WorldWideScience

Sample records for national nuclear research

  1. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)

  2. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  3. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  4. Proceedings of national symposium on advanced instrumentation for nuclear research

    International Nuclear Information System (INIS)

    1993-01-01

    The National Symposium on Advanced Instrumentation for Nuclear Research was held in Bombay during January 27-29, 1993 at BARC. Progress of modern nuclear research is closely related to the availability of state of the art instruments and systems. With the advancements in experimental techniques and sophisticated detector developments, the performance specifications have become more stringent. State of the art techniques and diverse applications of sophisticated nuclear instrumentation systems are discussed along with indigenous efforts to meet the specific instrumentation needs of research programs in nuclear sciences. Papers of relevance to nuclear science and technology are indexed separately. (original)

  5. National Nuclear Research Institute (NNRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The 2015 report of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission (GAEC) lists various programmes undertaken by the Institute under the following headings: Water resources programme, Energy Research programme, Environmental and Health Safety Programme, Digital Instrumentation programme, Nuclear Applications and Materals programme and Radiation Occupational safety programme. Also, included are abstracts of publications and technical reports.

  6. Disposition of recommendations of the National Research Council in the report ''Revitalizing Nuclear Safety Research''

    International Nuclear Information System (INIS)

    1988-06-01

    On December 8, 1986, the Committee on Nuclear Safety Research of the National Research Council submitted its report, ''Revitalizing Nuclear Safety Research,'' to the US Nuclear Regulatory Commission (NRC). The Commission and its staff have carefully reviewed the Committee's report and have extensively examined the planning, implementation, and management of NRC research programs in order to respond most effectively to the Committee's recommendations. This report presents the Commission's view of the Committee's report and describes the actions that are under way in response to its recommendations

  7. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  8. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    The JOINT INSTITUTE FOR NUCLEAR RESEARCH, JINR, was established by its founding countries in 1956 with the purpose of joining together the scientific and material potential of Member States in studies of the fundamental properties of matter. JINR is an international inter-governmental scientific research organization, whose activities are based on the principles of openness for participation to all interested states and of their equal, mutually beneficial collaboration.

  9. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Multimedia

    1999-01-01

    The JOINT INSTITUTE FOR NUCLEAR RESEARCH, JINR, was established by its founding countries in 1956 with the purpose of joining together the scientific and material potential of Member States in studies of the fundamental properties of matter. JINR is an international inter-governmental scientific research organization, the activities of which are based on the principles of openness for participation to all interested states of their equal, mutually beneficial collaboration.

  10. Scientific and technological activity in the National Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Escobar A, L.; Monroy G, F.; Morales R, P.; Romero H, S.

    2008-01-01

    The present book was published on the occasion of the 50 years of the existence of the Institute, from its creation in 1956 like National Commission of Nuclear Energy to 1979 that arises like National Institute of Nuclear Research. The objective of this publication is the one to leave a writing testimony of all the activities that are realized in the National Institute of Nuclear Research and an accessible language within the diverse subjects boarded. Referring subjects to the activities of nuclear physics, radiochemistry, research and development of materials, dosimetry, plasma physics, production of radiopharmaceuticals, tissue sterilization by radiation, food irradiation and other included. (Author)

  11. National Nuclear Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This annual report covers the research and commercial activities of the National Nuclear Research Institute of the Ghana Atomic Energy Commission for the year 2014. Also listed are the scientific and technical publications issued by staff.

  12. Research and service capabilities of the National Nuclear Forensic Research Laboratory

    International Nuclear Information System (INIS)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C.

    2016-09-01

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  13. Annual report-2011. Institute for Nuclear Research National Academy of Sciences of Ukraine

    International Nuclear Information System (INIS)

    Iivanyuk, F.O.

    2012-01-01

    Annual report contains information on the fundamental, scientific and applied investigations carried out in the Institute for Nuclear Research of the National Academy of Sciences of Ukraine in the year 2010. The report contains abstracts of research works in the fields of nuclear physics, atomic energy, radiation physics and radiation material science, physics of plasma, radiation ecology and biology.

  14. Role of national centers of research and development in nuclear technology transfer

    International Nuclear Information System (INIS)

    Graf, J.-J.; Millies, Pierre.

    1977-01-01

    National Research Centers are shown to play a leading role in nuclear technology transfer, whatever may be the directing scheme of nuclear development in the country envisaged. The first act of the Center consists in training specialists in the various nuclear fields. It must ensure the transfer of technological knowledge towards industry (in metallurgy, mechanics, electronics) and other nuclear auxiliary techniques, together with the transfer towards administration (laws). A simplified scheme of nuclear development strategy based on the French scheme (the French Atomic Energy Commission (CEA) with its subsidiary Companies) is presented that is usable for developing countries [fr

  15. Proceedings of the National Seminar on Research and Nuclear Devices Management

    International Nuclear Information System (INIS)

    Prayitno; Slamet Santosa; Darsono; Syarip; Agus Taftazani; Samin; Tri Mardji Atmono; Dwi Biyantoro; Herry Poernomo; Prajitno; Tjipto Sujitno; Gede Sutresna W; Djoko Slamet Pujorahardjo; Budi Setiawan; Bambang Siswanto; Endro Kismolo; Jumari

    2016-08-01

    The Proceedings of the National Seminar on Research and Nuclear Devices Management by Center for Accelerator Science and Technology in Yogyakarta with the theme of Universities and research and development institutions synergy in the development of basic science and nuclear technology held on Surakarta 9 August 2016. This seminar is an annual routine activities of Center for Accelerator Science and Technology for exchange research result among University and BATAN researcher for using nuclear technology. The proceeding consist of 3 article from keynotes’ speaker and 23 articles from BATAN participant as well as outside which have been indexed separately. (MPN)

  16. Role of a national research organization in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad, Ishaq

    1977-01-01

    Nuclear technology holds great promise for developing countries because it can contribute to national development. The developing countries, however, lack the resources and expertise to develop nuclear technology through their own efforts. A national research organization devoted to the promotion and utilization of nucler technology can provide an effective channel for the transfer of nuclear technology. The problems which the national research organization is likely to face in executing its tasks as an agent for the transfer of technology are discussed. An appreciation of these problems would enable the organization to restructure its priorities so as to achieve maximum effectiveness. The various ways by which the national research organization can speed up the task of transfer of technology are also discussed

  17. The evolution of the role of the Philippine Nuclear Research Institute in the national nuclear and radiation safety regime

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.

    2007-01-01

    The Philippine Nuclear Research Institute (PNRI), formerly the Philippine Atomic Energy Commission (PAEC) was created by law in 1958 with a dual mandate namely, to promote the peaceful applications of nuclear energy, and to regulate the safe utilization of nuclear energy. Through its almost 50 years of existence, the PNRI has assumed different roles and functions. As the premier national nuclear research institution the PNRI initiates R and D work in various applications, establishes nuclear and radiation facilities, and undertakes human resource development not only for its staff but also for the prospective users of nuclear energy. At the same time, the PNRI exercises regulatory control over radioactive materials in the country including the regulatory control over the construction of the first Philippine nuclear power plant in the late 1970's and early 1980's. Presently, the PNRI still exercises the dual mandate of promoting and regulating the peaceful and safe use of radioactive materials. In these evolving roles of the Institute, both management and the staff are committed to excellence in nuclear science and to nuclear safety. Initiatives are underway to create a separate nuclear regulatory body from the developmental agency to enable the country to conform with international safety standards and to prepare for the future re-introduction of nuclear power in the Philippine energy mix. A strong regulatory agency and an equally strong technical and scientific support organization are necessary for a successful and safe nuclear energy program. (author)

  18. Environmental radioactivity at the National Nuclear Research Centre, Pelindaba

    International Nuclear Information System (INIS)

    Brits, R.J.N.; Van der Westhuizen, G.S.H.; Annandale, J.

    1983-06-01

    The revised environmental survey program, introduced during 1970 with the emphasis on monitoring of the critical paths of exposure of the general public, was continued in 1982. Results of determinations of both gross radioactivity and individual nuclides in samples of fish and water (which are critical materials for liquid-effluent releases) from the Hartebeespoort Dam and from the Crocodile River, are given and discussed. Results of 131 I, 90 Sr and gamma-spectrometric analyses of milk, the critical material for releases to the atmosphere, are presented. Results are given of regular investigations of the composition of airborne releases to the atmosphere and liquid-effluent releases to the Crocodile River, performed in order to detect other possible critical nuclides. Levels of deposited and airborne activity from nuclear-bomb tests are reported. Due to absence of fresh fallout material the levels for most fission products have fallen below the limit of detection. No environmental radioactivity due to releases from the Pelindaba site could be detected above the natural background or accumulated fallout levels. Unplanned releases of UF 6 occur sometimes. Accordingly, some of the environmental samples were also analysed for uranium. The results obtained so far do not indicate an increase in uranium levels in the environment

  19. Environmental radioactivity at the National Nuclear Research Centre, Pelindaba

    International Nuclear Information System (INIS)

    Brits, R.J.N; Prinsloo, L.; De Jesus, A.S.M.

    1981-07-01

    The revised environmental survey program, introduced during 1970 with the emphasis on monitoring of the critical paths of exposure of the general public, was continued in 1980. Results of determinations of both gross radioactivity and individual nuclides in samples of fish and water (which are critical materials for liquid-effluent releases) from the Hartbeespoort Dam and from the Crocodile River, are given and discussed. Results of 131 I, 0 Sr and gamma-spectrometric analyses of milk, the critical material for releases to the atmosphere, are presented. Results are given of regular investigations of the composition of airborne releases to the atmosphere and liquid-effluent releases to the Crocodile River, performed in order to detect other possible critical nuclides. Levels of deposited and airborn activity from nuclear-bomb tests are reported. Due to the absence of fresh fallout, the levels for most fission products have fallen below the limit of detection. No environmental radioactivity resulting from NNRC releases could be detected above the natural background or accumulated fallout levels [af

  20. Argonne National Laboratory: An example of a US nuclear research centre

    International Nuclear Information System (INIS)

    Bhattacharyya, S.

    2001-01-01

    The nuclear era was ushered in 1942 with the demonstration of a sustained nuclear chain reaction in Chicago Pile 1 facility. The USA then set up five large national multi disciplinary laboratories for developing nuclear technology for civilian use and three national laboratories for military applications. Reactor development, including prototype construction, was the main focus of the Argonne National Laboratory. More than 100 power reactors operating in the USA have benefited from R and D in the national laboratories. However, currently the support for nuclear power has waned. With the end of the cold war there has also been a need to change the mission of laboratories involved in military applications. For all laboratories of the Department of Energy (DOE) the mission, which was clearly focused earlier on high risk, high payoff long term R and D has now become quite diffused with a number of near term programmes. Cost and mission considerations have resulted in shutting down of many large facilities as well as auxiliary facilities. Erosion of infrastructure has also resulted in reduced opportunities for research which means dwindling of interest in nuclear science and engineering among the younger generation. The current focus of nuclear R and D in the DOE laboratories is on plant life extension, deactivation and decommissioning, spent fuel management and waste management. Advanced aspects include space nuclear applications and nuclear fusion R and D. At the Argonne National Laboratory, major initiatives for the future would be in the areas of science, energy, environment and non-proliferation technologies. International collaboration would be useful mechanisms to achieve cost effective solutions for major developmental areas. These include reactor operation and safety, repositories for high level nuclear waste, reactor system decommissioning, large projects like a nuclear fusion reactor and advanced power reactors. The IAEA could have a positive role in these

  1. National research council report and its impact on nuclear engineering education at the University of Michigan

    International Nuclear Information System (INIS)

    Martin, W.R.

    1991-01-01

    A recent report by the National Research Council raised a number of important issues that will have an impact on nuclear engineering departments across the country. The report has been reviewed in the context of its relevance to the Department of Nuclear Engineering at the University of Michigan (UM), and some observations and conclusions have been drawn. This paper focuses on those portions of Ref. 1 concerning undergraduate and graduate curricula, research facilities and laboratories, faculty research interests, and funding for research and graduate student support because these topics have a direct impact on current and future directions for the department

  2. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  3. National nuclear scientific program

    International Nuclear Information System (INIS)

    Plecas, I.; Matausek, M.V.; Neskovic, N.

    2001-01-01

    National scientific program of the Vinca Institute Nuclear Reactors And Radioactive Waste comprises research and development in the following fields: application of energy of nuclear fission, application of neutron beams, analyses of nuclear safety and radiation protection. In the first phase preparatory activities, conceptual design and design of certain processes and facilities should be accomplished. In the second phase realization of the projects is expected. (author)

  4. National nuclear power plant safety research 2011-2014. SAFIR2014 framework plan

    International Nuclear Information System (INIS)

    2010-01-01

    A country utilising nuclear energy is presumed to possess a sufficient infrastructure to cover the education and research in this field, besides the operating organisations of the plants and a regulatory body. The starting point of public nuclear safety research programmes is that they provide the necessary conditions for retaining the knowledge needed for ensuring the continuance of safe and economic use of nuclear power, for development of new know-how and for participation in international cooperation. In fact, the Finnish organisations engaged in research in this sector have been an important resource which the various ministries, the Radiation and Nuclear Safety Authority (STUK) and the power companies have had at their disposal. Ministry of employment and the economy appointed a group to write the Framework Plan of the new programme. This report contains a proposal for the general outline of the programme, entitled as SAFIR2014 (SAfety of Nuclear Power Plants - Finnish National Research Programme). The plan has been made for the period 2011-2014, but it is based on safety challenges identified for a longer time span as well. Olkiluoto 3, the new nuclear power plant unit under construction and new decisions-in-principle have also been taken into account in the plan. The safety challenges set by the existing plants and the new projects, as well as the ensuing research needs do, however, converge to a great extent. The research programme is strongly based on the Chapter 7a of the Finnish Nuclear Energy Act. The construction of new power plant units will increase the need for experts in the field in Finland. At the same time, the retirement of the existing experts is continuing. These factors together will call for more education and training, in which active research activities play a key role. This situation also makes long-term safety research face a great challenge. The Framework Plan aims to define the important research needs related to the safety

  5. A structured approach to introduce knowledge management practice in a national nuclear research institution in Malaysia

    International Nuclear Information System (INIS)

    Daud, A.H.

    2004-01-01

    In 2002, the Government of Malaysia has launched the Knowledge Management Master Plan with the aim to transform Malaysian from a production-based economy to a knowledge-based economy. In June 2003, the 2nd National Science and Technology policy was launched. The policy puts in place programmes, institutions and partnerships to enhance Malaysian economic position. Several initiatives developed emphasize on the important roles of national nuclear research institutions in the knowledge based economy. The Malaysian Institute for Nuclear Technology Research (MINT) as a national nuclear research institution is thus expected to make significant contributions to the knowledge economy. To a certain extent MINT has been successful in knowledge acquisition and exploitation from more advanced countries as well as in knowledge generation and in the knowledge application and diffusion to the socio-economic sectors. This paper describes a structured approach to introduce the knowledge management practices or initiatives in MINT. It also describes some of the challenges foreseen in adopting the practices. (author)

  6. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons

    International Nuclear Information System (INIS)

    Jonter, Thomas

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue. During this period

  7. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  8. Experience in Implementation of “Nuclear Knowledge Management” Course at the National Research Nuclear University MEPhI

    International Nuclear Information System (INIS)

    Geraskin, N.; Kossilov, A.; Kulikov, E.

    2016-01-01

    Full text: The present paper describes the experience of teaching “Nuclear Knowledge Management” course at National Research Nuclear University MEPhI (NRNU MEPhI). Currently, the course is implemented both in engineer’s and master’s of science degree programmes and is attended by over 50 students. Goal, objectives and syllabus of the course are discussed in detail. A special attention is paid to practical exercises and final examination options in the case of small and large student groups. The course is supported by the Cyber Learning Platform for Nuclear Education and Training (CLP4NET), developed by the IAEA. The experience of NRNU MEPhI lecturers assisting in conducting the International School of Nuclear Knowledge Management, held annually in Trieste (Italy), is described with a special attention to the fact, that the course has passed the certification process at Academical Council of NRNU MEPhI. In 2014 and 2015 the course has been recognized as one of the best ones in NRNU MEPhI. Finally, perspectives of “Nuclear Knowledge Management” course are considered. They include increase of the course duration, introduction of the course into the learning process of other departments and institutions of the university, and transferring the course to other members of the Association “Consortium of ROSATOM supporting universities”. (author

  9. Management of Spent Nuclear Fuel of Nuclear Research Reactor VVR-S at the National Institute of Physics and Nuclear Engineering, Bucharest, Romania

    Science.gov (United States)

    Biro, Lucian

    2009-05-01

    The Nuclear Research Reactor VVR-S (RR-VVR-S) located in Magurele-Bucharest, Romania, was designed for research and radioisotope production. It was commissioned in 1957 and operated without any event or accident for forty years until shut down in 1997. In 2002, by government decree, it was permanently shutdown for decommissioning. The National Institute of Physics and Nuclear Engineering (IFIN-HH) is responsible for decommissioning the RR-VVR-S, the first nuclear decommissioning project in Romania. In this context, IFIN-HH prepared and obtained approval from the Romanian Nuclear Regulatory Body for the Decommissioning Plan. One of the most important aspects for decommissioning the RR-VVR-S is solving the issue of the fresh and spent nuclear fuel (SNF) stored on site in wet storage pools. In the framework of the Russian Research Reactor Fuel Return Program (RRRFR), managed by the U.S. Department of Energy and in cooperation with the International Atomic Energy Agency and the Rosatom State Corporation, Romania repatriated all fresh HEU fuel to the Russian Federation in 2003 and the HEU SNF will be repatriated to Russia in 2009. With the experience and lessons learned from this action and with the financial support of the Romanian Government it will be possible for Romania to also repatriate the LEU SNF to the Russian Federation before starting the dismantling and decontamination of the nuclear facility. [4pt] In collaboration with K. Allen, Idaho National Laboratory, USA; L. Biro, National Commission for Nuclear Activities Control, Romania; and M. Dragusin, National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania.

  10. Nuclear safety research

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA checked and coordinated in 1999 the research project of the Surveillance Technology on Nuclear Installations under the National 9th-Five-Year Program to promote the organizations that undertake the research work on schedule and lay a foundation of obtaining achievements and effectiveness for the 9th-five-year plan on nuclear safety research

  11. Advancing nuclear technology and research. The advanced test reactor national scientific user facility

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Jeff B; Marshall, Frances M [Idaho National Laboratory, Idaho Falls, ID (United States); Allen, Todd R [Univ. of Wisconsin, Madison, WI (United States)

    2012-03-15

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research. The mission of the ATR NSUF is to provide access to world-class facilities, thereby facilitating the advancement of nuclear science and technology. Cost free access to the ATR, INL post irradiation examination facilities, and partner facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to United States Department of Energy. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  12. National Nuclear Power Plant Safety Research 2003-2006. Proposal for the Content and Organisation of a New Research Programme

    International Nuclear Information System (INIS)

    2002-11-01

    A country utilising nuclear energy is presumed to possess a sufficient infrastructure to cover the education and research in this field, besides the operating and supervisory organisations of the plants. The starting point of public nuclear safety research programmes is that they provide the necessary conditions for retaining the knowledge needed for ensuring the continuance of safe and economic use of nuclear power, for development of new know-how and for participation in international cooperation. In fact, the Finnish organisations engaged in research in this sector have been an important resource which the various ministries, the Radiation and Nuclear Safety Authority (STUK) and the power companies have had at their disposal. The Steering Group to the Finnish Research Programme on Nuclear Power Plant Safety (FINNUS), which was launched upon the assignment of the Advisory Committee on Nuclear Energy, appointed in spring 2002 a group to plan the contents of the new programme. This report contains a proposal for the general outline of the programme, preliminarily entitled as SAFIR (SAfety of Nuclear Power Plants - Finnish National Research Programme). The plan has been made for the period 2003-2006, but it is based on safety challenges identified for a longer time span as well. The favourable decision-in-principle on a new nuclear power plant unit adopted by Parliament has also been taken into account in the plan. The safety challenges set by the existing plants and the new plant unit, as well as the ensuing research needs do, however, converge to a great extent. The construction of the new power plant unit will increase the need for experts in the field in Finland. At the same time, the retirement of the existing experts is continuing. These factors together will call for more education and training, in which active research activities play a key role. This situation also makes long-term safety research face a great challenge. The general plan aims to define the

  13. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    Science.gov (United States)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  14. Summary of nuclear plant aging research at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1991-01-01

    Oak Ridge National Laboratory (ORNL) has been a major contributor to the Nuclear Regulatory Commission (NRC) Nuclear Plant Aging Research Program since its inception. The research at ORNL has consisted primarily of the preparation of comprehensive aging assessments and other studies of safety related and other components and systems. The components and systems have been identified and prioritized based on risk considerations, as well as by operating experience. In each case, ORNL has been preparing a Phase 1 assessment which summarizes design features, operating conditions, and stressors which lead to degradation and failure; identified parameters which could be used to detect, trend and differentiate the degradations; and proposed potential inspection, surveillance, and monitoring methods which could be applied to the parameters. Where appropriate, Phase 2 assessments have been prepared, which verify and recommend inspection, surveillance and monitoring methods based on vendor information, laboratory and field tests, and in-situ inspections and tests. Finally, Phase 3 assessments are prepared which provide recommendations regarding implementing the inspection, surveillance and monitoring methods, and provide recommendations regarding criteria to be applied. Other activities include providing assistance to NRC/Nuclear Regulatory Research and regional offices as requested, and participation in ASME and IEEE codes and standards

  15. Nuclear Research and Compliance

    International Nuclear Information System (INIS)

    Noramly Muslim

    2012-01-01

    In his speech, Professor Noramly stressed on any research conducted in Malaysian Nuclear Agency must be comply with the national and international regulations. This to avoid any problems in the future. Moreover, research conducted in Malaysian Nuclear Agency are based on nuclear matters that seems sensitive to the public communities. In order to attract the publics on the benefit of nuclear technologies in many applications, researcher also must aware about the regulations and must take care on their safety during their experiment and working. This to make the public feels that nuclear are not the bad things and erased the worseness of nuclear technology into public minds. This strategies can be used for Malaysia in embarking for their first nuclear power program and the public feels that nuclear power are not threatened to them and consequently, they will accept that program without any issues. (author)

  16. January 1978 monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mynatt, F.R.

    1978-01-01

    Highlights of technical progress during January 1978 are presented for sixteen separate program activities which comprise the ORNL research program for the Office of Nuclear Regulatory Research's Division of Reactor Safety Research

  17. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory, March 1977

    International Nuclear Information System (INIS)

    Fee, G.G.

    1977-01-01

    Highlights of technical progress during March 1977 are presented for thirteen separate program activities which comprise the ORNL research program for the Office of Nuclear Regulatory Research's Division of Reactor Safety Research

  18. Research and service capabilities of the National Nuclear Forensic Research Laboratory; Capacidades de investigacion y servicio del Laboratorio Nacional de Investigacion en Forense Nuclear, Lanafonu

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C., E-mail: elizabeth.romero@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  19. Vision of the Training Department of the National Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Dominguez A, C. E.

    2008-12-01

    The availability of skilled personnel is an essential element of the national infrastructure, to ensure the safety and security through the strong principles of management and good technology, quality assurance, training and qualification of new personnel, thorough safety evaluations and building on lessons of experience and research. In the national case the General Regulation of Radiation Safety requires that the Radiation Safety Responsible (RSR) must be experienced in issues of radiation safety of the facility in which employed. As experience has been found by chance that some people who have attended courses offered by the National Institute of Nuclear Research and have not achieved a result approval, obtain approval at the respective courses offered by other entities, which may have a potential dilemma (not at all cases since then), in the sense that the aspiration to become experts in the safety basic standards, can be addressed only after ensuring that there is an acceptance at the level of the course and evaluation ways of the present courses to RSR. Viewed another way, one can consider the formation of RSR experience in planning for better training of experts in the safety basic standards. It happens that the courses offered to RSR some of them do not cover the requirements of time, content and practices established in the regulations. The Mexican Society of Radiological Safety can affect as a partner to improve the courses quality. (Author)

  20. Spent fuel reprocessing and minor actinide partitioning safety related research at the UK National Nuclear Laboratory

    International Nuclear Information System (INIS)

    Carrott, Michael; Flint, Lauren; Gregson, Colin; Griffiths, Tamara; Hodgson, Zara; Maher, Chris; Mason, Chris; McLachlan, Fiona; Orr, Robin; Reilly, Stacey; Rhodes, Chris; Sarsfield, Mark; Sims, Howard; Shepherd, Daniel; Taylor, Robin; Webb, Kevin; Woodall, Sean; Woodhead, David

    2015-01-01

    The development of advanced separation processes for spent nuclear fuel reprocessing and minor actinide recycling is an essential component of international R and D programmes aimed at closing the nuclear fuel cycle around the middle of this century. While both aqueous and pyrochemical processes are under consideration internationally, neither option will gain broad acceptance without significant advances in process safety, waste minimisation, environmental impact and proliferation resistance; at least when compared to current reprocessing technologies. The UK National Nuclear Laboratory (NNL) is developing flowsheets for innovative aqueous separation processes. These include advanced PUREX options (i.e. processes using tributyl phosphate as the extractant for uranium, plutonium and possibly neptunium recovery) and GANEX (grouped actinide extraction) type processes that use diglycolamide based extractants to co-extract all transuranic actinides. At NNL, development of the flowsheets is closely linked to research on process safety, since this is essential for assessing prospects for future industrialisation and deployment. Within this context, NNL is part of European 7. Framework projects 'ASGARD' and 'SACSESS'. Key topics under investigation include: hydrogen generation from aqueous and solvent phases; decomposition of aqueous phase ligands used in separations prior to product finishing and recycle of nitric acid; dissolution of carbide fuels including management of organics generated. Additionally, there is a strong focus on use of predictive process modelling to assess flowsheet sensitivities as well as engineering design and global hazard assessment of these new processes. (authors)

  1. Training related research and development conducted at Oak Ridge National Laboratory for the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Haas, P.M.

    1985-01-01

    For a number of years Oak Ridge National Laboratory (ORNL) has conducted a sizeable program of human factors research and development in support of the Office of Nuclear Regulatory Research of the US Nuclear Regulatory Commission (NRC). The history of this effort has in many ways paralleled the growth of human factors R and D throughout the nuclear industry and the program has contributed to advances in the industry as well as to NRC regulatory and research programs. This paper reviews the major projects and products of the program relevant to training and concludes with an identification of future R and D needs

  2. The tissue bank at the national nuclear research institute in Mexico.

    Science.gov (United States)

    Esther Martínez-Pardo, María; Lourdes Reyes-Frías, Ma

    2003-01-01

    The Instituto Nacional de Investigaciones Nucleares (ININ, The National Nuclear Research Institute) received during 1997-1998 strong support of the International Atomic Energy Agency (IAEA), to establish the first and only one tissue bank (BTR ININ tissue bank) in Mexico that uses ionising radiation as sterilising agent. In that time, the BTR staff was trained in different tissue banks in several countries. Basic equipment for tissue processing donated by the IAEA was received in 1998. In July, 1999 the Mexican Health Secretariat gave the Sanitary License No. 1062000001 to the BTR to operate as an official organ and tissue bank. In August, 2001 the ININ and the Hospital Materno Infantil (HMI-ISSEMYM) signed an agreement to collaborate in amnion processing. The hospital is responsible for donor selection, serology tests, tissue procurement and washing, since this hospital is the BTR amnion supplier. The tissues are collected by ININ weekly with complete documentation. The BTR is responsible for processing: cleaning, air drying, packaging, labelling, microbiological control and sterilisation by gamma irradiation. The sterilised tissue is kept under quarantine for 6 months to obtain the results of the donor second serology test. From March to June, 2002 the BTR has processed 347.86 units (50 cm(2) each), is say, 17,393 cm(2). In addition, the pig skin xenograft process has been implemented and a protocol for clinical applications of it is running at the Hospital Central Sur de Alta Especialidad (PEMEX). Also the ININ tissue bank present status and perspectives are described.

  3. Proceeding of the National Seminar on Research and Management of Nuclear Equipment: Book II

    International Nuclear Information System (INIS)

    Tjipto Sujitno; Syarip; Agus Taftazani; Elisabeth Supriyatni; Prayitno; MV Purwani; Budi Setiawan; Prajitno; Rany Saptaaji; Bambang Siswanto; Eko Priyono; Jumari

    2013-09-01

    The scientific meeting and presentation on accelerator technology and its applications was held by PTAPB BATAN on 11 September 2013. This meeting aims to promote the technology and its applications to accelerator scientists, academics, researchers and technology users as well as accelerator-based accelerator research that have been conducted by researchers in and outside BATAN. This proceeding contains 49 papers about , chemistry, physics, accelerator, nuclear instrument and nuclear reactor, etc. (PPIKSN)

  4. 23 May 2016 - Signature of a MoU between the National Nuclear Research Center, Republic of Azerbaijan, and the ALICE Collaboration

    CERN Multimedia

    Bennett, Sophia Elizabeth

    2016-01-01

    From left to right: Head of the Nuclear Physics Department, National Nuclear Research Center A. Rustamov; Chairman, National Nuclear Research Center A. Garibov; Deputy Minister for Communication and High Technology of the Republic of Azerbaijan E. Velizadeh; CERN Director for Research and Computing E. Elsen; ALICE Collaboration Spokesperson P. Giubellino. Are also attending: Permanent Representative of the Republic of Azerbaijan to the United Nations Office and other international organizations in Geneva Ambassador V. Sadiqov and Director for International Relations C. Warakaulle.

  5. Contributions of university nuclear engineering departments to the national research agenda

    International Nuclear Information System (INIS)

    Peddicord, K.L.

    1991-01-01

    The history and character of university nuclear engineering departments have enabled them to play unique roles in higher education and to make valuable contributions in numerous important research fields. Nuclear engineering programs have several distinguishing and noteworthy characteristics. These characteristics include quality, diversity, and effectiveness. However, the continued viability of these programs is in question, and the importance of these programs may only be recognized after the capability has been lost. To recover this capability may well prove to be an impossibility

  6. Proceeding of the National Seminar on Research and Management of Nuclear Equipment. Book I

    International Nuclear Information System (INIS)

    Tjipto Sujitno; Syarip; Agus Taftazani; Elisabeth Supriyatni; Prayitno; MVPurwani; Budi Setiawan; Prajitno; Rany Saptaaji; Bambang Siswanto; Eko Priyono; Jumari

    2013-09-01

    The scientific meeting and presentation on accelerator technology and its applications was held by PTAPB BATAN on 13 December 2011. This meeting aims to promote the technology and its applications to accelerator scientists, academics, researchers and technology users as well as accelerator-based accelerator research that have been conducted by researchers in and outside BATAN. This proceeding contains 23 papers about physics and nuclear reactor. (PPIKSN)

  7. Implementation of neutron diffraction technique at Nuclear Center of National Institute of Nuclear Research for study of materials

    International Nuclear Information System (INIS)

    Macias Betanzos, L.R.

    1993-01-01

    The Neutron Diffraction technique, it's a helpful tool for the study of materials. The purpose, was to verify that such technique works with the Neutron Diffractometer of National Institute of Nuclear Research. The scope, is to study crystalline materials by the Neutron Diffraction Method, that means it completion with Bragg's Law. There exist a lot of diffraction techniques that depend on the kind of study to do. In this case the study was to measure known samples to have a correlation between parameters such a extinction factor and dislocation density. Known copper deformed samples were measured to observe the extinction effect and it could be observed. We had to calibrate the Neutron Diffractometer, the detection system and to have an optimal movement control of diffractometer devices by mean of a microcomputer. Also, was necessary to control the Reactor TRIGA operation to minimize the neutron flux oscillation. It was not possible the quantification of dislocation density in the samples because the relation signal/background was about one and it gives high inaccuracy. To correct this problem, it's necessary to have a better shielding to minimize the contribution of the background. The conclusion is that the Neutron Diffractometer is in conditions to carry out investigation on the material field, today it can be lattice constants, crystalline phases and measurements of metallic textures. For such studies, it's necessary to have samples with 2 cm 3 or higher to increase the relation signal/background. At present, we have the process software to give the interpretation of the Neutron Diffraction process. (Author). 12 refs, 16 figs

  8. National Nuclear Technology Map Development

    International Nuclear Information System (INIS)

    Shin, J. I.; Lee, T. J.; Yoon, S. W.

    2005-03-01

    The objective of NuTRM is to prepare a plan of nuclear R and D and technological innovations which is very likely to make nuclear technology a promising power source for future national developments. The NuTRM finds out systematically the nuclear R and D vision and the high-value-added strategic technologies to be developed by the efficient cooperation of actors including government, industry, academy and research institute by 2020. In other words, NuTRM aims at a long-term strategic planning of nuclear R and D and technological innovation in order to promote the socio-economic contributions of nuclear science and technology for the nation's future competitiveness and sustainable development and to raise the global status of the Korean nuclear R and D and Industry

  9. National nuclear program

    International Nuclear Information System (INIS)

    Costa A, D.

    1980-01-01

    The basic concepts of the Nuclear program that Mexico plans are presented, to develop pointing out that it constitutes an outstanding event within the history of the country, that will result in an equilibrated profit of the resources of oil exploitation consolidating each step of its technical evolution; all of this represents a challenge since it establishes a qualitative transformation in the very roots of the National economy. Being certain that oil is a non renovable natural resource, the author points out that Mexican Government has emphasized the promotion of the research of alternate resource of energy in the future. According to this panorama, the quidelines that Mexico must undertake regarding production, distribution and consumption of nuclear energy, will point primarily to a global program, which will avoid the imports of equipment and technicians, to achieve maximum advantages for the Country. It stresses the fact that this program cannot start from zero; since first, Mexico, has to import foreign technology, which once assimilated, will give to the Mexican technicians the starting point to establish the proper solution to the foreseen objectives. Therefore, any kind of International cooperation must tend to accelerate the nuclear development and to obtain the transference to technology, within a frame of respect to Mexican sovereignity. The conclusion is that the task at which Mexico aims must be based on the existing human potentiality and on the one that will be prepared in the future, and also on the knowledge and adequate exploitation of the uranium reserves, having the ININ a prominent role of creating the necessary human infrastructure, the development of a Mexican nuclear energy can be achieved in a medium term. (author)

  10. Research study on typical feature of the media coverage on nuclear accidents in the national newspapers in Japan

    International Nuclear Information System (INIS)

    Tsuchida, T.; Kimura, H.

    2011-01-01

    This study focuses on survey of the characteristics of the media coverage on three well-known nuclear accidents. From a quantitative standpoint of the media reporting, it was revealed that the amount of the articles in the surveyed national newspapers tend to increase soon after accidents happen. Plus, as a qualitative research the author interviewed three leader writers, who suggested that the Japanese nuclear industry should prepare to distribute information more timely and sufficiently. They also answered the PR staff needs to contact journalists regularly in order to recognize their awareness and earn their trust. (author)

  11. The applied research program of the High Flux Neutron Generator at the National Nuclear Center, Havana

    International Nuclear Information System (INIS)

    Perez, G.; Martin, G.; Ceballos, C.; Padron, I.; Shtejer, K.; Perez, N.; Guibert, R.; Ledo, L.M.; Cruz Inclan, Carlos

    2001-01-01

    The Havana High Flux Neutron Generator facility is an intense neutron source based on a 20 mA duoplasmatron ion source and a 250 kV high voltage power supply. It has been installed in the Neutron Generator Laboratory at the Center of Applied Technologies and Nuclear Research in 1997. This paper deal outlined the future applied program to be carried out in this facility in the next years. The Applied Research Program consists on install two nuclear analytic techniques: the PELAN technique which uses the neutron generator in the pulse mode and the Low Energy PIXE technique which uses the same facility as a low energy proton accelerator for PIXE analysis. (author)

  12. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory, August 1977

    International Nuclear Information System (INIS)

    Fee, G.G.

    1977-01-01

    Technical highlights are presented for the following safety-related studies: heavy section steel technology, fission product beta and gamma energy release, fission product release from LWR fuel, fission product transport tests, multirod burst tests, Nuclear Safety Information Center, PWR blowdown heat transfer-separate effects, zircaloy fuel cladding collapse studies, zirconium metal-water oxidation kinetics, aerosol release and transport from LMFBR fuel, HTGR safety analysis and research, design criteria for piping and nozzles, and noise diagnostics for safety assessment

  13. Monthly highlights for Office of Nuclear Regulatory research programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Fee, G.G.

    1975-04-01

    Summaries are given of the following programs: heavy section steel technology, fission product beta and gamma energy release, LOCA release from LWR fuel, multirod burst tests, Nuclear Safety Information Center, PWR blowdown heat transfer--separate effects, Zircaloy fuel cladding collapse studies, Zr metal--water oxidation kinetics, transient vaporization of LMFBR fuel, and HTGR safety analysis and research. Technical highlights and cost/budget reports are included. (U.S.)

  14. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory, August 1976

    International Nuclear Information System (INIS)

    Fee, G.G.

    1976-10-01

    Technical highlights are presented for the following activities: heavy section steel technology, fission product beta and gamma energy release, LOCA release from LWR fuel, Nuclear Safety Information Center, PWR blowdown heat transfer-separate effects, Zircaloy fuel cladding collapse studies, zirconium metal-water oxidation kinetics, aerosol release and transport from LMFBR fuel, HTGR safety analysis and research, design criteria for piping and nozzles, and dose conversion factors for inhalation of radionuclides

  15. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Fee, G.G.

    1976-02-01

    Brief highlights are presented for the following activities: heavy section steel technology program, fission product β and γ energy release, LOCA release from LWR fuel, multirod burst tests, Nuclear Safety Information Center, PWR blowdown heat transfer-separate effects, zircaloy fuel cladding collapse studies, zirconium metal-water oxidation kinetics, aerosol release and transport from LMFBR fuel, HTGR safety analysis and research, and design criteria for piping and nozzles

  16. US national report on research that relates to life management of nuclear power plants

    International Nuclear Information System (INIS)

    Pugh, C.E.

    1992-01-01

    This report will focus on the status of license renewal activities in the US and associated research. First, it is noted that about 20 percent of the electricity generating capacity in the US (over 100 GW) is provided by nuclear plants, but as the current 40-year licenses expire, this nuclear generating capacity will decline dramatically after the year 2010. Plants operate under licenses granted by the US Nuclear Regulatory Commission (NRC). The regulatory requirements for their licensing and operating nuclear reactors are laid out in Title 10 of the Code of Federal Regulations (10 CFR). Currently, 10 CFR (Part 50.51) permits license renewal upon expiration of the current license period, but it has not previously given guidance on requirements for extending the period. In anticipation of requests to renew licenses, the NRC undertook, several years ago vigorous efforts to establish regulatory policies, technical bases, and procedures of renewal. The NRC has worked hard to ensure that technically defensible and practical methods are established. The resulting requirements that an applicant is to meet to renew a plant's license are being placed in Parts 51 and 54 of 10 CFR. Part 51 addresses environmental requirements and reviews. Part 54 addresses the technical requirements and reviews that a plant must satisfy at the time the extension is granted and during the extension period

  17. Public relations activities of the Karlsruhe Nuclear Research Center - a national research center contributes to opinion forming

    International Nuclear Information System (INIS)

    Koerting, K.

    1988-01-01

    At the Karlsruhe Nuclear Research Center, the Public Relations Department directly reports to the Chief Executive Officer. The head of the Public Relation Department acts as spokesman of the center in the public, which requires him to be fully informed of the work of all units and of the policy goals of the executive board. The key tools used by the Public Relations Department are KfK-Hausmitteilungen, accident information, the scientific journal KfK-Nachrichten, press releases, exhibitions, fairs, guided tours, and nuclear energy information staff. (DG)

  18. TL dosimetry in the new Tandetron ion accelerator site of the National Institute of Nuclear Research (ININ)

    International Nuclear Information System (INIS)

    Valdovinos A, M.; Gonzalez M, P.R.

    2000-01-01

    The National Institute of Nuclear Research (ININ) acquired a positive ions accelerator type Tandetron 2 MV of the dutch company High Voltage Engineering, Europe B.V., which was finished its installation this year (2000) in an already existing building in the Dr. Nabor Carrillo Flores Nuclear Centre, where it was prepared for the following purposes: the accelerator will be used to realize research through X-ray emission induced by charged particles, Rutherford backscattering analysis, nuclear reaction analysis, gamma ray emission induced by charged particles, resonant dispersion analysis, elastic backward detection analysis and by particle canalization analysis. The accelerator consists of an injection system with two ion sources, ion accelerator tank with voltage in terminal at 2 MV, recovery and recirculation system of charge interchange gas, iman selector analyzer system and with high energy focussing, control system through computer and management and recovery of isolator gas system. For the realization of operation tests of this accelerator, it was had the license authorizing by the National Commission of Nuclear Safety and Safeguards (CNSNS). During the test stage Tl dosemeters were arranged in the Tandetron accelerator area, and also in direction to the beam outlet. In this work, are presented the obtained results of the measurement of radiation levels, as in the area as in the beam outlet. (Author)

  19. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    International Nuclear Information System (INIS)

    Salazar, M.D.

    1998-01-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel

  20. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  1. Nuclear methods in national development

    International Nuclear Information System (INIS)

    1993-01-01

    This volume of the proceedings of the First National Conference on Nuclear Methods held at Kongo Conference Hotel Zaria from 2-4 September 1993, contains the full text of about 30 technical papers and speeches of invited dignitaries presented at the conference. The technical papers are original or review articles containing results and experiences in nuclear and related analytical techniques. Topics treated include neutron generator operation and control, nuclear data, application of nuclear techniques in environment, geochemistry, medicine, biology, agriculture, material science and industries. General topics in nuclear laboratory organization and research experiences were also covered. The papers were fully discussed during the conference and authors were requested to make changes in the manuscripts where necessary. However, they were further edited. The organizing committee wishes to thank all authors for their presentation and cooperation in submitting their manuscripts promptly and the participants for their excellent contribution during the conference

  2. Nuclear research at the institute of physics of Azerbaijan national academy of sciences

    International Nuclear Information System (INIS)

    Nagiyev, Sh. M.

    2002-01-01

    In the field of elementary particles and nuclear physics the research of a number of theoretical and experimental problems is being carried out. Theoretical research by axiomatic, symmetric and field theoretical methods in elementary particles and nuclear physics have obtained wider development. Theorists study the problems of electroweak interaction, investigate relativistic composite models in the framework of a finite-difference version of relativistic quantum mechanics and phenomenological aspects of subquark models, develop a description of fundamental interactions in the axiomatic quantum field theory and investigate non-perturbative methods in gauge field theory. Using field theoretical methods, a relativistic covariant Hamiltonian quantum field theory on the light cone (on the light-front planes) for fields with arbitrary spin was developed.The various exactly soluble finite-difference models for some important applications of dynamic quantum systems (linear and three-dimensional harmonic oscillators, hydrogen atoms etc.) were investigated. The wave functions, energy spectra and dynamic symmetry were determined; the coherent states and Wigner distribution functions for the stationary states and the states of thermodynamic equilibrium were constructed.Research related to the possible description of lepton and lepton-hadron interactions within the framework of the weak and electromagnetic interaction theories with spontaneously broken of SU(2)xU(1) gauge symmetry were carried out. The questions of acceptance of different SU(2)xU(1) models were investigated. Several methods for introducing heavy leptons were also considered.It was shown that, the spin interactions in even deformed nuclei generate a new collective branch of monopoly excitations, and are responsible for the formation of observables in experiments on magnetic dipole and Gamov-Teller resonances. The experimental studies are primarily focused on the investigation of the following problems: a) ATLAS

  3. Canadian national nuclear forensics capability project

    International Nuclear Information System (INIS)

    Ball, J.; Dimayuga, I.; Summerell, I.; Totland, M.; Jonkmans, G.; Whitlock, J.; El-jaby, A.; Inrig, E.

    2015-01-01

    Following the 2010 Nuclear Security Summit, Canada expanded its existing capability for nuclear forensics by establishing a national nuclear forensics laboratory network, which would include a capability to perform forensic analysis on nuclear and other radioactive material, as well as on traditional evidence contaminated with radioactive material. At the same time, the need for a national nuclear forensics library of signatures of nuclear and radioactive materials under Canadian regulatory control was recognized. The Canadian Safety and Security Program, administered by Defence Research and Development Canada's Centre for Security Science (DRDC CSS), funds science and technology initiatives to enhance Canada's preparedness for prevention of and response to potential threats. DRDC CSS, with assistance from Canadian Nuclear Laboratories, formerly Atomic Energy of Canada Limited, is leading the Canadian National Nuclear Forensics Capability Project to develop a coordinated, comprehensive, and timely national nuclear forensics capability. (author)

  4. Canadian national nuclear forensics capability project

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J.; Dimayuga, I., E-mail: joanne.ball@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Summerell, I. [Royal Canadian Mounted Police, Ottawa, Ontario (Canada); Totland, M. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Jonkmans, G. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Whitlock, J. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); El-jaby, A. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada); Inrig, E. [Defence Research and Development Canada, Ottawa, Ontario (Canada)

    2015-06-15

    Following the 2010 Nuclear Security Summit, Canada expanded its existing capability for nuclear forensics by establishing a national nuclear forensics laboratory network, which would include a capability to perform forensic analysis on nuclear and other radioactive material, as well as on traditional evidence contaminated with radioactive material. At the same time, the need for a national nuclear forensics library of signatures of nuclear and radioactive materials under Canadian regulatory control was recognized. The Canadian Safety and Security Program, administered by Defence Research and Development Canada's Centre for Security Science (DRDC CSS), funds science and technology initiatives to enhance Canada's preparedness for prevention of and response to potential threats. DRDC CSS, with assistance from Canadian Nuclear Laboratories, formerly Atomic Energy of Canada Limited, is leading the Canadian National Nuclear Forensics Capability Project to develop a coordinated, comprehensive, and timely national nuclear forensics capability. (author)

  5. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  6. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    International Nuclear Information System (INIS)

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs

  7. Tehran Nuclear Research Center

    International Nuclear Information System (INIS)

    Taherzadeh, M.

    1977-01-01

    The Tehran Nuclear Research Center was formerly managed by the University of Tehran. This Center, after its transformation to the AEOI, has now become a focal point for basic research in the area of Nuclear Energy in Iran

  8. Experience in implementation of «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI

    International Nuclear Information System (INIS)

    Geraskin, N I; Kosilov, A N

    2017-01-01

    This paper describes the experience of teaching «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI (NRNU MEPhI). Currently, the course is implemented both in engineer and master degree programs and is attended by over 50 students. Goal, objectives and syllabus of the course are discussed in detail. A special attention is paid to practical exercises and final examination options in the case of small and large student groups. The course is supported by the Cyber Learning Platform for Nuclear Education and Training (CLP4NET), developed by the IAEA. The experience of NRNU MEPhI lecturers assisting in conducting the International School of Nuclear Knowledge Management, held annually in Trieste (Italy), is described with a special attention to the fact, that the course has passed the certification process at Academic Council of NRNU MEPhI. In 2014 and 2015 the course has been recognized as one of the best ones in NRNU MEPhI. Finally, perspectives of «Nuclear Knowledge Management» course are considered. They include increase of the course duration, introduction of the course into the learning process of other departments and institutions of the university, and transferring the course to other members of the Association «Consortium of ROSATOM supporting universities». (paper)

  9. Experience in implementation of «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI

    Science.gov (United States)

    Geraskin, N. I.; Kosilov, A. N.

    2017-01-01

    This paper describes the experience of teaching «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI (NRNU MEPhI). Currently, the course is implemented both in engineer and master degree programs and is attended by over 50 students. Goal, objectives and syllabus of the course are discussed in detail. A special attention is paid to practical exercises and final examination options in the case of small and large student groups. The course is supported by the Cyber Learning Platform for Nuclear Education and Training (CLP4NET), developed by the IAEA. The experience of NRNU MEPhI lecturers assisting in conducting the International School of Nuclear Knowledge Management, held annually in Trieste (Italy), is described with a special attention to the fact, that the course has passed the certification process at Academic Council of NRNU MEPhI. In 2014 and 2015 the course has been recognized as one of the best ones in NRNU MEPhI. Finally, perspectives of «Nuclear Knowledge Management» course are considered. They include increase of the course duration, introduction of the course into the learning process of other departments and institutions of the university, and transferring the course to other members of the Association «Consortium of ROSATOM supporting universities».

  10. Modernization of physical protection educational laboratories in the National Research Nuclear University MEPhI

    Science.gov (United States)

    Geraskin, N. I.; Krasnoborodko, A. A.

    2017-01-01

    Non-proliferation of nuclear materials includes, in addition to accounting and control, the Physical Protection (PP) of one. The paper considers the experience by MEPhI in application the practical educational in the area of PP technical systems. The following aspects are discussed in the paper: specific features graduate program in nuclear security area; overview of the practical course curricula in the special laboratory.

  11. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  13. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  14. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons; Foersvarets forskningsanstalt och planerna paa svenska kaernvapen

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, Thomas [Uppsala Univ. (Sweden). Dept. of History

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue

  15. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  16. Nuclear energy research in Indonesia

    International Nuclear Information System (INIS)

    Supadi, S.; Soentono, S.; Djokolelono, M.

    1988-01-01

    Indonesia's National Atomic Energy Authority, BATAN (Badan Tenaga Atom Nasional), was founded to implement, regulate and monitor the development and launching of programs for the peaceful uses of nuclear power. These programs constitute part of the efforts made to change to a more industrialized level the largely agricultural society of Indonesia. BATAN elaborated extensive nuclear research and development programs in a variety of fields, such as medicine, the industrial uses of isotopes and radiation, the nuclear fuel cycle, nuclear technology and power generation, and in fundamental research. The Puspiptek Nuclear Research Center has been equipped with a multi-purpose research reactor and will also have a fuel element fabrication plant, a facility for treating radioactive waste, a radiometallurgical laboratory, and laboratories for working with radioisotopes and for radiopharmaceutical research. (orig.) [de

  17. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  18. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  19. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  20. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    Science.gov (United States)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  1. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Fee, G.G.

    1976-08-01

    Brief highlights are presented for the following programs: heavy section steel technology, fission product beta and gamma energy release, LOCA release from LWR fuel, multirod burst tests, Nuclear Safety Information Center, PWR blowdown heat transfer-separate effects, zircaloy fuel cladding collapse studies, zirconium metal-water oxidation kinetics, aerosol release and transport from LMFBR fuel, HTGR safety analysis, design criteria for piping and nozzles, and dose conversion factors for inhalation of radionuclides

  2. Energy in transition, 1985-2010. Final report of the Committee on Nuclear and Alternative Energy Systems, National Research Council

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This exhaustive study, in assessing the roles of nuclear and alternative energy systems in the nation's energy future, focuses on the period between 1985 and 2010. Its intent is to illuminate the kinds of options the nation may wish to keep open in the future and to describe the actions, policies, and R and D programs that may be required to do so. The timing and the context of these decisions depend not only on the technical, social, and economic features of energy-supply technologies, but also on assumptions about future demand for energy and the possibilities for energy conservation through changes in consumption patterns and improved efficiency of the supply and end-use systems. The committee developed a three-tiered functional structure for the project. The first tier was CONAES itself, whose report embodies the ultimate findings, conclusions, and judgments of the study. To provide scientific and engineering data and economic analyses for the committee, a second tier of four panels was appointed by the committee to examine (1) energy demand and conservation, (2) energy supply and delivery systems, (3) risks and impacts of energy supply and use, and (4) various models of possible future energy systems and decision making. Each panel in turn established a number of resource groups - some two dozen in all - to address in detail an array of more particular matters. Briefly stated, recommended strategies are: (1) increased energy conservation; (2) expansion of the nation's balanced coal and nuclear electrical generation base; (3) retention of the breeder option; (4) stimulation of fluid energy development; and (5) immediate increase in research and development of new energy options to ensure availability over the long term.

  3. Vision of the Training Department of the National Institute of Nuclear Research; Vision del Departamento de Capacitacion del Instituto Nacional de Investigaciones Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A, C. E. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2008-12-15

    The availability of skilled personnel is an essential element of the national infrastructure, to ensure the safety and security through the strong principles of management and good technology, quality assurance, training and qualification of new personnel, thorough safety evaluations and building on lessons of experience and research. In the national case the General Regulation of Radiation Safety requires that the Radiation Safety Responsible (RSR) must be experienced in issues of radiation safety of the facility in which employed. As experience has been found by chance that some people who have attended courses offered by the National Institute of Nuclear Research and have not achieved a result approval, obtain approval at the respective courses offered by other entities, which may have a potential dilemma (not at all cases since then), in the sense that the aspiration to become experts in the safety basic standards, can be addressed only after ensuring that there is an acceptance at the level of the course and evaluation ways of the present courses to RSR. Viewed another way, one can consider the formation of RSR experience in planning for better training of experts in the safety basic standards. It happens that the courses offered to RSR some of them do not cover the requirements of time, content and practices established in the regulations. The Mexican Society of Radiological Safety can affect as a partner to improve the courses quality. (Author)

  4. First Ph.D. Student Workshop of the Hermann von Helmholtz Association of National Research Centers (HGF) on ''Nuclear Safety Research''

    International Nuclear Information System (INIS)

    Knebel, J.U.; Sanchez Espinoza, V.H.

    2006-03-01

    The First Ph.D. Student Workshop ''Nuclear Safety Research'' of the Helmholtz Association of National Research Centers (HGF)'' was jointly organized by the Research Center Karlsruhe GmbH and the Energie Baden-Wuerttemberg AG (EnBW) from Wednesday 9th to Friday 11th March 2005. The workshop was opened with welcome greetings by Dr. Peter Fritz, Forschungszentrum Karlsruhe. Subsequently Dr. Joachim U. Knebel explained the main goals and the content of the workshop. The young scientists reported in 28 high-level presentations about their research work which covered a wide spectrum from reactor safety, partitions and transmutation, and innovative reactor systems, to safety research for nuclear waste disposal. The junior researchs showed excellent professional competence and demonstrated presentation qualities at the highest level. The successful funding of two Virtual Institutes, namely: the ''Competence in Nuclear Technologies'' and ''Functional Characteristics of Aquatic Interfaces both co-ordinated by Forschungszentrum Karlsruhe'', by the President of the Helmholtz Association Prof. Walter Kroell was the motivation for the organization of this first Ph.D. Student Workshop. Thanks to these two Virtual Institutes, the Reseach Center Karlsruhe and Juelich together with several univer-sities i.e. RWTH Aachen, Heidelberg, Karlsruhe, Muenster, and Stuttgart, have successfully financed eight Ph.D. and two post-doctoral students. Moreover, young scientists of the European Institute for Transuranium Elements (ITU) and additional seven Ph.D. Students, who are sponsored by the German nuclear industry (Framatome ANP, RWE Power, EnBW) in the frame of the Alliance Competence in on Nuclear Technology, and who are trained at Forschungszentrum Karlsruhe, actively contributed to this workshop. The EnBW-Award was handed over by Dr. Hans-Josef Zimmer, member of the board of directors of the EnBW-Kraftwerksgesellschaft, to Mrs. Ayelet Walter from the University of Stuttgart for the best

  5. The future of national research institutions

    International Nuclear Information System (INIS)

    Popp, M.

    1992-01-01

    In Germany, the national research centers have prepared, accompanied and stabilized the development of nuclear technology. In the present, political, situation, they are no longer able to make a comparably constructive contribution to the future perspective of nuclear technology. The accompanying scientific services rendered nuclear technology by the national research centers also in the future include the cultivation of qualified expertise. In this way, the link between national research centers and nuclear technology is maintained, albeit at a different level. Cases in point are nuclear fusion or the development of new, advanced reactor lines. (orig.) [de

  6. National Privacy Research Strategy

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — On July 1, NITRD released the National Privacy Research Strategy. Research agencies across government participated in the development of the strategy, reviewing...

  7. Evaluation of the aptitude for the service of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico

    International Nuclear Information System (INIS)

    Merino C, J.; Gachuz M, M.; Diaz S, A.; Arganis J, C.; Gonzalez R, C.; Nava G, T.; Medina R, M.J.

    2001-01-01

    This work describes the evaluation of the structural integrity of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico, which was realized in July 2001, as an element to determine those actions for preventive and corrective maintenance which owner must do it for a safety and efficient operation of the component in the next years. (Author)

  8. Study for Action Plan proposal on some issues of the national nuclear infrastructure for the new research reactor project in phase 1&2

    International Nuclear Information System (INIS)

    Cao Hong Lan; Bui Dang Hanh; Nguyen Nhi Dien

    2017-01-01

    The Project on construction for a new research reactor in Vietnam is under preparation. At the same time, it is necessary to prepare a firm and comprehensive national nuclear infrastructure which is aimed to implement smoothly and ensure safety and security for the project. How is the status of the nuclear infrastructure for research reactor project in Vietnam, how can it be assessed, what is the assessment used for and what are we going to do with that? So, all of these things are the goals set out to address in this Task. However, due to time constraints and conformity with requirement of project progress, this Task assessed only 8 critical issues in infrastructure in phase 1&2, including National position; Management; Legislative framework; Regulatory framework; Human resource development; Radioactive waste; Site survey, site selection and evaluation; and Environmental protection. Conditions and criteria in the documents on milestones and assessment of the national nuclear infrastructure to support a new research reactor project of the International Atomic Energy Agency (IAEA) were used as bases for assessing the Vietnam's infrastructure status. The results of the Task are assessment and identification for gaps which need to be addressed and proposing for a plan on completing the national nuclear infrastructure for the research reactor project on 8 issues in stages 1&2. (author)

  9. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  10. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  12. The new nuclear nations

    International Nuclear Information System (INIS)

    Spector, L.

    1985-01-01

    Using 251 pages of text, 66 pages of references and 26 pages of appendixes, Spector delves into a world of new nuclear suppliers whose voracious hunger for profits may lead them to provide unwise assistance to countries that are unduly interested in nuclear weaponry. He assails a new dragon, a 'nuclear netherworld' that would illicitly supply such items for profit or political gain. Spector's book tells of covert dealings in nuclear technologies and materials. For him, the buyers have but one goal: '... to gain possession of the knowledge and materials necessary for development of nuclear weapons'. He warns of dangers from this illicit trade, of the loopholes in existing controls and the need to close them. His warnings come wrapped in stories of undercover transactions, many about Pakistan's efforts to get what it needs for its centrifuge enrichment plant. Recognizing the tightening of controls over nuclear trade since the 1970s, including those for dual-use items, Spector is nonetheless pessimistic that these efforts are sufficient to irradicate the nuclear netherworld or to deter newcomers from it

  13. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  14. National Nuclear Physics Summer School

    CERN Document Server

    2016-01-01

    The 2016 National Nuclear Physics Summer School (NNPSS) will be held from Monday July 18 through Friday July 29, 2016, at the Massachusetts Institute of Technology (MIT). The summer school is open to graduate students and postdocs within a few years of their PhD (on either side) with a strong interest in experimental and theoretical nuclear physics. The program will include the following speakers: Accelerators and Detectors - Elke-Caroline Aschenauer, Brookhaven National Laboratory Data Analysis - Michael Williams, MIT Double Beta Decay - Lindley Winslow, MIT Electron-Ion Collider - Abhay Deshpande, Stony Brook University Fundamental Symmetries - Vincenzo Cirigliano, Los Alamos National Laboratory Hadronic Spectroscopy - Matthew Shepherd, Indiana University Hadronic Structure - Jianwei Qiu, Brookhaven National Laboratory Hot Dense Nuclear Matter 1 - Jamie Nagle, Colorado University Hot Dense Nuclear Matter 2 - Wilke van der Schee, MIT Lattice QCD - Sinead Ryan, Trinity College Dublin Neutrino Theory - Cecil...

  15. Thailand's nuclear research centre

    International Nuclear Information System (INIS)

    Yamkate, P.

    2001-01-01

    The Office of Atomic Energy for Peace, Thailand, is charged with three main tasks, namely, Nuclear Energy development Plan, Utilization of Nuclear Based technology Plan and Science and Technology Plan. Its activities are centred around the research reactor TRR-1/M1. The main areas of contribution include improvement in agricultural production, nuclear medicine and nuclear oncology, health care and nutrition, increasing industrial productivity and efficiency and, development of cadre competent in nuclear science and technology. The office also has the responsibility of ensuring nuclear safety, radiation safety and nuclear waste management. The office has started a new project in 1997 under which a 10 MWt research reactor, an isotope production facility and a waste processing and storage facility would be set up by General Atomic of USA. OAEP has a strong linkage with the IAEA and has been an active participant in RCA programmes. In the future OAEP will enhance its present capabilities in the use of radioisotopes and radiation and look into the possibility of using nuclear energy as an alternative energy resource. (author)

  16. Navajos and National Nuclear Policy.

    Science.gov (United States)

    Barry, Tom

    1979-01-01

    Describes the history of nuclear development in New Mexico, notes the cumulative detrimental effect on the Navajo Nation, and emphasizes federal inaction regarding health and safety standards and regulation in the nuclear power industry. Journal availability: see RC 503 522. (SB)

  17. National Nuclear Data Center

    Science.gov (United States)

    data The EXFOR project EXFOR Basics Short guide Codes Checking & utility codes Reaction codes -development ENDF-6 Format Manual (not yet available) Introduction to ENDF Formats ADVANCE ENDF continuous Educational Links ABC of Nuclear Science Brief Introduction History of Chemical Elements IUPAC Periodic Table

  18. Nuclear technology and national participation

    International Nuclear Information System (INIS)

    Gueray, B. S.

    2001-01-01

    The evolution from the initial turnkey approach into a split-package and eventually into a multiple-package approach requires a firm long-term policy for the nuclear program together with careful planning and realistic assessment. Definition of the possible areas and the extent for the national participation is a critical determining factor for the implementation of the program. In this study; importance of a throughout survey with its elementary methods and objectives is presented. Extent of national participation together with its evolutionary aspects investigated through analysis of some countries' experiences and IAEA guides. The beneficial effect of national participation in a nuclear power program is underlined

  19. Contributions of the National Institute of Nuclear Research to the advance of Science and Technology in Mexico. Commemorative edition 2010

    International Nuclear Information System (INIS)

    Duque M, G.; Jimenez R, M.; Monroy G, F.; Romero H, S.; Serment G, J.

    2010-01-01

    From the second decade of the X X century the applications of the nuclear energy have been important part of the scientific and technological patrimony in Mexico. Records exist with regard to the use of the radioisotopes and the radiations in our country in that time, and in a formal way until the year of 1950, in a process that culminates with the creation of the Comision Nacional de Energia Nuclear (CNEN. January 1, 1956). In January 12, 1972 were published the Organic Law that created to the Instituto Nacional de Energia Nuclear, being responsible for the works that the CNEN developed. The current Instituto Nacional de Investigaciones Nucleares (ININ) was constituted starting from the Regulation Law of the constitutional Article 27 in nuclear matter of January 26, 1979, abrogated and substituted by the Law in force of February 4, 1985. In this lapse they were undertaken multitude of projects with results and diverse achievements. From their creation, the mission of the ININ and the previous institutions has been to realize research in science and nuclear technology, to promote their peaceful uses and to diffuse the achieved advances, always searching for to link them to the economic, social, scientific and technological development of the country. In this occasion with the purpose of participating in the commemoration of the bicentennial of the independence and centennial of the Mexican revolution in our country, the ININ decided to publish this work, directed to a wide public, with the intention of providing a vision the most complete and appropriate possible of the activities in research and technology that it is carries out at the moment. This work also seeks to be a diffusion instrument of the tasks that they are carried out in the institute, in diverse subjects as: the basic research, the nuclear applications in the health, the agriculture and the industry, the studies on the contamination and the environment; the dosimetry; the radiological protection; as

  20. Establishing a National Nuclear Security Support Centre

    International Nuclear Information System (INIS)

    2014-02-01

    The responsibility for creating and sustaining a nuclear security regime for the protection of nuclear and other radiological material clearly belongs to the State. The nuclear security regime resembles the layers of an onion, with the equipment and personnel securing the borders and ports representing the outer layer, and nuclear power, research reactors and nuclear medicine facilities representing the inner layers, and the actual target material representing the core. Components of any nuclear security regime include not only technological systems, but the human resources needed to manage, operate, administer and maintain equipment, including hardware and software. This publication provides practical guidance on the establishment and maintenance of a national nuclear security support centre (NSSC) as a means to ensure nuclear security sustainability in a State. An NSSC's basic purpose is to provide a national focal point for passing ownership of nuclear security knowledge and associated technical skills to the competent authorities involved in nuclear security. It describes processes and methodologies that can be used by a State to analyse the essential elements of information in a manner that allows several aspects of long term, systemic sustainability of nuclear security to be addressed. Processes such as the systematic approach to training, sometimes referred to as instructional system design, are the cornerstone of the NSSC concept. Proper analysis can provide States with data on the number of personnel requiring training and instructors needed, scale and scope of training, technical and scientific support venues, and details on the type and number of training aids or simulators required so that operational systems are not compromised in any way. Specific regulatory guidance, equipment or technology lists, or specifications/design of protection systems are not included in this publication. For such details, the following IAEA publications should be consulted

  1. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  2. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Soedyartomo, S.

    1996-01-01

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  3. National directory of nuclear services

    International Nuclear Information System (INIS)

    1974-09-01

    This directory contains information on nuclear services which can be provided in South Africa. These services have to do with the application of nuclear materials and techniques in medicine, industry, agriculture, research, etc. A list of locally manufactured radioisotopes is given

  4. Sandia National Laboratories: Research

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD and decision-making. Materials science Leading the nation in the knowledge of materials engineering success is our foundational scientific research, which provides us with knowledge and capabilities that

  5. Nuclear emergency preparedness: national organisation

    Energy Technology Data Exchange (ETDEWEB)

    El Messaoudi, M.; Essadki, H.; Lferde, M.; Moutia, Z. [Faculte des Sciences, Dept. de Physique, Rabat (Morocco)

    2006-07-01

    As in all other industries, the nuclear facilities can be the object of accidents whose consequences go beyond the limits of their site and consequently radioactive releases would be issued in the environment justifying the protection measures of population. Even if all the precautions were taken during the stages from the design to the operation, to reduce the risk of accident in nuclear installations, this risk can not be completely suppressed. For the radiological risk, as for the other major risks, the protection of the public always was taken in consideration by public power. The nuclear emergency plan gives the opportunity to have a quick appropriate reaction to a sudden event, which has (or might have) direct consequences for the population. The Moroccan public authorities had proceeded to reinforce at the national level, the control of nuclear safety and protection against radiation by the set up of a new nuclear safety authority. Evidently, the organization and the management of a nuclear and/or radiological emergency were at centre of this reform. Taking into account the subjective risk of radiological terrorism, the authorities should reinforce measurements guaranteeing radiological safety and security, and elaborate the appropriate emergency plans. The aim of this paper is to give a progress report on nuclear emergency plan aspects and to present a corresponding organization which could be applied by national authority. (authors)

  6. Nuclear emergency preparedness: national organisation

    International Nuclear Information System (INIS)

    El Messaoudi, M.; Essadki, H.; Lferde, M.; Moutia, Z.

    2006-01-01

    As in all other industries, the nuclear facilities can be the object of accidents whose consequences go beyond the limits of their site and consequently radioactive releases would be issued in the environment justifying the protection measures of population. Even if all the precautions were taken during the stages from the design to the operation, to reduce the risk of accident in nuclear installations, this risk can not be completely suppressed. For the radiological risk, as for the other major risks, the protection of the public always was taken in consideration by public power. The nuclear emergency plan gives the opportunity to have a quick appropriate reaction to a sudden event, which has (or might have) direct consequences for the population. The Moroccan public authorities had proceeded to reinforce at the national level, the control of nuclear safety and protection against radiation by the set up of a new nuclear safety authority. Evidently, the organization and the management of a nuclear and/or radiological emergency were at centre of this reform. Taking into account the subjective risk of radiological terrorism, the authorities should reinforce measurements guaranteeing radiological safety and security, and elaborate the appropriate emergency plans. The aim of this paper is to give a progress report on nuclear emergency plan aspects and to present a corresponding organization which could be applied by national authority. (authors)

  7. National nuclear plan - Present and prospects

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin; Popescu, Dan

    2003-01-01

    The Romanian Research, Development and Innovation Plan (PNCDI) contains programmes aiming at: strengthening the national research and development capacity as well as enhancing the employment of scientific and technologic potential; obtaining national scientific excellency in the frame of globalization; achieving valuable results in specific objectives of importance for national economy and foreign policy; European integration of the national research potential. In the frame of PNCDI there are sub-programmes oriented toward nuclear field as follows: PC6 EURATIOM, with EU; Technical Cooperation projects with IAEA; basic and applied research projects with JINR, Dubna and CERN, Geneva as well with other international organizations. These sub-programs have also domestic-oriented objectives as for instance: boosting the reform in the nuclear sector; alignment the specific legislation with the European legislation; preserving the high-skilled human resources; strengthening the safety of nuclear facilities; strengthening the radiation protection of occupational personnel, population and environment; ensuring the management of radioactive waste with final disposal; enhancing the nuclear industry competitiveness; developing innovative concepts of new NPP types; formation and training of young specialists; ensuring the access on large scale to the European nuclear installations; organizing and intensifying the technology transport, as well as, simulation of small and average scale enterprises, boosting the cooperation between industrial and scientific organization enhancing the exchange the scientific information. All nuclear activities in Romania are peaceful and subject to a severe control of the state and of the habilitated international organisms. For Cernavoda NPP Romania chose the CANDU PHW project as a successful project developed in Canada and world wide. The performances concerning nuclear safety are highest while the costs of nuclear electricity is competitive with

  8. Overview of research potential of Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Ciocanescu, Marin

    2007-01-01

    The main organizations involved in nuclear power production in Romania, under supervision of Presidency, Prime Minister and Parliament are: CNCAN (National Commission for Nuclear Activities Control), Nuclear Agency, Ministry of Economy and Commerce, ANDRAD (Waste Management Agency), SNN (Nuclearelectrica National Society), RAAN (Romanian Authority for Nuclear Activities), ICN (Institute for Nuclear Research - Pitesti), SITON (Center of Design and Engineering for Nuclear Projects- Bucharest); ROMAG-PROD (Heavy Water Plant), CNE-PROD (Cernavoda Nuclear Power Plant - Production Unit), CNE-INVEST (Cernavoda Nuclear Power Plant -Investments Unit), FCN (Nuclear Fuel Factory). The Institute for Nuclear Research, Pitesti INR, Institute for Nuclear Research, Pitesti is endowed with a TRIGA Reactor, Hot Cells, Materials Laboratories, Nuclear Fuel, Nuclear Safety Laboratories, Nuclear Fuel, Nuclear Safety. Waste management. Other research centers and laboratories implied in nuclear activities are: ICIT, National Institute for cryogenics and isotope technologies at Rm Valcea Valcea. with R and D activity devoted to heavy water technologies, IFIN, Institute for nuclear physics and engineering, Bucharest, as well as the educational institutions involved in atomic energy applications and University research, Politechnical University Bucharest, University of Bucharest, University of Pitesti, etc. The INR activity outlined, i.e. the nuclear power research as a scientific and technical support for the Romanian nuclear power programme, mainly dedicated to the existing NPP in the country (CANDU). Focused with priority are: - Nuclear Safety (behavior of plant materials, components, installations during accident conditions and integrity investigations); - Radioactive Waste Management Radioactive; - Radioprotection; Product and services supply for NPP. INR Staff numbers 320 R and D qualified and experienced staff, 240 personnel in devices and prototype workshops and site support

  9. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    Science.gov (United States)

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011.

  10. A recommendation of the National Board for Atomic Safety and Radiation Protection for the appointment of Nuclear Safety Control Officers for research reactors

    International Nuclear Information System (INIS)

    Adler, B.

    1990-01-01

    The Ordinance on the Implementation of Atomic Safety and Radiation Protection of the GDR requires that the managers of plants where nuclear facilities are operated appoint Control Officers for the fields of radiation protection, nuclear safety, physical protection, and accounting for and control of nuclear materials. The Control Officers are staff members of the operating organization but their appointment is subject to approval by the National Board and requires adequate qualification. The main task of the Control Officers as specialists is to give advice to the plant manager who retains responsibility for the safety of nuclear facilities, and to verify on his behalf that all requirements within their competence are met by the operating group. For this reason the Control Officer has to be absolutely independent of the head of the operating group. To enable the Control Officers to accomplish all necessary control activities and to guarantee independence from the head of the operating group, the plant manager has to establish adequate regulations of operation. As a pattern for such regulations the National Board has issued a Recommendation for the Appointment of Nuclear Safety Control Officers for Research Reactors, which provides a comprehensive survey of the requisite qualification features as well as the duties and rights of these Control Officers. This recommendation will be dealt with in the presentation

  11. Research in nuclear astrophysics

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1989-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and the supernova phenomenon; in fact, nuclear matter properties, especially at supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered in the one and one half years prior to its explosion in February 1987. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We propose to modify it to use implicit differencing and to include multi-group neutrino diffusion and General Relativity. In parallel, we are extending calculations of the birth of a neutron star to include convection and mass accretion, by incorporating a hydrodynamic envelope onto a hydrostatic core. In view of the possible recent discovery of a pulsar in SN1987A, we are including the effects of rotation. We are undertaking a detailed comparison of current equations of state, focusing on disagreements regarding the nuclear incompressibly, symmetry energy and specific heat. Especially important is the symmetry energy, which below nuclear density controls free proton fractions and weak interaction rates and above this density critically influences the neutron star maximum mass and binding energy. 60 refs

  12. National Nuclear Management and Control Agency (NNCA)

    International Nuclear Information System (INIS)

    Yoon, Wan Ki

    2006-01-01

    The National Nuclear Management and Control Agency (NNCA) is an independent agency for safeguards and material control for nuclear activities in the Republic of Korea. Formerly subordinate to the Korea Atomic Energy Research Institute (KAERI), it is temporarily associated with the Korea Institute of Nuclear Safety (KINS). In mid-2006 it will become fully independent. The NNCA is responsible for safeguards within the ROK, cooperates with the IAEA, and supports technical needs of the Ministry of Science and Technology (MOST). In addition, it has responsibilities in export controls and physical protection. In the future the NNCA expects to become a national 'think tank' for nuclear control and nonproliferation issues. This presentation enumerated the many responsibilities of the NNCA and explained the structure and staffing of the organization. (author)

  13. Nuclear information services at the National Nuclear Data Center

    International Nuclear Information System (INIS)

    Burrows, T.W.; Tuli, J.K.

    1996-01-01

    The numeric and bibliographic nuclear data bases maintained by the National Nuclear Data Center and access to these data bases will be described. The U.S. Nuclear Data and Reaction Data Networks will also be briefly described

  14. Nuclear Stewardship Research

    International Nuclear Information System (INIS)

    C.W. Beausang

    2006-01-01

    This report covers the period from June 2005 through May 2006. During this, the third year of our program, our research has focused mainly on applying the surrogate reaction technique and our newly developed surrogate ratio method to deduce neutron induced fission cross sections on uranium nuclei. The year has been marked by continued scientific progress, by the arrival of new personnel, by a growth in the numbers of students working in the group and by a continuation of our experimental program and close collaboration with staff and scientists from Lawrence Livermore National Laboratory and from Lawrence Berkeley National Laboratory

  15. Nuclear Research and Society

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2000-07-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised.

  16. Nuclear Research and Society

    International Nuclear Information System (INIS)

    Eggermont, G.

    2000-01-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised

  17. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  18. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  19. Study of system safety evaluation on LTO of national project. NISA safety research project on system safety of nuclear power plants

    International Nuclear Information System (INIS)

    Takizawa, Masayuki; Sekimura, Naoto; Miyano, Hiroshi; Aoyama, Katsunobu

    2012-01-01

    Japanese safety regulatory body, that is, Nuclear and Industrial Safety Agency (NISA) started a 5-year national safety research project as 'the first stage' from 2006 FY to 2010 FY whose objective is 'Improve the technical information basis in order to utilize knowledge as well as information related to ageing management and maintenance of NPPs. Fukushima disaster happened in March 2011, and the priority of research needs for ageing management dramatically changed in Japan. The second-stage national project started in October 2011 with the concept of 'system safety' of NNPs where not only ageing management on degradation phenomena of important components but also safety management on total plant systems are paid attention to. The second-stage project is so called 'Japanese Ageing Management Program for System Safety (JAMPSS)'. (author)

  20. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  1. Nuclear Research Centre of Maamora Morocco

    International Nuclear Information System (INIS)

    Marfak, T.; Boufraqech, A.

    2010-01-01

    Morocco has a long and rich history in nuclear technology which began in the 1950s with the development of nuclear techniques in several important socio-economic fields such as medicine, agriculture and industrial applications. The development of nuclear technology evolved over various organizations, primarily within the Ministry of Education. However, with the formation of the National Centre for Nuclear Energy and Technology (CNESTEN) the development of nuclear technology in Morocco has been reinforced. Morocco is looking forward and actively pursuing alternative sources of energy and has a very strong interest in nuclear power generation and associated technologies such as nuclear desalination. Entry into these new technologies is required since there are no natural sources of energy, Morocco currently imports most of its energy needs from abroad and has a rapidly expanding energy need. In this paper, we present CNESTEN and its main facilities, missions, research programmes, human resources, training, education, national and international cooperation, etc

  2. The national standards program for research reactors

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1977-01-01

    In 1970 a standards committee called ANS-15 was established by the American Nuclear Society (ANS) to prepare appropriate standards for research reactors. In addition, ANS acts as Secretariat for a national standards committee N17 which is responsible to the American National Standards Institute (ANSI) for the national consensus efforts for standards related to research reactors. To date ANS-15 has completed or is working on 14 standards covering all aspects of the operation of research reactors. Of the 11 research reactor standards submitted to the ANSI N17 Committee since its inception, six have been issued as National standards, and the remaining are still in the process of review. (author)

  3. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  4. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  5. China's nuclear safety regulatory body: The national nuclear safety administration

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-04-01

    The establishment of an independent nuclear safety regulatory body is necessary for ensuring the safety of nuclear installations and nuclear fuel. Therefore the National Nuclear Safety Administration was established by the state. The aim, purpose, organization structure and main tasks of the Administration are presented. At the same time the practical examples, such as nuclear safety regulation on the Qinshan Nuclear Power Plant, safety review and inspections for the Daya Bay Nuclear Power Plant during the construction, and nuclear material accounting and management system in the nuclear fuel fabrication plant in China, are given in order to demonstrate the important roles having been played on nuclear safety by the Administration after its founding

  6. 15th National Conference on Nuclear Structure in China

    CERN Document Server

    Wang, Ning; Zhou, Shan-Gui; Nuclear Structure in China 2014; NSC2014

    2016-01-01

    This volume is a collection of the contributions to the 15th National Conference on Nuclear Structure in China (NSC2014), held on October 25-28, 2014 in Guilin, China and hosted by Guangxi Normal University. It provides an important updated resource in the nuclear physics literature for researchers and graduate students studying nuclear structure and related topics. Recent progress made in the study of nuclear spectroscopy of high-spin states, nuclear mass and half-life, nuclear astrophysics, super-heavy nuclei, unstable nuclei, density functional theory, neutron star and symmetry energy, nuclear matter, and nuclear shell model are covered.

  7. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  8. Annual Continuation And Progress Report For Low-Energy Nuclear Physics Research At Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-27

    (I)In this project, the Beta-­decay Paul Trap, an open-­geometry RFQ ion trap that can be instrumented with sophisticated radiation detection arrays, is used for precision β-­decay studies. Measurements of β-­decay angular correlations, which are sensitive to exotic particles and other phenomena beyond the Standard Model (SM) of particle physics that may occur at the TeV-­energy scale, are being performed by taking advantage of the favorable properties of the mirror 8Li and 8B β± decays and the benefits afforded by using trapped ions. By detecting the β and two α particles emitted in these decays, the complete kinematics can be reconstructed. This allows a simultaneous measurement of the β-­n, β-­n-­α, and β-α correlations and a determination of the neutrino energy and momentum event by event. In addition, the 8B neutrino spectrum, of great interest in solar neutrino oscillation studies, can be determined in a new way. Beta-­delayed neutron spectroscopy is also being performed on neutron-­rich isotopes by studying the β-­decay recoil ions that emerge from the trap with high efficiency, good energy resolution, and practically no backgrounds. This novel technique is being used to study isotopes of mass-­number A~130 in the vicinity of the N=82 neutron magic number to help understand the rapid neutron-­capture process (r-­process) that creates many of the heavy isotopes observed in the cosmos. (II)A year-long CHICO2 campaign at ANL/ATLAS together with GRETINA included a total of 10 experiments, seven with the radioactive beams from CARIBU and three with stable beams, with 82 researchers involved from 27 institutions worldwide. CHICO2 performed flawlessly during this long campaign with achieved position resolution matching to that of GRETINA, which greatly enhances the sensitivity in the study of nuclear γ-­ray spectroscopy. This can be demonstrated in our results on 144Ba and 146

  9. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  10. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  11. Coordinating Space Nuclear Research Advancement and Education

    International Nuclear Information System (INIS)

    Bess, John D.; Webb, Jonathon A.; Gross, Brian J.; Craft, Aaron E.

    2009-01-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  12. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  13. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  14. Nuclear information services at the National Nuclear Data Center

    International Nuclear Information System (INIS)

    Burrows, T.W.; Tuli, J.K.

    1997-01-01

    The National Nuclear Data Center (NNDC) at the Brookhaven National Laboratory has maintained and disseminated data from several numeric and bibliographic data bases for many years. These data bases now cover most of low- and medium-energy nuclear physics and are produced by the NNDC and other groups belonging to various international and national networks. The numeric and bibliographic nuclear data bases maintained by the National Nuclear Data Center and access to these data bases is described. The U.S. Nuclear Data and Reaction Data Networks is also briefly described. (author)

  15. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  16. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  17. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1977-04-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in various institutions. The major experimental facilities consist of: A 5 Megawatt swimming pool enriched uranium reactor at the Soreq Nuclear Research Centre; A 26 Megawatt heavy water tank-type natural uranium reactor at the Negev Research Centre; A 6-million volt EN tandem accelerator at the Weizmann Institute of Science, Rehovot; The new most modern high energy 14 UD pelletron accelerator manufactured by the National Electrostatic Corporation of Middleton, Wisconsin, installed inside the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot. Brief abstracts of the research work, both published and unpublished, listed according to the various laboratories, are reported in the following pages. (author)

  18. Nuclear engineering in the National Polytechnic Institute

    International Nuclear Information System (INIS)

    Del Valle G, E.

    2008-12-01

    In the National Polytechnic Institute the bachelor degree in physics and mathematics, consists of 48 subjects in the common trunk. For the nuclear engineering option, from the fifth semester undergoing 9 specific areas within the Nuclear Engineering Department : introduction to nuclear engineering, power cycles thermodynamics, heat transfer, two courses of nuclear reactors theory, two of nuclear engineering, one course of laboratory and other of radiation protection. There is also a master in nuclear engineering aims train human resources in the area of power and research nuclear reactors to meet the needs of the nuclear industry in Mexico, as well as train highly qualified personnel in branches where are used equipment involving radiation and radioisotopes tale as Medicine, Agriculture and Industry. Among its compulsory subjects are: radiation interaction with the matter, measurements laboratory, reactor physics I and II, reactor engineering, reactor laboratory and thesis seminar. Optional, are: engineering of the radiation protection, computers in the nuclear engineering, nuclear systems dynamics, power plants safety, flow in two phases, reliability and risk analysis, nuclear power systems design, neutron transport theory. Many graduates of this degree have been and are involved in various phases of the nuclear project of Laguna Verde. The Nuclear Engineering Department has a subcritical nuclear reactor of light water and natural uranium and one isotopic source of Pu-Be neutrons of 5 Ci. It also has a multichannel analyzers, calibrated sources of alpha, beta and gamma radiation, a gamma spectrometer of high resolution and low background, a specialized library and one data processing center. In relation particularly to radiation protection, it is clear that there is a lack of specialists, as reflected in radiological control problems in areas such as medicine and industry. Given this situation, it is perceived to be required post-graduate studies at Master and Ph

  19. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  20. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  1. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  2. General framework and key technologies of national nuclear emergency system

    International Nuclear Information System (INIS)

    Yuan Feng; Li Xudong; Zhu Guangying; Song Yafeng; Zeng Suotian; Shen Lifeng

    2014-01-01

    Nuclear emergency is the important safeguard for the sustainable development of nuclear energy, and is the significant part of national public crisis management. The paper gives the definition of nuclear emergency system explicitly based on the analysis of the characteristics of the nuclear emergency, and through the research of the structure and general framework, the general framework of the national nuclear emergency management system (NNEMS) is obtained, which is constructed in four parts, including one integrative platform, six layers, eight applications and two systems, then the paper indicate that the architecture of national emergency system that should be laid out by three-tiers, i.e. national, provincial and organizations with nuclear facilities, and also describe the functions of the NNEMS on the nuclear emergency's workflow. Finally, the paper discuss the key technology that NNIEMS needed, such as WebGIS, auxiliary decision-making, digitalized preplan and the conformity and usage of resources, and analyze the technical principle in details. (authors)

  3. A National Nuclear Fund was created

    International Nuclear Information System (INIS)

    Svolik, S.

    2006-01-01

    National Nuclear Fund for Decommissioning of the Nuclear Equipment and for Treatment of the Spent Nuclear Fuel and Radio Active Wastes - this is the full name of the newly established fund, because the State Fund of Liquidation of the Nuclear and Energetic Equipment has been cancelled by course of law. (author)

  4. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  5. Nuclear Reaction and Structure Databases of the National Nuclear Data Center

    International Nuclear Information System (INIS)

    Pritychenko, B.; Arcilla, R.; Herman, M. W.; Oblozinsky, P.; Rochman, D.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.

    2006-01-01

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. In 2004, the NNDC migrated all databases into modern relational database software, installed new generation of Linux servers and developed new Java-based Web service. This nuclear database development means much faster, more flexible and more convenient service to all users in the United States. These nuclear reaction and structure database developments as well as related Web services are briefly described

  6. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  7. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the

  8. The Los Alamos National Laboratory Nuclear Vision Project

    International Nuclear Information System (INIS)

    Arthur, E.D.; Wagner, R.L. Jr.

    1996-01-01

    Los Alamos National Laboratory has initiated a project to examine possible futures associated with the global nuclear enterprise over the course of the next 50 years. All major components are included in this study--weapons, nonproliferation, nuclear power, nuclear materials, and institutional and public factors. To examine key issues, the project has been organized around three main activity areas--workshops, research and analyses, and development of linkages with other synergistic world efforts. This paper describes the effort--its current and planned activities--as well as provides discussion of project perspectives on nuclear weapons, nonproliferation, nuclear energy, and nuclear materials focus areas

  9. Nuclear Arms and National Security. 1983 National Issues Forum.

    Science.gov (United States)

    Melville, Keith, Ed.

    Appropriate for secondary school social studies, this booklet outlines approaches for dealing with the threat of nuclear warfare in six sections. The first section, "Learning to Live with Nuclear Weapons," introduces the topic and considers what can be done to decrease the risk of nuclear warfare without jeopardizing the nation's security. "Arms…

  10. McClellan Nuclear Radiation Center (MNRC) TRIGA reactor: The national organization of test research and training reactors

    International Nuclear Information System (INIS)

    Kiger, Kevin M.

    1994-01-01

    This year's TRTR conference is being hosted by the McClellan Nuclear Radiation Center. The conference will be held at the Red Lion Hotel in Sacramento, CA. The conference dates are scheduled for October 11-14, 1994. Deadlines for sponsorship commitment and papers have not been set, but are forthcoming. The newly remodeled Red Lion Hotel provides up-to-date conference facilities and one of the most desirable locations for dining, shopping and entertainment in the Sacramento area. While attendees are busy with the conference activities, a spouses program will be available. Although the agenda has not been set, the Sacramento area offers outings to San Francisco, Pier 39, Ghirardelli Square (famous for their chocolate), and a chance to discover 'El Dorado' in the gold country. Not to forget our own bit of history with visits to 'Old Sacramento and Old Folsom', where antiquities abound, to the world renown train museum and incredible eating establishments. (author)

  11. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  12. From nuclear research to multidisciplinary research

    International Nuclear Information System (INIS)

    Theenhaus, R.; Baurmann, K.W.

    1996-01-01

    Forty years ago, the North Rhine-Westphalian State Government founded the then Juelich Nuclear Research Center. After a growth period of the reactor engineering program until 1980, claiming a share of 42% of R and D resources, that share declined continuously to a present level of 8%. This development is an expression of the activities successfully completed in the past, of progress achieved in industrial reactor development, but also of the fact that the high temperature reactor, which had been run successfully for twenty years, failed as a technical scale THTR-300 version. The Center has reorientated its line of research in a process of structural reshuffle beginning some fifteen years ago and still going on. Information technology, materials research, life sciences, environmental research, and energy technology have become main activities of equal weight. Activities specific to nuclear reactors have been incorporated in this new line of work as nuclear safety research and work on safe repository storage. (orig.) [de

  13. 1976 compilation of national nuclear data committees

    International Nuclear Information System (INIS)

    1977-01-01

    This list of currently existing National Nuclear Data Committees, and their memberships, is published with the object of promoting the interaction and enhance the awareness of nuclear data activities in IAEA Member States. The following Member States have indicated the existence of a nuclear data committee in their countries: Bangladesh, Bolivia, Bulgaria, France, Hungary, India, Japan, Romania, Sweden, USSR, United Kingdom, USA, Yugoslavia

  14. A CONCEPT FOR NATIONAL NUCLEAR FORENSIC LIBRARIES

    International Nuclear Information System (INIS)

    Wacker, John F.; Curry, Michael

    2010-01-01

    The interpretation of data from the nuclear forensic analysis of illicit nuclear material of unknown origin requires comparative data from samples of known origin. One way to provide such comparative data is to create a system of national nuclear forensics libraries, in which each participating country stores information about nuclear or other radioactive material that either resides in or was manufactured by that country. Such national libraries could provide an authoritative record of the material located in or produced by a particular country, and thus forms an essential prerequisite for a government to investigate illicit uses of nuclear or other radioactive material within its borders. We describe the concept of the national nuclear forensic library, recommendations for content and structure, and suggested querying methods for utilizing the information for addressing nuclear smuggling.

  15. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-01-01

    Research in progress and plans for future investigations are briefly summarized for the following areas: light-ion structure and reactions; nuclear structure; peripheral heavy-ion reactions at medium and high energy; medium-energy heavy-ion collisions and properties of highly excited nuclear matter; and high-energy heavy-ion collisions and QCD plasma

  16. Managing the nation's nuclear waste. Overview: Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1985-10-01

    Signed into law by the President on January 7, 1983, the Nuclear Waste Policy Act established a national policy for safely storing, transporting, and disposing of spent nuclear fuel and high-level radioactive waste. This overview presents the following information on the Nuclear Waste Policy Act: (1) background; (2) permanent repository; (3) siting guidelines and mission plan; (4) monitored retrievable storage; and (5) nuclear waste funds. (DT)

  17. Advances of the Radio sterilized Tissue Bank of the National Institute of Nuclear Research; Avances del Banco de Tejidos Radioesterilizados del Instituto Nacional de Investigaciones Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M. L.; Martinez P, M. E.; Luna Z, D.; Lavalley E, M. C., E-mail: lourdes.reyes@inin.gob.m [ININ, Gerencia de Aplicaciones Nucleares en la Salud, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In view of the necessity of finding alternative sources of biological tissues provision for surgical interventions, the Instituto Nacional de Investigaciones Nucleares (ININ) received the IAEA support from 1997 to 1998, for the establishment of a tissue bank, using the gamma radiation like sterilizing agent. The IAEA support consisted on basic equipment, the personnel's training by means of scientific visits and training in other banks, besides experts missions. As a result of this great support, the Radio sterilized Tissue Bank was established in the ININ, attributed to the Office of Nuclear Applications to the Health. The bank obtained its license in July 7, 1999, granted by the Health Secretary in Mexico. The advances that have been obtained from their creation to the date are presented, with respect to the activities that are carried out in this Tissue Bank. (Author)

  18. Proceedings of the 9. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santoso; Lasman, As Natio

    2003-08-01

    The ninth proceedings of seminar safety and technology of nuclear power plant and nuclear facilities held by National Nuclear Energy Agency and PLN-JTK. The aims of seminar is to exchange and disseminate information about Safety and Nuclear Power Plant Technology and Nuclear Facilities consist of Technology High Temperature Reactor and Application for National Development Sustainable and High Technology. This seminar cover all aspects Technology, Power Reactor, Research Reactor High Temperature Reactor and Nuclear Facilities. There are 20 articles have separated index

  19. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  20. Nuclear research center transformation experience

    International Nuclear Information System (INIS)

    Diaz, J. L.; Jimenez, J. M.

    2001-01-01

    As consequence of the changes in the energy polities of each countries in the 80th. many of the Nuclear Research Centres suffered a transformation (more of less deep) in other Research and Development Centres with a wider spectrum that the exclusively nuclear one. This year is the 50 anniversary of the Spanish Centre of Nuclear Research-Junta de Energia Nuclear.The JEN the same as other suffered a deep renovation to become the CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (Research Centre for Energy, Environment and Technology). This paper is focussed on the evolution of JEN to CIEMAT besides analysing the reach of this re-foundation considering the political reasons and technical aspect that justified it and the laws in those it is based on. (Author)

  1. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1990-01-01

    Research programs in nuclear theory are discussed in this paper. The topics discussed are: neutron stars and pulsars; transverse momentum distribution; intermittency and other correlations; photon and delepton production; electroweak theory at high temperature; and fractional statistics

  2. The Belgian nuclear research centre

    International Nuclear Information System (INIS)

    Moons, F.

    2001-01-01

    The Belgian Nuclear Research Centre is almost exclusively devoted to nuclear R and D and services and is able to generate 50% of its resources (out of 75 million Euro) by contract work and services. The main areas of research include nuclear reactor safety, radioactive waste management, radiation protection and safeguards. The high flux reactor BR2 is extensively used to test fuel and structural materials. PWR-plant BR3 is devoted to the scientific analysis of decommissioning problems. The Centre has a strong programme on the applications of radioisotopes and radiation in medicine and industry. The centre has plans to develop an accelerator driven spallation neutron source for various applications. It has initiated programmes to disseminate correct information on issues of nuclear energy production and non-energy nuclear applications to different target groups. It has strong linkages with the IAEA, OECD-NEA and the Euratom. (author)

  3. Study on the identification of the national research and development needs for nuclear decontamination and decommissioning in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa Sup; Song, Ki Dong; Oh, Won Zin; Oh, Keun Bae; Jung, Ki jung; Yang, Mang Ho; Kim, Cheol Jung; Lee, Han Myung; Kwack, Kim Ku; Moon, Kee Hwan; Choi, Wan Kyu; Kim, Hyun Jun; Jung, Jong Hun; Kim, Seung Su; Lee, Yong Bum; Cheong, Hwan Sam; Cheong, Un Soo; Lim, Chae Young; Park, Seong Kuk [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The major contents in this study are as follows: This study investigated and analyzed the current status of foreign and domestic D and D technology. For the domestic technology, the contents of and output from the projects for D and D technology development conducted so far in Korea were investigated and analyzed. For the foreign technology, the status of current D and D technology and D and D projects in the U.S., European countries, Japan, and others were investigated. Especially, some investigation and discussion on technical cooperation were made by visiting the Republic of Ukraine and France. This study discuss the appropriateness of establishing a national strategy for D and D technology development with viewpoints of technical capability, timing, and social and economic acceptability. Based on the discussion, this study set up three alternative strategies and then, suggested 'stepwise D and D technology development strategy' as the most desirable alternative in Korea. The final goal for the strategy and the intermediate goals for each stage were established. Then, attempts were made to suggest appropriate projects to be conducted in order to achieve those goals and their prioritie. 2 figs., 9 tabs. (Author)

  4. 5. National Conference on Radiochemistry and Nuclear Chemistry. Abstracts

    International Nuclear Information System (INIS)

    Fuks, L.

    2009-01-01

    Held in Krakow-Przegorzaly (24-27 May 2009) 5. National Conference on Radiochemistry and Nuclear Chemistry focused on the following research topics: (a) radioanalytical methods; (b) environmental studies; (c) radiopharmacy; (d) isotopic effects; (e) nuclear safety. Participants presented 6 plenary lectures, 24 communications and 38 posters

  5. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  6. National nuclear safety report 2005. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2006-01-01

    This National Nuclear Safety Report was presented at the 3rd. Review meeting. In general the information contained in the report are: Highlights / Themes; Follow-up from 2nd. Review meeting; Challenges, achievements and good practices; Planned measures to improve safety; Updates to National report to 3rd. Review meeting; Questions from peer review of National Report; and Conclusions

  7. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  8. Nuclear medicine in developing nations

    International Nuclear Information System (INIS)

    Nofal, M.M.

    1985-01-01

    Agency activities in nuclear medicine are directed towards effectively applying techniques to the diagnosis and management of patients attending nuclear medicine units in about 60 developing countries. A corollary purpose is to use these techniques in investigations related to control of parasitic diseases distinctive to some of these countries. Through such efforts, the aim is to improve health standards through better diagnosis, and to achieve a better understanding of disease processes as well as their prevention and management. Among general trends observed for the region: Clinical nuclear medicine; Radiopharmaceuticals; Monoclonal antibodies; Radioimmunoassay (RIA); Nuclear imaging

  9. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    Energy Technology Data Exchange (ETDEWEB)

    A., B

    2008-07-31

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected

  10. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    International Nuclear Information System (INIS)

    Bentz, A.

    2008-01-01

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected

  11. National Nuclear Center of the Republic of Kazakstan (NNC RK)

    International Nuclear Information System (INIS)

    Vagin, S.P.

    1994-01-01

    National Nuclear Centre is independent complex scientific and technical establishment of republic subordinate and it is attached to National Academy of Sciences of the Republic of Kazakstan. Date of foundation - 1993. General Director - Cherepnin Yu.S., Scientific leader - Takibaev Zh.S. In it structure there are Inst. of Radiation Safety and Ecology, Inst. of Atomic Energy, Inst. of Nuclear Physics, Inst. Geophysical Researches, Regional Medical and Diagnostic Centre, Research Labs. of BN-350 industrial reactor (scientific leadership), Joint-Stock Co., industrial and commercial enterprises, scientific services of former Semipalatinsk test site, geophysical observatories etc. The main goals of the NNC: a conversion of former Semipalatinsk test site and using of it scientific and technical potential in the national economy; a liquidation of nuclear weapon test consequences; a development of safe nuclear power engineering in Kazakstan; a fundamental and applied researches in the different fields of nuclear science and technology; a carrying out the inspection to nuclear weapon testing and non-satanical nuclear explosions on the test sites of other countries; a training of highly skilled specialists for nuclear power engineering, nuclear science and technology

  12. Political culture, national identity and nuclear energy

    International Nuclear Information System (INIS)

    Bayer, F.

    2013-01-01

    The paper 'Political culture, national identity and nuclear energy. The austrian controversy on nuclear energy between 1978 and 1986 within the national assembly' identifies the roots of the broad rejection of nuclear technologies in contemporary Austria within the controversy on neclear energy in the late 1970s and early 1980s. The close result of the referendum in November 1978 on the commissioning of the nuclear power plant in Zwentendorf - understood as a moment of severe polarisation - serves as a starting point for the investigation. In recent studies the explosion of the reactor in Chernobyl in April 1986 is considered the turning point of the austrian controversy and therefore marks the end of the examined period. Reviewing the history of nuclear energy in Austria the paper sheds light on events and aspects which turn out to be important for the rejection of nuclear technologies in contemporary Austria. On the one hand the analysis of the nuclear debate within the national assembly focuses on ways in which nuclear technologies were made sense of and ascribed with meaning and describes them as a sociotechnical imaginary. Next to highlighting the construction of national identity within these processes the analysis on the other hand explores the role of consensus and mutual action within the political culture of the Second Republic and its implications for the nuclear controversy. The integration of different perspectives enables to pinpoint several key aspects of the austrian nuclear controversy for the development of a broad rejection of nuclear technologies in the post-chernobyl era: the obligation to reach a consensus between the political parties, a specific set of ideas described as the imaginary of a ‘nuclear free Austria’ and its specific relations to national identity. (author) [de

  13. Nuclear fusion research in Australia

    International Nuclear Information System (INIS)

    Cheetham, A.D.

    1997-01-01

    In this paper the recently formed National Plasma Fusion Research Facility centred around the H-1NF Heliac, located at the Australian National University, the Institute of Advanced Studies is described in the context of the international Stellarator program and the national collaboration with the Australian Fusion Research Group. The objectives of the facility and the planned physics research program over the next five years are discussed and some recent results will be presented. The facility will support investigations in the following research areas: finite pressure equilibrium and stability, transport in high temperature plasmas, plasma heating and formation, instabilities and turbulence, edge plasma physics and advanced diagnostic development

  14. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  15. National aspects of nuclear standardisation

    International Nuclear Information System (INIS)

    Becker, K.

    1984-01-01

    The article first introduces the German Standards Institute (DIN) in figures and in its work, and gives details of the Nuclear Technology Committee (NK) which works with the Nuclear Committee. The German regulations consist of a total of about 220 documents, which cost about 18 million DM per annum. The use of nuclear standardisation can be seen in 1) a standardized, high safety level; 2) speeding up and simplifying the authorisation process; 3) improved acceptance; 4) means of technology transfer; 5) simplified trace across borders and 6) standardized requirements for plant near the border. (HSCH) [de

  16. Proceedings of the 8. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y.; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santosa; Umar, Faraz H.; Teguh Bambang; Hafnan, M.; Mustafa, Bustani; Rosfian, H.

    2002-10-01

    The eight proceeding of National Seminar on Technology and Safety of Nuclear Power Plant and Nuclear Facilities held by National Atomic Energy Agency and University of Trisakti. The aims of Seminar is to exchange and disseminate information about safety and nuclear Power Plant Temperature Reactor and Application for National Development sustain able and High Technology. This Seminar covers all aspect Technology, Power Reactor : Research Reactor; High Temperature Reactor and Nuclear Facilities. There are 33 articles have separated index

  17. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  18. Croatian National System of Nuclear Materials Control

    International Nuclear Information System (INIS)

    Biscan, R.

    1998-01-01

    In the process of economic and technological development of Croatia by using or introducing nuclear power or in the case of international co-operation in the field of peaceful nuclear activities, including international exchange of nuclear material, Croatia should establish and implement National System of Nuclear Materials Control. Croatian National System of accounting for and control of all nuclear material will be subjected to safeguards under requirements of Agreement and Additional Protocol between the Republic of Croatia and the International Atomic Energy Agency (IAEA) for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The decision by NPT parties at the 1995 NPT Review and Extension Conference to endorse the Fullscope IAEA Safeguards Standard (FSS) as a necessary precondition of nuclear supply means that states are obliged to ensure that the recipient country has a FSS agreement in place before any nuclear transfer can take place (Ref. 1). The FSS standard of nuclear supply is a central element of the Nuclear Suppliers Group (NSG) Guidelines which the NSG adopted in 1992 and should be applied to members and non-members of the NSG. The FSS standard of nuclear supply in general allows for NPT parties or countries which have undertaken the same obligations through other treaty arrangements, to receive favourable treatment in nuclear supply arrangements. However, the Iraqi experience demonstrate that trade in nuclear and dual-use items, if not properly monitored, can contribute to a nuclear weapons program in countries acting contrary to their non-proliferation obligation. Multilateral nuclear export control mechanisms, including the FSS supply standard, provide the basis for co-ordination and standardisation of export control measures. (author)

  19. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  20. The national law on nuclear activity: some consequences

    International Nuclear Information System (INIS)

    Gonzalez Acosta, G.

    1997-01-01

    This article describes the contents of the new National Law on Nuclear Activities of the Argentine Republic, analysing the functions of the National Atomic Energy Commission (CNEA), the Nuclear Regulatory Authority (ARN) (former National Board of Nuclear Regulation -ENREN) and the privatisation of the nuclear power generation performed by the enterprise Nucleoelectrica Argentina S.A. (NASA). It also includes some comments about political and legislative records of the Law in the framework of the Nation's reorganization undertaken by the National Government for the privatisation of the rendering of public services, such as the production of energy and related activities. The Law was approved by Law 24.804 of April 2, 1997, and published in the Official Bulletin of the Argentine Republic on April 25, 1997. In accordance with the provisions of this Law, the National Government, through the above mentioned organisations, will fix the nuclear policy and the functions of research, development, surveillance and control of the nuclear activity. Also, as part of the execution of the nuclear policy, all the obligations accepted by Argentina as signatory party to the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean (Tlatelolco Treaty), the Treaty on Non-Proliferation of Nuclear Weapons (TNP), the Agreement between the Argentine Republic and the Federative Republic of Brazil through the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the International Atomic Energy Agency (IAEA) to enforce Safeguards, in addition to the commitments signed by Argentina as a member of the Suppliers Group and the National Control System for Sensitive Exports, shall be met [es

  1. The Superpowers: Nuclear Weapons and National Security. National Issues Forums.

    Science.gov (United States)

    Mitchell, Greg; Melville, Keith

    Designed to stimulate thinking about United States-Soviet relationships in terms of nuclear weapons and national security, this document presents ideas and issues that represent differing viewpoints and positions. Chapter 1, "Rethinking the U.S.-Soviet Relationship," considers attempts to achieve true national security, and chapter 2,…

  2. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  3. National standards for the nuclear industry

    International Nuclear Information System (INIS)

    Laing, W.R.; Corbin, L.T.

    1981-01-01

    Standards needs for the nuclear industry are being met by a number of voluntary organizations, such as ANS, ASTM, AWS, ASME, and IEEE. The American National Standards Institute (ANSI) coordinates these activities and approves completed standards as American National Standards. ASTM has two all-nuclear committees, E-10 and C-26. A C-26 subcommittee, Test Methods, has been active in writing analytical chemistry standards for twelve years. Thirteen have been approved as ANSI standards and others are ready for ballot. Work is continuing in all areas of the nuclear fuel cycle

  4. Nuclear data services of the Nuclear Data Centers Network available at the National Nuclear Data Center

    International Nuclear Information System (INIS)

    McLane, V.

    1997-01-01

    The Nuclear Data Centers Network provides low and medium energy nuclear reaction data to users around the world. Online retrievals are available through the U.S. National Nuclear Data Center, the Nuclear Energy Agency Data Bank, and the IAEA Nuclear Data Section from these extensive bibliographic, experimental data, and evaluated data files. In addition to nuclear reaction data, the various databases also provide nuclear structure and decay data, and other information of interest to users. The WorldWideWeb sites at the National Nuclear Data Center and the NEA Data Bank provide access to some of the Centers' files. (orig.)

  5. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  6. Nuclear methods in environmental and energy research

    International Nuclear Information System (INIS)

    Vogt, J.R.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research

  7. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  8. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  9. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  10. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  11. The role of nuclear research centers for the introduction of a nuclear power programme

    International Nuclear Information System (INIS)

    Perovic, B.; Frlec, B.; Kundic, V.

    1977-01-01

    Full development of nuclear energy has imposed a new role on nuclear energy centers. Nuclear technology for different reactor concepts is also now in a phase of high development. Several reactor concepts have been developed for industrial use and electric power production. Development of fast reactors is still under way and needs further research efforts. Having in mind these two main guidelines, research programmes in nuclear energy centers should be geared to the development of the activities vital to the implementation of national nuclear energy programmes. In this respect, national nuclear centers should devote their attention to three major tasks. First, to establish a background for the introduction of nuclear energy into the national energy system and to support a national safety system. Second, to support the national programme by skilled manpower, to provide the basic training in nuclear technology for future staff of nuclear power stations and to assist the universities in establishing the necessary educational programme in nuclear energy. Third, to follow the development of nuclear energy technology for the fast breeder reactor concepts. This paper describes some experience in introducing a new programme to the national nuclear energy centers in Yugoslavia. Recently, Yugoslavia has started building its first nuclear power station. Further introduction of nuclear power stations in the national electric energy system is also planned. This implies the need to reconsider the current nuclear energy programme in the nuclear energy centers. It has been decided to evaluate past experience and further needs for research activities regarding the nuclear power programme. Yugoslavia has three main nuclear energy centers whose activities are devoted to the development of national manpower in the field of nuclear sciences. Besides these three organizations, there are several others whose activities are concentrated on specific tasks in nuclear technology. In the

  12. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  13. Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Eggermont, G.

    2001-01-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised

  14. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  15. Research program on nuclear technology and nuclear safety

    International Nuclear Information System (INIS)

    Dreier, J.

    2010-04-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning nuclear technology and nuclear safety. Work carried out, knowledge gained and results obtained in the various areas are reported on. These include projects carried out in the Laboratory for Reactor Physics and System Behaviour LRS, the LTH Thermohydraulics Laboratory, the Laboratory for Nuclear Materials LNM, the Laboratory for Final Storage Safety LES and the Laboratory for Energy Systems Analysis LEA of the Paul Scherrer Institute PSI. Work done in 2009 and results obtained are reported on, including research on transients in Swiss reactors, risk and human reliability. Work on the 'Proteus' research reactor is reported on, as is work done on component safety. International co-operation in the area of serious accidents and the disposal of nuclear wastes is reported on. Future concepts for reactors and plant life management are discussed. The energy business in general is also discussed. Finally, national and international co-operation is noted and work to be done in 2010 is reviewed

  16. Graduate nuclear engineering programmes motivate educational and research activities

    International Nuclear Information System (INIS)

    Mavko, B.

    2000-01-01

    Some fifteen years ago the University of Ljubljana, Faculty for Mathematics and Physics together with the national research organisation the J. Stefan jointly established a Graduate programme of Nuclear Engineering. From the onset, the programme focused on nuclear technology, nuclear safety, and reactor physics and environment protection. Over the years this graduate programme has became the focal point of nuclear related, research and educational activities in Slovenia. It has grown into a meeting ground for recognised national and distinguished foreign educators and experienced professionals from the industry. In conjunction with an important national project, supported by the Slovenian government, entitled 'Jung Researcher' it also enhances the knowledge transfer to the next generation. Since the programme was introduced, the interest for this programme has been steadily growing. Accordingly, a number of PhD and MS degrees in NE have been awarded. The graduates of this programme have encountered very good job opportunities in nuclear as well as in non-nuclear sector. (author)

  17. Implementation of a constant load method, for determination of crack growth velocities in MEX-03 system of National Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.

    2009-10-01

    Whit the objective of to complete the existent techniques for susceptibility evaluation to phenomenon of stress corrosion cracking in laboratories of Applied Sciences Area of National Institute of Nuclear Research; was realized and documented the modification of a high pressure and temperature equipment, identified as MEX-03 to carry out the implementation of a growth and crack propagation assay, using a constant load method. The assay was realized to a specimen of stainless steel AISI 304l type CT of an inch, which was previously thermally sensitize, simulating the typical degradation of this materials type below operation conditions in a BWR. The MEX-03 system, consist from an annexed auto key to a load system which originally was controlled by displacement; therefore were carried out modifications to achieve the control by load. The realized adjustments allowed to maintain a constant load during all the experiment, and as much the temperature conditions (T = 288 C) as of pressure (P = 8 Mpa) were controlled during the assay realization. The steel was exposed to a conditioned ambient with hydrogen gas addition; simulating a well-known alternative chemistry as hydrogen water chemistry that is used to mitigate the phenomenon of stress corrosion cracking, main degradation mechanism of austenitic stainless steels. The continuation of the crack behavior was realized by means of electric potential fall technique and later was validated of visual form through the fractographic analysis of cracked surface. The modification and control of equipment for realization of this experiment is necessary, for what should be carried out new assays, whose results will allow to establish the effect of dynamic and static methods in velocity determination of crack growth to laboratory level; to be considered in the existent models of crack propagation in systems and components in operation. (Author)

  18. Nuclear Structure Research at TRIUMF

    Science.gov (United States)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Chakrawarthy, R. S.; Cline, D.; Cooper, R. J.; Churchman, R.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Miosan, F.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Scraggs, H. C.; Strange, M. D.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.; Wu, C. Y.; Zganjar, E. F.

    2007-04-01

    The radioactive beam laboratory at TRIUMF is currently the highest power ISOL facility in the world. Taking advantage of the high-intensity beams, major programs in nuclear astrophysics, nuclear structure, and weak interaction studies have begun. The low-energy area, ISAC-I, is capable of delivering beams up to mass 30 at approx 1.7 MeV/u or 60 keV up to the mass of the primary target, whereas ISAC-II will ultimately provide beams up to mass 150 and approx 6.5 MeV/u. Major gamma -ray spectrometers for nuclear structure research consist of the 8pi spectrometer at ISAC-I, and the TIGRESS spectrometer now being constructed for ISAC-II. Results from recent experiments investigating the beta -decay of nuclei near N=90 and Coulomb excitation of 20,21Na are presented that highlight the capabilities of the spectrometers.

  19. Nuclear safety research in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1976-01-01

    As a consequence of the decision of choosing light water reactors (PWR) for the French nuclear plants of the next ten years, a large safety program has been launched referring to three physical barriers against fission product release: the fuel element cladding, main primary system boundary and the containment. The parallel development of French-designed fast breeder reactors involved safety studies on: sodium boiling, accidental fuel behavior, molten fuel-sodium interaction, core accident and protection, and external containment. The rapid development of nuclear energy resulted in a corresponding development of safety studies relating to nuclear fuel facilities. French regulations also required a special program to be developed for the realistic evaluation of the consequences of external agressions, the French cooperation to multinational safety research being also intensive

  20. Nuclear energy development and national economy

    International Nuclear Information System (INIS)

    Fukami, Hiroaki

    1982-01-01

    The utilization and development of nuclear power in Japan are now advanced on the basis of a fact that nuclear power generation has taken root in the country. The scale of nuclear power generation is currently a total of 22 power plants with aggregate capacity over 15,500 MW, 16% of the total power generation. There are still two alternate arguments: i.e. whether nuclear energy can be a complete substitute of petroleum or not, because the consumption of petroleum is necessary for the fuel cycle. Due to the rise of petroleum price, the nuclear power generation is now positively economical. On the other hand, the promotion of nuclear power can lead to the saving in foreign currency. While the economy in nuclear power is through the use of LWRs presently, the research and development efforts in ATRs, FBRs, etc. are essential for the future. (Mori, K.)

  1. Progress of laser nuclear fusion research

    International Nuclear Information System (INIS)

    Shiraga, Hiroyuki

    2017-01-01

    This paper describes the principle and features of nuclear fusion using laser, as well as its basic concepts such as high-temperature / high-density implosion system and fast ignition of fuel. At present, researches aiming at nuclear fusion ignition have been developing. As the current state of researches, this paper reviews the situations of FIREX (Fast Ignition Realization Experiment) project of Japan focusing on direct irradiation implosion and fast ignition system, as well as NIF (National Ignition Facility) project of the U.S. aiming at ignition combustion based on indirect irradiation implosion and central ignition system. In collaboration with the National Institute for Fusion Science, Osaka University started FIREX-1 project in 2003. It built a heating laser LFEX of 10 kJ/1 to 10ps, and started an implosion/heating integration experiment in 2009. Currently, it is developing experiment to achieve heating to 5 keV. At NIF, the self-heating of central sparks via energy of α particles generated in the nuclear fusion reaction has been realized. This paper also overviews R and D issues surrounding the lasers for reactors for use in laser nuclear fusion power generators. (A.O.)

  2. NNDC Stand: Activities and Services of the National Nuclear Data Center

    International Nuclear Information System (INIS)

    Pritychenko, B.; Arcilla, R.; Burrows, T.W.; Dunford, C.L.; Herman, M.W.; McLane, V.; Oblozinsky, P.; Sonzogni, A.A.; Tuli, J.K.; Winchell, D.F.

    2005-01-01

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic nuclear research, applied nuclear technologies including energy, shielding, medical and homeland security. In 2004, to answer the needs of nuclear data users community, NNDC completed a project to modernize data storage and management of its databases and began offering new nuclear data Web services. The principles of database and Web application development as well as related nuclear reaction and structure database services are briefly described

  3. National nuclear safety report 1998. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1998-01-01

    The Argentine Republic subscribed the Convention on Nuclear Safety, approved by a Diplomatic Conference in Vienna, Austria, in June 17th, 1994. According to the provisions in Section 5th of the Convention, each Contracting Party shall submit for its examination a National Nuclear Safety Report about the measures adopted to comply with the corresponding obligations. This Report describes the actions that the Argentine Republic is carrying on since the beginning of its nuclear activities, showing that it complies with the obligations derived from the Convention, in accordance with the provisions of its Article 4. The analysis of the compliance with such obligations is based on the legislation in force, the applicable regulatory standards and procedures, the issued licenses, and other regulatory decisions. The corresponding information is described in the analysis of each of the Convention Articles constituting this Report. The present National Report has been performed in order to comply with Article 5 of the Convention on Nuclear Safety, and has been prepared as much as possible following the Guidelines Regarding National Reports under the Convention on Nuclear Safety, approved in the Preparatory Meeting of the Contracting Parties, held in Vienna in April 1997. This means that the Report has been ordered according to the Articles of the Convention on Nuclear Safety and the contents indicated in the guidelines. The information contained in the articles, which are part of the Report shows the compliance of the Argentine Republic, as a contracting party of such Convention, with the obligations assumed

  4. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  5. Nuclear Research and Society: Introduction

    International Nuclear Information System (INIS)

    Meskens, G.

    2007-01-01

    Throughout the last decades, the ever growing use of technology in our society has brought along the need to reflect on the related impact on the ecosystem and on society as such. There is growing evidence that the complexity of issues of risk governance and ethics coming with applications of nuclear technology, fossil fuels, human cloning and genetically modified crops cannot be tackled by pure rational technological and economical reasoning alone. In order to provide an answer to the concerns of civil society, this complexity needs a transdisciplinary approach, taking into account social and ethical aspects. Starting from the insight that a full understanding of the benefits and risks of applications of radioactivity and nuclear technology requires also an understanding of the context of application and a sense for the social and ethical aspects of the situation, SCK-CEN started in 1999 with its PISA research programme (Programme of Integration of Social Aspects into nuclear research). The aim of the research was (and still is) to give the nuclear researchers more insight into the complex social and ethical aspects of nuclear applications and to shed at the same time new lights on how to organise in a more effective way the dialogue and interaction with civil society. Originally, the programme was set up along thematic research tracks, involving nuclear scientists, engineers, philosophers and social scientists, and focussing on specific projects carried out by way of PhD- or post-doc research in cooperation with universities. The research tracks focussed on themes such as Sustainability and nuclear development, Transgenerational ethics of radioactive waste management, Legal aspects and liability, Risk governance and Expert culture. In addition to this thematic research, PISA organised reflection groups in interaction with universities, authorities and private actors. These interdisciplinary discussion sessions aimed to exchange knowledge and views on typical

  6. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  7. USAF Institute for National Security Studies 1998 Research Results Conference

    National Research Council Canada - National Science Library

    1998-01-01

    The USAF Institute for National Security Studies (INSS), in cooperation with HQ USAF Nuclear and Counterproliferation Directorate, sponsored its 6th annual Research Results Conference on 19 - 20 November 1998...

  8. National symposium on electrochemistry in nuclear technology

    International Nuclear Information System (INIS)

    1994-01-01

    A National Symposium on Electrochemistry in Nuclear Technology (NASENT-94) was held at Kalpakkam, India during January 5-7, 1994. The subjects covered a wide range of topics in electrochemistry, such as electrochemical production, refining, analysis and corrosion of metals, electrochemical monitors and sensors, solid state electrochemistry, applications of electrochemical processes and measurement techniques in nuclear technology etc. Papers relevant to INIS are indexed separately

  9. Strategic Nuclear Research Collaboration - FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  10. Accounting for and control of nuclear material at the Central Institute of Nuclear Research, Rossendorf

    International Nuclear Information System (INIS)

    Heidel, S.; Rossbander, W.; Helming, M.

    1983-01-01

    A survey is given of the system of accounting for and control of nuclear material at the Central Institute for Nuclear Research, Rossendorf. It includes 3 material balance areas. Control is implemented at both the institute and the MBA levels on the basis of concepts which are coordinated with the national control authority of the IAEA. The system applied enables national and international nuclear material control to be carried out effectively and economically at a minimum of interference with operational procedures. (author)

  11. The United Nuclear Research Institute

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    The UNRI, the only common institute of the socialist countries was founded in 1956 in Dubna. The scientists of small countries have the opportunity to take part in fundamental research with very expensive devices which are usually not available for them. There are six research laboratories and one department in the UNRI namely: the theoretical physical laboratory; the laboratory of high energies - there is a synchrophasotron of 1a GeV there; the laboratory of nuclear problems - there is a synchrocyclotron of 680 MeV there; the laboratory of nuclear reactions with the cyclotron U-300 which can accelerate heavy ions; the neutronphysical laboratory with the impulse reactor IBM-30; the laboratory of computation and automatization with two big computers; the department of new acceleration methods. The main results obtained by Hungarian scientist in Dubna are described. (V.N.)

  12. National Nuclear Data Center status report

    International Nuclear Information System (INIS)

    2002-01-01

    This paper is the status report of the US National Nuclear Data Center, Brookhaven. It describes the new NDS approach to customer services, which is based on users initiating wish lists on topics of interest with the possibility to receive reports in hardcopy or electronically forms. After completion within the next two years of the multi platform software for management and data retrievals from shared databases, users will have the opportunity to install directly their own local nuclear data center for desktop applications. The paper describes the computer facilities, the nuclear reaction data structure, the database migration and the customer services. (a.n.)

  13. National report of Brazil. Nuclear Safety Convention

    International Nuclear Information System (INIS)

    1998-09-01

    This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  14. The role of nuclear research centres in the introduction of a nuclear power programme

    International Nuclear Information System (INIS)

    Afgan, N.; Anastasijevic, P.; Kolar, D.; Strohal, P.

    1977-01-01

    Full development of nuclear energy has imposed a new role on nuclear energy centres. Nuclear technology for different reactor concepts is also now in a phase of high development. Several reactor concepts have been developed for industrial use and electric power production. Development of fast reactors is still under way and needs further research efforts. Having in mind these two main guidelines, research programmes in nuclear energy centres should be geared to the development of the activities vital to the implementation of national nuclear energy programmes. In this respect, national nuclear centres should devote their attention to three major tasks. First, to establish a background for the introduction of nuclear energy into the national energy system and to support a national safety system. Secondly, to support the national programme by skilled manpower, to provide the basic training in nuclear technology for future staff of nuclear power stations and to assist the universities in establishing the necessary educational programme in nuclear energy. Thirdly, to follow the development of nuclear energy technology for fast breeder reactor concepts. (author)

  15. Energy research, national and international

    International Nuclear Information System (INIS)

    Rhijn, A.A.T. van

    1976-01-01

    The Dutch Energy Research Programme inaugurated by the National Steering Group for Energy Research (LSEO) is discussed. Three types of criteria to be borne in mind in the selection of new directions in development are considered: the setting of targets for energy policy: the general central social and economic aims of the country; and the scientific, financial and organisational possibilities. International aspects are reviewed with reference to the IEA, CERN, Euratom, ELDO and ESRO. (D.J.B.)

  16. Nuclear generation cost and nuclear research development fund

    International Nuclear Information System (INIS)

    Kim, S. S.; Song, G. D.

    2000-01-01

    The main objective of this study is to analyze the effects of nuclear R and D fund to nuclear generation cost and to assess the adaptability of fund size through the comparison with the nuclear research fund in Japan. It was estimated that nuclear R and D fund increased the average annual unit cost of nuclear power generation by 1.14 won/kWh. When the size of nuclear R and D fund is compared with that in Japan, this study suggests that the current nuclear R and D fund should be largely increased taking into consideration the ratio of R and D fund to nuclear generation

  17. National strategy of nuclear power intellectual property

    International Nuclear Information System (INIS)

    Bo Huaitao

    2008-01-01

    The IP strategy includes four strategic levels: international level, national level, industry level and enterprise level. The national nuclear power IP strategy is an industry level strategy, which is also one part of national IP strategy, permeating with the IP strategy of the international level and enterprise level mutually. Commencing from the angles of the national level and the industry level, the author tries to provide a reference for IP strategy by an initial study about IP strategy in nuclear power industry.. The author holds that independent innovation is at the root of strategic establishment; enterprise is the main body for strategic implementation; and evaluating index must be consummated in the strategic evaluation. (authors)

  18. Nuclear Safety Research Review Committee

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1990-01-01

    The Nuclear Safety Research Review Committee has had a fundamental difficulty because of the atmosphere that has existed since it was created. It came into existence at a time of decreasing budgets. For any Committee the easiest thing is to tell the Director what additional to do. That does not really help him a lot in this atmosphere of reduced budgets which he reviewed for you on Monday. Concurrently the research arm of Nuclear Regulatory Commission has recognized that the scope of its activity needed to be increased rather than decreased. In the last two-and-a-half-year period, human factors work was reinstated, radiation and health effects investigations were reinvigorated, research in the waste area was given significant acceleration. Further, accident management came into being, and the NRC finally got back into the TMI-2 area. So with all of those activities being added to the program at the same time that the research budget was going down, the situation has become very strained. What that leads to regarding Committee membership is a need for technically competent generalists who will be able to sit as the Division Directors come in, as the contractors come in, and sort the wheat from the chaff. The Committee needs people who are interested in and have a broad perspective on what regulatory needs are and specifically how safety research activities can contribute to them. The author summarizes the history of the Committee, the current status, and plans for the future

  19. Nuclear medicine at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1976-01-01

    The Nuclear Medicine Program at the Brookhaven National Laboratory seeks to develop new materials and methods for the investigation of human physiology and disease processes. Some aspects of this research are related to basic research of how radiopharmaceuticals work. Other aspects are directed toward direct applications as diagnostic agents. It is likely that cyclotron-produced positron emitting nuclides will assume greater importance in the next few years. This can be attributed to the ability to label biologically important molecules with high specific activity without affecting biological activity, using 11 C, 13 N, and 15 O. Large quantities of these short-lived nuclides can be administered without excessive radiation dose and newer instrumentation will permit reconstructive axial tomography, providing truly quantitative display of distribution of radioactivity. The 122 Xe- 122 I generator has the potential for looking at rapid dynamic processes. Another generator, the 68 Ge- 68 Ga generator produces a positron emitter for the use of those far removed from cyclotrons. The possibilities for 68 Ga radiopharmaceuticals are as numerous as those for /sup 99m/Tc diagnostic agents

  20. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  1. Inr training programme in nuclear research

    International Nuclear Information System (INIS)

    Cretu, I.; Ionila, M.; Gyongyosi, E.; Dragan, E.; Petra, M.

    2013-01-01

    The field of scientific research goes through rapid changes to which organizations must dinamically and efficiently adapt, which leads to the need to develop a continuous learning process that should be the basis for a long-term operational performance. Thus, human resource management systems and continuous learning should be perfectly correlated/alligned with the organizational strategy and knowledge. The research institutes through the nature of their activity are constantly undergoing a transformation process by exploring new research areas which presumes ensuring competent human resources who have to continuously learn and improve. The «learning organization » concept represents a metaphor rooted in the search of a strategy for promoting the personal development of the individual within an organization through a continuous transformation. Learning is associated with the idea of continuous transformation based on the individual and organizational development. Within « learning organizations » the human development strategy occupies a central role in management strategies. It was learned that organizations which perform excellently depend on the employees committment, especially in the budget constraints environment. For this, the human resources have to be used at maximum capacity but this is possible only with an increased committment of the employee towards the organization. The purpose of this paper is to present the basic training programme for the new employees which is part of the training strategy which carry out activities in the nuclear field of SCN Pitesti. With the majority of the research personnel aged between 45 and 60 years old there is the risk of loosing the knowledge gained in this domain. The expertise gained by experienced experts in the institute nationally and internationally can be exploited through the knowledge transfer to the new employees by organizing training programmes. The knowledge transfer between generations is one of the

  2. International and national organizations within nuclear energy

    International Nuclear Information System (INIS)

    Sandstroem, S.

    1975-03-01

    A survey is given of the organization, objective and action of international and national organizations working with nuclear energy. Five types of organizations are treated: international governmental organizations, international non-governmental organizations, international organizations dealing with ionizing radiation, nordic organizations, and Swedish organizations. Special attention is payed to the Swedish participation in the different organizations. (K.K)

  3. The Russian nuclear data research programme

    International Nuclear Information System (INIS)

    1995-11-01

    The report contains the Russian programme of nuclear data research, approved by the Russian Nuclear Data Committee on 16 December 1994. It gives surveys on nuclear data needs, on the structure of nuclear data activities, on experimental facilities for nuclear data measurements at five Russian institutes, on theoretical model work, nuclear data evaluation, and nuclear data testing. It describes four Russian nuclear data centers and their relations to the International Nuclear Data Centres Network, and their holdings of nuclear data libraries of Russian and international origin. A summary of nuclear data applications in energy and non-energy fields is given. An appendix contains a detail nuclear data research programme for the years 1995 - 2005. (author). 16 refs, 1 fig., 6 tabs

  4. National Nuclear Safety Report 2001. Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2001-01-01

    The First National Nuclear Safety Report was presented at the first review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This second National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the first review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex 1. In general, the information contained in this Report has been updated since March 31, 1998 to March 31, 2001. Those aspects that remain unchanged were not addressed in this second report with the objective of avoiding repetitions and in order to carry out a detailed analysis considering article by article. As a result of the above mentioned detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention

  5. National nuclear safety report 2004. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2004-01-01

    The second National Nuclear Safety Report was presented at the second review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This third National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the second review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex I and those belonging to the second review meeting are included as Annex II. In general, the information contained in this Report has been updated since March 31, 2001 to April 30, 2004. Those aspects that remain unchanged were not addressed in this third report. As a result of the detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention. The questions and answers originated at the Second Review Meeting are included as Annex III

  6. Gordon Conference on Nuclear Research

    International Nuclear Information System (INIS)

    Austin, S.M.

    1983-09-01

    Session topics were: quarks and nuclear physics; anomalons and anti-protons; the independent particle structure of nuclei; relativistic descriptions of nuclear structure and scattering; nuclear structure at high excitation; advances in nuclear astrophysics; properties of nuclear material; the earliest moments of the universe; and pions and spin excitations in nuclei

  7. TL dosimetry in the new Tandetron ion accelerator site of the National Institute of Nuclear Research (ININ); Dosimetria TL en el area del nuevo acelerador de iones Tandetron del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Valdovinos A, M.; Gonzalez M, P.R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The National Institute of Nuclear Research (ININ) acquired a positive ions accelerator type Tandetron 2 MV of the dutch company High Voltage Engineering, Europe B.V., which was finished its installation this year (2000) in an already existing building in the Dr. Nabor Carrillo Flores Nuclear Centre, where it was prepared for the following purposes: the accelerator will be used to realize research through X-ray emission induced by charged particles, Rutherford backscattering analysis, nuclear reaction analysis, gamma ray emission induced by charged particles, resonant dispersion analysis, elastic backward detection analysis and by particle canalization analysis. The accelerator consists of an injection system with two ion sources, ion accelerator tank with voltage in terminal at 2 MV, recovery and recirculation system of charge interchange gas, iman selector analyzer system and with high energy focussing, control system through computer and management and recovery of isolator gas system. For the realization of operation tests of this accelerator, it was had the license authorizing by the National Commission of Nuclear Safety and Safeguards (CNSNS). During the test stage Tl dosemeters were arranged in the Tandetron accelerator area, and also in direction to the beam outlet. In this work, are presented the obtained results of the measurement of radiation levels, as in the area as in the beam outlet. (Author)

  8. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Bayman, B.F.

    1982-01-01

    Research progress on the following subjects is summarized: (1) first and second order contributions to two-neutron transfer, (2) proximity potential in coupled-channel calculations, (3) spin-dependent interactions in heavy ion reactions, (4) nuclear field theory and standard Goldstone perturbation theory, (5) effective operators with potential from meson theory, (6) microscopic study of the 3 He(α,γ) 7 Be electric-dipole capture reaction, and (7) influence of target clustering on internuclear antisymmetrization. Project proposals are reviewed and publications are listed

  9. Nuclear structure and radioactive decay resources at the US National Nuclear Data Center

    International Nuclear Information System (INIS)

    Sonzogni, A.A.; Burrows, T.W.; Pritychenko, B.; Tuli, J.K.; Winchell, D.F.

    2008-01-01

    The National Nuclear Data Center has a long tradition of evaluating nuclear structure and decay data as well as offering tools to assist in nuclear science research and applications. With these tools, users can obtain recommended values for nuclear structure and radioactive decay observables as well as links to the relevant articles. The main databases or tools are ENSDF, NSR, NuDat and the new Endf decay data library. The Evaluated Nuclear Structure Data File (ENSDF) stores recommended nuclear structure and decay data for all nuclei. ENSDF deals with properties such as: -) nuclear level energies, spin and parity, half-life and decay modes, -) nuclear radiation energy and intensity for different types, -) nuclear decay modes and their probabilities. The Nuclear Science References (NSR) is a bibliographic database containing nearly 200.000 nuclear sciences articles indexed according to content. About 4000 are added each year covering 80 journals as well as conference proceedings and laboratory reports. NuDat is a software product with 2 main goals, to present nuclear structure and decay information from ENSDF in a user-friendly way and to allow users to execute complex search operations in the wealth of data contained in ENSDF. The recently released Endf-B7.0 contains a decay data sub-library which has been derived from ENSDF. The way all these databases and tools have been offered to the public has undergone a drastic improvement due to advancements in information technology

  10. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1991-06-01

    This report contains abstracts of ongoing projects in the following areas: strong interaction physics; relativistic heavy ion physics; nuclear structure and nuclear many-body theory; and nuclear astrophysics

  11. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  12. Interim report on research between Oak Ridge National Laboratory and Japan Nuclear Cycle Development Institute on neutron-capture cross sections by long-lived fission product nuclides

    International Nuclear Information System (INIS)

    Furutaka, Kazuyoshi; Nakamura, Shoji; Harada, Hideo

    2004-03-01

    Neutron capture cross sections of long-lived fission products (LLFP) are important quantities as fundamental data for the study of nuclear transmutation of radioactive wastes. Previously obtained thermal-neutron capture gamma-ray data were analyzed to deduce the partial neutron-capture cross sections of LLFPs including 99 Tc, 93 Zr, and 107 Pd for thermal neutrons. By comparing the decay gamma-ray data and prompt gamma-ray data for 99 Tc, the relation between the neutron-capture cross section deduced by the two different methods was studied. For the isotopes 93 Zr and 107 Pd, thermal neutron-capture gamma-ray production cross sections were deduced for the first time. The level schemes of 99 Tc, 93 Zr, and 107 Pd have also been constructed form the analyzed data and compared with previously reported levels. This work has been done under the cooperative program 'Neutron Capture Cross Sections of Long-Lived Fission products (LLFPs)' by Japan Nuclear Cycle Development Institute (JNC) and Oak Ridge National Laboratory (ORNL). (author)

  13. Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings

    Science.gov (United States)

    Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    This report contains papers presented at the "Joint U.S. Geological Survey (USGS) and U.S. Nuclear Regulatory Commission (NRC) Technical Workshop on Research Related to Low-Level Radioactive Waste (LLW) Disposal" that was held at the USGS National Center Auditorium, Reston, Virginia, May 4-6, 1993. The objective of the workshop was to provide a forum for exchange of information, ideas, and technology in the geosciences dealing with LLW disposal. This workshop was the first joint activity under the Memorandum of Understanding between the USGS and NRC's Office of Nuclear Regulatory Research signed in April 1992.Participants included invited speakers from the USGS, NRC technical contractors (U.S. Department of Energy (DOE) National Laboratories and universities) and NRC staff for presentation of research study results related to LLW disposal. Also in attendance were scientists from the DOE, DOE National Laboratories, the U.S. Environmental Protection Agency, State developmental and regulatory agencies involved in LLW disposal facility siting and licensing, Atomic Energy Canada Limited (AECL), private industry, Agricultural Research Service, universities, USGS and NRC.

  14. Dutch National Plan combat nuclear accidents

    International Nuclear Information System (INIS)

    1988-01-01

    This document presents the Dutch National Plan combat nuclear accidents (NPK). Ch. 2 discusses some important starting points which are determining for the framework and the performance of the NPK, in particular the accident typology which underlies the plan. Also the new accident-classification system for the Dutch nuclear power plants, the standardization for the measures to be taken and the staging around nuclear power plants are pursued. In ch. 3 the legal framework of the combat nuclear accidents is described. In particular the Nuclear-power law, the Accident law and the Municipality law are pursued. Also the role of province and municipality are described. Ch. 4 deals with the role of the owner/licensee of the object where the accident occurs, in the combat of accident. In ch. 5 the structure of the nuclear-accident combat at national level is outlined, subdivided in alarm phase, combat phase and the winding-up phase. In ch.'s 6-12 these phases are elaborated more in detail. In ch.'s 10-13 the measures to be taken in nuclear accidents, are described. These measures are distinguished with regard to: protection of the population and medical aspects, water economy, drinking-water supply, agriculture and food supply. Ch. 14 describes the responsibility of the burgomaster. Ch.'s 15 and 16 present an overview of the personnel, material, procedural and juridical modifications and supplements of existing structures which are necessary with regard to the new and modified parts of the structure. Ch. 17 indicates how by means of the appropriate education and exercise it can be achieved that all personnel, services and institutes concerned possess the knowledge and experience necessary for the activities from the NKP to be executed as has been described. Ch. 18 contains a survey of activities to be performed and a proposal how these can be realized. (H.W.). figs.; tabs

  15. Karlsruhe Nuclear Research Center. Research and development program 1991

    International Nuclear Information System (INIS)

    1990-01-01

    The R and D activities of the KfK are classified in 8 main research activities: 1) project nuclear fusion; 2) project pollutant mitigation in the environment; 3) solid state and materials research; 4) nuclear and elementary particle physics; 5) microtechnics e.g. X-ray lithography; 6) materials handling; 7) project nuclear safety research; 8) radioactive waste management. (orig.) [de

  16. Impact of Nuclear Technology to the National Socio-Economy: Technical Support by Nuclear Malaysia

    International Nuclear Information System (INIS)

    Hazmimi Kasim; Ainul Hayati Daud; Jamal Khaer Ibrahim; Alawiah Musa

    2011-01-01

    In Malaysia, the development of nuclear technology began in the year 1972. More than 30 years of application, today, the technology made impact to the national socio-economy through contribution to GDP and; improving quality of life and enhanced societal well-being. The application of nuclear technology both in public and private agencies in industrial, medical and agricultural sectors were considered. In 2008, the impact of nuclear technology shows the contribution of 0.032% to the total GDP. Industry sector shows an increasing trend and is the highest contributor, while agriculture sector remains the lowest. In this regard, Malaysian Nuclear Agency (Nuclear Malaysia) played an important role as a technical support agency in nuclear technology, as a supplier and provider for the service, training and research for the industrial, medical and agricultural sectors. (author)

  17. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  18. The Impact of Severe Nuclear Accidents on National Decision for Nuclear Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Young A; Hornibrook, Carol; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Many researchers have tried to identify the impact of severe nuclear accidents on a country's or international nuclear energy policy [2-3]. However, there is little research on the influence of nuclear accidents and historical events on a country's decision to permanently shutdown an NPP versus international nuclear decommissioning trends. To demonstrate the correlation between a nuclear severe accident and the impact on world nuclear decommissioning, this research reviewed case studies of individual historical events, such as the St. Lucens, TMI, Chernobyl, Fukushima accidents and the series of events leading up to the collapse of the Soviet Union. For validation of the results of these case studies, a statistical analysis was conducted using the R code. This will be useful in explaining how international and national decommissioning strategies are affected by shutdown reasons, i.e. world historical events. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently In conclusion, nuclear severe accidents and historical events have an impact on the number of international NPPs that shutdown permanently and cancelled NPP construction. This directly impacts international nuclear decommissioning policy and nuclear energy policy trends. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently.

  19. The Impact of Severe Nuclear Accidents on National Decision for Nuclear Decommissioning

    International Nuclear Information System (INIS)

    Suh, Young A; Hornibrook, Carol; Yim, Man Sung

    2016-01-01

    Many researchers have tried to identify the impact of severe nuclear accidents on a country's or international nuclear energy policy [2-3]. However, there is little research on the influence of nuclear accidents and historical events on a country's decision to permanently shutdown an NPP versus international nuclear decommissioning trends. To demonstrate the correlation between a nuclear severe accident and the impact on world nuclear decommissioning, this research reviewed case studies of individual historical events, such as the St. Lucens, TMI, Chernobyl, Fukushima accidents and the series of events leading up to the collapse of the Soviet Union. For validation of the results of these case studies, a statistical analysis was conducted using the R code. This will be useful in explaining how international and national decommissioning strategies are affected by shutdown reasons, i.e. world historical events. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently In conclusion, nuclear severe accidents and historical events have an impact on the number of international NPPs that shutdown permanently and cancelled NPP construction. This directly impacts international nuclear decommissioning policy and nuclear energy policy trends. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently

  20. Karlsruhe nuclear research center. Main activities

    International Nuclear Information System (INIS)

    The article reports on problems of securing the fuel supply for nuclear power generation, on reprocessing and ultimate storage of radioactive material, on the safety of nuclear facilities, on new technologies and basic research, and on the infrastructure of the Karlsruhe nuclear research center, as well as finance and administration. (HK) [de

  1. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  2. Evaluation of the aptitude for the service of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico; Evaluacion de la aptitud para el servicio de la piscina del reactor TRIGA Mark III del Instituto Nacional de Investigaciones Nucleares de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, J.; Gachuz M, M.; Diaz S, A.; Arganis J, C.; Gonzalez R, C.; Nava G, T.; Medina R, M.J. [Departamento de Sintesis y Caracterizacion de Materiales del ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    This work describes the evaluation of the structural integrity of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico, which was realized in July 2001, as an element to determine those actions for preventive and corrective maintenance which owner must do it for a safety and efficient operation of the component in the next years. (Author)

  3. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1993-01-01

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm 3 . Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important is reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA

  4. National energy planning with nuclear option

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y.; Hastowo, Hudi; Soentono, Soedyartomo

    2002-01-01

    National energy planning with nuclear option. Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1998-2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. The optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The results shows that Indonesia's need for final energy is forecasted to increase two times, from 4028,4 PJ at the beginning of study become 8145,6 PJ at the end of study. Performing the sensitivity study, it is predicted that nuclear energy could be introduced in the Java-Bali electricity grid about year 2016

  5. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  6. Advanced Research Workshop on Preparedness for Nuclear and Radiological Threats

    CERN Document Server

    Diamond, David; Nuclear Threats and Security Challenges

    2015-01-01

    With the dissolution of the Soviet Union the nuclear threats facing the world are constantly evolving and have grown more complex since the end of the Cold War. The diversion of complete weapon systems or nuclear material to rogue nations and terrorist organizations has increased. The events of the past years have proved the necessity to reevaluate these threats on a level never before considered.  In recognition that no single country possesses all of the answers to the critical scientific, institutional and legal questions associated with combating nuclear and radiological terrorism, the NATO Advanced Research Workshop on “Preparedness for Nuclear and Radiological Threats” and this proceeding was structured to promote wide-ranging, multi-national exploration of critical technology needs and underlying scientific challenges to reducing the threat of nuclear/radiological terrorism; to illustrate through country-specific presentations how resulting technologies were used in national programs; and to outli...

  7. Cyberattack analysis through Malaysian Nuclear Agency experience as nuclear research center

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Fauzi Haris; Saaidi Ismail; Nurbahyah Hamdan

    2011-01-01

    As a nuclear research center, Nuclear Malaysia is one of the Critical National Information Infrastructure (CNII) in the country. One of the easiest way to launch a malicious attack is through the online system, whether main web site or online services. Recently, we also under port scanning and hack attempts from various sources. This paper will discuss on analysis based on Nuclear Malaysia experience regarding these attempts which keep arising nowadays. (author)

  8. Research and Development on nuclear fission

    International Nuclear Information System (INIS)

    2007-01-01

    Research and development activities on advanced and innovative reactors are performed within a domestic programme and international initiatives. The ongoing New Nuclear Fission National Programme is synergic and complementary to the International Nuclear Energy Initiative (INERI) and EURATOM framework programmes and is managed by ENEA through a specific agreement signed in June 2007 by the Italian Ministry for Economic Development (MSE). The activities concern an integral advanced pressurised light-water-cooled reactor (IRIS nuclear power plant [NPP]) and several Generation-4. fast reactors: lead-cooled, very high temperature and sodium-cooled. A summary of the main results achieved in 2007 follows. In the framework of the INERI programme ENEA and other Italian organisations are involved in the design of the International Reactor Innovative and Secure (IRIS NPP), particularly in the design certification. An appropriate integral testing programme will be performed in the SPES-3 facility to be built at the SIET laboratories in Piacenza. The facility will be located inside the building of the decommissioned Emilia oil-fired power plant. Once erected, the facility will simulate IRIS at full height, full pressure and temperature, and with volumes and power scaled by factors of 1:100 and 1:150, respectively. The activity will be carried out in a collaboration with Oak Ridge National Laboratory (ORNL), USA under an international initiative concerning cooperation in the field of nuclear-related technologies of mutual interest. In 2007 activities were mainly devoted to the conceptual design of the SPES-3 facility, the development of SPES-3 nodalization and the seismic isolation analysis of the IRIS auxiliary building

  9. Contributions of the National Institute of Nuclear Research to the advance of Science and Technology in Mexico. Commemorative edition 2010; Contribuciones del Instituto Nacional de Investigaciones Nucleares al avance de la ciencia y la tecnologia en Mexico. Edicion conmemorativa 2010

    Energy Technology Data Exchange (ETDEWEB)

    Duque M, G.; Jimenez R, M.; Monroy G, F.; Romero H, S.; Serment G, J. (ed.) [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    From the second decade of the X X century the applications of the nuclear energy have been important part of the scientific and technological patrimony in Mexico. Records exist with regard to the use of the radioisotopes and the radiations in our country in that time, and in a formal way until the year of 1950, in a process that culminates with the creation of the Comision Nacional de Energia Nuclear (CNEN. January 1, 1956). In January 12, 1972 were published the Organic Law that created to the Instituto Nacional de Energia Nuclear, being responsible for the works that the CNEN developed. The current Instituto Nacional de Investigaciones Nucleares (ININ) was constituted starting from the Regulation Law of the constitutional Article 27 in nuclear matter of January 26, 1979, abrogated and substituted by the Law in force of February 4, 1985. In this lapse they were undertaken multitude of projects with results and diverse achievements. From their creation, the mission of the ININ and the previous institutions has been to realize research in science and nuclear technology, to promote their peaceful uses and to diffuse the achieved advances, always searching for to link them to the economic, social, scientific and technological development of the country. In this occasion with the purpose of participating in the commemoration of the bicentennial of the independence and centennial of the Mexican revolution in our country, the ININ decided to publish this work, directed to a wide public, with the intention of providing a vision the most complete and appropriate possible of the activities in research and technology that it is carries out at the moment. This work also seeks to be a diffusion instrument of the tasks that they are carried out in the institute, in diverse subjects as: the basic research, the nuclear applications in the health, the agriculture and the industry, the studies on the contamination and the environment; the dosimetry; the radiological protection; as

  10. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1991-10-01

    The work done during the past year covers three separate areas, low energy nuclear reactions intermediate energy physics, and nuclear structure studies. This manuscript summarizes our achievements made in these three areas

  11. Is nuclear energy reasonable with national economic regards?

    International Nuclear Information System (INIS)

    Scholz, L.

    1989-01-01

    In answering the question of whether a nuclear phaseout can be acceptable with national economic respects, one is confronted with the following basic question: Are the risks associated with nuclear energy reasonable in terms of safety and the conservation of the environment. Effective and responsible action in this question presupposes a clear political will and judgment. Because of the necessity of having to put up in the case of nuclear energy - a basic innovation whose development has yet a long way to go - with nuclear legal terms, are faced with a dilemma. In the opinion of energy engineers and the energy industry, the central part of the controversy on nuclear power is about the problem of coming to terms on what will be acceptable to the population as necessary precautionary measures for the event of an accident. Obviously, it is for the legislator to decide on the compatibility and social adequacy of a risk, not for the judge to interpret it on the basis of nuclear legal terms. Our national economy is now and in the future challenged with the task to research, develop, and realize hazard-prone technologies in order to shape the future. Where readiness to accept risks can no longer be assumed in the future, development prospects will be curbed in parallel. What national economic consequences will result from this, and whether they will be acceptable with national econiomic regards, is a question that has not so far been dealt with by the studies on a phaseout of nuclear energy. (orig./HSCH) [de

  12. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1989-08-01

    This report discusses the following areas of investigation of the Stony Brook Nuclear Theory Group: the physics of hadrons; QCD and the nucleus; QCD at finite temperature and high density; nuclear astrophysics; nuclear structure and many-body theory; and heavy ion physics

  13. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  14. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  15. Universities and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    Nuclear Engineering Education is being significantly challenged in the United States. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is is needed to deal with many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the University and National Laboratory Communities cooperate to address these issues. The Universities must increasingly identify challenges facing nuclear power that demand innovative solutions and pursue them. To be drawn into the technology the best students must see a future, a need and identify challenges that they can meet. The University community can provide that vision with help from the National Laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this

  16. Nuclear safety research at the European Commission's Joint Research Centre

    International Nuclear Information System (INIS)

    Toerroenen, K.

    2003-01-01

    Nuclear power plants currently generate some 35 % of electricity used in the European Union and applicant countries. Nuclear safety will therefore remain a priority for the EU, particularly in view of enlargement, the need to monitor ageing nuclear installations and the licencing of advanced new reactor systems. The European Commission's Joint Research Centre (JRC), with its long involvement and recognised competence in nuclear safety related activities, provides direct support to the European Commission services responsible for nuclear safety and civil protection. (author)

  17. The nuclear research centre at Bariloche, Argentina

    International Nuclear Information System (INIS)

    Abriata, J.P.

    2001-01-01

    The nuclear research centre at Bariloche (CAB) is one of the four centres under the Atomic Energy Commission of Argentina (CNEA). The research programme of CAB addresses various issues like nuclear reactor development, nuclear fuel and fuel cycle, applications of radioisotopes and radiation, and waste management. There is also a basic nuclear science component. The human resource development in the areas of physics and nuclear engineering is done in an associated Balseiro Institute which has undergraduate and graduate programmes as well as doctoral and postdoctoral research. The Centre interacts well with the society and provides services in the nuclear area. It has a close interaction with the nuclear sector of Argentina as also with many international organisations. Regulatory control over the Centre is carried out by the Nuclear Regulatory Authority of Argentina. (author)

  18. Status of nuclear safety research - 2000

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  19. The spread of nuclear weapons among nations: militarization or development

    International Nuclear Information System (INIS)

    Khan, A.Q.

    1986-01-01

    The paper reviews nuclear proliferation among nations. Nuclear weapons promotion and proliferation are discussed, including both motivation and lack of motivation to manufacture nuclear weapons. The failure of the Non-Proliferation Treaty is examined with respect to vertical and horizontal proliferation, and the containment of horizontal proliferation. Risks of nuclear war by accident are outlined, as well as nuclear weapon development. (UK)

  20. Relationships between economic and technical research in nuclear power complex

    International Nuclear Information System (INIS)

    Drahny, M.; Martinek, J.

    1984-01-01

    The period from projecting and construction to operation and decommissioning of a nuclear power plant spans approximately 5a years. During this period it is necessary to resolve a range of technical, economic and social research problems. Even more complicated is the nuclear power complex as a whole. The respective technical and economic aspects are interactive and cannot be solved separately. It is therefore suggested that the respective national research and development program be linked with the national program of economic research, this both at the preparatory stage, in the course of work and during the evaluation of achieved results. (Ha)

  1. Nuclear Explosion Monitoring History and Research and Development

    Science.gov (United States)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and

  2. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  3. The national nuclear technology conference, 6-9 September 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The National nuclear technology conference was held under the aegis of industrial and institutional stake holders from 6 to 9 September 1998 in Mmabatho and hosted by the University of North West. Papers were divided into the following theme clusters: safety, waste management and radiation protection; prospects for nuclear energy generation; applications in mining; applications in industry; medical applications; medical technology and training; agriculture, food security and water resources management; redress, education, research and development; policy and legal framework. The 58 papers were published in summary form only

  4. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  5. Spanish Nuclear Safety Research under International Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Reventos, F.; Ahnert, C.; Jimenez, G.; Queral, C.; Verdu, G.; Miro, R.; Gallardo, S.

    2013-10-01

    The Nuclear Safety research requires a wide international collaboration of several involved groups. In this sense this paper pretends to show several examples of the Nuclear Safety research under international frameworks that is being performed in different Universities and Research Institutions like CIEMAT, Universitat Politecnica de Catalunya (UPC), Universidad Politecnica de Madrid (UPM) and Universitat Politenica de Valencia (UPV). (Author)

  6. Creating a National Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Way, R.

    2010-01-01

    For a number of reasons, countries throughout the world are now considering the development of new nuclear power programs. Whether it is to meet increased power requirements, lack of indigenous resources or environmental concerns, these countries are looking at nuclear power as a solution to their increasing energy needs. Such an undertaking will require a concerted effort by national industrial firms and several branches of government. This paper will look the various phases that encompass the development of a nuclear power program from the perspective of the human resources development. In short it will consider the following issues: Planning a Human Resource Development strategy; Establishing organization, roles and responsibilities; Establishing an Human Resource Development vision, mission, goals and objectives; Collecting and evaluating data for an HRD needs and resource assessment; Conducting a Human Resource Development needs and resource assessment; Determining short-, medium-, and long-term needs; Developing an implementation plan to address education, training, recruitment, retention and knowledge management; Establishing systems that monitor, evaluate and anticipate HRD needs as the nuclear program evolves; Funding and financing short- and long-term Human Resource Development efforts

  7. National research and education network

    Science.gov (United States)

    Villasenor, Tony

    1991-01-01

    Some goals of this network are as follows: Extend U.S. technological leadership in high performance computing and computer communications; Provide wide dissemination and application of the technologies both to the speed and the pace of innovation and to serve the national economy, national security, education, and the global environment; and Spur gains in the U.S. productivity and industrial competitiveness by making high performance computing and networking technologies an integral part of the design and production process. Strategies for achieving these goals are as follows: Support solutions to important scientific and technical challenges through a vigorous R and D effort; Reduce the uncertainties to industry for R and D and use of this technology through increased cooperation between government, industry, and universities and by the continued use of government and government funded facilities as a prototype user for early commercial HPCC products; and Support underlying research, network, and computational infrastructures on which U.S. high performance computing technology is based.

  8. Section 4: National Research Council

    International Nuclear Information System (INIS)

    Arseneau, R.; Zelle, J.

    1991-01-01

    A study was carried out to produce a compendium of electric and magnetic field levels in various environments throughout Canada. The contribution of the National Research Council of Canada in cooperation with Ottawa Hydro was to study the magnetic field environment of 29 sites in the Ottawa area, including private residences, place of employment, distribution and transmission lines, and close to padmount transformers. At most sites the electric fields were too low to be measured. Magnetic fields near padmount transformers can be larger than 300 mG, however this rapidly decreases and at 3 feet from the transformers is below 20 mG. Magnetic fields of unbalanced distribution lines can be larger than the fields of balanced lines. The magnetic fields of a high voltage transmission line were measurable at distances up to 100 m from the line. Electric fields were low outside the right-of-way. 6 refs., 4 figs., 2 tabs

  9. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  10. National emergency plan for nuclear accidents

    International Nuclear Information System (INIS)

    1992-10-01

    The national emergency plan for nuclear accidents is a plan of action designed to provide a response to accidents involving the release or potential release of radioactive substances into the environment, which could give rise to radiation exposure to the public. The plan outlines the measures which are in place to assess and mitigate the effects of nuclear accidents which might pose a radiological hazard in ireland. It shows how accident management will operate, how technical information and monitoring data will be collected, how public information will be provided and what measures may be taken for the protection of the public in the short and long term. The plan can be integrated with the Department of Defence arrangements for wartime emergencies

  11. Nuclear Security Management for Research Reactors and Related Facilities

    International Nuclear Information System (INIS)

    2016-03-01

    This publication provides a single source guidance to assist those responsible for the implementation of nuclear security measures at research reactors and associated facilities in developing and maintaining an effective and comprehensive programme covering all aspects of nuclear security on the site. It is based on national experience and practices as well as on publications in the field of nuclear management and security. The scope includes security operations, security processes, and security forces and their relationship with the State’s nuclear security regime. The guidance is provided for consideration by States, competent authorities and operators

  12. Plan for national nuclear emergency preparedness

    International Nuclear Information System (INIS)

    1992-06-01

    The responsibility for Denmark's preparedness for nuclear emergencies lies with the Ministry of the Interior and the Civil Defense administration. The latter is particularly responsible for the presented plan which clarifies the organization and the measures to be taken in order to protect the public where, in the event of such an emergency, it could be in danger of radiation from radioactive materials. The main specifications of the plan, the activation of which covers the whole country, are that daily monitoring should be carried out so that warnings of nuclear accidents can be immediately conveyed to the relevant parties and that immediate action can be taken. These actions should result in the best possible protection against nuclear radiation so that acute and chronic damage to the health of members of the public can be restricted. The public, and relevant authorities should be informed of the situation and it should be attempted to regulate the reactions of individuals and of the society in general in such a way that damage to health, or social and economical conditions, can be restricted as much as possible. Denmark has not itself any atomic power plants, but some are located in neighbour countries and there are other sources such as nuclear research reactors, passing nuclear-driven ships etc. The detailed plan also covers possible sources of radiation, the nature of related damage to health, international cooperation, legal aspects, and a very detailed description of the overall administration and of the responsibilities of the organizations involved. (AB)

  13. Research for nuclear power. A Swiss perspective

    International Nuclear Information System (INIS)

    Foskolos, K.; Yadigaroglu, G.; Chawla, R.; Paul Scherrer Inst., Villigen

    1996-01-01

    Nuclear energy research in Switzerland is concentrated in the Department for Nuclear Energy and Safety Research of the Paul Scherrer Institute (PSI). Nuclear research at PSI is structured around three main poles: safety and related operational issues for existing NPPs, nuclear waste management, and safety characteristics of future reactor concepts. Further, global aspects of energy systems are examined with regard to safety, economics and environmental impact. Presently, a total effort of about 200 py/a is invested in the nuclear research. Government funding of nuclear research was relatively stable during recent years, reaching about 35 MCHF/a. External funding of about 15 MCHF/a is expected to remain stable. (R.P.)

  14. Arguments for new Yugoslav National Nuclear Scientific Program

    International Nuclear Information System (INIS)

    Plecas, I.; Pesic, M.; Pavlovic, R.; Neskovic, N.; Matausek, M.V.

    2001-01-01

    Information on actual status and arguments for urgent actions for solution of serious ecological problems concerning undefined status of the RA Reactor, spent fuel storage pool, and intermediate-level radioactive waste storage in the Vinca Institute, including proposal for modernisation of zero power Reactor RB and design of small low flux ADS are given in this paper. To solve problems mentioned above in next few years a national nuclear scientific program of the Vinca Institute, concerning Nuclear Reactors and Radioactive Waste, the following four projects were proposed to government for support: 1. Final shut down of the RA research reactor; 2. Provision of long term storage for spent fuel from the RA research reactor; 3. Refurbishment of the RB research reactor and design of the new research reactor H5B; 4. Building of the final repository for low and medium level radioactive waste. (authors)

  15. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  16. Medical applications in a nuclear research centre

    International Nuclear Information System (INIS)

    Vanhavere, F.; Eggermont, G.

    2001-01-01

    In these days of public aversion to nuclear power, it can be important to point at the medical applications of ionising radiation. Not only the general public, but also the authorities and research centres have to be aware of these medical applications, which are not without risk for public health. Now that funding for nuclear research is declining, an opening to the medical world can give new opportunities to a nuclear research centre. A lot of research could be done where the tools developed for the nuclear power world are very useful. Even new applications for the research reactors like BNCT (boron neutron capture therapy) can be envisaged for the near future. In this contribution an overview will be given of the different techniques used in the medical world with ionising radiation. The specific example of the Belgian Nuclear Research Centre will be given where the mission statement was changed to include a certain number of medical research topics. (authors)

  17. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  18. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  19. The Dutch National Research Agenda in Perspective

    OpenAIRE

    2017-01-01

    The Dutch National Research Agenda is a set of national priorities that are set by scientists working in conjunction with corporations, civil society organisations, and interested citizens. The agenda consolidates the questions that scientific research will be focused on in the coming year. This book covers the current status of the Dutch National Research Agenda and considers what changes and adjustments may need to be made to the process in order to keep Dutch national research at the top o...

  20. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, Takeshi.

    1990-10-01

    The work done during the past year or so may be divided into three separate areas, low energy nuclear reactions, intermediate energy physics and nuclear structure studies. In this paper, we shall separately summarize our achievements made in these three areas

  1. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1990-06-01

    We shall organize the description of our many activities under following broad headings: Strong Interaction Physics: the physics of hadrons; QCD and the nucleus; and QCD at finite temperature and high density. Relativistic Heavy Ion Physics. Nuclear Structure and Many-body Theory. Nuclear Astrophysics. While these are the main areas of activity of the Stony Brood group, they do not cover all activities

  2. Termination of past nuclear activities at the nuclear research institute

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    Many countries, particularly in Europe, started with nuclear programs in the fifties of the last century. As a consequence nuclear research institutes were established, among them also the Institute Jozef Stefan (IJS) in Slovenia. The nuclear activities at the IJS were related to the development of uranium ore processing technology and technologies comprising uranium oxide and hexafluoride. After very intensive period of nuclear activities the decline began step by step due to different reasons. Various approaches of the termination and decommissioning of facilities were used. The inspectors of the Slovenian Nuclear Safety Administration (SNSA), the responsible authority, started intensive activities at the IJS at the end of 2004. All together 22 research laboratories or research units were included in the inspection program and around 50 researchers of the IJS were involved into the inspection procedures. The inspection was very intensive in the laboratories and storages where past nuclear activities took place and were later on abandoned. As a result several contaminated equipments and sites in addition to around 200 unregistered sources were found. The majority of these sources is related to past nuclear activities. The inspection program related to the terminated research activities is still in progress. The IJS immediately started with the remediation activities including the development of methodology related to decontamination of radioactive liquids. The decontamination of two nuclear laboratories and three different storages of radioactive waste at its sites is in progress. Sixty of the above mentioned sources have been already stored in the Central Interim Storage for Radioactive Waste. (author)

  3. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  4. Summaries of FY 1988 research in nuclear physics

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. The nuclear physics research summaries in this document were initially prepared by the investigators, then reviewed and edited by DOE staff. They describe the general character and goals of the research programs, current research efforts, especially significant recent results, and plans for the near future. The research summaries are organized into two groups: research programs at national laboratories and those at universities, with the material arranged alphabetically by institution. The names of all Ph.D.-level personnel who are primarily associated with the work are included. The FY 1988 funding levels are also provided. Included for the first time are activities of the nuclear data program, which was incorporated within nuclear physics in FY 1987. We remind the readers that this compilation is just an overview of the Nuclear Physics program. Primary publications should be used for reference to the work and for a more complete and accurate understanding

  5. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  6. National Institute of Nursing Research

    Science.gov (United States)

    ... Medicine at NINR Research Highlights Data Science and Nursing Research Spotlight on End-of-Life and Palliative Care Research Spotlight on Symptom Management Research Spotlight on Pain Research The Science of Compassion: Future Directions in ...

  7. Nuclear research reactors in the world. May 1987 ed.

    International Nuclear Information System (INIS)

    1987-01-01

    This is the second edition of Reference Data Series No.3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of May 1987, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. 11 figs, 19 tabs

  8. Identification of High Confidence Nuclear Forensics Signatures. Results of a Coordinated Research Project and Related Research

    International Nuclear Information System (INIS)

    2017-08-01

    The results of a Coordinated Research Project and related research on the identification of high confidence nuclear forensic isotopic, chemical and physical data characteristics, or signatures, provides information on signatures that can help identify the origin and history of nuclear and other radioactive material encountered out of regulatory control. This research report compiles findings from investigations of materials obtained from throughout the nuclear fuel cycle to include radioactive sources. The report further provides recent results used to identify, analyse in the laboratory, predict and interpret these signatures relative to the requirements of a nuclear forensics examination. The report describes some of the controls on the incorporation and persistence of these signatures in these materials as well as their potential use in a national system of identification to include a national nuclear forensics library.

  9. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  10. Nuclear safety research - risk and other risks

    International Nuclear Information System (INIS)

    Rossin, A.D.

    1982-01-01

    The nuclear power industry deals in many kinds of risks, complicated by political stress and communication problems. Power plant design must prepare for the unexpected attack, physical as well as psychological, but a zero-defects technology is not possible. The public has not been made sufficiently aware of the risk the US takes if there is not enough energy because nuclear power has been curtailed. Energy shortages could drive industry and jobs abroad, force the public to turn to government for a solution, drive the country to energy allocation, and cause a nuclear war. Policies that prevent closing the nuclear fuel cycle are ineffective in preventing proliferation and counterproductive to national needs

  11. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  12. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  13. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  14. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  15. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  16. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  17. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  18. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  19. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  20. The South African National Accelerator Centre and its research programme

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y. [Kyushu Univ., Fukuoka (Japan)

    1997-03-01

    An overview of the South African National Accelerator Centre and its research activities is given with emphasis on medium energy nuclear physics and nuclear data measurements for medical use. Also presented is a preliminary result of {sup 40}Ca(p,p`x) spectrum measurement for 392 MeV which has been carried out at RCNP, Osaka University, under the South Africa-Japan collaborative programme. (author)

  1. Nuclear law in Morocco: national and international aspects

    International Nuclear Information System (INIS)

    Nabil, M.

    2004-01-01

    The use of nuclear technology in medicine, agriculture and industry is very advanced in Morocco. This technological progress has been accompanied by fairly detailed legislation and significant involvement on the part of Morocco in international conventions and agreements. The desire to progress further with regard to research and the use of nuclear energy for peaceful purposes requires a twofold effort: the various pieces of national legislation on nuclear law need to be reformulated to bring them into line with the most recent rules in this sphere; Morocco international undertakings need to be revised in light of its immediate interests, certainly, but also of foreseeable developments, particularly with regard to safety and third party liability. (author)

  2. Nuclear Criticality Experimental Research Center (NCERC) Overview

    Energy Technology Data Exchange (ETDEWEB)

    Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes, David Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activities that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.

  3. An overview of nuclear physics research

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2010-01-01

    This overview is aimed to give a general picture of the global developments in nuclear physics research over the years since the beginning. It is based on the inaugural talk given at the 54th annual nuclear physics symposium organized by the Department of Atomic Energy, which was held as an International Symposium at BARC, Mumbai during Dec 8-12, 2009. The topics of nuclear fission, nuclear shell effects, super-heavy nuclei, and expanding frontiers of nuclear physics research with the medium to ultra-relativistic energy heavy-ion reactions are in particular highlighted. Accelerator driven sub-critical reactor system (ADS) is briefly described in the end as an example of spin-off of nuclear physics research. (author)

  4. Nuclear Security: Action May Be Needed to Reassess the Security of NRC-Licensed Research Reactors. Report to the Ranking Member, Subcommittee on National Security and Foreign Affairs, Committee on Oversight and Government Reform, House of Representatives. GAO-08-403

    Science.gov (United States)

    Aloise, Gene

    2008-01-01

    There are 37 research reactors in the United States, mostly located on college campuses. Of these, 33 reactors are licensed and regulated by the Nuclear Regulatory Commission (NRC). Four are operated by the Department of Energy (DOE) and are located at three national laboratories. Although less powerful than commercial nuclear power reactors,…

  5. Research in theoretical nuclear physics: Progress report

    International Nuclear Information System (INIS)

    1988-08-01

    In April 1988 we, along with the nuclear theory groups of Brookhaven and MIT, submitted a proposal to the Department of Energy for a national Institute of Theoretical Nuclear Physics. The primary areas of investigation proposed for this Institute are: Strong Interaction Physics--including (1) The physics of hadrons, (2) QCD and the nucleus, (3) QCD at finite temperatures and high density; nuclear astrophysics; nuclear structure and nuclear many-body theory; and nuclear tests of fundamental interactions. It is, of course, no coincidence that these are the main areas of activity of the three groups involved in this proposal and of our group in particular. Here, we will organize an outline of the progress made at Stony Brook during the past year along these lines. These four areas do not cover all of the activities of our group

  6. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1978-07-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in the various institutions listed in previous Progress Reports (LS-270 for 1976). The latest major experimental facility, the 14 UD pelletron, was installed in the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot, and accepted on April 1st 1977. A report in Revue de Physique Appliquee of October 1977 including a description of the facility, acceptance performance, as well as some supplementary devices, is reproduced in the beginning of this report. Brief abstracts of the research work, both published and unpublished, are presented. (author)

  7. Karlsruhe Nuclear Research Center. Research and development program 1992

    International Nuclear Information System (INIS)

    1991-01-01

    The KfK R and D activities are classified by ten point-of-main-effort projects: 1) low-pollution/low-waste methods, 2) environmental energy and mass transfers, 3) nuclear fusion, 4) nuclear saftey research, 5) radioactive waste management, 6) superconduction, 7) microtechnics, 8) materials handling, 9) materials and interfaces, 10) basic physical research. (orig.) [de

  8. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  9. Nuclear Research Institute Rez view

    International Nuclear Information System (INIS)

    Biza, K.; Pazdera, F.; Vasa, I.; Zdarek, J.

    2004-01-01

    In this presentation author deals with the present state and perspectives of nuclear energy in the Czech Republic and in the Slovak Republic. It is concluded that lifetime extension and finalization of Mochovce NPP Units 3 and 4 is the cheapest solution for base load production of electricity and is in line with the European union energy challenges: - decrease of carbon dioxide emissions; dependence on energy sources from politically unstable regions; decrease import dependence on energy sources. Nuclear energy is one of important sources for long term sustainability in energy. GEN IV is successful with meet the new requirements after 2025. We should participate on this long term development effort

  10. Central Institute for Nuclear Research (1956 - 1979)

    International Nuclear Information System (INIS)

    Flach, G.; Bonitz, M.

    1979-12-01

    The Central Institute for Nuclear Research (ZfK) of the Academy of Sciences of the GDR is presented. This first overall survey covers the development of the ZfK since 1956, the main research activities and results, a description of the departments responsible for the complex implementation of nuclear research, the social services for staff and the activities of different organizations in the largest central institute of the Academy of Sciences of the GDR. (author)

  11. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  12. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology part II : Nuclear Chemistry, Process Technology, Radioactive Waste Management and Environment

    International Nuclear Information System (INIS)

    Sukarsono, R.; Ganang Suradjijo

    2002-01-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Research and Development of Advanced Technology, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. This proceedings contains a proposal about basic research in nuclear technology which has environment. This proceedings is the second part of the two parts which published in series. There are 57 articles which have separated index. (PPIN)

  13. Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lamont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-30

    Nuclear forensics assists in responding to any event where nuclear material is found outside of regulatory control; a response plan is presented and a nuclear forensics program is undergoing further development so that smugglers are sufficiently deterred.

  14. Research of nuclear fragmentation characteristics

    International Nuclear Information System (INIS)

    Richert, J.

    1989-01-01

    Motivations for the study of nuclear fragmentation are presented. Different models and methods which were developed in the past are reviewed, critically discussed and confronted in connection with the experimental information gathered over the past years. Specific aspects related to the onset of the process, its characteristics and the mechanism which governs it are discussed [fr

  15. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Liu, Keh-Fei.

    1989-01-01

    This paper discusses: the role of nuclear binding in EMC effect; skyrmion quantization and phenomenology; lattice gauge Monte Carlo calculations; identification of tensor glueball; evidence of mesoniums in bar pm annihilation and γγ reactions; Skyrme-Landau parameterization of effective NN interactions; and quark-gluon plamsa

  16. National Center on Sleep Disorders Research

    Science.gov (United States)

    ... Resources Register for Updates The National Center on Sleep Disorders Research (NCSDR) Located within the National Heart, Lung, ... 60 percent have a chronic disorder. Each year, sleep disorders, sleep deprivation, and sleepiness add an estimated $15. ...

  17. IRIS and the National Research Council (NRC)

    Science.gov (United States)

    Since the 2011 National Academies’ National Research Council (NRC) review of the IRIS Program's assessment of Formaldehyde, EPA and NRC have had an ongoing relationship into the improvements of developing the IRIS Assessments.

  18. Our messages for a broadly acceptable national nuclear program

    International Nuclear Information System (INIS)

    Stiopol, Mihaela; Bilegan, Iosif Constantin

    2001-01-01

    Full text: Romania started the nuclear power program some 20 years ago by a high level Government decision. During that time no one asked and nobody explained to the people why a NPP is so much required. Before revolution was forbidden to talk or to write about nuclear matters. After the revolution many changes have occurred even in this field. The former ministry of electrical power was transformed into a state owned company 'RENEL' in which were also included the nuclear activities. RENEL was a monopoly responsible for production, transportation and distribution of electricity in Romania. The restructuring process in the energy field was many times asked by the World Bank and International monetary Fund - to split this monopoly system in separately activities: Production, Transportation and Distribution. The first step happened in July 1998, when the nuclear activities were externalised from RENEL, and two new entities were created: 'Nuclearelectrica' National Company - a state own company which includes three branches: - Nuclear Power Production - Cernavoda NPP - Unit 1; - Nuclear Fuel Plant - Pitesti; - Project Development Branch - Cernavoda - Unit 2-5. The second entity is so-called Autonomous Reggie for Nuclear Activities including the Heavy Water production, Nuclear Research Institute and the nuclear engineering activities - CITON. The restructuring process continued and in August 2000, By a Government Ordinance the rest of RENEL was split in more companies: - one for Hydropower production; - one for thermal power production; - one for transport; - one for distribution. The goal of a third step of restructuring process is the privatisation in the power field. Since 1991 a Public Information program has been established and it followed the usual steps. Depending on the evolution of the construction of the first Romanian nuclear power during the years the messages changed. Everybody working in the nuclear field knows now how difficult is to build the

  19. Proceedings of the eighth national conference on research in physics

    International Nuclear Information System (INIS)

    2005-01-01

    This is a book of abstracts of the oral presentations that were presented during the eighth national conference on research in physics that was held from 20 to 23 deecember 2005 in Tunisia (Elkantaoui- Sousse). The following themes were covered : Nuclear and theoretical physics; Optical, molecular and atomic physics; Condensed matter physics; Soft matter physics; Mechanis; Thermal transfert; Electronics; physics engineering

  20. Proceedings of the Ninth National Conference on Research in Physics

    International Nuclear Information System (INIS)

    2008-01-01

    This is a book of abstracts of the oral presentations that were presented during the ninth national conference on research in physics that was held from 17 to 20 mars 2008 in Tunisia (Yasmine Hammamet). The following themes were covered : Nuclear and theoretical physics; optical, molecular and atomic physics; condensed matter physics; Soft matter physics; Mechanics; Thermal transfer; Electronics; physics engineering

  1. Significance and impact of nuclear research in developing countries

    International Nuclear Information System (INIS)

    1987-01-01

    The main purpose of this conference was to gather representatives of universities, research institutes, governmental agencies and industry, as well as IAEA staff, to report on and to assess the significance and impact of nuclear science and technology in developing countries. Thirty-four papers from 17 countries were presented, which are included in the proceedings, as well as reports of three workshops on ''Basic and applied research'', on ''The IAEA's involvement in the implementation of national nuclear programmes'', and on ''Policy and management issues''. The presentation of these reports clearly reflects the fact that all the nuclear activities involved in the programmes of industrialized countries are in progress in developing countries, i.e. most of the aspects of applications in the field of nuclear power, research reactors, food and agriculture, industry and earth sciences, and life sciences. A separate abstract was prepared for each of these papers

  2. Study on interface between nuclear material accounting system and national nuclear forensic library

    International Nuclear Information System (INIS)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho

    2016-01-01

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library

  3. Study on interface between nuclear material accounting system and national nuclear forensic library

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yonhong; Han, Jae-Jun; Chang, Sunyoung; Shim, Hye-Won; Ahn, Seungho [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    The implementation of nuclear forensics requires physical, chemical and radiological characteristics with transport history to unravel properties of seized nuclear materials. For timely assessment provided in the ITWG guideline, development of national response system (e.g., national nuclear forensic library) is strongly recommended. Nuclear material accounting is essential to obtain basic data in the nuclear forensic implementation phase from the perspective of nuclear non-proliferation related to the IAEA Safeguards and nuclear security. In this study, the nuclear material accounting reports were chosen due to its well-established procedure, and reviewed how to efficiently utilize the existing material accounting system to the nuclear forensic implementation phase In conclusion, limits and improvements in implementing the nuclear forensics were discussed. This study reviewed how to utilize the existing material accounting system for implementing nuclear forensics. Concerning item counting facility, nuclear material properties can be obtained based on nuclear material accounting information. Nuclear fuel assembly data being reported for the IAEA Safeguards can be utilized as unique identifier within the back-end fuel cycle. Depending upon the compulsory accountability report period, there exist time gaps. If national capabilities ensure that history information within the front-end nuclear fuel cycle is traceable particularly for the bulk handling facility, the entire cycle of national nuclear fuel would be managed in the framework of developing a national nuclear forensic library.

  4. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Science.gov (United States)

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community support for research; technology advancement and maturation; and small-lot, fast-turn prototyping Our

  5. Nuclear Physics Research at ELI-NP

    Science.gov (United States)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  6. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  7. PSI nuclear energy research progress report 1989

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-01-01

    This report gives on overview on the PSI's nuclear energy research in the field of reactor physics and systems, thermal-hydraulics, materials technology and nuclear processes, waste management program and LWR safety program. It contains also papers dealing with reactor safety, high temperature materials, decontamination, radioactive waste management and materials testing. 74 figs., 20 tabs., 256 refs

  8. Building National Health Research Information Systems (COHRED ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Building National Health Research Information Systems (COHRED). This grant will allow the Council on Health Research for Development (COHRED) to create, host and maintain a web-based resource on national health research in low- and middle-income countries in partnership with institutions in the South. Called ...

  9. CESAR robotics and intelligent systems research for nuclear environments

    International Nuclear Information System (INIS)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs

  10. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1991-08-01

    This report discusses the following topics: Asymmetric fission of 149 Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; charged-particle evaporation from hot composite nuclei: evidence over a broad Z range for distortions from cold nuclear profiles; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; production of intermediate-mass-fragments in the reaction 98 Mo + 51 V at an excitation energy E* = 224-MeV; emission of light charged particles in the reaction 344-MeV 28 Si + 121 Sb; continued developments of the statistical evaporation code LILITA N90; and planning for heavy-ion-collision studies at very high energies: the STAR collaboration at RHIC

  11. Nuclear technology in research and everyday life

    International Nuclear Information System (INIS)

    2015-12-01

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  12. Planning and implementation of nuclear research programmes

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1986-01-01

    The planning and implementation of nuclear research programmes in developed and developing countries is discussed. The main aspects of these programmes in USA, France, Japan, India and Brazil are reported. (M.W.O.) [pt

  13. Proceedings of 8. national conference on nuclear electronic and nuclear detection technology: Pt.1

    International Nuclear Information System (INIS)

    1996-01-01

    The 8th National Conference on Nuclear Electronics and Nuclear Detection Technology was held during 2-7, 12, 1996 in Zhuhai, Guangdong, China. 184 pieces of papers were collected in the conference proceedings. The contents of the conference proceedings are: nuclear electronics, nuclear detectors, nuclear instruments and its application, nuclear medical electronics, computer applications in nuclear sciences and technology, measurement of nuclear monitoring and nuclear explosion, radiation hardened electronics, liquid scintillation counting techniques and miscellaneous. Reported hereafter is the first part of the proceedings

  14. Approach for Establishing a National Nuclear Forensics System

    International Nuclear Information System (INIS)

    Kim, Jaekwang; Hyung, Sangcheol

    2014-01-01

    The increasing number could give rise to posing a potential threat to national infrastructure which is very vulnerable to radiological sabotage with the materials. International community has been emphasizing the importance of nuclear forensics through the Nuclear Security Summit process as a countermeasure against nuclear terrorism. Global Initiative to Combat Nuclear Terrorism(GICNT) and nuclear forensics International Technology Working Group(ITWG) suggest the establishment of national nuclear forensics system which has a law enforcement for forensic management and maintenance of nuclear forensics database including nuclear material and other radioactive materials. We suggest the legal and institutional system through this paper in an effort to set up a multi expert group and the nuclear forensics DB which can contribute to effective Core capabilities

  15. Approach for Establishing a National Nuclear Forensics System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekwang; Hyung, Sangcheol [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2014-05-15

    The increasing number could give rise to posing a potential threat to national infrastructure which is very vulnerable to radiological sabotage with the materials. International community has been emphasizing the importance of nuclear forensics through the Nuclear Security Summit process as a countermeasure against nuclear terrorism. Global Initiative to Combat Nuclear Terrorism(GICNT) and nuclear forensics International Technology Working Group(ITWG) suggest the establishment of national nuclear forensics system which has a law enforcement for forensic management and maintenance of nuclear forensics database including nuclear material and other radioactive materials. We suggest the legal and institutional system through this paper in an effort to set up a multi expert group and the nuclear forensics DB which can contribute to effective Core capabilities.

  16. EARTHQUAKE RESEARCH PROBLEMS OF NUCLEAR POWER GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Housner, G. W.; Hudson, D. E.

    1963-10-15

    Earthquake problems associated with the construction of nuclear power generators require a more extensive and a more precise knowledge of earthquake characteristics and the dynamic behavior of structures than was considered necessary for ordinary buildings. Economic considerations indicate the desirability of additional research on the problems of earthquakes and nuclear reactors. The nature of these earthquake-resistant design problems is discussed and programs of research are recommended. (auth)

  17. Progress of experimental research on nuclear safety in NPIC

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Houjun; Zan, Yuanfeng; Peng, Chuanxin; Xi, Zhao; Zhang, Zhen; Wang, Ying; He, Yanqiu; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China)

    2016-05-15

    Two kinds of Generation III commercial nuclear power plants have been developed in CNNC (China National Nuclear Corporation), one is a small modular reactor ACP100 having an equivalent electric power 100 MW, and the other is HPR1000 (once named ACP1000) having an equivalent electric power 1 000 MW. Both NPPs widely adopted the design philosophy of advanced passive safety systems and considered the lessons from Fukushima Daichi nuclear accident. As the backbone of the R and D of ACP100 and HPR1000, NPIC (Nuclear power Institute of China) has finished the engineering verification test of main safety systems, including passive residual heat removal experiments, reactor cavity injection experiments, hydrogen combustion experiments, and passive autocatalytic recombiner experiments. Above experimental work conducted in NPIC and further research plan of nuclear safety are introduced in this paper.

  18. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  19. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  20. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  1. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1993-06-01

    The University of Massachusetts (UMass) Nuclear Physics Program continues to concentrate upon the use of the electromagnetic interaction in a joint experimental and theoretical approach to the study of nucleon and nuclear properties. During the past year the activities of the group involved data analysis, design and construction of equipment, planning for new experiments, completion of papers and review articles for publication, writing of proposals for experiments, but very little actual data acquisition. Section II.A. described experiments at Bates Linear Accelerator Center. They include the following: electrodisintegration of deuteron; measurement of the elastic magnetic form factor of 3 He; coincidence measurement of the D(e,e'p) cross section; transverse form factors of 117 Sn; ground state magnetization density of 89 Y; and measurement of the 5th structure function in deuterium and 12 C. Section II.B. includes the following experiments at Stanford Linear Accelerator Center: deuteron threshold electrodisintegration; separation of charge and magnetic form factors of the neutron and proton; measurement of the X-, Q 2 , and A-dependence of R = σ L /σ T ; and analysis of 14.5 GeV electrons and positions scattered from gases in the PEP Storage Ring. Section III.C. includes the following experiments at NIKHEF and Lund: complementary studies of single-nucleon knockout and single-nucleon wave functions using electromagnetic interactions and single-particle densities of sd-shell nuclei. Section II.D. discusses preparations for future work at CEBAF: electronics for the CLAS region 1 drift chamber Section III. includes theoretical work on parity-violating electron scattering and nuclear structure

  2. Nuclear methods in coal research

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1980-01-01

    Nuclear methods, particularly neutron activation analysis (NAA) provide useful information about elemental constituents in coal and fly ash, but often other techniques are required to supplement NAA data. Spark source mass spectrometry and atomic absorption have been studied as methods for determination of certain elements in coal that are not easily measured by NAA. In work concerned with the chemical speciation of elements in fly ash, a number of analytical techniques have been used; these include NAA, chemical etching and separation, optical and electron microscopy and x-ray diffraction

  3. National register of research projects

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    This Register is intended to serve as a source of information on research which is being conducted in all fields (both natural and human sciences) in the Republic of South Africa. New research projects commenced during 1983 or 1984, and significantly changed research projects, as well as project that were completed or terminated during this period, on which information was received by the compilers before December 1984, are included, with the exception of confidential projects.

  4. Information for nuclear medicine researchers and practitioners

    International Nuclear Information System (INIS)

    Bartlett, W.

    1987-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has a major research program in nuclear medicine; this article describes the information support given to the program by the Lucas Heights Research Laboratories (LHRL) Library. The INIS database is a prime indicator of the information held at LHRL Library, however, other databases also cover nuclear medicine. As part of the Australian library system the ANSTO Library's resources are accessed by subscription. The ANSTO Library staff can also search INIS for a fee for external enquiries but the other databases can presently only be searched for LHRL staff and affiliates. Even so, most major library and information services can provide access to these databases

  5. Preparation fo nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  6. Preparation of nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN, are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  7. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1992-08-01

    This report discusses the following topics; studies of light-charged-particle emission from fission and er reactions in the system 344-MeV 28 Si+ 121 Sb → 149 Tb; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; improvements in interactive data analysis and graphical representations; studies of the reaction 856-MeV 98 Mo + 51 V→ 149 Tb(E*=224-MeV): emission of intermediate-mass fragments; particle-particle correlations in compound nucleus reactions: preliminary consideration of lifetime estimates from small angle data; light particle emission studies using a new scintillator array; statistical evaporation calculations: developments with the computer codes LILITA-N90 and CASCADE; star collaboration studies: simulations for the conceptual design of the STAR detector system at RHIC; asymmetric fission of 149Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; and charged-particle evaporation from hot composite nuclei: evidence over a broad z range for distortions from cold nuclear profiles

  8. Research and assessment of national population dose

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1984-01-01

    This article describes the necessity and probability of making researches on assessment of national population dose, and discusses some problems which might be noticeable in the research work. (author)

  9. Sandia National Laboratories: Research: Biodefense

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD knowledge to counter disease Sandia conducts research into how pathogens interact and subvert a host's immune response to develop the knowledge base needed to create new novel environmental detectors, medical

  10. 30th anniversary of Karlsruhe Nuclear Research Centre

    International Nuclear Information System (INIS)

    Koerting, K.

    1986-01-01

    One of the main goals in mind in 1956 when the Karlsruhe Nuclear Research Centre was founded, was to promote the peaceful uses of nuclear energy in the Federal Republic of Germany. The work accomplished since then by the various institutes of the Centre was particularly successful in the following: Development and construction of the first research reactor as an entirely national achievement; installation and operation of the MZFR reactor, as well as the compact sodium-cooled KNK reactor; the Nuclear Safety Project; the development of the separation nozzle method for uranium enrichment; and specific methods and equipment developed for safeguards systems to prevent nuclear materials diversion. Looking into the future, the tasks ahead will concentrate on the technology of energy generation by thermonuclear fusion, and on environmental pollution control and related methods, as well as industrial processes such as materials handling and process control by PDV and CAD. (orig./PW) [de

  11. National Nuclear Center of the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Tukhvatulin, Sh.T.

    2001-01-01

    and coordination of activity for population and ecology rehabilitation and for economical development of Semipalatinsk Region in Kazakhstan' work was arranged on the mission on UN Development Program (DPUNO). A large number of Kazakhstan Government Decrees are dedicated to solutions of the test site problems and transfer of its territory to national economy. This is one of the principal tasks of the National Nuclear Center. Due to such a policy, the Republic of Kazakhstan managed to retain the unique scientific technical complex and highly qualified staff in the field of atomic energy application and also created a fundamental basis for its further development in peaceful direction. Currently, the National Nuclear Center of the Republic of Kazakhstan - assignee of the Semipalatinsk Test Site - became virtually an international research center comprising the entire complex of ecological problems, problems of non-proliferation control, mining engineering, nuclear power safety, medicine, etc

  12. National report of Brazil on nuclear safety convention - introduction

    International Nuclear Information System (INIS)

    1998-01-01

    This document was prepared for fulfilling the Brazilian obligations under the Convention on Nuclear Safety. Chapter 1 presents some historical aspects of the Brazilian nuclear policy, targets to be attained for increasing the nuclear energy contribution for the national production of electric energy

  13. Overview of nuclear export policies of major foreign supplier nations

    International Nuclear Information System (INIS)

    1977-01-01

    The United States faces increased competition from foreign nuclear suppliers, including West Germany, France, the United Kingdom, Canada, and possibly, in the near future, Japan. This general overview shows the differences and similarities in foreign nuclear supplier export requirements. It is based on summaries furnished by the Department of State covering the nuclear export policies and procedures of the major foreign supplier nations

  14. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  15. Activation Analysis and Nuclear Research in Burma

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R. W.

    1971-07-01

    Research endeavours in the field of Nuclear Sciences in Burma appear to be concentrated in three main Institutions. These are the Chemistry and Physics Departments of the Rangoon Arts & Science University and the Union of Burma Applied Research Institute (UBARI). In view of possible forthcoming developments an expanded research programme, which is to be implemented on the basis of a five year plan, has been drawn up. Research topics included in this programme are predominantly of practical interest and aimed at a contribution by nuclear methods, in particular activation analysis, to the technological and industrial needs of the country.

  16. Data base on nuclear power plant dose reduction research projects

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Baum, J.W.

    1986-10-01

    Staff at the ALARA Center of Brookhaven National Laboratory have established a data base of information about current research that is likely to result in lower radiation doses to workers. The data base, concerned primarily with nuclear power generation, is part of a project that the ALARA Center is carrying out for the Nuclear Regulatory Commission. This report describes its current status. A substantial amount of research on reducing occupational exposure is being done in the US and abroad. This research is beginning to have an impact on the collective dose expenditures at nuclear power plants. The collective radiation doses in Europe, Japan, and North America all show downward trends. A large part of the research in the US is either sponsored by the nuclear industry through joint industry organizations such as EPRI and ESEERCO or is done by individual corporations. There is also significant participation by smaller companies. The main emphasis of the research on dose reduction is on engineering approaches aimed at reducing radiation fields or keeping people out of high-exposure areas by using robotics. Effective ALARA programs are also underway at a large number of nuclear plants. Additional attention should be given to non-engineering approaches to dose reduction, which are potentially very useful and cost effective but require quantitative study and analysis based on data from nuclear power plants. 9 refs., 1 fig.

  17. Research method of nuclear patent information

    International Nuclear Information System (INIS)

    Mo Dan; Gao An'na; Sun Chenglin; Wang Lei; You Xinfeng

    2010-01-01

    When faced with a huge amount of nuclear patent information, the key to effective research include: (1) Choose convenient way to search, quick access to nuclear technology related patents; (2) To overcome the language barrier, analysis the technical content of patent information; (3) Organize the publication date of retrieved patent documents, analysis the status and trends of nuclear technology development; (4) Research the patented technology of main applicants; (5) Always pay attention to the legal status of patent information, free use the invalid patents, at the same time avoid the patent infringement. Summary, patent information is important to obtain the latest technical information source, and the research work of patent information is a comprehensive understanding and mastery way for advanced nuclear technology. (authors)

  18. The Proceeding on National Seminar in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Duyeh Setiawan; Rochestri Sofyan; Nurlaila Z; Poppy Intan Tjahaja; Efrizon Umar; Muhayatun; Nanny K Oekar; Sudjatmi K Alfa; Dani Gustaman Syarif; Didi Gayani; Djoko Hadi P; Saeful Hidayat; Ari Darmawan Pasek; Nathanel P Tandian; Toto Hardianto

    2009-11-01

    The proceeding on national seminar in nuclear science and technology by National Atomic energy Agency held in Bandung on June 3, 2009. The topic of the seminar is the increasing the role of nuclear science and technology for the welfare. The proceeding consist of the article from BATAN participant as well as outside. (PPIN)

  19. Karlsruhe Nuclear Research Center. Research and development programme 1988

    International Nuclear Information System (INIS)

    1987-01-01

    A general survey of planned activities and developmental trends of the nuclear research centre is followed by a more detailed account of projects and goals. The various institutes and laboratories are presented together with their specific task schedules. (UA) [de

  20. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  1. The Superpowers: Nuclear Weapons and National Security. Teacher's Guide. National Issues Forums in the Classroom.

    Science.gov (United States)

    Levy, Tedd

    This teacher's guide is designed to accompany the National Issues Forums'"The Superpowers: Nuclear Weapons and National Security." Activities and ideas are provided to challenge students to debate and discuss the United States-Soviet related issues of nuclear weapons and national security. The guide is divided into sections that…

  2. Karlsruhe Nuclear Research Center. Research and development programme 1989

    International Nuclear Information System (INIS)

    1988-01-01

    The R and D activities of the KfK are classified in 10 main research activities: 1) Project fast breeder; 2) separation nozzle method; 3) project nuclear fusion; 4) project reprocessing and waste processing; 5) ultimate storage; 6) environment and safety; 7) solid-state and materials research; 8) nuclear and elementary particle physics; 9) microtechnics e.g. X-ray lithography; 10) materials handling. (HP) [de

  3. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  4. Nuclear power - international and national dimensions

    International Nuclear Information System (INIS)

    Yanev, Ya.

    1994-01-01

    A strong internationalization of nuclear problems is observed recently. International links have acted as a powerful force for improvement of safety standards and plant performance. The prospects for nuclear industry, its safety and excellent operation, its acceptance and tolerance from society in general will strongly influence the future of nuclear power generation in Bulgaria. The most important problems of Bulgarian nuclear energy are: implementation of safety upgrading program; building and operating new nuclear units; developing infrastructure which will permit safe and reliable operation of the existing units and solve the fuel cycle problems in a reliable and acceptable by the society manner. (I.P.)

  5. National strategic planing for the utilization and development of nuclear energy

    International Nuclear Information System (INIS)

    Won, B. C.; Lee, Y. J.; Lee, T. H.; Oh, K. B.; Kim, S. H.; Lee, J. W.

    2011-12-01

    It is followed that results and contents of National strategic planning for the utilization and development of nuclear energy. Our team makes an effort to carry out pre-research on establishment of the fourth Comprehensive Nuclear Energy Promotion Plan(CNEPP). To establish CNEPP, we analyzed domestic and global environment and trends of nuclear energy including the result of patent analysis, and find ways to link and coordinate other national plans concerned with nuclear energy. Upon the analysis we produce the final draft absorbing comments from the above-mentioned public discussions

  6. Japan's contribution to nuclear medical research

    International Nuclear Information System (INIS)

    Rahman, M.; Sakamoto, Junichi; Fukui, Tsuguya

    2002-01-01

    We investigated the degree of Japan's contribution to the nuclear medical research in the last decade. Articles published in 1991-2000 in highly reputed nuclear medical journals were accessed through the MEDLINE database. The number of articles having affiliation with a Japanese institution was counted along with publication year. In addition, shares of top-ranking countries were determined along with their trends over time. Of the total number of articles (7,788), Japan's share of articles in selected nuclear medical journals was 11.4% (889 articles) and ranked 2nd in the world after the USA (2,645 articles). The recent increase in the share was statistically significant for Japan (p=0.02, test for trend). Japan's share in nuclear medical research output is much higher than that in other biomedical fields. (author)

  7. Act no. 933 of 11 August 1960. Establishment of the National Nuclear Energy Commission

    International Nuclear Information System (INIS)

    1960-01-01

    This Act which sets up the Comitato Nazionale per l'Energia Nucleare (CNEN) abolishes at the same time the National Committee for Nuclear Research (Comitato nazionale per le ricerche nucleari). This present Act No. 933 was subsequently annulled by Act No. 1240 of 15 December 1971 with the exception of Sections 12 to 16 which remained valid. (NEA) [fr

  8. National Nuclear Corporation Limited report and financial statements 31 March 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The paper contains the directors' annual report and the audited financial statements of the National Nuclear Corporation Limited, 1985/6. The company is engaged in designing and constructing power stations and nuclear power reactors, and other related work, and in associated research and development. (U.K.)

  9. National Nuclear Corporation Limited report and financial statements 31 March 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The paper contains the directors' annual report and the audited financial statements of the National Nuclear Corporation Limited, 1985/6. The company is engaged in designing and constructing power stations and nuclear power reactors, and other related work, and in associated research and development. (U.K.).

  10. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  11. Focus on nuclear fusion research

    Czech Academy of Sciences Publication Activity Database

    Křenek, Petr; Mlynář, Jan

    2011-01-01

    Roč. 61, - (2011), s. 62-63 ISSN 0375-8842 Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * COMPASS * fusion energy * tokamak * EURATOM Subject RIV: BL - Plasma and Gas Discharge Physics http://www.ipp.cas.cz/Tokamak/clanky/energetika_COMPASS.pdf

  12. Nuclear medicine. Medical technology research

    International Nuclear Information System (INIS)

    Lerch, H.; Jigalin, A.

    2005-01-01

    Aim, method: the scientific publications in the 2003 and 2004 issues of the journal Nuklearmedizin were analyzed retrospectively with regard to the proportion of medical technology research. Results: out of a total of 73 articles examined, 9 (12%) were classified as medical technology research, that is, 8/15 of the original papers (16%) and one of the case reports (5%). Of these 9 articles, 44% (4/9) focused on the combination of molecular and morphological imaging with direct technical appliance or information technology solutions. Conclusion: medical technology research is limited in the journal's catchment area. The reason for this is related to the interdependency between divergent development dynamics in the medical technology industry's locations, the many years that the area of scintigraphic technology has been underrepresented, research policy particularly in discrepancies in the promotion of molecular imaging and a policy in which health is not perceived as a predominantly good and positive economic factor, but more as a curb to economic development. (orig.)

  13. The situation of nuclear research in Brazil

    International Nuclear Information System (INIS)

    Alves, R.N.

    1989-04-01

    In order to understand the nuclear research situation in Brazil, one must examine the historical facts and their political, economical and social dimensions. In the first part of this work, the international aspects of the nuclear area and the corresponding measures adopted in Brazil are examined. The reasons that caused the country to adopt the current development model are presented. A proposal that will permit Brazil to develop and use nuclear energy in the way it wants and not as it might be imposed is presented. 4 tabs

  14. Assessment Report on the national research strategy for energy

    International Nuclear Information System (INIS)

    2009-01-01

    This report was issued in 2009 by the French Parliament commission in charge of evaluating the scientific and technological choices of France's research in the field of energy. With environmental, economical and national independence concerns in view, the objective of the report is to assess the national research strategy for energy and to propose some directions for its future development. The scientific priority given in France to nuclear energy, petroleum, photovoltaic energy, second generation bio fuels and energy storage should be maintained. Mass energy storage should be considered as an essential condition for the development of renewable energies, such as offshore wind farms and storage systems

  15. National Institute of Nuclear and Particle Physics - IN2P3. 2001-2003 activity report

    International Nuclear Information System (INIS)

    Spiro, Michel; Armand, Dominique

    2005-12-01

    The CNRS National Institute of Nuclear and Particle Physics (IN2P3) acts as national leader and coordinator in the fields of nuclear, particle and astro-particle physics, technological advances and their related applications, especially in the health and energy sectors. This research aims to explore particle and nuclear physics, fundamental interactions, and the links between the infinitely small and the infinitely large. Scientific fields include: Particle physics and hadronic physics, Nuclear physics, Astro-particles and cosmology, Neutrinos, Instrumentation, Computing and data, Research and development of accelerators, Back-end of the nuclear fuel cycle and nuclear energy, Medical applications. This document is IN2P3's activity report for the 2001-2003 period. It presents the strategic priorities of the Institute, the highlights and projects of the period

  16. Kenya National Presentation on Nuclear Power Infrastructure Evaluation

    International Nuclear Information System (INIS)

    Kinyanjui, B

    2010-01-01

    Kenya will factored 1200MW of nuclear energy in the period 2022-2023 of the national Least Cost Power Development Plan and 4200MW by 2030. A national nuclear power programme is now at inception. The National Economic and Social Council endorsed adoption of the nuclear programme in April 2010. Electricity demand is expected to rise from the current 1200 MW to over 15000 MW by 2030. The achievement of the Vision 2030 requires affordable and stable electricity tariffs. Formation of a Nuclear Power Committee to study and initially promote the development of the nuclear power program will be established e.g. Nuclear Power Committee - Kenyan version of Nuclear Energy Programme Implementing Organization formed. The Nuclear Power Committee is expected to precede formation of the NEPIO. There was proposal to review of current laws –e.g. Energy Act, Radiation Protection Act, Environmental Management and Control Act, Penal Code, etc. Potential sites proposed along the Indian Ocean Coastal areas, near Lake Victoria and the central region near the main national hydropower plants, based on power grid layout and water bodies. Kenya is in Phase 1 of milestones- Consideration before a decision is taken to start a NPP. Capacity Building towards Development of a Nuclear Power Programme (NPP) in Kenya is underway. To implement the national least cost power development plan so as to increase the capacity from current 1,300MW to 18,000MW by 2030 to support achievement of the ‘Vision 2030’

  17. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T 20 experiment, the UMass group was able to complete data acquisition on experiments involving 180 degrees elastic magnetic scattering on 117 Sn and 41 Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e') measurements were made in November of 1987 on 10 B in order to better determine the p 3/2 wave function from the transition from the J pi = 3 + ground state to the O + excited state at 1.74 MeV. In 1988, (e,e'p) coincidence measurements on 10 B were completed. The objective was to obtain information on the p 3/2 wave function by another means

  18. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1992-06-01

    This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q 2 ; Measurement of the 5th Structure Function in Deuterium and 12 C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of 117 Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from 13 C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of 3 He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e'p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N → Δ Excitation; Experiment E-140: Measurement of the x-, Q 2 and A-Dependence of R = σ L /σ T ; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2γ Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions

  19. Pump and valve research at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1992-01-01

    Over the last several years, the Oak Ridge National Laboratory (ORNL) has carried out several aging assessments on pumps and valves under the NRC's Nuclear Plant Aging Research (NPAR) Program. In addition, ORNL has established an Advanced Diagnostic Engineering Research and Development Center (ADEC) in order to play a key role in the field of diagnostic engineering. Initial ADEC research projects have addressed problems that were identified, at least in part, by the NPAR and other NRC-sponsored programs. This paper summarizes the pump and valve related research that has been done at ORNL and describes in more detail several diagnostic techniques developed at ORNL which are new commercially available

  20. The Canadian nuclear industry - a national asset

    International Nuclear Information System (INIS)

    1985-03-01

    The economic importance of the Canadian nuclear industry in saving costs and creating jobs is expounded. The medical work of Atomic Energy of Canada Limited is also extolled. The Canadian Nuclear Association urges the federal government to continue to support the industry at home, and to continue to promote nuclear exports. This report was prepared in response to the Federal Finance Minister's 'A New Direction for Canada'

  1. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  2. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  3. Needs of National Infrastructure for Nuclear Energy Program in Macedonia

    International Nuclear Information System (INIS)

    Chaushevski, A.; Poceva, S.N.; Spasevska, H.; Popov, N.

    2016-01-01

    The introduction of a nuclear energy program is a major undertaking with significant implications for many aspects of national infrastructure, ranging from capacity of the power grid, access roads and production facilities, to the involvement of stakeholders and the development of human resources. For new comers countries without nuclear power, even for those who wish to realize substantial expansion of existing nuclear capacity, it can take up to 10-15 years to develop the necessary infrastructure. One of the crucial problems in nuclear energy implementation are human resources needs and educational infrastructure development in this field. No matter what will be the future energy scenario in the Republic of Macedonia, the nuclear educational program is the first step to have HR in the field of nuclear energy. This paper presents the proposed direction for having HR for establishing national infrastructure in nuclear energy program in Macedonia. This includes establishing and developing of MONEP (Macedonian NEPIO), and the enhancing the capabilities of the national regulatory body in the Republic of Macedonia. Keywords: NEP (Nuclear Energy Program), HR (Human Resources), NEPIO (Nuclear Energy Program Implementation Organization), MONEP Macedonian Organization for Nuclear Energy Program (Macedonian NEPIO), NRB (Nuclear Regulatory Body)

  4. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  5. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  6. Annual Continuation And Progress Report For Nuclear Theory At Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ormand, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Quaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schunck, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vranas, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Nuclear Theory research under the auspices of the Department of Energy (DOE) Office of Nuclear Physics (NP) is conducted within several funding sources and projects. These include base funding, and early career award, and a collaborative SciDAC-­3 award that is jointly funded by DOE/NP and the Advanced Simulations and Computations (ASC) effort within the National Nuclear Security Agency (NNSA). Therefore, this annual report is organized within the three primary sections covering these projects.

  7. Nuclear safety research project. Annual report 1995

    International Nuclear Information System (INIS)

    Hueper, R.

    1996-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1995 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1996. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  8. Nuclear Safety Research Department annual report 2000

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E.

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  9. Proceedings of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Science and Technology part I : Physics and Nuclear Reactor

    International Nuclear Information System (INIS)

    Kusminarto; Sri Juari Santoso; Agus Taftazani; Sudjatmoko; Darsono; Samin; Syarip; Prajitno; Muhadi Ayub Wasitho; Sukarsono; Tjipto Sujitno; Elisabeth Supriyatni

    2009-07-01

    The Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Accelerator Technology and Material Process, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. The proceedings contains papers presented on scientific meeting about Physics and Nuclear Reactor. The proceedings is the first part of the three parts which published in series. There are 28 papers. (PPIN)

  10. Technology transfer from nuclear research

    International Nuclear Information System (INIS)

    1989-01-01

    A number of processes, components and instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, find application in industry and are available for transfer to private or public sector undertakings for commercial exploitation. The Technology Transfer Group (TTG) constituted in January 1980 identifies such processes and prototypes which can be made available for transfer. This catalogue contains brief descriptions of such technologies and they are arranged under three groups, namely, Group A containing descriptions of technologies already transferred, Group B containing descriptions of technologies ready for transfer and Group C containing descriptions of technology transfer proposals being processed. The position in the above-mentioned groups is as on 1 March 1989. The BARC has also set up a Technology Corner where laboratory models and prototypes of instruments, equipment and components are displayed. These are described in the second part of the catalogue. (M.G.B.)

  11. Current research and development at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Kuesters, H.

    1982-01-01

    The Nuclear Research Center Karlsruhe (KfK) is funded to 90% by the Federal Republic of Germany and to 10% by the State of Baden-Wuerttemberg. Since its foundation in 1956 the main objective of the Center is research and development (R and D) in the aera of the nuclear technology and about 2/3 of the research capacity is now devoted to this field. Since 1960 a major activity of KfK is R and D work for the design of fast breeder reactors, including material research, physics, and safety investigations; a prototype of 300 MWe is under construction now in the lower Rhine Valley. For enrichment of 235 U fissile material KfK developed the separation nozzle process; its technical application is realized within an international contract between the Federal Republic of Germany and Brazil. Within the frame of the European Programme on fusion technology KfK develops and tests superconducting magnets for toroidal fusion systems; a smaller activity deals with research on inertial confinement fusion. A broad research programme is carried through for safety investigations of nuclear installations, especially for PWRs; this activity is supplemented by research and development in the field of nuclear materials' safeguards. Development of fast reactors has to initiate research for the reprocessing of spent fuel and waste disposal. In the pilot plant WAK spent fuel from LKWs is reprocessed; research especially tries e.g. to improve the PUREX-process by electrochemical means, vitrification of high active waste is another main activity. First studies are being performed now to clarify the necessary development for reprocessing fast reactor fuel. About 1/3 of the research capacity of KfK deals with fundamental research in nuclear physics, solid state physics, biology and studies on the impact of technology on environment. Promising new technologies as e.g. the replacement of gasoline by hydrogen cells as vehicle propulsion are investigated. (orig.)

  12. CONTRIBUTION OF HANARO IRRADIATION TECHNOLOGIES TO NATIONAL NUCLEAR R&D

    Directory of Open Access Journals (Sweden)

    KEE NAM CHOO

    2014-08-01

    Full Text Available HANARO is a multipurpose research reactor located at the Korea Atomic Energy Research Institute (KAERI. Since the commencement of its operation in 1995, various neutron irradiation facilities, such as rabbit irradiation facilities, fuel test loop (FTL facilities, capsule irradiation facilities, and neutron transmutation doping (NTD facilities, have been developed and actively utilized for various nuclear material irradiation tests requested by users from research institutes, universities, and industries. Most irradiation tests have been related to national R&D relevant to present nuclear power reactors such as the ageing management and safety evaluation of the components. Based on the accumulated experience as well as the sophisticated requirements of users, HANARO has recently supported national R&D projects relevant to new nuclear systems including the System-integrated Modular Advanced Reactor (SMART, research reactors, and future nuclear systems. This paper documents the current state and utilization of irradiation facilities in HANARO, and summarizes ongoing research efforts to deploy advanced irradiation technology.

  13. Dossier: management of nuclear wastes. Research, results

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The researches carried out since many years on nuclear wastes have led to two main ways of management: the long-term conditioning of radio-elements and their advanced separation. The French atomic energy commission (CEA) has chosen to take up also the transmutation challenge, a way to transform long-living radioactive wastes into short-living radioactive wastes or stable compounds. The transmutation programs are based both on simulation and experiments with a huge international collaboration. This dossier presents in a digest way the research activity carried out on nuclear wastes processing and management at the CEA. (J.S.)

  14. An accountancy system for nuclear materials control in research centres

    International Nuclear Information System (INIS)

    Buttler, R.; Bueker, H.; Vallee, J.

    1979-01-01

    The Nuclear Accountancy and Control System (NACS) was developed at KFA Juelich in accordance with the requirements of the Non-Proliferation Treaty. The main features are (1) recording of nuclear material in inventory items. These are combined to form batches wherever suitable; (2) extrapolation of accounting data as a replacement for detailed measurement of inventory items data. Recording and control of nuclear material are carried out on two levels with access to a common data bank. The lower level deals with nuclear materials handling plus internal management while on the upper level there is a central control point which is responsible for nuclear safeguarding within the entire research centre. By keeping the organizational and technical infrastructure it was possible to develop a system which is both economical and operator-oriented. In this system the emphasis of nuclear safeguarding is placed on the acquisition of the nuclear material inventory. As much consideration has been given to the interests of the various operational levels and organizational units as to internal and national regulations. Since it is part of the safeguarding and control system, access to the NACS must be restricted to a limited number of users only. Furthermore, it must include facilities for manual control in the form of records. Authorization for access must correspond with the various tasks of different user groups. All necessary data are acquired decentrally in the organizational units and entered via a terminal. It is available to the user groups on both levels through a central data bank. To meet all requirements, the NACS has been designed as an integrated, computer-assisted information system for the automated processing of extensive and multi-level nuclear materials data. As part of the preventive measures entailed with nuclear safeguarding, the accountancy system enables the operator of a nuclear plant to furnish proof of non-diversion of nuclear material. (author)

  15. Implementing national nuclear safety plan at the preliminary stage of nuclear power project development

    International Nuclear Information System (INIS)

    Xue Yabin; Cui Shaozhang; Pan Fengguo; Zhang Lizhen; Shi Yonggang

    2014-01-01

    This study discusses the importance of nuclear power project design and engineering methods at the preliminary stage of its development on nuclear power plant's operational safety from the professional view. Specifically, we share our understanding of national nuclear safety plan's requirement on new reactor accident probability, technology, site selection, as well as building and improving nuclear safety culture and strengthening public participation, with a focus on plan's implications on preliminary stage of nuclear power project development. Last, we introduce China Huaneng Group's work on nuclear power project preliminary development and the experience accumulated during the process. By analyzing the siting philosophy of nuclear power plant and the necessity of building nuclear safety culture at the preliminary stage of nuclear power project development, this study explicates how to fully implement the nuclear safety plan's requirements at the preliminary stage of nuclear power project development. (authors)

  16. The role of research in nuclear regulation: A Korean perspective

    International Nuclear Information System (INIS)

    Yoon, Won-Hyo

    1997-01-01

    Korea has carried out a very ambitious nuclear power program since the 1970's as part of the nation's industrialization policy. Ever since, Korea has also maintained a strong commitment to nuclear power development as an integral part of the national energy policy which aims at reducing external vulnerability and ensuring against a global fossil fuel shortage. The introduction of nuclear power into Korea has progressed through three stages: the first was a turn-key package supplied by the manufacturer; the second involved a major contractor who was responsible for project management, and design and construction was contracted out, with Korean industry becoming more involved; the third stage has seen Korean industries involved as main contractors based on experience gained from earlier plants. The success of Korea's nuclear power program depends in large part on how to insure safety. Safety has the highest priority in nuclear energy development. Public acceptance has been the most critical problem faced by the nuclear industry in Korea. The public demands the highest level of safety all through the design, construction, and operation of nuclear power plants. Korea has learned that a nuclear plant designed with well addressed safety, implementation of a well grounded QA program during construction, and operated with a proven record of safety, are the only ways to earn public support. Competent and efficient regulation with a strong safety culture and openness in all issues is the most desirable image for regulators to strive for. Korea established a ten year R ampersand D program to obtain self-reliance in nuclear technology and international competitiveness by the early 2000's in 1992. It has actively participated in coordinated research programs in safety issues with bodies including the USNRC, AECB of Canada, IAEA, and OECD/NEA

  17. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1991-06-01

    This report discusses research conducted on the following topics: transverse from factors of 117 Sn; elastic magnetic electron scattering from 13 C at Q 2 = 1 GeV 2 /c 2 ; a re-analysis of 13 C elastic scattering; deuteron threshold electrodisintegration; measurement of the elastic magnetic form factor of 3 He at high momentum transfer; coincidence measurement of the D(e,e'p) cross-section at low excitation energy and high momentum transfer; measurement of the quadrupole contribution to the N → Δ excitation; measurement of the x-, Q 2 -, and A-dependence of R = σ L /σ T ; the PEGASYS project; PEP beam-gas event analysis; plans for other experiments at SLAC: polarized electron scattering on polarized nuclei; experiment PR-89-015: study of coincidence reactions in the dip and delta-resonance regions; experiment PR-89-031: multi-nulceon knockout using the CLAS detector; drift chamber tests; a memorandum of understanding and test experiments; photoprotons from 10 B; and hadronic electroproduction at LEP

  18. Nuclear data usage for research reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Soyama, Kazuhiko; Amano, Toshio

    1996-01-01

    In the department of research reactor, many neutronics calculations have been performed to construct, to operate and to modify research reactors of JAERI with several kinds of nuclear data libraries. This paper presents latest two neutronic analyses on research reactors. First one is design work of a low enriched uranium (LEU) fuel for JRR-4 (Japan Research Reactor No.4). The other is design of a uranium silicon dispersion type (silicide) fuel of JRR-3M (Japan Research Reactor No.3 Modified). Before starting the design work, to estimate the accuracy of computer code and calculation method, experimental data are calculated with several nuclear data libraries. From both cases of calculations, it is confirmed that JENDL-3.2 gives about 1 %Δk/k higher excess reactivity than JENDL-3.1. (author)

  19. John Huizenga at the Nuclear Structure Research Lab. (NSRL)

    International Nuclear Information System (INIS)

    Gove, H.E.

    1986-01-01

    The first experiments at the University of Rochester's Nuclear Structure Research Laboratory were carried out in early November of 1966 and the accelerator itself was officially accepted in April of 1967. The laboratory's inception was a result of an idea of Robert Marshack and Bruce French of the Department of Physics and Astronomy at Rochester. A proposal was submitted to three federal agencies in February 1962. The proposal was accepted by the latter organization, the National Science Foundation and NSRL has flourished in nuclear science since that time. This paper presents an overview of John Huizenga's activities at the NSRL

  20. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  1. National Database for Autism Research (NDAR)

    Data.gov (United States)

    U.S. Department of Health & Human Services — National Database for Autism Research (NDAR) is an extensible, scalable informatics platform for austism spectrum disorder-relevant data at all levels of biological...

  2. Applications of nuclear techniques and research 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The application of nuclear techniques, i.e. those techniques where use is made of isotopes and radiation, continues to contribute to progress in science, technology, agriculture, industry and medicine. Nuclear applications found their way into the IAEA's activities from the very beginning, and their promotion constitutes today a substantial fraction of the IAEA's Technical Co-operation and Research Contract Programmes. The 1990 selection is opened by a review of the role and function of the IAEA's Research Contract Programme, which is one of the Agency's most effective tools for promoting and developing nuclear applications. Applications in agriculture are covered in two articles dealing respectively with issues affecting the acceptance of food irradiation by governments, the food industry and consumers and with the use of radiation to induce plant mutation, a practical tool available to plant breeders in their effort to develop better quality crops. The following article deals with a typical nuclear application in medicine, i.e. the use of radionuclides in the diagnosis of lung diseases and in investigations related to the respiratory function. The use of environmental isotopes to assess the energy potential of geothermal fields is the next subject, a good example of nuclear methods applied to the evaluation of natural resources. The 1990 review concludes with a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme

  3. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  4. ''Confession statement against the nuclear nation''. The protestant church in Germany and the conflicts concerning nuclear energy 1970 - 1990

    International Nuclear Information System (INIS)

    Schuering, Michael

    2015-01-01

    The book on ''Confession statement against the nuclear nation'' discusses the conflicts of the protestant church in Germany concerning nuclear energy in 1970 - 1990. The introduction covers the state of research and the historical sources. The following chapters discuss the issues philosophic-ideological fundamentals: atomic energy and theology, the political church, the new protest culture and comparative perspectives: the catholic perspective, Three Mile Island's shadow.

  5. 76 FR 51358 - National Nuclear Security Administration Amended Record of Decision: Disposition of Surplus...

    Science.gov (United States)

    2011-08-18

    ... DEPARTMENT OF ENERGY National Nuclear Security Administration Amended Record of Decision... National Nuclear Security Administration (NNSA), a semi- autonomous agency within the U.S. Department of... Manager, Office of Fissile Materials Disposition, National Nuclear Security Administration, U.S...

  6. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  7. Cross-national comparison of nuclear reactor development strategies

    International Nuclear Information System (INIS)

    deLeon, P.

    1976-10-01

    This paper discusses most of the variables or factors that have been advanced to explain the success or failure of the various national nuclear reactor programs. From the comparative analysis of these experiences, it is apparent that the inclusion of the relevant factors in the ''technology delivery systems'' (TDS) and multiple research approaches offer the most convincing evidence explaining the ultimate acceptance/rejection of the national RD and D programs. It is equally apparent that these two variables are closely related. The policy implications which might thus be drawn from this cross-national survey suggest the inclusion of all the relevant actions in the RD and D process (i.e., ex cathedra policies are likely to fail) and the preservation of multiple research approaches until the major technical uncertainties are resolved. Many might consider these as obvious, but a brief review of the U.S. development of the FBR gives one reason to wonder if the ''obvious'' lessons of the LWR development have, in fact, been recognized, let alone appreciated

  8. Basis for snubber aging research: Nuclear Plant Aging Research Program

    International Nuclear Information System (INIS)

    Brown, D.P.; Palmer, G.R.; Werry, E.V.; Blahnik, D.E.

    1990-01-01

    This report describes a research plan to address the safety concerns of aging in snubbers used on piping and equipment in commercial nuclear power plants. The work is to be performed under Phase 2 of the Snubber Aging Study of the Nuclear Plant Aging Research Program of the US Nuclear Regulatory Commission with the Pacific Northwest Laboratory (PNL) as the prime contractor. Research conducted by PNL under Phase 1 provided an initial assessment of snubber operating experience and was primarily based on a review of licensee event reports. The work proposed is an extension of Phase 1 and includes research at nuclear power plants and in test laboratories. Included is technical background on the design and use of snubbers in commercial nuclear power applications; the primary failure modes of both hydraulic and mechanical snubbers are discussed. The anticipated safety, technical, and regulatory benefits of the work, along with concerns of the NRC and the utilities, are also described. 21 refs., 7 figs., 1 tab

  9. The Nordic Nuclear Safety Research (NKS) programme. Nordic cooperation on nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kasper G. [Technical Univ. of Denmark, Roskilde (Denmark). National Lab. for Sustainable Energy; Ekstroem, Karoliina [Fortum Power and Heat, Fortum (Finland); Gwynn, Justin P. [Norwegian Radiation Protection Authority, Tromsoe (Norway). Fram Centre; Magnusson, Sigurdur M. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Physant, Finn C. [NKS-Sekretariatet, Roskilde (Denmark)

    2012-07-01

    The roots of the current Nordic Nuclear Safety Research (NKS) programme can be traced back to the recommendation by the Nordic Council in the late 1950s for the establishment of joint Nordic committees on the issues of nuclear research and radiation protection. One of these joint Nordic committees, the 'Kontaktorgan', paved the way over its 33 years of existence for the future of Nordic cooperation in the field of nuclear safety, through the formation of Nordic groups on reactor safety, nuclear waste and environmental effects of nuclear power in the late 1960s and early 1970s. With an increased focus on developing nuclear power in the wake of the energy crisis on the 1970s, the NKS was established by the Nordic Council to further develop the previous strands of Nordic cooperation in nuclear safety. NKS started its first programme in 1977, funding a series of four year programmes over the next 24 years covering the areas of reactor safety, waste management, emergency preparedness and radioecology. Initially funded directly from the Nordic Council, ownership of NKS was transferred from the political level to the national competent authorities at the beginning of the 1990s. This organizational and funding model has continued to the present day with additional financial support from a number of co-sponsors in Finland, Norway and Sweden. (orig.)

  10. 20 th anniversary of the Nuclear Research Institute (UJV)

    International Nuclear Information System (INIS)

    Havel, S.

    1975-01-01

    The importance of NRI founded twenty years ago, its original mission and tasks in the period of its establishement and the growth of its experimental base made possible by Soviet assistance are shown. A new mission of NRI after its reorganization and its incorporation in the Czechoslovak Atomic Commision is discussed. The survey of main research efforts aimed at the implementation of the programme of the Czechoslovak nuclear power and at meeting the needs of the Czechoslovak national economy is given. (author)

  11. New Tool to Draft National Nuclear Laws. Second Nuclear Law Handbook Available Online

    International Nuclear Information System (INIS)

    Kaiser, Peter

    2011-01-01

    Drafting new national nuclear laws and reviewing existing laws and regulations requires extensive and specialized expertise. For many countries this represents a significant challenge. The IAEA's legislative assistance programme was established to help Member States adopt adequate national nuclear legislation. In 2003, the legistlative assistance programme published the Handbook on Nuclear Law. The reference text provides a fundamental understanding of the key elements and principles of national nuclear legislation. The Handbook is widely utilized by Member States, industry and experts. A second volume of the Handbook was released during the IAEA's 54th General Conference, which convened in Vienna from 20 to 24 September 2010.

  12. Malaysian perspective on the contribution of nuclear science and technology to national development

    Energy Technology Data Exchange (ETDEWEB)

    Alang Md Rashid, Nahrul Khair [Unit Tenaga Nuklear, Bangi, Selangor (Malaysia)

    1994-04-01

    The development of nuclear science and technology in Malaysia began with the inception of The Nuclear Energy Unit (UTN) in 1972. In 1985, the Atomic Energy Licensing Board was set up as a regulatory body to enforce the Atomic Energy Licensing Act. Ten years after UTN`s establishment, the first of its major facilities, a one Megawatt TRIGA MkII nuclear research reactor (RTP), was commissioned. This is the first step of any type of nuclear reactor for Malaysia. The healthy development of peaceful uses of nuclear science and technology in malaysia has enabled UTN to acquire several other major facilities. These facilities support research and development, in line with UTN`s mission, viz, to enhance national development through the applications of nuclear science and technology. This paper describes selected activities at UTN and some of its successes in linking the results of research and development to real-world applications through services and/or technology transfers.

  13. Malaysian perspective on the contribution of nuclear science and technology to national development

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    1994-01-01

    The development of nuclear science and technology in Malaysia began with the inception of The Nuclear Energy Unit (UTN) in 1972. In 1985, the Atomic Energy Licensing Board was set up as a regulatory body to enforce the Atomic Energy Licensing Act. Ten years after UTN's establishment, the first of its major facilities, a one Megawatt TRIGA MkII nuclear research reactor (RTP), was commissioned. This is the first step of any type of nuclear reactor for Malaysia. The healthy development of peaceful uses of nuclear science and technology in malaysia has enabled UTN to acquire several other major facilities. These facilities support research and development, in line with UTN's mission, viz, to enhance national development through the applications of nuclear science and technology. This paper describes selected activities at UTN and some of its successes in linking the results of research and development to real-world applications through services and/or technology transfers

  14. Portuguese research program on nuclear fusion

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-01-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described

  15. The national drill for deterrence and fighting nuclear terrorism

    International Nuclear Information System (INIS)

    Cioflan, Constantin

    2006-01-01

    Full text: National Commission for Nuclear Activities Control (CNCAN) in cooperation with the Romanian Intelligence Service (SRI) organized the 'National Drill for Deterrence and Fighting the Nuclear Terrorism' which took place on May 10, 2006 in Cheile Rasnoavei, Brasov county, Romania. This event continues the activities undertaken by CNCAN, in its capacity of a national center ensuring the nuclear safeguards, physical protection of nuclear materials as well as for preventing and fighting against illicit traffic with radioactive nuclear materials and deterring the terrorist actions menacing the security and nuclear safety of the nation. The drill consisted in simulating a terrorist attack against a shipment of nuclear fuel (made available by the Nuclear Fuel Plant at Pitesti). It was a good opportunity for testing the reacting and organizing technical capacity of the national institutions committed with physical protection in emergency situations generated by terrorist actions. The objectives of the drill was the deployment of a counter-terrorist intervention in case of a terrorist attack intending to hijack a special expedition of dangerous materials. Hostages were seized and the demand was issued for clearing the traffic up to the national boundary. The anti-terrorist brigade (SRI) organized an ambush on the route of displacement in order to capture and annihilate the terrorist unit and re-establishing the legal order. CNCAN participated in this drill with its mobile intervention unit which is a team of experts correspondingly equipped with specific instruments for detecting the nuclear materials, special equipment for communication and locating as well as with two marked vehicles. The SRI employed a number higher than 80 officers and military technicians from anti-terrorist brigade, constituted in negotiators, storming squads, paratroopers, pyrotechnic experts, communication technicians. PUMA and Alouette helicopters for launching air attacks were employed

  16. Basic components of a national control system for nuclear materials

    International Nuclear Information System (INIS)

    Rabot, G.

    1986-01-01

    The paper presents the different aspects related to the organization and the functioning of a national control and accounting system for nuclear materials. The legal aspects and the relations with the IAEA are included

  17. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de

  18. The Nordic Research programme on nuclear safety

    International Nuclear Information System (INIS)

    1992-06-01

    Only two of the five Nordic countries (Denmark, Iceland, Finland, Norway and Sweden) - Sweden and Finland - operate nuclear power plants, but there are a number of nuclear installations close to their borders. Regular 4-year programmes were initiated in 1977, designated NKS-programmes. (NKS: Nordisk KerneSikkerhedsforskning - Nordic nuclear-safety research). The current fourth NKS-programme is, influenced by the Chernobyl accident, dominated by the necessity for acquiring knowledge on unexpected events and release of radioactive material from nuclear installations. The present programme is divided into the areas of emergency preparedness, waste and decommissioning, radioecology and reactor safety. It comprises a total of 18 projects, the results of which will later be published in the form of handbooks for use in cases of emergency etc. The future of joint Nordic project work in the nuclear safety field must be seen in the light of changing conditions in and around the Nordic countries, such as the opening of relations to neighbours in the east, the move towards the European Communities and the need for training a new generation of specialists in the nuclear field etc. Each project is described in considerable detail and a list of reports resulting from the third NKS-programme 1985-1989 is given. (AB)

  19. Research at the Section of Experimental Nuclear Physics of ATOMKI

    International Nuclear Information System (INIS)

    Krasznahorkay, A.; Fenyes, T.; Dombradi, Zs.; Nyako, B.M.; Timar, J.; Algora, A.; Csatlos, M.; Csige, L.; Gacsi, Z.; Gulyas, J.

    2011-01-01

    present-day nuclear physics is to explore the origin, development, phases and structure of strongly interacting matter. Our group is studying the structure and dynamics of atomic nuclei, which is still one of the most important chapters of nuclear physics. The traditions of the group are strong in experiments with accelerators. Our knowledge and experience are the strongest in detection techniques, including nuclear electronics, in electronic and computerised processing of measured data, in the planning of experiments by simulation and in data evaluation. This experience has been obtained through research work in various fields in conventional nuclear structure physics and through measurements and theoretical evaluation of nuclear reaction experiments. The above experience played an important part both in the local experiments and also in the experiments performed in bigger nuclear physics laboratories. In spite of the economic crisis, we have maintained and updated our own experimental instruments in ATOMKI. Recently, in the National Inventory and Road Map of Research Infrastructure (NEKIFUT) the Laboratory for Nuclear and Astrophysics at ATOMKI (MAGAL) has been qualified as strategic research infrastructure. The front cover of this report shows a few important instruments of MAGAL. We strongly believe that building and using new instruments in ATOMKI plays a very important role also in teaching the new generation. After a short review of the works performed before 1995, we will concentrate mostly on the current nuclear physics topics of the group. Our achievements during the past decade can be briefly characterised by the following statistical facts. We have performed many experiments, among which in about 30 we were spokespersons or co-spokespersons. These resulted about 280 articles which have received about 1500 citations. The results have been presented in 23 invited talks in nuclear-physics conferences, and served as a basis for 5 PhD and 3 DSc theses. In ATOMKI we

  20. Contributions to radiochemical and nuclear materials research

    International Nuclear Information System (INIS)

    Matzke, H.

    1982-01-01

    Series of talks given during a seminar of the European Institute for Transuranium Elements in april 1981 in honor of R. LINDNER on the occasion of his 60th birth day. The topics include general aspects of research practice and science prognosis, retrospective essays about the discovery of nuclear fission by O. HAHN as well as surveys of actual research activities concerning a radiochemistry and the use of radioactivity in material science

  1. Nuclear Research Center IRT reactor dynamics calculation

    International Nuclear Information System (INIS)

    Aleman Fernandez, J.R.

    1990-01-01

    The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs

  2. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    1980-01-01

    The brochure contains the abstracts of the papers presented at the 7th EPS meeting 1980 in Darmstadt. The main subjects were: a) Neutron scattering and Moessbauer effect in materials research, b) ion implantation in micrometallurgy, c) applications of nuclear reactions and radioisotopes in research on solids, d) recent developments in activation analysis and e) pions, positrons, and heavy ions applied in solid state physics. (RW) [de

  3. Neutrinos oscillations researches near a nuclear reactor

    International Nuclear Information System (INIS)

    Laiman, M.

    1999-01-01

    This thesis deals with the research of neutrinos oscillations near the Chooz B nuclear power plant in the Ardennes. The first part presents the framework of the researches and the chosen detector. The second part details the antineutrinos flux calculus from the reactors and the calculus of the expected events. The analysis procedure is detailed in the last part from the calibration to the events selection. (A.L.B.)

  4. Experience and advantages in implementation of educational program in network form at Department «Closed nuclear fuel cycle Technologies» of National Research Nuclear University «MEPhI»

    Science.gov (United States)

    Beygel‧, A. G.; Kutsenko, K. V.; Lavrukhin, A. A.; Magomedbekov, E. P.; Pershukov, V. A.; Sofronov, V. L.; Tyupina, E. A.; Zhiganov, A. N.

    2017-01-01

    The experience of implementation of the basic educational program of magistracy on direction «Nuclear Physics and Technologies» in a network form is presented. Examples of joint implementation of the educational process with employers organizations, other universities and intranet mobility of students are given.

  5. Experience and advantages in implementation of educational program in network form at Department «Closed nuclear fuel cycle Technologies» of National Research Nuclear University «MEPhI»

    International Nuclear Information System (INIS)

    Beygel', A G; Kutsenko, K V; Lavrukhin, A A; Pershukov, V A; Sofronov, V L; Tyupina, E A; Zhiganov, A N; Magomedbekov, E P

    2017-01-01

    The experience of implementation of the basic educational program of magistracy on direction «Nuclear Physics and Technologies» in a network form is presented. Examples of joint implementation of the educational process with employers organizations, other universities and intranet mobility of students are given. (paper)

  6. Managing nuclear safety research facilities and capabilities in a changing nuclear industry: the contribution of the OECD/NEA

    International Nuclear Information System (INIS)

    Royen, J.

    2000-01-01

    Although the safety level of nuclear power plants in OECD countries is very satisfactory and the technologies basic to the resolution of safety issues have advanced considerably, continued nuclear safety research work is necessary to address many of the residual concerns, and it remains an important element in ensuring the safe operation of nuclear power plants. However, the funding levels of national Government safety research programmes have been reduced over recent years. There is concern about the ability of OECD Member countries to sustain an adequate level of nuclear safety research capability. The OECD/NEA has a key role to play in organizing reflection and exchange of information on the most efficient use of available technical resources, and in the international management of nuclear safety research facilities and capabilities in a changing nuclear industry. Possible initiatives are mentioned in the paper. (author)

  7. Proceedings of second national workshop on nuclear structure physics

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Jain, A.K.

    1995-01-01

    The Second National Workshop on Nuclear Structure Physics was held at Calcutta during February 7-10 1995. The topics discussed have been quite broad based and covered many areas of nuclear structure physics and radiochemistry. Papers relevant to INIS are indexed separately

  8. Development of a national neutron database for nuclear technology

    International Nuclear Information System (INIS)

    Igantyuk, A.V.; Kononov, V.N.; Kuzminov, B.D.; Manokhin, V.N.; Nikolaev, M.N.; Furzov, B.I.

    1997-01-01

    This paper describes the stages of a many years activities at the IPPE consisting of the measurement, theoretical description and evaluation of neutron data, and of the establishment of a national data bank of neutron data for nuclear technology. A list of libraries which are stored at the Nuclear Data Centre is given. (author). 16 refs, 14 tabs

  9. Development of Secure and Sustainable Nuclear Infrastructure in Emerging Nuclear Nations Such as Vietnam

    International Nuclear Information System (INIS)

    Shipwash, Jacqueline L; Kovacic, Donald N

    2008-01-01

    The global expansion of nuclear energy will require international cooperation to ensure that nuclear materials, facilities, and sensitive technologies are not diverted to non-peaceful uses. Developing countries will require assistance to ensure the effective regulation, management, and operation of their nuclear programs to achieve best practices in nuclear nonproliferation. A developing nation has many hurdles to pass before it can give assurances to the international community that it is capable of implementing a sustainable nuclear energy program. In August of this year, the U.S. Department of Energy and the Ministry of Science and Technology of the Socialist Republic of Vietnam signed an arrangement for Information Exchange and Cooperation on the Peaceful Uses of Nuclear Energy. This event signals an era of cooperation between the U.S. and Vietnam in the area of nuclear nonproliferation. This paper will address how DOE is supporting the development of secure and sustainable infrastructures in emerging nuclear nations such as Vietnam

  10. Development of technologies for national control of and accountancy for nuclear materials

    International Nuclear Information System (INIS)

    Choi, Young Myung; Kwack, E. H.; Kim, B. K.

    2002-03-01

    The aim of this project is to establish a rigid foundation of national safeguards and to develop the new technologies for the nuclear control. This project is composed of four different technologies; 1. Monitoring technology for nuclear materials, 2. Detection technology for a single particle, 3. Safeguards information management technology, 4. Physical protection technology. Various studies such as a remote verification system for CANDU spent fuel in dry storage canister, a spent fuel verification system using an optical fiber scintillator, and development of softwares for safeguards and physical protection were performed in the frist phase('99-'01). As a result of this research, it has been identified that the developed technologies could be a crucial means of the control for the nuclear material and facilities related. We are planing to accomplish a steady national safeguard system in the second phase('02-'06). This research will help to elevate the transparency and credibility in national nuclear activities by improving the relative technologies

  11. National Rehabilitation Hospital Assistive Technology Research Center

    Science.gov (United States)

    1995-10-01

    Shoulder-Arm Orthoses Several years ago, the Rehabilitation Engineering Research Center (RERC) on Rehabilitation Robotics in Delaware1 identified a... exoskeletal applications for persons with disabilities. 2. Create a center of expertise in rehabilitation technology transfer that benefits persons with...AD COOPERATIVE AGREEMENT NUMBER: DAMD17-94-V-4036 TITLE: National Rehabilitation Hospital Assistive Technology- Research Center PRINCIPAL

  12. Research needs for our national landscapes

    Science.gov (United States)

    Elwood L. Shafer

    1979-01-01

    The prevailing research problem for our national landscapes is: How shall we organize, control, and coordinate public and private development so as to protect, maintain, improve, and manage those landscape features that we value most? Research questions discussed include: environmental/political conflicts, taxation and zoning, landscape classification, public...

  13. The national nuclear material tracking system. A Korea's countermeasure against nuclear terrorism

    International Nuclear Information System (INIS)

    Moon, Joo Hyun

    2011-01-01

    Since nuclear terrorism has been identified as a real threat, the Korean government has earnestly developed elementary technologies and sub-systems for establishing an integrated defensive system against nuclear terrorism, which is based on the concept of defense-in-depth. This paper introduces the gist and implications of the studies that have been conducted in building the national nuclear material tracking system for preventing and intercepting the illicit trafficking and transporting of nuclear material in Korea. (orig.)

  14. The national nuclear material tracking system. A Korea's countermeasure against nuclear terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyun [Dongguk Univ., Gyeongbuk (Korea, Republic of)

    2011-07-15

    Since nuclear terrorism has been identified as a real threat, the Korean government has earnestly developed elementary technologies and sub-systems for establishing an integrated defensive system against nuclear terrorism, which is based on the concept of defense-in-depth. This paper introduces the gist and implications of the studies that have been conducted in building the national nuclear material tracking system for preventing and intercepting the illicit trafficking and transporting of nuclear material in Korea. (orig.)

  15. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1991-06-01

    A comprehensive Nuclear Plant Aging Research (NPAR) Program was implemented by the US NRC office of Nuclear Regulatory Research in 1985 to identify and resolve technical safety issues related to the aging of systems, structures, and components in operating nuclear power plants. This is Revision 2 to the Nuclear Plant Aging Research Program Plant. This planes defines the goals of the program the current status of research, and summarizes utilization of the research results in the regulatory process. The plan also describes major milestones and schedules for coordinating research within the agency and with organizations and institutions outside the agency, both domestic and foreign. Currently the NPAR Program comprises seven major areas: (1) hardware-oriented engineering research involving components and structures; (2) system-oriented aging interaction studies; (3) development of technical bases for license renewal rulemaking; (4) determining risk significance of aging phenomena; (5) development of technical bases for resolving generic safety issues; (6) recommendations for field inspection and maintenance addressing aging concerns; (7) and residual lifetime evaluations of major LWR components and structures. The NPAR technical database comprises approximately 100 NUREG/CR reports by June 1991, plus numerous published papers and proceedings that offer regulators and industry important insights to aging characteristics and aging management of safety-related equipment. Regulatory applications include revisions to and development of regulatory guides and technical specifications; support to resolve generic safety issues; development of codes and standards; evaluation of diagnostic techniques; (e.g., for cables and valves); and technical support for development of the license renewal rule. 80 refs., 25 figs., 10 tabs

  16. Nuclear power and the public: an update of collected survey research on nuclear power

    International Nuclear Information System (INIS)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues

  17. Nuclear power and the public: an update of collected survey research on nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  18. National radiological emergency response to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Dela Rosa, Alumanda M.

    2011-01-01

    The Fukushima nuclear power plant accident occurred on March 11, 2011, when two natural disasters of unprecedented strengths, an earthquake with magnitude 9 followed one hour later by a powerful tsunami struck northeastern Japan and felled the external power supply and the emergency diesel generators of the Fukushima Daiichi nuclear power station, resulting in a loss of coolant accident. There were core meltdowns in three nuclear reactors with the release of radioactivity estimated to be 1/10 of what was released to the environment during the Chernobyl nuclear power plant accident in April 1986. The Fukushima nuclear accident tested the capability of the Philippine Nuclear Research Institute (PNRI) and the National Disaster Risk Reduction and Management Council (NDRRMC) in responding to such radiological emergency as a nuclear power plant accident. The PNRI and NDRRMC activated the RADPLAN for possible radiological emergency. The emergency response was calibrated to the status of the nuclear reactors on site and the environmental monitoring undertaken around the site and off-site, including the marine environment. This orchestrated effort enabled the PNRI and the national agencies concerned to reassure the public that the nuclear accident does not have a significant impact on the Philippines, both on the health and safety of the people and on the safety of the environment. National actions taken during the accident will be presented. The role played by the International Atomic Energy Agency as the central UN agency for nuclear matters will be discussed. (author)

  19. Nuclear energy research and development in France

    International Nuclear Information System (INIS)

    Patarin, L.

    1981-02-01

    Having described the general organization and main participants in charge of nuclear energy development in France, headed by the C.E.A. since the start of this activity at the end of World War II, the author gives a glimpse of the programmes shared out between four main headings: fundamental research, reactors, fuel cycle and nuclear safety. Two tables sum up the financial means of the C.E.A. in 1981 on the one hand and the personnel strengths on the other. A graph also shows the operational framework of the C.E.A. and its main subsidiaries and participations [fr

  20. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  1. Ready for nuclear energy?: An assessment of capacities and motivations for launching new national nuclear power programs

    International Nuclear Information System (INIS)

    Jewell, Jessica

    2011-01-01

    The International Atomic Energy Agency reports that as of July 2009 there were 52 countries interested in building their first nuclear power plant. This paper characterizes and evaluates these 'Newcomer Countries' in terms of their capacity and motivations to develop nuclear power. It quantifies factors historically associated with the development of nuclear energy programs and then benchmarks the Newcomers against these data. Countries with established nuclear power programs, particularly where nuclear facilities are privately owned, are typically larger, wealthier and politically stable economies with high government effectiveness. Nuclear power was historically launched during periods of high electricity consumption growth. Other indicators for the potential of nuclear power include: the size of the national grid, the presence of international grid connections and security of fuel supply for electricity production. We identify 10 Newcomers which most closely resemble the Established Nuclear Power Countries and thus are most likely to deploy nuclear energy, 10 countries where the development of nuclear energy is uncertain due to high political instability, 14 countries with lower capacities where pursuing nuclear energy may require especially strong international cooperation and 18 countries where the development of nuclear power is less likely due to their significantly lower capacities and motivations. - Research Highlights: →Historically, nuclear power was used in larger, wealthier, politically stable economies. →Nuclear power was typically launched in periods of high electricity demand growth. →Only 10 out of 52 'Newcomer' countries share similar characteristics. →10 other 'Newcomers' with high motivations and capacities are politically unstable. →Nuclear power would need international help in 14 countries and is unlikely in the rest (18).

  2. Nuclear Research and Development Institutes in Central and Eastern Europe

    International Nuclear Information System (INIS)

    2009-06-01

    The science and technology (S and T) sector is faced today with complex and diverse challenges. National science budgets are under pressure, and many countries are changing how research and development (R and D) is funded, reducing direct subsidies and introducing competition for both governmental and alternative sources of revenue. On the other hand, the transition toward knowledge-based economies is creating new opportunities in the S and T sector as governments look to it to foster economic growth through innovation. A number of countries in Central and Eastern Europe have recently joined the European Union (EU) which has defined the Lisbon Strategy to create a 'knowledge triangle' of research, education and innovation to underpin the European economic and social model, and economic growth. This strategy seeks to increase investment in science and technology across the EU to a target of 3% of GDP by 2010, with two-thirds of funds coming from the private sector. By comparison, funding for R and D in most Central and Eastern European countries is only around 1% GDP, of which about 90% is provided by the governments. R and D has become more international, reflecting a more interdependent and globalized world. R and D progress is not only of interest to individual countries but also tries to respond to the needs of a broader society. Governments still maintain national networks, but increasingly emphasize international cooperation, both to avoid duplication of expensive infrastructure, and because scientific excellence requires an exchange of ideas and cooperation that crosses borders. These challenges and opportunities directly impact the research and development institutes (RDIs), including the nuclear RDIs. It is important for the nuclear RDIs to take account of these trends in the broader S and T sector in their vision and strategy. Several nuclear RDIs have become very successful, but others are struggling to adapt. The challenges have been particularly severe

  3. Public opinion change after the Fukushima nuclear accident: The role of national context revisited

    International Nuclear Information System (INIS)

    Latré, Edwin; Perko, Tanja; Thijssen, Peter

    2017-01-01

    This study explores how national context moderated change in support for nuclear energy after the Fukushima accident. The following national contextual variables are tested: geographical distance, nuclear energy production status, freedom of the press, and the building of new nuclear reactors. The results illustrate that previous research has misunderstood the moderating role of national context on opinion change after the Fukushima accident. A survey conducted shortly after the accident with more than 23,000 respondents from 41 countries has shown that geographical distance from the accident mattered: Contradicting a previous study, the decrease in support for nuclear energy was stronger in countries closer to Fukushima. In addition, support for nuclear energy decreased more in countries where new nuclear reactors were under construction. The country's nuclear energy production status and press freedom did not determine opinion change after the Fukushima accident. The non-effect of freedom of the press on opinion change contradicts the role of media after a focusing event as described in the literature. Overall results demonstrate a limited effect of national context on opinion change following a focusing event. Hence, national context provides only limited information to policy makers on how to respond to a nuclear accident. - Highlights: • National context had limited effect on opinion change after Fukushima. • Support for nuclear energy decreased more in counties closer to the accident. • Support for nuclear energy decreased more where the nuclear energy debate was salient. • Freedom of the press did not determine opinion change after Fukushima. • Not all contextual factors are relevant when designing appropriate policy response.

  4. Professor Bakytzhan Abdiraiym Rector of the L. Gumilov Eurasian National University, Astana, Kazakhstan accompanied by Prof. Kairat Kuterbekov, Dr Bekzat Prmantayeva, Dr Kuralay Maksut with the Director-General, Dr Tadeusz Kurtyka, Adviser for Non-Member States, Mrs Julia Andreeva, Department of Information Technologies and Dr Nikolai Zimine, ATLAS Collaboration, Joint Institute for Nuclear Research, Dubna

    CERN Document Server

    Maximilien Brice

    2011-01-01

    Professor Bakytzhan Abdiraiym Rector of the L. Gumilov Eurasian National University, Astana, Kazakhstan accompanied by Prof. Kairat Kuterbekov, Dr Bekzat Prmantayeva, Dr Kuralay Maksut with the Director-General, Dr Tadeusz Kurtyka, Adviser for Non-Member States, Mrs Julia Andreeva, Department of Information Technologies and Dr Nikolai Zimine, ATLAS Collaboration, Joint Institute for Nuclear Research, Dubna

  5. Nuclear decay data files of the Dosimetry Research Group

    International Nuclear Information System (INIS)

    Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M.

    1993-12-01

    This report documents the nuclear decay data files used by the Dosimetry Research Group at Oak Ridge National Laboratory and the utility DEXRAX which provides access to the files. The files are accessed, by nuclide, to extract information on the intensities and energies of the radiations associated with spontaneous nuclear transformation of the radionuclides. In addition, beta spectral data are available for all beta-emitting nuclides. Two collections of nuclear decay data are discussed. The larger collection contains data for 838 radionuclides, which includes the 825 radionuclides assembled during the preparation of Publications 30 and 38 of the International Commission on Radiological Protection (ICRP) and 13 additional nuclides evaluated in preparing a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The second collection is composed of data from the MIRD monograph and contains information for 242 radionuclides. Abridged tabulations of these data have been published by the ICRP in Publication 38 and by the Society of Nuclear Medicine in a monograph entitled ''MIRD: Radionuclide Data and Decay Schemes.'' The beta spectral data reported here have not been published by either organization. Electronic copies of the files and the utility, along with this report, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory

  6. Status of Zircaloy deformation and oxidation research at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Chapman, R.H.; Cathcart, J.V.; Hobson, D.O.

    1976-01-01

    The U.S. Nuclear Regulatory Commission sponsors a broad range of research on the response of nuclear fuel assemblies to normal, off-normal, and accident conditions in light-water reactors. The paper reviews the current status of three Zircaloy cladding research programs in progress at the Oak Ridge National Laboratory and presents some preliminary results from each

  7. Program nuclear safety research: report 2000

    International Nuclear Information System (INIS)

    Muehl, B.

    2001-09-01

    The reactor safety R and D work of forschungszentrum karlsruhe (FZK) had been part of the nuclear safety research project (PSF) since 1990. In 2000, a new organisational structure was introduced and the Nuclear Safety Research Project was transferred into the nuclear safety research programme (NUKLEAR). In addition to the three traditional main topics - Light Water Reactor safety, Innovative systems, Studies related to the transmutation of actinides -, the new Programme NUKLEAR also covers Safety research related to final waste storage and Immobilisation of HAW. These new topics, however, will only be dealt with in the next annual report. Some tasks related to the traditional topics have been concluded and do no longer appear in the annual report; other tasks are new and are described for the first time. Numerous institutes of the research centre contribute to the work programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2001. (orig.)

  8. Senagal National Presentation on Nuclear Power Infrastructure

    International Nuclear Information System (INIS)

    Moutapha, S.T

    2010-01-01

    Regulatory Body (RB) implementation is in progress: decree defining Role, Responsibility and Mission of RB signed after IAEA Advisory Mission received 7-11 December 2009. Self-assessment on some topics of the Milestones will be done by Working Group (WG). The political statement from government Declaration of indentation to consider nuclear energy generation was read at IAEA General Conference). Decree 2008-1433 (December -12- 2008d) creates under the authority of the President de la République a Work Group for the Management and the realization of the Senegalese Nuclear Power Project in the horizon 2016. The Draft Law in preparation and the laws on Radiation protection and Nuclear Safety (law 2004-17 and law 2009-14) provide for a Regulatory Body but ASRN is not yet fully established by decrees although the decree 2010-893 July 30 2010 defining the role and missions of ASRN has been signed by President

  9. Challenges faced by nuclear research centres in Indonesia

    International Nuclear Information System (INIS)

    Subki, I.R.; Soentono, S.

    2001-01-01

    Nuclear research centres in Indonesia are mainly owned and operated by the National Nuclear Energy Agency, covering basically various research and development facilities for non-energy and energy related activities. The research and development activities cover a broad spectrum of basic, applied, and developmental research involving nuclear science and technology in supporting various fields ranging from basic human needs, e.g. food and health; natural resources and nuclear and environmental safety; as well as industry. Recent economic crisis, triggered by monetary turmoil, has dictated the IAEA to face new challenges and to give more efforts on the application of the so called 'instant technology' i.e. the technology which has been developed and is ready for implementation, especially on food and health, to be better utilized to overcome various problems in the society. Various short and medium term programmes on the application of isotopes, radiation, and nuclear techniques for non-energy related activities have emerged in accord with these efforts. In this regard, besides the intensification of the instant technology implementation on food and health, the nuclear research and development on food plant mutation, fertilizers, radio-vaccines, production of meat and milk, production processes of various radiopharmaceuticals, and radioisotopes as well as radiation processing related to agro-industry have to be intensified using the available laboratories processing facilities. The possibility of the construction of irradiators for post harvesting processes in some provinces is being studied, while the designing and manufacturing of various prototypes of devices, equipment, and instruments for nuclear techniques in health and industry are continued. Considering the wide applications of accelerators for non-energy and energy related research and development, construction of accelerator-based laboratories is being studied. In energy related research the feasibility of

  10. Research-based approaches to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Donev, J.M.K.C., E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada); Carpenter, Y., E-mail: ycarpenter@gmail.com [Univ.ty of Colorado at Boulder, Boulder, CO (United States)

    2014-07-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  11. Research-based approaches to nuclear education

    International Nuclear Information System (INIS)

    Donev, J.M.K.C.; Carpenter, Y.

    2014-01-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  12. Law created by the National Commission for Nuclear Energy. Ley que crea la Comision Nacional de Energia Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    1955-12-01

    The National Commission for Nuclear Energy issued a law, enforced on January 1, 1956, in its position as an organ of the Federal Executive Power, with its own personality and patrimony, and the judicial capacities necessary to carry out its purposes: for all matters pertaining this law, 'atomic materials' are those included in the Mineral Resources; uranium, thorium and in general all elements from which energy may be obtained in large amounts through nuclear reactions, based upon the judgement of the Commission. The objective of the National Commission for Nuclear Energy is to control, survey, coordinate, foster and carry out: (a) Exploration and exploitation of atomic material deposits, as well as the deposits of all other material that may be of specific use for the construction of nuclear reactors. (b) Possession of atomic material. (c) Exports and imports of such material. (d) Imports and exports of equipment for the use of nuclear energy. (e) Trade and local transportation of these materials. (f) The production and use of nuclear energy, intended primarily to satisfy national needs. (g) Scientific research in the field of nuclear fission and all related technical and scientific disciplines.

  13. Nuclear research reactors in the world. June 1988 ed.

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third edition of Reference Data Series No. 3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of June 1988, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the IAEA Research Reactor Data Base (RRDB) system. This system contains all the information and data previously published in the Agency's publication Power and Research Reactors in Member States as well as additional information. 12 figs, 19 tabs

  14. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    Energy Technology Data Exchange (ETDEWEB)

    McAlpine, Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  15. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    International Nuclear Information System (INIS)

    McAlpine, Bradley

    2015-01-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  16. Nuclear Safety Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  17. Foresight and strategy in national research councils and research programmes

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Borup, Mads

    2009-01-01

    This paper addresses the issue of foresight and strategy processes of national research councils and research programmes. It is based on a study of strategy processes in national research councils and programmes and the challenges faced by their strategy activities. We analysed the strategy...... processes of two organisations: the Danish Technical Research Council and the Danish Energy Research Programme. We analysed the mechanisms of the strategy processes and studied the actors involved. The actors’ understanding of strategy was also included in the analysis. Based on these analyses we argue...... that the impact of foresight exercises can be improved if we have a better understanding of the traditions and new challenges faced by the research councils. We also argue that a more formal use of foresight elements might improve the legitimacy and impact of the strategic considerations of research councils...

  18. National report of Brazil: nuclear safety convention - September 1998

    International Nuclear Information System (INIS)

    1998-09-01

    This National Report was prepared by a group composed of representatives of the various Brazilian organizations with responsibilities in the field of nuclear safety, aiming the fulfilling the Convention of Nuclear Energy obligations. The Report contains a description of the Brazilian policy and programme on the safety of nuclear installations, and an article by article description of the measures Brazil is undertaking in order to implement the obligations described in the Convention. The last chapter describes plans and future activities to further enhance the safety of nuclear installations in Brazil

  19. National report of Brazil: nuclear safety convention - September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This National Report was prepared by a group composed of representatives of the various Brazilian organizations with responsibilities in the field of nuclear safety, aiming the fulfilling the Convention of Nuclear Energy obligations. The Report contains a description of the Brazilian policy and programme on the safety of nuclear installations, and an article by article description of the measures Brazil is undertaking in order to implement the obligations described in the Convention. The last chapter describes plans and future activities to further enhance the safety of nuclear installations in Brazil.

  20. Personal nuclear accident dosimetry at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Ward, D.C.; Mohagheghi, A.H.; Burrows, R.

    1996-09-01

    DOE installations possessing sufficient quantities of fissile material to potentially constitute a critical mass, such that the excessive exposure of personnel to radiation from a nuclear accident is possible, are required to provide nuclear accident dosimetry services. This document describes the personal nuclear accident dosimeter (PNAD) used by SNL and prescribes methodologies to initially screen, and to process PNAD results. In addition, this report describes PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study (NAD23), held during 12-16 June 1995, at Los Alamos National Laboratories. Biases for reported neutron doses ranged from -6% to +36% with an average bias of +12%

  1. Sixth national report of Brazil for the nuclear safety convention

    International Nuclear Information System (INIS)

    2013-01-01

    Brazil has presented periodically its National Report prepared by a group composed of representatives of the various Brazilian organizations with responsibilities related to nuclear safety. Due to the implications of the Fukushima nuclear accident in 2011, an Extraordinary National Report was presented in 2012. This Sixth National Report is an update of the Fifth National Report in relation to the Convention on Nuclear Safety articles and also an update of the Extraordinary Report with respect to the action taken related to lesson learned from the Fukushima accident. It includes relevant information for the period of 2010/2012. This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  2. Sixth national report of Brazil for the nuclear safety convention

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    Brazil has presented periodically its National Report prepared by a group composed of representatives of the various Brazilian organizations with responsibilities related to nuclear safety. Due to the implications of the Fukushima nuclear accident in 2011, an Extraordinary National Report was presented in 2012. This Sixth National Report is an update of the Fifth National Report in relation to the Convention on Nuclear Safety articles and also an update of the Extraordinary Report with respect to the action taken related to lesson learned from the Fukushima accident. It includes relevant information for the period of 2010/2012. This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations.

  3. Influence of operation of national experimental nuclear reactor on the natural environment

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarek-Kacprzak

    2012-09-01

    Full Text Available This paper presents the impact of experimental nuclear reactor operations on the national environment, based on assessment reports of the radiological protection of active nuclear technology sources. Using the analysis of measurements carried out in the last 15 years, the trends are presented in selected elements of the environment on the Świerk Nuclear Centre site and its surroundings. In addition, the impact of research results is presented from the fi fteen year period of environmental analysis on building public confi dence on the eve of the start of construction of the first Polish nuclear power plant.

  4. Proposal to improve quality in the sale process of products and services through the implementation of the post-sale service, in the National Institute of Nuclear Research (ININ) for year 2000

    International Nuclear Information System (INIS)

    Pliego R, M.T.

    2000-01-01

    In the National Institute of Nuclear Research (ININ) it has been able to identify a series of problems in the commercial area just as: lack of publicity, new competitors, customers, loss by the unsatisfied services which are supplied, lack of personnel which dedicates to the sales activity among others. Therefore it has been decided to carry out the implementation of a post-sale service to assure the success of sales through the constant contracting products and services for part of customers totally satisfied, achieving so the fulfilment of the ININ commercialization objectives. Therefore, it was carried out a study which includes: theoretical frame on marketing making emphasis on the management process in this Institute. Also was necessary to know the study object about some aspects such as: its constitution, mission, politics, sales procedures, with the purpose to find their deficiencies and obtaining a scope about ININ products and services which it provides. Therefore was carried out a marketing research with some customers of the Institute obtaining their commentaries. With these analysis elements it has been possible to propose an implementation of a post-sale service and concluding that with this manner, it will be able to assure the complete satisfaction of the customers establishing in the service contract a guarantee with legal sustenance for the fulfilment of this. The services and products offered are: production and sales of radionuclides, radiopharmaceuticals, for diagnostic and theory. Elemental analysis (PIXE, PGE, RbS, NMR,NAA), atomic absorption, X-ray diffraction, X-ray fluorescence, plasma spectroscopy, high resolution mass spectroscopy, gas and mass chromatography, as well as in radiological protection, electron microscopy, irradiation of finished products and raw materials, study of materials and documentation among others. (Author)

  5. Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy

    International Nuclear Information System (INIS)

    Wagner, John C.; Peterson, Joshua L.; Mueller, Don; Gehin, Jess C.; Worrall, Andrew; Taiwo, Temitope; Nutt, Mark; Williamson, Mark A.; Todosow, Mike; Wigeland, Roald; Halsey, William; Omberg, Ronald; Swift, Peter; Carter, Joe

    2013-01-01

    A technical assessment of the current inventory [∼70,150 metric tons of heavy metal (MTHM) as of 2011] of U.S.-discharged used nuclear fuel (UNF) has been performed to support decisions regarding fuel cycle strategies and research, development and demonstration (RD and D) needs. The assessment considered discharged UNF from commercial nuclear electricity generation and defense and research programs and determined that the current UNF inventory can be divided into the following three categories: 1. Disposal - excess material that is not needed for other purposes; 2. Research - material needed for RD and D purposes to support waste management (e.g., UNF storage, transportation, and disposal) and development of alternative fuel cycles (e.g., separations and advanced fuels/reactors); and 3. Recycle/Recovery - material with inherent and/or strategic value. A set of key assumptions and attributes relative to the various disposition options were used to categorize the current UNF inventory. Based on consideration of RD and D needs, time frames and material needs for deployment of alternative fuel cycles, characteristics of the current UNF inventory, and possible uses to support national security interests, it was determined that the vast majority of the current UNF inventory should be placed in the Disposal category, without the need to make fuel retrievable from disposal for reuse or research purposes. Access to the material in the Research and Recycle/Recovery categories should be retained to support RD and D needs and national security interests. This assessment does not assume any decision about future fuel cycle options or preclude any potential options, including those with potential recycling of commercial UNF.

  6. University Research Collaborations on Nuclear Technology: A Legal Framework

    International Nuclear Information System (INIS)

    Nagakoshi, Y.

    2016-01-01

    Full text: International nuclear research collaborations are becoming increasingly important as the need for environmentally sound and safe energy technology grows. Despite having its risk, the benefits of using nuclear energy cannot be overlooked considering the energy crisis the world is facing. In order to maximize the safety of existing technology and promoting safe ways of taking advantage of nuclear energy, collaborative efforts of all who are involved in nuclear technology is necessary, regardless of national borders or affiliation. Non-conventional use of nuclear energy shall also be sought after in order to reduce greenhouse gas emission and to overcome the energy crisis the world is facing. It is therefore important that international collaborations among research institutes are promoted. Collaboration amongst universities poses a series of legal questions on how to form the framework, how to protect individual and communal inventions and how to share the fruits of the invention. This paper proposes a possible framework of collaboration and elaborates on possible legal issues and solutions. (author

  7. Economic analysis of nuclear power reactor dissemination to less developed nations with implications for nuclear proliferation

    International Nuclear Information System (INIS)

    Gustavson, R.L.; Howard, J.S. II.

    1979-09-01

    We have applied an economic model to the transfer of nuclear-power reactors from industrialized nations to the less developed nations. The model includes demand and supply factors and predicts the success of US nonproliferation positions and policies. We conclude that economic forces dominate the transfer of power reactors to less developed nations. Our study shows that attempts to either restrict or promote the spread of nuclear-power technology by ignoring natural economic incentives would have only limited effect. If US policy is too restrictive, less developed nations will seek other suppliers and thereby lower US Influence substantially. Allowing less developed nations to develop nuclear-power technology as dictated by economic forces will result in a modest rate of transfer that should comply with nuclear-proliferation objectives

  8. Economic analysis of nuclear power reactor dissemination to less developed nations with implications for nuclear proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, R.L.; Howard, J.S. II

    1979-09-01

    An economic model is applied to the transfer of nuclear-power reactors from industrialized nations to the less developed nations. The model includes demand and supply factors and predicts the success of US nonproliferation positions and policies. It is concluded that economic forces dominate the transfer of power reactors to less developed nations. Our study shows that attempts to either restrict or promote the spread of nuclear-power technology by ignoring natural economic incentives would have only limited effect. If US policy is too restrictive, less developed nations will seek other suppliers and thereby lower US Influence substantially. Allowing less developed nations to develop nuclear-power technology as dictated by economic forces will result in a modest rate of transfer that should comply with nuclear-proliferation objectives.

  9. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel. Summary

    International Nuclear Information System (INIS)

    1995-03-01

    The United States Department of Energy and United States Department of State are jointly proposing to adopt a policy to manage spent nuclear fuel from foreign research reactors. Only spent nuclear fuel containing uranium enriched in the United States would be covered by the proposed policy. The purpose of the proposed policy is to promote U.S. nuclear weapons nonproliferation policy objectives, specifically by seeking to reduce highly-enriched uranium from civilian commerce. This is a summary of the Draft Environmental Impact Statement. Environmental effects and policy considerations of three Management Alternative approaches for implementation of the proposed policy are assessed. The three Management Alternatives analyzed are: (1) acceptance and management of the spent nuclear fuel by the Department of Energy in the United States, (2) management of the spent nuclear fuel at one or more foreign facilities (under conditions that satisfy United States nuclear weapons nonproliferation policy objectives), and (3) a combination of components of Management Alternatives 1 and 2 (Hybrid Alternative). A No Action Alternative is also analyzed. For each Management Alternative, there are a number of alternatives for its implementation. For Management Alternative 1, this document addresses the environmental effects of various implementation alternatives such as varied policy durations, management of various quantities of spent nuclear fuel, and differing financing arrangements. Environmental impacts at various potential ports of entry, along truck and rail transportation routes, at candidate management sites, and for alternate storage technologies are also examined. For Management Alternative 2, this document addresses two subalternatives: (1) assisting foreign nations with storage; and (2) assisting foreign nations with reprocessing of the spent nuclear fuel

  10. 'Newcomer' nuclear nation leads way into new nuclear year

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, St George' s Redditch (United Kingdom)

    2018-01-15

    At the start of a new year, it is appropriate that a 'newcomer' nuclear nation has launched work on building its first nuclear power plant. First nuclear safety-related concrete has been poured for the plant at Rooppur in Bangladesh - making the South Asia nation the first in 30 years to start building its first commercial reactor unit following the United Arab Emirates in 2012 and Belarus in 2013. Despite setbacks that nuclear has endured in recent years, there are nearly 60 reactors under construction around the world, mostly in Asia. Some 447 commercial reactor units are in operation in 30 countries.

  11. National Nuclear Data Center status report

    International Nuclear Information System (INIS)

    2001-01-01

    In September the NNDC hosted a workshop for international collaborators to discuss issues related to database migration and use of the relational database concept. It is expected that full migration will take four to five years. The preliminary design of the Nuclear Reaction Database has been completed by the Reaction Database Design Team. The nuclear structure team at NNDC has begun investigating options for the nuclear structure databases. A preliminary ENSDF database using Access is being tested. The NNDC continues to compile neutron and charged-particle reaction data produced in the US and Canada. In the period from June 2000 through May 2001, 6 neutron data transmission tapes (TRANS 1289-1294) and 13 charged-particle transmission tapes (C041-C049, P003, T006-T008) were sent containing new and corrected entries. The contract with Oak Ridge to compile neutron total cross section data has been completed. All recoverable data has been received by NNDC and are being processed or have already been added to the CSISRS database. NNDC continues to coordinate the work of the Cross Section Evaluation Working Group. ENDF/B-VI, Release 7, was distributed in June 2000. Version 6.12 of the ENDF Utility codes was also distributed in April 2001. The ENDF-102 Data Formats and Procedures Manual has been updated and is available on the NNDC Web site. Cooperation with KAERI continued on fission product evaluations, focusing on the fast neutron energy range. Thirteen preliminary evaluations have been completed. Cooperation with LANL and IAEA NDS on the development of a modular code for nuclear reaction data evaluations was initiated. The pre-equilibrium Monte Carlo code HMS was extended to account for angular momentum conservation, of importance for modeling isomer and discrete gamma-ray production. The modular code Empire was extended by adding a module based on the exciton model code DEGAS, motivated by the need to handle direct/semi-direct capture in the fast neutron energy

  12. A perfect match: Nuclear energy and the National Energy Strategy

    International Nuclear Information System (INIS)

    1990-11-01

    In the course of developing the National Energy Strategy, the Department of Energy held 15 public hearings, heard from more than 375 witnesses and received more than 1000 written comments. In April 1990, the Department published an Interim Report on the National Energy Strategy, which compiles those public comments. The National Energy Strategy must be based on actual experience and factual analysis of our energy, economic and environmental situation. This report by the Nuclear Power Oversight committee, which represents electric utilities and other organizations involved in supplying electricity from nuclear energy to the American people, provides such an analysis. The conclusions here are based on hard facts and actual worldwide experience. This analysis of all the available data supports -- indeed, dictates -- expanded reliance on nuclear energy in this nation's energy supply to achieve the President's goals. 33 figs

  13. NATO Advanced Research Workshop on Preparedness for Nuclear and Radiological Threats

    CERN Document Server

    Diamond, David

    2015-01-01

    The nuclear crisis in Fukushima and growing threats of nuclear terrorism must serve as a wake-up call, prompting greater action to prepare ourselves for nuclear and radiological disasters. Our strategy to prepare for these threats is multi-layered and the events of these past years have proved the necessity to re-evaluate the national and international preparedness goals on a scale never before considered. The programme of NATO Advanced Research Workshop on “Preparedness for Nuclear and Radiological Threats” has been focused on science and technology challenges associated with our need to improve the national and international capacity and capability to prevent, protect against, mitigate the effects of, respond to, and recover from the nuclear and radiological disasters, including nuclear and radiological accident, terrorist attack by Improvised Nuclear Device (IND) or by “Dirty Bomb”-Radiological Dispersal Device (RDD), that pose the greatest risk to the national and international security and safety...

  14. VA's National PTSD Brain Bank: a National Resource for Research.

    Science.gov (United States)

    Friedman, Matthew J; Huber, Bertrand R; Brady, Christopher B; Ursano, Robert J; Benedek, David M; Kowall, Neil W; McKee, Ann C

    2017-08-25

    The National PTSD Brain Bank (NPBB) is a brain tissue biorepository established to support research on the causes, progression, and treatment of PTSD. It is a six-part consortium led by VA's National Center for PTSD with participating sites at VA medical centers in Boston, MA; Durham, NC; Miami, FL; West Haven, CT; and White River Junction, VT along with the Uniformed Services University of Health Sciences. It is also well integrated with VA's Boston-based brain banks that focus on Alzheimer's disease, ALS, chronic traumatic encephalopathy, and other neurological disorders. This article describes the organization and operations of NPBB with specific attention to: tissue acquisition, tissue processing, diagnostic assessment, maintenance of a confidential data biorepository, adherence to ethical standards, governance, accomplishments to date, and future challenges. Established in 2014, NPBB has already acquired and distributed brain tissue to support research on how PTSD affects brain structure and function.

  15. Research on the climatic effects of nuclear winter: Final report

    International Nuclear Information System (INIS)

    Dickinson, R.E.

    1986-01-01

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project

  16. Research on the climatic effects of nuclear winter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.

    1986-12-03

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project.

  17. Karlsruhe Nuclear Research Centre. Programme budget 1988

    International Nuclear Information System (INIS)

    1987-01-01

    Following a general survey of tasks, planned activities and developmental trends of the nuclear research centre, the report gives an account of the activities to be performed in the subject fields of main interest, showing the budgeting figures for annual expenditure (for personnel, investments, operating costs) up to the year 1991. Further information explains the infrastructure of the centre and the distribution of overall expenditure as well as the budgetary planning. (UA) [de

  18. Dispersion fuel for nuclear research facilities

    International Nuclear Information System (INIS)

    Kushtym, A.V.; Belash, M.M.; Zigunov, V.V.; Slabospitska, O.O.; Zuyok, V.A.

    2017-01-01

    Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-XD with dispersion composition UO_2+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metallographic analyses and corrosion tests of fuel pellets are given in this paper

  19. Studies of the CNESTEN's Nuclear Research Centre

    International Nuclear Information System (INIS)

    Alami, R.

    1988-11-01

    The different steps of the methodology applied to the site selection of Maamora's Nuclear Research Centre, within a 20 km wide coastal band preliminarily fixed between Kenitra and Casablanca cities, are outlined: delimitation of potential zones, identification of potential sites, selection of preferred sites. A particular attention is given to the criterium of the methodology applied to the preferred sites classifying. 1 map, 2 tabs, 2 refs. (F.M.)

  20. Inside CERN European Organization for Nuclear Research

    CERN Document Server

    Pol, Andri; Heuer, Rolf

    2013-01-01

    For most people locations that hold a particular importance for the development of our society and for the advancement of science and technology remain hidden from view. CERN, the European Organization for Nuclear Research, is best known for its giant particle accelerator. Here researchers take part in a diverse array of fundamental physical research, in the pursuit of knowledge that will perhaps one dayrevolutionize our understanding of the universe and life on our planet. The Swiss photographer Andri Pol mixed with this multicultural community of researchers and followed their work over an extended period of time. In doing so he created a unique portrait of this fascinating “underworld.” The cutting-edge research is given a human face and the pictures allow us to perceive how in this world of the tiniest particles the biggest connections are searched for. With an essay by Peter Stamm.

  1. Research on the improvement of nuclear safety

    International Nuclear Information System (INIS)

    Yoo, Keon Joong; Kim, Dong Soo; Kim, Hui Dong; Park, Chang Kyu

    1993-06-01

    To improve the nuclear safety, this project is divided into three areas which are the development of safety analysis technology, the development of severe accident analysis technology and the development of integrated safety assessment technology. 1. The development of safety analysis technology. The present research aims at the development of necessary technologies for nuclear safety analysis in Korea. Establishment of the safety analysis technologies enables to reduce the expenditure both by eliminating excessive conservatisms incorporated in nuclear reactor design and by increasing safety margins in operation. It also contributes to improving plant safety through realistic analyses of the Emergency Operating Procedures (EOP). 2. The development of severe accident analysis technology. By the computer codes (MELCOR and CONTAIN), the in-vessel and the ex-vessel severe accident phenomena are simulated. 3. The development of integrated safety assessment technology. In the development of integrated safety assessment techniques, the included research areas are the improvement of PSA computer codes, the basic study on the methodology for human reliability analysis (HRA) and common cause failure (CCF). For the development of the level 2 PSA computer code, the basic research for the interface between level 1 and 2 PSA, the methodology for the treatment of containment event tree are performed. Also the new technologies such as artificial intelligence, object-oriented programming techniques are used for the improvement of computer code and the assessment techniques

  2. Evaluation of the status of national nuclear infrastructure development

    International Nuclear Information System (INIS)

    2008-01-01

    An appropriate infrastructure is essential for the safe, reliable and peaceful use of nuclear power. The IAEA was encouraged to assess ways to meet infrastructure needs and to provide guidance to Member States considering the introduction of nuclear power. All of these countries face the challenge of building the necessary nuclear infrastructure for the first nuclear power plant. The IAEA is responding to this demand through increased technical assistance, missions and workshops, and with new and updated technical publications. A holistic view of the infrastructure for nuclear power was published in Considerations to Launch a Nuclear Power Programme (GOV/INF/2007), targeted mainly at policy makers. Milestones in the Development of a National Infrastructure for Nuclear Power, an IAEA Nuclear Energy Series publication (No. NG-G-3.1) issued in 2007, provided more detailed guidance on the three phases of development outlined in Considerations to Launch a Nuclear Power Programme. It describes the sequential development through the three phases for each of 19 infrastructure issues, ranging from a government's national position on nuclear power to the procurement of items and services for the first nuclear power plant. Member States requested additional guidance on determining how to assess the progress of their infrastructure development for nuclear power programmes. This report was prepared in response to their request. It provides an evaluation approach for the status of national nuclear infrastructure development based upon the guidance presented in the Milestones publication mentioned above. The evaluation approach provides a comprehensive means to determine the status of the infrastructure conditions covering all of the 19 issues identified in the Milestones publication. This approach can be used by any interested Member State for self-evaluation in order to establish what additional work needs to be completed to develop the appropriate national infrastructure. In

  3. U.S. national nuclear material control and accounting system

    International Nuclear Information System (INIS)

    Taylor, S; Terentiev, V G

    1998-01-01

    Issues related to nuclear material control and accounting and illegal dealing in these materials were discussed at the April 19--20, 1996 Moscow summit meeting (G7 + Russia). The declaration from this meeting reaffirmed that governments are responsible for the safety of all nuclear materials in their possession and for the effectiveness of the national control and accounting system for these materials. The Russian delegation at this meeting stated that ''the creation of a nuclear materials accounting, control, and physical protection system has become a government priority''. Therefore, in order to create a government nuclear material control and accounting system for the Russian Federation, it is critical to study the structure, operating principles, and regulations supporting the control and accounting of nuclear materials in the national systems of nuclear powers. In particular, Russian specialists have a definite interest in learning about the National Nuclear Material Control and Accounting System of the US, which has been operating successfully as an automated system since 1968

  4. Molecular image in biomedical research. Molecular imaging unit of the National Cancer Research Center

    International Nuclear Information System (INIS)

    Perez Bruzon, J.; Mulero Anhiorte, F.

    2010-01-01

    This article has two basic objectives. firstly, it will review briefly the most important imaging techniques used in biomedical research indicting the most significant aspects related to their application in the preclinical stage. Secondly, it will present a practical application of these techniques in a pure biomedical research centre (not associated to a clinical facility). Practical aspects such as organisation, equipment, work norms, shielding of the Spanish National Cancer Research Centre (CNIO) Imaging Unit will be shown. This is a pioneering facility in the application of these techniques in research centres without any dependence or any direct relationship with other hospital Nuclear Medicine services. (Author) 7 refs.

  5. Sustainability indicators to nuclear research centers in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A., E-mail: symonfonseca@yahoo.com.br, E-mail: vmfj@cdtn.br, E-mail: aab@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  6. Nuclear plant aging research - an overview (electrical and mechanical components)

    International Nuclear Information System (INIS)

    Vora, J.P.

    1985-01-01

    As the operating nuclear power plants advance in age there must be a conscious national and international effort to understand the influence and safety implications of aging and service wear of components and structures in nuclear power plants and develop measures which are practical and cost effective for timely mitigation of aging degradation that could significantly affect plant safety. The Office of Nuclear Regulatory Research has, therefore, initiated a multi-year, multi-disciplinary program on Nuclear Plant Aging Research (NPAR). The overall goals identified for the program are as follows: 1) to identify and characterize aging and service wear effects associated with electrical and mechanical components, interfaces, and systems whose failure could impair plant safety; 2) to identify and recommend methods of inspection, surveillance and condition monitoring of electrical and mechanical components and systems which will be effective in detecting significant aging effects prior to loss of safety function so that timely maintenance and repair or replacement can be implemented; and, 3) to identify and recommend acceptable maintenance practices which can be undertaken to mitigate the effects of aging and to diminish the rate and extent of degradation caused by aging and service wear. The specific research activities to be implemented to achieve these goals are described

  7. Sustainability indicators to nuclear research centers in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A.

    2015-01-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  8. Journal of Research in National Development

    African Journals Online (AJOL)

    The Journal of Research in National Development aims to encourage interdisciplinary ... Favorite articles are quantitative, empirical and developmentally biased. .... Tax aggressiveness and corporate social responsibility fluidity in Nigerian firms ... By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  9. The study on key performance indices in national nuclear R and D program

    International Nuclear Information System (INIS)

    Kim, Seong Baek; Park, Nam Je; Park, Hong Jun; Chung, Bum Jin; Kim, Jeong Ha; Seo, Kyung Chun; Kim, Byung Mok

    2012-01-01

    Korean government has increased its investment of national research and development (R and D) recognizing that science and technology is a core element to bolster national economy and upgrade human life. In addition, measures have been developed to evaluate the R and D performance and contribution as they become critical and play pivotal roles to allocate national R and D budget in order to prevent the spillover effects. The nuclear technology development program is the backbone of the nuclear R and D programs in Korea. Since the nuclear R and D requires not only massive human resources and capitals but huge research equipment and facilities, the nuclear related science technology field is usually led by the government because of the high possibility of risk, failure or rewards, the necessity of huge budget, and the research spin off. The MEST (Ministry of Education and Science Technology) lays the groundwork for the advancement in nuclear R and D and the development of highly advanced technology by securing core technology. In addition, it also fosters world leading scientists with a creative research environment and an efficient R and D infrastructure. The main purpose of the study is to develop the logic model and design key performance indices for nuclear R and D program. The brief review of basic framework and contents for the performance evaluation system was explained in section 2. Based on the suggested evaluation framework, logic model and key performance indices are provided in section 3 and finally, concluding remarks are given in section 4

  10. The Institute for Nuclear Research and Nuclear Energy - present state and future prospects

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy is the biggest one within Bulgarian Academy of Sciences and it is a leading complex center for research and application of the nuclear physics in Bulgaria. The year 2003 was the first for the functioning of the new organization structure of INRNE consisting of 26 laboratories and 4 scientific experimental bases joined according their thematic in 7 scientific directions governed by the correspondent Expert Councils and Specialised Seminars. The scientific staff of the Institute has been worked on about 104 problems during the 2003 mainly on our traditional scientific areas, in particular, in the field of: theory of the elementary particles, field theory, atomic nuclei and quantum phenomena; experimental physics of the elementary particles, nuclear reactions, structure of atomic nuclei, cosmic rays and gamma-astrophysics at ultra high energies; neutron interactions and cross sections, physics of the fission; reactor physics, nuclear energy and nuclear safety and security ect. Now the results are already present and, as can been seen, almost half of the developments are connected with the problems of scientific support of the national nuclear energy production, radioactive waste, monitoring and management of the environment. With few exceptions, all these tasks are financially supported by national, foreign and international organizations. The fundamental end applied research results for 2003 have been accepted for publication or published in more than 300 articles in journals and proceeding of many international conferences. Large amount of these results has been obtained in close collaboration with international and foreign research centers, universities and institutions. Essential progress was obtained by the modernization of the scientific experimental bases of INRNE. The technical design project for the reconstruction of the old research reactor IRT 2000 in the new IRT 200 was successfully finished. The

  11. Optimalisation of national industry participation in nuclear power plant construction

    International Nuclear Information System (INIS)

    Sriyana

    2008-01-01

    A study of national industry participation based on recent data has already been conducted. The current industry data is used to estimate the optimum level of national industry participation in nuclear power plant (NPP) construction based on the prior study. The purpose of the study is to give a figure of the optimum level of national industry participation in NPP construction. The scope of the study is the NPP construction project in related to the potency of national industry to participate in the project. The methodology used in the study are literature study, web surfing for industrial data, and on-the-spot industry survey that are potential to participate in NPP construction. In addition to that, discussion with expertise of industrial practitioner was also conducted. The study concludes that (1) based on the recent national industry capability provided and compared to prior similar study, it is estimated that the level of national industry participation in the first NPP construction with the capacity of 1000 MWe PWR is about 40%. (2) to accelerate NPP technology transfer, we need to build a small size NPP. The nuclear island will be developed by BATAN in cooperation with national industry and the non-nuclear island will be developed by national industry. Universities and other academicians should be involved to support and keep the sustainability of man power availability in developing the NPP technology. (author)

  12. Developing National Capacity to Initiate Nuclear Power Programme

    International Nuclear Information System (INIS)

    Ndontchueng, M.M.

    2014-01-01

    Conclusion: ⇒ Nuclear power is needed for Developing Countries in the long term development strategy; ⇒ Developing Countries are lack of man power for both the NPP projects and the long term nuclear power program; ⇒ A long term HRD program (strategy) is needed to be established, in cooperation with Developed countries; ⇒ Education and training abroad is essential to the technology transfer; ⇒ Establishment of adequate infrastructure supporting HRD (nuclear engineering faculties, research groups, technical support centers) is indispensible for Developing Countries

  13. National and international nuclear material monitoring

    International Nuclear Information System (INIS)

    Waddoups, I.G.

    1996-01-01

    The status of nuclear materials in both the U.S. and Former Soviet Union is changing based upon the execution of agreements relative to weapons materials production and weapon dismantlement. The result of these activities is that a considerably different emphasis is being placed on how nuclear materials are viewed and utilized. Even though much effort is being expended on the final disposition of these materials, the interim need for storage and security of the material is increasing. Both safety and security requirements exist to govern activities when these materials are placed in storage. These requirements are intended to provide confidence that the material is not being misused and that the storage operations are conducted safely. Both of these goals can be significantly enhanced if technological monitoring of the material is performed. This paper will briefly discuss the traditional manual methods of U.S. and international material monitoring and then present approaches and technology that are available to achieve the same goals under the evolving environment

  14. Collective statement on the role of research in a nuclear regulatory context

    International Nuclear Information System (INIS)

    2001-01-01

    In the present context of deregulation and privatisation of the nuclear industry, maintaining an adequate level of nuclear safety research is a primary concern for nuclear regulators, researchers and nuclear power plant licensees, as well as for government officials and the public. While these different stakeholders may have common concerns and interests, there may also be differences. At the international level, it is important to understand that divisions exist both within and among countries, not only in national cultures but also in the way regulators, researchers and licensees view the rote of research. An international gathering under the auspices of the OECD Nuclear Energy Agency (NEA) took place in June 2001, bringing together heads of nuclear regulatory bodies of NEA Member countries, senior regulators, senior executives of research organisations and leaders from the nuclear industry to discuss their perceptions of the rote of research in a nuclear regulatory context. This collective statement represents an international consensus on a rationale for regulatory research for currently operating nuclear reactors and for future reactors, and sets forth specific recommendations to NEA standing technical committees and Member countries. The intended audience is primarily nuclear safety regulators, senior researchers and industry leaders. Government authorities, nuclear power plant operators and the general public may also be interested. (author)

  15. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Felicia Angelica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.; Waymire, Russell L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  16. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-01-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  17. Current state of nuclear fusion research

    International Nuclear Information System (INIS)

    Naraghi, M.

    1985-01-01

    During the past quarter century, plasma physics and nuclear fusion research have gone through impressive development. Tokamak, is realized to be the number one candidate for nuclear fusion reactor. Two large experiments, one called Joint European Torus (JET) at Culham, England, and the other JT-60 project in Japan have been completed and have reported preliminary results. In JET an average electron density of 4x10 13 pcls/ cm 3 , ion temperatures of 3Kev and energy confinement of 0.8 sec have been achieved. However, the Zeff has been even equal to 10 which unfortunately is a source of plasma energy loss. JT-60 has not offered any appreciable results yet, however, the objectives and initial tests promise long pulse duration, with very high ion and plasma densities. Both experiments have promised to achieve conditions approaching those needed in a fusion reactor. Other important experiments will be discussed and the role of third world countries will be emphasized. (Author)

  18. National Nuclear Corporation Limited report and financial statements 31 March 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The paper presents the annual report and audited financial statements of the National Nuclear Corporation Limited, 31 March 1987. The company is engaged in designing and constructing power stations and nuclear power reactors and other related work. A review of the development work carried out on power stations is briefly given, along with the research and development work on reactors. Future prospects concerning the Sizewell-'B' project are briefly outlined. (U.K.)

  19. Review of the proposed Strategic National Plan for Civilian Nuclear Reactor Development: Volume 1

    International Nuclear Information System (INIS)

    1986-10-01

    On August 9, 1985, the Secretary of Energy requested that the Chairman of the Energy Research Advisory Board establish an ad-hoc Panel to review a draft ''Strategic National Plan for Civilian Nuclear Reactor Development.'' The resulting report, approved by the Board, contains suggestions for improving the draft plan and also contains major recommendations for alleviating the several institutional barriers that appear to preclude the construction of any new nuclear power plants in this country

  20. Public sector's research programme on nuclear waste management

    International Nuclear Information System (INIS)

    Vuori, S.

    2000-06-01

    According to the Finnish nuclear energy legislation, each producer of nuclear waste is responsible for the safe handling, management and disposal of the waste as well as for the arising costs. Authorities supervise and control the implementation of the national waste management programme and set the necessary safety and other requirements. In these tasks the authorities are supported by a research programme on nuclear waste management that is independent of the implementing organisations and power companies. The main objective of the research programme has been to provide the authorities with information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into the following main topic areas: (1) Behaviour of bedrock (2) Geohydrology and geochemistry, (3) Release of radionuclides from repository and subsequent transport in bedrock, (4) Engineered safety barriers of the repository, system, (5) Performance and safety assessment of spent fuel disposal facilities, (6) Waste management technology and costs (7) Evaluation of the contents and scope of and observation of the realisation of the environmental impact assessment procedure for the siting of spent nuclear fuel disposal facility, and research on other societal and sociopolitical issues, and (8) Public information, attitude, and image issues for waste management facilities. The research programme has generated considerably increased information on the behaviour of the natural and technical release barriers of the disposal system and thereby contributed to building of confidence on the long-term safety of geological disposal of spent fuel. Furthermore, increased confidence among the public in the affected candidate municipalities has probably been achieved by the complementary studies conducted within the research programme on topics