publication Activity Database

    Wedemeyer, S.; Bastian, T.S.; Brajsa, R.; Bárta, Miroslav; Hudson, H. S.; Fleishman, G.; Loukitcheva, M.; Fleck, B.; Kontar, E.; de Pontieu, B.; Tiwari, S.; Kato, Y.; Soler, R.; Yagoubov, P.; Black, J.H.; Antolin, P.; Gunár, Stanislav; Labrosse, N.; Benz, A. O.; Nindos, A.; Steffen, M.; Scullion, E.; Doyle, J.G.; Zaqarashvili, T.; Hanslmeier, A.; Nakariakov, V. M.; Heinzel, Petr; Ayres, T.; Karlický, Marian

    2015-01-01

    Roč. 56, č. 12 (2015), s. 2679-2692 ISSN 0273-1177 R&D Projects: GA ČR GA13-24782S EU Projects: European Commission(XE) 312495 Institutional support: RVO:67985815 Keywords : solar atmosphere * chromosphere * millimeter radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.409, year: 2015

  12. Search for Solar Axions by the CERN Axion Solar Telescope with He3 Buffer Gas: Closing the Hot Dark Matter Gap

    Science.gov (United States)

    Arik, M.; Aune, S.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J. M.; Cetin, S. A.; Collar, J. I.; Da Riva, E.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J. A.; Gardikiotis, A.; Garza, J. G.; Gazis, E. N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez, H.; Gómez Marzoa, M.; Gruber, E.; Guthörl, T.; Hartmann, R.; Hauf, S.; Haug, F.; Hasinoff, M. D.; Hoffmann, D. H. H.; Iguaz, F. J.; Irastorza, I. G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kuster, M.; Lakić, B.; Lang, P. M.; Laurent, J. M.; Liolios, A.; Ljubičić, A.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Riege, H.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Silva, P. S.; Solanki, S. K.; Stewart, L.; Tomás, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J. K.; Yildiz, S. C.; Zioutas, K.; CAST Collaboration

    2014-03-01

    The CERN Axion Solar Telescope has finished its search for solar axions with He3 buffer gas, covering the search range 0.64 eV≲ma≲1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ≲3.3×10-10 GeV-1 at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  13. An outstanding researcher of the solar eclipses- Nicolas Donitch

    Science.gov (United States)

    Gaina, Alex

    1998-09-01

    Nicolae Donitch (1874, Chisinau-1958, Nice, France?) worked in Russia (until 1917), Romania (1918-1944) and France (1945-1958?). His observatory was placed in Dubossary-Vechi (where he worked with some intervals between 1908 and 1944. He was designated by the Russian Academy of Sciences for the observations of the total Solar eclipse in Elche (Spain) on 28 May 1900. Other solar eclipses observed by N. Donitch: 17-18 may 1901, Padong (Sumatra); 1904 - the annular eclipse of the Sun in Pnom-Penh (Cambodge); august 1905, Alcala de Chisvert (Spain) and Assuan (Upper Egypt); 16/17 April 1912, Portugal; 21 august 1914, Crimea; 1925, USA; 1929 Indochina and Philipines; 1930, Egypt; 1932 Egypt and cape Porpoise,Maine USA; 1936, Inneboli, Turkey. Other solar investigations by N. Donitch; Solar cromosphere (Odessa, 1902; Mount- Blanch, 1902-1903); The passage of the planet Mercury through the solar disk (November, 1907, Egypt; October 1914, Algeria).

  14. Progress making the top end optical assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope

    Science.gov (United States)

    Canzian, Blaise; Barentine, J.; Arendt, J.; Bader, S.; Danyo, G.; Heller, C.

    2012-09-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to design and produce the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakal', Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot" at the prime focus of the ATST and so presents special challenges. In this paper, we describe progress in the L-3 technical approach to meeting these challenges, including silicon carbide off-axis mirror design, fabrication, and high accuracy figuring and polishing all within L-3; mirror support design; the design for stray light control; subsystems for opto-mechanical positioning and high accuracy absolute mirror orientation sensing; Lyot stop design; and thermal management of all design elements to remain close to ambient temperature despite the imposed solar irradiance load.

  15. The EUV-observatory TESIS on board Coronas-Photon: scientific goals and initial plan of observations

    Science.gov (United States)

    Bogachev, Sergey

    The TESIS a EUV-observatory for solar research from space will be launched in 2008 September on board the satellite Coronas-Photon from cosmodrome Plesetsk. TESIS is a project of Lebedev Physical Institute of Russian Academy of Science with contribution from Space Research Center of Polish Academy of Science (the spectrometer SphinX). The experiment will focus on quasi-monochromatic imaging of the Sun and XUV spectroscopy of solar plasma. The scientific payload of TESIS contains five instruments: (1) Bragg crystal spectroheliometer for Sun monochromatic imaging in the line MgXII 8.42 A, (2) the normal-incidence Herschelian EUV telescopes with a resolution of 1.7 arc sec operated in lines FeXXII 133 A, FeIX 171 A and HeII 304 A, (3) the EUV imaging spectrometer, (4) the wide-field Ritchey-Chretien coronograph and (5) the X-ray spectrometer SphinX. The TESIS will focus on coordinated study of solar activity from the transition region to the outer corona up to 4 solar radii in wide temperature range from 5*104 to 2*107 K. We describe the scientific goals of the TESIS and its initial plan of observations.

  16. An international network of magnetic observatories

    Science.gov (United States)

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  17. Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona

    International Nuclear Information System (INIS)

    Sanchez-Diaz, E.; Rouillard, A. P.; Lavraud, B.; Pinto, R. F.; Plotnikov, I.; Genot, V.; Davies, J. A.; Sheeley, N. R.; Kilpua, E.

    2017-01-01

    The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north–south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory ( STEREO ) mission with coronagraphic observations from the SOlar and Heliospheric Observatory ( SOHO ) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as “raining inflows.” This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.

  18. Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Diaz, E.; Rouillard, A. P.; Lavraud, B.; Pinto, R. F.; Plotnikov, I.; Genot, V. [Institut de Recherche en Astrophysique et Planétologie, Paul Sabatier University, Toulouse, 9 avenue Colonel Roche, BP 44346-31028, Toulouse Cedex 4A (France); Davies, J. A. [RAL Space, STFC-Rutherford Appleton Laboratory, Harwell Campus, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX (United Kingdom); Sheeley, N. R. [Space Science Division, Naval Research Laboratory, Naval Research Laboratory, Code 7600, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Kilpua, E., E-mail: eduardo.sanchez-diaz@irap.omp.eu, E-mail: alexis.rouillard@irap.omp.eu, E-mail: benoit.lavraud@irap.omp.eu, E-mail: rui.pinto@irap.omp.eu, E-mail: illya.plotnikov@irap.omp.eu, E-mail: vincent.genot@irap.omp.eu, E-mail: jackie.davies@stfc.ac.uk, E-mail: neil.sheeley@nrl.navy.mil, E-mail: emilia.kilpua@helsinki.fi [Space Physics Department, Department of Physics, P.O. Box 64 FI-00014, University of Helsinki, Helsinki (Finland)

    2017-01-20

    The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north–south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory ( STEREO ) mission with coronagraphic observations from the SOlar and Heliospheric Observatory ( SOHO ) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as “raining inflows.” This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.

  19. Providing Undergraduate Research Opportunities Through the World Rivers Observatory Collaborative Network

    Science.gov (United States)

    Gillies, S. L.; Marsh, S. J.; Janmaat, A.; Peucker-Ehrenbrink, B.; Voss, B.; Holmes, R. M.

    2013-12-01

    Successful research collaboration exists between the University of the Fraser Valley (UFV), a primarily undergraduate-serving university located on the Fraser River in British Columbia, and the World Rivers Observatory that is coordinated through the Woods Hole Oceanographic Institution (WHOI) and the Woods Hole Research Center (WHRC). The World Rivers Observatory coordinates time-series sampling of 15 large rivers, with particular focus on the large Arctic rivers, the Ganges-Brahmaputra, Congo, Fraser, Yangtze (Changjiang), Amazon, and Mackenzie River systems. The success of this international observatory critically depends on the participation of local collaborators, such as UFV, that are necessary in order to collect temporally resolved data from these rivers. Several faculty members and undergraduate students from the Biology and Geography Departments of UFV received on-site training from the lead-PIs of the Global Rivers Observatory. To share information and ensure good quality control of sampling methods, WHOI and WHRC hosted two international workshops at Woods Hole for collaborators. For the past four years, faculty and students from UFV have been collecting a variety of bi-monthly water samples from the Fraser River for the World Rivers Observatory. UFV undergraduate students who become involved learn proper sampling techniques and are given the opportunity to design and conduct their own research. Students have collected, analyzed and presented data from this project at regional, national, and international scientific meetings. UFV undergraduate students have also been hosted by WHOI and WHRC as guest students to work on independent research projects. While at WHOI and WHRC, students are able to conduct research using state-of-the-art specialized research facilities not available at UFV.

  20. Transiting exoplanets from the CoRoT space mission . XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content

    Science.gov (United States)

    Cabrera, J.; Bruntt, H.; Ollivier, M.; Díaz, R. F.; Csizmadia, Sz.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carone, L.; Carpano, S.; Deleuil, M.; Deeg, H. J.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gazzano, J.-C.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jorda, L.; Léger, A.; Llebaria, A.; Lammer, H.; Lovis, C.; Mazeh, T.; Moutou, C.; Ofir, A.; von Paris, P.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Titz-Weider, R.; Wuchterl, G.

    2010-11-01

    We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm-3. It orbits a G0V star with T_eff = 5 945 K, M* = 1.09 M⊙, R_* = 1.01 R⊙, solar metallicity, a lithium content of + 1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 {M}⊕. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics

  1. JHelioviewer: Exploring Petabytes of Solar Images

    Science.gov (United States)

    Mueller, Daniel; Fleck, Bernhard; Dimitoglou, George; Garcia Ortiz, Juan Pablo; Schmidt, Ludwig; Hughitt, Keith; Ireland, Jack

    Space missions generate an ever-growing amount of data, as impressively highlighted by the Solar Dynamics Observatory's (SDO) expected return of 1.4 TByte/day. In order to fully ex-ploit their data, scientists need to be able to browse and visualize many different data products spanning a large range of physical length and time scales. So far, the tools available to the scientific community either require downloading all potentially relevant data sets beforehand in their entirety or provide only movies with a fixed resolution and cadence. For SDO, the former approach is prohibitive due to the shear data volume, while the latter does not do justice to the high resolution and cadence of the images. To address this challenge, we have developed JHelioviewer, a JPEG 2000-based visualization and discovery software for solar image data. JHelioviewer makes the vast amount of SDO images available to the worldwide community, lets users browse more than 14 years worth of images from the Solar and Heliospheric Observatory (SOHO) and facilitates browsing and analysis of complex time-dependent data sets from mul-tiple sources in general. The user interface for JHelioviewer is a multi-platform Java client that communicates with a remote server via the JPEG 2000 interactive protocol JPIP. The random code stream access of JPIP minimizes data transfer and can encapsulate metadata as well as multiple image channels in one data stream. This presentation will illustrate the features of JHelioviewer and highlight the advantages of JPEG 2000 as a new data compression standard.

  2. False Dawn of a Solar Age: A History of Solar Heating and Power During the Energy Crisis, 1973-1986

    Science.gov (United States)

    Scavo, Jordan Michael

    The unfolding of the energy crisis in the early 1970s brought solar to the fore as a topic for national discussion. National dialogues about solar power and national energy policy were one way that Americans interpreted their present and envisioned their nation's future. Yet, policy makers and the general public considered alternative energies, including solar, largely based on the economic conditions of their eras, considerations that, at least until the Reagan era, often transcended political ideologies and parties. Energy prices and the emerging political expediency of replacing fossil fuels were the primary drivers in shaping federal energy policies and public interest during this era. Enthusiasm for solar power often corresponded to the market price of petroleum. By the late 1970s, a lot of people believed the same. Amid growing public enthusiasm, President Carter eventually came out strongly in favor of solar energy, mounting solar panels on the White House and unveiling a plan to procure 20% of the nation's energy from the sun by the year 2000. During the 1960s and 1970s, Americans changed their energy values in response to concerns over environmentalism and the antinuclear movement. Pollution, environmental disasters, and energy crises during the 1960s and 1970s brought terms like "clean energy" and "renewable energy" into the national lexicon, and solar often served as the most prominent symbol of those ideas. At the same time, advocates presented solar as a stark contrast to nuclear: solar energy made life on earth possible; nuclear energy made it perilous. Science fiction and futurism shaped the American popular imagination through its presentation of solar technology. Each genre suffused the other and ingrained in the American national consciousness a sense of grandiose wonderment about the potential for solar energy, a potential that often did not match the contemporary applications for solar technology. The emergence of solar industries alarmed oil

  3. Climate Change Literacy across the Critical Zone Observatory Network

    Science.gov (United States)

    Moore, A.; Derry, L. A.; Zabel, I.; Duggan-Haas, D.; Ross, R. M.

    2017-12-01

    Earth's Critical Zone extends from the top of the tree canopy to the base of the groundwater lens. Thus the Critical Zone is examined as a suite of interconnected systems and study of the CZ is inherently interdisciplinary. Climate change is an important driver of CZ processes. The US Critical Zone Observatory Network comprises nine observatories and a coordinating National Office. Educational programs and materials developed at each CZO and the National Office have been collected, reviewed, and presented on-line at the CZONO (criticalzone.org/national/education-outreach/resources). Because the CZOs are designed to observe and measure a suite of common parameters on varying geological substrates and within different ecological contexts, educational resources reflect the diversity of processes represented across the network. As climate change has a network-wide impact, the fundamental building blocks of climate change literacy are key elements in many activities within the CZONO resource collection. Carbon-cycle and hydrologic cycle processes are well-represented, with emphasis on human interactions with these resources, as well as the impact of extreme events and the changing climate. Current work on the resource collection focuses on connecting individual resources to "Teach Climate Science" project and the Teacher-Friendly Guide to Climate Change (teachclimatescience.wordpress.com). The Teacher-Friendly Guide is a manual for K-12 teachers that presents both the fundamentals of climate science alongside resources for effective teaching of this controversial topic. Using the reach of the CZO network we hope to disseminate effective climate literacy resources and support to the K-12 community.

  4. Magnetic monitoring in Saguaro National Park

    Science.gov (United States)

    Love, Jeffrey J.; Finn, Carol A.; Gamez Valdez, Yesenia C.; Swann, Don

    2017-06-02

    On a sandy, arid plain, near the Rincon Moun­tain Visitor Center of Saguaro National Park, tucked in among brittlebush, creosote, and other hardy desert plants, is an unusual type of observatory—a small unmanned station that is used for monitor­ing the Earth’s variable magnetic field. Named for the nearby city of Tucson, Arizona, the observatory is 1 of 14 that the Geomagnetism Program of the U.S. Geological Survey operates at various locations across the United States and Ter­ritories.Data from USGS magnetic observatories, including the Tucson observatory, as well as observatories operated by institutions in other countries, record a variety of signals related to a wide diversity of physical phenomena in the Earth’s interior and its surrounding outer-space environment. The data are used for geomagnetic mapping and surveying, for fundamental scientific research, and for assessment of magnetic storms, which can be hazardous for the activities and infra­structure of our modern, technologically based society. The U.S. Geological Survey observatory service is an integral part of a U.S. national project for monitoring and assessing space weather hazards.

  5. Infrared spectro-polarimeter on the Solar Flare Telescope at NAOJ/Mitaka

    Science.gov (United States)

    Sakurai, Takashi; Hanaoka, Yoichiro; Arai, Takehiko; Hagino, Masaoki; Kawate, Tomoko; Kitagawa, Naomasa; Kobiki, Toshihiko; Miyashita, Masakuni; Morita, Satoshi; Otsuji, Ken'ichi; Shinoda, Kazuya; Suzuki, Isao; Yaji, Kentaro; Yamasaki, Takayuki; Fukuda, Takeo; Noguchi, Motokazu; Takeyama, Norihide; Kanai, Yoshikazu; Yamamuro, Tomoyasu

    2018-05-01

    An infrared spectro-polarimeter installed on the Solar Flare Telescope at the Mitaka headquarters of the National Astronomical Observatory of Japan is described. The new spectro-polarimeter observes the full Sun via slit scans performed at two wavelength bands, one near 1565 nm for a Zeeman-sensitive spectral line of Fe I and the other near 1083 nm for He I and Si I lines. The full Stokes profiles are recorded; the Fe I and Si I lines give information on photospheric vector magnetic fields, and the helium line is suitable for deriving chromospheric magnetic fields. The infrared detector we are using is an InGaAs camera with 640 × 512 pixels and a read-out speed of 90 frames s-1. The solar disk is covered by two swaths (the northern and southern hemispheres) of 640 pixels each. The final magnetic maps are made of 1200 × 1200 pixels with a pixel size of 1{^''.}8. We have been carrying out regular observations since 2010 April, and have provided full-disk, full-Stokes maps, at the rate of a few maps per day, on the internet.

  6. Seafloor Observatory Science: a Review

    Directory of Open Access Journals (Sweden)

    L. Beranzoli

    2006-06-01

    Full Text Available The ocean exerts a pervasive influence on Earth’s environment. It is therefore important that we learn how this system operates (NRC, 1998b; 1999. For example, the ocean is an important regulator of climate change (e.g., IPCC, 1995. Understanding the link between natural and anthropogenic climate change and ocean circulation is essential for predicting the magnitude and impact of future changes in Earth’s climate. Understanding the ocean, and the complex physical, biological, chemical, and geological systems operating within it, should be an important goal for the opening decades of the 21st century. Another fundamental reason for increasing our understanding of ocean systems is that the global economy is highly dependent on the ocean (e.g., for tourism, fisheries, hydrocarbons, and mineral resources (Summerhayes, 1996. The establishment of a global network of seafloor observatories will help to provide the means to accomplish this goal. These observatories will have power and communication capabilities and will provide support for spatially distributed sensing systems and mobile platforms. Sensors and instruments will potentially collect data from above the air-sea interface to below the seafloor. Seafloor observatories will also be a powerful complement to satellite measurement systems by providing the ability to collect vertically distributed measurements within the water column for use with the spatial measurements acquired by satellites while also providing the capability to calibrate remotely sensed satellite measurements (NRC, 2000. Ocean observatory science has already had major successes. For example the TAO array has enabled the detection, understanding and prediction of El Niño events (e.g., Fujimoto et al., 2003. This paper is a world-wide review of the new emerging “Seafloor Observatory Science”, and describes both the scientific motivations for seafloor observatories and the technical solutions applied to their architecture. A

  7. Proposed National Large Solar Telescope Jagdev Singh

    Indian Academy of Sciences (India)

    proposed to design, fabricate and install a 2-meter class solar telescope at a suitable site in India to ... which can facilitate simultaneous measurements of the solar atmospheric parameters and of the vector ... Intensity variation of. 1% or less.

  8. Development of an Embedded Solar Tracker using Compact RIO

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jin; Lee, Yoon Joon; Chun, Won Gee [Jeju National University, Jeju (Korea, Republic of)

    2011-08-15

    An embedded two-axis solar tracking system using LabVIEW to write the operation and control algorithms was developed for enhancing solar energy utilization. The system consists of a real-time processor, two motion- control modules, two step drives, two step motors, feedback devices, and other accessories needed for functional stability. The real-time processor allows the solar tracker to be used as a stand-alone, real-time system that can operate automatically without any external control. The system combines two different solar tracking methods: the optical method and the astronomical method. CdS sensors are employed to continuously generate feedback signals to the controller, ensuring high-precision solar tracking even under adverse conditions. CdS sensor is a resistor whose resistance decreases with increasing incident light intensity. A database of solar altitude, azimuth, and sunrise and sunset times is provided by this solar tracking system. Other solar trackers operating in an astronomical method may access and use this database over the Internet. Solar position and sunrise and sunset times in the database were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The differences were found to be negligible.

  9. Development of an Embedded Solar Tracker using Compact RIO

    International Nuclear Information System (INIS)

    Oh, Seung Jin; Lee, Yoon Joon; Chun, Won Gee

    2011-01-01

    An embedded two-axis solar tracking system using LabVIEW to write the operation and control algorithms was developed for enhancing solar energy utilization. The system consists of a real-time processor, two motion- control modules, two step drives, two step motors, feedback devices, and other accessories needed for functional stability. The real-time processor allows the solar tracker to be used as a stand-alone, real-time system that can operate automatically without any external control. The system combines two different solar tracking methods: the optical method and the astronomical method. CdS sensors are employed to continuously generate feedback signals to the controller, ensuring high-precision solar tracking even under adverse conditions. CdS sensor is a resistor whose resistance decreases with increasing incident light intensity. A database of solar altitude, azimuth, and sunrise and sunset times is provided by this solar tracking system. Other solar trackers operating in an astronomical method may access and use this database over the Internet. Solar position and sunrise and sunset times in the database were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The differences were found to be negligible

  10. FixO3: Advancement towards Open Ocean Observatory Data Management Harmonisation

    Science.gov (United States)

    Behnken, Andree; Pagnani, Maureen; Huber, Robert; Lampitt, Richard

    2015-04-01

    Since 2002 there has been a sustained effort, supported as European framework projects, to harmonise both the technology and the data management of Open Ocean fixed observatories run by European nations. FixO3 started in September 2013, and for 3 more years will coordinate the convergence of data management best practice across a constellation of moorings in the Atlantic, in both hemispheres, and in the Mediterranean. To ensure the continued existence of these unique sources of oceanographic data as sustained observatories it is vital to improve access to the data collected, both in terms of methods of presentation, real-time availability, long-term archiving and quality assurance. The data management component of FixO3 improves access to marine observatory data by harmonising data management standards, formats and workflows covering the complete life cycle of data from real time data acquisition to long-term archiving. Legal and data policy aspects have been examined and discussed to identify transnational barriers to open-access to marine observatory data. As a result, a harmonised FixO3 data policy was drafted, which provides a formal basis for data exchange between FixO3 infrastructures, and also enables open access to data for the general public. FixO3 interacts with other European infrastructures such as EMODnet, SeaDataNet, PANGAEA, and especially aims to harmonise efforts with OceanSites and MyOcean. The project landing page (www.fixo3.eu) offers detailed information about every observatory as well as data visualisations and direct downloads. In addition to this, metadata for all FixO3 - relevant data are available from the searchable FixO3 metadata catalogue, which is also accessible from the project web page. This catalogue is hosted by PANGAEA and receives updates in regular intervals. The FixO3 Standards & Services registry ties in with the GEOSS Components and Services Registry (CSR) and provides additional observatory information. The data management

  11. Progress Report on the US Critical Zone Observatory Program

    Science.gov (United States)

    Barrera, E. C.

    2014-12-01

    The Critical Zone Observatory (CZO) program supported by the National Science Foundation originated from the recommendation of the Earth Science community published in the National Research Council report "Basic Research Opportunities in Earth Sciences" (2001) to establish natural laboratories to study processes and systems of the Critical Zone - the surface and near-surface environment sustaining nearly all terrestrial life. After a number of critical zone community workshops to develop a science plan, the CZO program was initiated in 2007 with three sites and has now grown to 10 sites and a National Office, which coordinates research, education and outreach activities of the network. Several of the CZO sites are collocated with sites supported by the US Long Term Ecological Research (LTER) and the Long Term Agricultural Research (LTAR) programs, and the National Ecological Observatory Network (NEON). Future collaboration with additional sites of these networks will add to the potential to answer questions in a more comprehensive manner and in a larger regional scale about the critical zone form and function. At the international level, CZOs have been established in many countries and strong collaborations with the US program have been in place for many years. The next step is the development of a coordinated international program of critical zone research. The success of the CZO network of sites can be measured in transformative results that elucidate properties and processes controlling the critical zone and how the critical zone structure, stores and fluxes respond to climate and land use change. This understanding of the critical zone can be used to enhance resilience and sustainability, and restore ecosystem function. Thus, CZO science can address major societal challenges. The US CZO network is a facility open to research of the critical zone community at large. Scientific data and information about the US program are available at www.criticalzone.org.

  12. Infrared astronomy seeing the heat : from William Herschel to the Herschel space observatory

    CERN Document Server

    Clements, David L

    2014-01-01

    Uncover the Secrets of the Universe Hidden at Wavelengths beyond Our Optical GazeWilliam Herschel's discovery of infrared light in 1800 led to the development of astronomy at wavelengths other than the optical. Infrared Astronomy - Seeing the Heat: from William Herschel to the Herschel Space Observatory explores the work in astronomy that relies on observations in the infrared. Author David L. Clements, a distinguished academic and science fiction writer, delves into how the universe works, from the planets in our own Solar System to the universe as a whole. The book first presents the major t

  13. Solar flare effects and storm sudden commencement even in ...

    African Journals Online (AJOL)

    1998-05-08

    Variations in the three components of geomagnetic field were observed at the twenty-two geomagnetic Euro-African Observatories during the solar flare that occurred on the 6 May, 1998 at 0080UT and storm sudden commencement that took place on May 8, 1998 at 15.00 UT. The geomagnetic field on 6 May, 1998 was ...

  14. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  15. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  16. Worldwide R&D of Virtual Observatory

    Science.gov (United States)

    Cui, C. Z.; Zhao, Y. H.

    2008-07-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.

  17. Data analysis for solar neutrinos observed by water Cherenkov detectors{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Koshio, Yusuke [Okayama University, Okayama (Japan)

    2016-04-15

    A method of analyzing solar neutrino measurements using water-based Cherenkov detectors is presented. The basic detection principle is that the Cherenkov photons produced by charged particles via neutrino interaction are observed by photomultiplier tubes. A large amount of light or heavy water is used as a medium. The first detector to successfully measure solar neutrinos was Kamiokande in the 1980's. The next-generation detectors, i.e., Super-Kamiokande and the Sudbury Neutrino Observatory (SNO), commenced operation from the mid-1990's. These detectors have been playing the critical role of solving the solar neutrino problem and determining the neutrino oscillation parameters over the last decades. The future prospects of solar neutrino analysis using this technique are also described. (orig.)

  18. Energy Storage and Release through the Solar Activity Cycle Models Meet Radio Observations

    CERN Document Server

    Nindos, Alexander

    2012-01-01

    For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.

  19. Observations in the Past of Solar System Bodies with MAO NANU Plate Archives

    Science.gov (United States)

    Sergeeva, T. P.; Golovnya, V. V.; Yizhakevych, E. M.; Shatokhina, S. V.; Sergeev, A. V.

    2006-04-01

    The plate archives of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine contain more than 100,000 images of minor planets with magnitude up to 16.7m. About 10% of the minor planets, found on our archival plates, were discovered many years after taking the plates. So we can rediscover them by so called "observation in the past" and obtain their positions for improvement of the dynamical models of their motions. Other Solar System bodies for which we try to get "observation in the past" are the external planets satellites. The criteria for chosen objects, the search methods, identification and determination of positions are discussed. The first results of the asteroids and the external planet satellites search in MAO plate archives are presented.

  20. CME Dynamics Using STEREO and LASCO Observations: The Relative Importance of Lorentz Forces and Solar Wind Drag

    Science.gov (United States)

    Sachdeva, Nishtha; Subramanian, Prasad; Vourlidas, Angelos; Bothmer, Volker

    2017-09-01

    We seek to quantify the relative contributions of Lorentz forces and aerodynamic drag on the propagation of solar coronal mass ejections (CMEs). We use Graduated Cylindrical Shell (GCS) model fits to a representative set of 38 CMEs observed with the Solar and Heliospheric Observatory (SOHO) and the Solar and Terrestrial Relations Observatory (STEREO) spacecraft. We find that the Lorentz forces generally peak between 1.65 and 2.45 R⊙ for all CMEs. For fast CMEs, Lorentz forces become negligible in comparison to aerodynamic drag as early as 3.5 - 4 R⊙. For slow CMEs, however, they become negligible only by 12 - 50 R⊙. For these slow events, our results suggest that some of the magnetic flux might be expended in CME expansion or heating. In other words, not all of it contributes to the propagation. Our results are expected to be important in building a physical model for understanding the Sun-Earth dynamics of CMEs.

  1. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-07

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  2. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    Science.gov (United States)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  3. 2010 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  4. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    International Nuclear Information System (INIS)

    Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K.; Martínez, Lurdes M.; Buleje, Yovanny J.; Morita, Satoshi; Asai, Ayumi; UeNo, Satoru; Ishii, Takako T.; Kitai, Reizaburo; Takasao, Shinsuke; Yoshinaga, Yusuke; Otsuji, Kenichi; Shibata, Kazunari

    2017-01-01

    Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.

  5. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K. [Geophysical Institute of Peru, Calle Badajoz 169, Mayorazgo IV Etapa, Ate Vitarte, Lima (Peru); Martínez, Lurdes M.; Buleje, Yovanny J. [Centro de Investigación del Estudio de la Actividad Solar y sus Efectos Sobre la Tierra, Facultad de Ciencias, Universidad Nacional San Luis Gonzaga de Ica, Av. Los Maestros S/N, Ica (Peru); Morita, Satoshi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); UeNo, Satoru; Ishii, Takako T.; Kitai, Reizaburo; Takasao, Shinsuke; Yoshinaga, Yusuke; Otsuji, Kenichi; Shibata, Kazunari, E-mail: denis@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto, 607-8471 (Japan)

    2017-02-10

    Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.

  6. Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey

    International Nuclear Information System (INIS)

    Cicia, Gianni; Cembalo, Luigi; Del Giudice, Teresa; Palladino, Andrea

    2012-01-01

    In Italy there has been considerable political debate around the new energy policy, which is specifically designed to contribute to climate change mitigation. While there is renewed interest in nuclear energy generation, there has been heated debate concerning wind farms that have rapidly expanded and are dramatically changing the landscape in many rural areas. Finally, interest has also increased in biomass as an energy source. However, in this case, a significant part of the population is worried about landscape change and primary crop reduction. In this study we report the results from a nation-wide survey (=504 households) in Italy undertaken during summer 2009. A Latent Class Choice Experiment was used to quantify household preferences over different energy sources. Our results show that Italian households can be split into three segments with homogeneous preferences. The first segment (35% of the population) shows strong preference for wind and solar energy and dislikes both biomass and nuclear. The second (33% of the population) shows moderate preference for solar and wind energy and, as with the first segment, dislikes both nuclear and biomass. The third (32% of the population) shows a strong preference for green energy (solar, wind and biomass) and is very much against nuclear energy. The three segments were also characterized in terms of household socio-economic characteristics. - Highlights: ► We quantify Italian household preferences over different energy sources. ► Results come from a nation-wide survey undertaken during summer 2009. ► Energy sources tested: fossil fuel, nuclear, wind, solar and agricultural biomass. ► A latent class choice experiment was used. ► Italians can be split into three segments with different energy source preferences.

  7. The "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code” Modules

    Science.gov (United States)

    Raouafi, Noureddine; Bernasconi, P. N.; Georgoulis, M. K.

    2010-05-01

    We present two pattern recognition algorithms, the "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code,” that are among the Feature Finding modules of the Solar Dynamic Observatory: 1) Coronal sigmoids visible in X-rays and the EUV are the result of highly twisted magnetic fields. They can occur anywhere on the solar disk and are closely related to solar eruptive activity (e.g., flares, CMEs). Their appearance is typically synonym of imminent solar eruptions, so they can serve as a tool to forecast solar activity. Automatic X-ray sigmoid identification offers an unbiased way of detecting short-to-mid term CME precursors. The "Sigmoid Sniffer” module is capable of automatically detecting sigmoids in full-disk X-ray images and determining their chirality, as well as other characteristics. It uses multiple thresholds to identify persistent bright structures on a full-disk X-ray image of the Sun. We plan to apply the code to X-ray images from Hinode/XRT, as well as on SDO/AIA images. When implemented in a near real-time environment, the Sigmoid Sniffer could allow 3-7 day forecasts of CMEs and their potential to cause major geomagnetic storms. 2)The "Advanced Automated Solar Filament Detection and Characterization Code” aims to identify, classify, and track solar filaments in full-disk Hα images. The code can reliably identify filaments; determine their chirality and other relevant parameters like filament area, length, and average orientation with respect to the equator. It is also capable of tracking the day-by-day evolution of filaments as they traverse the visible disk. The code was tested by analyzing daily Hα images taken at the Big Bear Solar Observatory from mid-2000 to early-2005. It identified and established the chirality of thousands of filaments without human intervention.

  8. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  9. The Fram Strait integrated ocean observatory

    Science.gov (United States)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  10. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin; Markel, Robert S.; Thompson, Michael J. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J.; Malanushenko, Anna V. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Davey, Alisdair R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howe, Rachel [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Krista, Larisza D. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80205 (United States); Cirtain, Jonathan W. [Marshall Space Flight Center, Code ZP13, Huntsville, AL 35812 (United States); Gurman, Joseph B.; Pesnell, William D., E-mail: mscott@ucar.edu [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.

  11. Challenges and Opportunities to Developing Synergies Among Diverse Environmental Observatories: FSML, NEON, and GLEON

    Science.gov (United States)

    Williamson, C. E.; Weathers, K. C.; Knoll, L. B.; Brentrup, J.

    2012-12-01

    Recent rapid advances in sensor technology and cyberinfrastructure have enabled the development of numerous environmental observatories ranging from local networks at field stations and marine laboratories (FSML) to continental scale observatories such as the National Ecological Observatory Network (NEON) to global scale observatories such as the Global Lake Ecological Observatory Network (GLEON). While divergent goals underlie the initial development of these observatories, and they are often designed to serve different communities, many opportunities for synergies exist. In addition, the use of existing infrastructure may enhance the cost-effectiveness of building and maintaining large scale observatories. For example, FSMLs are established facilities with the staff and infrastructure to host sensor nodes of larger networks. Many field stations have existing staff and long-term databases as well as smaller sensor networks that are the product of a single or small group of investigators with a unique data management system embedded in a local or regional community. These field station based facilities and data are a potentially untapped gold mine for larger continental and global scale observatories; common ecological and environmental challenges centered on understanding the impacts of changing climate, land use, and invasive species often underlie these efforts. The purpose of this talk is to stimulate a dialog on the challenges of merging efforts across these different spatial and temporal scales, as well as addressing how to develop synergies among observatory networks with divergent roots and philosophical approaches. For example, FSMLs have existing long-term databases and facilities, while NEON has sparse past data but a well-developed template and closely coordinated team working in a coherent format across a continental scale. GLEON on the other hand is a grass-roots network of experts in science, information technology, and engineering with a common goal

  12. Low-Impact Space Weather Sensors and the U.S. National Security Spacecraft

    Science.gov (United States)

    2016-09-01

    for deep space missions), also needs to orient its solar arrays toward the sun, none of which can be accomplished without the ability to control the...Spacecraft Thermal Control Handbook: Cryogenics. El Segundo, CA: The Aerospace Press. ESA and NASA. 2015. “ Solar and Heliospheric Observatory Home Page...Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Incorporating inexpensive low-impact targeted surface charging

  13. SOLTECH 92 proceedings: Solar Process Heat Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  14. The Contentious Role of a National Observatory

    Science.gov (United States)

    McCray, W. Patrick

    2003-10-01

    For 50 years, astronomers have debated, Should large optical telescopes be under the auspices of national centers, or should access to them be controlled by a ``benevolent dictatorship of the elite?''

  15. Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    International Nuclear Information System (INIS)

    Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.

    2004-01-01

    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained by the current phenomenology. Such a constraint can be improved, however, by future data from the KamLAND experiment. In the standard MSW case, we also perform an updated analysis of two-family active oscillations of solar and reactor neutrinos

  16. Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    Science.gov (United States)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.

    2004-03-01

    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained by the current phenomenology. Such a constraint can be improved, however, by future data from the KamLAND experiment. In the standard MSW case, we also perform an updated analysis of two-family active oscillations of solar and reactor neutrinos.

  17. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    Science.gov (United States)

    2001-12-01

    digitally reconstructed in the databanks! The richness and complexity of data and information available to the astronomers is overwhelming. This has created a major problem as to how astronomers can manage, distribute and analyse this great wealth of data . The Astrophysical Virtual Observatory (AVO) will allow astronomers to overcome the challenges and enable them to "put the Universe online". AVO is supported by the European Commission The AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The European Commission awarded a contract valued at 4 million Euro for the AVO project , starting 15 November 2001. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the 'real' sky would, in comparison, be both costly and take far too long. Towards a Global Virtual Observatory The need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded 10 million Dollar (approx. 11.4 million Euro) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on their respective committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first class international astronomical archives. The AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich (Germany). The other partner

  18. The MicroObservatory Net

    Science.gov (United States)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  19. Observatory of photovoltaic solar energy in France - 20. edition

    International Nuclear Information System (INIS)

    2016-12-01

    After an overview of important events in the World regarding the development of photovoltaic solar energy in 2016, and predictions regarding new connected installations in 2016, this document present graphs and figures which illustrate the evolution of the photovoltaic fleet in the World, the comparison of production costs of new electric power generation capacities, the evolution of the French photovoltaic power production since 2009, the evolution of the distribution of the French fleet in terms of installation power (from large projects to residential), of connections to the grid, of number of connections and purchase tariffs for the different types of installations (residential, medium roofs, large roofs, very large roofs, very large ground-based or roof-based projects) and for queuing projects, in terms of evolution of purchase tariffs since 2011, and of evolution of impact on the CSPE financing system

  20. The Astrophysical Multimessenger Observatory Network (AMON)

    Science.gov (United States)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  1. Structure and evolution of magnetic fields associated with solar eruptions

    International Nuclear Information System (INIS)

    Wang Haimin; Liu Chang

    2015-01-01

    This paper reviews the studies of solar photospheric magnetic field evolution in active regions and its relationship to solar flares. It is divided into two topics, the magnetic structure and evolution leading to solar eruptions and rapid changes in the photospheric magnetic field associated with eruptions. For the first topic, we describe the magnetic complexity, new flux emergence, flux cancelation, shear motions, sunspot rotation and magnetic helicity injection, which may all contribute to the storage and buildup of energy that trigger solar eruptions. For the second topic, we concentrate on the observations of rapid and irreversible changes of the photospheric magnetic field associated with flares, and the implication on the restructuring of the three-dimensional magnetic field. In particular, we emphasize the recent advances in observations of the photospheric magnetic field, as state-of-the-art observing facilities (such as Hinode and Solar Dynamics Observatory) have become available. The linkages between observations, theories and future prospectives in this research area are also discussed. (invited reviews)

  2. Ocean Observatories and the Integrated Ocean Observing System, IOOS: Developing the Synergy

    Science.gov (United States)

    Altalo, M. G.

    2006-05-01

    The National Office for Integrated and Sustained Ocean Observations is responsible for the planning, coordination and development of the U.S. Integrated Ocean Observing System, IOOS, which is both the U.S. contribution to GOOS as well as the ocean component of GEOSS. The IOOS is comprised of global observations as well as regional coastal observations coordinated so as to provide environmental information to optimize societal management decisions including disaster resilience, public health, marine transport, national security, climate and weather impact, and natural resource and ecosystem management. Data comes from distributed sensor systems comprising Federal and state monitoring efforts as well as regional enhancements, which are managed through data management and communications (DMAC) protocols. At present, 11 regional associations oversee the development of the observing System components in their region and are the primary interface with the user community. The ocean observatories are key elements of this National architecture and provide the infrastructure necessary to test new technologies, platforms, methods, models, and practices which, when validated, can transition into the operational components of the IOOS. This allows the IOOS to remain "state of the art" through incorporation of research at all phases. Both the observatories as well as the IOOS will contribute to the enhanced understanding of the ocean and coastal system so as to transform science results into societal solutions.

  3. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  4. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the eliophysics System Observatory

    Czech Academy of Sciences Publication Activity Database

    Möstl, C.; Isavnin, A.; Boakes, P. D.; Kilpua, E. K. J.; Davies, J. A.; Harrison, R. A.; Barnes, D.; Krupař, Vratislav; Eastwood, J.; Good, S. W.; Forsyth, R. J.; Bothmer, V.; Reiss, M. A.; Amerstorfer, T.; Winslow, R. M.; Anderson, B.J.; Philpott, L. C.; Rodriguez, L.; Rouillard, A. P.; Gallagher, P.; Nieves-Chinchilla, T.; Zhang, T. L.

    2017-01-01

    Roč. 15, č. 7 (2017), s. 955-970 ISSN 1539-4956 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : space weather * coronal mass ejections * STEREO * heliospheric imagers * Heliophysics System Observatory * heliophysics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://onlinelibrary.wiley.com/doi/10.1002/2017SW001614/full

  5. Teaching and sharing about the Sun in the United States and with Spanish language resources

    Science.gov (United States)

    Peticolas, L. M.; Craig, N.; Hawkins, I.; Walker, C.

    2007-05-01

    The United States has many different scientific agencies that fund research on solar science, including the National Aeronautics and Space Agency (NASA) and the National Science Foundation (NSF). Because there is a large population of Spanish-speaking people in the US, some of the resources developed by the education components of research projects take into account broader cultural perspectives on science and are developed in Spanish. We will describe the education and outreach programs of three solar programs funded by NASA and NSF, the Solar TErrestrial RElations Observatory (STEREO) program, the "We Are One Under the Sun" Program, and the National Optical Astronomy Observatory (NOAO) education program. The STEREO program aims to teach about the Sun through different venues including teacher workshops and courses, teacher materials, turning solar data from STEREO into sound, working with museums, and creating solar posters, CDs, DVDs, and lenticulars. The "We are One Under the Sun" program focuses on Native Americans and Hispanics of Native heritage. It works by merging culture, ancient observatories, and the latest NASA solar science to engage children, youth, and the general public in science and technology through solar traditions in their own indigenous culture. The NOAO Educational Outreach Program was established to make the science and scientists of NOAO more accessible to the K-12 and college-level communities. We will focus on the NOAO solar projects and Spanish-Language Astronomy Materials Educational Center program, which provides multiple types of Spanish- language materials for teachers. These programs have had different levels of outreach in Spanish-speaking countries, namely Mexico (STEREO and "We are One Under the Sun") and Chile (NOAO). We will describe these efforts and give links to the Spanish and English resources available to learn and teach about the Sun.

  6. Sun-Earth Day 2005: Ancient Observatories: Timeless Knowledge

    Science.gov (United States)

    Thieman, J. R.; Cline, T.; Lewis, E.; Hawkins, I.; Odenwald, S.; Mayo, L.

    2005-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. For Sun-Earth Day 2005 SECEF has selected a theme called "Ancient Observatories: Timeless Knowledge. This year's Sun-Earth Day theme is your ticket to a fascinating journey through time as we explore centuries of sun watching by a great variety of cultures. From ancient solar motion tracking to modern solar activity monitoring the Sun has always occupied an important spot in mankind's quest to understand the Universe. Sun-Earth Day events usually are centered on the spring equinox around March 21, but this year there has already been a webcast from the San Francisco Exploratorium and the Native American ruins at Chaco Canyon, New Mexico on the day of winter solstice 2004. There will be another webcast on March 20 live from Chichen Itza, Mexico highlighting the solar alignment that makes a serpent appear on one of the ancient pyramids. The website http://sunearthday.nasa.gov has been developed to provide the necessary resources and opportunities for participation by scientists and educators in giving school or general public programs about Sun-Earth Day. The goal is to involve as much of the student population and the public in this event as possible and to help them understand the importance of the Sun for ancient and modern peoples. Through engaging activities available on the website, classrooms and museums can create their own event or participate in one of the opportunities we make available. Scientists, educators, amateur astronomers, and museums are invited to register on the website to receive a free packet of materials about Sun-Earth Day for use in making presentations or programs about the event. Past and future Sun-Earth Days will be discussed as well.

  7. Education in astronomy and solar-terrestrial relations in science research environment

    Science.gov (United States)

    Stoeva, Penka; Stoev, Alexey

    2009 -more than 5000 people were happy to observe the Sun, Moon, Venus and other celestial objects; "The Galileoscope"; "Galilean Nights" -encourages everybody to go out to the streets and observe the cosmos; "Dark Skies Awareness" -Measuring of the light pollution level above the region of Stara Zagora; "Astronomy and World Heritage" -archaeoastronomical research of megalithic mon-uments and sanctuaries -examples of ancient observatories for observations of solar extreme rises, sets and meridional culminations; history of the first modern astronomical observatory in Bulgaria; "Galileo Teacher Training Program" -Teaching the teachers. At the beginning of every school year teacher-training course is conducted on astronomy and astrophysics. This year they will actively use telescopes to observe the sky with students; "Universe Awareness" -a lot of games and observations, modeling, exhibitions and parties are organized. "From Earth to the Universe" Exhibitions of astronomical photographs from space and ground based telescopes. Astronomy Olympiads -scientific teaching is improved when the students engaged in doing real science on real data. Fifteen years we participate in the International Astronomy Olympiad and our students win medals. Observarion of solar eclipses is an example of educa-tion in science research environment. We were happy to observe the longest for the last 2000 years total solar eclipse on July 22, 2009, in TianHuangPing, China, at 900m above the sea level. Immediately after the end of this unique phenomenon, images of the eclipsed Sun were sent in Bulgaria. Cooperations -we have good international and national cooperations with a lot of Institutes, Universities, organizations and mass media -radio, TV, magazines, news-papers Information and press conferences about the events have been regularly made available for journalists. With the experience we gained from the IHY and IYA initiatives, being a host of a SID Monitor, we focus on the new International

  8. Solar Features - Solar Flares - SIDS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Sudden Ionospheric Disturbance (SID) is any of several radio propagation anomalies due to ionospheric changes resulting from solar or geophysical events.

  9. Continuum emission in the 1980 July 1 solar flare

    International Nuclear Information System (INIS)

    Zirin, H.; Neidig, D.F.

    1981-01-01

    Comparison of continuum measurements of the 1980 July 1 flare at Big Bear Solar Observatory and Sacramento Peak Observatory show strong blue emission kernels with the ratio of Balmer continuum (Bac):lambda3862 continuum:continuum above 4275 A to be about 10:5:1. The blue continuum at 3862 A is too strong to be explained by unresolved lines. The Bac intensity was 2.5 times the photosphere and the strongest lambda3862 continuum was 2 times the photosphere. The brightest continuum kernel occurred late in the flare, after the hard X-ray peak and related in time to an isolated peak in the 2.2 MeV line, suggesting that the continuum was excited by protons above 20 MeV

  10. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    Science.gov (United States)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  11. Interstate Solar Coordination Council. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L.

    1981-02-15

    The ISCC program accomplishments and future plans are reported as follows: overall activities; development of a national standards and certification program for solar collectors; development of a national organization for operating the collector certification program; review of applicability and use of solar collector rating procedures; development of a program for evaluation/testing/certification of solar systems; development of ISCC as a formal and independent organization; development of sizing and installation manual; and coordination efforts with other solar groups. (MHR)

  12. TENCompetence Competence Observatory

    NARCIS (Netherlands)

    Vervenne, Luk

    2010-01-01

    Vervenne, L. (2007) TENCompetence Competence Observatory. Sources available http://tencompetence.cvs.sourceforge.net/viewvc/tencompetence/wp8/org.tencompetence.co/. Available under the three clause BSD license, copyright TENCompetence Foundation.

  13. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    International Nuclear Information System (INIS)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev; Karak, Bidya Binay; Muñoz-Jaramillo, Andrés; Choudhuri, Arnab Rai

    2014-01-01

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century

  14. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev [Indian Institute of Astrophysics,Koramangala, Bengaluru 560034 (India); Karak, Bidya Binay [Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden); Muñoz-Jaramillo, Andrés [Montana State University, Bozeman, MT 59717 (United States); Choudhuri, Arnab Rai, E-mail: mpriya@iiap.res.in, E-mail: dipu@iiap.res.in [Indian Institute of Science, Bangalore (India)

    2014-09-20

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.

  15. The Farid and Moussa Raphael Observatory

    International Nuclear Information System (INIS)

    Hajjar, R

    2017-01-01

    The Farid and Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory. (paper)

  16. Fluctuation characteristics of solar radiation in crop cultivation

    International Nuclear Information System (INIS)

    Hayashi, S.; Suzuki, H.

    1996-01-01

    The objective of this study was to clarify the fluctuation of solar radiation for long and short periods, which is very crucial for plant growth. Data obtained from a meteorological observatory were used to investigate solar radiation and sunshine duration for a long period. For a short period, observation of global solar radiation and sky solar radiation were conducted in a glass house and at an open field. (1) Yearly average percentage of solar radiation at Kagawa from 1973 to 1994 was 44.3%, and its coefficient of variation was 3.9%. The percentage of possible sunshine and the coefficient were larger than those of solar radiation, 47.3% and 56% respectively. (2) Percentage of possible solar radiation and percentage of possible sunshine showed seasonal variation. Those coefficients of variation both increased exponentially with cloud amount. (3) Variations of global solar radiation and direct solar radiation were more remarkable in the glass house than those in the open field, while variations of sky solar radiation were small in the house and at the open field. (4) The fluctuation of solar radiation observed every 5 minutes was presented as the difference of radiation, present value minus the preceding value. The difference was positive in the morning, negative in the afternoon at the open field. In the house both positive and negative values were obtained the whole day. (5) Diurnal variation of ratio of direct solar radiation to sky solar radiation showed a parabolic effect, whereas it had irregular and large fluctuations at the open field

  17. Punctuated Evolution of Volcanology: An Observatory Perspective

    Science.gov (United States)

    Burton, W. C.; Eichelberger, J. C.

    2010-12-01

    Volcanology from the perspective of crisis prediction and response-the primary function of volcano observatories-is influenced both by steady technological advances and singular events that lead to rapid changes in methodology and procedure. The former can be extrapolated somewhat, while the latter are surprises or shocks. Predictable advances include the conversion from analog to digital systems and the exponential growth of computing capacity and data storage. Surprises include eruptions such as 1980 Mount St Helens, 1985 Nevado del Ruiz, 1989-1990 Redoubt, 1991 Pinatubo, and 2010 Eyjafjallajokull; the opening of GPS to civilian applications, and the advent of an open Russia. Mount St Helens switched the rationale for volcanology in the USGS from geothermal energy to volcano hazards, Ruiz and Pinatubo emphasized the need for international cooperation for effective early warning, Redoubt launched the effort to monitor even remote volcanoes for purposes of aviation safety, and Eyjafjallajokull hammered home the need for improved ash-dispersion and engine-tolerance models; better GPS led to a revolution in volcano geodesy, and the new Russian Federation sparked an Alaska-Kamchatka scientific exchange. The pattern has been that major funding increases for volcano hazards occur after these unpredictable events, which suddenly expose a gap in capabilities, rather than out of a calculated need to exploit technological advances or meet a future goal of risk mitigation. It is up to the observatory and national volcano hazard program to leverage these sudden funding increases into a long-term, sustainable business model that incorporates both the steadily increasing costs of staff and new technology and prepares for the next volcano crisis. Elements of the future will also include the immediate availability on the internet of all publically-funded volcano data, and subscribable, sophisticated hazard alert systems that run computational, fluid dynamic eruption models. These

  18. The Footprint Database and Web Services of the Herschel Space Observatory

    Science.gov (United States)

    Dobos, László; Varga-Verebélyi, Erika; Verdugo, Eva; Teyssier, David; Exter, Katrina; Valtchanov, Ivan; Budavári, Tamás; Kiss, Csaba

    2016-10-01

    Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site http://herschel.vo.elte.hu and also as a set of REST web service functions, which makes it readily usable from programming environments such as Python or IDL. The web service allows downloading footprint data

  19. Mg I absorption features in the solar spectrum near 9 and 12 microns

    Science.gov (United States)

    Glenar, David A.; Reuter, Dennis C.; Deming, Drake; Chang, Edward S.

    1988-01-01

    High-resolution FTS observations from the Kitt Peak National Solar Observatory and the Spacelab 3 ATMOS experiment have revealed additional infrared transitions due to Mg I in the spectra of both quiet sun and sunspot penumbra. In contrast to previous observations, these transitions are seen in absorption, not emission. Absorption intensities range from 1 to 7 percent of the continuum in the quiet sun. In the penumbra, the same features appear to show Zeeman splitting. Modeling of the line profiles in the photospheric spectrum shows evidence for a factor of three overabundance in the n = 5 or more levels of Mg I in the upper photosphere, but with no deviations from a Planck source function. It is concluded that whatever the process that produces the emission (including the Lemke and Holweger mechanism), it must occur well above the tau(5000) = 0.01 level.

  20. Signatures of cosmic-ray interactions on the solar surface

    Science.gov (United States)

    Seckel, D.; Stanev, Todor; Gaisser, T. K.

    1991-01-01

    The fluxes of neutrinos, gamma rays, antiprotons, neutrons, and antineutrons that result from collisions of high-energy Galactic cosmic rays with the solar atmosphere are estimated. The results are sensitive to assumptions about cosmic-ray transport in the magnetic fields of the inner solar system. The high-energy photon flux should be observable by the Gamma Ray Observatory. The neutrino flux should produce less than one event per year in the next generation of neutrino telescopes. The antiproton flux is unobservable against the Galactic background. The neutron and antineutron fluxes are detectable only if neutrons produced in terrestrial cosmic-ray events may be discriminated against.

  1. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  2. Electricity and gas market observatory. 2. Quarter 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). The present observatory is dedicated only to eligible customers before 1 July 2007, i.e. non-residential customers. Statistics related to residential customers will be published in the next observatory (1 December 2007). Content: A - The electricity market: The retail electricity market (Introduction, Non-residential customer segments and their respective weights, Status at July 1, 2007, Dynamic analysis: 2. Quarter 2007); The wholesale electricity market (Introduction, Wholesale market activity in France, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking fact of the second quarter 2007); B - The gas market: The retail gas market (Introduction, The non-residential customer segments and their respective weights, Status at July 1, 2007); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  3. The University of Montana's Blue Mountain Observatory

    Science.gov (United States)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  4. Robotic Software for the Thacher Observatory

    Science.gov (United States)

    Lawrence, George; Luebbers, Julien; Eastman, Jason D.; Johnson, John A.; Swift, Jonathan

    2018-06-01

    The Thacher Observatory—a research and educational facility located in Ojai, CA—uses a 0.7 meter telescope to conduct photometric research on a variety of targets including eclipsing binaries, exoplanet transits, and supernovae. Currently, observations are automated using commercial software. In order to expand the flexibility for specialized scientific observations and to increase the educational value of the facility on campus, we are adapting and implementing the custom observatory control software and queue scheduling developed for the Miniature Exoplanet Radial Velocity Array (MINERVA) to the Thacher Observatory. We present the design and implementation of this new software as well as its demonstrated functionality on the Thacher Observatory.

  5. The Millimeter Wave Observatory antenna now at INAOE-Mexico

    Science.gov (United States)

    Luna, A.

    2017-07-01

    The antenna of 5 meters in diameter of the legendary "Millimeter Wave Observatory" is now installed in the INAOE-Mexico. This historic antenna was reinstalled and was equipped with a control system and basic primary focus receivers that enabled it in teaching activities. We work on the characterization of its surface and on the development of receivers and spectrometers to allow it to do research Solar and astronomical masers. The historical contributions of this antenna to science and technology in radio astronomy, serve as the guiding force and the inspiration of the students and technicians of our postgrade in Astrophysics. It is enough to remember that it was with this antenna, that the first molecular outflow was discovered, several lines of molecular emission were discovered and it was the first antenna whose surface was characterized by holography; among many other technological and scientific contributions.

  6. Solar flares observed simultaneously with SphinX, GOES and RHESSI

    Science.gov (United States)

    Mrozek, Tomasz; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kępa, Anna; Gryciuk, Magdalena

    2013-07-01

    In February 2009, during recent deepest solar minimum, Polish Solar Photometer in X-rays (SphinX) begun observations of the Sun in the energy range of 1.2-15 keV. SphinX was almost 100 times more sensitive than GOES X-ray Sensors. The silicon PIN diode detectors used in the experiment were carefully calibrated on the ground using Synchrotron Radiation Source BESSY II. The SphinX energy range overlaps with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) energy range. The instrument provided us with observations of hundreds of very small flares and X-ray brightenings. We have chosen a group of solar flares observed simultaneously with GOES, SphinX and RHESSI and performed spectroscopic analysis of observations wherever possible. The analysis of thermal part of the spectra showed that SphinX is a very sensitive complementary observatory for RHESSI and GOES.

  7. Operations of and Future Plans for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  8. Interactive Multi-Instrument Database of Solar Flares

    Science.gov (United States)

    Ranjan, Shubha S.; Spaulding, Ryan; Deardorff, Donald G.

    2018-01-01

    The fundamental motivation of the project is that the scientific output of solar research can be greatly enhanced by better exploitation of the existing solar/heliosphere space-data products jointly with ground-based observations. Our primary focus is on developing a specific innovative methodology based on recent advances in "big data" intelligent databases applied to the growing amount of high-spatial and multi-wavelength resolution, high-cadence data from NASA's missions and supporting ground-based observatories. Our flare database is not simply a manually searchable time-based catalog of events or list of web links pointing to data. It is a preprocessed metadata repository enabling fast search and automatic identification of all recorded flares sharing a specifiable set of characteristics, features, and parameters. The result is a new and unique database of solar flares and data search and classification tools for the Heliophysics community, enabling multi-instrument/multi-wavelength investigations of flare physics and supporting further development of flare-prediction methodologies.

  9. Addressing the social dimensions of citizen observatories: The Ground Truth 2.0 socio-technical approach for sustainable implementation of citizen observatories

    Science.gov (United States)

    Wehn, Uta; Joshi, Somya; Pfeiffer, Ellen; Anema, Kim; Gharesifard, Mohammad; Momani, Abeer

    2017-04-01

    Owing to ICT-enabled citizen observatories, citizens can take on new roles in environmental monitoring, decision making and co-operative planning, and environmental stewardship. And yet implementing advanced citizen observatories for data collection, knowledge exchange and interactions to support policy objectives is neither always easy nor successful, given the required commitment, trust, and data reliability concerns. Many efforts are facing problems with the uptake and sustained engagement by citizens, limited scalability, unclear long-term sustainability and limited actual impact on governance processes. Similarly, to sustain the engagement of decision makers in citizen observatories, mechanisms are required from the start of the initiative in order to have them invest in and, hence, commit to and own the entire process. In order to implement sustainable citizen observatories, these social dimensions therefore need to be soundly managed. We provide empirical evidence of how the social dimensions of citizen observatories are being addressed in the Ground Truth 2.0 project, drawing on a range of relevant social science approaches. This project combines the social dimensions of citizen observatories with enabling technologies - via a socio-technical approach - so that their customisation and deployment is tailored to the envisaged societal and economic impacts of the observatories. The projects consists of the demonstration and validation of six scaled up citizen observatories in real operational conditions both in the EU and in Africa, with a specific focus on flora and fauna as well as water availability and water quality for land and natural resources management. The demonstration cases (4 EU and 2 African) cover the full 'spectrum' of citizen-sensed data usage and citizen engagement, and therefore allow testing and validation of the socio-technical concept for citizen observatories under a range of conditions.

  10. The Paris Observatory has 350 years

    Science.gov (United States)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  11. OSCILLATION OF CURRENT SHEETS IN THE WAKE OF A FLUX ROPE ERUPTION OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. P.; Zhang, J.; Su, J. T. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China); Liu, Y. [Department of Astronomy, Beijing Normal University, 100875 Beijing (China)

    2016-10-01

    An erupting flux rope (FR) draws its overlying coronal loops upward, causing a coronal mass ejection. The legs of the overlying loops with opposite polarities are driven together. Current sheets (CSs) form, and magnetic reconnection, producing underneath flare arcades, occurs in the CSs. Employing Solar Dynamic Observatory /Atmospheric Imaging Assembly images, we study a FR eruption on 2015 April 23, and for the first time report the oscillation of CSs underneath the erupting FR. The FR is observed in all AIA extreme-ultraviolet passbands, indicating that it has both hot and warm components. Several bright CSs, connecting the erupting FR and the underneath flare arcades, are observed only in hotter AIA channels, e.g., 131 and 94 Å. Using the differential emission measure (EM) analysis, we find that both the temperature and the EM of CSs temporally increase rapidly, reach the peaks, and then decrease slowly. A significant delay between the increases of the temperature and the EM is detected. The temperature, EM, and density spatially decrease along the CSs with increasing heights. For a well-developed CS, the temperature (EM) decreases from 9.6 MK (8 × 10{sup 28} cm{sup −5}) to 6.2 MK (5 × 10{sup 27} cm{sup −5}) in 52 Mm. Along the CSs, dark supra-arcade downflows (SADs) are observed, and one of them separates a CS into two. While flowing sunward, the speeds of the SADs decrease. The CSs oscillate with a period of 11 minutes, an amplitude of 1.5 Mm, and a phase speed of 200 ± 30 km s{sup −1}. One of the oscillations lasts for more than 2 hr. These oscillations represent fast-propagating magnetoacoustic kink waves.

  12. DETECTION OF VORTEX TUBES IN SOLAR GRANULATION FROM OBSERVATIONS WITH SUNRISE

    International Nuclear Information System (INIS)

    Steiner, O.; Franz, M.; Bello Gonzalez, N.; Nutto, Ch.; Rezaei, R.; Schmidt, W.; Martinez Pillet, V.; Bonet Navarro, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Knoelker, M.

    2010-01-01

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.

  13. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  14. Site Protection Efforts at the AURA Observatory in Chile

    Science.gov (United States)

    Smith, R. Chris; Smith, Malcolm G.; Sanhueza, Pedro

    2015-08-01

    The AURA Observatory (AURA-O) was the first of the major international observatories to be established in northern Chile to exploit the optimal astronomical conditions available there. The site was originally established in 1962 to host the Cerro Tololo Inter-American Observatory (CTIO). It now hosts more than 20 operational telescopes, including some of the leading U.S. and international astronomical facilities in the southern hemisphere, such as the Blanco 4m telescope on Cerro Tololo and the Gemini-South and SOAR telescopes on Cerro Pachón. Construction of the next generation facility, the Large Synoptic Survey Telescope (LSST), has recently begun on Cerro Pachón, while additional smaller telescopes continue to be added to the complement on Cerro Tololo.While the site has become a major platform for international astronomical facilities over the last 50 years, development in the region has led to an ever-increasing threat of light pollution around the site. AURA-O has worked closely with local, regional, and national authorities and institutions (in particular with the Chilean Ministries of Environment and Foreign Relations) in an effort to protect the site so that future generations of telescopes, as well as future generations of Chileans, can benefit from the dark skies in the region. We will summarize our efforts over the past 15 years to highlight the importance of dark sky protection through education and public outreach as well as through more recent promotion of IDA certifications in the region and support for the World Heritage initiatives described by others in this conference.

  15. Gender, culture, and astrophysical fieldwork: Elizabeth Campbell and the Lick Observatory-Crocker eclipse expeditions.

    Science.gov (United States)

    Pang, A. S.-K.

    The article is organized as follows. It begins with an overview of women in nineteenth-century American science. It then describes the culture of mountaintop observatories and life on Mount Hamilton. Elizabeth Campbell's unique role in the Crocker-Lick expeditions drew upon her equally unique role in the observatory, and also on the meaning given to women's work in general on the mountain. The bulk of the article focuses on the Campbells and their expeditions to India in 1898, Spain in 1905, and the South Pacific in 1908. The third section compares the Lick Observatory expeditions to those conducted by David Todd of Amherst College. Todd's wife, Mabel Loomis Todd, went into the field several times with her husband, but her place in the field was radically different from Elizabeth Campbell's, a difference that can be ascribed to a combination of local culture and personality. Finally, it compares American expeditions to British expeditions of the period, to see what the absence of British women on expeditions can tell us about the way national scientific styles and cultures affected gender roles in science.

  16. The International Axion Observatory IAXO. Letter of Intent to the CERN SPS committee

    CERN Document Server

    Irastorza, Igor G; Avignone, F. T.; Betz, M.; Brax, P.; Brun, P.; Cantatore, G.; Carmona, J. M.; Carosi, G. P.; Caspers, F.; Caspi, S.; Cetin, S. A.; Chelouche, D.; Christensen, F. E.; Dael, A.; Dafni, T.; Davenport, M.; Derbin, A.V.; Desch, K.; Diago, A.; Dobrich, B. D.; Dratchnev, I.; Dudarev, A.; Eleftheriadis, C.; Fanourakis, G.; Ferrer-Ribas, E.; Galan, J.; Garcia, J. A.; Garza, J. G.; Geralis, T.; Gimeno, B.; Giomataris, I.; Gninenko, S.; Gomez, H.; Gonzalez-Diaz, D.; Guendelman, E.; Hailey, C. J.; Hiramatsu, T.; Hoffmann, D. H. H.; Horns, D.; Iguaz, F. J.; Isern, J.; Imai, K.; Jakobsen, A. C.; Jaeckel, J.; Jakovcic, K.; Kaminski, J.; Kawasaki, M.; Karuza, M.; Krcmar, M.; Kousouris, K.; Krieger, C.; Lakic, B.; Limousin, O.; Lindner, A.; Liolios, A.; Luzon, G.; Matsuki, S.; Muratova, V. N.; Nones, C.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Redondo, J.; Ringwald, A.; Russenschuck, S.; Ruz, J.; Saikawa, K.; Savvidis, I.; Sekiguchi, T.; Semertzidis, Y. K.; Shilon, I.; Sikivie, P.; Silva, H.; Kate, H. ten; Tomas, A.; Troitsky, S.; Vafeiadis, T.; van Bibber, K.; Vedrine, P.; Villar, J. A.; Vogel, J. K.; Walckiers, L.; Weltman, A.; Wester, W.; Yildiz, S. C.; Zioutas, K.; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2013-01-01

    This Letter of Intent describes IAXO, the International Axion Observatory, a proposed 4th generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal to background ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, which means that this instrument will reach sensitivity to axion-photon couplings down to a few $\\times 10^{-12}$ GeV$^{-1}$. IAXO has the potential for the discovery of axions and other ALPs, since it will deeply enter into unexplored parameter space. At the very least it will firmly exclude a large region of this space of high cosmological and astrophysical relevance. In particular it will probe a large fraction of the high mass part (1 meV to 1 eV) of the QCD axion allowed window. Additional physics cases for IAXO include the possibility of detecting solar axions produced by mechanisms mediated by the axion-electron co...

  17. Long-Term Variability of the Sun in the Context of Solar-Analog Stars

    Science.gov (United States)

    Egeland, Ricky

    2018-06-01

    The Sun is the best observed object in astrophysics, but despite this distinction the nature of its well-ordered generation of magnetic field in 11-year activity cycles remains a mystery. In this work, we place the solar cycle in a broader context by examining the long-term variability of solar analog stars within 5% of the solar effective temperature, but varied in rotation rate and metallicity. Emission in the Fraunhofer H & K line cores from singly-ionized calcium in the lower chromosphere is due to magnetic heating, and is a proven proxy for magnetic flux on the Sun. We use Ca H & K observations from the Mount Wilson Observatory HK project, the Lowell Observatory Solar Stellar Spectrograph, and other sources to construct composite activity time series of over 100 years in length for the Sun and up to 50 years for 26 nearby solar analogs. Archival Ca H & K observations of reflected sunlight from the Moon using the Mount Wilson instrument allow us to properly calibrate the solar time series to the S-index scale used in stellar studies. We find the mean solar S-index to be 5–9% lower than previously estimated, and the amplitude of activity to be small compared to active stars in our sample. A detailed look at the young solar analog HD 30495, which rotates 2.3 times faster than the Sun, reveals a large amplitude ~12-year activity cycle and an intermittent short-period variation of 1.7 years, comparable to the solar variability time scales despite its faster rotation. Finally, time series analyses of the solar analog ensemble and a quantitative analysis of results from the literature indicate that truly Sun-like cyclic variability is rare, and that the amplitude of activity over both long and short timescales is linearly proportional to the mean activity. We conclude that the physical conditions conducive to a quasi-periodic magnetic activity cycle like the Sun’s are rare in stars of approximately the solar mass, and that the proper conditions may be restricted

  18. The Solar Twin Planet Search. III. The [Y/Mg] clock: estimating stellar ages of solar-type stars

    Science.gov (United States)

    Tucci Maia, M.; Ramírez, I.; Meléndez, J.; Bedell, M.; Bean, J. L.; Asplund, M.

    2016-05-01

    Context. Solar twins are stars with similar stellar (surface) parameters to the Sun that can have a wide range of ages. This provides an opportunity to analyze the variation of their chemical abundances with age. Nissen (2015, A&A, 579, A52) recently suggested that the abundances of the s-process element Y and the α-element Mg could be used to estimate stellar ages. Aims: This paper aims to determine with high precision the Y, Mg, and Fe abundances for a sample of 88 solar twins that span a broad age range (0.3-10.0 Gyr) and investigate their use for estimating ages. Methods: We obtained high-quality Magellan Inamori Kyocera Echelle (MIKE) spectra and determined Y and Mg abundances using equivalent widths and a line-by-line differential method within a 1D LTE framework. Stellar parameters and iron abundances were measured in Paper I of this series for all stars, but a few (three) required a small revision. Results: The [Y/Mg] ratio shows a strong correlation with age. It has a slope of -0.041 ± 0.001 dex/Gyr and a significance of 41σ. This is in excellent agreement with the relation first proposed by Nissen (2015). We found some outliers that turned out to be binaries where mass transfer may have enhanced the yttrium abundance. Given a precise measurement of [Y/Mg] with typical error of 0.02 dex in solar twins, our formula can be used to determine a stellar age with ~0.8 Gyr precision in the 0 to 10 Gyr range. Based on observations obtained at the Clay Magellan Telescopes at Las Campanas Observatory, Chile and at the 3.6 m Telescope at the La Silla ESO Observatory, Chile (program ID 188.C-0265).

  19. Provence-Alpes-Cote d'Azur regional energy observatory - Assessment 2002, Assessment 2003, Assessment 2004, Assessment 2005, Release 2007, Release 2008, Release 2009, Release 2010, Release 2011, Assessment 2011/Release 2012, Release 2013; Provence-Alpes-Cote d'Azur Energy, Climate and Air regional observatory - 2013-Release 2014, 2014-Release 2015, 2015-Release 2016, 2016-Release 2017

    International Nuclear Information System (INIS)

    Chabannes, Carole; Pamelle, Yohann; Le Maitre, Stephanie; Lyant, Valentin; Gondolo, Philippe; Belhcen, Ludovic; Laverdiere, Folco; Moynet, Matthieu; Luneau, Gaelle; Borel, F.

    2002-01-01

    Illustrated by graphs, maps and tables, this set of documents provides and comments (sometimes in a rather developed way for some issues, depending on the publication year), for years between 2002 and 2016, information and data related to regional energy consumption (in terms of consuming sector and in terms of energy source), energy production (from different sources: wood, coal, hydraulic, wastes, solar photovoltaic and thermal), greenhouse gas emissions, electric power production and demand (with a focus on some specific sectors). Issues addressed in these documents evolve in time as the concept of renewable energy emerged, as important consuming sector are identified (transports, buildings, for example), and also as the issue of energy saving is more precisely studied. Activities of the regional energy observatory are also mentioned. From 2013, issues related to climate and air quality are also addressed at the same level as power production, solar photovoltaic and thermal energy, wind energy, wood-energy, energy savings, energy prices, studies performed by the observatory, and issues related to transports

  20. The First Astronomical Observatory in Cluj-Napoca

    Science.gov (United States)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.